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PREFACE

Putting this book into hands of readers, I hope that it will serve mainly to mathematicians
and engineers of different specialities, among others, those who work in automatic control
theory, electronics, informatics and electrical engineering, as well as economists. It could
be also used by students of the corresponding faculties as an auxiliary book, in order to
make a ”bridge” among the first year courses and more advanced parts of mathematics
necessary in the theory and practice of engineering, economics and related topics.

In this book there are given basic notions and theorems concerning linear spaces of finite
and infinite dimension and linear operators in these spaces in a possibly uniform way.

In order to understand the subject presented here, the reader should be acquainted with
fundamental notions and theorems of logic, set theory and algebra.

Theoretical considerations are complemented by several examples and exercises.

Chapters 1-9 are a slightly extended version of a book edited in Polish in 1977 (cf. the
author, PR[2]) related to my lectures for students of the 1st course at the Cybernetics
Faculty of the Engineering Military Academy in Warsaw in years 1973-75. This was con-
nected with a new programme of Mathematics based on ideas of Algebraic Analysis (cf. the
author, PR[3]) then prepared by mathematicians and engineers from this school working
in the Operations Research Department. Also we have prepared for this course new text-
books. Note that the name ”Algebraic Analysis” has been introduced by J. L. Lagrange
in the years 1797-1813 to emphasize that the analysis under consideration was more or
less ”different” from other concepts of analysis at that time. In the abovementioned book
(PR[3]) this name is used for an algebraic approach to Calculus which is very efficient
in teaching. For instance, with a well prepared programme one can start with solving of
differential equations at the first semester of studies, which we did, indeed. However, it
should be pointed out that this programme requires a particular team to be realized in a
good manner.

Chapter 5 contains results of my works concerning algebraic operators. Theorems in
Chapter 8 and 9 about the index and perturbations of linear operators were obtained
together with Stefan Rolewicz (cf. PRR[1]).

A uniform treatment of Linear Algebra in infinite and finite dimensional spaces shows
the unity of some ideas - independently of its traditional classifications. In addition, this
approach permits to make shorter and simpler some proofs (for instance, Jordan theorem,
Sylvester inertia law, and so on).

It should be also pointed out that Examples and Exercises make an essential part of the
book for notions introduced and applied there. Note that Examples and Exercises end
with the sign �, while proofs of theorems end with the sign �.
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4 Preface

The present book is not a literal translation of the first Polish edition (cf. PR[2]). There
are some corrections, also some parts are either complemented or little changed. However,
the main stream of the Polish version is preserved. I repeat, I hope that this book will
serve readers well, as was the case with the first edition.

Finally, I should say that I am and I will be always very indebted to my husband, Professor
Stefan Rolewicz, for his permanent assistance during 55 years of our common life.

Warszawa, September 2, 2006

Danuta Przeworska-Rolewicz



Preface 5

Chapter 1.

Linear spaces.

As usual, denote by N, Z, Q, R and C the sets of positive integers, integers, rational
numbers, real numbers and complex numbers, respectively.

Denote by F a field of numbers, which we shall call field of scalars. Here F is either the
field R of real numbers or the field C of complex numbers. Elements of the field F will be
called scalars.

A commutative group X is said to be a linear space over a field F of scalars if in X besides
the operation of addition of elements there is defined multiplication of elements by scalars
satisfying the following conditions:

(1.1) t(x + y) = tx + ty; (t + s)x = tx + sx; (ts)x = t(sx)

for arbitrary x, y ∈ X, t, s ∈ F,

i.e. the multiplication by scalars is distributive with respect to the addition of elements
and scalars and associative. These conditions imply that

(1.2) 1 · x = x; 0 · x = 0 for all x, y ∈ X

Indeed, if t 6= 0 is an arbitrarily fixed scalar, then

0 · x = (t− t)x = tx− tx = 0; t(1 · x) = (t · 1)x = tx.

Note that on the right hand side of the equality 0 · x = 0 we have the neutral element of
the group X, which without any misunderstanding can be also denoted by ”0”.

Conditions (1.1) also imply that

if tx = 0 and x 6= 0 then t = 0.

Indeed, suppose that tx = 0, x 6= 0 and t 6= 0. Then

1 · x = (t−1t)x = t−1(tx) = t−1 · 0 = 0,

which contradicts our assumption that x is different than zero.

Linear spaces either over the field R of reals or over the field C of complex numbers are
the most often considered.

A linear space over the field R of reals (over the field C of complex numbers) is called
sometimes briefly real (complex) linear space. Since most theorems for linear spaces over
the fields R and C are the same, by the term ”linear space” we shall understand both kinds
of spaces,



6 Chapter 1

if it does not lead to any misunderstanding. Similarly, by words: ”number” and ”scalar”
we shall understand elements of the field under consideration.

Suppose that X is a linear space over a field F, Y ⊂ X and the sum of two elements
belonging to Y and the product of an arbitrary element y ∈ Y by a scalar belonging to F
again belong to Y . In other words, Y is a linear space with respect to the same operations
as the space X. Then Y is said to be a linear subset or a subspace of the space X. Hence a
subset Y of a linear space X over a field F is a linear subset (subspace) of X if for arbitrary
x, y ∈ X, t ∈ F we have x + y ∈ Y , tx ∈ Y .

Suppose that Y is an arbitrary subset of a linear space X. The least linear subset containing
Y is said to be a linear space spanned by the set Y (otherwise called linear span) of Y and
it is denoted by lin Y .

Theorem 1.1. If X is a linear space over a field F and Y ⊂ X then

lin Y =
{
x ∈ X : x =

n∑
j=1

tjxj , where t1, ..., tn ∈ F; x1, ..., xn ∈ Y
}
.

Proof. Write

Y1 =
{
x ∈ X : x =

n∑
j=1

tjxj , where t1, ..., tn ∈ F; x1, ..., xn ∈ Y
}
.

By definition of Y1, we have Y ⊂ Y1. Clearly, Y1 is a linear subset of the space X. If
Y2 ⊃ Y is another linear subset of the space X then, by the definition of a linear subset, it
should contains elements of the form

∑n
j=1 tjxj . We therefore conclude that Y1 = Y2. �

Elements of the form

n∑
j=1

tjxj , where t1, ..., tn ∈ F; x1, ..., xn ∈ X,

are said to be linear combinations of elements x1, ..., xn.

We say that an element x ∈ X is linearly dependent on a set Y ⊂ X (or : on elements
of the set Y ) if x ∈ lin Y , i.e. if there exist x1, ..., xn ∈ Y and t1, ..., tn ∈ F such that
x =

∑n
j=1 tjxj . In other words: an element x ∈ X is linearly dependent on x1, ..., xn if x

is a linear combination of these elements.

Elements of a set Y ⊂ X are said to be linearly independent if there is no element x ∈ Y
linearly dependent on the set of the remaining elements, i.e. if x 6∈ lin

(
Y \ {x}

)
for every

x ∈ Y . By the definition of the set lin Y , elements x1, ..., xn ∈ Y are linearly independent
if

t1x1 + ... + tnxn = 0 implies t1 = t2 = ... = tn = 0,

which means that the only vanishing linear combination of elements x1, ..., xn is a combi-
nation with all coefficients equal to zero.



Linear spaces 7

A linear space X is said to be n-dimensional if n is the least number of linearly independent
elements x1, ..., xn ∈ X such that

lin {x1, ..., xn} = X.

If this is the case, then the number n is said to be the dimension of the space X and we
write dim X = n.

If there is a positive integer n such that dim X = n, then X is said to be finite dimensional
and we write dim X < +∞.

If X is not finite dimensional, then we say that X if infinite dimensional and we write
dim X = +∞.

Note that a finite dimensional space X considered simultaneously over the field R of reals
and over the field C of complexes, has in the first case the dimension twice bigger than in
the second one. It follows from the fact that the set of complex numbers considered as a
real space (i.e. with the usual addition of complex numbers, but with the multiplication
only by real numbers) has the dimension 2. Thus, whenever we shall consider a linear
space over the field C, we shall understand by its dimension the dimension of that space
over the complex numbers.

A set (a system) B of elements of a linear space X is said to be a basis if every element
x ∈ X can be represented as a linear combination of elements belonging to B and this
representation is uniquely determined. The uniqueness of that representation implies that
the set B consists of linearly independent elements.

Indeed, suppose that elements x1, ..., xn ∈ B are linearly dependent. Then there are scalars
a1, ..., an non vanishing simultaneously such that a1x1 + ...+ anxn = 0. Thus zero has two
different representations, which contradicts to our assumption.

A consequence of Theorem 1.1 is the following

Corollary 1.1. If X is a linear space and Y ⊂ X is a set of linearly independent elements,
then Y is a basis in lin Y .

Proof. By Theorem 1.1, every element of the linear span lin Y can be represented as
a linear combination of elements belonging to Y . The uniqueness of this representation
follows from the linear independence of elements of the set Y . �

Suppose now that we are given a system X1, ..., Xn of linear spaces, all of them over the
same field F of scalars. The set X whose elements are all ordered n-tuples of n elements
x = (x1, ..., xn), where xj ∈ Xj (j = 1, 2, ..., n), is said to be the Cartesian product of
spaces X1, ..., Xn.

The addition and the multiplication by scalars of elements of the set X are defined by
formulae:

(x1, ..., xn) + (y1, ..., yn) = (x1 + y1, ..., xn + yn); t(x1, ..., xn) = (tx1, ..., txn),

where xj , yj ∈ Xj (j = 1, ..., n); t ∈ F.
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It is easy to check that the set X with these operations of addition and multiplication by
scalars is a linear space over the field F.

The Cartesian product X of spaces X1, ..., Xn usually is denoted as follows:

X = X1 ×X2 × ...×Xn.

If X1, ..., Xn are subspaces of a linear space X then the set

X1 + ... + Xn = {x1 + ... + xn : xj ∈ Xj , j = 1, ..., n}

is said to be algebraic sum of subspaces X1, ..., Xn.

If X1, ..., Xn are subspaces of a linear space X such that

(1.4) Xj ∩
[ n⋃

k 6=j

Xk

]
= {0} for j 6= k (j, k = 1, ..., n),

then the algebraic sum X1 + ... + Xn is called the direct sum of spaces X1, ..., Xn and is
denoted by

X1 ⊕ ...⊕Xn.

Note that from Condition (1.4) it follows that every element x of the direct sum X1⊕...⊕Xn

can be written in a unique way in the form x = x1 + ... + xn, where xj ∈ Xj (j = 1, ..., n).

If X = X1 ⊕ ... ⊕ Xn then we say that X is decomposed onto the direct sum of spaces
X1, ..., Xn.

Suppose that X is a linear space over the field R of reals. This space can be in a natural
way ”embedded” in a linear space over the field C of complexes.

Indeed, consider the set of all ordered pairs (x, y), where x, y ∈ X, with the addition and
multiplication by scalars defined by formulae:

(1.5) (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) for x1, x2, y1, y2 ∈ X,

(1.6) (a + ib)(x, y) = (ax− by, ay + bx) for x, y ∈ X, a + ib ∈ C.

It is easy to verify that these operations satisfy the distribution conditions assumed in the
definition of a linear space. Thus it is enough to show that multiplication by scalars is
associative. Indeed, if a + ib, c + id ∈ C and x, y ∈ X, then we have

[(a + ib)(c + id)](x, y) = [ac− bd + i(bc + ad)](x, y) =

=
(
(ac− bd)x− (bc + ad)y, (ac− bd)y + (bc + ad)x

)
,

(a + ib)[(c + id)(x, y)] = (a + ib)(cx− dy, cy + dx) =
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=
(
(ac− bd)x− (bc + ad)y, (ac− bd)y + (bc + ad)x

)
.

We shall denote a linear space over the field C defined in this way by X+iX. By definition,
X × {0} ⊂ X + iX.

Let Y be a subspace of a linear space X over a field F. To every element x ∈ X there
corresponds the set

(1.7) [x] = {x + y : y ∈ Y } = x + Y.

The set [x] is called a coset induced by an element x ∈ X and the subspace Y . Note that
without any misunderstanding we can write here x + Y instead of {x}+ Y .

The coset [x] can be written also in another equivalent form:

(1.8) [x] = {z ∈ X : x− z ∈ Y }.

We shall prove that two cosets are either disjoint or equal. Indeed, let x1, x2 be arbitrary
elements of the space X such that [x1] ∩ [x2] 6= ∅. Then there is an element z ∈ X such
that

z = x1 + y1 for a y1 ∈ Y and, simultaneously, z = x2 + y2 for a y2 ∈ Y.

This implies
x2 − x1 = z − y2 − (z − y1) = y1 − y2, i.e. x1 ∈ [x2].

Hence [x2] ⊂ [x1]. Similarly, we prove that [x1] ⊂ [x2]. Thus [x2] = [x1].

Denote by

(1.9) X/Y = {[x] : x ∈ X}

the set of all cosets induced by elements x ∈ X and determine in the set X/Y the addition
and the multiplication by scalars as follows:

(1.10) [x] + [y] = [x + y]; t[x] = [tx] for x, y ∈ X, t ∈ F.

It is easy to verify that the set X/Y with the addition and multiplication by scalars defined
by Formulae (1.10) is again a linear space over the field F. The space X/Y is said to be a
quotient space. By the definition of a coset, we conclude that [0] = Y . Hence the quotient
space X/Y has the set Y as the neutral element.

By the defect or codimension of a subspace Y of a linear space X over a field F, we mean
the dimension of the quotient space X/Y . Hence, by definition,

(1.11) codim Y = dim X/Y.
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Suppose that X is a linear space over the field R. An element x ∈ X is said to be a convex
combination of elements x1, ..., xn ∈ X if

x =
n∑

j=1

ajxj ; aj ∈ R, aj ≥ 0,
n∑

j=1

aj = 1.

The set [x, y], x, y ∈ X, of all convex combinations of elements x and y is called a closed
interval. Thus, by definition,

[x, y] = {tx + (1− t)y : t ∈ [0, 1]}.

A subset Y of a linear space X over R is said to be a convex set if every convex combination
of elements x and y belonging to Y again belongs to Y . One can prove that Y is a convex
set if and only if [x, y] ⊂ Y whenever x, y ∈ Y .

If Y is a subset of a linear space X over the field R then the least convex set containing
the set Y is said to be the convex hull of Y and is denoted by conv Y .

From the definition of the convex hull it follows that

(1.12) conv Y =
{
x ∈ X : x =

n∑
j=1

ajxj ; xj ∈ Y ; aj ≥ 0;
n∑

j=1

aj = 1
}
.

Indeed,

Y ⊂ Y1 =
{
x ∈ X : x =

n∑
j=1

ajxj ; xj ∈ Y ; aj ≥ 0;
n∑

j=1

aj = 1
}

and Y1 is a convex subset of the space X. If Y2 ⊃ Y is another convex subset of X then,
by the definition of a convex subset, it should contain also elements of the form

x =
n∑

j=1

ajxj ; xj ∈ Y ; aj ≥ 0;
n∑

j=1

aj = 1.

Thus Y2 ⊃ Y1. We therefore conclude that Y1 = conv Y .

A subset Y of a linear space over a field F is said to be a linear manifold if tx + sy ∈ Y
whenever x, y ∈ Y , t, s ∈ F and t + s = 1.

Theorem 1.2. If X is a linear space over a field F, Y is a linear manifold in X and x0 is
an arbitrary element of Y , then the set

Y0 = Y − x0 = {y − x0 : y ∈ Y }

is a linear subspace in Y independently of the choice of the element x0 ∈ Y .



Linear spaces 11

Proof. If y1, y2 ∈ Y0 then y1 = y′1 − x0, y2 = y′2 − x0, where y′1, y
′
2 ∈ Y . Let t, s ∈ F be

arbitrary. Consider the element

y = ty1 + sy2 + x0 = ty′1 + sy′2 + (1− t− s)x0.

Since t + s + (1− t− s) = 1, we get y ∈ Y . Hence ty1 + sy2 = y − x0 ∈ Y0, which means
that Y0 is a linear subspace of X. If x1 is an arbitrary element of Y then x1 − x0 ∈ Y0.
Since Y0 is a linear subspace of X, we get

Y − x0 = Y0 = Y0 − (x1 − x0) = Y − x0 + x0 − x1 = Y − x1.
�

We say that a linear manifold Y ⊂ X is of codimension n if the quotient space X/Y0 (where
the set Y0 = Y − x0 is defined as in Theorem 1.2) is of dimension n. Linear manifolds of
codimension 1 are said to be hyperplanes.

If a linear space X over a field F is a ring (with respect to the same addition) and a(xy) =
(ax)y = x(ay) for all a ∈ F and x, y ∈ X then X is said to be an algebra (otherwise: a
linear ring). A non-empty subset Y of an algebra X is said to be a subalgebra (linear
subring) if Y is an algebra with respect to the same addition, multiplication of elements
and multiplication by scalars. By this definition, a subset Y of an algebra X over F is a
subalgebra of the algebra X if

x− y ∈ Y ; xy ∈ Y ; tx ∈ Y whenever x, y ∈ Y, t ∈ F.

If in an algebra X there exists an element e such that ex = xe = x whenever x ∈ X,
then e is said to be the unit of X. The unit (provided that it exists) is unique. Indeed,
suppose that there is another element e′ ∈ X such that e′x = xe′ = x whenever x ∈ X. In
particular, this implies e′ = ee′ = e. One can prove that any algebra X can be extended
to an algebra with unit (cf. Example 1.15).

Let Y be a left (right) ideal in an algebra X over the field F. It means that Y is a
subalgebra of X such that x − y ∈ Y for all x, y ∈ Y and xy ∈ Y (yx ∈ Y , respectively)
whenever x ∈ X, y ∈ Y . If Y is simultaneously a left and right ideal, we say that Y is a
two-sided ideal or briefly: an ideal, (if it does not lead to any misunderstanding). A left
(right, two-sided) ideal Y is said to be proper if Y 6= {0} and Y 6= X. If it is not the case,
i.e. either Y = {0} or Y = X, then we say that Y is a trivial ideal.

An algebra X is said to be commutative if each pair of its elements commute one with
another, i.e. if xy = yx whenever x, y ∈ X. Clearly, in a commutative algebra left and
right ideals do coincide, i.e. there are only two-sided ideals.

A proper left (right, two-sided) ideal Y is said to be maximal if every proper left (right,
two-sided) ideal Y1 ⊃ Y is equal to Y : Y1 = Y . Every proper left (right, two-sided ideal)
is contained in a maximal left (right, two-sided) ideal (cf. Jacobson [J]).

Let Y be a proper ideal in an algebra over a field F. Consider the set

X/Y = {[x] : x ∈ X},
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where, as before, we denote by [x] the coset corresponding to the element x, i.e. [x] = x+Y .
The addition and multiplication in the set X/Y are defined by Formulae (1.10). The
multiplication of elements is defined as follows:

(1.13) [x][y] = [xy] for x, y ∈ X.

This operation is well defined, since always [x][y] ⊂ [xy] for arbitrary x, y ∈ X. Indeed,
since by our assumption, Y is a two-sided ideal, we have xY + Y y + Y · Y ⊂ Y , where
Y1 · Y2 = {y1y2 : y1 ∈ Y1, y2 ∈ Y2} is the algebraic product of Y1 and Y2. Hence

[x][y] = (x + Y )(y + Y ) = xy + xY + Y y + Y · Y ⊂ xy + Y = [xy].

It is easy to verify that the set X/Y with the operations on cosets defined by Formulae
(1.10), (1.13) is an algebra over the field F called the quotient algebra.

Examples and Exercises.

Example 1.1. The set R considered as a set of vectors on the real line with the usual
addition and multiplication of vectors by reals is a linear space over the field R. The basis
in this space consists of the unit vector 1. Clearly, dim R = 1. �

Example 1.2. The Cartesian product R× R = R2 is also a linear space over the field R,
since it is the set of vectors on the plane with the usual addition and multiplication by
reals. The basis in that space consists of unit vectors (1, 0) and (0, 1). Clearly, dim R2 = 2.
Observe that we can write also R2 = R⊕ R. �

Example 1.3. Recall that Rn+1 = R × Rn for n ∈ N. The set Rn is a linear space over
the field R with respect to the usual addition of vectors and multiplication of vectors by
reals, i.e.

x + y = (x1 + y1, ..., xn + yn), tx = (tx1, ..., txn)

whenever x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn; t ∈ R.

A basis in that space consists of unit vectors, i.e. vectors of the form

(1, 0, ..., 0)

(0, 1, ..., 0)

...........

(0, ..., 0, 1)

Clearly, dim Rn = n. Observe that we can write also

Rn = R⊕ ...⊕ R︸ ︷︷ ︸
n−fold

.
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Note that in Examples 1.1, 1.2, 1.3 one can consider without any essential change the set
R as the set of points on the real line instead of a set of vectors. �

Example 1.4. The set C considered over the field F with the usual operations of addition
and multiplication by complex numbers, i.e. the plane C of complex numbers is a linear
space over the field C with the basis {1}. Clearly, dim C = 1.

The same space over the field R, written in the form C = R + iR, has the basis {1, i} =
{(1, 0), (0, 1)} and dim (R + iR) = 2. �

Example 1.5. The set Fn[t] of all polynomials in t of degree n with coefficients from the
field F:

pn(t) =
n∑

k=0

aktk, a0, ..., an ∈ F,

is a linear space over the field F if the addition of polynomials and multiplication of
polynomials by scalars are defined as follows:

(1.14) pn(t) + qn(t) =
n∑

k=0

(ak + bk)tk, where qn(t) =
n∑

k=0

bktk, b0, ..., bn ∈ F,

(1.15) αpn(t) =
n∑

k=0

(αak)tk, where α ∈ F.

The set {1, t, ..., tn} is a basis in the space Fn[t]. Clearly, dim Fn[t] = n + 1. �

Example 1.6. The set F[t] of all polynomials in t with coefficients belonging to the field
F is a linear space over F if we define the multiplication of polynomials by scalars by means
of Formula (1.15) and the addition of polynomials of different degrees

pn(t) =
n∑

k=0

aktk and qm(t) =
m∑

j=0

bktt, where ak, bj ∈ F, n ≤ m,

in the following manner:

pn + qm = rN , where N = max(n, m) = m, rN (t) =
N∑

k=0

cktk,

ck =
{

ak + bk for k = 0, 1, ...,min(n, m);
bk for k = n + 1, ...,m.

The set {1, t, t2, ...} is a basis in the space F[t]. Clearly, dim F[t] = +∞. �

Example 1.7. The set of all functions defined on a set Ω and with values in a field F is a
linear space over the field F if the operations of addition and multiplication by scalars of
functions we define as follows:

(1.16) (x + y)(t) = x(t) + y(t), (αx)(t) = ax(t) for x, y ∈ X, α ∈ F.
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Clearly, dim X = +∞ if the set Ω is infinite. If this is not the case, the dimension of X
is equal to the number of elements of the set Ω. �

Example 1.8. The set of all real-valued functions defined and bounded on a set Ω with the
addition and multiplication by reals defined by Formulae (1.16) (where we put F = R) is a
linear space over the field R. Indeed, a sum of two bounded functions and the product of
a bounded function by a real number are again bounded functions. Clearly, dim X = +∞
if the set Ω is infinite. �

Example 1.9. The set C[a, b] of all real-valued functions defined and continuous on a
closed interval [a, b] with the addition and multiplication by scalars determined by Formulae
(1.16) (where we admit F = R, Ω = [a, b]) is a linear space over the field R. Indeed, a sum
of two continuous functions and the product of a continuous functions by a real number
are again continuous functions.

�

Example 1.10. The set X of all real-valued functions defined and continuous on a closed
interval [a, b] and differentiable at each point t ∈ [a, b], with the addition and multiplication
by reals defined by Formulae (1.16), is a linear space over the field R. Indeed, if x, y ∈ X
and there exist derivatives x′(t), y′(t) at each point t ∈ [a, b] then

(1.17) (x + y)′ = x′ + y′, (αx)′ = αx′ for all α ∈ R.

�

Example 1.11. The set C1[a, b] of all real-valued functions, defined on a closed inter-
val and having a continuous derivative on this interval is a linear space over the field R.
Indeed, by Formulae (1.16), (1.17), since a sum of two continuous functions and a prod-
uct of a continuous function by a real number are again continuous, we conclude that
x′ + y′ = (x + y)′ and (αx)′ = αx′ are again continuous functions. This implies that
a sum of two continuously differentiable functions on the interval [a, b] and a product of
a continuously differentiable function on [a, b] by a real number are again continuously
differentiable functions on [a, b]. Clearly, dim C1[a, b] = +∞. �

Exercise 1.1. Let N be the set of all positive integers. Let n ∈ N0 = N ∪ {0} (i.e. N0 is
the set of all nonnegative integers). Write C0[a, b] = C[a, b]. Prove that

(i) the set Cn[a, b] of all real-valued functions defined on a closed interval [a, b] and having
in this interval the continuous nth derivative is a linear space over the field R;

(ii) the space Cn+1[a, b] is a linear subspace of the space Cn[a, b];

(iii) the set C∞[a, b] of all real-valued functions defined on the closed interval [a, b] and
having in this interval continuous derivatives of an arbitrary order (i.e. the space of
infinitely differentiable functions) is a linear space over R;

(iv) the space C∞[a, b] is a linear subspace of every space Cn[a, b] (n ∈ N0);

(v) C∞[a, b] =
∞⋂

n=0

Cn[a, b]. �



Linear spaces 15

Exercise 1.2. Suppose that sets Ω1 and Ω2 are disjoint. Write Ω = Ω1 ∪ Ω2. For an
arbitrary set E denote by XE the space of all functions defined on E and with values in a
field F. Prove that XΩ = XΩ1 ×XΩ2 . �

Example 1.12. Suppose that X = (s)F is the set of all sequences a = {an}, where an ∈ F
for n ∈ N. Traditionally, we write (s)R = (s). Define the coordinatewise addition and
multiplication by scalars of sequences:

(1.18) {an}+ {bn} = {an + bn}; α{an} = {αan} for {an}, {bn} ∈ X; α ∈ F.

It is easy to verify that X is a linear space over the field F. �

Example 1.13. Let Z be the set of all integers. Suppose that X is the set of all two-sided
sequences a = {an}, where an ∈ F for n ∈ Z. Define the coordinatewise addition and
multiplication by scalars of sequences by Formulae (1.18) (taking into account that here
n ∈ Z). It is easy to verify that X is a linear space over the field F. �

Example 1.14. The linear space C[a, b] defined in Example 1.9 is a commutative algebra
over the field R if we define the pointwise multiplication of two functions:

(1.19) (xy)(t) = x(t)y(t) for all x, y ∈ C[a, b], t ∈ [a, b].

For an arbitrarily fixed t0 ∈ [a, b] the set

X0 = {x ∈ C[a, b] : x(t0) = 0}

is a proper ideal in the algebra C[a, b]. Indeed, if x, y ∈ X0 then x(t0)− y(t0) = 0. Hence
x − y ∈ X0. If x ∈ C[a, b], y ∈ X0 then x(t0)y(t0) = y(t0)x(t0) = 0. Hence xy, yx ∈ X0.
Clearly, X0 is a proper ideal. Observe that the function e(t) ≡ 1, which is the unit of the
algebra C[a, b], does not belong to X0, for e(t0) = 1 6= 0.

The quotient algebra C[a, b]/X0 can be identify with the set of all functions constant on
the interval [a, b]. This follows from the fact that y ∈ [x] for an x ∈ C[a, b] if and only if
x− y ∈ X0, i.e. if x(t0)− y(t0) = 0. This implies that codim X0 = dim C[a, b]/X0 = 1. �

Exercise 1.3. Prove that

(i) the set X1 = {x ∈ C[a, b] : x(t0) = 0, x(t1) = 0} is a proper ideal in the algebra C[a, b]
for arbitrarily fixed t0, t1 ∈ [a, b] (cf. Example 1.14);

(ii) if t1 6= t0 then codim X1 = 2. �

Example 1.15. Let X1 be defined as in Exercise 1.3. Then the quotient algebra C[a, b]/X1

can be identified with the set of all linear functions, i.e. the set

{x : x(t) = αt + β, where α, β ∈ R, t ∈ [a, b]}.

�

Exercise 1.4. Prove that the set Y = {x ∈ C[a, b] : x(t) = 0 for a ≤ t0 ≤ t ≤ t1 ≤ b} is
a proper ideal in the algebra C[a, b] (over R) if t1 6= t0. �
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Exercise 1.5. Prove that

(i) the space X = (s)F defined in Example 1.12 with the coordinatewise multiplication of
sequences

(1.20) {an}{bn} = {anbn} for {an}, {bn} ∈ X

is a commutative algebra over the field F;

(ii) the set X0 = {a = {an} ∈ X : am = 0 for an m ∈ N} is a proper ideal in X. �

Exercise 1.6. Prove that the space X = (s)F defined in Example 1.13. with the convolu-
tion of sequences, i.e. the operation define in the following manner:

(1.21) {an} ? {bn} = {
n∑

k=1

akbn−k} for {an}, {bn} ∈ X,

as a multiplication of elements is a commutative algebra over the field F. Has this ring
zero divisors, i.e. such elements x, y ∈ X that x 6= 0, y 6= 0, although xy = 0 ? �

Exercise 1.7. Prove that

(i) the space X defined in Example 1.13 with the coordinatewise multiplication of sequences
(1.20) (with n ∈ Z) is a commutative algebra over the field F;

(ii) the set X0 = {a = {an} ∈ X : am = 0 for an m ∈ Z} is a proper ideal in X. �

Exercise 1.8. The multiplication in a ring is said to be trivial if xy = 0 for all x, y ∈ X.
Prove that every linear space is an algebra with the trivial multiplication. �

Exercise 1.9. Are linear spaces appearing in Examples 1.6, 1.10 and Exercise 1.1, 1.2
algebras with the multiplication defined by Formula (1.19) ? Are some of these algebras
commutative ? Have some of these algebras zero divisors ? �

Example 1.16. Suppose that X is a ring without unit. We shall prove that X can be
extended to a ring X1 with unit. Define the product of an arbitrary element x ∈ X by an
integer a as follows:

ax =


0 if a = 0;
nx = x + ... + x︸ ︷︷ ︸

n−fold

; if a = n ∈ N;

(−n)x = n(−x); if a = −n; n ∈ N,

where we denote by −x the element 0− x. Consider the set X1 = {(x, a) : x ∈ X; a ∈ Z}.
The operations of addition, multiplication of elements and multiplication by scalars can
be defined in X1 in the following manner:

b(x, a) = (bx, ba), (x, a) + (y, b) = (x + y, a + b), (x, a)(y, b) = (xy + bx + ay, ab)

for x, y ∈ X; a, b ∈ Z.
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It is easy to check that X1 with these operations is a ring and that the pair (0, 1) is its
unit. Moreover, X = {(x, 0) : x ∈ X} ⊂ X1. In order to prove that any algebra X over a
field F without unit can be extended to an algebra with unit it is enough to consider the
corresponding extension of X with scalars belonging to F instead of integers. �

Exercise 1.10. Prove that

(i) a proper ideal Y ⊂ X does not contain the unit of the algebra X;

(ii) a proper left (right) ideal does not contain any left (right) invertible element, i.e an
element x such that there is y ∈ X with the property yx = e (xy = e, yx = xy = e,
respectively);

(iii) a proper ideal does not contain any invertible element.

On the other hand, if x ∈ X is not a left (right) invertible element then there is a proper
left (right) ideal containing x, namely, xX (Xx, respectively). �

Example 1.17. The convex hull of two points x, y ∈ R, y 6= x is the interval [x, y]. The
convex hull of 3 linearly independent points in R2 is the triangle whose vertices are these
points. The convex hull of four linearly independent points in R3 is the tetrahedron whose
vertices are these points. �

Example 1.18. The convex hull of n + 1 linearly independent elements in Rn is said to
be an n-dimensional simplex with vertices in these points (n = 1, 2, 3, ...). �

Exercise 1.11. Determine the convex hull of n points (n = 2, 3, ...) in the spaces R, R2,
R3. �

Exercise 1.12. Does the convex hull of all functions determined on a set Ω and admitting
only the values either +1 or −1 is the set of all functions determined on the set Ω and
with the modulus less or equal 1 ? If this is not the case, determine that convex hull. �

Exercise 1.13. Determine linear manifolds in R, R2, R3. �

Exercise 1.14. Prove that

(i) hyperplanes in R are one-point sets;

(ii) hyperplanes in R2 are straight lines;

(iii) hyperplanes in R3 are planes. �
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Chapter 2.

Linear operators and linear functionals.

Let two linear spaces X and Y , both over the same field F of scalars, be given. A mapping
A of a linear subset DA of the space X into the space Y is said to be a linear operator if
the following conditions are satisfied:

(2.1) A(x + y) = Ax + Ay; A(tx) = tAx for all x, y ∈ DA, t ∈ F.

The set DA is called the domain of the operator A (sometimes denoted by dom A). More
exactly, a linear operator is a pair (DA, A), since A is determined by its domain and the
form of the mapping. However, we shall use the shorter traditional notation A, because it
does not lead to any misunderstanding.

Let G ⊂ DA. Write

(2.2) AG = {y ∈ Y : y = Ax for x ∈ G}.

The set EA = ADA of the values of the operator A is called either its range or the image
of A.

The graph of the operator A is a subset of the Cartesian product X×Y defined as follows:

graph A = {(x, y) : x ∈ DA, y = Ax}.

By L(X → Y ) we denote the set of all linear operators whose domains are contained in X
and values belong to the space Y .

The identity operator (briefly: the identity) IX in the space is an operator defined by
means of the equality

(2.3) IXx = x for all x ∈ X.

If it will not lead to any misunderstanding, we shall denote briefly the identity operator
by ”I” instead of ”IX”.

If the operator A ∈ L(X → Y ) is a one-to-one mapping then we can define the inverse
operator A−1 in the following way: for all y ∈ EA

(2.4) A−1y = x; x ∈ DA, y = Ax.

Observe that to every element y ∈ EA there corresponds a unique element x ∈ DA. By
definition,

(2.5) DA−1 = EA ⊂ Y ; EA−1 = DA ⊂ X.
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For arbitrary x ∈ DA, y = Ax we have

(A−1A)x = A−1(Ax) = A−1y = x, (AA−1)y = A(A−1y) = Ax = y,

which implies

(2.6) A−1A = IDA
, AA−1 = IEA

.

This means that A−1 is, indeed, an inverse mapping for A.

Observe that this inverse mapping is uniquely determined. Indeed, suppose that there is
another mapping B of the set EA onto the set DA satisfying Condition (2.6), i.e. such that

(2.7) BA = IDA
, AB = IEA

.

Then Formulae (2.6) and (2.7) together imply that

B = BIEA
= B(AA−1) = (BA)A−1 = IDA

A−1 = A−1.

We therefore conclude that the mapping A−1 is uniquely determined.

