Exercises for Day 10: Riemannian Metrics: Examples

1. Metric Comparisons. Suppose that g and g^{*} are two Riemannian metrics on M. We say that g and g^{*} are comparable on M, if there exists a constant $\lambda \geq 1$ such that $\lambda^{-2} g(v) \leq g^{*}(v) \leq \lambda^{2} g(v)$ for all $v \in T M$. Show that comparability is an equivalence relation and that if g and g^{*} are comparable with comparison constant λ, then the metrics d and d^{*} are comparable, in the sense that $\lambda^{-1} d(p, q) \leq d^{*}(p, q) \leq \lambda d(p, q)$.

Suppose now that g is a Riemannian metric on M^{n} and fix $p \in M$. Choose a coordinate chart (V, ϕ) with $p \in V$ such that $\phi(p)=0$ and $\phi(V)$ contains $B_{2}(0) \subset \mathbb{R}^{n}$. Show that there is a constant $\lambda>1$ such that

$$
\lambda^{-2}\left|\phi^{\prime}(p)(v)\right|^{2} \leq g(v) \leq \lambda^{2}\left|\phi^{\prime}(p)(v)\right|^{2}
$$

for all $v \in T_{p} M$ with $|\phi(p)| \leq 1$. Conclude that, if $\gamma:[0,1] \rightarrow M$ is a piecewise C^{1} curve with $\gamma(0)=p$ such that $\gamma([0,1])$ is not contained in $\phi^{-1}\left(B_{1}(0)\right) \subset V$, then the length of γ is at least $1 / \lambda$. In particular, for every $\delta<\lambda^{-1}$, we have $B_{\delta}(p) \subset \phi^{-1}\left(B_{1}(0)\right)$, where $B_{\delta}(p)=\{q \in M \mid d(p, q)<\delta\}$. (Hint: You will need to use the 'obvious' fact that, for the standard metric in $\mathbb{R}^{n}, d(x, y)=|x-y|$. For the proof of this, see Exercise 1 from Day 11.) More generally, show that

$$
B_{\lambda^{-1} \delta}(0) \subset \phi\left(B_{\delta}(p)\right) \subset B_{\lambda \delta}(0)
$$

for all $\delta<1 / \lambda$. Conclude that the metric topology of (M, d) is the same as the manifold topology. In particular, $B_{\delta}(p)$ is an open subset of M for all $\delta>0$ and the function on M defined as the d-distance from p is continuous. Moreover, if M is compact (as a manifold), then (M, d) is complete, i.e., any d-Cauchy sequence in M converges.
2. The Poincaré upper half-plane. Let $H^{+}=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ and let $g=y^{-2}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)$. Show that the following maps from H^{+}into itself are isometries of $\left(H^{+}, g\right)$:
(a) $f(x, y)=(x+a, y)$ for any constant $a \in \mathbb{R}$.
(b) $f(x, y)=(r x, r y)$ for any constant $r \in \mathbb{R}^{+}$.
(c) $f(x, y)=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)$. (Hint: If you are having trouble with the calculations, show that, for any differentiable curve $\gamma(t)=(x(t), y(t))$, the curves γ and $f \circ \gamma$ have the same speed with respect to g.)
(d) Show that each of the above transformations ($\mathrm{a}-\mathrm{c}$) carries the set of vertical lines and semicircles meeting the x-axis orthogonally onto itself. Moreover, show that, for any two distinct points p and q in H^{+}, either they lie on a common vertical line or else they lie on a unique circle with its center on the x-axis.
(e) Show that, for any two distinct points p and q in H^{+}, there is an isometry $f: H^{+} \rightarrow H^{+}$such that $f(p)=(0,1)$ and $f(q)=(0, r)$ for some $r>1$. (Hint: Use (d) together with the fact that any composition of g-isometries is a g-isometry.)
3. A LEFT-INVARIANT metric. Recall that, $\operatorname{since} \mathrm{GL}(n, \mathbb{R})$ is an open subset of the vector space $M_{n, n}(\mathbb{R})$, we can identify $T \mathrm{GL}(n, \mathbb{R})$ with $\mathrm{GL}(n, \mathbb{R}) \times M_{n, n}(\mathbb{R})$. Define $g: T \mathrm{GL}(n, \mathbb{R})$ by

$$
g(a, v)=\operatorname{tr}\left({ }^{t}\left(a^{-1} v\right) a^{-1} v\right)
$$

Verify that g is a Riemannian metric on $\operatorname{GL}(n, \mathbb{R})$ and that it has the left-invariance property that the $\operatorname{map} L_{a}: \mathrm{GL}(n, \mathbb{R}) \rightarrow \mathrm{GL}(n, \mathbb{R})$ defined by $L_{a}(b)=a b$ is a g-isometry. (Hint: First, show that $L_{a}^{\prime}(b, v)=$ $(a b, a v)$.) Show that $R_{a}: \mathrm{GL}(n, \mathbb{R}) \rightarrow \mathrm{GL}(n, \mathbb{R})$ defined by $R_{a}(b)=b a$ is not necessarily a g-isometry unless a lies in $O(n)$.
4. Homogeneous metrics. A Riemannian manifold (M, g) is said to be homogeneous if for any two points p and q in M, there exists a g-isometry $f: M \rightarrow M$ such that $f(p)=q$. Show that a homogeneous

Riemannian manifold is complete. (Hint: You'll need to use Exercise 1.) Conclude that the left-invariant metric defined on $\operatorname{GL}(n, \mathbb{R})$ in Exercise 3 is complete and that the Poincaré metric on the upper half-plane defined in Exercise 2 is complete.
5. A metric from Calculus. Recall that, for any positive C^{1}-function $f:[a, b] \rightarrow \mathbb{R}^{+}$, the area of the surface got by revolving the graph $y=f(x)$ about the x-axis is given by the formula

$$
A(f)=2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} \mathrm{~d} x
$$

Notice that $A(f)$ is 2π times the g-length of the curve $y=f(x)$ where g is the Riemannian metric $g=$ $y^{2}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)$ on the upper half-plane H^{+}. Show that this metric is not complete on H^{+}.
6. A metric from Physics. The Brachistochrone problem is the famous problem of finding the shape of a wire joining two points lying in a vertical plane that will allow a bead sliding without friction on the wire and subject only to the acceleration due to gravity to go from the initial point to the final point in least time. A simple analysis (which you are invited to do) shows that, if the wire is represented by the graph $y=-f(x)$ for $f \geq 0$, then the time needed to slide from $(0,0)$ to $(a,-f(a))$ is given by the integral

$$
T(f)=\frac{1}{\sqrt{2 g}} \int_{0}^{a} \frac{\sqrt{1+f^{\prime}(x)^{2}}}{\sqrt{f(x)}} \mathrm{d} x
$$

Notice that $T(f)$ is $(2 g)^{-1 / 2}$ times the g-length of the curve $y=f(x)$ where g is the Riemannian metric $g=$ $y^{-1}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)$ on the upper half-plane H^{+}. Show that this metric is also not complete on H^{+}.

