Exercises for Day 10: Riemannian Metrics: Examples

1. METRIC COMPARISONS. Suppose that g and g^* are two Riemannian metrics on M. We say that g and g^* are *comparable* on M, if there exists a constant $\lambda \geq 1$ such that $\lambda^{-2} g(v) \leq g^*(v) \leq \lambda^2 g(v)$ for all $v \in TM$. Show that comparability is an equivalence relation and that if g and g^* are comparable with comparison constant λ , then the metrics d and d^* are comparable, in the sense that $\lambda^{-1} d(p,q) \leq d^*(p,q) \leq \lambda d(p,q)$.

Suppose now that g is a Riemannian metric on M^n and fix $p \in M$. Choose a coordinate chart (V, ϕ) with $p \in V$ such that $\phi(p) = 0$ and $\phi(V)$ contains $B_2(0) \subset \mathbb{R}^n$. Show that there is a constant $\lambda > 1$ such that

$$\lambda^{-2} |\phi'(p)(v)|^2 \le g(v) \le \lambda^2 |\phi'(p)(v)|^2$$

for all $v \in T_p M$ with $|\phi(p)| \leq 1$. Conclude that, if $\gamma : [0,1] \to M$ is a piecewise C^1 curve with $\gamma(0) = p$ such that $\gamma([0,1])$ is not contained in $\phi^{-1}(B_1(0)) \subset V$, then the length of γ is at least $1/\lambda$. In particular, for every $\delta < \lambda^{-1}$, we have $B_{\delta}(p) \subset \phi^{-1}(B_1(0))$, where $B_{\delta}(p) = \{q \in M \mid d(p,q) < \delta\}$. (Hint: You will need to use the 'obvious' fact that, for the standard metric in \mathbb{R}^n , d(x,y) = |x-y|. For the proof of this, see Exercise 1 from Day 11.) More generally, show that

$$B_{\lambda^{-1}\delta}(0) \subset \phi(B_{\delta}(p)) \subset B_{\lambda\delta}(0)$$

for all $\delta < 1/\lambda$. Conclude that the metric topology of (M, d) is the same as the manifold topology. In particular, $B_{\delta}(p)$ is an open subset of M for all $\delta > 0$ and the function on M defined as the *d*-distance from p is continuous. Moreover, if M is compact (as a manifold), then (M, d) is complete, i.e., any *d*-Cauchy sequence in M converges.

2. The POINCARÉ UPPER HALF-PLANE. Let $H^+ = \{ (x, y) \in \mathbb{R}^2 | y > 0 \}$ and let $g = y^{-2} (dx^2 + dy^2)$. Show that the following maps from H^+ into itself are isometries of (H^+, g) :

- (a) f(x,y) = (x+a,y) for any constant $a \in \mathbb{R}$.
- (b) f(x,y) = (rx, ry) for any constant $r \in \mathbb{R}^+$.
- (c) $f(x,y) = (\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2})$. (Hint: If you are having trouble with the calculations, show that, for any differentiable curve $\gamma(t) = (x(t), y(t))$, the curves γ and $f \circ \gamma$ have the same speed with respect to g.)
- (d) Show that each of the above transformations (a–c) carries the set of vertical lines and semicircles meeting the x-axis orthogonally onto itself. Moreover, show that, for any two distinct points p and q in H^+ , either they lie on a common vertical line or else they lie on a unique circle with its center on the x-axis.
- (e) Show that, for any two distinct points p and q in H^+ , there is an isometry $f : H^+ \to H^+$ such that f(p) = (0, 1) and f(q) = (0, r) for some r > 1. (Hint: Use (d) together with the fact that any composition of q-isometries is a q-isometry.)

3. A LEFT-INVARIANT METRIC. Recall that, since $\operatorname{GL}(n, \mathbb{R})$ is an open subset of the vector space $M_{n,n}(\mathbb{R})$, we can identify $T\operatorname{GL}(n, \mathbb{R})$ with $\operatorname{GL}(n, \mathbb{R}) \times M_{n,n}(\mathbb{R})$. Define $g: T\operatorname{GL}(n, \mathbb{R})$ by

$$g(a, v) = \operatorname{tr}({}^{t}(a^{-1}v) a^{-1}v).$$

Verify that g is a Riemannian metric on $\operatorname{GL}(n,\mathbb{R})$ and that it has the *left-invariance property* that the map $L_a : \operatorname{GL}(n,\mathbb{R}) \to \operatorname{GL}(n,\mathbb{R})$ defined by $L_a(b) = ab$ is a g-isometry. (Hint: First, show that $L'_a(b,v) = (ab, av)$.) Show that $R_a : \operatorname{GL}(n,\mathbb{R}) \to \operatorname{GL}(n,\mathbb{R})$ defined by $R_a(b) = ba$ is not necessarily a g-isometry unless a lies in O(n).

4. HOMOGENEOUS METRICS. A Riemannian manifold (M, g) is said to be *homogeneous* if for any two points p and q in M, there exists a g-isometry $f: M \to M$ such that f(p) = q. Show that a homogeneous

Riemannian manifold is complete. (Hint: You'll need to use Exercise 1.) Conclude that the left-invariant metric defined on $\operatorname{GL}(n,\mathbb{R})$ in Exercise 3 is complete and that the Poincaré metric on the upper half-plane defined in Exercise 2 is complete.

5. A METRIC FROM CALCULUS. Recall that, for any positive C^1 -function $f : [a, b] \to \mathbb{R}^+$, the area of the surface got by revolving the graph y = f(x) about the x-axis is given by the formula

$$A(f) = 2\pi \int_{a}^{b} f(x) \sqrt{1 + f'(x)^{2}} \, \mathrm{d}x.$$

Notice that A(f) is 2π times the g-length of the curve y = f(x) where g is the Riemannian metric $g = y^2 (dx^2 + dy^2)$ on the upper half-plane H^+ . Show that this metric is not complete on H^+ .

6. A METRIC FROM PHYSICS. The Brachistochrone problem is the famous problem of finding the shape of a wire joining two points lying in a vertical plane that will allow a bead sliding without friction on the wire and subject only to the acceleration due to gravity to go from the initial point to the final point in least time. A simple analysis (which you are invited to do) shows that, if the wire is represented by the graph y = -f(x) for $f \ge 0$, then the time needed to slide from (0,0) to (a, -f(a)) is given by the integral

$$T(f) = \frac{1}{\sqrt{2g}} \int_0^a \frac{\sqrt{1 + f'(x)^2}}{\sqrt{f(x)}} \,\mathrm{d}x$$

Notice that T(f) is $(2g)^{-1/2}$ times the g-length of the curve y = f(x) where g is the Riemannian metric $g = y^{-1} (dx^2 + dy^2)$ on the upper half-plane H^+ . Show that this metric is also not complete on H^+ .