We shall show that the inverse mapping A−1 is a linear operator. Indeed, for arbitrary
y1, y2 ∈ DA−1 = EA there exist unique elements x1, x2 ∈ E−1

A = DA such that y1 = Ax1,
y2 = Ax2. By definition, x1 = A−1y1, x2 = A−1y2. Since A is a linear operator, for
arbitrary scalars λ,µ we find

A−1(λy1 + µy2) = A−1(λAx1 + µAx2) = A−1A(λx1 + µx2)+

= λx1 + µx2 = λA−1y1 + µA−1y2.

Hence A−1 ∈ L(Y → X).

If an operator A ∈ L(X → Y ) has an inverse operator then we say that A is invertible.

A linear operator A ∈ L(X → Y ) is said to be an isomorphism if DA = X, EA = Y and A
is a one-to-one mapping. If A is an isomorphism then A is invertible, the inverse operator
A−1 is one-to-one and DA−1 = Y , EA−1 = X. Hence A−1 is also an isomorphism.

Linear spaces X and Y are isomorphic if there is an isomorphism mapping X onto Y .

Define the sum of two linear operators A,B ∈ L(X → Y ) and the product of an operator
by a scalar by following formulae:

(2.8) (A + B)x = Ax + Bx for x ∈ DA ∩ DB ,

(2.9) (tA)x = A(tx) for x ∈ DA, t ∈ F.

It is easy to verify that the addition of operators just defined is associative and commuta-
tive, i.e.

(A + B) + C = A + (B + C), B + A = A + B
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for all A,B, C ∈ L(X → Y ) such that the corresponding sums are well defined.

Clearly, an operator C such that A + C = B does not exist always for A,B ∈ L(X → Y ).
It is so, for instance, when DA ∩DB = {0}. However, if such an operator C exists then we
write C = A − B and C is called the difference of A and B. The operation ”-” is called
the subtraction of operators.

If the operator A−B is well defined then, by definition, A−B = A + (−B) on DA ∩DB .

Write
L0(X → Y ) = {A ∈ L(X → Y ) : DA = X}.

Since the addition of any two operators A,B ∈ L0(X → Y ) is well defined, associative,
commutative and there exists the operator C = A − B, we conclude that L0(X → Y ) is
an Abelian group. The neutral element of that group is an operator A such that Ax = 0
for every x ∈ X. In the sequel we shall denote this ”zero operator” by 0, since it does not
lead to any misunderstanding. Formula (2.9) implies that the Abelian group L0(X → Y )
is a linear space over the field F.

Suppose that X, Y, Z are linear spaces over the field F of scalars, A ∈ L(Y → Z), B ∈
L(X → Y ) and EB = BDB ⊂ DA ⊂ Y . A superposition of the operators B and A is
defined as an operator AB satisfying the equality

(AB)x = A(Bx) for all x ∈ DA.

Clearly, by definition, AB ∈ L(X → Z). Moreover,

DAB = DA, EAB = AEB .

The superposition of operators (provided that it exists) is distributive with respect to the
addition of operators. Indeed, if A, A1, A2 ∈ L(Y → Z), B,B1, B2 ∈ L(X → Y ) and the
operators AB1, AB2, B1 + B2, A(B1 + B2), A1B, A2B, A1 + A2, (A1 + A2)B are well
defined then

(2.10) A(B1 + B2) = AB1 + AB2, (A1 + A2)B = A1B + A2B.

Two operators A,B ∈ L(X → Y ) are said to be commutative if there exist superpositions
AB, BA and AB = BA. In general, the last equality is not satisfied. However, it could
be useful in several cases to consider the operator AB − BA whenever it is well defined.
This operator is called the commutator of A and B. Clearly, if A and B commute each
with another then their commutator is equal to zero.

Write
L(X) = L(X → X) and L0(X) = L0(X → X).

By Formulae (2.10), we conclude that L(X) is not only a linear space, it is also an algebra
with respect to the multiplication of operators A,B ∈ L0(X) defined as their superposition.
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Indeed, if A,B ∈ L0(X) then EB ⊂ DA = X. Hence the superposition AB is well defined
for all A,B ∈ L0(X). The algebra L0(X) has a unit, namely, the identity IX = I).

A linear operator P ∈ L0(X) is said to be a projector (otherwise: a projection operator)
if P 2 = P , where P 2 = P · P . If P is a projector then I − P is also a projector, since we
have for (I − P )2 = I − 2P + P 2 = I − 2P + P = I − P .

Theorem 2.1. Every projector P ∈ L0(X) determines the decomposition of the space X
onto a direct sum X = Y ⊕ Z, where

Y = {x ∈ X : Px = x}, Z = {x ∈ X : Px = 0}.

Conversely, if X = Y ⊕ Z then there is a projector P ∈ L0(X) such that PX = Y ,
(I − P )X = Z.

Proof. Suppose that P ∈ L0(X) is a projector and x is an arbitrary element of the
space X. Write z = x − Px = (I − P )x. Since Pz = Px − P 2x = Px − Px = 0, we
conclude that z ∈ Z and Z = (I − P )X. Thus x = y + z, where y = Px. Moreover,
Py = P (Px) = P 2x = Px = y. Hence y ∈ Y and Y = PX. The arbitrariness of x ∈ X
implies that X is an algebraic sum of Y and Z. We shall show that this sum is direct, i.e.
Y ∩ Z = {0}. Indeed, if u ∈ Y ∩ Z then u ∈ Y , hence u = Pu. On the other hand, since
u ∈ Z, we have Pu = 0. This implies u = 0.

Conversely, suppose that X = Y ⊕Z. Then every element x ∈ X can be written as a sum
x = y + z, where y ∈ Y , z ∈ Z. Define the operator P by means of the equality

Px = y for x = y + z, y ∈ Y, z ∈ Z.

The operator P ∈ L0(X) is a projector, for P 2x = Py = y. Hence Y = PX and

Z = {z ∈ X : z = x− y, x ∈ X, y ∈ Y } = {z ∈ X : z = x− Px, x ∈ X} = (I − P )X.

�

Having already defined such a correspondence between projectors and decompositions of
the space X onto direct sums, we can say that Y is a projection of the space X ”in the
direction Z” and Z is a projection of X ”in the direction Y” or that P projects X onto Y
”in the direction Z”.

Let X0 be a subspace of a linear space X. Every linear operator A ∈ L0(X → Y ) induces
an operator [A] ∈ L0(X/X0 → Y/AX0) defined by the following formula:

[A][x] = [Ax] for x ∈ [x],

where [x] is a coset determined by an element x ∈ X, i.e. [x] = x+X0, and [Ax] is a coset
in the quotient space Y/AX0, i.e. [Ax] = Ax+AX0. It is easy to verify that [A] is a linear
operator.
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If X0 is a subspace of a linear space X and A ∈ L(X → Y ), then an operator A0 ∈
L0(X0 → Y ) defined by means of the equality

A0x = Ax for x ∈ DA ∩X0

is said to be the restriction of the operator A to the subspace X0. The operator A0 is often
denoted by the symbol

A0 = A|X0 .

An operator A1 ∈ L0(X → Y ) is called an extension of the operator A ∈ L0(X0 → Y ),
X0 ⊂ X, to the space X if

A1x = Ax for x ∈ X, i.e. A1|X0 = A.

Let A ∈ L(X → Y ). Denote by

ker A = {x ∈ DA : Ax = 0}

the set of zeros of the operator A. This set is otherwise called the kernel of A or the space
of its zeros.

The set ker A is a subspace of the space X. Indeed, if x, y ∈ ker A then Ax = 0, Ay = 0.
Hence A(x + Y ) = Ax + Ay = 0, which implies x + y ∈ ker A. Moreover, if t ∈ F then
A(tx) = tAx = 0.

The dimension of the kernel of an operator A ∈ L(X → Y ) is called its nullity and denoted
by αA. Hence, by definition,

(2.11) αA = dim ker A.

The cokernel of an operator A ∈ L(X → Y ) is the quotient space Y/ADA. The number
dim Y/ADA is said to be the defect of the range of the operator A.

The deficiency βA of an operator A ∈ L(X → Y ) is defined by means of the equality

(2.12) βA = dim Y/ADA = codim ADA.

In other words, the deficiency of a linear operator is equal to the defect of its range .

Theorem 2.2. If in a linear space X the maximal number of linearly independent elements
is n then dim X = n.

Proof. Let n be the maximal number of linearly independent elements in the space X.
Then there exist elements x1, ..., xn ∈ X which are linearly independent. Suppose that
dim X = m < n. Hence in X there is a basis {e1, ..., em}. Define an operator A in the
following way:

A
( m∑

j=1

ajej

)
=

m∑
j=1

ajxj ; a1, ..., am ∈ F.
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Since elements x1, ..., xm are linearly independent, the operator A is one-to-one, i.e. it
transforms arbitrary linearly independent elements into linearly independent elements.
Since X = lin {e1, ..., em}, we conclude that there are n linearly independent elements
y1, ..., yn belonging to the set lin {x1, ..., xm}. This implies that elements

y1, ..., yn, xm+1, ..., xn ∈ X

are linearly independent and their number is 2n−m > n. This contradicts to our assump-
tion that n is the maximal number of linearly independent elements in X. Then dim X =
n. �

An immediate consequence of this theorem is
Corollary 2.1. If X is an n-dimensional linear space then every system of n linearly
independent elements x1, ..., xn ∈ X is a basis in X.

Theorem 2.3. If Y is a subspace of a linear space X such that codim Y < +∞, then
there exists a subspace Z such that X = Y ⊕ Z and dim Z = codim Y .

Proof. Suppose that codim Y = n. Write [X] = X/Y . By our assumption, there exist n
and only n linearly independent cosets [x1], ..., [xn] ∈ [X] and each coset [x] ∈ [X] can be
written in a unique manner in the form

[x] =
n∑

j=1

tj [xj ], where t1, ..., tn are scalars.

Let y1, ..., yn be arbitrarily fixed elements such that yj ∈ [xj ]. By definition, elements
y1, ..., yn are linearly independent. Hence every element x ∈ X can be represented in a
unique way in the form:

x = y +
n∑

j=1

tjyj , where y ∈ Y.

Write Z = lin {y1, ..., yn}. Then we conclude that X = Y ⊕ Z and dim Z = codim Y . �

If the axiom of choice is admitted then Theorem 2.3 is satisfied without the assumption
codim Y < +∞ (cf. PRR[1]). Namely, we have the following

Theorem 2.4. If Y is an arbitrary subspace of a linear space X, then there is a subspace
Z ⊂ X such that X = Y ⊕ Z (provided that the axiom of choice is admitted).

The proof can be found in the book PRR[1].

Theorems 2.3 and 2.4 play an important role, because they decide on the decomposition of
a given linear space onto a direct sum. For instance, by these theorems, we conclude that
the algebra L0(X) has zero divisors ∗) whenever dim X > 1. Indeed, suppose that X0 is
an arbitrary subspace of a linear space X such that X0 6= X. Let Y ⊂ X be a subspace

∗) Recall that x 6= 0 is a zero divisor in a ring X if there is a y ∈ X\{0} such that xy = 0.
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such that X = X0 ⊕ Y . By Theorem 2.1, there is a projection operator B ∈ L0(X) such
that B 6= 0 and BX = X0. Write

Ax =
{ 0 for x ∈ X0,

x for x ∈ Y .

Since A = I − B, we have A ∈ L0(X). Clearly, A 6= 0. However, for an arbitrary x ∈ X
we find Bx = y ∈ X0. Then, by definition,

(AB)x = A(Bx) = Ay = 0.

We therefore conclude that AB = 0, i.e. the algebra L0(X) has zero divisors.

Another consequence of Theorem 2.4 (or Theorem 2.3 when codim Y < +∞) is the
following

Corollary 2.2. Suppose that X0 is a subspace of a linear space X. Then every operator
A ∈ L(X → Y ) with DA = X0 has an extension to an operator A1 such that DA1 = X,
EA1 = EA.

Proof. By our assumption, there is a subspace Z ⊂ X such that X = X0⊕Z. By Theorem
2.1, there is a projection operator P ∈ L0(X) such that PX = X0. The operator A1 = AP
is the operator, we are looking for. Indeed, the superposition AP is well defined and

DA1 = DAP = DP = X; EA1 = A1X = APX = AX0 = EA.

�

Let X be a linear space over the field F and let either F = R or F = C. A linear operator
f is said to be a linear functional if f ∈ L0(X → F).

Denote by X ′ the set of all linear functionals defined on the space X, i.e.

X ′ = L0(X → F).

By definition, X ′ is a linear space over the field F. The space X ′ is called the conjugate
space to X.

The space (X ′)′ conjugate to the space X ′ is said to be the second conjugate and it is
denoted by X ′′. Every element x ∈ X induces a functional x′′ ∈ X ′′ defined as follows:

x′′(x′) = x′(x) for all x′ ∈ X ′.

The correspondence x′′ = κ(x) between elements x ∈ X and x′′ ∈ X ′′ is called the canonical
mapping. Whenever it does not lead to a misunderstanding, we identify an element x with
its canonical image κ(x).

If X is an n-dimensional linear space over the field F (F = R or F = C) with the basis
{x1, ..., xn} then every linear functional f defined on X is of the form:

(2.13) f(x) =
n∑

j=1

tjaj for x =
n∑

j=1

tjxj ; tj ∈ F; aj = f(xj) (j = 1, ..., n).
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Indeed,

f(x) = f
( n∑

j=1

tjxj

)
=

n∑
j=1

f(tjxj) =
n∑

j=1

tjf(xj) =
n∑

j=1

tjaj .

Theorem 2.5. Suppose that X is an n-dimensional linear space over the field F (F = R or
F = C) with the basis {x1, ..., xn}. Then there exist linearly independent linear functionals
f1, ..., fn ∈ X ′ such that

(2.14) fj(xm) = δjm (j, m = 1, ..., n),

where by δjm is denoted the so-called Kronecker symbol, i.e.

(2.15) δjm =
{

1, if m = j,
0 if m 6= j.

Proof. For an arbitrary element x ∈ X of the form

x =
n∑

j=1

tjxj

define fj(x) = tj (j = 1, ..., n). By definition, fj(xj) = 1 and fj(xm) = 0 for m 6= j.
We shall show that the functionals f1, ..., fn are linearly independent. Suppose then that
f1, ..., fn are linearly dependent. Then there are scalars a1, ..., an non-vanishing simulta-

neously and such that
n∑

j=1

ajfj = 0. This implies that

am =
n∑

j=1

ajδjm =
n∑

j=1

ajfj(xm) =
( n∑

j=1

ajfj

)
(xm) = 0 for m = 1, ..., n.

This contradicts our assumption that a1, ..., an do not vanish simultaneously. Hence
f1, ..., fn are linearly independent. �

Corollary 2.3. If X is an n-dimensional linear space then dim X ′ = dim X = n and the
set{f1, ..., fn} (where the functionals f1, ..., fn ∈ X ′ are defined in Theorem 2.5) is a basis
in X ′.

Indeed, by the general form (2.13) of linear functionals in an n-dimensional space X, we
conclude that dim X ′ = n. Corollary 2.1 and Theorem 2.5 together imply that the set
{f1, ..., fn} is a basis in X ′.

Theorem 2.6. Suppose that X is a linear space over the field F (F = R or F = C) and
g, f1, ..., fn ∈ X ′ satisfy the following condition:

(2.16) if fj(x) = 0 for j = 1, 2, ..., n then g(x) = 0.
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Then the functional g is linearly dependent on the functionals f1, ..., fn.

Proof. Without any loss of generality, we may assume that the functionals f1, ..., fn are
linearly independent. Write

X0 = {x ∈ X : fj(x) = 0 (j = 1, ..., n)}.

Clearly, codim X0 = n. Condition (2.16) implies that g(x) = 0 for x ∈ X0. Consider the
quotient space X/X0. Write

f ′j([x]) = fj(x) (j = 1, ..., n) and g′([x]) = 0 for x ∈ [x],

where [x] = x + X0 are cosets induced by elements x ∈ X. Since f1(x) = 0,...,fn(x) = 0,
g(x) = 0 for x ∈ X0, the functionals f ′1, ..., f

′
n, g′ are well defined. Moreover, f ′1, ..., f

′
n are

linearly independent and dim X/X0 = codim X0 = n. This implies that the functional
g′ is linearly dependent on the functionals f1, ..., fn. We therefore conclude that there

are scalars a1, ..., an non-vanishing simultaneously and such that g′ =
n∑

j=1

ajf
′
j . Hence, by

definition, for every x ∈ X we have

g(x) = g′([x]) =
n∑

j=1

ajf
′
j([x]) =

n∑
j=1

ajfj(x).

This implies that g =
n∑

j=1

ajfj , which was to be proved. �

Theorem 2.7. Suppose that X is an n-dimensional linear space over the field F (F = R
or F = C) and f is a linear functional defined on X. Then the set

(2.17) Hf = {x ∈ X : f(x) = 1}

is a hyperplane which does not contain the zero element. Conversely, if H is a hyperplane
which does not contain the zero element, then there exist a linear functional f such that
H = {x ∈ X : f(x) = 1}.

Proof. Let x, y ∈ Hf , a, b ∈ F and let a + b = 1. Then

f(ax + by) = af(x) + bf(y) = a + b = 1,

i.e. ax+by ∈ Hf . Write H0
f = Hf−x0, where x0 ∈ Hf . By Theorem 1.2, H0

f is a subspace
of the linear space X and H0

f = {x ∈ X : f(x) = 0}.

Consider the quotient space X/H0
f . Observe that the functional f is constant on each

coset. Moreover, x and y belong to the same coset whenever f(x) = f(y). Indeed,

[x] = {y ∈ X; f(x− y) = 0} = {y ∈ X : f(x) = f(y)}.
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Hence there is a one-to-one linear correspondence between scalars and cosets. This implies
that the quotient space X/H0

f is one-dimensional, i.e. Hf is a hyperplane. Since f(0) = 0,
we conclude that 0 6∈ Hf .

Conversely, suppose that H is a hyperplane. By definition, H is a linear manifold such
that the quotient space X/H0, where H0 is a subspace determined by H (cf. Theorem
1.2) is a one-dimensional subspace. This means that every element of the space X/H0 can
be written in the form t[e], where e 6∈ H0 is an arbitrary element, t is a scalar. We can
choose e in such way that [e] = H. Indeed, H0 = H − x0 and H0 does not depend on the
choice of x0 ∈ H. Therefore we can write

H = {y ∈ X : y − x0 ∈ H0} = [x0].

If we define e = x0 then we obtain the required equality [e] = H.

By our assumption, 0 6∈ H. Define on X a linear functional f by means of the equality

f(x) = t for x ∈ tH.

It is easy to verify that f is a functional such that Hf = H, Indeed,

Hf = {xX : f(x) = 1} = {x ∈ X : x ∈ H} = H, .

which was to be proved. �

Let X and Y be linear spaces over a field F. Every operator A ∈ L0(X → Y ) satisfies the
following identity

(2.18) (fA)x = f(Ax) for all x ∈ X and f ∈ Y ′,

where Y ′ is the space conjugate to Y . Then to the operator A there corresponds an
operator A′ defined by means of the equality

(2.19) A′f = fA for f ∈ Y ′.

The operator A′ is said to be the conjugate operator to A. Clearly, A′ ∈ L(Y ′ → X ′). We
have

(2.20) (A + B)′ = A′ + B′, (tA)′ = tA′ whenever A,B ∈ L0(X → Y ), t ∈ F.

Indeed, by definition of conjugate operators, for arbitrary x ∈ X, f ′ ∈ Y ′ we have

[(A + B)′f ](x) = f [(A + B)x] = f(Ax + Bx) = f(Ax) + f(Bx) =

= (Af)(x) + (Bf)(x) = [(A′ + B′)f ](x),

[(tA)′](x) = f(tAx) = tf(Ax) = (tA′f)(x),
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which implies the required Formulae (2.20). In particular, it is easy to verify that

(2.21) (IX)′ = IX′ for an arbitrary linear space X.

Consider three linear spaces X, Y, Z over the same field F of scalars. If A ∈ L0(Y → Z),
B ∈ L0(X → Y ), then

(2.22) (AB)′ = B′A′.

Indeed, by our assumption, the operator AB exists and belongs to L0(X → Z). Hence
(AB)′ ∈ L0(Z ′ → X ′). By definition, for arbitrary x ∈ X and f ∈ Z ′ we have

[(AB)′f ](x) = f [(AB)x] = f [A(Bx)] = (A′f)(Bx) = (B′A′f)(x).

Formula (2.22) implies

(2.23) (A′)′ = A on κ(X) for an arbitrary A ∈ L0(X → Y ),

where κ is the canonical mapping of the space X into the space x′′.

Indeed, for an arbitrary f ∈ Y ′ we have

A′f ′ = (fA)′ = (A′f)′ = f ′(A′)′ on κ(X).

Writing g = f ′, we find g(A′)′ = A′g = gA. The arbitrariness of g implies the required
Formula (2.23).

Suppose that X is an n-dimensional linear space with the basis {x1, ..., xn} and Y is an
m-dimensional space with the basis {y1, ..., ym}, both over the same field F of scalars. Let
A ∈ L0(X → Y ). Then

Ax =
n∑

j=1

tjAxj whenever x =
n∑

j=1

tjxj , t1, ..., tn ∈ F.

On the other hand, since Ax ∈ Y , there are c1, ..., cm ∈ F such that Ax =
m∑

k=1

ckyk. We

should determine the coefficients ck. Since Axj ∈ Y , we have Axj =
m∑

k=1

ajkyk, where

ajk ∈ F (j = 1, ..., n; k = 1, ...,m). The coefficients ajk determine the way how the operator
A transforms elements of the basis. Namely,

Ax =
n∑

j=1

tjAxj =
n∑

j=1

tj

m∑
k=1

ajkyk =
n∑

j=1

( m∑
k=1

tjakj

)
yk,



Linear operators and linear functionals 29

i.e.

ck =
n∑

j=1

tjajk (k = 1, ...,m).

These last equalities show how to transform the coefficients of the expansion of a given
element into the basis elements. Hence there is a one-to-one correspondence between the
operator A and the system of n ·m numbers ajk:

(2.24) A =

 a11 a21 ... an1

... ... ... ...
a1m a2m ... anm


The system of numbers  a11 a21 ... an1

... ... ... ...
a1m a2m ... anm


is said to be the the matrix of the operator A or, shortly, the matrix. Without any
confusion, we can denote an operator and its matrix by the same letter. If j is fixed then
the system aj1, ..., ajm of numbers is said to be the jth-column of the matrix A. If k is
fixed then the system a1k, ..., ank is said to be the kth-row of the matrix A. The numbers
ajk are called jk-entries of A. If m = n then A is said to be a square matrix (of dimension
n). For our convenience, sometimes we shall denote matrices in the form:

A = [ajk] j=1,...,n
k=1,...,m

.

Theorem 2.8. If dim X = n, dim Y = m, A,B ∈ L0(X → Y ) and

A = [ajk] j=1,...,n
k=1,...,m

, B = [bjk] j=1,...,n
k=1,...,m

,

then

(2.25) A + B = [ajk + bjk] j=1,...,n
k=1,...,m

, λA = [λajk] j=1,...,n
k=1,...,m

(λ ∈ F).

The proof immediately follows from the fact that (A + B)x = Ax + Bx, λ(Ax) = A(λx)
for x ∈ X.

Theorem 2.9. If dim X = n, dim Y = m, dim Z = p, A ∈ L0(Y → Z), B ∈ L0(X → Y )
and

A = [ajk] j=1,...,n
k=1,...,p

, B = [blj ] l=1,...,n
j=1,...,m

,

then there exists the superposition AB ∈ L0(X → Z) and

A = [clk] l=1,...,n
k=1,...,p

,
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where

(2.26) clk =
m∑

j=1

ajkblj (l = 1, ..., n; k = 1, ..., p).

Proof. Let {x1, ..., xn}, {y1, ..., yn}, {z1, ..., zn} denote the bases in the spaces X, Y , Z,
respectively. By definition of matrices, we have

Bxl =
n∑

j=1

bljyj (l = 1, ..., n), Ayj =
p∑

k=1

ajkzk (j = 1, ...,m).

Hence for l = 1, ..., n

ABxl = A
( m∑

j=1

bljyj

)
=

m∑
j=1

bljAyj =

=
m∑

j=1

blj

p∑
k=1

ajkzk =
p∑

k=1

( m∑
j=1

ajkblj

)
zk =

p∑
k=1

clkzk,

which implies the required Formula (2.26). �

Formula (2.26) implies that in order to multiply matrices A and B, we multiply every row
of the matrix A by every column of the matrix B. Thus the multiplication of matrices is
not commutative: in general, AB 6= BA. For instance,

if A =
(

0 1
1 0

)
B =

(
1 0
0 2

)
then AB =

(
0 2
1 0

)
, BA =

(
0 1
2 0

)
6= AB.

The above example implies that the algebra L0(X) is noncommutative whenever dim X >
1. On the other hand, general properties of linear operators imply that the multiplication
of matrices is distributive with respect to their addition and it is also associative, whenever
it is well defined.

Let
A ∈ L0(X → Y ) and A = [ajk] j=1,...,n

k=1,...,m
.

The matrix

(2.27) AT = [akj ] k=1,...,m
j=1,...,n

is said to be the transposed matrix of the matrix A. It means the transposition of a matrix
changes rows onto columns and columns onto rows.

Theorem 2.10. Let {x1, ..., xn}, {y1, ..., ym} be bases in linear spaces X and Y , respec-
tively. Let A ∈ L0(X → Y ) and let A = [ajk] j=1,...,n

k=1,...,m
. Then A′ = AT , where the matrix

AT is defined by Formula (2.27).
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In other words, in finite dimensional linear spaces conjugate operators are determined by
transposed matrices.

Proof. Let fi ∈ Y ′, gj ∈ X ′ be functionals such that

fi(yj) = δij gl(xk) = δlk (i, j = 1, ...,m; l, k = 1, ..., n).

By Theorem 2.5, such functionals exist and {f1, ..., fm}, {g1, ..., gn} are linearly inde-
pendent systems. By Corollary 2.3, these systems are bases in the spaces Y ′ and X ′,
respectively. Since Axj ∈ Y , the definition of matrices implies that

fi(Axj) = fi

( m∑
k=1

ajkyk

)
=

m∑
k=1

ajkfi(yk) =
m∑

k=1

ajkδij = aji

(j = 1, ..., n; i = 1, ...,m).

On the other hand, writing A′ = [bjk] j=1,...,n
k=1,...,m

, by definition of the conjugate operator
A′ ∈ L0(Y ′ → X ′), we find

fi(Axj) = (A′fi)xj =
( n∑

l=1

bilgl

)
xj =

n∑
l=1

bilgl(xj) =
n∑

l=1

bilδlj = bij

(j = 1, ..., n; i = 1, ...,m).

Hence bij = aji (j = 1, ..., n; i = 1, ...,m), which implies bjk = akj (j = 1, ..., n; k =
1, ...,m). �

Observe that a transposed matrix of a transposed matrix is equal to the given matrix,

(AT )T = A

(cf. Formula (2.23)).

An operator A ∈ L0(X → Y ) is said to be finite dimensional if its range EA is finite
dimensional. If dim EA = n then we say that A is an n-dimensional operator. Hence
A ∈ L0(X → Y ) is a finite dimensional operator whenever dim Y < +∞.

Theorem 2.11. An operator K ∈ L0(X → Y ) is n-dimensional if and only if it is of the
form:

(2.28) Kx =
n∑

j=1

fj(x)yj for x ∈ X

for fixed f1, ..., fn ∈ X ′ and fixed linearly independent y1, ..., yn ∈ Y .

Proof. Suppose that K is of the form (2.28). Write aj = fj(x) for j = 1, ..., n. By definition,

a1, ..., an are scalars. Then for an arbitrary x ∈ X we have Kx =
n∑

j=1

ajyj . This means
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that K maps X onto the set lin {y1, ..., yn} ⊂ Y . Hence dim KX = dim lin {y1, ..., yn} =
n. We therefore conclude that the operator K is n-dimensional.

Conversely, suppose that the operator K is n-dimensional, i.e. dim KX = n. Then
there are n linearly independent elements y1, ..., yn ∈ Y such that for every x ∈ X we

have Kx =
n∑

j=1

ajyj for some scalars a1, ..., an. Let Y0 = lin {y1, ..., yn}. Define linear

functionals ϕj ∈ Y ′ by means of the equality

ϕj

( n∑
m=1

amym

)
= aj (j = 1, ..., n).

Let fj(x) = ϕj(Kx) for j = 1, ..., n. Then f1, ..., fn are linear functionals, since they are
superpositions of linear functionals and a linear operator. Moreover, by definition,

fj(x) = ϕj(Kx) = ϕ
( n∑

m=1

amym

)
= aj ,

which was to be proved. �

Let be given a linear space X over the field F and its subspace Y . Let S be a subset of
L0(X). Then Y is said to be an S-invariant subspace if AY ⊂ Y for all A ∈ S. If S = {A}
for an A ∈ L0(X), an S-invariant subspace is called shortly: an A-invariant subspace.

Denote by F[t] the set of all polynomials in the variable t with coefficients in F (cf. Examples
1.5 and 1.6).

Theorem 2.12. Let A ∈ S = L0(X) and let AB = BA for all B ∈ S. Then

(i) the range and the kernel of A are S-invariant subspaces;

(ii) p(A)B = Bp(A) for all B ∈ S whenever p ∈ F[t].

Proof. (i) Let B ∈ S be arbitrarily fixed. Let y = Ax for an x ∈ X. Then By = BAx =
ABx. This means that By also belongs to the range of A and this range is an S-invariant
subspace. Let x ∈ ker A. Then ABx = BAx = 0. Hence also Bx ∈ ker A, which
implies that the kernel of A is an S-invariant subspace. Point (ii) easily follows from our
assumptions. �

Other properties of linear operators in finite dimensional linear spaces and their matrices
will be considered in the next chapter.

Examples and Exercises.

Example 2.1. Consider the space C of complex numbers with the usual addition and
multiplication by real numbers. Define the mapping A of the space C into itself by means
of the equality

Az = az + bz̄, where a, b ∈ R,
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where z̄ denotes the complex number conjugate to z. It is easy to verify that A is a linear
operator. Write

f(z) = Re z, g(z) = Im z, h(z) = |z| for z ∈ C.

It is easy to verify that f, g, h map C into R, hence they are functionals. Moreover, f and
g are linear, however, h is not a linear functional. Indeed,

h(1 + i) = |1 + i| =
√

2, h(1) + h(i) = |1|+ |i| = 2 6= h(1 + i).

�

Example 2.2. Consider the space X = C[a, b]. Suppose, we are given a function g ∈
C[a, b] such that g(t) 6= 0 for a ≤ t ≤ b. Write

(Ax)(t) = g(t)x(t) for x ∈ C[a, b], t ∈ [a, b].

It is easy to verify that A ∈ L0(X). Moreover, the operator A is invertible and

(A−1x)(t) =
1

g(t)
x(t) for x ∈ C[a, b], t ∈ [a, b].

Suppose now that there is given a function h ∈ C1[a, b] such that h(a) = a, h(b) = b and,
moreover, h′(t) > 0 for a ≤ t ≤ b. Write

(Bx)(t) = x(h(t)) for x ∈ C[a, b], t ∈ [a, b].

It is easy to verify that B ∈ L0(X). Moreover, the operator B is invertible and

(B−1x)(t) = x(h−1(t)) for x ∈ C[a, b], t ∈ [a, b],

where by h−1 we denote the inverse function of h, which exists by our assumption that
h′(t) > 0 for a ≤ t ≤ b.

Write now

f(x) =
n∑

j=1

ajx(tj) for x ∈ C[a, b],

where a1, ..., an ∈ R, t1, ..., tn are arbitrarily fixed. It is easy to verify that f is a linear
functional over the space C[a, b]. �

If linear spaces X1, ..., Xn (over the same field F of scalars) are finite dimensional the
following obvious equalities hold:

(2.29) dim X1 ×X2 × ...×Xn = dim X1 + dim X2 + ... + dim Xn,

(2.30) dim X1 ⊕X2 ⊕ ...⊕Xn = dim X1 + dim X2 + ... + dim Xn,
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If at least one of the spaces X1, ..., Xn is infinite dimensional then both, the Cartesian
product X1×X2× ...×Xn and the direct sum X1⊕X2⊕ ...⊕Xn are infinite dimensional.
We therefore conclude that Formulae (2.29) and (2.30) hold also in the case of infinite
dimensional linear spaces. �

Exercise 2.1. Is a translation of points in the space Rn (n = 1, 2....) (i.e. a mapping of
the form: Thx = x + h, where h ∈ Rn is a fixed point) a linear operator ? �

Exercise 2.2. Give examples of projection operators in the spaces Rn, Fn[t] (n ∈ N) and
C[a, b] (cf. Examples 1.3, 1.5 and 1.9). �

Exercise 2.3. Prove that the rotation by an angle ϕ in the space R2 is a linear operator.
Determine its matrix. �

Exercise 2.4. Give examples of linear functionals in the spaces Rn (n ∈ N) and determine
the corresponding hyperplanes (cf. Theorem 2.7). For instance, if x ∈ (x1, ..., xn) ∈ Rn

and f(x) = x1 + ... + xn then Hf = {x ∈ Rn : x1 + ... + xn = 1}. Determine the general
form of hyperplanes in Rn containing zero. �

Exercise 2.5. Give examples of linear functionals in the spaces Fn[t], F[t], C[a, b] and
determine the corresponding hyperplanes (cf. Examples 1.5, 1.6 and 1.9). �

Exercise 2.6. Mappings preserving all linear manifolds are called affine transformations.
Describe all affine transformations in the spaces R2 and R3. �

Exercise 2.7. Suppose that

A = [ajk] j=1,...,n
k=1,...,m

, B = [bjk] j=1,...,n
k=1,...,m

, C = [clj ] l=1,...,p
j=1,...,n

.

Prove that

(A + B)T = AT + BT , (tA)T = tAT for t ∈ F, (AT )T = A, (CA)T = AT CT

(cf. Formulae (2.20), (2.22), (2.23)). �

Exercise 2.8. A square matrix A is said to be symmetric if AT = A and antisymmetric
if AT = −A. Prove that every square matrix A is a sum of a symmetric matrix A+ and
an antisymmetric A− and that this sum is uniquely determined, namely

A = A+ + A−, where A+ =
1
2
(A + AT ), A− =

1
2
(A−AT ).

