Exercises for Day 8: Vector Fields

1. CHANGE OF VARIABLES. Suppose that (V, ϕ) and (V, ψ) are coordinate charts on the *n*-manifold M and that $\phi = (x^i)$ while $\psi = (y^i)$. (The indices i, j, k, etc., run from 1 to n.) Show that if a smooth vector field X on V is expanded in the form

$$X = a^i \frac{\partial}{\partial x^i}$$

for some functions $a^i \in C^{\infty}(V)$, then

$$X = a^i \frac{\partial y^j}{\partial x^i} \frac{\partial}{\partial y^j}.$$

(Of course, the summation convention is implicit in these formulae.) (Hint: Remember that $a^i = Xx^i$.)

2. THE LIE BRACKET. Recall that if X and Y are smooth vector fields on M, then we defined the *Lie bracket* of X and Y to be the unique vector field [X, Y] such that [X, Y]f = X(Yf) - Y(Xf) for all $f \in C^{\infty}(M)$. Verify the following properties of the Lie bracket, where X, Y, and Z are smooth vector fields on M and f and g are smooth functions on M

- (a) [X, Y] = -[Y, X].
- (b) [X, Y + Z] = [X, Y] + [X, Z].
- (c) [X, fY] = (Xf)Y + f[X, Y].
- (d) [X, [Y, Z]] = [[X, Y], Z] + [Y, [X, Z]].

This last identity, a sort of Leibnitz rule for the Lie bracket as a multiplication, is known as the *Jacobi identity* and is often written in the more symmetric form [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0. Show that this alternate form is implied by items (a) and (d).

3.THE GROUP $\operatorname{GL}(n, \mathbb{R})$. Remember that $\operatorname{GL}(n, \mathbb{R})$ is an open subset of $M_{n,n}(\mathbb{R})$ and hence that, as a smooth manifold, we can identify $T_A \operatorname{GL}(n, \mathbb{R})$ with $M_{n,n}(\mathbb{R})$. For each $a \in M_{n,n}(\mathbb{R})$, define a vector field X^a on $\operatorname{GL}(n, \mathbb{R})$ by $X^a(g) = ga$. Show that X^a has the following properties:

- (a) For any $h \in \operatorname{GL}(n,\mathbb{R})$, define $L_h : \operatorname{GL}(n,\mathbb{R}) \to \operatorname{GL}(n,\mathbb{R})$ by $L_h(g) = hg$. Then $L'_h(g)(X^a(g)) = X^a(hg) = X^a(L_h(g))$. (This property is known as *left invariance* because it says that X^a is unchanged under the mapping induced by 'left translation'.)
- (b) X^a is complete on $\operatorname{GL}(n, \mathbb{R})$. In fact, the flow $\Phi^a : \mathbb{R} \times \operatorname{GL}(n, \mathbb{R}) \to \operatorname{GL}(n, \mathbb{R})$ of X^a is given by $\Phi^a(t, g) = g e^{ta} = g \exp(ta)$.
- (c) For any $a, b \in M_{n,n}(\mathbb{R})$, we have $[X^a, X^b] = X^{[a,b]}$ (where [a,b] = ab ba).
- (d) If $a = -t^a$, then X^a is tangent to O(n) in the sense that, for every $g \in O(n) \subset \operatorname{GL}(n, \mathbb{R})$, we have $X^a(g) \in T_g O(n)$. (Note, also, that, if $b = -t^b$ as well, then $[a, b] = -t^a[a, b]$.)

4. Show that, if M is compact, then any smooth vector field X on M is complete. More generally, show that if the support¹ of X is compact, then it is complete. (Hint: First, establish that there is an $\varepsilon > 0$ such that the flow of X is defined for all $|t| < \varepsilon$. Then show that this property alone implies that the flow of X is defined for all $|t| < \varepsilon$.

5. Let X and Y be smooth vector fields on M and let $\Phi_X : U_X \to M$ and $\Phi_Y : U_Y \to M$ be their (locally defined) flows. We say that their flows *commute* if $\Phi_X(s, \Phi_Y(t, p)) = \Phi_Y(t, \Phi_X(s, p))$ for all $p \in M$ and for all s and t satisfying $|s|, |t| < \varepsilon$ for some $\varepsilon > 0$. Show that, if their flows commute, then [X, Y] = 0. Hint: for any function f defined on M and any point $p \in M$, define the function $F(s,t) = \Phi_X(s, \Phi_Y(t,p)) = \Phi_Y(t, \Phi_X(s,p))$ on the open set in the st-plane defined by $|s|, |t| < \varepsilon$. Now compute [X, Y]f evaluated at p directly from the definitions in terms of F.

¹ The support of a vector field is the closure of the set of points at which it is nonzero.