�

Exercise 2.9. Write E = [δjk]j,k=1,...,n, where δjk is the Kronecker symbol (cf. Formula
(2.15)). Prove that for every square matrix A of dimension n we have AE = EA = A, i.e.
E is the matrix of the identity operator I. �

Exercise 2.10. Prove that set of all square matrices of dimension n is an algebra with
unit with the addition, multiplication by scalars determined and multiplication determined
by Formulae (2.25), (2.26), respectively. Give examples of zero divisors in this algebra. �
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Exercise 2.11. A square matrix A of dimension n is said to be a diagonal matrix if
akk = λk and ajk = 0 for j 6= k, where λk ∈ F (j, k = 1, ..., n). The system {a11, ..., ann}
is called the principal diagonal (otherwise just the diagonal). Prove that every diagonal
matrix of dimension n has the following properties:

(i) AT = A;

(ii) AN (N ∈ N) is also a diagonal matrix with the principal diagonal {λN
1 , ..., λN

n }, where
we define by induction Ak+1 = A ·Ak (k ∈ N);

(iii) the set of all diagonal matrices of dimension n is a subalgebra of the algebra described
in Exercise 2.10. Has this subalgebra zero divisors ? �

Exercise 2.12. Suppose that either F = R or F = C. Let A = [ajk]j,k=1,...,n, where
an−k+1,k = λ ∈ F, ajk = 0 for j 6= n − k + 1 (j, k = 1, ..., n). Prove that AT = A. Does
the equality AT = A hold also when an−k+1,k = λk ∈ F are different from each other ? �

Exercise 2.13. An operator A ∈ L0(X) is said to be nilpotent of order n if An = 0
but An−1 6= 0 (n ∈ N. Let A ∈ L0(X) be nilpotent of order n. Prove that there
exists an element x0 ∈ X such that x0 6= 0 and elements x0, Ax0, ..., A

n−1x0 are linearly
independent. �

Exercise 2.14. Let X 6= {0} be a finite dimensional linear space over the field F and let
S = L0(X). Prove that the only S-invariant subspaces of X are X itself and {0}. �

Exercise 2.15. Let A ∈ L0(X) be such that AB = BA for all B ∈ S ⊂ L0(X). Prove
that the range and the kernel of A are S-invariant subspaces of X. �

Exercise 2.16. Let X be a a linear space over the field F and let S = L0(X). Suppose
that U, V are S-invariant subspaces of X. Prove that U + V and U ∩ V are S-invariant
subspaces of X. �
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Chapter 3.

Matrices and determinants. Solutions to systems of linear equations.

A field of scalars F has the characteristic zero if it is commutative and the intersection of
all its subfields (which is again a subfield of F) is isomorphic with the field Q of all rational
numbers, i.e. if there is a one-to-one mapping f of F which preserves the operations in F :

f(x + y) = f(x) + f(y), f(O) = 0, f(−x) = −f(x), f(xy) = f(x)f(y),

f(1) = 1 and f(x−1) = [f(x)]−1 for all x, y ∈ F.

For instance, Q itself, the field R of reals and the field C of complex numbers are fields
of characteristic zero. All calculations in a field of characteristic zero proceed in the same
manner as in these fields. Thus all considerations of Chapters 1 and 2 are valid for fields
of characteristic zero. In the sequel, in general, we shall mean by a ”field” - a field of
characteristic zero.

A permutation of numbers 1, ..., n ∈ N is any one-to-one mapping p of the set {1, ..., n}
onto itself. We shall denote permutations by {p1, ..., pn}. By definition, the number of
different permutations of the numbers 1, ..., n is n!.

Write

(3.1) sign a =

{ 1, if a > 0,
0 if a = 0,
−1 if a < 0,

whenever a ∈ R.

It is easy to verify by induction that

sign a1...an = (sign a1)...(sign an).

A sign of a system {a1, ..., an} of real numbers is said to be the number

(3.2) sign {a1, ..., an} =
∏

j,k=1,...,n;j>k

sign (aj − ak).

Suppose that a system {b1, ..., bn} ⊂ R is obtained from a system {a1, ..., an} ⊂ R by a
transposition of two terms: bi = ai for i 6= j, i 6= k, bj = ak, bk = aj , (j, k are arbitrarily
fixed). Then

(3.3) sign {b1, ..., bn} = − sign {a1, ..., an},

i.e. the system changes its sign.



Systems of linear equations 37

Indeed.
sign {a1, ..., an} =

= sign (aj − ak)
[ ∏

r,s=1,...,n
r>s; s 6=j,k

sign (ar − as)
] [ ∏

r=1,...,n
r 6=j,k

sign (aj − ar)sign (ar − ak)
]
.

Observe that the interchange of the term aj and the term ak does not change the sign of
the last two products. This easily implies Formula (3.3).

The determinant of a square matrix A = [ajk]j,k=1,...,n is said to be the number (belonging
to the field F of scalars under consideration which, by our assumption, should have the
characteristic zero)

(3.4) det A =
∑

{p1,...,pn}

sign {p1, ..., pn} a1p1 ...anpn ,

where the summation is extended over all permutations {p1, ..., pn} of the numbers 1, ..., n.
The determinant of the matrix A = [ajk]j,k=1,...,n is denoted also in the following way:

det A =

∣∣∣∣∣∣∣
a11 a21 ... an1

a12 a22 ... an2

... ... ... ...
a1n a2n ... ann

∣∣∣∣∣∣∣ .

Columns and rows of a determinant det A are, by definition, columns and rows of the
matrix A.

Example 3.1. If n = 1 then det A = |a11|. If n = 2 then

det A =
∣∣∣∣ a11 a21

a12 a22

∣∣∣∣ = a11a22 − a12a21.

If n = 3 then

det A =

∣∣∣∣∣∣
a11 a21 a31

a12 a22 a32

a13 a23 a33

∣∣∣∣∣∣ =

= a11a22a33 − a11a23a32 − a12a21a33 + a13a21a32 + a12a23a31 − a13a22a31.

Observe that in each product a1p1 ...anpn
a term from every column and every row appears

only once. �

We shall give now the fundamental properties of determinants.

Property 3.1. The determinant of a matrix such that either one column or one row
consists of zeros only is equal to zero.

Proof. Suppose that ajk = 0 for a j and k = 1, ..., n. Then any component of the sum
(3.4) contains a term of the form ajpj . Hence det A = 0. A similar result holds if ajk = 0
for j = 1, ..., n and a k. �
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Property 3.2. If det B is formed from a determinant det A by multiplication of one
column (one row) by a scalar c, then det B = cdet A.

Proof. If we multiply the jth column by c, then we find

det B =
∑

{p1,...,pn}

sign {p1, ..., pn}a1p1 ....aj−1,pj−1caj+1,pj+1 ...anpn
=

=
∑

{p1,...,pn}

c sign {p1, ..., pn}a1p1 ....aj−1,pj−1aj+1,pj+1 ...anpn =

= c
∑

{p1,...,pn}

sign {p1, ..., pn}a1p1 ....anpn = c det A.

A similar proof holds for rows. �

Property 3.3. If the terms of the jth column (row) of a determinant det A are sums of
two components

ajk = a′jk + a′′jk (k = 1, ..., n) (j = 1, ..., n)

then this determinant is a sum of two determinants such that the jth column (row) of
the first one consists of terms a′jk and the jth column (row) of the second one consists
of terms a′′jk, i.e. A = B + C, where B = det[bim]i,m=1,...,n, C = det[cim]i,m=1,...,m,
bim = cim = aim for i 6= j, bjm = a′jm, cjm = a′′jm for i = j (m = 1, ..., n). Similarly, for
rows bim = cim = aim for m 6= k, bik = a′ik, cik = a′′ik for m = k (i = 1, ..., n).

Proof. By our assumptions,

det A =
∑

{p1,...,pn}

sign {p1, ..., pn}a1p1 ....aj−1,pj−1ajpj aj+1,pj+1 ...anpn =

=
∑

{p1,...,pn}

sign {p1, ..., pn}a1p1 ....aj−1,pj−1(a
′
jpj

+ a′′jpj
)aj+1,pj+1 ...anpn =

=
∑

{p1,...,pn}

sign {p1, ..., pn}a1p1 ...aj−1,pj−1a
′
jpj

aj+1,pj+1 ...anpn+

+
∑

{p1,...,pn}

sign {p1, ..., pn}a1p1 ...aj−1,pj−1a
′′
jpj

aj+1,pj+1 ...anpn .

A similar proof holds for rows. �

Formula (3.3) immediately implies

Property 3.4. If n ≥ 2 and in a determinant det A two columns (two rows) change their
place, then the determinant det B obtained in this way changes its sign: det B = −det A.

Property 3.5. If a determinant det A contains two identical columns (rows), then det A
= 0.
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Proof. If we exchange the place of the identical columns, then we obtain a new determinant
det B = −det A. By Property 3.4,

det A = det B = −det A which implies 2 det A = 0 and det A = 0.

A similar proof holds for rows. �

Property 3.6. A determinant does not change its value if to elements of its column (row)
there are added elements of another column (row) multiplied by an arbitrary number c.

Proof. By our assumptions,∑
{p1,...,pn}

sign {p1, ..., pn}a1p1 ...aj−1,pj−1(ajpj + cakpk
)aj+1,pj+1 ...anpn =

∑
{p1,...,pn}

sign {p1, ..., pn}a1p1 ...aj−1,pj−1ajpj
aj+1,pj+1 ...anpn

+

+c
∑

{p1,...,pn}

sign {p1, ..., pn}a1p1 ...aj−1,pj−1akpk
aj+1,pj+1 ...anpn = det A + cdet A′.

But det A′ has two identical columns: the jth column and the kth column. This, and
Property 3.5 together imply that detA′ = 0. A similar proof holds for rows. �

A minor determinant of a square matrix A of dimension n is said to be a determinant of A
obtained by canceling the same number of columns and rows in A. Denote by Mjk minor
determinants obtained by canceling the jth column and the kth row. Minor determinants
Mjk are determinants of a matrix of dimension n− 1. By definition,

(3.5) Mjk =

=
∑

{p1,...pj−1,pj+1,...,pn}

sign {p1, ..., pj−1, pj+1, ..., pn}a1p1 ...aj−1,pj−1aj+1,pj+1 ...anpn .

Theorem 3.1 (Laplace Theorem). Let det A = det [ajk]j,k=1,...,n. Then

(3.6) det A =
n∑

j=1

(−1)j+kajkMjk,

(3.7) det A =
n∑

k=1

(−1)j+kajkMjk.

Proof. We shall prove only Formula (3.6). A proof of Formula (3.7) is similar. Observe
that if we cancel in the permutation {p1, ..., pn} the term pj = k then

(3.8) sign {p1, ..., pn} = (−1)j+ksign {p1, ..., pj−1, pj+1, ..., pn}.
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Indeed, let

q1 be the number of those p1, .., pj−1 which are less than k,
q2 be the number of those p1, .., pj−1 which are greater than k,
r1 be the number of those pj+1, .., pn which are less than k,
r2 be the number of those pj+1, .., pn which are greater than k.

If we cancel the term pj = k then we have to multiply sign {p1, ..., pn} by the number
(−1)q2+r1 . On the other hand,

q1 + q2 = j − 1, q1 + r1 = k − 1,

which implies
2q1 + q2 + r1 = j + k − 1.

Hence
(−1)q2+r1 = (−1)j+k−2−2q1 = (−1)j+k.

Then, by Formula (3.5), we find

(−1)j+kajkMjk =∑
{p1,...pj−1,pj+1,...,pn}

pj=k

sign {p1, ..., pj−1, pj+1, ..., pn}(−1)j+ka1p1 ...aj−1,pj−1ajkaj+1,pj+1 ...anpn

=
∑

{p1,...pj−1,pj+1,...,pn}
pj=k

sign {p1, ..., pn}a1p1 ...aj−1,pj−1ajpj aj+1,pj+1 ...anpn =

=
∑

{p1,...pj−1,pj+1,...,pn}
pj=k

sign {p1, ..., pn}a1p1 ...anpn .

We therefore conclude that

(−1)j+kajkMjk =
N∑

j=1

∑
{p1,...pj−1,pj+1,...,pn}

pj=k

sign {p1, ..., pn}a1p1 ...anpn =

=
∑

{p1,...,pn}

sign {p1, ..., pn}a1p1 ...anpn = det A.

�

Theorem 3.2 (Cauchy Theorem). If A and B are square matrices of the same dimen-
sion then

det (AB) = (det A)(det B).
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Proof (by induction). Clearly, Theorem 3.2 is true for n = 1. Indeed, for A = [a11],
B = [b11] we have

(det A)(det B) = a11b11 = det [a11b11] = det (AB).

Suppose now that Theorem 3.2 holds for an arbitrarily fixed positive integer n ≥ 1. By
Theorem 2.9, for arbitrary matrices P and Q of dimension n

P = [pjk]j,k=1,...,n, Q = [qjk]j,k=1,...,n

the following formula is satisfied:

(3.9). det
[ n∑

j=1

pjkqlj

]
k,l=1,...,n

=
(
det [pjk]j,k=1,...,n

)(
det [qlj ]l,j=1,...,n

)
Let A and B be arbitrary square matrices of dimension n + 1,

A = [ajk]j,k=1,...,n+1, B = [bjk]j,k=1,...,n+1.

Write

C = AB, i.e. C = [clk]l,k=1,...,n+1 where clk =
n+1∑
j=1

ajkblj .

Denote by M ′
jk, M ′′

jk, M ′′
jk minor determinants of matrices A,B, C, respectively, which

are obtained by canceling their jth column and kth row. Denote also by Ajk, Bjk, Cjk

matrices of those minor determinants, respectively. Then

M ′
jk = det A, M ′′

jk = det Bjk, Mjk = det Cjk (j, k = 1, ..., n).

By our induction assumption,

(3.10) M ′
jkM ′′

km = Mjm (j, k,m = 1, ..., n).

Indeed,

M ′
jkM ′′

km = (det Ajk)(det Bkm) = det (AjkBkm) = det Cjm = Mjm.

This, the Laplace theorem (Theorem 3.1) and Theorem 2.9 together imply

(det A)(det B) =
[ n+1∑

j=1

(−1)j+kajkM ′
jk

][ n+1∑
k=1

(−1)k+mbkmM ′′
km

]
=

=
n+1∑

j,k=1

(−1)m+j+2kajkbkmM ′
jkM ′′

km =
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=
n+1∑

j,k=1

(−1)m+jajkbkmMjk =
n+1∑
j=1

(−1)m+j
( n+1∑

k=1

ajkbkm

)
Mjk =

=
n+1∑
j=1

(−1)m+jcjmMjm = det C = det (AB).

We therefore have verified that the formula det (AB) = (det A)(det B) is true for square
matrices of dimension n + 1. Hence Theorem 3.2 holds for square matrices of an arbitrary
dimension. �

Example 3.2. Let

A =
(

a11 a21

a12 a22

)
, B =

(
b11 b21

b12 b22

)
.

Then

det (AB) = det
(

a11b11 + a21b21 a11b21 + a21b22

a12b11 + a22b12 a12b21 + a22b22

)
=

= (a11b11 + a21b21)(a12b21 + a22b22)− (a11b21 + a21b22)(a12b11 + a22b12) =

= a11a12b11b21 + a21a12b12b21 + a11a22b11b22 + a21a22b12b22 −

− a11a12b11b21 − a21a12b11b22 − a11a22b21b12 − a21a22b12b22 =

= (a21a12 − a11a22)b12b21 + (a11a22 − a21a22)b11b22 =

= (a11a22 − a12a22)(b11b22 − b12b22) =

=
∣∣∣∣ a11 a21

a12 a22

∣∣∣∣ · ∣∣∣∣ b11 b21

b12 b22

∣∣∣∣ = (det A)(det B).

�

Theorem 3.3. If A is a square matrix then det AT = det A.

Proof by induction with respect to the dimension of the matrix A. For n = 1 this theorem
is obvious, since AT = [a11] = A. Suppose that Theorem 3.3 is true for an arbitrarily
fixed k = n − 1, where n > 1. Similarly, as in Formula (3.5), denote by MT

kj the minor
determinants of the matrix AT . Then, by our induction assumption, MT

kj = Mjk, since
these determinants are determinants of matrices of dimension n − 1. By Theorem 3.1
applied to the matrix AT with entries bjk = akj , we find for k = n

det A =
n∑

j=1

(−1)j+kbjkMT
jk =

n∑
j=1

(−1)j+kakjMkj = det A.

�
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Corollary 3.1. If A and B are square matrices of the same dimension, then

det (AT BT ) = det (AT B) = det (ABT ) = det (AB) = (det A)(det B).

Proof. By the Cauchy theorem and Theorem 3.2, we have

det (AT BT ) = (det AT )(det BT ) = (det A)(det B),

det (AT B) = (det AT )(det B) = (det A)(det B),

det (ABT ) = (det A)(det BT ) = (det A)(det B).

�

In other words: the determinant of the product of two square matrices has its value
independent of multiplication either rows by columns or columns by columns or columns
by rows or rows by rows.

A square matrix A is said to be a non-singular matrix if det A 6= 0. If det A = 0 then A
is called a singular matrix.

Theorem 3.4. Every non-singular square matrix A is invertible and its inverse A−1 is
determined by the formula

A−1 =
1

det A
[Ajk]j,k=1,...,n, where Ajk = (−1)j+kMjk

and the minor determinants Mjk are determined by Formula (3.5).

Proof. Write a = det A. Recall (cf. Exercise 2.9) that to the identity operator there
corresponds the matrix E = [δjk]j,k=1,...,n. We are looking for a matrix B = [bjk]j,k=1,...,n

such that AB = BA = E. By the Cauchy Theorem,

aE = AB = [ajk]j,k=1,...n[bjk]j,k=1,...,n = [clk]l,k=1,...,n,

where clk =
n∑

j=1

ajkblj .

Then the following equalities should be satisfied:

ckk =
n∑

j=1

ajkbjk = a, clk = 0 for l 6= k (l, k = 1, ..., n).

Let bjk = Ajk. Then, by the Laplace theorem, we obtain

ckk =
n∑

j=1

ajkAjk = a = det A.
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Furthermore, if l 6= k then

clk =
n∑

j=1

(−1)j+lajlMjl,

where the minor determinant Mjl determined by formula (3.5) is obtained by canceling
the jth column and the lth row. Hence Clk is a development of a determinant such that
instead of the lth row there is the kth row. Hence this determinant has two identical rows,
which implies that it is equal zero. We therefore conclude that clk = 0 for l 6= k. A similar
proof shows that BA = (det A)E. Therefore we have shown that A−1 = 1

det AB. �

Let either F = R or F = C. Let X = Fn and let A = [ajk]j,k=1,...,n ∈ L0(X). Consider a
system of linear equations

(3.11)
n∑

j=1

ajkxj = yk, where yk ∈ F (k = 1, ..., n).

This system can be rewritten in an equivalent form:

(3.11′) Ax = y, where

{
x = (x1, ..., xn) ∈ X,
y = (y1, ..., yn) ∈ X.

The system (3.11′) with det A 6= 0 is said to be Cramer system of linear equations.

Theorem 3.5 (Cramer Formulae). A Cramer system of linear equations (3.11′) has a
unique solution of the form:

x = (x1, ..., xn), where

(3.12) xk =
1

det A

n∑
j=1

Ajkyj =
1

det A
det Ak =

=
1

det A

n∑
j=1

(−1)j+kyjMjk,

where the matrix Aj is obtained from the matrix A by putting instead of its jth column
the column y = (y1, ..., yn) and Ajk are determined in Theorem 3.4.

Proof. Since det A 6= 0, Theorems 3.4 and 2.4 together imply that there exists the inverse
operator A−1. Hence

(x1, ..., xn) = x = A−1Ax = A−1y =
1

det A
[ajk]j,k=1,...,n(y1, ..., yn) =

=
1

det A

( n∑
j=1

Aj1yj , ...,
n∑

j=1

Ajnyj

)
=

1
det A

(det A1, ...,det An).
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By a comparison of the corresponding components, we find Formula (3.12). �

A system (3.11′) of linear equations is said to be homogeneous if y1 = ... = yn = 0.

Corollary 3.2. A homogeneous Cramer system of linear equations

(3.13) Ax = 0, where X = Fn, A ∈ L0(X),

has only zero as a solution: x = 0, i.e. x1 = ... = xn = 0.

Corollary 3.3. If a homogeneous system (3.13) of linear equations has a solution x 6= 0
then det A = 0, i.e. the system (3.13) is not a Cramer system.

Proof by a reduction to a contradiction. Indeed, suppose that det A 6= 0. Then there exists
the inverse operator A−1. Acting on both sides of the system (3.13) by this operator, by
Corollary 3.2, we obtain x = 0. This contradicts our assumption that x 6= 0. Hence
det A = 0. �

Cramer Formulae and Corollaries 3.2 and 3.3 concern the case when the operator A maps
an n-dimensional space onto itself, i.e. a case such that the number of unknowns is equal
to the number of equations. Now we shall examine the case when these numbers are
not equal. In order to do that, we have to consider non-square matrices, i.e. so called
rectangular matrices.

Minor determinants of a rectangular matrix A are said to be determinants of square ma-
trices obtained from A by canceling of some numbers of its columns and rows. The rank
of a rectangular matrix A is said to be the maximal dimension of its minor determinants
different than zero. The rank of a rectangular matrix A will be denoted by r(A). By
definition and Theorem 3.3, we conclude that

(3.14) r(AT ) = r(A).

Formula (3.14) and properties of determinants together imply

Corollary 3.4. The rank of a rectangular matrix does not change if

(i) we multiply rows (columns) of this matrix by numbers different than zero;

(ii) we exchange the place of rows (columns);

(iii) we add to one row (column) linear combinations of other rows (columns).

Theorem 3.6. Let A = [ajk] j=1,...,n
k=1,...,m

. Denote columns and rows of A as follow:

aj = (aj1, ..., ajm), (ak = (a1k, ..., ank)) (j = 1, ..., n; k = 1, ...,m).

Then the rank of the matrix A is equal to the dimension of the linear span of vectors
a1, ..., an (a1, ..., am, respectively), i.e.

(3.15) r(A) = dim lin {a1, ..., an} = dim lin {a1, ..., am}.
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Proof. If some rows (columns) of the matrix under consideration are linearly dependent
then one of these rows (columns) should be a linear combination of other rows (columns).
Hence the corresponding minor determinant is equal to zero. Conversely, if some rows
(columns) are linearly independent then the corresponding minor determinant is different
than zero. �

Let, as before, either F = R or F = C. Let X = Fn, Y = Fm and let A = [ajk] j=1,...,n
k=1,...,m

∈
L0(X → Y ). Consider a system of m linear equations with n unknowns:

(3.16)
n∑

j=1

ajkxj = yk, where yk ∈ F (k = 1, ...,m),

which can be written in an equivalent form

(3.17) Ax = y, where x = (x1, ..., xn) ∈ X, y = (y1, ..., ym) ∈ Y.

Every system x = (x1, ..., xn) satisfying the system (3.16) of linear equations is said to be
a solution either of the system (3.16) of linear equations or Equation (3.17). A system
(3.16) of linear equations (Equation (3.17)) may have no solutions. If this is the case, then
it is said to be contradictory. In particular, if m > n then the operator A maps the space
X into an n-dimensional space Yn ⊂ Y . Hence Equation (3.17) has no solutions whenever
y 6∈ Yn, i.e. it is contradictory.

Denote by B the so called extended matrix obtained from the matrix A if we join to A a
column (y1, ..., ym), i.e. the matrix

(3.18) B =


a11 a21 ... an1 y1

a12 a22 ... an2 y2

... .... ... .... ...
a1m a2m ... anm ym

 .

Theorem 3.7 (Kronecker-Capella Theorem). The system (3.16) of linear equations
(Equation (3.17)) has a solution x = (x1, ..., xn) if and only if the rank of the extended
matrix B (cf. Formula (3.18)) is equal to the rank of the matrix A, i.e. if r(B) = r(A).

Proof. Suppose that x = (x1, ..., xn) is a solution of the system (3.16) of linear equations
(Equation (3.17)), i.e.

yk =
n∑

j=1

ajkxj , (k = 1, ...,m).

Then the last column in the extended matrix defined by Formula (3.18) is a linear combi-
nation of columns of the matrix A with known coefficients x1, ..., xn. Hence this column
cannot increase the rank of the matrix, i.e. r(B) = r(A).

Conversely, suppose that r(B) = r(A). This means that by joining of the column y =
(y1, ..., ym) of free terms to the matrix A the maximal dimension of a determinant different
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than zero is not changed. In other words, if r(A) = r then, even with the joined column
of free terms, every determinant of dimension greater than r is equal to zero. Hence the
column y = (y1, ..., ym) is a linear combination of columns aj = (aj1, ..., ajm), (j = 1, ..., n)
of the matrix A, i.e. there exist numbers x1, ..., xn such that

yk =
n∑

j=1

ajkxj , (k = 1, ...,m).

By definition of numbers x1, ..., xn, we conclude that x = (x1, ..., xn) is a solution of the
system (3.16) of linear equations (Equation (3.17)). �

Corollary 3.5. Suppose that the system (3.16) of linear equations (Equation (3.17)) has
a solution and r(A) = r. Denote by M minor determinant of the matrix A of dimension
r different than zero. If we cancel in the system (3.16) these equations whose coefficients
do not appear in the minor determinant M , then we obtain an equivalent system of linear
equations (i.e. every solution of the obtained system of linear equations is a solution to
the system (3.16), and conversely).

Proof. By Theorem 3.6, if r(A) = r then all columns (rows) of the matrix A, which
do not appear in the minor determinant M , are linearly dependent on the remains ones.
By our assumption, the system (3.16) of linear equations (Equation (3.17)) has solutions.
This, and Kronecker-Capella Theorem (Theorem 3.7) together imply that the rank of the
extended matrix r(B) = r(A) = r. Then free terms yk corresponding to the canceled
equations are also linearly dependent on the remained free terms. Even more, the cor-
responding linear combinations have the same coefficients. Hence every solution of the
system (3.16) of linear equations is a solution of the system reduced to r linear equations
corresponding to the minor determinant M , and conversely, every solution of the reduced
system is a solution to the system (3.16). �

Immediate consequences of Corollary 3.5 are

Corollary 3.6. If r(A) = m ≤ n (i.e. the rank of the matrix A is less or equal to the
number of equations) then all solutions to the system (3.16) of linear equations (Equation
(3.17)) are obtained by canceling in the system (3.16) those equations whose coefficients do
not appear in the minor determinant M , where M is any minor determinant of dimension
r(A) = m different than zero. We admit for n−m unknowns corresponding to the canceled
columns arbitrary numbers, and we calculate the remained unknowns by means of Cramer
Formulae applied to the minor determinant M .

Corollary 3.7. If r(A) = m ≤ n (i.e. the rank of the matrix A is less or equal to the
number of equations), then solutions to the system (3.16) of linear equations (Equation
(3.17)) depend on n−m = n− r(A) arbitrary numbers called parameters.

Corollary 3.8. A system (3.16) of linear equations (Equation (3.17)) has a unique solution
if and only if r(A) = r(B) = n.

Proof. By Kronecker-Capella Theorem, the condition r(A) = r(B) is a necessary and
sufficient condition of the existence of solutions to the system (3.16). By our assumption
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that r(A) = r(B) = n, it follows that m = n = r(A). Hence, by Corollary 3.6, we find
n − m = 0 and the system (3.16) is a Cramer system of linear equations. We therefore
conclude that this system has a unique solution.

Suppose that r(A) = n − p, where p ≥ 1. Since r(A) < n, Corollary 3.7 implies that all
solutions to the system (3.16) of linear equations depend on n−(n−p) = p ≥ 1 parameters.
Hence they are not unique. �

Consider now a homogeneous system corresponding to the system (3.16) of linear equations,
i.e. the system

(3.19)
n∑

j=1

ajkxj = 0 (k = 1, ...,m).

Theorem 3.8. A necessary and sufficient condition for a homogeneous system (3.19) of
linear equations to have a unique solution is that r(A) = n.

Proof. Since the column y = (y1, ..., yn) of free terms consists of zeros only, we have
r(A) = r(B). By our assumption, r(B) = r(A) = n. By Corollary 3.8, the condition
r(A) = n is a necessary and sufficient condition for the system (3.19) to have a unique
solution. �

Theorem 3.9. If x = (x1, ..., xn) is a non-zero solution to a system (3.19) of linear
equations and r(A) = m = n− 1 then

(3.20)
x1

M1
= − x2

M2
= ... =

xn

(−1)n+1Mn
,

where Mk is the minor determinant of the matrix A obtained by canceling the kth column
(if Mk = 0 for a k then we let xk = 0).

Proof. By the assumption that r(A) = m = n− 1, there is at least one minor determinant
Mk 6= 0 of dimension n− 1 = m. This assumption and Corollary 3.6 together imply that
solutions to the system (3.19) depend on one parameter for n−m− (n− 1) = 1 and that
solutions to the system (3.19) are of the form:

xk = a(−1)k+1Mk (k = 1, ...,m = n− 1), with a 6= 0.

Hence Formula (3.20) holds.

These solutions are obtained in the following way: instead of the unknown xj corresponding
to a canceled column of the matrix A we admit an arbitrary number a 6= 0, and we applied
to the obtained system of linear equations (already non-homogeneous) Cramer Formulae.

�

Theorem 3.10. If A = [ajk] j=1,...,n
k=1,...,m

and

ker A = {x : Ax = 0} = {(x1, ..., xn) :
n∑

j=1

ajkxj = 0 for k = 1, ...,m}



Systems of linear equations 49

then

(3.21) dim ker A = n− r(A).

Proof. The nullity αA = dim ker A is the number of linearly independent non-zero solutions
to the system (3.19) of linear equations. Let r(A) = r. Denote by M a minor determinant
of the matrix A of dimension r which is different than zero. Cancelling in the system
(3.19) those equations whose coefficients do not appear in the minor determinant M , we
obtain by Theorem 3.5, a system equivalent to the system (3.19). However, the system of
r linear equations just obtained has n ≥ r unknowns. On the other hand, n − r columns
do not appear in M . Admitting arbitrary numbers for the corresponding unknowns, we
obtain a new non-homogeneous system of r linear equations with r unknowns. Solving this
system by means of Cramer Formulae we obtain a non-zero solution of the system (3.19)
which depends on n − r = n − r(A) parameters. In other words, the number of linearly
independent solutions of the system (3.19) is αA = n− r(A). �

At the end of this chapter we shall give other conditions of solvability of Equation (3.17)
(cf. also Chapter 9).

Theorem 3.11. Suppose that A ∈ L0(X → Y ), dim X = n, dim Y = m. Then
AT ∈ L0(Y → X), hence AT A ∈ L0(X → X), i.e. AT A is a square matrix. Then the
following conditions are satisfied:

(i) If det (AT A) 6= 0, then the equation Ax = y, y ∈ Y , has a unique solution x =
(AT A)−1AT y, i.e. the homogeneous equation Ax = 0 has only zero as a solution.

(ii) If there is an x 6= 0 such that Ax = 0, then det (AT A) = 0.

(iii) If y 6= 0, AT y = 0 and det (AT A) 6= 0, then the equation Ax = y has not solutions.

Proof. Acting on both sides of the equation Ax = y by means of the operator AT , we
obtain the equation

(3.22) AT Ax = AT y.

(i) Since det (AT A) 6= 0 by our assumption, the square matrix AT A is invertible and x =
(AT A)−1AT y. If y = 0 then x = 0.

(ii) If there an x 6= 0 such that Ax = 0, then AT Ax = 0. This, and Corollary 3.3, together
imply that det (AT A) = 0.

(iii) If y 6= 0, then a solution x of the equation Ax = y (provided that it exists) is different
than zero. Suppose that AT y = 0. By Equation (3.22), we conclude that AT Ax = 0.
But det (AT A) 6= 0. This, and Point (i) of this Theorem together imply x = 0. This
contradicts our assumption that x 6= 0. Hence the equation Ax = y has no solutions.

�
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Exercises.

Exercise 3.1. Prove that the determinant of a diagonal matrix (cf. Example 2.11) is
equal to the product of terms on the principal diagonal. �

Exercise 3.2. Prove that the determinant of a square matrix [ajk]j,k, where ajk = 0 for
j > k, is equal to the product of terms on the principal diagonal. �

Exercise 3.3. Prove that the determinant of a square matrix [ajk]j,k, where ajk = 0 for
j < k, is equal to the product of terms on the principal diagonal. �

Exercise 3.4. Determine the value of the Vandermonde determinant

Vn = det [tk−1
j ]j,k=1,...,n (n ∈ N; t ∈ R).

Prove that Vn 6= 0 whenever ti 6= tj for i 6= j. �

Exercise 3.5. Prove that BT = B whenever B = AAT . �

Exercise 3.6. Prove that a cyclic determinant

Dn =

∣∣∣∣∣∣∣
a0 a1 a2 ... an−1

an−1 a0 a1 ... an−2

... ... ... ... ...
a1 a2 a3 ... a0

∣∣∣∣∣∣∣ = φ(ε)φ(ε2)...φ(εn) (n ∈ N),

where φ(t) = a0 + a1t + ... + antn, ε = e2πi/n (Hint: multiply rows of the determinant Dn

by columns of the Vandermonde determinant considered in Exercise 3.4). �

Exercise 3.7. Let dim X = n and let A ∈ L0(X). By a change of the coordinates
we mean a one-to-one mapping B of the basis in the space X into another basis. This
definition implies that a linear extension B̃ of the mapping B onto the whole space X is
invertible and that B̃, B̃−1 ∈ L0(X). Prove that a change B of the coordinates transforms
the operator A into the operator B̃−1AB̃. Give examples. �

Exercise 3.8. Prove that homogeneous polynomials 1, t, ..., tn n ∈ N) are linearly inde-
pendent (Hint: Use Exercise 3.4). �

Exercise 3.9. Prove that in the space Fn[t] determined in Example 1.5, homogeneous
polynomials 1, t, ..., tn form a basis, and that dim Fn[t] = n + 1 (n ∈ N). �

Exercise 3.10. Prove that the space F[t] determined in Example 1.6 is infinite dimen-
sional. �

Exercise 3.11. Prove that vectors (δk1, ..., δkn) (k = 1, ..., n ∈ N) form a basis in the
space Rn and that dim Rn = n. �

Exercise 3.12. There are given k hyperplanes in Rn. When do these hyperplanes cut
each another? Consider the cases: k < n, k = n, k > n. Give a geometric interpretation
for n = 2 and n = 3. �
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Exercise 3.13. Determine kernels of matrices

(
1 0 −1
−1 0 0

) 
1 2 0
0 2 1
2 1 0
0 1 2

 .

�

Exercise 3.14. Give conditions of solvability of the equation Ax = y, where

(i) A =
(

a b c
c a b

)
; (ii) A =

 a 0
0 t
a b

 .

(Hint: apply Theorem 3.7). �

Exercise 3.15. Suppose that all conditions of Theorem 3.11 are satisfied. Prove that the
equation Ax = y has a unique solution x = AT (AAT )−1y whenever det (AAT ) 6= 0 (Hint:
substitute x = AT y). Give a condition of solvability in the case det (AAT ) = 0. Explain
why Theorem 3.6 is more useful when n < m, while results obtained in this exercise are
nonuseful in the case m < n. �

Exercise 3.16. Prove that

(i) the set of all finite dimensional linear operators acting in a linear space X (either over
the field R or over the field C) is an ideal in the algebra L0(X);

(ii) this ideal is proper if and only if dim X = +∞. �

Exercise 3.17. Prove that all considerations of this chapter hold for matrices

A = [ajk] j=1,...,n
k=1,...,m

,

where ajk belong to a commutative algebra (either over R or over C). �
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Chapter 4.

Inner product and vector product.

We say that in a linear space X over the field C of complex numbers a inner product is
defined if there is a function 〈x, y〉 defined on the set X ×X, with values ∈ C and such
that the following conditions are satisfied for all a ∈ C, x, y, x1, x2, y1, y2 ∈ X:

(i) 〈x1 + x2, y〉 = 〈x1, y〉 + 〈x2, y〉,

(ii) 〈x, y〉 = 〈y, x〉 ∗),

(iii) 〈ax, y〉 = a〈x, y〉,

(iv) 〈x, x〉 > 0 for x 6= 0.

Conditions (i) and (ii) together imply the additivity of an inner product with respect to
its second variable:

(i’) 〈x, y1 + y2〉 = 〈x, y1〉 + 〈x, y2〉.

Indeed,

〈x, y1 + y2〉 = 〈y1 + y2, x〉 = 〈y1, x〉 + 〈y2, x〉 = 〈x, y1〉 + 〈x, y2〉.

Conditions (ii) and (iii) together imply that

(iii’) 〈x, ay〉 = a〈x, y〉.

Indeed, 〈x, ay〉 = 〈ay, x〉 = a < y, x > = a 〈y, x〉 = a 〈x, y〉.

Conditions (iii) and (iv) together imply that

(iv’) 〈x, x〉 = 0 if and only if x = 0.

Indeed, suppose that x = 0. Let a be an arbitrary complex number different than zero
and than one. Then, by Condition (iii), we find

r = 〈0, 0〉 = 〈a0, 0〉 = a〈0, 0〉 = ar.

Hence r = 0, i.e. 〈0, 0〉 = 0. Conversely, suppose that 〈x, x〉 = 0. By Condition (iv), if
x 6= 0 then 〈x, x〉 > 0, a contradiction. Then x = 0.

If X is a linear space over the field R then Condition (ii) in the definition of the inner
product admits the form

(ii’) 〈x, y〉 = 〈y, x〉.

∗) By z we denote the number conjugate with z ∈ C.
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Other conditions remain the same as before.

An infinite dimensional space X with an inner product defined in is said to be a pre-Hilbert
space. An n-dimensional pre-Hilbert space over the field R is said to be an n-dimensional
Euclidean space and it is denoted by En.

A norm of an element x belonging to a pre-Hilbert space X is the function

‖x‖ =
√
〈x, x〉.

Observe that, by definition, ‖x‖ ≥ 0.

By the distance of two points belonging to a pre-Hilbert space is meant the norm of their
difference:

‖x− y‖ =
√
〈x− y, x− y〉.

In other words, the norm of a point in a pre-Hilbert space is equal to its distance from
zero.

In order to show properties of the distance and the norm in a pre-Hilbert space, first we
shall prove the following

Lemma 4.1 (Schwarz inequality). If X is a pre-Hilbert space then

(4.1) |〈x, y〉| ≤ ‖x‖ · ‖y‖ for x, y ∈ X.

Proof. For an arbitrary a ∈ R we have

0 ≤ 〈x + ay, x + ay〉 = 〈x, y〉+ a[〈x, y〉+ 〈y, x〉] + a2〈y, y〉+

+‖x‖2 + a[〈x, y〉+ 〈y, x〉] + a2‖y‖2.

Hence the discriminant of the last trinomial satisfies the inequality

(4.1′)
1
4
[〈x, y〉+ 〈y, x〉]2 − ‖x‖2‖y‖2 ≤ 0

for arbitrary x, y ∈ X.

It is easy to choose such a number b that |b| = 1 and that the inner product 〈x, by〉 is a
real number. Indeed, if 〈x, y〉 = r(cos α + i sinα) then we let b = cos α + i sinα. Then |b|
= 1 and 〈x, by〉 = b〈x, y〉 = brb = bbr = |b|2r = r, where r is a real number. We therefore
conclude that b is the number, we were looking for. Let now y0 = by. Inequality (4.1′)
(satisfied also by elements x, y0) implies that

|〈x, y〉| = 1
|b|

|〈x, y0〉| =
1
2
|〈x, y0〉+ 〈y0, x〉| ≤ ‖x‖ · ‖y‖ =

= ‖x‖ ‖by‖ = |b| ‖x‖ ‖y‖ = ‖x‖ ‖y‖,

which we had to prove. �
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Theorem 4.1. If X is a pre-Hilbert space then the norm of its elements determined by
the inner product has the following properties (x, y ∈ X):

(a) ‖x‖ = 0 if and only if x = 0;

(b) ‖λx‖ = |λ| ‖x‖ for λ ∈ F (homogeneity)∗);

(c) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

Proof. Equality (a) is an immediate consequence of Condition (iv). Conditions (ii) and
(iii) together imply that ‖λx‖ = 〈λx, λx〉 = λλ〈x, x〉 = |λ|2‖x‖2. By the Schwarz inequality
(Lemma 4.1), we get

‖x + y‖2 = |〈x + y, x + y〉| = |〈x, x〉|+ 〈y, y〉+ 〈x, y〉+ 〈y, x〉| ≤

≤ ‖x‖2 + 2‖x‖ · ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2,

i.e. the triangle inequality is satisfied. �

An immediate consequence of Theorem 4.1 is

Corollary 4.1. If X is a pre-Hilbert space, then the distance of two points determined by
the inner product has the following properties (x, y, z ∈ X):

(α) ‖x− y‖ = 0 if and only if x = 0;

(β) ‖y − x‖ = ‖x− y‖ (symmetry);

(γ) ‖x− y‖ ≤ ‖x− z‖+ ‖y − z‖ (triangle inequality).

We say that two elements x and y of a pre-Hilbert space X are orthogonal if 〈x, y〉 = 0.
Then we write x ⊥ y.

Two subspaces Y and Z of a pre-Hilbert space X are said to be orthogonal if 〈y, z〉 = 0
for all y ∈ Y , z ∈ Z. Then we write Y ⊥ Z. If X = Y ⊕Z and Y ⊥ Z then X is said to be
decomposed onto the orthogonal direct sum and Z is said to be an orthogonal complement
of the subspace Y , what we write Z = Y ⊥. Respectively, Y is an orthogonal complement
of Z. By the definition of an orthogonal complement, we have

Y ⊥ = {z ∈ X : 〈y, z〉 = 0 for y ∈ Y } and (Y ⊥)⊥ = Y.

Let Y be a subspace of a pre-Hilbert space X. If Y ⊥ is an orthogonal complement of Y
then there are two projection operators PY and P⊥

Y such that Y = PY X, Y ⊥ = P⊥
Y X and

PY + P⊥
Y = I, PY P⊥

Y = P⊥
Y PY = 0 (cf. Theorems 2.1, 2.3 and 2.4).

If Y is a subspace of a pre-Hilbert space X, and Y ⊥ is its orthogonal complement, then
the distance of an element x ∈ X from Y is the number

(4.2) d(x, Y ) = ‖x− PY x‖,

∗) where, as before, either F = C or F = R.
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where PY is the projection operator defined as before: PY X = Y .

In the sequel we shall restrict ourselves to n-dimensional Euclidean spaces En. It is easy
to verify that a function 〈x, y〉 defined by means of the formula

(4.3) 〈x, y〉 =
n∑

j=1

xjyj for x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn

is an inner product of elements x and y, i.e. it satisfies Conditions (i), (ii’), (iii), (iv). Then
Rn with the inner product defined by Formula (4.3) is the n-dimensional Euclidean space
En. We denote the norm of an element x ∈ En by single lines: |x|, i.e.

|x| =
( n∑

j=1

x2
j

) 1
2 for x ∈ En.

The number |x|, where x ∈ En, can be interpreted in two manners, either as the length of
a vector or the distance of the point x from zero. Hence the number |x− y| denotes either
the lenght of a vector which is a difference of vectors x and y or the distance of points x
and y. By the definition (4.3) of the inner product in En, we have

Property 4.1. Two vectors x and y in En are orthogonal if and only if

(4.4) 〈x, y〉 =
n∑

j=1

xjyj = 0 (x, y ∈ En).

A vector x ∈ En is said to be normed if |x| = 1. If x = (x1, ..., xn) is a normed vector
then, by definition,

|x|2 =
n∑

j=1

x2
j = 1 for x ∈ En.

Coordinates x1, ..., xn of a normed vector are called directional cosines of that vector. The
sum of their squares is then equal to one.

A basis {e1, ..., en} of the space En is said to be orthonormal if 〈ei, ek〉 = δik (i, k = 1, ..., n),
where δik is the Kronecker symbol ∗). Clearly, if this is the case, then |ei| = 1. Hence an
orthonormal basis consists of normed orthogonal vectors.

Property 4.2. The Euclidean space En has an orthonormal basis which consists of vectors
ek = (δk1, ..., δkn) (k = 1, ..., n).

Proof. The system {e1, ..., en} constitutes a basis in the space Rn (cf. Exercise (3.11),
hence also in the space En. By definition, for i, k = 1, ..., n

〈ei, ek〉 =
N∑

j=1

δijδki = δki =
{

1 for k = i,
0 for k 6= i,

∗) cf. Exercise 3.11.
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which we had to prove. �

Directional cosines of a normed vector in the space En are coefficients of the expansion of
that vector with respect to the basis {e1, ..., en} determined in Property 4.2.

Property 4.3. Every subspace Y of the Euclidean space En has an orthogonal complement
Y ⊥. Moreover, if {ek1 , ..., ekm}, m < n is an orthonormal basis in Y then

(4.5) Y ⊥ = lin {ek : ek 6∈ lin {ek1 , ..., ekm
}}.

Proof. Let y ∈ Y and ek 6∈ {ek1 , ..., ekm} be arbitrary (as before, ej denote elements of an

orthonormal basis in En). Then y =
n∑

j=1

ajekj , where aj ∈ R. This, and Corollary 4.2

together imply that

〈y, ek〉 =
〈 n∑

j=1

ajekj , ek

〉
=

n∑
j=1

aj〈ekj , ek〉 = 0,

which proves that ek ⊥ Y . Hence the subspace Y ⊥ defined by Formula (4.5) is the
orthogonal complement of the subspace Y . �

Property 4.4. Every linear functional defined on the Euclidean space En is of the form
f(x) = 〈x, a〉, where a ∈ En is a fixed element. Conversely, if f(x) = 〈x, a〉 then f is a
linear functional over the space En.

Proof. By Property 4.2, if x is an arbitrary element of the space En then x =
n∑

k=1

tkek =

(t1, ..., tn), where tk ∈ R. By Formula (3,3), every linear functional over the space En can

be written in the form f(x) =
n∑

j=1

tjaj , where aj ∈ R. Write a = (a1, ..., an). Then we

have a ∈ En and

f(x) =
n∑

j=1

tjaj = 〈(t1, ..., tn), (a1, ..., an)〉 = 〈x, a〉,

which we had to prove. On the other hand, if f(x) = 〈x, a〉 then f is a linear mapping of
En into R, hence it is a linear functional. �

An immediate consequence of Theorem 2.7 and Property 4.4 is

Property 4.5. Hyperplanes in the Euclidean space En not passing through zero are of
the form

(4.6) Ha = {x ∈ En : 〈x, a〉 = 1; a is a fixed element of En}.
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If a hyperplane Ha passing through a point x0 ∈ En satisfies the equation 〈x, a〉 = 1 then
it also satisfies an equation of the form:

(4.7) 〈x− x0, a〉 = 0.

Indeed, if this is the case then 〈x, a〉 = 1, 〈x0, a〉 = 1. Subtracting these equations by sides,
we obtain Formula (4.7).

Note that every hyperplane in En passing through the point x0 = 0 has the equation of
the form:

(4.8) 〈x, a〉 = 0.

Hence an equation of an arbitrary hyperplane can be written in the form:

(4.9) 〈x, a〉 = c.

Property 4.6. The distance of a point y ∈ En from a hyperplane Ha ⊂ En defined by
means of the equation 〈x, a〉 = c is given by the following formula:

(4.10) d (y, Ha) =
1
|a|

|〈y, a〉 − c|.

Proof. Formula (4.2) implies that d(y, Ha) = |y−Py|, where by P is denoted the projection
operator onto the hyperplane Ha. Write y′ = Py. By the definition of a projection, it
follows that y − y′ = λa for a λ 6= 0. Hence d(y, Ha) = |y − y′| = |λ| · |a|. On the other
hand, since y′ ∈ Ha, we get 〈y′, a〉 = c and

〈y, a〉 = 〈y, a〉+ 〈y′, a〉 − 〈y′, a〉 = 〈y − y′, a〉+ c =

= 〈λa, a〉+ c = λ〈a, a〉 = λ |a|2 + c.

Then

λ =
〈y, a〉 − c

|a|2
, |λ| = |〈y, a〉 − c|

|a|2
.

Finally,

d (y, Ha) = |λ| |a| = |〈y, a〉 − c|
|a|

.

�

Property 4.1. If points yj = (yj1, ..., yjn) ∈ En (j = 1, ...n) are linearly independent then
they uniquely determine a hyperplane H defined by means of the equation

(4.11) H = {x ∈ En : det ∆n = 0} where ∆n =


x1 ... xn 1
y11 ... y1n 1
y21 ... y2n 1
... ... ... 1
yn1 ... ynn 1

 .
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Proof. All points of a hyperplane H satisfy the equation

(4.12) 〈x, a〉 = 1.

Since H passes through the points y1, ..., yn, we conclude that the points y1, ..., yn satisfy
the equations

(4.12′) 〈yj , a〉 = 1, (j = 1, ..., n),

where x = (x1, ..., xn) and the vector a = (a1, ..., an) ∈ En is fixed. Equations (4.12′) can
be rewritten as a system of linear equations

(4.13)
n∑

k=1

xkak = 1,

(4.14)
n∑

k=1

yjk = 1 (j = 1, ..., n).

This is a system of n + 1 non-homogeneous linear equations with n unknowns a1, ..., an.
We therefore conclude that the system (4.13)-(4.14) has a unique solution if r(B) = r(∆n)
= n, where

B =


x1 ... xn

y11 ... y1n

... ... ...
yn1 ... ynn

 .

However, the linear independence of vectors yj implies that the determinant of the square
matrix A = [yjk]j,k=1,...,n is different than zero (since it has linearly independent columns).
Hence the system (4.14) is a Cramer system and, by Theorem 3.5, has a unique solution
of the form

(4.15) a = (a1, ..., an) =
1

det A
(det A1, ...,det An),

where the matrix Ak is obtained from the matrix A by putting instead of its kth column
the column (1, 1, ..., 1). Since det A 6= 0, we conclude that r(∆n) ≥ r(B) = r(A) = n.
Still we have to prove that det ∆n = 0. Develop det ∆n with respect to its first row.
Then we obtain

det ∆n =
n∑

k=1

(−1)k+1xk(−1)n−1 det Ak + (−1)n+2 det A =

= (−1)n+1
n∑

k=1

xk det Ak + (−1)n+2 det A = (−1)n+1 det A + (−1)n+2 det A = 0.
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For, by Formulae (4.13) and (4.15), we find

n∑
k=1

xk det Ak =
n∑

k=1

xkak det A = det A
n∑

k=1

xkak = det A.

Hence r(A) = n = r(B) and the system (4.13)-(4.14) has a unique solution (4.15). �

Suppose that we are given two non-zero vectors x, y ∈ En. Then the modulus of the
number

c =
〈x, y〉
|x| · |y|

is not greater than 1 (by the Schwarz inequality (4.1)). Hence there is an angle θ such that
0 ≥ θ ≥ π and c = cos θ. The angle θ is said to be the angle between vectors x and y. An
angle θ between non-zero vectors x and y belonging to En is then defined by the formula

(4.16) cos θ =
〈x, y〉
|x| · |y|

.

Two non-zero vectors x, y in the Euclidean space En are said to be orthogonal (otherwise:
perpendicular one to each another) if 〈x, y〉 = 0. If this is the case, then cos θ = 0, i.e.
θ = π

2 .

Two non-zero vectors x, y ∈ En are said to be parallel if there is a real number λ 6= 0 such
that y = λx, since in that case

cos θ =
〈x, y〉
|x| · |y|

=
〈x, λx〉
|x| · |λx|

=
λ〈x, x〉
|λ| |x|2

=
λ

|λ|
= ± 1,

i.e. either θ = 0 or θ = π. If this is the case, then we write x ‖ y.

Similarly, a cosine of an angle between two hyperplanes Ha and Hb in the Euclidean space
En is defined by means of the formula

(4.17) cos θ =
〈a, b〉
|a| · |b|

.

Two hyperplanes Ha and Hb in the Euclidean space En are orthogonal (otherwise: per-
pendicular) if

(4.18) 〈a, b〉 = 0.

Indeed,if this is the case, then cos θ = 0, hence θ = π
2 .

Two hyperplanes Ha and Hb in the Euclidean space En are parallel if there is a real number
λ 6= 0 such that b = λa.

Indeed, if it the case, then cos θ = ± 1, i.e. either θ = 0 or θ = π.
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Let {e1, ..., en} be an orthonormal basis in the Euclidean space En. An ordered system
{x1, ..., xn} of linearly independent vectors xj = (xj1, ..., xjn) has an orientation compatible
with the basis {e1, ..., en}, in other words, a positive orientation with respect to that basis
if

Θ(x1, ..., xn) = det [xjk]j,k=1,...,n > 0.

In the opposite case, i.e. when Θ(x1, ..., xn) < 0, this system has a negative orientation.
Otherwise, these system are called dextrally oriented and sinistrally oriented systems. (or,
in the space E2, clockwise oriented and anticlockwise oriented).

Suppose that we are given two linearly independent vectors (i.e. vectors which are non-
parallel) x = (x1, x2, x3) and y = (y1, y2, y3) in the Euclidean space E3. We are looking for
a vector z = (z1, z2, z3) orthogonal to x and y and such that the triple {x, y, z} of vectors
is positively oriented. The vector in question is constructed in the following manner: if
x, y ∈ E3 then z = (z1, z2, z3), where

(4.19) z1 =
∣∣∣∣ x2 x3

y2 y3

∣∣∣∣ , z2 =
∣∣∣∣ x3 x1

y3 y1

∣∣∣∣ , z3 =
∣∣∣∣ x1 x2

y1 y2

∣∣∣∣ .

This vector will be denoted by x× y and called the vector product of x and y.

Observe that coordinates z1, z2, z3 of a vector product are minor determinants of the de-
terminant ∣∣∣∣∣∣

1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
obtained by its development with respect to the first row. We will show that the vector z
is orthogonal to x and y. Indeed,

〈x, z〉 = x1z1 + x2z2 + x3z3 = x1

∣∣∣∣ x2 x3

y2 y3

∣∣∣∣ + x2

∣∣∣∣ x3 x1

y3 y1

∣∣∣∣ + x3

∣∣∣∣ x1 x2

y1 y2

∣∣∣∣ =

= x1

∣∣∣∣ x2 x3

y2 y3

∣∣∣∣− x2

∣∣∣∣ x1 x3

y1 y3

∣∣∣∣ + x3

∣∣∣∣ x1 x2

y1 y2

∣∣∣∣ =

∣∣∣∣∣∣
x1 x2 x3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ = 0,

for the last determinant has two identical rows. A similar proof shows that 〈y, z〉 = 0.

We still have to prove that the triple {x, y, z} is positively oriented. Develop the determi-
nant Θ(x, y, z) with respect to the last row. Then we get

Θ(x, y, z) =

∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3∣∣∣∣ x2 x3

y2 y3

∣∣∣∣ ∣∣∣∣ x3 x1

y3 y1

∣∣∣∣ ∣∣∣∣ x1 x2

y1 y2

∣∣∣∣
∣∣∣∣∣∣∣ =

=
∣∣∣∣ x2 x3

y2 y3

∣∣∣∣2 − ∣∣∣∣ x3 x1

y3 y1

∣∣∣∣ · ∣∣∣∣ x1 x3

y1 y3

∣∣∣∣ +
∣∣∣∣ x1 x2

y1 y2

∣∣∣∣2 =
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= (x2y3 − y2x3)2 + (x3y1 − y3x1)2 + (x1y2 − y1x2)2 > 0.

Hence the vector product has all required properties.

It is not difficult to generalize the above construction in order to form in the Euclidean
space En (n > 3) a vector product of n− 1 linearly independent vectors. Namely, suppose
that we are given vectors xj = (xj1, ..., xjn) ∈ En (j = 1, ..., n − 1) which are linearly
independent. Define a vector product in En in the following way:

xn = (xn1, ..., xnn),

where
xnj = (−1)j+1 det [xkm] k=1,...,n−1

m=1,...,n; m 6=j
for j = 1, ..., n.

It is easy to verify that the vector xn is orthogonal to each of vectors x1, ..., xn−1 and that
the n-tuple {x1, ..., xn} of vectors is positively oriented, i.e. det [xk,m]k,m=1,...,n > 0.

Property 4.8. If θ is an angle between two vectors x, y ∈ E3 then

(4.20) |x× y| = |x| |y| sin θ,

i.e.

sin θ =
|x× y|
|x| · |y|

.

Proof. By definition, we have

|x× y|2 = det
∣∣∣∣ x2 x3

y2 y3

∣∣∣∣2 + det
∣∣∣∣ x3 x1

y3 y1

∣∣∣∣2 + det
∣∣∣∣ x1 x2

y1 y2

∣∣∣∣2 =

= (x2y3 − x3y2)2 + (x3y1 − x1y3)2)2 + (x1y2 − x2y1)2 =

= x2
2y

2
3 + x2

3y
2
2 + x2

3y
2
1 + x2

1y
2
3 + x2

1y
2
2 + x2

2y
2
1−

−2(x2x3y2y3 + x1x3y1y3 + x1x2y1y2).

On the other hand,
|x|2|y|2 sin2 θ =

= |x|2|y|(1− cos2 θ) =
(
1− 〈x, y〉2

|x|2|y|2
)
|x|2|y|2 = |x|2|y|2 − 〈x, y〉2 =

= x2
2y

2
3 + x2

3y
2
2 + x2

3y
2
1 + x2

1y
2
3 + x2

1y
2
2 + x2

2y
2
1−

−2(x2x3y2y3 + x1x3y1y3 + x1x2y1y2) = |x× y|2.

�

Property 4.8 immediately implies
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Property 4.9. Let x, y ∈ E3. Then

(4.21) x× y = 0 if and only if either x = 0 or y = 0 or x ‖ y;

(4.22) |x× y| = |x| |y| if and only if x ⊥ y.

Property 4.10. The lenght of a vector product |x× y| in the Euclidean space E2 is equal
to the area of a parallelogram spanned by the vectors x and y.

Indded, the area of a paralleogram spanned by vectors x and y is equal to |x| · |y| sin θ,
where θ is the angle between vectors x and y.

By direct calculations, we get

Property 4.11. The vector product is an associative, distributive with respect to the ad-
dition and anticommutative operation, i.e. for arbitrary x, y, z ∈ E3 the following equalities
hold:

(4.23) x× (y × z) = (x× y)× z;

(4.24) (x + y)× z = x× z + y × z; x× (y + z) = x× y + x× z;

(4.25) y × x = −x× y.

Property 4.12. The volume of a parallelepiped spanned on three linearly independent
vectors x = (x1, x2, x3), y = (y1, y2, y3), z = (z1, z2, z3) in the Euclidean space E3 is equal
to the determinant

V =

∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣ .

Proof. The volume of a parallelepided under consideration is V = P · h, where h is its
height and P is the area of its base. By Property 4.10, we have P = |x× y|. Denote by ω
the angle between vectors u = x× y and z. Then

h = |z| sin
(π

2
− ω

)
= |z| cos ω = |z| 〈u, z〉

|u| · |z|
=
〈u, z〉
|u|

.

Hence

V = P · h = |x× y| 〈u, z〉
|u|

= |x× y| 〈x× y, z〉
|x× y|

= 〈x× y, z〉 =

= z1

∣∣∣∣ x2 x3

y2 y3

∣∣∣∣− z2

∣∣∣∣ x1 x3

y1 y3

∣∣∣∣ + z3

∣∣∣∣ x1 x2

y1 y2

∣∣∣∣ =

∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣ ,
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which we had to prove. �

With appropriate definitions of n-dimensional volumes the last property holds for the
vector product in the Euclidean space En for n > 3 without any essential change in the
proofs.

Exercises.

Exercise 4.1. Give a geometric interpretation of the triangle condition (for the lenght of
a vector and the distance of two points in the Euclidean space E2). �

Exercise 4.2. Prove the Schwarz inequality (4.1) for the Euclidean space En. �

Exercise 4.3. Determine an orthogonal complement of the sets {(r, 0, 0) : r ∈ E} and
{(r1, r2, 0) : (r1, r2) ∈ E2} in the Euclidean space E3. �

Exercise 4.4. Give formulae for

(i) the distance of a point from a straight line in E2;

(ii) the distance of a point from a plane in E3. �

Exercise 4.5. Give conditions for

(i) two straight lines in E2,

(ii) two planes in E3,

(iii) two hyperplanes in En

to intersect each another. Determine their common parts, provided that they exist. �

Exercise 4.6. Show that one can draw in the Euclidean space E3 a uniquely determined
hyperplane through

(i) a point and a straight line;

(ii) two parallel straight lines;

(iii) two intersecting straight lines.

Write equations of these hyperplanes. �

Exercise 4.7. Give examples of two straight lines in the Euclidean space E3 such that no
hyperplane can be drawn through them. If this is the case, such straight lines are said to
be skew. �

Exercise 4.8. Determine in the Euclidean space E3

(i) the angle between two straight lines;

(ii) the angle between a straight line and a hyperplane;

(iii) the distance of two straight lines;

(iv) the distance of a point from a straight line;
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(v) the point of intersection of two intersecting straight lines;

(vi) a straight line orthogonal to two skew straight lines (cf. Exercise 4.7). �

Exercise 4.9. Give formulae for

(i) the area of a triangle with given vertices in E2;

(ii) the volume of a tetrahedron with given vertices in En. �

Exercise 4.10. Explain why the so-called clockwise orientation and anticlockwise orien-
tations in the space E2 correspond to the negative and positive orientation, respectively.

�

Exercise 4.11. Prove the Lagrange identity:

( n∑
j=1

a2
j

)( n∑
j=1

b2
j

)
−

( n∑
j=1

ajbj

)2 =
n∑

j,k=1
j>k

(ajbk − akbj)2.

�

Exercise 4.12. Prove that the vector product of n − 1 linearly independent vectors
in the Euclidean space En is associative, distributive with respect to the addition and
anticommutative (cf. Property 4.11 for E3). �

Exercise 4.13. Prove that in the space Cn the expression

〈x, y〉 =
N∑

j=1

xjyj , where x1, ..., xn, y1, ..., yn ∈ C

is an inner product. A linear operator A∗ conjugate to A ∈ L0(Cn) is defined by means of
that inner product in the following way: 〈Ax, y〉 = 〈x,A∗y〉 for all x, y ∈ Cn. Determine
the matrix corresponding to A∗. �
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Chapter 5.

Eigenspaces and principal spaces. Algebraic operators.

Let X be a linear space over the field F (of characteristic zero) and let A ∈ L0(X). We
shall consider linear operators of the form T = A− λI, where λ ∈ F.

A number λ ∈ F is said to be a regular value of the operator A if the operator A − λI is
invertible. The set of all those λ, which are not regular values of A, is called the spectrum
of the operator A and it is denoted by spectr A. Clearly, spectr A ⊂ F. If λ ∈ spectr A
and there exists an x ∈ X different than zero and such that (A − λI)x = 0, i.e. if there
is a non-zero solution of the equation Ax = λx, then λ and x are said to be an eigenvalue
of the operator A and its eigenvector corresponding to the eigenvalue λ, respectively. The
linear span of all eigenvectors corresponding to an eigenvalue λ is said to be an eigenspace
of the operator A corresponding to its eigenvalue λ. By definition, an eigenspace is the set

(5.1) {x ∈ X : Ax = λx} = ker (A− λI),

hence it is a linear subspace of the space X.

An element x ∈ X such that (A − λ0I)nx = 0 for a positive integer n is said to be
a principal vector corresponding to the eigenvalue λ0. The linear span of all principal
vectors corresponding to an eigenvalue λ0 is said to be a principal space of the operator
A corresponding to the eigenvalue λ0. By this definition, it follows that a principal space
corresponding to an eigenvalue λ0 is the set

(5.1′)
∞⋃

n=1

{x ∈ X : (A− λ0I)nx = 0} =
∞⋃

n=1

ker (A− λ0I)n.

The dimension of a principal space corresponding to an eigenvalue λ0 of the operator A is
said to be its multiplicity.

If there exist principal vectors corresponding to an eigenvalue λ0 then also there exist
eigenvectors corresponding to this eigenvalue. Indeed, if n is the smallest number such
that (A − λ0I)nx = 0, then x0 = (A − λ0I)n−1x is an eigenvector corresponding to the
eigenvalue λ0 for (A − λ0I)x0 = (A − λ0I)nx = 0. On the other hand, every eigenvector
corresponding to the eigenvalue λ0 is a principal vector, since Ax = λ0x implies (A−λ0I)nx
= (A− λ0I)n−1(A− λ0I)x = 0. We therefore conclude that the dimension of a principal
space is not less than the dimension of the eigenspace corresponding to the same eigenvalue
λ0.

Property 5.1. Eigenvalues of a square matrix A = [ajk]j,k=1,...,n are roots of the equation

(5.2) det (A− λI) = 0.
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Indeed, if λ0 is an eigenvalue of the linear operator A, then there is an x ∈ X different
than zero and such that (A − λ0I)x = 0. This, and Corollary 3.3 together imply that
det (A− λ0I) = 0.

The determinant det (A − λI) is said to be the characteristic determinant of the matrix
A. By definition, this determinant is a polynomial in λ (we denote here the matrix E
corresponding to the identity operator I also by I).

We shall study now a class of linear operators whose principal spaces and eigenspaces are
easy to determine. In particular, we shall see that to the class in question belong all linear
operators mapping finite dimensional spaces into themselves.

A field F is said to be algebraically closed if every polynomial

a(t) =
n∑

k=0

aktk

with coefficients a0, ..., an ∈ F has n and only n roots t1, ..., tn, i.e. if

a(t) = c
n∏

m=1

(t− tm), where c, t1, ..., tn ∈ F.

For instance, the field R of reals is not algebraically closed, the field C of complex numbers
is algebraically closed.

Let X be a linear space over an algebraically closed field F of scalars. An operator A ∈
L0(X) is said to be algebraic on X if there is a polynomial P (t) ∈ F[t] such that P (A)x = 0
for all x ∈ X, i.e. P (A) = 0 on X. Without any loss of generality we may assume here and
in the sequel that any polynomial under consideration is normalized, i.e. its coefficient
of the term of the highest degree is 1. The operator A is algebraic of the order N if
deg P (t) = N and there is no polynomial Q(t) ∈ F[t] of degree M < N such that Q(A) = 0
on X . If this is the case, then P (t) is said to be a characteristic polynomial of A and its
roots are called characteristic roots of A. We shall see that in order to determine principal
spaces and eigenspaces of an algebraic operator it is enough to determine its characteristic
polynomial and characteristic roots. In the most of cases it is enough to consider instead
of an arbitrary algebraically closed field F the field C of complexes.

Lemma 5.1. Hermite formula for interpolation with multiple knots.∗) There
exists a unique polynomial Q(t) of degree N −1 which together with its derivatives admits
given values yki at different points ti (i = 1, ..., n; k = 0, ..., ri − 1; r1 + ... + rn = N).
More precisely,

Q(k)(ti) = yki, where Q(k) =
dkQ

dtk
, Q(0) = Q,

(i = 1, ..., n; k = 0, ..., ri − 1; r1 + ... + rn = N).

∗) For the proof in the case when F = C cf. Ch. Hermite H[1].
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The polynomial Q(t) is of the form

(5.3) Q(t) =
n∑

i=1

P (t)
(t− ti)ri

ri−1∑
k=0

{
(t− ti)r1

P (t)

}
(ri−1−k; ti)

(t− ti)k

k!
,

where we write ∗)

(5.4) P (t) =
n∏

m=1

(t− tm)rm ,
{
f(t)

}
(k;s)

=
k∑

m=0

(t− s)m

m!
·
[
dmf(t)

dtm

]
t=s

for any function f k-times differentiable in a neighbourhood of the point s.

Proof. This proof can be omitted in the first reading. Consider a polynomial Q̃(t) of
degree N − 1 which is of the form

Q̃(t) = P (t)
n∑

i=1

ri−1∑
j=0

ai,j

(t− ti)ri−j
,

where the scalar coefficients are not yet determined. If we let

Fi(t) =
P (t)

(t− ti)ri
(i = 1, ..., n),

then
Q̃(t)
Fi(t)

=
Q̃(t)
P (t)

(t− ti)ri =
ri−1∑
j=0

ai,j(t− ti)j + (t− ti)riRi(t),

where the function Ri(t) is regular at the point ti (i = 1, ..., n). If we decompose the
rational function Q̃(t)/P (t) into vulgar fractions, then we can calculate scalar coefficients

ai,0 =
[
Q̃(t)
P (t)

]
t=ti

,

...........................................................................

ai,j =
1
j!

[
d

dtj
Q̃(t)
Fi(t)

]
t=ti

=
1
j!

j∑
k=0

(
j

k

)
Q̃(k)(ti)

[
1

Fi(t)

](j−k)

t=ti

+

=
1
j!

j∑
k=0

(
j

k

)
yki

[
1

Fi(t)

](j−k)

t=ti

,

where we let Q̃(k)(ti) = ykj = Q(k)(ti), (i = 1, ..., n; k = 0, ..., ri − 1). Hence

Q̃(t) = P (t)
n∑

i=1

ri−1∑
j=0

ai,j

(t− ti)ri−j
=

n∑
i=1

ri−1∑
j=0

P (t)
(t = ti)ri

(t− ti)jai,j =

∗) Roots ti of the polynomial Q(t) are called its knots.
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=
n∑

i=1

ri−1∑
j=0

P (t)
(t− ti)ri

(t− ti)j 1
j!

j∑
k=0

(
j

k

)
yki

[
1

Fi(t)

](j−k)

t=ti

=

=
n∑

i=1

P (t)
(t− ti)ri

ri−1∑
j=0

j∑
k=0

ak,i
(t− ti)j−k

(j − k)!

[
1

Fi(t)

](j−k)

t=ti

(t− ti)k

k!
=

=
n∑

i=1

P (t)
(t− ti)ri

ri−1∑
k=0

yki

( ri−1∑
j=k

(t− ti)j−k

(j − k)!

[
1

Fi(t)

](j−k)

t=ti

)
(t− ti)k

k!
=

=
n∑

i=1

P (t)
(t− ti)ri

ri−1∑
k=0

yki

( ri−1∑
m=0

(t− ti)m

m!

[
1

Fi(t)

](m)

t=ti

)
(t− ti)k

k!
=

=
n∑

i=1

P (t)
(t− ti)ri

ri−1∑
k=0

yki

{
1

Fi(t)

}
(ri−1−k; ti)

(t− ti)k

k!
=

=
n∑

i=1

P (t)
(t− ti)ri

ri−1∑
k=0

yki

{
(t− ti)ri

P (t)

}
(ri−1−k; ti)

(t− ti)k

k!
= Q(t),

where the polynomial Q(t) is defined by Formula (5.3). We therefore conclude that Q(t)
is the unique polynomial satisfying the required conditions. �

If ti are single knots, i.e. if ri = 1 for i = 1, ..., n), then the Hermite interpolation formula
(5.4) implies the Lagrange interpolation formula

(5.5) Q(t) =
n∑

i=1

n∏
m=1
m 6=i

t− tm
ti − tm

.

Indeed, if ri = 1 for i = 1, ..., n then{
(t− ti)ri

P (t)

}
=

{
t− ti
P (t)

}
(0,ti)

=
t− ti
P (t)

|t=ti =
n∏

m=1
m 6=i

(t− tm)−1

∣∣∣∣
t=ti

=
n∏

m=1
m 6=i

(ti − tm)−1.

Writing yi = y0i for i = 1, ..., n in Formula (5.4), we obtain Formula (5.5).

Lemma 5.2. (Partition of unity). Write

(5.6) pi(t) = qi(t)
n∏

m=1
m 6=i

(t− tm)rm ,

where

qi(t) =
{

(t− ti)ri

P (t)

}
(ri−1;ti)

(i = 1, ..., n).
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Then

(5.7)
n∑

i=1

pi(t) ≡ 1

and this representation is unique for fixed ti and ri.

Proof. Let Q(t) ≡ 1. Then q(0)(ti) = 1 and Q(k)(ti) = 0 for k ≥ 1, i = 1, ..., n. The
Hermite interpolation formula (5.4) implies that

1 =
n∑

i=1

[ n∏
m=1
m 6=i

(t− tm)rm

]{
(t− ti)ri

P (t)

}
(ri−1;ti)

=
n∑

i=1

pi(t).

�

In the case of single roots, by the Lagrange interpolation formula (5.5), we get instead of
Formula (5.7) the following formula for the partition of unity:

(5.8)
n∑

i=1

n∏
m=1
m 6=i

t− tm
ti − tm

≡ 1.

Theorem 5.1. Let A ∈ L0(X). Then the following conditions are equivalent:

(i) the operator A is algebraic on X with the characteristic polynomial

P (t) =
n∏

j=1

(t− tj)rj , tj 6= tk if j 6= k

with the order N = r1 + ... + rn;

(ii) there exist n disjoint projectors P1, ..., Pn ∈ L0(X) giving the partition of unity, i.e.
such that

Xj = PjX, Pj = pj(A),

PjPk =
{

Pk for j = k,
0 for j 6= k,

,
N∑

j=1

Pj = I and (A− tjI)rj Pj = 0 (j, k = 1, ..., n),

where polynomials pj(t) are defined by Formulae (5.6);

(iii) X is the direct sum of principal spaces of the operator A corresponding to the
eigenvalues t1, ..., tn:

X = X1 ⊕ ...⊕Xn, where (A− tjI)rj xj = 0 for xj ∈ Xj ,

i.e. Xj = ker (A− tjI)rj (j = 1, ..., n).
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Proof. We will prove the implications (i) → (ii) → (iii) → (i).

Proof of the implication (i) → (ii). Admit Pj = pj(A) (j = 1, ..., n), where the polynomials
pj(t) are defined by Formula (5.6). By Lemma 5.2 on the partition of unity, it follows that

n∑
j=1

Pj =
n∑

j=1

pj(A) = I.

Since all polynomials with scalar coefficients commute each with another, we conclude that
for j 6= k

PjPk = pj(A)pk(A) = qj(A)qk(A)
[ n∏

m=1
m 6=j

(A− tmI)rm

] [ n∏
i=1
i6=j

(A− tiI)ri

]
=

= qj(A)qk(A)
[ n∏

m=1
m 6=j;m 6=k

(A− tm)rm

]
P (A) = 0.

If j = k we have

Pj = Pj

n∑
k=1

Pk =
n∑

k=1

PjPk = P 2
j (j = 1, ..., n).

Moreover, for a fixed number m (m = 1, ..., n) we get

(A− tmI)rmPm = (A− tmI)rmpm(A) =

= (A− tmI)rmqm(A)
n∏

k=1
k 6=m

(A− tkI)rk = qm(A)P (A) = 0.

Hence the operators P1, ..., Pn have all required properties.

Proof of the implication (ii) → (iii). By our assumptions, there are n operators P1, .., Pn ∈
L0(X) such that

n∑
j=1

Pj = I, PjPk = 0 for j 6= k, P 2
j = Pj

and (A− tjI)rj Pj = 0 for j = 1, ..., n.

Hence the operators P1, ..., Pn are disjoint projectors such that their sum is the identity
operator I, i.e. the space X is a direct sum of n spaces X1, ..., Xn defined by means of
the equalities Xj = PjX for j = 1, ..., n. But the equalities (A − tjI)rj Pj = 0 imply that
(A − tjI)rj x = 0 for x ∈ Xj = PjX. Hence each of spaces Xj is a principal space of the
operator A corresponding to the root tj , i.e. Xj = ker (A− tjI)rj .
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Proof of the implication (iii) → (i). Suppose that X is a direct sum of principal spaces
Xj = ker (A− tjI)rj . Write

P (A) =
n∏

m=1

(A− tmI)rm .

Let x be an arbitrary element of the space X. By our assumptions,

x =
n∑

j=1

xj , where xj ∈ Xj

for every x ∈ X. Hence

P (A)x = P (A)
n∑

j=1

xj =
n∑

j=1

P (A)xj =
n∑

j=1

[ n∏
m=1
m 6=j

(A− tmI)rm

]
(A− tjI)rj xj = 0

for every x ∈ X. Then P (A) = 0 on the space X, which implies that A is an algebraic
operator of the order N = r1 + ... + rn. �

If r1 = ... = rn = 1, i.e. if the characteristic roots are single, then N = r1 + ... + rn = n.
This, and Theorem 5.1, together immediately imply

Corollary 5.1. Let A ∈ L0(X). Then the following conditions are equivalent:

(i) A is an algebraic operator of the order n with the characteristic polynomial

P (t) =
n∏

j=1

(t− tj) (tj 6= tk for j 6= k);

(ii) there exists n projectors Pj ∈ L0(X) such that

PjPk =
{

Pk for j = k,
0 for j 6= k,

,
n∑

j=1

Pj = I APj = tjPj (j = 1, ..., n),

namely,

Pj(t) =
n∏

k=1
k 6=j

t− tk
tj − tk

(j = 1, ..., n);

(iii) the space X is a direct sum of n eigenspaces of the operator A corresponding to its
eigenvalues t1, ..., tn, respectively, i.e.

X = X1 ⊕ ...⊕Xn, where Xj = PjX = ker (A− tjI).
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Corollary 5.2. If A ∈ L0(X) is an algebraic operator with the characteristic polyno-
mial P (t), then its conjugate operator A′ is also an algebraic operator with the same
characteristic polynomial.

Proof. Indeed, if

P (t) =
n∑

k=1

pkAk = 0

then

P (A′) =
n∑

k=1

pk(A′)k =
[ n∑

k=1

pkAk

]′
= [P (t)]′ = 0.

�

Corollary 5.3. (Cayley-Hamilton Theorem). If dim X < +∞ then every operator
A ∈ L0(X) is an algebraic operator such that its characteristic polynomial is a divisor of
the polynomial Q(λ) = det (A− λI).

Proof. Property 5.1 and Point (iii) of Theorem 5.1 immediately imply that to every
operator A ∈ L0(X) there corresponds a square matrix A = [ajk]j,k=1,...,dim X . �

Note that in the case when dim X < +∞ and A ∈ L0(X) the characteristic polynomial of
the algebraic operator A is said to be the minimal polynomial of the matrix A. Hence, by
definition, a minimal polynomial of a matrix is a divisor of its characteristic polynomial.

Suppose that dim X < +∞ and A ∈ L0(X) is an algebraic operator with the characteristic
polynomial

P (t) =
n∏

m=1

(t− tm)rm .

We define a Jordan matrix corresponding to a characteristic root tm as a square matrix of
dimension k ≤ rm of the form

(5.9) Jm,k =



(tm) if rm = 1;
tm 1 0 ... 0 0
0 tm 1 ... 0 0
... ... ... ... ... ...
0 0 ... ... tm 1
0 0 ... ... ... tm

 if rm ≥ 2.

where k = 1, ..., rm; m = 1, ..., n.

For a given a system of square matrices A1, ..., AM of dimensions n1, ..., nM , respectively,
denote a square matrix

(5.9′) [[Ai]]i=1,...,M =

 A1 ... 0
... ... ...
0 ... AM

 .
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of dimension n1 + ... + nm.

Theorem 5.2. (Jordan Theorem). Let dim X < +∞. Let be given a square matrix
A = [ajk]j,k=1,...,dim X with the characteristic polynomial

P (t) =
n∏

m=1

(t− tm)rm .

Then by an appropriate change of the basis in the space X the matrix A can be represented
in the form

A = [[Jm,km ]] m=1,...,n;
km=1,...,rm

,

where Jm,km are Jordan matrices corresponding to the characteristic root tm; some of them
may appear several times, while some may not appear.

Proof. By the Cayley-Hamilton theorem (Corollary 5.3), A is an algebraic operator acting
in a finite dimensional space X. By Theorem 5.1, the space X is a direct sum of spaces
Xm = ker (A− tmI)rm (m = 1, ..., n). Hence it is enough to prove that, by an appropriate
change of the basis in a fixed space Xm, we obtain a representation of the matrix A by
Jordan matrices Jm,km .

First, we shall consider the case when dim Xm = rm. If rm = 1 then for all x 6= 0 such
that Xm = ker (A − tmI) we have Ax = tmx. Hence A = tmI = Jm,1 on the space Xm.
Consider now the case rm ≥ 2. Write B = A − tmI. By definition, Brm = (A − tmI)rm

= 0 on the space Xm. But Brm−1 6= 0 (i.e. B is a nilpotent operator of the order rm; cf.
Exercise 2.13). Then there is an element x0 6= 0 such that x0 ∈ Xm and y = Brm−1x0 6= 0.
It is easy to verify that all elements x0, Bx0, ..., B

rm−1x0 are linearly independent. Hence
the system Bm = {Brm−1x0, ..., Bx0, x0} is a basis in the space Xm. Let x ∈ Xm be
arbitrary. Then x can be represented in a unique way (with respect to the basis Bm) in
the form

x =
rm−1∑
j=0

bjB
rm−1−jx0, where bj ∈ C.

Since Brm = 0, we conclude that

Bx =
rm−1∑
j=0

bjB
rm−1−j+1x0 =

rm−1∑
j=0

bjB
rm−jx0 =

rm−1∑
j=1

bjB
rm−jx0.

Then, acting by the operator B on the vector (b1, ..., bn) written with respect to the basis
Bm, we obtain the vector (b1, ..., brm−1, 0) in the same basis. On the other hand.,

0 1 0 ... 0 0
0 0 1 ... 0 0
... ... ... ... ... ...
0 0 ... ... 0 1
0 0 ... ... ... 0




b0

b1
...

brm−1

 =


b1

b2
...
0

 .
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Hence to the operator B in the basis Bm there corresponds the matrix
0 1 0 ... 0 0
0 0 1 ... 0 0
... ... ... ... ... ...
0 0 ... ... 0 1
0 0 ... ... ... 0

 .

This implies that to the operator A = B + tmI in the basis Bm there correspond the
expression 

0 1 0 ... 0 0
0 0 1 ... 0 0
... ... ... ... ... ...
0 0 ... ... 0 1
0 0 ... ... ... 0

 + tm


1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1

 =

=


tm 1 0 ... 0 0
0 tm 1 ... 0 0
... ... ... ... ... ...
0 0 ... ... tm 1
0 0 ... ... ... tm

 = Jm,km
,

which we wanted to prove.

Suppose now that rm < dim Xm < +∞. Observe that

ker B ⊃ ... ⊃ ker Brm = Xm.

Moreover, the operator B maps ker Bk into ker Bk−1 for k = 2, ..., rm. By our assumption
that rm < dim Xm, there are elements x1, ..., xM ∈ Xm such that xj 6= 0, Bxj = 0 for
j = 1, ...,M and the system {x1, ..., xM} is a basis in the space ker Brm−1 (in the previous
step of that proof we have admitted M = 1). As before, we can show that all elements

x1, ..., xM , ..., Brmx1, ..., B
rmxM

are linearly independent. In order to do so, consider the system

B(M)
m = {Brm−1x1, ..., B

rm−1xM , ..., x1, ..., xM}.

If dim Xm = Mrm then the system B(M)
m is a basis in the space Xm. In this case, as in the

first step of our proof, we prove that the matrix A can be represented in the basis B(M)
m

by M Jordan matrices corresponding to the root tm, each of them of dimension rm, i.e.

A =

 A1 ... 0
... ... ...
0 ... AM

 where A1 = ... = AM = Jm,rm .
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Consider the last case: the system B(M)
m is not a basis in the space Xm. Then lin B(M)

m 6=
Xm. Denote by k the greatest positive integer such that there is an element x ∈ Xm which
does not belong to lin B(M)

m . Clearly, k < rm, since for k = rm we obtain the previous
case. Let elements y1, ..., yp ∈ ker Bk be such that the set {y1, ..., yp,B(M)} consists of
linearly independent elements. Consider the set

B(M+1)
m = {Brm−1y1, ..., B

rm−1yp,B(M)
m }.

If this set is a basis in the space Xm, i.e. if dim Xm = (M + 1)rm, then in a similar way,
as before, we show that the matrix X can be represented in the basis B(M+1)

m by M + 1
Jordan matrices. If this is not the case, i.e. if B(M+1)

m is not a basis in the space Xm,
then we repeat the previous arguments. Since the space Xm is finite dimensional, after a
finite number of steps we shall obtain a finite system which is a basis in the space Xm. We
therefore conclude that in the already constructed basis the matrix A can be represented
by Jordan matrices Jm,rm

corresponding to the root tm. This finishes the proof of the
Jordan theorem. �

Property 5.2. Suppose that A ∈ L0(X) is an algebraic operator with the characteristic

polynomial

n∏
m=1

(t− tm)rm and

(5.10) Qk = (A− tkI)Pk (k = 1, ..., n),

where the projectors P1, ..., Pn are defined in Theorem 5.1(ii), i.e. Pj = pj(A) with pj(t)
determined by Formula (5.6) (j = 1, ..., n). Then

(5.11) QjQk = 0 for j 6= k,

(5.12) PkQj = QjPk =
{

0 for j 6= k;
Qj for j = k

(j, k = 1, ..., n),

(5.13) Qm
k = (A− tkI)mPk for k = 1, ..., n; m ∈ N.

In particular,

(5.14) Qrk

k = 0 (k = 1, ..., n).

Proof. By definition of the projectors P1, ..., Pn, we have PjPk = 0 for j 6= k and P 2
j = Pj

(j, k = 1, ..., n). Moreover, the operators A − tkI commute with the operators P1, .., Pn.
Hence for j 6= k we have

QjQk = (A− tjI)Pj(A− tkI)Pk = (A− tjI)(A− tkI)PjPk = 0,

QjPk = (a− tjI)PjPk = 0,
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PkQj = Pk(A− tjI)Pj = (A− tjI)PkPj = 0.

We have also
QjPj = (a− tjI)P 2

j = (A− tjI)Pj = Qj ,

PjQj = Pj(A− tjI)Pj = (A− tjI)P 2
j = (A− tjI)Pj = Qj .

Then Formulae (5.11) and (5.12) are already proved.

We shall prove now Formula (5.13) by induction with respect to m for an arbitrarily fixed
positive integer k = 1, ...,m. For m = 1, Formula (5.13) is true by the definition of the
operator Qk. Suppose that Formula (5.13) holds for an arbitrarily fixed positive integer
m ≥ 1. Then, by our induction assumption,

Qm+1
k = QkQm

k = Qk(A− tkI)mPk = (A− tkI)Pk(A− tkI)mPk =

= (A− tkI)(A− tkI)mP 2
k = (A− tkI)m+1Pk,

i.e. Formula (5.13) holds for m+1. We therefore conclude that Formula (5.13) holds for an
arbitrary positive integer m, what was to be proved. In particular (cf. Theorem 5.1(ii)),

Qm
rk

= Qrk
m = (A− tkI)rkPk = 0.

�

Theorem 5.3. Suppose that A ∈ L0(X) is an algebraic operator with the characteristic

polynomial

n∏
m=1

(t− tm)rm . Then

(5.15) Am =
n∑

j=1

[(m

k

)
tm−j
j (A− tjI)k

]
(m ∈ N).

Proof (by induction). Let m = 1. Since
n∑

j=1

Pj = I, we have

A = A
n∑

j=1

Pj =
n∑

j=0

APj =
n∑

j=1

[tjPj + (A− tjI)Pj ] =
n∑

j=1

[tjI + (A− tjI)]Pj ,

i.e. Formula (5.15) holds for m = 1.

Suppose now that Formula (5.15) is true for an arbitrary positive integer m ≥ 1. Formulae
(5.10) and (5.11) together imply that

Am =
n∑

j=0

[
tmj I +

n∑
k=1

(
m

k

)
tm−k
j (A− tjI)k

]
Pj =
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=
n∑

j=0

[
tmj Pj +

n∑
k=1

(
m

k

)
tm−k(A− tjI)kPj

]
=

n∑
j=0

[
tmj Pj +

n∑
k=1

(
m

k

)
tm−k
j Qk

j

]
.

Since PiPj = 0 for i 6= j and

A = A · I = A

n∑
j=1

Pj =
n∑

j=1

APj ,

by Formulae (5.11) and (5.12), we find

Am+1 = A ·Am =
n∑

i=1

(tiPi + Qi)
n∑

j=1

[
tmj Pj +

n∑
k=1

(
m

k

)
tm−k
j Qk

j k

]
=

=
n∑

i,j=1

[
tit

m
j PiPj + tmj QiPj + tj +

n∑
k=1

(
m

k

)
tm−k
j Qj

k +
n∑

k=1

(
m

k

)
tm−k
j QiQ

k
k

]
=

=
n∑

j=1

[
tm+1
j P 2

j + tmj QjPj +
n∑

k=1

(
m

k

)
tm+1−k
j PjQ

k
j

n∑
k=1

(
m

k

)
tm−k
j Qk+1

j

]
=

=
n∑

j=1

[
tm+1
j Pj + tmj Qj +

n∑
k=1

(
m

k

)
tm+1−k
j Qk

j +
n∑

k=1

(
m

k

)
tm−k
j Qk+1

j

]
=

=
n∑

j=1

[
tm+1
j Pj + tmj Qj +

m−1∑
µ=0

(
m

µ + 1

)
tm−µ
j Qµ+1

j +
m∑

k=1

(
m

k

)
tm−k
j Qk+1

j

]
=

=
n∑

j=1

{
tm+1
j Pj + tmj Qj

(
m

1

)
tmj Qj +

m−1∑
µ=1

[(
m

µ + 1

)
+

(
m

µ

)]
tm−µ
j Qµ+1

j + Qm+1
j

}
=

=
n∑

j=1

[
tm+1
j Pj + (m + 1)tmj Qj +

m−1∑
µ=1

(
m + 1
µ + 1

)
tm−µ
j Qµ+1

j + Qm+1
j

]
=

=
n∑

j=1

[
tm+1
j Pj + (m + 1)tmj Qj +

m−1∑
k=2

(
m + 1

k

)
tm+1−k
j Qk

j + Qm+1
j

]
=

=
n∑

j=1

[
tm+1
k Pj +

m+1∑
k=1

(
m + 1

k

)
tm+1−k
j Qk

j

]
,

i.e. Formula (5.15) holds for m + 1. We therefore conclude that Formula (5.15) holds for
an arbitrary positive integer m, what was to be proved. �

Corollary 5.4. If an operator A satisfies all conditions of Theorem 5.3 then

(5.16) AmPi = tmi Pi +
m∑

k=1

(
m

k

)
tm−k
i (A− tiI)kPi for i = 1, ..., n; m ∈ N.
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Proof. Since PiPj = 0 for i 6= j (i, j = 1, ..., n), Formula (5.15) implies that

AmPi =
n∑

j=1

[
tmj I +

n∑
k=1

(
m

k

)
tm−k
j (A− tjI)k

]
PjPi =

=
[
tmi +

m∑
k=1

(
m

k

)
tm−k
j (A− tiI)k

]
Pi = tmi Pi +

n∑
k=1

(
m

k

)
tm−k
i (A− tiI)kPi.

�

Corollary 5.5. If A ∈ L0(X) is an algebraic operator with single characteristic roots, i.e.

its characteristic polynomial is of the form

n∏
j=1

(t− tj), then

(5.17) Am =
n∑

j=1

tmj Pj (m ∈ N),

(5.18) AmPi = tmj Pi (i = 1, ...,m; m ∈ N)

Moreover, for an arbitrary polynomial Q(t) with coefficients in F we have

(5.19) Q(A) =
n∑

j=0

Q(tj)Pj .

Proof. If all characteristic roots of the operator A under consideration are single then, by
Corollary 5.1, we find APj = tjPj (j = 1, ..., n). Hence (A− tjI)Pj = 0 (j = 1, ..., n). This
implies that all components of the form (A− tjI)kPj (j = 1, ..., n; k ∈ N in Formula (5.15)
vanish. We therefore obtain Formula (5.17). This, and Corollary 5.4 together immediately
imply Formula (5.15). Suppose now that we are given a polynomial

Q(t) =
M∑

k=0

qktk, where q0, ..., qM ∈ F.

Formula(5.18) implies that

Q(A) =
M∑

k=0

qkAk =
M∑

k=0

qk

n∑
j=0

tkj Pj =
M∑

k=0

[ n∑
j=0

qktkj

]
Pj =

n∑
j=1

Q(tj)Pj .

�
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Theorem 5.4. If A ∈ L0(X) is an algebraic operator with the characteristic polynomial

P (t) =

n∏
j=1

(t− tj)rj then for every λ 6= t1, ..., tn the operator A− λI is invertible and

(5.20) (A− λI)−1 =
n∑

j=1

[
1

tj − λ
I +

rj−1∑
m=1

(−1)m+1

(tj − λ)m+1
(A− tjI)m

]
Pj .

Proof. Write for λ 6= t1, ..., tn

(5.21) B =
n∑

j=1

[
1

tj − λ
Pj +

rj−1∑
m=1

(−1)m+1

(tj − λ)m+1
(A− tjI)mPj

]
=

=
n∑

j=1

1
tj − λ

[
Pj +

rj−1∑
m=1

(−1)m+1

(tj − λ)m
Qm

j

]
.

Theorem 5.3 and Property 5.2 together imply that

(A− λI)B =
n∑

i=1

[
(ti − λ)Pi + Qi

] n∑
j=1

1
tj − λ

[
Pj +

rj−1∑
m=1

(−1)m+1

(tj − λ)m
Qm

j

]
=

=
n∑

i,j=1

{
(ti − λ)

1
tj − λ

[
PiPj +

rj−1∑
m=1

(−1)m+1

(tj − λ)m
PiQ

m
j

]
+

+
1

tj − λ

[
QiPj +

rj−1∑
m=1

(−1)m+1

(tj − λ)m
QiQ

m
j

]}
=

=
n∑

j=1

{
(ti − λ)

1
tj − λ

[
P 2

j +
rj−1∑
m=1

(−1)m+1

(tj − λ)m
PjQ

m
j

]
+

+
1

tj − λ

[
QjPj +

rj−1∑
m=1

(−1)m+1

(tj − λ)m
Qm+1

j

]}
=

=
n∑

j=1

[
Pj +

rj−1∑
m=1

(−1)m+1

(tj − λ)m
Qm

j +
1

tj − λ
Qj +

rj−1∑
m=1

(−1)m+1

(tj − λ)m+1
Qm+1

j

]
=

=
n∑

j=1

[
Pj +

rj−1∑
m=1

(−1)m+1

(tj − λ)m
Qm

j +
1

tj − λ
Qj +

rj∑
k=2

(−1)k

(tj − λ)k
Qk

j

]
=

=
n∑

j=1

Pj +
n∑

j=1

[
−

rj∑
k=1

(−1)k

(tj − λ)k
Qk

j +
rj∑

k=1

(−1)k

(tj − λ)k
Qk

j

]
=
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= I +
n∑

j=1

(−1)rj

(tj − λ)rj
Q

rj

j = I

because Q
rj

j = 0 for j = 1, ..., n (cf. Formula(5.14)). In similar way we prove that
B(A − λI) = I for λ 6= t1, ..., tn. We therefore conclude that the operator A − λI is
invertible for λ 6= t1, ..., tn and that (A − λI)−1 = B, where the operator B is defined by
Formula (5.21). �

Theorem 5.5. Suppose that A ∈ L0(X) is an algebraic operator with the characteristic

polynomial P (t) =
n∏

j=1

(t− tj)rj . Decompose the rational function 1/P (t) onto vulgar

fractions:

(5.22)
1

P (t)
=

n∑
j=1

rj−1∑
k=0

djk

k!
1

(t− tj)rj−k
,

where

(5.23) djk =
{

dk

dk
[pj(t)]−1

}
t=tj

; pj(t) = (t− tj)−rj P (t)

(j = 1, ..., n; k = 0, ..., rj − 1).

Write

(5.24) p′j(t(= pj(t)
rj−1∑
k=0

djk

k!
(t− tj)k (j = 1, ..., n).

Then

(5.25) Pj = p′j(A) (j = 1, ..., n),

where P1, ..., Pn are projectors defined in Theorem 5.1.

Proof. The definition of the polynomials p′j(t) and Formulae (5.22) together imply that

n∑
j=1

p′j(t) =
n∑

j=1

pj(t)
rj−1∑
k=0

djk

k!
(t− tj)k =

=
n∑

j=1

(t− tj)−rj P (t)
rj−1∑
k=0

djk

k!
(t− tj)k =

= P (t)
rj−1∑
k=0

djk

k!
1

(t− tj)rj−k
= P (t)

1
P (t)

= 1.
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Hence

(5.26)
n∑

j=1

p′j(A) = I.

Moreover,

p′j(t)p
′
m(t) = (t− tj)−rj P (t)(t− tm)−rmP (t) =

[ n∏
µ=1

µ6=j, µ6=m

(t− tµ)rµ

]
P (t).

Then for m 6= j we find

p′j(A)p′m(A) =
[ rj−1∑

k=0

djk

k!
(A−tjI)k

][ rj−1∑
m=0

dmµ

µ!
(A−tmI)µ

][ n∏
µ=1

µ6=j, µ6=m

(A−tµ)rµ

]
P (A) = 0.

This, and Formula (5.26) together imply that for m = 1, ..., n we get

p′m(A) = p′m(A)
n∑

j=1

p′j(A) =
n∑

j=1

p′mp′j(A) = [p′m(A)]2.

Since

(t− tj)rjpj(t) = (t− tj)rj pj(t)
rj−1∑
k=0

djk

k!
(t− tj)k =

= (t− tj)rj (t− tj)−rj P (t)
rj−1∑
k=0

djk

k!
(t− tj)k =

= P (t)
rj−1∑
k=0

djk

k!
(t− tj)k,

we have for j = 1, ..., n

(A− tjI)rjp′j(A) = P (A)
rj−1∑
k=0

djk

k!
(A− tjI)k = 0.

We therefore have proved that the operators p′j(A) have the following properties:

n∑
j=1

p′j(A) = I, [p′j(A)]2 = p′j(A), (j, m = 1, 2, ...,m)

p′j(A)p′m(A) = 0 for j 6= 0, (A− tjI)rjp′j(A) = 0.
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This, and Theorem 5.1 together imply that Pj = p′j(A), where Pj = p(A) (j = 1, ..., n)
and the polynomials pj(t) are defined by Formulae (5.6). �

Note that Theorems 5.3, 5.4 and Property 5.2 for multiple characteristic roots of an alge-
braic operator, also Theorem 5.5, have been proved by M. Tasche (cf. T[1]) in Banach
space by means of analytic methods. Other properties of algebraic operators, their appli-
cations and references can be found in the author’s books (cf. PR[3], PR[4]), also in the
monograph of the author and S. Rolewicz (cf. PRR[1]) and the recent book of Nguyen
Van Mao (cf. N[1]).

Let X be a pre-Hilbert space with an inner product 〈x, y〉. An operator A′ is said to be an
adjoint operator for an operator A ∈ L0(X) in the sense of that inner product if it satisfies
the identity

(5.27) 〈Ax, y〉 = 〈x,A′y〉 for all x, y ∈ X.

The operator A′ is antilinear, i.e. A′(λx) = λ(Ax) for all scalars λ and x ∈ X (cf.Exercise
4.12). It means that in a real space X both notions, a conjugate operator in the sense
of functionals (Formula (2.19)) and an adjoint operator in a sense of an inner product
(Formula (5.27)), are identical.

An operator A ∈ L0(X) is said to be self-adjoint if A′ = A. In the Euclidean space En

to a self-adjoint linear operator A there corresponds a symmetric matrix, i.e. a matrix A
such that AT = A. (cf. Exercise 2.8).

Again, assume that X is a pre-Hilbert space with an inner product 〈x, y〉. Then an operator
A ∈ L0(X) is said to be unitary if it is invertible and

(5.28) A′A = AA′ = I.

In other words: an operator A ∈ L0(X) is unitary if it is invertible and

(5.29) A′ = A−1.

If X is an n-dimensional linear space over the field R (over the field C, respectively) and
for an A ∈ L0(X) the matrix A is non-singular then this matrix is said to be orthogonal
(otherwise: unitary) if

(5.30) AT = A−1 A
T

= A−1, respectively,

where A = [aj,k]j,k=1,...,n, A = [aj,k]j,k=1,...,n.

Consequently, in the Euclidean space En (in the space Cn, respectively) to a unitary
operator there corresponds an orthogonal (unitary) matrix.

Theorem 5.6. Suppose that X is a pre-Hilbert space and an operator A ∈ L0(X) is
unitary. Then for all x, y ∈ X
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(i) 〈Ax,Ay〉 = 〈x, y〉;

(ii) if x ⊥ y then Ax ⊥ Ay;

(iii) ‖Ax‖ = ‖x‖;

(iv) if λ is an eigenvalue of A then |λ| = 1.

Proof. Let x, y be arbitrary elements of the space X. Formulae (5.27) and (5.28) together
imply that

〈Ax,Ay〉 = 〈x,A′Ay〉 = 〈x, y〉.

If x ⊥ y then 〈x, y〉 = 0. This implies that 〈Ax,Ay〉 = 〈x, y〉 = 0, i.e. Ax ⊥ Ay. By Point
(i) of this theorem,

‖Ax‖2 = 〈Ax,Ay〉 = 〈x, y〉 = ‖x‖2.

If λ is an eigenvalue of the operator A and x is an eigenvector corresponding to this
eigenvalue then, by definition, x 6= 0 and Ax = λx. This, and Point (iii) together imply
that

‖x‖2 = ‖Ax‖2 = 〈Ax,Ax〉 = 〈λx, λx〉 = λλ〈x, x〉 = |λ|2‖x‖2.

Hence |λ| = 1. �

Corollary 5.6. If A is a unitary matrix in the space Cn with the inner product ∗)

〈x, y〉 =
n∑

j=1

xjyj ,

then Points (i), (ii), (iii), (iv) of Theorem 5.6 hold for arbitrary x, y ∈ Cn with that

‖x‖2 = |x|2 =
n∑

j=1

x2
j for x = (x1, ..., xn), y = (y1, ..., yn) ∈ Cn.

Moreover,

(v) |det A| = 1;

(vi) if aj = (aj1, ..., ajn), ak = (a1k, ..., ank) (j, k = 1, ..., n) denote columns and rows of
the matrix A, respectively, then

〈ai, aj〉 = δij , 〈ai, ak〉 = δik,

where aj = (aj1, ..., ajn), ak = (a1k, ..., ank) (j, k = 1, ..., n).

Proof. (v) By our assumption A, is a unitary matrix, hence it corresponds to a unitary
operator in the space Cn. This immediately implies the conclusions of Theorem 5.6,

∗) cf. Exercise 4.12.
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Points (i), (ii), (iii), (iv). Moreover, Formula (5.30) and the Cauchy Theorem (Theorem
3.2) together imply that

|det A|2 = (det A)(det A) = (det A)(det A) =

= (det A)[det (A−1)T ] = (det A)(det A−1) = det (AA−1) = det I = 1.

(vi) Suppose now that ai and aj are columns of the matrix A (i, j = 1, ..., n). By our
assumption, AAT = I. Hence entries of the matrix AAT are of the form

cji =
n∑

k=1

ajkaik =
{

1 for i = j;
0 for i 6= j

(i, j = 1, ..., n)

for AT = [aj,k]Tj,k=1,...,n = [aik]k,i=1,...,n. Then

〈ai, aj〉 =
n∑

k=1

ajkaik = cji = δij (i, j = 1, ..., n).

A similar proof holds for rows of the matrix A. �

Corollary 5.7. If A is an orthogonal matrix in the Euclidean space En with an inner
product

〈x, y〉 =
n∑

j=1

xjyj for x = (x1, ..., xn), y = (y1, ..., yn) ∈ En

then Points (i), (ii), (iii) of Theorem 5.6 are satisfied for arbitrary x, y ∈ En. Moreover,

(iv’) if λ is an eigenvalue of the matrix A then either λ = 1 or λ = −1;

(v’) either det A = 1 or det A = −1;

(vi’) if aj = (aj1, ..., ajn), ak = (a1k, ..., ank) (j, k = 1, ..., n) are columns and rows of the
matrix A, respectively, then

(5.30) 〈ai, aj〉 = δij , 〈ai, ak〉 = δik (i, j, k = 1, ..., n),

i.e. two different columns (two different rows) of an orthogonal matrix are orthogonal each
to other.

Proof. In order to prove Point (iv’), it is enough to observe that now λ ∈ R. Then λ = λ
and λλ = λ2. Hence the equality λ2 = 1 implies that λ = ±1.

In order to prove Point (v’), observe that every orthogonal matrix satisfies the first condi-
tion of (5.30) and that det A = det A. Hence

|det A|2 = (det A)(det A) = (det A)(det AT ) = det (AAT ) = det I = 1.

This implies that det A = ±1.
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In order to prove Point (vi’), it is enough to observe that now aj = aj , ak = ak (j, k =
1, ..., n). �

Corollary 5.8. If a matrix A ∈ L0(Cn) is symmetric (i.e. AT = A) then all its eigenvalues
are real.

Proof. Indeed, if x 6= 0 is an eigenvector of the matrix A corresponding to an eigenvalue λ,
y 6= 0 is an eigenvector of the matrix AT corresponding to an eigenvalue µ and 〈x, y〉 6= 0,
then

〈AT y, x〉 = 〈µy, x〉 = µ〈y, x〉 = µ〈x, y〉 and

〈AT y, x〉 = 〈x,AT y〉 = 〈Ax, y〉 = 〈λx, y〉 = λ 〈x, y〉.

This implies that µ = λ. But AT = A, hence eigenvalues and eigenvectors of these matrices
are the same. Then, admitting y = x, µ = λ, we get λ = µ = λ, i.e. λ ∈ R. �

Corollary 5.9. If the matrix A ∈ L0(En) is symmetric then all its eigenvalues are real
(in the extension of En in Cn).

Proof. We proceed as in the proof of Corollary 5.8, so that the following equalities are
obtained:

〈AT y, x〉 = 〈µy, x〉 = µ〈x, y〉,

〈AT x, y〉 = 〈x,AT y〉 = 〈Ax, y〉 = 〈λx, y〉 = λ〈x, y〉.

Hence µ = λ. �

Corollary 5.10. If the matrix A ∈ L0(En) is symmetric and x, y are eigenvectors of A
corresponding to its eigenvalues λ, µ respectively, with µ 6= λ, then 〈x, y〉 = 0.

Proof. By our assumptions, Ax = λz, Ay = µy and AT = A, λ− µ 6= 0. This implies that

〈x, y〉 =
1

λ− µ
(λ− µ)〈x, y〉 =

1
λ− µ

[
λ〈x, y〉 − µ〈x, y〉

]
=

=
1

λ− µ

[
〈λx, y〉 − 〈x, µy〉

]
=

1
λ− µ

[
〈Ax, y〉 − 〈x,AT y〉

]
=

=
1

λ− µ

[
〈Ax, y〉 − 〈Ax, y〉

]
= 0.

�

Examples and Exercises.

Example 5.1. Every finite dimensional operator A ∈ L0(X), where dim X = +∞, is an
algebraic operator.

Indeed, by definition, the space Y = AX is finite dimensional. Denote by A0 a matrix
corresponding to the restriction of the operator A to the space Y = AX ⊂ X. Then,
by the Cayley-Hamilton theorem (Corollary 5.3), the operator A0 corresponding to that
matrix is algebraic and its characteristic polynomial P (λ) is a divisor of the polynomial
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det (A0−λI). Hence the characteristic polynomial of the operator A is of the form λP (λ)
for AP (A)X = P (A)AX = P (A0)Y = 0.

Observe that λ = 0 is a characteristic root of the operator A. This operator is not
invertible, because the equation Ax = 0 has a non-trivial solution of the form x = P (A)y,
where y ∈ X \AX 6= {0}. �

Example 5.2. An operator A ∈ L0(X) is said to be an involution of order n if An = I
and 0 6= Ak 6= I for k = 1, ..., n − 1 (n ∈ N). If n = 2 then A is said to be an involution.
By definition, every involution of order n is an algebraic operator with the characteristic
polynomial P (t) = tn − 1 and with characteristic roots 1, ε, ..., εn−1, where ε = e2πi/n =
cos 2π

n + i sin 2πi
n . �

Exercise 5.1. Suppose that A ∈ L0(X) is an involution of order n. Prove that projectors
Pk defined in Theorem 5.1 are of the form

(5.32) Pk =
1
n

n∑
j=1

ε−jkAj , where ε = e2πi/n (k = 1, ..., n).

If dim X < +∞ then determine Jordan matrices of the matrix A. In particular, show that
for an involution we have

P1 =
1
2
(I −A), P2 =

1
2
(I + A)

(cf. PR[1], PRR[1]). �

Example 5.3. Let X be a linear space of functions determined for t ∈ R. The reflection
S of a function x ∈ X is defined by means of the equality: (Sx)(t) = x(−t) for t ∈ R.
By definition, S2 = I, i.e. S is an involution. By Theorem 5.1, X = X+ ⊕ X−, where
X+ is the space of all even functions, i.e. functions x ∈ X which satisfy the condition
x(−t) = x(t), and X− is the space of all odd functions , i.e. functions x ∈ X which satisfy
the condition x(−t) = −x(t). Then every function x ∈ X can be written in a unique way
as the sum of an even function and an odd function. Namely, x = x+ + x−, where

x+(t) =
1
2
[x(t) + x(−t)], x−(t) =

1
2
[x(t)− x(−t)] (t ∈ R).

�

Exercise 5.2. Let X be the space of all square matrices of dimension n with real entries.
Prove that

(i) the transposition of matrices is an involution;

(ii) every matrix can be written in a unique way as the sum of a symmetric and an-
tisymmetric matrix (cf. Exercise 2.8). Recall that a square matrix A = [ajk]j.k=1,...,n is
symmetric if AT = A, i.e. akj = ajk (j, k = 1, ..., n), and antisymmetric if AT = −A, i.e.
akj = −ajk (j, k = 1, ..., n). �
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Exercise 5.3. Let X be either real or complex linear space of functions determined on
the plane of a complex variable. Let S ∈ L0(X) be the operator of a rotation through the
angle 2π/N , where N is a positive integer greater than 1, i.e. (Sx)(t) = x(e

2πi
N t) for t ∈ C,

x ∈ X. Prove that S is an involution of order N and determine components given by the
decomposition of X onto the direct sum determined in Theorem 5.1. �

Exercise 5.4. Let Xω be a linear space of all periodic functions with the period ω
determined for t ∈ R. Prove that the shift operator defined by means of the equality:
(Sx)(t) = x(t− ω

N ), where N is an arbitrarily fixed positive integer greater than one, is an
involution of order N . Determine components given by the decomposition of X onto the
direct sum determined in Theorem 5.1. �

Exercise 5.5. Suppose that X is an arbitrary linear space over the field C, operators
A,B ∈ L0(X) and A is an algebraic operator. Prove that a complex number λ 6= 0 such
that AB −BA = λI does not exist (cf. PRR[1], p. 71).

Corollary. Square matrices A and B (of the same dimension) such that AB − BA = λI
for λ ∈ C \ {0} do not exist. �

Exercise 5.6. Consider linear spaces Fn[t] of all polynomials of order n with coefficients

in F (n ∈ N) (cf. Example 1.5). For an arbitrary polynomial p(t) =
n∑

k=0

pktk, where

pk ∈ F, define an operator D by means of the equality

(Dp)(t) =
n∑

k=1

kpktk−1.

Prove that D is a nilpotent ∗) operator of order n+1 on the space Fn[t]: Dn+1 = 0, Dn 6= 0,
i.e. D is an algebraic operator with a unique characteristic root zero of multiplicity n + 1.

�

Exercise 5.7. Prove that λ ∈ F is a regular value of the operator An (n ∈ N) if and only
if the nth roots of λ are regular values of the operator A ∈ L0(X). �

Exercise 5.8. Suppose that P ∈ L0(X) is a projector, i.e. P 2 = P .

(i) Determine characteristic roots of the operator P ;

(ii) determine Jordan matrices of P when dim X < +∞. �

Exercise 5.9. Suppose that B ∈ L0(X), where dim X < +∞, is a nilpotent operator of
order n (cf. Exercise 5.6). Prove that

(i) if F = C then BB
T 6= I;

(ii) if F = R then BBT 6= I, i.e. a nilpotent matrix is neither unitary nor orthogonal.

Can a nilpotent matrix be either symmetric or antisymmetric? �

∗) (cf. Exercise 2.13.)
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Exercise 5.10. Prove that orthogonal matrices of dimension n in En form a group. �

Exercise 5.11. Prove that unitary matrices of dimension n form in Cn a group. �

Exercise 5.12. Let A ∈ L0(Cn) be unitary. Prove that the matrix AT is also unitary. �

Exercise 5.13. Let det A 6= 0. Prove that the matrix A−1 (which exists by our assump-
tion) has as eigenvalues the inverses of eigenvalues of the matrix A. �

Exercise 5.14. Let det B 6= 0. Prove that the eigenvalues of the matrix BAB−1 are
equal to the eigenvalues of the matrix A ∈ L0(X). �

Exercise 5.15. Prove that for an arbitrary polynomial Q(t) with coefficients in F the
operator Q(A) has eigenvalues Q(λ), where λ is an arbitrary eigenvalue of A. �

Exercise 5.16. Prove that properties proved in Exercises 5.13, 5.14 and 5.15 are true for
characteristic roots of algebraic operators. �

Exercise 5.17. Formulate and prove Corollary 5.10 for matrices A ∈ L0(Cn). (Hint: A
matrix is said to be Hermitian (otherwise: Hermite matrix) if akj = ajk, i.e. if AT = A,
where A = [ajk]j,k=1,...,n. Hence in En Hermite matrices are symmetric). Prove that to
a selfadjoint operator A ∈ L0(Cn) (i.e. such that A′ = A) there corresponds a Hermite
matrix. �

Exercise 5.18. Prove that

(i) orthogonal operators in En,

(ii) unitary operators in Cn

form a group. �

Exercise 5.18. Prove that rotations in E2 are orthogonal operators. �
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Chapter 6.

Quadratic forms.

Let X be an arbitrary linear space over the field R. A function f(x, y) of variables x, y ∈ X
and with values in the field R is said to be bilinear if f(x, y) with a fixed x is a linear
functional of the variable y and f(x, y) with a fixed y is a linear functional of the variable
x. A bilinear functional f is said to be symmetric if f(y, x) = f(x, y) for all x, y ∈ X.

A symmetric functional with identified variables, i.e. with y = x, is said to be a quadratic
functional. This definition implies that every quadratic functional is of the form f(x, x)
where f(x, y) is a symmetric bilinear functional. In other words: Any quadratic functional
is obtained from a symmetric bilinear functional by the identification of variables x and y.

If dim X < +∞ then traditionally linear functionals are called linear forms, bilinear
functionals are called bilinear forms and quadratic functionals are called quadratic forms.

In this Chapter we shall consider above all Euclidean spaces En. We already have proved
that every linear functional in the space En can be represented in the form f(x) = 〈x, a〉,
where a is a fixed element of the space En (cf. Property 4.4). Hence every linear form in
the Euclidean space En can be represented as follow:

f(x) = 〈x, a〉 =
n∑

j=1

ajxj ,

where a = (a1, ..., an) ∈ En is fixed.

It is not difficult to verify that every bilinear form in the Euclidean space En can be
represented in the following way:

(6.1) fA(x, y) = 〈x,Ay〉 =
n∑

k=1

n∑
j=1

ajkxkyj ,

where A = [ajk]j,k=1,...,n. Hence every quadratic form can be represented in the following
way:

(6.2) fA(x, x) = 〈x,Ax〉 =
n∑

k=1

n∑
j=1

ajkxkxj ,

where A = [ajk]j,k=1,...,n and AT = A, i.e. akj = ajk for j, k = 1, ..., n.
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By the rank of a quadratic form fA we shall mean the rank of the matrix A, i.e. if we
denote by r(fA) the rank of the form fa then

(6.3) r(fA) = r(A).

Let fA be a quadratic form. Then the determinant of the matrix A is called the discriminant
of fA. If we denote the discriminant by ∆(fA) then, by definition,

(6.4) ∆(fA) = det A.

Discriminants of quadratic forms and discriminants of quadratic equations should be distin-
guished. Namely, if we consider a quadratic equation ax2 +bx+c = 0 then its discriminant
is, by definition, the number ∆ = b2 − 4ac. A bilinear form corresponding to a trinomial
ax2 + bx + c is the form fA(x, y) = ax2 + bxy + cy2. Hence

A =
(

a b/2
b/2 c

)
and the discriminant of the form fA is

∆(fA) = det A = ac− b2

4
= −4(b2 − 4ac) = −4∆.

Then the discriminants ∆(fA) and ∆ are equal if and only if b2 − 4ac = 0, i.e. if

fA(x, y) =
(√

a x +
√

c y
)2

.

A quadratic form is positive (negative) definite if

(6.5) fA(x, x) > 0 (fA(x, x) < 0, respectively) for every x 6= 0.

If Condition (6.5) is satisfied then the matrix A is said to be positive (negative) definite.

Positive definite quadratic forms are said to be Hermite forms (otherwise: Hermitian
forms).

A quadratic form is said to be canonical if

(6.6) fA(x, x) =
n∑

j=1

ajx
2
j .

By this definition, it follows that a quadratic form fA is canonical if and only if its matrix
A is diagonal with the principal diagonal (a1, ..., an).
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Theorem 6.1. If A ∈ L0(En) is a symmetric matrix and B ∈ L0(En) is an orthogonal
matrix then the mapping defined by the equality

(6.7) y = Bx for x ∈ En

carries the quadratic form fA into the quadratic form fBABT .

Proof. By our assumptions, AT = A and BT B = BBT = I. Observe that the matrix
BABT is also symmetric. Indeed, (BABT )T = (BT )T AT BT = BABT . Moreover, x =
BT Bx = BT y. Then

fA(x, x) = 〈x,Ax〉 = 〈BT y, ABT y〉 = 〈BBT y, BABT y〉 =

= 〈y, BABT y〉 = fBABT (y, y).

�

Theorem 6.2. The characteristic polynomial of a symmetric matrix is an invariant of
orthogonal mappings, i.e. if A ∈ L0(En) is a symmetric matrix and B ∈ L0(En) is an
orthogonal matrix then

det (BABT − λI) = det (A− λI).

Proof. By our assumption, BBT = I, hence det BBT = 1. This, and Corollary 3.1
together imply that

det (BABT − λI) = det (BABT − λBBT ) = det B(A− λI)BT =

= (det B)[det (A− λI)](det BT ) = (det B)(det BT ) det (A− λI) =

= det (BBT ) det (A− λI) = det (A− λI).

�

The following corollaries are immediate consequences of Theorem 6.2.

Corollary 6.1. Characteristic roots of a symmetric matrix in the Euclidean space En are
invariants of orthogonal mappings.

Corollary 6.2. If fA is a quadratic form in the Euclidean space En then characteristic
roots of the matrix A are invariants of orthogonal mappings.

Corollary 6.3. If fA is a quadratic form in the Euclidean space En then the discriminant
of the matrix A is an invariant of orthogonal mappings, i.e.

(6.8) ∆(fBABT ) = ∆(fA)

for an arbitrary orthogonal matrix B.
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Proof. Indeed, by Theorem 6.2, for λ = 0 we find

∆(fBABT ) = det BABT = det A = ∆(fA).

�

Theorem 6.3. Every quadratic form fA in the Euclidean space En can be reduced to the
canonical quadratic form

fA(x, x) = fÃ(y, y) =
n∑

j=1

λjy
2
j ,

where λ1, .., λn are characteristic roots of the symmetric matrix A ∈ L0(En); each multiple
root appears here so many times as it is its multiplicity, by an orthogonal transformation
y = Bx of the basis in En, with the linear operator B whose matrix satisfies the equality:
BABT = Ã = [λjδjk]j,k=1,...,n.

Proof ∗). Let B be an orthonormal basis in En. By the Cayley-Hamilton theorem (Corollary
5.3), A is an algebraic operator. Hence A has a finite number of eigenvalues λ1, ..., λn

(each one counted as many times as it its multiplicity), which are characteristic roots of
the operator A. Since the matrix A is symmetric, these roots are real.
Let Xj be the eigenspace of the operator A corresponding to the eigenvalue λj (j = 1, ..., n)
and let kj = dim Xj ≤ n. Then there are kj linearly independent eigenvectors e

(j)
m of the

operator A which constitute a basis B(j) in the space Xj . Without any loss of generality,
we may assume that this basis is orthonormal. This , and Corollary 5.10 together imply
that

〈e(i)
m , e

(i)
l 〉 = 0 if either j 6= i or l 6= m,

(k1 + ... + kn = n; m = 1, ..., kj ; l = 1, ..., i, i, j = 1, ..., n).

We therefore conclude that the spaces Xk and Xj are orthogonal to each other if k 6= j
(j, k = 1, ..., n). Hence the set

B1 = {e(1)
1 , ..., e

(1)
k1

, ..., e
(n)
1 , ..., e

(n)
kn
} (k1 + ... + kn = n)

is an orthonormal basis in the space X. But in the basis B1 to the operator A there
corresponds the diagonal matrix Ã = [λjδjk]j,k=1,...,n. Indeed, the definition of B1 implies

Ãe(j)
m = λje

(j)
m (m = 1, ..., kj ; j = 1, ..., n).

Denote by B = [bjk]j,k=1,...,n the matrix of a one-to-one linear operator transforming the
basis B into the basis B1. We shall show that the matrix B is orthogonal. Indeed, by our
assumptions, for gj , gk ∈ B1 (j, k = 1, ..., n) we have

δjk = 〈gj , gk〉 = 〈Bej , Bek〉 = 〈
n∑

l=1

bjlel,
n∑

m=1

bkmem〉 =

∗) This proof was never published in English (cf. PR[2]).
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=
n∑

l,m=1

bjlbkm〈ej , em〉 =
n∑

m=1

bjmbkm〈em, em〉 =
n∑

m=1

bjmbkm.

Then BT B = BBT = I (where I is the identity matrix), which proves that B is an
orthogonal matrix (cf. Corollary 5.7, Point (vi’).)

Let x ∈ En be arbitrarily fixed. Let y = Bx. Then x = BT Bx = BT y. Since BABT = Ã,
we obtain

fA(x, x) = 〈x,Ax〉 = 〈BT y, ABT y〉 = 〈y, BABT y〉 = 〈y, Ãy〉 =

= fÃ(y, y) =
n∑

j=1

λjy
2
j .

�

Corollary 6.4. A quadratic form fA is Hermitian in the Euclidean space En if and only
if all characteristic roots of the matrix A are positive.

Proof. Indeed, if λ is a characteristic root of the matrix A then it is an eigenvalue of the
operator A with a corresponding eigenvector x 6= 0. This implies that |x| > 0 and 〈x,Ax〉
= 〈x, λx〉 = λ〈x, x〉 = λ|x|. Then 〈x,Ax〉 > 0 whenever λ > 0. Conversely, if 〈x,Ax〉 > 0
then λ > 0. �

An immediate consequence of Corollaries 6.2 and 6.3 is

Corollary 6.5 (Sylvester inertia law). The number of signs ”+” and ”−” of coefficients
of a canonical quadratic form in the Euclidean space En is constant.

Let a ∈ En, A ∈ L0(En), be arbitrarily fixed and let AT = A. Sets of the form

(6.10) KA,a =

= {x ∈ En : fA(x, x) + 2〈x} =

= {x ∈ En : 〈x,Ax + 2a〉 = 1}

are said to be hyperquadrics. A hyperquadric is said to be improper if it is either an empty
set or a finite set of linear manifolds of dimension n. Otherwise, hyperquadrics are called
proper. Clearly, a hyperquadric KA,a passing through a point x0 has the equation

(6.11) 〈x− x0, A(x− x0) + 2a〉 = 0.

Let Hb = {x ∈ En : 〈x, b〉 = 1, b ∈ En} be a hyperplane in the Euclidan space En. We say
that the hyperplane Hb intersects a hyperquadric KA,a if the set Hb ∩KA,a is non-empty.

A straight line P ⊂ En is said to be tangent to a hyperquadric KA,a = {x ∈ En :
〈x,Ax + 2a〉 = 1} at a point x0 ∈ KA,a if

(i) x0 ∈ P ;
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(ii) the set P0 = {〈y, Ay +2a〉 : y ∈ P} of real numbers has the following property: either
p ≥ 1 for all p ∈ P0 or p ≤ 1 for all p ∈ P0.

A linear manifold Y ⊂ En is said to be tangent to a hyperquadric KA,a at a point x0 ∈ KA,a

if every straight line P ⊂ Y is tangent to this hyperquadric at the point x0.

A linear manifold Y ⊂ En is said to be normal to a hyperquadric KA,a at a point x0 ∈ KA,a

if Y ∩KA,a = {x0} and 〈x, y〉 = 0 for all x belonging to a hyperplane tangent at the point
x0 and for all y ∈ Y .

A unit ball in the Euclidean space En with the center at zero is the set

{x ∈ En :
n∑

j=1

x2
j ≤ 1}.

A ball with the center at the point a = (a1, ..., an) and with the radius r is the set

Kr,a = {x ∈ En :
n∑

j=1

(xj − aj)2 ≤ r2} = {x ∈ En : |x− a| ≤ r}.

Sets Kr,a in E2 are called discs.

A boundary of a ball in the Euclidean space, i.e. the set

Sr,a = {x ∈ En : |x− a| = r},

is said to be a sphere.

A sphere in the space E2 is called a circle. By definition, a sphere S1,0 is a hyperquadric
KI,0.

Hyperquadrics in the Euclidean space E2 are called either curves of the 2nd degree or
conics. Hyperquadrics in the Euclidean spaces E3 are called either surfaces of the 2nd
degree or quadrics. We shall now consider with their classification.

As follows from the general form (6.11) of equations of hyperquadrics passing through a
point, curves of order two have the general equation of the form

(6.12) a11x
2
1 + 2a12x1x2 + a22x

2
2 + 2a13x1 + 2a23x2 + a33 = 0,

where a21 = a12 since the matrix A = [ajk]j,k=1,2 is symmetric. Taking into account this
symmetry, we also let a31 = a13, a32 = a23.

By Equation (6.11), the general equation of surfaces of the 2nd degree is of the form

(6.13) a11x
2
1 + +a22x

2
2 + a33x

2
3+

+2a12x1x2 + 2a13x1x3 + 2a23x2x3 + 2a14x1 + 2a24x2 + 2a34x3 + a44 = 0.
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A surface is said to be rotary if it is formed by a rotation of a plane curve around an axis
which is perpendicular to that plane.

A surface made by a movement of a straight line along a curve which lies on a plane non-
containing this straight line, is said to be a rectilinear surface. Each of such straight lines
is said to be a generatrix of the surface under consideration.

A cone is a surface formed in the following way: we use straight lines passing through a
curve lying on a plane P ⊂ E3 and a point x0 ∈ E3 \P (i.e. x0 does not lie on this plane).
By definition, every cone is a rectilinear surface. If the curve under consideration is a circle
then a cone obtained in this way is said to be circular. Clearly, every cone is a rectilinear
surface. If a cone is circular then it is also a rotary surface.

Every surface formed by all parallel straight lines passing through a curve which lies in a
plane P ⊂ E3 non-lying on this plane (in particular, straight lines orthogonal to the plane
P) is said to be a cylinder (otherwise: a cylindrical surface). By definition, every cylinder
is a rectilinear surface. If the curve under consideration is a circle then a cylinder is said
to be circular. If it is the case then a cylinder under consideration is also a rotary surface.

Curves of the 2nd degree are called conics, since every conic can be obtained by means of
a section of a cylindrical cone by a plane.

Note that a cylindrical cone in the Euclidean space En is a rotary rectilinear surface. Its
characterization will be given later.

We already know one quantity characterizing a quadratic form fA, namely, its discriminant
∆(fA) = det A. We shall introduce now new notations concerning curves of the 2nd degree.
Write

(6.14) w = ∆(fA) = det A =
∣∣∣∣ a11 a21

a12 a22

∣∣∣∣ ,

(6.15) W =

∣∣∣∣∣∣
a11 a21 a31

a12 a22 a32

a13 a23 a33

∣∣∣∣∣∣ , V =
∣∣∣∣ a22 a32

a23 a33

∣∣∣∣ .

We shall see that the determinants w and W called small and big discriminants, respec-
tively, fully characterize conics, and only in few particular cases of improper conics it is
necessary to known the determinant V . Observe that the small discriminant w is, by
Corollary 6.3, an invariant of orthogonal mappings. The same is true concerning the big
discriminant W .

Traditionally, for an unification of classification, in the case when a conic is an empty set,
we will call it an imaginary conic. Let us study now possible particular cases. Suppose
that we are given a cylindrical cone S in the Euclidean space E3. Denote by α an angle
between a generatrix and the axis of the cone S. Then we have the following cases.
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1. A section of the cone S by a plane inclined to the axis of S on an angle β, α < β ≤ π
2

and not passing through its vertex gives an ellipse. Here we have W 6= 0, w > 0 and
a11w > 0. The canonical equation is

x2
1

a2
+

x2
2

b2
= 1.

If α = π
2 then b = a, i.e. we have a section of the cone S by a hyperplane normal to the

axis of the cone and not passing through its vertex, which gives a circle with radius a (a
particular case of ellipses).

2. A section of the cone S by a plane parallel to the axis (or inclined to the axis of S on
an angle β, α < β ≤ π

2 ) S and not passing through this axis gives a hyperbola. Here we
have W 6= 0 and w < 0. The canonical equation is

x2
1

a2
− x2

2

b2
= 1.

A hyperbola is said to be equiaxial if a = b.

3. A section of the cone S by a plane parallel to a generatrix of S and non-passing through
this generatrix gives a parabola. Here we have W 6= 0 and w = 0. The canonical equation
is x2 = ax2

1.

These three curves: ellipse, hyperbola and parabola are the only proper conics. Note that
only in these cases W 6= 0. The following conics are improper.

4. A section of the cone S by a plane and passing through the axis of S gives two
intersecting straight lines (generatrices). Here we have W = 0 and w < 0. The
canonical equation is

x2
1

a2
− x2

2

b2
= 0.

5. A section of the cone S by a plane inclined to the axis of S on an angle α < β ≤ π
2

and passing through its vertex gives two imaginary straight lines crossing at a real
point (0, 0). Here we have W = 0 and w > 0. The canonical equation is

x2
1

a2
+

x2
2

b2
= 0.

6. A section of the cone S by a plane tangent to a generatrix of S gives one (double)
straight line. Here we have W = 0, w = 0 and V = 0. The canonical equation is(x1

a
− x2

b

)2 = 0.

7. A section of the cone S by a plane giving an empty set - an imaginary ellipse. Here
we have W 6= 0, w > 0 and V > 0. The canonical equation is

x2
1

a2
+

x2
2

b2
= −1.
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8. A cone S is improper if its generatrices are parallel to its axis. An improper circular
cone is a circular cylinder. If this is the case, then a section of S by a plane parallel to
the axis and not passing by this axis gives two parallel straight lines. Here we have
W = 0, w = 0 and V < 0. The canonical equation is(x1

a
− x2

b

)2 = 1.

9. If W = 0, w = 0 and V > 0 then we have two parallel imaginary straight lines,
i.e. an empty set, for its canonical equation is(x1

a
− x2

b

)2 = −1.

Now we shall consider quadrics, i.e. surfaces of the 2nd degree in the Euclidean space
E3. Recall that every quadric is described by Equation (6.13). Let the determinant W be
defined by the Formula (6.15), i.e.

W =

∣∣∣∣∣∣
a11 a21 a31

a12 a22 a32

a13 a23 a33

∣∣∣∣∣∣ .

Write

(6.16) Ṽ =

∣∣∣∣∣∣∣
a11 a21 a31 a41

a12 a22 a32 a42

a13 a23 a33 a43

a14 a24 a34 a44

∣∣∣∣∣∣∣ , W1 = a11 + a22 + a33,

(6.17) V1 =
∣∣∣∣ a11 a21

a12 a22

∣∣∣∣ , V2 =
∣∣∣∣ a22 a32

a23 a33

∣∣∣∣ , V3 =
∣∣∣∣ a11 a31

a31 a33

∣∣∣∣ .

As for conics, for an unification of classification, we introduce imaginary surfaces: imag-
inary planes, an imaginary ellipsoid and an imaginary cone. to whose there correspond
either an empty set or a linear manifold of higher dimension (cf. Points 6, 8 and 13 of the
following classification). Then we have the following cases.

Let Ṽ < 0, the rank of Ṽ , r(Ṽ ) = 4 ∗), W 6= 0, either W2 > 0 or WW1 > 0. In this case
we have an ellipsoid. Its canonical equation is

x2
1

a2
+

x2
2

b2
+

x2
3

c2
= 1.

An ellipsoid is rotary if either a = b or b = c or a = c. If a = b = c then it is a ball with
radius a.

∗) the rank of a determinant is, by definition, equal to the rank of its matrix.
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2. Let Ṽ < 0, r(Ṽ ) = 4, W 6= 0, either W2 ≤ 0 or WW1 ≤ 0. Then we have a hyperboloid
of two sheets. Its canonical equation is

x2
1

a2
− x2

2

b2
− x2

3

c2
= 1.

A hyperboloid of two sheets is rotary if b = c.

3. Let Ṽ > 0, r(Ṽ ) = 4, W 6= 0, either W2 ≤ 0 or WW1 ≤ 0. Then we have a hyperboloid
of one sheet. Its canonical equation is

x2
1

a2
+

x2
2

b2
− x2

3

c2
= 1.

A hyperboloid of one sheet is a rectilinear surface. If a = b then it is a rotary surface.

4. Let Ṽ 6= 0, r(Ṽ ) = 4, W = 0 and let W2 > 0. Then we have an elliptic paraboloid .
Its canonical equation is

x2
1

a2
+

x2
2

b2
= 2x3.

If a = b then an elliptic paraboloid is a rotary surface.

5. Let Ṽ 6= 0, r(Ṽ ) = 4, W = 0 and let W2 < 0. Then we have a hyperbolic paraboloid
. Its canonical equation is

x2
1

a2
− x2

2

b2
= 2x3.

Any hyperbolic paraboloid is a rectilinear surface.

The just mentioned five surfaces: ellipsoid, hyperboloid of two sheets, hyperboloid of one
sheet, elliptic hyperboloid and hyperbolic paraboloid, are the only proper quadrics. The
following quadrics are improper.

6. Let Ṽ > 0, r(Ṽ ) = 4, W 6= 0, W2 > 0 and let WW1 > 0. Then we have an imaginary
ellipsoid, i.e. an empty set. Its canonical equation is

x2
1

a2
+

x2
2

b2
+

x2
3

c2
= −1.

7. Let Ṽ = 0, r(Ṽ ) = 3, W 6= 0, either W2 ≤ 0 or WW1 ≤ 0. Then we have a cone. Its
canonical equation is

x2
1

a2
+

x2
2

b2
− x2

3

c2
= 0.

If a = b then a cone is circular, i.e. it is a rotary surface.

8. Let Ṽ = 0, r(Ṽ ) = 3, W 6= 0, W2 > 0 and let WW1 > 0. Then we have an imaginary
cone, i.e. a real point , namely, (0, 0, 0). Its canonical equation is

x2
1

a2
+

x2
2

b2
+

x2
3

c2
= 0.
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9. Let Ṽ = 0, r(Ṽ ) = 3, W = 0, r(W ) = 2 and W2 > 0. Then we have an elliptic
cylinder. Its canonical equation is

x2
1

a2
+

x2
2

b2
= 1.

An elliptic cylinder is a rectilinear surface. If a = b then an elliptic cylinder is circular, i.e.
it is a rotary surface.

10. Let Ṽ = 0, r(Ṽ ) = 3, W = 0, r(W ) = 2 and let W2 < 0. Then we have a hyperbolic
cylinder. Its canonical equation is

x2
1

a2
− x2

2

b2
= 1.

A hyperbolic cylinder is a rectilinear surface. If a = b then a hyperbolic cylinder is
equiaxial.

11. Let Ṽ = 0, r(Ṽ ) = 3, W = 0 and let r(W ) = 1. Then we have a parabolic cylinder.
Its canonical equation is

x2
1 = 2ax2.

A parabolic cylinder is a rectilinear surface.

12. Let Ṽ = 0, r(Ṽ ) = 2, W = 0, r(W ) = 2 and let W2 > 0. Then we have two
intersecting planes. Their canonical equation is

x2
1

a2
− x2

2

b2
= 0.

13. Let Ṽ = 0, r(Ṽ ) = 2, W = 0, r(W ) = 2 and let W2 < 0. Then we have two
imaginary planes intersecting along a real straight line. Their canonical equation
is

x2
1

a2
+

x2
2

b2
= 0.

The mentioned real straight line has equations x1 = 0, x2 = 0.

14. Let Ṽ = 0, r(Ṽ ) = 2, W = 0 and let r(W ) = 1. Then we have two parallel planes.
Their canonical equation is

x2
1 − a2 = 0.

15. Let Ṽ = 0, r(Ṽ ) = 2, W = 0, r(W ) = 1 and let V1 > 0, V2 > 0, V3 > 0. Then we have
two parallel imaginary planes, i.e. an empty set. Their canonical equation is

x2
1 + a2 = 0.

16. Let Ṽ = 0, r(Ṽ ) = 1, W = 0, r(W ) = 1 and let V1 = V2 = V3 = 0. Then we have a
(double) one plane. Its canonical equation is

x2
3 = 0.
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To summarize, we see that the following quadrics are rotary surfaces: balls, equiaxial
ellipsoids, equiaxial hyperboloids of one sheet and of two sheets, circular cones and circular
cylinders. The following quadrics are rectilinear: hyperboloids of one sheets, hyperbolic
paraboloids, cones and elliptic, hyperbolic and parabolic cylinders.

Finally, note that every intersection of a surface of the 2nd degree by a plane is a conic
either proper or improper. For instance, if we substitute either x1 = 0 or x2 = 0 or x3 = 0
in canonical equations of quadrics, then we obtain some conics. The knowledge about
these sections is important for a description of surfaces under consideration.

Exercises.

Exercise 6.1. Prove that in the Euclidean space En every bilinear form induces a
quadratic form and conversely, i.e. every quadratic form induces a symmetric bilinear
form. Is this theorem true for

(i) an arbitrary pre-Hilbert space over the field R ?

(ii) an arbitrary linear space over the field R ? �

Exercise 6.2. In any pre-Hilbert space X over the field C the inner product is antilinear
with respect to the second variable. Indeed, by definition, 〈y, x〉 = 〈x, y〉 which implies

〈x, λy〉 = λ〈y, x〉 = λ〈x, y〉.
Hence one cannot determine quadratic forms in the same manner as in the real case.
However, it is possible to admit the following definition: a functional is said to be quadratic
if it results from a function f(x, y) determined for x, y ∈ X and with values in the field C
by an identification of variables, i.e. if y = x. In the space Cn with this definition, similar
theorems to Theorems 6.1, 6.2 and Corollaries 6.1, 6.2, 6.3, 6.4, 6.5 hold? �

Exercise 6.3. Write equations of a hyperplane tangent to a hyperquadric KA,a at a point
x0 ∈ KA,a in the Euclidean spaces E2, E3, En. �

Exercise 6.4. Write equations of a hyperplane passing through a point x0 and tangent
to a hyperquadric KA,a in the Euclidean spaces E2, E3, En. �

Exercise 6.5. Prove that a set obtained as a section by a plane of a surface of the second
degree is a curve of the second degree. �

Exercise 6.6. Prove that a hyperboloid of one sheet and a hyperbolic paraboloid can be
obtained by means of two families of generating straight lines skew each to another. �

Exercise 6.7. Write an equation of the geometric locus of points in the Euclidean space
En whose

(i) distance from a given point is constant;

(ii) sum of distances from two given points is constant;

(iii) sum of distances from a given straight line and a point not lying on that line is
constant.

Reduce the obtained equations to their canonical forms. Determine curves represented by
these equations. �
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Chapter 7.

Transformation groups. Representations of finite groups.

In the previous chapters we have considered transformations (otherwise called: mappings
of the Euclidean spaces En of various typesI. Now we shall review systematically these
transformations.

A property W of subsets of the Euclidian space En is said to be an invariant of a group
G(En) of transformations of En onto itself if

(7.1) AZ has the property W for every transformation A ∈ G(En)

whenever Z ⊂ En has the property W.

A transformation A in this definition does not need to be linear.

A transformation A ∈ L0(En) preserves the orientation of n vectors in the Euclidian space
En if det A > 0. If det A < 0 then A changes the orientation to an opposite one.

A transformation A of the Euclidean space En onto itself is said to be an isometry if

(7.2) |Ax−Ay| = |x− y| for all x, y ∈ En.

Theorem 7.1. A transformation A ∈ L0(En) is orthogonal if and only if it is an isometry.

Proof. Suppose that A ∈ L0(En) is an orthogonal transformation, i.e. it is determined by
an orthogonal matrix. Then Corollary 5.6 implies that |Ax| = |x| for all x ∈ En. Hence A
is an isometry.

Conversely, suppose that A ∈ L0(En) is an isometry. Then A preserves the inner product.
Indeed, for all x, y ∈ En we have

〈Ax,Ay〉 =
1
4
[
〈Ax + Ay, Ax + Ay〉 − 〈Ax−Ay, Ax−Ay〉

]
=

=
1
4
[
|A(x + y)|2 − |A(x− y)|2

]
=

1
4
[
|x + y|2 − |x− y|2

]
=

=
1
4
[
〈x + y, x + y〉 − 〈x− y, x− y〉

]
= 〈x, y〉.

This implies that
〈AT Ax, y〉 − 〈Ax,Ay〉 = 〈x, y〉.

Then
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〈AT Ax− x, y〉 = 〈AT Ax, y〉 − 〈x, y〉 = 0.

The arbitrariness of y ∈ En implies that AT Ax − x = 0 for every x ∈ En. We therefore
conclude that A is an orthogonal transformation. �

Theorem 7.2. The set O(En) of all orthogonal transformations ∗) of the Euclidean space
En is a group with respect to superposition as the group operation.

Proof. Suppose that A,B ∈ O(En). Then AAT = AT A = I, BBT = BT B = I. Hence

(AB)(AB)T = ABBT AT = AAT = I,

i.e. AB ∈ O(En). It is easy to verify that the operation of superposition of orthogonal
transformations is associative. A unit of this operation is the identity operator. The
definition of orthogonal transformations implies that for every A ∈ O(En) there exists an
inverse transformation A−1 and A−1 = AT ∈ O(En). Then O(En) is a group. �

In the previous chapter we have considered three invariants of the group of orthogonal
transformations in the Euclidean space En: the characteristic polynomials of a matrix,
its characteristic roots and the discriminant of a quadratic form (cf. Theorem 6.2 and
Corollaries 6.2, 6.3).

Theorem 7.1 implies the following

Corollary 7.1. The length of an interval is an invariant of the group O(En) of orthogonal
transformations.

Proof. If A ∈ O(En) then A is an isometry. Hence |Ax − Ay| = |A(x − y)| = |x − y| for
arbitrary x, y ∈ En. �

Corollary 7.1 immediately implies

Corollary 7.2. The property of triangles (or other figures and solids) to be congruent is
an invariant of the group O(En) of orthogonal transformations.

A transformation A ∈ L0(En) is said to be a reflection if

(7.3) Ax = −x for every x ∈ En.

A reflection is an involution for A2 = I. Since AT = A, the matrix of this transformation is
symmetric. Hence AT A = A2 = I, which implies that A is an orthogonal transformation.
Moreover, since det A = (−1)n when n is odd, we conclude that any reflection changes
the orientation of systems of n vectors in En on an opposite one whenever the number n
is odd.

A translation by an element h ∈ En (otherwise called a shift by h) is a transformation
defined for an arbitrary x ∈ En by means of the formula

(7.4) Thx = x + h.

∗) An orthogonal transformation is, by definition, a linear mapping.
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Theorem 7.3. The set T (En) of all translations in the Euclidean space En is a commu-
tative group with respect to the superposition as the group operation.

Proof. We find

(7.5) TgTh = Tg+h for arbitrary g, h ∈ En.

Indeed, for every x ∈ En we have

(TgTh)x = Tg(Thx) = Tg(x + h) = x + g + h = Tg+hx.

Clearly, the operation defined by Formula (7.4) is commutative and associative, because the
summation of vectors (points) in the Euclidean space En is commutative and associative.
Furthermore, since T0x = x + 0 = 0 for every x ∈ En, we conclude that the identity
transformation T0 = I is a unit with respect to the operation (7.5). Again, by Formula
(7.5), for an arbitrary h ∈ En we have ThT−h = Th−h = T0 = I. The operation of
superposition of translations is commutative. Then ThT−h = T−hTh = I which implies
that every transformation Th ∈ T (En) is invertible and T−1

h = T−h. We therefore conclude
that T (En) is a commutative group. �

Observe that a translation on h 6= 0 is not a linear operator ∗) for Th(0) = h 6= 0. However,
it is an isometry, since we have

Corollary 7.3. The length of an interval is an invariant of the group T (En) of translations
in the Euclidean space En.

Proof. For an arbitrary Th ∈ T (En) and for arbitrary x, y ∈ En we have

|Thx− Thy| = |(x + h)− (y + h)| = |x− y|.

�

Corollary 7.4. The property of triangles to be congruent is an invariant of the group
T (En) of translations in the Euclidean space En.

Consider now transformations which are superpositions of translations and orthogonal
transformations, all in the Euclidean space En. They also form a group E(En) of transfor-
mations of En onto itself such that its invariant are: the longitude of an interval and the
property of the congruence of triangles (or other figures or solids).

A symmetry with respect to a point a ∈ En is a transformation A defined by means of the
formula

(7.6) Ax− a = a− x for every x ∈ En.

The transformation A defined by Formula (7.6) is a superposition of the reflection and the
translation T2a for Ax = 2a− x. Then A ∈ E(En).

∗) Cf. Exercise 2.1.
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The point a is said to be the symmetry center. We say that a set Y ⊂ En has a center of
symmetry a ∈ En if for every x ∈ Y there is a (unique) point y ∈ Y such that

y − a = a− x.

Observe that the reflection is a symmetry with respect to the point a = 0.

A symmetry with respect to a linear manifold Y ⊂ En is a transformation A defined by
means of the formula

(7.7) Ax− PY x = PY x− x for every x ∈ En,

where PY is an orthogonal projector onto the manifold Y , i.e. PY x is a projection of the
point x onto Y .

Since Ax = 2PY x − x, the transformation A defined by Formula (7.7) is a superposition
of the projection, the operator 2I and the reflection.

If the linear manifold Y is a straight line then it is called the axis of symmetry. We say
that a set Z ⊂ En has an axis (a plane) of symmetry Y if for every x ∈ Z there is a unique
point y ∈ Z such that

y − PY x = PY x− x,

where PY denotes an orthogonal projector of the point x onto Y .

A rotation by an angle ϕ with respect to a point a ∈ E2, called the rotation center is a
transformation defined by the matrix

(7.8) A =
(

cos ϕ sin ϕ
− sin ϕ cos ϕ

)
.

Since A ∈ L0(E2) and

AT =
(

cos ϕ − sin ϕ
sin ϕ cos ϕ

)
and AT A = I,

we conclude that rotations are orthogonal transformations.

Similarly, we define rotations with respect to a straight line in the Euclidean space E3.
This straight line is called the axis of the rotation. Note that a rotation by the angle 2π

n
(n ∈ N) is an involution of order n, i.e. An = I.

It is possible to prove that every transformation belonging to the group E(En) can be
represented as a superposition of a translation, a rotation and a reflection.

A similarity is a transformation A of the Euclidean space En which does not move the zero
point and such that for a positive number κ we have

(7.9) |Ax−Ay| = κ|x− y| for x, y ∈ En.
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Observe that for κ = 1 we have an isometry, hence an orthogonal transformation provided
that A ∈ L0(En). One can prove that |det A| = κn.

Theorem 7.4. The set S(En) of all similarities in the Euclidean space En is a group with
respect to superposition as the group operation.

Proof. Suppose that A,B ∈ S(En). Then there are positive numbers κ, µ such that

|Ax−Ay| = κ|x− y|, |Ax−Ay| = µ|x− y| for x, y ∈ En.

This implies that

|ABx−ABy| = κ|Bx−By| = κµ|x− y| for x, y ∈ En.

Hence AB ∈ S(En). Moreover, the operation of superposition is associative. Since det A =
±κn 6= 0, we conclude that there is a transformation A−1 which also is a similarity and its
similarity coefficient is 1

κ . Then S(En) is a group. �

An immediate consequence of this theorem is

Corollary 7.5. The group O(En) of orthogonal transformations is a subgroup of the
group S(En) of similarities.

Corollary 7.6. The angle between two vectors is an invariant of the group S(En) of
similarities.

Proof. Indeed, suppose that A ∈ S(En) and that α denotes the angle between vectors x
and y in En. Let β be the angle between the vectors Ax and Ay. Then we have

cos β =
〈Ax,Ay〉
|Ax| |Ay|

=

=
〈A(x + y), A(x + y)〉 − 〈A(x− y), A(x− y)〉

4|Ax| |Ay|
=

=
|A(x + y)|2 − |A(x− y)|2

4|Ax| |Ay|
=

κ2|x + y|2 − κ2|x− y|2

4κ2|Ax| |Ay|
=

=
|x + y|2 − |x− y|2

4|x| |y|
=
〈x, y〉
|x| |y|

= cos α.

�

Corollary 7.7. The equality of vectors is an invariant of the group S(En) of similarities.

Proof. Indeed, suppose that A ∈ S(En), x, y ∈ En and y = x. Then |Ax−Ay| = κ|x− y|
= 0. This implies Ax = Ay. �

Corollary 7.7 implies that the congruence of triangles is also an invariant of the group
S(En) of similarities.
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An affine transformation is a transformation defined by means of the formula

(7.10) Ax = a + Bx for x ∈ En,

where a ∈ En, B ∈ L0(En) are fixed and det B 6= 0.

Theorem 7.5. The set A(En) of all affine transformations in the Euclidean space En is a
group with respect to superposition as the group operation.

Proof. Suppose that a, Ã ∈ A(En). It means that for every x ∈ En we have Ax = a + Bx,
Ãx = ã + B̃x, where a, ã ∈ En, B, B̃ ∈ L0(En) are fixed and det B 6= 0, det B̃ 6= 0. Then

AÃx = a + BÃx = a + B(ã + B̃x) = a + Bã + BB̃x = d + Dx,

where d = a + Bã ∈ En, D = BB̃ ∈ L0(En) and

det D = det (BB̃) = (det B)(det B̃) 6= 0.

This implies that Ã ∈ A(En). The identity operator I is the unit of the set A(En). Since
det B 6= 0, we conclude that there exists an inverse transformation defined by means of
the formula A−1x = B−1a + B−1x. �

Theorem 7.5 immediately implies

Corollary 7.8. The group S(En) of similarities is a subgroup of the group A(En) of affine
transformations.

It is easy to verify that an angle between vectors is not an invariant of the group A(En)
of affine transformations. However, one can prove the following

Corollary 7.9. Straight lines (and, in general, linear manifolds of dimension k ≤ n) are
invariants of the group A(En) of affine transformations.

Suppose that we are given points a, b ∈ En and p = ta + (1 − t)b for a t ∈ R. Then the
number t−1

t is also an invariant of the group A(En) of affine transformations.

The theory of invariants of the group of orthogonal transformations, i.e. the group of
isometries is called metric geometry. The theory of invariants of the group of similarities is
called similarities geometry. The theory of invariants of the group of affine transformations
is called affine geometry (cf. Borsuk B[2], Borsuk and Szmielew B[3]). It follows from
the above considerations that a larger group of transformations has even less invariants.

An inversion with respect to a point a ∈ En is a transformation A of the Euclidean space
En2 into itself such that for every x ∈ En the point Ax lies on a half-line connecting the
points x and a and satisfying the condition

(7.11) |Ax− a| · |x− a| = c2, where c ∈ R is fixed.

The point a is called the center of inversion.
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If y = Ax then, by definition of inversions, Ay = x. Hence A2 = I, i.e. any inversion is an
involution.

A straight line completed by the point at infinity can be treated as a circle with the radius
r = ∞. Straight lines completed by the point at infinity are called improper circles. Using
this notion, we obtain the following

Theorem 7.6. Circles are invariants of inversions.

Proof. We prove this theorem for E2. In the general case of En the proof is similar.
Suppose then that A is an inversion with the center a ∈ E2. Condition (7.11) implies that
|Ax−a| > c whenever |x−a| < c. Then the inversion A transforms points lying inside the
circle

Ka,c = {x ∈ E2 : |x− a| = c}

onto points lying outside this circle, and conversely. To simplify calculations, let a = 0.
Write x = (x1, x2), y = Ax = (y1, y2). Then, by Condition (7.11), we find

(7.12)
x1

|x|2
=

y1

|y|2
,

x2

|x|2
=

y2

|y|2
.

Formulae (7.12) imply that the inversion A transforms straight lines passing through the
origin of the coordinate system into circles. Indeed, consider a straight line determined by
the equation αx1 + βx2 + γ = 0. Then, by Formulae (7.12), we find

0 = αx1 + βx2 + γ = α
y1

|y|2
|x|2 + β

y2

|y|2
|x|2 + γ =

= (αy1 + βy2 + γ|y|2) |x|
2

|y|2
= [αy1 + βy2 + γ(y2

1 + y2
2)]

c2

|y|4
,

which yields to the equation

(7.13) αy1 + βy2 + γ(y2
1 + y2

2) = 0.

Hence for γ = 0 the inversion A transforms the straight line under consideration onto itself.

If γ 6= 0 then the straight line does not pass through the origin of the coordinate system and
it is transformed by the inversion into a circle passing through that origin (since the point
(0,0) satisfies Equation (7.13)). Clearly, if it is the case then the center of this inversion
does not lie in the origin of the coordinate system. Any circle with the center at the origin
of the coordinate system is transformed into itself. Indeed, if we have a circle with the
equation x2

1 + x2
2 = r2 then |x| = r and, after an obvious transformation, we obtain the

equation

|y|2 = y2
1 + y2

2 =
x2

1

|x|4
|y|4 +

x2
2

|x|4
|y|4 =

x2
1 + x2

2

|x|4
|y|4 =

=
r2

r4
|y|4 =

1
r2
|y|4,
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i.e. the equation |y| = r. On the other hand, since an inversion, as involution, transforms
circles with centers not lying at the origin of the coordinate systems onto straight lines not
passing by this origin. �

Often it is convenient to determine an inversion as a transformation of the form

Ax =
1
|x|2

x.

A superposition of this last transformation with a translation and a similarity leads to a
transformation defined by means of Formula (7.11).

If we have a transformation y = Q(x), where Q(x) is an arbitrary rational function, then
this transformation is a superposition of a number of affine transformations and inversions.
Transformations of that form generate a group, since superposition of two rational functions
and their inverses are again rational functions.

When considering arbitrary groups, it is sometimes convenient to consider instead of a
given group its homomorphic mappings into groups of linear operators. We shall show a
scheme of such a procedure.

A set TG = {Tg}g∈G is said to be a representation of a finite group G in a linear space X
if to every element g ∈ G there corresponds an operator Tg ∈ L0(X) with the property

(7.14) TgTh = Tgh, whenever g, h ∈ G.

The dimension of a representation is, by definition, the dimension of the space X. The
same group G may have finite and infinite dimensional representations. Here we shall
consider only finite dimensional representations.

Representations TG and T̃G in linear spaces X and Y , respectively, are said to be equivalent
if there is an operator A ∈ L0(X → Y ) such that

T̃g = ATgA
−1 for every g ∈ G.

One can prove that every equivalence class of representations of a finite group contains
a unitary representation, i.e. a representation TG such that Tg is a unitary operator for
every g ∈ G. Then, in order to determine all non-equivalent representations of a finite
group, it is enough to determine all its unitary representations.

A representation TG of a group G in a linear space X is said to be reducible if there
is a proper subspace Y ⊂ X ∗) which is invariant for all operators Tg (g ∈ G), i.e. a
representation Tg such that

TgY ⊂ Y for all g ∈ G.

∗) i.e. Y 6= {0} and Y 6= X.
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Representations, which are not reducible, are said to be irreducible. Therefore we con-
clude that operators from an irreducible representation have no common proper invariant
subspace.

Every finite group G has the so-called natural representation. Namely, if the number of
elements in G is n then there is a one-to-one mapping of the group G onto the set {1, ..., n}.
Write ag = {δjg}g,j=1,...,n for g ∈ G. Then ag is a vector with 1 on the gth place and with
zeros on the remained places. Let G be an arbitrary field of scalars and let

X =
{
x : x =

∑
g∈G

tgag, where tg ∈ G
}
.

Clearly, X is a linear space over the field G. For an arbitrary h ∈ G define a mapping of
the space X into itself by means of the formula

Ahx =
∑
g∈G

tgagh, where x =
∑
g∈G

tgag.

Since Ah ∈ L0(X) and Ah1Ah2 = Ah1h2 for arbitrary h, h1, h2 ∈ G, we conclude that Ah

is a representation of the group G.

If X = Y ⊕ Z, then any representation TG can be decomposed onto representations T ′G
and T ′′G uniquely determined by means of the equality

(7.15) TGx = T ′Gy + T ′′Gz, where x = y + z, y ∈ Y, z ∈ Z.

A representation TG defined by Formula (7.15) is said to be a sum of representations T ′G
and T ′′G.

Every reducible finite dimensional unitary representation is a sum of irreducible unitary
representations.

Theorem 7.7 (Schur Lemma). If T ′G and T ′′G are two equivalent irreducible repre-
sentations of a finite group G in linear spaces X ′ and X ′′, respectively, and an operator
A ∈ L0(X ′′ → X ′) satisfies the condition

(7.16) T ′gA = AT ′′g for every g ∈ G

then A = 0.

Examples and other properties of group representations can be found, for instance, in the
books of Lax (cf. L[2]) and Prostakov (cf. P[1]).

Exercises.

Exercise 7.1. Determine transformations groups in Cn. �

Exercise 7.2. Let Gn be the set of nth roots of unity. Prove that

(i) Gn is a group consisting of n elements with respect to the multiplication in C;

(ii) a representation of the group Gn in an arbitrary finite dimensional linear space X is
the collection of operators I, S,...,Sn−1, where S ∈ L0(X) is an involution of order n, i.e.
Sn = I. Is this representation reducible? If this is the case, then determine its invariant
subspace and describe a decomposition into irreducible representations. �
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Chapter 8.

Index and perturbations of linear operators.

Let X and Y be linear spaces over the same field F of scalars. Recall (cf. Formulae (2.11)
and (2.12)) that the nullity of a linear operator A ∈ L(X → Y ) is the number αA =
dim ker A and the deficiency of A is the number βA = codim ADA = dim Y/ADA.

The ordered pair (αA, βA) is said to be the dimensional characteristic of the operator A
(shortly: its d-characteristic). We say that the d-characteristic is finite if both numbers,
αA and βA, are finite. If at least one of the numbers αA, βA is finite then we say that the
d-characteristic of the operator A is semi-finite.

Write
D(X → Y ) = {A ∈ L(X → Y ) : αA < +∞, βA < +∞},

D−(X → Y ) = {A ∈ L(X → Y ) : αA = +∞, βA < +∞},
D+(X → Y ) = {A ∈ L(X → Y ) : αA < +∞, βA = +∞},

For linear operators A belonging to one of these three sets, i.e. for operators with either
finite or semi-finite d-characteristic, we define the index κA in the following manner:

κA =

 βA − αA if A ∈ D(X → Y ),
+∞ if A ∈ D+(X → Y ),
−∞ if A ∈ D−(X → Y ).

Notions already introduced are very useful when solving linear equations. For instance,
consider the equation

(8.1) Ax = y.

Clearly, a solution of this equation exists if and only if y ∈ EA = ADA. On the other hand,
if we know a solution x1 of Equation (8.1), i.e. an element x1 ∈ DA such that Ax1 = y,
then a general solution of Equation (8.1) is of the form x = x0+x1, where x0 is an arbitrary
element of the kernel of A. Then, in order to solve this equation, the knowledge of the sets
DA and EA = ADA is, indeed, essential. The nullity αA and the deficiency βA characterize
in a sense these sets, although they do not describe them exactly.

Very often a given linear equation can be reduced to another equation in such a manner
that the nullity and the deficiency of the operator obtainedare easy to determine. This
is a reason, why the following two theorems about superpositions of linear operators will
play a fundamental role in our subsequent considerations. Here and in the sequel we shall
assume that all linear spaces under question are considered over the same field F of scalars
(of characteristic zero).

Theorem 8.1. Let X, Y , Z be linear spaces over a field F of scalars. Let
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B ∈

 D(X → Y )
D−(X → Y )
D+(X → Y )

A ∈

 D(Y → Z)
D−(Y → Z)
D+(Y → Z)

and let DA = Y ⊃ EB = BDB . Then the superposition AB exists,

AB ∈

 D(X → Z)
D−(X → Z)
D+(X → Z)

respectively, and

(8.2) κAB = κA + κB .

Proof. To begin with, we shall prove our theorem for linear operators with a finite d-
characteristic, i.e. in the case when A ∈ D(Y → Z), B ∈ D(X → Y ). Let V1 = EB∩ker A.
Write n1 = dim V1. The subspace ker A can be written as the direct sum

(8.3) ker A = V1 ⊕ V2, where dim V2 = αA − n1,

and the space Y as the direct sum

(8.4) Y = EA ⊕ V2 ⊕ V3, where dim V3 = n3.

The definition of the deficiency and Theorem 2.3 together imply that

dim (V2 ⊕ V3) = codim Y/EB = βB .

Then αA − n1 + n3 = βB and αA − βB = n1 − n3. Formula (8.3) implies that AV2 = 0.
Hence

(8.4) EA = ADA = AY = AEB ⊕AV1 ⊕AV3 = ABDB ⊕AV3 = EAB ⊕AV3.

But dim AV3 = dim V3 = n3, since the operator A maps in a one-to-one way the subspace
V1 onto AV3. Finally, we get

κAB = βAB − αAB = βA + n3 − (αB + n1) = βA − αA + βB − αB = κA + κB .

Suppose now that αA, αB < +∞. Then n1 < +∞, which implies αAB = αB + n1 < +∞.

If βA, βB < +∞ then we have n3 < βB < +∞. Hence βAB = βB − n3 < +∞. �

Theorem 8.2. Let X, Y , Z be linear spaces over a field F of scalars. Suppose that
A ∈ L0(Y → Z) and B ∈ L(X → Y ). Then the superposition AB exists, and

(a) αAB < +∞ implies αB < +∞;

(b) βAB < +∞ implies βA < +∞.
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Proof. Since

ker B = {x ∈ DB : Bx = 0} ⊂ {x ∈ DB : ABx = 0} = ker AB,

we find

(8.5) αB ≤ αAB ,

i.e. αB < +∞. Since ADA = AY ⊃ ABDB , we have

(8.6) βA ≤ βAB ,

i.e. βA < +∞. �

Theorem 8.2 immediately implies

Corollary 8.1 Suppose that A ∈ L0(X → Y ), B ∈ L0(Y → X), hence AB ∈ L0(Y ),
BA ∈ L0(X). If AB ∈ D(Y → Y ), BA ∈ D(X → X) then A ∈ D(X → Y ) and
B ∈ D(Y → X).

Corollary 8.2. Suppose that A ∈ L0(X) and there is a positive integer m such that
I − Tm ∈ D(X → X). Then I − T ∈ D(X → X).

Proof. For the proof it is enough to assume in Corollary 8.1 that A = I − T , B =
I + T + ... + Tm−1. �

Corollary 8.3. A linear operator A ∈ L0(X → Y ) is invertible (is an isomorphism) if
and only if αA = βA = 0.

A linear operator A ∈ L0(X → Y ) is said to be right invertible (left invertible) if there
is a linear operator B ∈ L0(Y → X) such that AB = IY (BA = IX , respectively). The
operator B is said to be a right (left) inverse of A.

Theorem 8.3. A linear operator A ∈ L0(X → Y ) is right (left) invertible if and only if
βA = 0 (αA = 0, respectively).

Proof. Suppose that αA = 0. Then ker A = {0} and the operator A is a one-to-one
mapping of the space X onto the set EA = AX. Decompose the space Y onto the direct
sum: Y = AX ⊕ Z. Define a linear operator B ∈ L0(Y → X) in the following way:

By =
{

0 for y ∈ Z,
x for y = Ax, x ∈ X.

Clearly, B(Ax) = x for x ∈ X. Then BA = IX and the operator A is left invertible.

Suppose now that βA = 0. This means that the operator A maps the space X onto the
space Y . Decompose the space X onto the direct sum: X = ker A⊕X1 and denote by A0

the restriction of the operator A to the space X1. Clearly, the operator A0 is a one-to-one
mapping of X1 onto Y . Then there exists its inverse operator A−1 ∈ L0(Y → X1). Let
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B = A−1
0 . Then A(By) = Ax = y for y ∈ Y , i.e. AB = IY . Hence the operator A is right

invertible.

Next, suppose that a linear operator A ∈ L0(X → Y ) is left invertible, i.e. there is a
linear operator B ∈ L0(Y → X) such that BA = IX . Suppose, moreover, that there is an
element x ∈ ker A such that x 6= 0. Then (BA)x = B(Ax) = B(0) = 0, which contradicts
to our assumption that BAx = x. Hence ker A = {0} which implies αA = 0.

If a linear operator A ∈ L0(X → Y ) is right invertible then there is a linear operator
B ∈ L0(Y → X) such that AB = IY . This, and Inequality (8.6) together imply that
βA ≤ βAB = βIY

= 0. Then βA = 0. �

Example 8.1. The operator Ap of multiplication by a function p ∈ C[a, b] such that
p(t) 6= 0 for a ≤ t ≤ b is in the space C[a, b] invertible and A−1

p = A1/p. Then αAp =
βAp = 0 which implies κAp = βAp − αAp = 0. �

Example 8.2. A function y ∈ C1[a, b] is said to be primitive for a function x ∈ C[a, b] if
d
dty(t) = x(t) for a ≤ t ≤ b. It is well known that every continuous function has a primitive
function and that for a fixed t0 ∈ [a, b] there exists a unique primitive function y such that
y(t0) = 0. If it is the case, then this primitive function is traditionally written as

y(t) =
∫ t

t0

x(s)ds

and it is called an integral of x with lower and upper limits t0n and t, respectively.

Let now Dx = dx
dt for x ∈ C1[a, b] and (Rx)(t) =

∫ t

t0
x(s)ds for x ∈ C[a, b]. Write

X = C[a, b], Y = C1[a, b]. Then Y ⊂ X (cf. Example 1.11 and Exercise 1.1). Moreover,
D ∈ L0(Y → X), R ∈ L0(X → Y ) and DR = IX . Hence the operator D is right invertible
and the operator R is left invertible. This implies βD = 0 and αR = 0. Next, since
d
dtx(t) = 0 if and only if the function x(t) is constant, i.e. x(t) ≡ a ∈ R, we conclude that
αD = dim ker‘D = dim R = 1. Then the operator D is not left invertible, hence D is not
invertible. Moreover, κD = βD −αD = −1, κR = βR −αR = 1. We conclude that also the
operator R is not invertible, which implies βR 6= 0. �

Denote by K(X → Y ) the set of all finite dimensional operators defined on a linear
space X and with values in a linear space Y . Theorem 2.11 implies that every operator
K ∈ K(X → Y ) is of the form

Kx =
n∑

j=1

fj(x)yj for x ∈ X,

where f1, ..., fn ∈ X ′ and y1, ..., yn ∈ Y are given.

Theorem 8.4. If K ∈ K(X → Y ) then I + K ∈ D(X → Y ) and κI+K = 0.

Proof. Consider the equation

(8.7) (I + K)x = y, where Kx =
n∑

j=1

fj(x)yj , y ∈ X.
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Since fj are linear functional, writing Ci = fi(x) for i = 1, ..., n, we obtain Equation (8.7)
in the form

x +
n∑

i=1

Cjyj = y.

Hence its solution should be of the form

(8.8) x = y −
n∑

i=1

Cjyj .

Acting by functionals f1, ..., fn on both sides of Equation (8.7), we obtain the following
system of n linear equations with n unknowns C1, ..., Cn:

(8.9) Cj +
n∑

i=1

KjiCi = Lj (j = 1, ..., n),

where Kji = fj(yi) and Lj = fj(y) (i, j = 1, ..., n) are known. If the determinant of this
system

(8.10) ∆K =

∣∣∣∣∣∣∣
K11 + 1 K12 ... K1n

K21 K22 + 1 ... K2n

... ... .... ....
Kn1 Kn2 ... Knn + 1

∣∣∣∣∣∣∣
is different than zero then to every system (L1, ..., Ln) of numbers there corresponds a
unique solution of the system (8.9) given by the Cramer formulae. Then Equation (8.7)
has for every y ∈ Y a unique solution of the form (8.8), where the coefficients C1, ..., Cn

are a unique solution of the system (8.9).

If y = 0 then L1 = ... = Ln = 0 and the homogeneous system (8.9) with ∆Knot = 0 has
only zeros as a solution: C1 = ... = Cn = 0. Hence the equality (8.8) implies that the
only solution of Equation (8.7) is x = 0. We therefore conclude that the operator I + K is
invertible in the space X. This implies that αI+K = βI+K = 0 (cf. Corollary 8.3). Then
κI+K = βI+K − αI+K = 0.

If the determinant ∆K = 0 then a solution of the system (8.9) does not exist for every
system (L1, ..., Ln) of numbers. Write the matrix of coefficients of the system (8.9) in the
form

I + K = [Kji + δji]j,i=1,...,n

and denote its rank by k, i.e. r(I + K) = k.

A necessary and sufficient condition for the existence of a solution to the system (8.9) is
that the vector (L1, ..., Ln) has to belong to a k-dimensional subspace (cf. the Kronecker-
Capella theorem (Theorem 3.8) and Corollary 3.7). Then

βI+K = n− k = n− r(I + K).



116 Chapter 8

By Theorem 3.11, we find
αI+K = n− r(I + K).

Then also in the case ∆K = 0 we find

κI+K = βI+K − αI+K = n− r(I + K)− [n− r(I + K)] = 0.

�

Example 8.3. Consider the following equation, traditionally called an integral equation
with a degenerate kernel:

(8.11) x(t) +
∫ b

a

[ n∑
j=1

gj(t)hj(s)
]
x(s)ds = y(t),

where functions y, g1, ..., gn ∈ C[a, b] are given and we write

v(t) =
∫ t

a

u(s)ds for a ≤ t ≤ b and for an arbitrary function u ∈ C[a, b]

(cf. Example 8.2). By definition of the function v(t), it follows that the number

v(b) =
∫ b

a

u(s)ds for u ∈ C[a, b]

is a real number called the definite integral of the function u. It is easy to verify that the

mapping such that to every function u ∈ C[a, b] there corresponds a real number
∫ b

a

u(s)ds

is linear operator, hence a linear functional on the space C[a, b].

Write now for every x ∈ X

(8.12) Kx =
n∑

j=1

fj(x)gj where fj(x) =
∫ b

a

hj(s)x(s)ds (j = 1, ..., n).

It is easy to verify that f1, ..., fn are linear functionals on the space C[a, b] and that K is a
finite dimensional linear operator mapping the space C[a, b] into itself. Then we can apply
Theorem 8.4 to the operator I + K. By Formulae (8.12), Equation (8.11) can written in
the form

(I + K)x = y,

for

(Kx)(t) =
[ n∑

j=1

fj(x)gj

]
(t) =

n∑
j=1

gj(t)
∫ b

a

hj(s)x(s)ds =

=
∫ b

a

[ n∑
j=1

gj(t)hj(s)
]
x(s)ds.
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Then every solution of Equation (8.11) is of the form

(8.13) x = y −
n∑

j=1

Cjgj ,

where the numbers C1, ..., Cn are to be determined in that way as in the proof of Theorem
8.4. In particular, if

∆K = det [fj(gi) + δji]j,i=1,...,n 6= 0

then Equation (8.11) has a unique solution of the form (8.13), where the numbers C1, ..., Cn

are determined by the Cramer formulae. In this manner an integral equations with an
unknown function x was reduced to a system of n linear equations with scalar coefficients
and with n unknown numbers C1, ..., Cn. �

Suppose that we are given a class A (non-necessarily linear) of linear operators. A linear
operator B is said to be an A-perturbation of a linear operator A if A + B ∈ A. A linear
operator B is said to be a perturbation of the class A of linear operators if A + B ∈ A for
every A ∈ A. We denote by Π(A) the set of all perturbations of the class A.

Theorem 8.5. The set Π(A) of all perturbations of the class A is additive, i.e. if T1 and
T2 are perturbations of the class A then T1 + T2 is also a perturbation of the class A.

Proof. Let A ∈ A. By our assumption, A + T1 ∈ A, because T1 is a perturbation of the
class A. But T2 is also a perturbation of the class A, which implies that A + (T1 + T2) =
(A + T1) + T2 ∈ A. We therefore conclude that the operator T1 + T2 is a perturbation of
the class A. �

Corollary 8.4. If the class A is homogeneous, i.e. αA ∈ A for every scalar α and for
every A ∈ A, then the set Π(A) of all perturbations of the class A is linear.

Proof. Let A ∈ A be arbitrary. Then, by our assumption, 1
αA ∈ A for every scalar α 6= 0.

If a linear operator T is a perturbation of the class A then 1
α (A + αT ) = 1

αA + T ∈ A.
Hence A + αT ∈ A. This, and the arbitrariness of A ∈ A together imply that αT is a
perturbation of the class A. Hence the set Π(a) is homogeneous. This, and Theorem 8.5
together imply that the set Π(A) is linear. �

Theorem 8.6. Every finite dimensional linear operator is a perturbation of the class of
all linear operators with a finite d-characteristic (deficiency, nullity) and this perturbation
preserves the index, i.e.

κA+K = κA for all K ∈ K(X → Y ) and

A ∈

 D(X → Y ),
D+(X → Y ),
D−(X → Y ),

respectively.

Proof. Suppose that A ∈ D(X → Y ). Decompose the space X onto the direct sum:
X = ker A ⊕ V . The operator A1, defined as the restriction of the operator A to the
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subspace V is, by Theorem 8.3, left invertible (for αA1 = 0). Let K1 be the restriction of
the operator K to the subspace V and let B1 be a left inverse of A1. Then A1 + K1 =
(I + K1B1)A1 on V , since B1A1 = I on V .

Observe that the operator K1B1 defined on the space Y and with values in Y is finite
dimensional for K1B1Y < +∞, since the operator K, hence also the operator K1 are
finite dimensional. This, and Theorems 8.1, 8.2 and 8.4 together imply that

(8.14) κA1+K1 = κ(I+K1B1)A1 = κI+K1B1 + κA1 = κA1 + βA1 = βA,

for κI+K1B1 = 0 and αA1 = 0.

Observe that the operator A + K is an extension of the operator A1 + K1. We shall prove
that κA+K = κA1+K1 − αA. Consider three cases:

(i) K ker A ⊂ EA1+K1 = (A1 + K1)X. Then

EA+K = (A + K)X = (A1 + K1)X = EA1+K1 .

This implies βA+K + βA1+K1 . But

αA+K = dim ker (A + K) = dim ker A + dim ker (A1 + K1) = αA + αA1+K1 .

Consequently,

κA+K = βA+K − αA+K = βA1+K1 − αA1+K1 − αA = κA1+K1 − αA.

(ii) Kx 6∈ EA1+K1 for every x ∈ ker A, x 6= 0. Write r = dim K ker A. Clearly, βA+K =
βA1+K1−r. On the other hand, writing K3 = K|ker A, we get αA+K = αA1+K1 +(αA−r),
since αA − r = αK3 for (A + K)x = Kx whenever x ∈ ker A. Then

κ(A + K) = βA+K − αA+K = βA1+K1 − r − (αA1+K1 + αA − r) =

= βA1+K1 − αA1+K1 − αA = κA1+K1 − αA.

(iii) If (i) and (ii) do not hold then decompose the space ker A onto the direct sum
ker A = V1 ⊕ V2, where KV1 ⊂ EA1+K1 and Kx 6∈ EA1+K1 for every x ∈ V2, x 6= 0. Let
A2 + K2 be the restriction of the operator A + K to the subspace V ⊕ V1. Then Point (ii)
of our proof implies that κA2+K2 = κA1+K1 − dim V2. Moreover, Point (i) of this proof
implies that κA+K = κA2+K2 - dim V1. Since dim V1 + dim V2 = dim ker A = αA, we
conclude that

κA+K + κA2+K2 − dim V1 = κA1+K1 − dim V2 − dim V1 = κA1+K1 − αA.

This, and Formula (8.14) together imply that

κA+K = κA1+K1 − αA = βA − αA = κA
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for every A ∈ D(X → Y ) and K ∈ K(X → Y ).

Suppose now that A ∈ D+(X → Y ), i.e. αA < +∞, βA = +∞. Then, by Formula (8.14),
κA1+K1 = +∞. Since αA < +∞, we find κA+K = +∞ = κA.

Finally, suppose that A ∈ D−(X → Y ), i.e. αA = +∞, βA < +∞. Then, by Formula
(8.14), we have κA1+K1 ¡ βA < +∞. But αA = +∞, hence κA+K = κA1+K1 − αA = - ∞
= κA¿ �

Theorem 8.7. Suppose that the set

D0(X → Y ) = L0(X → Y ) ∩D(X → Y )

is non-empty ∗). If a linear operator K ∈ L0(X → Y ) is a perturbation of the class
D0(X → Y ) then it is finite dimensional.

Proof. Suppose that an operator K ∈ L0(X → Y ) is a perturbation of the class D0(x → Y )
and it is not finite dimensional. Then There exists a sequence {yn} of linearly independent
elements belonging to the set EA = KX. By the definition of the sequence {yn}, there is
a sequence {xn} ⊂ X such that Kxn = yn (n = 1, 2, ...). Let

X0 = lin {xn}, Y0 = lin {yn}.

Decompose the space X onto the direct sum X = X0⊕V . The subspace V has the infinite
codimension.

Let A ∈ D0(X → Y ) be arbitrarily fixed. The set V1 = AV has also the infinite codimen-
sion and only a finite number of elements yn belong to this set. Indeed, suppose that there
is a subsequence {ynk

} such that ynk
∈ AV . This means that there is a sequence {x′nk

}
such that Ax′nk

= ynk
. Write x′′nk

= x′nk
− xnk

. Then Ax′′nk
= 0, i.e. x′′nk

∈ ker A. Since
elements x′′nk

are linearly independent, we conclude that αA = +∞, a contradiction with
our assumption that A has a finite d-characteristic.

Define a linear operator B ∈ L0(X → Y ) by means of the equalities:

Bx =

{
Ax if x ∈ V ,
yn if x = xn and yn 6∈ V1,
0 if x = xn and yn ∈ V1.

Our previous considerations lead to the conclusion that αB < +∞. On the other hand,

EB = BX = V1 ⊕ Y0 = AV ⊕AX0 = AX = EA.

Hence βB = βA < +∞, i.e. B ∈ D0(x → Y ). However, the operator B − K has not a
finite d-characteristic, since (B − K)xn = 0 for xn such that yn 6∈ V1, i.e. for infinitely
many xn. This implies that αB−K = +∞.Then the operator −K is not a perturbation of

∗) If the bases in linear spaces X and Y are not equipotent then linear operators with a finite
dimensional characteristic mapping X into Y do not exist.
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the operator B ∈ D0(X → Y ). This contradicts to our assumption. Then K is a finite
dimensional operator. �

Observe that the inequality βA < +∞ has been applied in the proof of Theorem 8.7 only
in order to show that βB < +∞. This, and Theorems 8.6 and 8.7 together imply

Theorem 8.8. Suppose that the class

D+
0 (X → Y ) = L0(X → Y ) ∩D+(X → Y ),

(D0(X → Y ) = L0(X → Y ) ∩D(X → Y ), respectively),

is non-empty. Then a necessary and sufficient condition for an operator K ∈ L0(X →
Y ) to be a perturbation of all operators with a finite nullity (with a finite dimensional
characteristic) belonging to L0(X → Y ) is that K is a finite dimensional operator.

We shall consider now arbitrary algebras of linear operators mapping a linear space X into
itself. We shall assume here and in the sequel that algebras under consideration contain
the identity operator I. Recall that, in particular, the set L0(X) is an algebra.

Theorem 8.9. Every algebra X with the unit e can be represented as an algebra of linear
operators over a linear space X.

Proof. Define the space X as a space equal to the given algebra X . To every element
x ∈ X there corresponds a linear operator Ax defined by means of the equality

Axy = xy for y ∈ X.

By definition, Ax ∈ L0(X). It is easy to verify that Ax + Ay = Ax+y and AxAy = Axy for
arbitrary x, y ∈ X. Moreover, A0 = I. Hence the set {Ax : x ∈ X} is an algebra of linear
operators over the space X. �

Theorem 8.10. If X (X) is an algebra of linear operators over a linear space X 6= {0}
then the set KX (X) of all finite dimensional linear operators belonging to this algebra is
an ideal in the algebra X (X). This ideal is proper if dim X = +∞.

Proof. Suppose that K1,K2 ∈ KX (X), i.e. dim K1X = n1 < +∞ and dim K2X = n2 <
+∞. Since (K1+K2)X ⊂ K1X+K2X, we have dim (K1+K2)X = dim K1X + dim K2X
= n1 + n2 < +∞. Then the operator K1 + K2 is also finite dimensional.

Suppose now that the operators A ∈ X (X) and KX (X) are arbitrary. By our assumptions,
dim KX < +∞ and AX ⊂ X. Then AKX ⊂ KX and

dim AKX ≤ dim KX < +∞,

i.e. the operator AK is finite dimensional. Similarly, the operator KA is finite dimensional.
We therefore conclude that KX (X) is an ideal in the algebra X (X). Observe that I 6∈
KX (X) whenever dim X = +∞, because dim IX = dim X = +∞. Then, in the case
when dim X = +∞, the ideal KX (X) is proper.

�
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Let be given an algebra X (X) ⊂ L0(X) of linear operators and a proper ideal J ⊂ X (X).
As before, assume that I ∈ X (X). If for a given operator A ∈ X (X) there is a linear
operator RA ∈ X (X) such that

RAA = I + T1 (ARA = I + T2, respectively), where T1, T2 ∈ J ,

then RA is said to be a left (right regularizer of the operator A to the ideal J . If it will
not lead to a misunderstanding then we shall omit words ”to the ideal J ”. If an operator
RA is simultaneously a left and a right regularizer then it is called a simple regularizer
of the operator A to the ideal J . Observe that in the case when J = {0} a left (right)
regularizer is a left (right) inverse of the operator A. Hence the assumption that the ideal
J is proper is, indeed, essential.

Theorem 8.11. Suppose that J is a proper ideal in an algebra X (X) ⊂ L0(X) of linear
operators and that A ∈ X (X). Then regularizers of the operator A (provided that they
exist) have the following properties:

(i) If there is a left (right, simple) regularizer RA to the ideal J then RA 6∈ J .

(ii) If there is a left (right, simple) regularizer RA to the ideal J then the coset [A] in
the quotient algebra X (X)/J is left invertible (right invertible, invertible).

(iii) If the operator A has a left regularizer R1 and a right regularizer R2 to the ideal J
then both, R1 and R2, are simple regularizers and R2−R1 ∈ J . Then a simple regularizer
is uniquely determined up to a component belonging to the ideal J .

(iv) If A = B + T , where B has a left (right) inverse B1 ∈ X (X) and T ∈ J then
the operator B1 is a left (right) regularizer of the operator A to the ideal J . Conversely,
if a left (right) regularizer RA to the ideal J has a left (right) inverse B ∈ X (X) then
A = B + T , where T ∈ J .

(v) The operator A has an invertible simple regularizer to the ideal J if and only if
A = B + T , where B is an invertible linear operator and T ∈ J . If it is the case, then
RA = B−1.

(vi) If the operator A has a left (right, simple) regularizer to the ideal J then for every
T ∈ J the operator A + T has a left (right, simple) regularizer RA+T to the ideal J and
RA+T = RA¿

(vii) If the operators A,B ∈ X (X) have left (right, simple) regularizers RA, RB to the
ideal J and there exists a superposition AB then the operator AB has a left (right, simple)
regularizer RAB to the ideal J and RAB = RBRA.

Proof. (i) Suppose that a left regularizer RA ∈ J . Since, by our assumption, RAA = I+T ,
where T ∈ J , we find I = RAAT ∈ J . This contradicts to our assumption that the ideal
J is proper. Similar proofs for right and simple regularizers.

(ii) If the operator A has a left regularizer RA to the ideal J then RAA = I + T , where
T ∈ J . Then in the quotient algebra X (X)/J for the corresponding cosets the following
equality hold: [RA][A] = [I], i.e. the coset [A] is left invertible. A similar proof for a right
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regularizer. If a regularizer RA is simple then [RA][A] = [A][RA] = [I]. Hence the coset
[A] is invertible and [A]−1 = [RA] ∗).

(iii) Suppose that R1 and R2 are left and right regularizers of the operator A to the ideal
J . The there are linear operators T1, T2 ∈ J such that

R1A = I + T1, AR2 = I + T2.

These equalities imply that in the quotient algebra X (X)/J the following equalities hold:

[R1][A] = [I], [A][R2] = [I].

Then the coset [A] is simultaneously left and right invertible, i.e. this coset is invertible.
Since an inverse (if it exists) is unique, we conclude that [R1] = [R2], i.e.

[R1 −R2] = [R1]− [R2] = 0,

which implies that R1 −R2 = T ∈ J . Hence

R2A = (R1 + T )A = R1A + TA = I + T1 + TA = I + T3, where T3 = T1 + TA ∈ J .

Then the operator R2 is a simple regularizer. In a similar way we prove that the operator
R1 is also a simple regularizer. But R2 = R1 + T , where T ∈ J . We therefore conclude
that a simple regularizer is uniquely determined up to a component belonging to the ideal
J .

(iv) Suppose that A = B + T , the operator B has a left inverse B1 and T ∈ J . Then
B1A = B1B + B1T = I + B1T , where B1T ∈ J . Then B1 is a left regularizer of the
operator A to the ideal J . A similar proof for the case when the operator B has a right
inverse.

Conversely, if a left regularizer RA of the operator A to the ideal J has a left inverse
B ∈ X (X) then the following conditions are satisfied:

BRA = I, and RAA = I + T1, where T1 ∈ J .

Then

A = (BRA)A = B(RAA) = B(I + T1) = B + T, where T = BT1 ∈ J .

A similar proof for the case when the operator B is a right inverse.

(v) follows immediately from Point (iv).

(vi) Suppose that the operator A has a left regularizer RA to the ideal J and that T ∈ J .
By our assumption, there is an operator T1 ∈ J such that RA = I + T1. Then

RA(A + T ) = RAA + RAT = I + T1 + RAT = I + T2, where T2 = T1 + RAT ∈ J .

∗) Observe that this last equality does not imply that the operator A is invertible.
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Then the operator A + T has a left regularizer RA+T to the ideal J and RA+T = RA.
Similar considerations for right and simple regularizers.

(vii) Suppose that linear operators A,B ∈ X (X) have left regularizers RA, RB (respec-
tively) to the ideal J , i.e.

RAA = I + T1, RBB = I + T2 where T1, T2 ∈ J .

Suppose also that the superposition AB exists. Then

RA(AB) = (RAA)B = (I + T1)B = B + T1B, where T1B ∈ J .

Hence

(RBRA)(AB) = RB(B + T1B) = RB + RBT1 + RBT1B = I + T2 + RBT1B = I + T3,

where T3 = T2 + RBT1B ∈ J .

Then the operator RAB = RARB is a left regularizer of the operator AB to the ideal J .
Similar considerations for right and simple regularizers. �

The notion of a regularizer is very useful in studies of properties of linear operators. For
instance, if A,B ∈ L0(X) then the superpositions AB and BA exist and

(8.15) ker (BA) ⊂ ker A,

(8.15′) EAB ⊂ EA

(cf. Formulae (8.5) and (8.6)). Suppose that the operator A has a simple regularizer to a
proper ideal J ⊂ L0(X). Then

RAA = I + T1, ARA = I + T2, where T1, T2 ∈ J .

Formula (8.15) implies that in order to study the kernel of the operator A it is enough to
examine the kernel of its restriction to the subspace ker (I + T1) = ker RAA ⊃ ker A.

Similarly, in order to study the cokernel of the operator A it is enough to consider the
operator Ã induced by A in the quotient space X/EI+T2 , since EI+T2 = EARA

⊂ EA. In the
case when αI+T1 < +∞, βI+T2 < +∞ it is an essential simplification, since it reduces a
problem in infinite dimensional spaces to a problem in finite dimensional spaces. Therefore
in the sequel we shall examine linear operators for which a regularization leads to operators
I + T with either finite nullity or finite deficiency for all T ∈ J .

Moreover, if an operator A has a left invertible left regularizer RA then, by Formula (8.15),
it follows that ker (RAA) = ker A. Then αA = αRAA = αI+T1 . Indeed, if R1 is a left
inverse of the operator RA then

ker A = ker (R1RAA) ⊃ ker (RAA) ⊃ ker A.
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SImilarly, if A has a right invertible right regularizer RA then EA = EARA
. Then βA =

βARA
= βI+T2 .

Suppose that J is a proper ideal in an algebra X (X) of linear operators over a linear
space X. Then J is said to be a quasi-Fredholm ideal if the operator I + T has a finite
dimensional characteristic whenever T ∈ J . The ideal J is said to be a Fredholm ideal
if it is a quasi-Fredholm ideal and, moreover, κI+T = 0 for every T ∈ J . Theorem 8.4
implies that the ideal KX (X) of all finite dimensional operators belonging to the algebra
X (X) is a Fredholm ideal. There exist quasi-Fredholm ideals which are not Fredholm, as
it will be shown by the following example.

Example 8.4 (G. Neubauer ∗)). Let X be the linear space (s) of all complex sequences.
Define a linear operator R mapping the space X into itself in the following way:

Rx = y, where x = {x1, x2, ...}, y = {0, x1, x2, ...}.

Write B = R−I. Let X (X) be the algebra of all polynomials in B with complex coefficients.
Every operator belonging to X (X) and different than zero has a finite d-characteristic.
Indeed, let q(B) ∈ X (X). Clearly, if q(B) = I then αq(B) = βq(B) = 0. If q(B) 6= I then
we can write this polynomial in the form:

q(B) = a0

n∏
j=1

(B − ajI) = a0

n∏
j=1

(R− bjI), where bj = aj + 1.

Each of operators R−bjI has a finite d-characteristic. Then, by Theorem 8.1, the operator
q(B) has a finite d-characteristic. Hence every proper ideal in X (X) is a quasi-Fredholm
ideal. Consider an ideal J which consists of operators of the form A = (I + B)q(B). The
ideal J is not a Fredholm ideal, since the equality q(B) = I implies that A = I + B = R.
Hence βI+B = βR = 1 and αI+B = αR = 0. Then κI+B = 1 6= 0. �

An immediate consequence of Theorem 8.2 and Corollary 8.1 is

Theorem 8.12. Suppose that J is a quasi-Fredholm ideal in an algebra X (X) of linear
operators. If a linear operator A ⊂ X (X) has a simple regularizer RA to the ideal J then
A has a finite d-characteristic. Moreover, if J is a Fredholm ideal then κA = −κRA

.

An algebra X (X) ⊂ L0(X) of linear operators is said to be regularizable to an ideal
J ⊂ X (X) if every operator with a finite d-characteristic has a simple regularizer to the
ideal J . An algebra X (X) regularizable to the ideal KX (X) of all finite dimensional
operators will be called shortly a regularizable algebra.

Theorem 8.13. If an algebra X (X) ⊂ L0(X) of linear operators is regularizable to a
quasi-Fredholm ideal J ⊂ X (X) then every operator T ∈ J is a perturbation of the class
D(X → X)∩X (X). Moreover, if J is a Fredholm ideal then perturbations T ∈ J preserve
the index, i.e.

κA+T = κA for every A ∈ D(X → X) ∩ X (X) and T ∈ J .

∗) cf. PRR[1], p.42.
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Proof. Let A ∈ D(X → X) ∩ X (X). By our assumption, there is a simple regularizer RA

of the operator A to the ideal J . Point (vi) of Theorem 8.11 implies that RA is also a
simple regularizer of operators A + T for every T ∈ J . By Theorem 8.12, the operator
A + T has a finite d-characteristic for every T ∈ J . The arbitrariness of the operator A
implies that all operators T ∈ J are perturbations of the class D(X → X) ∩ X (X). If,
moreover, J is a Fredholm ideal then

κA+T = −κRA+T
= −κRA

= κA.

�

Theorem 8.14. Suppose that J and J1 are quasi-Fredholm ideals in an algebra X (X) ⊂
L0(X) of linear operators and that the algebra X (X) is regularizable to the ideal J1. Then
every operator T ∈ J is a perturbation of the class D(X → X) ∩ X (X). Moreover, if J
and J1 are Fredholm ideals then these perturbations preserve the index, i.e.

κA+T = κA for every A ∈ D(X → X) ∩ X (X) and T ∈ J .

Proof. Write J̃ = J + J1. Clearly, J̃ is a linear set. We shall show that J̃ is an ideal in
the algebra X (X). Indeed, if T ∈ J , T1 ∈ J1, A ∈ X (X) then

A(T + T1) = AT + AT1 ∈ J + J∞ = J̃ ,

(T + T1)A = TA + T1A ∈ J + J∞ = J̃ .

The ideal J̃ is quasi-Fredholm. Indeed, by Theorem 8.13, if the operator I + T has a
finite d-characteristic then also the operator I + T + T1 has a finite d-characteristic. The
algebra X (X) is regularizable to the ideal J1. So that there is a simple regularizer RA

of any operator A ∈ X (X) to the ideal J1, hence also to the ideal J̃ . By Point (vi) of
Theorem 8.11, for every T ∈ J̃ , in particular, for every T ∈ J , the operator RA is a simple
regularizer of the operator A + T to the ideal J̃ . Theorem 8.12 implies that A + T has a
finite d-characteristic. If J and J1 are Fredholm ideals then also J̃ is a Fredholm ideal.
Indeed, by Theorem 8.13, we have κI+T+T1 = κI+T = 0 for all T ∈ J , T1 ∈ J1. Again by
Theorem 8.13, we conclude that κA+T = κA for all A ∈ D(X → X) ∩ X (X). �

An immediate consequence of the last theorem is

Corollary 8.5. Suppose that J is a quasi-Fredholm ideal in a regularizable algebra
X (X) ⊂ L0(X) of linear operators. Then every operator T ∈ J is a perturbation of the
class D(X → X) ∩ X (X). Moreover, if J is a Fredholm ideal then these perturbations
preserve the index, i.e.

κA+T = κA for every A ∈ D(X → X) ∩ X (X) and T ∈ J .

Suppose that X is a ring with unit e. Then the set

R[X] = {x ∈ X : elements e + axb are invertible for all a, b ∈ X}
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is said to be the radical of the ring X (cf. Jacobson, J[1]). It is easy to verify that the
radical R[X] is an ideal in X.

Theorem 8.15. Suppose that an algebra X (X) ⊂ L0(X) is regularizable to a quasi-
Fredholm ideal J ⊂ X (X). Denote by R[X (X)/J ] the radical of the quotient algebra
X (X)/J and write

J0 = {U ∈ X (X) : [U ] ∈ R[X (X)/J ]},

where [U ] is a coset determined by an operator U ∈ X (X)/J . Then (i) The set J0 is a
quasi-Fredholm ideal in the algebra X (X).

(ii) Every operator T ∈ J0 is a perturbation of the class D(X → X) ∩ X (X).

(iii) If J1 is a quasi-Fredholm ideal in the algebra X (X) then J1 ⊂ J0, i.e. J0 is a
maximal quasi-Fredholm ideal in X (X).

(iv) If, in addition, the algebra X (X) is regularizable then

J0 = K0 = {U ∈ X (X) : [U ] ∈ R[X (X)/KX (X)}.

Proof. (i) Since the radical is an ideal, the set J0 is also an ideal in the algebra X (X). If
U ∈ J0 is arbitrarily chosen then, by the definition of the radical, it follows that the coset
[I]+[U ] is invertible in the quotient algebra X (X)/J . Then there is a coset [V ] ∈ X (X)/J
such that

[V ]([I] + [U ]) = ([I] + [U ])[V ] = [I].

This implies that for every operator V ∈ [V ]

V (I + U) = I + T1, (I + U)V = I + T2, where T1, T2 ∈ J .

Hence the operator I +U has a simple regularizer to the ideal J . This, and Theorem 8.12
together imply that the operator I + U has a finite d-characteristic. The arbitrariness of
U implies that J0 is a quasi-Fredholm ideal.

(ii) The proof of this point is an immediate consequence of Point (i) of this theorem and
Theorem 8.14.

(iii) Suppose that U ∈ J1. Then AUB ∈ J1 for arbitrary A,B ∈ X (X). Since the algebra
X (X) is regularizable to the ideal J , the operator I + AUB has a simple regularizer to
the ideal J . Then the coset[I] + [A][U ][B] is invertible in the quotient algebra X (X)/J .
The arbitrariness of operators A and B implies that the coset [U ] belongs to the radical
R[X (X)/J ]. Hence U ∈ J0 and J1 ⊂ J0. We therefore conclude that J0 is a maximal
quasi-Fredholm ideal in the algebra X (X).

(iv) Observe that the construction of the ideal J0 does not depend of the ideal J . Indeed,
if it is not the case, then the ideal J0 is not maximal. This, and our assumption that the
algebra X (X) is regularizable together imply that J0 = K0. �

A characterization of the index is given by the following
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Theorem 8.16. Suppose that J is a quasi-Fredholm ideal in an algebra X (X) ⊂ L0(X).
Suppose, moreover, that the set W ⊂ D(X → X)∩X (X) satisfies the following conditions:

(w1) if A,B ∈ W then AB ∈ W ;

(w2) every operator T ∈ J is a perturbation of the class W ;

(w3) every operator A ∈ W has a simple regularizer RA ∈ W to the ideal J .

If an integer-valued function ν(A) defined on the set W satisfies the following conditions:

(i) ν(A + T ) = ν(A) for every A ∈ W and T ∈ J ,

(ii) ν(AB) = ν(A) + ν(B) for all A,B ∈ W ,

(iii) if κA = 0 then ν(A) = 0,

then there is a number p ∈ R such that

(8.16) ν(A) = pκA for all A ∈ W.

In particular, if there is an operator S ∈ W such that κS = 1 then the number p in Formula
(8.16) is an integer.

Proof. To begin with, suppose that there is an operator S ∈ W with the index κS = 1. By
Condition (w3), there is a simple regularizer RS of the operator S to the ideal J . This,
and Theorem 8.12 together imply that κRS

= −κS = −1.

Suppose now that A ∈ W and that A has the positive index: κA = n > 0. Theorem 8.11
and Condition (w1) together imply that (RS)nA ∈ W and κ(RS)nA = - nκS + n = −n + n
= 0. Then, by Point (iii), it follows that ν(A) = −ν(Rn

S) = −nν(RS) = p1κA, where
p1 = −ν(RS).

If A ∈ W and κA = n ≤ 0 then in a similar way we prove that ν(A)+PκA, where p = ν(S).
However, there is an operator T ∈ J such that RSS = I + T . Then ν(RSS) = ν(I + T ) =
ν(I) = 0. Hence ν(RS) = - ν(S), which implies that p1 = −ν(RS) = ν(S) = p. Finally,
we get ν(A) = pκA for all A ∈ W , where p is an integer.

Suppose now that an operator S belonging to W with the index equal to 1 does not exist.
Let q be the least positive index of linear operators belonging to the set W . The number q
is a divisor of the index of every operator from the set W . Indeed, let operators A,B ∈ W
have the indices q and s, respectively, where s = nq + r, 0 < r < q. By our assumptions,
the operator A has a simple regularizer RA to the ideal J and κRa = −κA = −q. Again
by our assumptions, (B(RA)n ∈ W and

κB(RA)n = κB − nκA = s− nq = r < q,

which is a contradiction with the definition of the number q. Then r = 0 and the index
of the operator B is divisible by q. Furthermore the proof is going on the same lines as in
the first part (where we have assumed that there exists an operator with the index 1), i.e.
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we consider an arbitrary operator A ∈ W with the index nq and an operator S ∈ W such
that κS = q. Since the index of the operator A(RS)n is equal zero, we find

ν(A) = nν(S) =
np

q
κS =

p

q
κA,

where the number p + ν(S) is an integer. �

Theorem 8.17. Suppose that A ∈ L0(X → Y ). Then

A ∈
{

D+(X → Y )
D−(X → Y )

if and only if A = S + K,

where the operators S, K ∈ L0(X → Y ), S is left (right) invertible and K is finite dimen-
sional.

Proof of the necessary condition. Suppose that A ∈ D+(X → Y ). Then αA < +∞,
βA = +∞. Decompose the space X onto the direct sum X = ker A⊕ V and the space Y
onto the direct sum Y = EA⊕V1. Then dim ker A = αA ≤ βA = dim V1. This implies that
there is a finite dimensional operator K which is a one-to-one mapping of the subspace
ker A into the subspace V1. Hence the operator S = A−K defined on the space X maps
X into Y in a one-to-one way. Then the operator S is invertible and its inverse S−1 is
defined on the set ES = SX ⊂ Y . Write S(−1) for an arbitrary extension of the operator
S−1 onto the whole space Y . Clearly, S(−1)Sx = x for all x ∈ X. We therefore conclude
that the operator S is left invertible and A = S + K.

Suppose now that A ∈ D−(X → Y ). Then αA = +∞ and βA < +∞. Similarly, as in
the previous case, decompose spaces X and Y onto direct sums. Then we conclude that
dim V1 = βA ≤ αA = dim ker A. The operator A maps in a one-to-one way the subspace
V onto the set EA = AX. Hence there exists a finite dimensional operator K mapping
a subspace of the set ker A onto the whole subspace V1 and this mapping is one-to-one.
Then the operator S = A −K maps a subspace X1 of the space X onto the whole space
Y . The operator S is right invertible on the subspace X1 and A = S + K.

Proof of the sufficient condition. Suppose that A = S + K, where K ∈ K(X → Y ) and
S is left (right) invertible. By Theorem 8,3, we have αS = 0 (βS = 0, respectively).
Hence S ∈ D+(X → Y ) (S ∈ D−(X → Y ), respectively). Then Theorem 8.6 implies that
A = S + K ∈ D+(X → Y ) (A ∈ D−(X → Y )). �

Theorem 8.18. Suppose that A ∈ D(X → Y ) ∩ L0(X). Then κA = 0 if and only if
A = S + K, where S is an invertible operator and K is a finite dimensional operator.

Proof. The proof of this theorem is the same as the proof of Theorem 8.1, but in the proof
of the necessary condition we are applying the equalities αA = 0, βA = 0. The first part
of the proof is like this for the case αA ≤ βA, the second one - like for the case βA ≤ αA.
In the proof of the sufficient condition we are using the fact that αS = βS =), hence
S ∈ D(X → Y ). �
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Corollary 8.6. Suppose that A ∈ L0(X → Y ). If

A ∈
{

D−(X → Y )
D+(X → Y )

then there is an operator RA such that

{
ARA − I ∈ K(X → Y ),
RAA− I ∈ K(X → Y ),

respectively.

Proof. Indeed, if αA < +∞ then RA = S(−1), if βA < +∞ then RA = S−1, where these
operators are defined in the first and second part of the proof of Theorem 8.17, respectively.

�

An immediate consequence of the last corollary is

Corollary 8.7. Suppose that A ∈ L0(X). If

A ∈
{

D+(X → X)
D−(X → X)

then A has a

{
left
right

regularizer to the ideal K(X → X)

of all finite dimensional operators belonging to L0(X), respectively.

Similarly, as Theorem 8.17 implies Corollaries 8.6 and 8.7, Theorem 8.18 implies the fol-
lowing

Corollary 8.8. If A ∈ D(X → X) ∩ L0(X) then A has a simple regularizer to the ideal
K(X → X) of all finite dimensional operators belonging to L0(X).

Corollary 8.9. The algebra L0(X) is regularizable.

Let be given an algebra X (X) ⊂ L0(X) of linear operators and a left (right) ideal J ⊂
X (X) ∗). Then J is said to be positive (negative) semi-Fredholm ideal if αI+T < +∞
(βI+T < +∞) for every T ∈ J . The algebra X (X) is left (right) regularizable to a left
(right) ideal J ⊂ X (X) if every operator A ∈ X (X) with a finite nullity (deficiency) has
a left (right) regularizer to the ideal J .

Theorem 8.19. Suppose that an algebra X (X) ⊂ L0(X) of linear operators is left (right)
regularizable to a positive (negative) semi-Fredholm ideal J ⊂ X (X). Then

(i) the operator A + T0 has a finite nullity (deficiency) for every operator A ∈ X (X)
with a finite nullity (deficiency) and for every T0 ∈ J ;

(ii) every operator belonging to a positive (negative) semi-Fredholm ideal J1 ⊂ X (X) is a
perturbation of the class of all linear operators with a finite nullity (deficiency) belonging
to X (X).

Proof. (i) By our assumption, there is an operator RA ∈ X (X) such that RAA = I + T
(ARA = I + T , respectively), where T ∈ J . Then for every T0 ∈ J

RA(A + T0) = RAA + RAT0 = I + T + RAT0 = I + T1, where T1 = T + RAT0 ∈ J ,

∗) cf. for instance, Jacobson J[1], also PRR[1].
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(A + T0)RA = ARA + T0RA = I + T + T0Ra = I + T2, where T2 = T + T0RA ∈ J ,

respectively. By the assumption about the ideal J , it follows that the operator I + T1

has a finite nullity (the operator I + T2 has a finite deficiency). This, and Theorem 8.2
together imply that the operator A + T0 has a finite nullity (deficiency).

(ii) Let J̃ = J + J1. In a similar way, as in the proof of Theorem 8.14, we show that
J̃ is a positive (negative) semi-Fredholm ideal in X (X) and that the algebra X (X) is left
(right) regularizable to the ideal J̃ . This, and Point (i) together imply that operators
belonging to J̃ , in particular, operators belonging to J1, are perturbations of the class of
all operators with a finite nullity (deficiency) belonging to X (X). �

Theorem 8.20. If an algebra X (X) ⊂ L0(X) is regularizable and T = A + B for every
T ∈ X (X), where the operators A, B have finite nullities (deficiencies) then the set Π of all
perturbations of the class of all operators with a finite nullity (deficiency) is a left (right)
ideal in the algebra X (X).

Proof. Theorem 8.5 implies that A + B ∈ Π whenever A,B ∈ Π. Let V ∈ X (X) be a
perturbation of the class of all operators with a finite d-characteristic and let A ∈ X (X)
have a finite nullity (deficiency). Let B ∈ X (X) be an operator such that the superposition
BV (V B, respectively) is well defined. Since the algebra X (X) is regularizable, we conclude
that there an operator RB ∈ X (X) such that

BRB = I + K (RBB = I + K < respectively) where K ∈ KX (X).

Theorems 8.1 and 8.6 together imply that the operator

A + BV = (BRB −K)A + BV = B(RBA + V )−KA

(A + V B = A(RBBK) + V B = (ARB + V )BAK, respectively)

has a finite nullity (deficiency). Then the operator BV (V B, respectively) is a perturbation
of the class of all operators with a finite nullity (deficiency). Our assumption that every
operator belonging to X (X) is a sum of two operators with a finite nullity (deficiency) and
the additivity of the set of perturbations together imply our conclusion. �

Corollary 8.10 If every operator belonging to a regularizable algebra X (X) ⊂ L0(X) of
linear operators is a sum of two operators with a finite d-characteristic then the set of all
perturbations of the class of all operators with a finite d-characteristic belonging to the
algebra X (X) is a quasi-Fredholm ideal in X (X). By Point (iii) of Theorem 8.15, this
ideal is the maximal quasi-Fredholm ideal in X (X).

The following theorem can be proved (cf. PRR[1], pp. 61-63):

Theorem 8.21. Every operator belonging to the algebra L0(X) is a sum of two isomor-
phisms. Even more, if the bases in spaces X and Y are equipotent then every operator
A ∈ L0(X → Y ) is a sum of two isomorphisms of the space X onto the space Y .

If X (X) is an arbitrary algebra of linear operators, then the theorem which says that every
operator A ∈ X (X) is sum of two operators with a finite d-characteristic, is not true. This
is shown by the following example.



Index and perturbations of linear operators 131

Example 8.5. Let X be the linear space of all continuous complex-valued functions
defined on the whole complex plane. Let X (X) be the algebra of operators of multiplication
by a complex polynomial p(z). If a polynomial p(z) is not a constant then the corresponding
operator P has the infinite deficiency βP . Indeed, the fundamental theorem of algebra
implies that there is a number z0 ∈ C such that p(z0) = 0. Observe that for every x ∈ X
there is a constant c > 0 such that

|x(z)− x(z0)| ≤ c|z − z0| for |z − z0| < 1 whenever x ∈ EP = PX.

Write xα(z) = |z − z0|α, where 0 < α < 1. Then xα 6∈ lin {EP , xβ , β > α} and βP = +∞.
Hence D(X → X) = {aI : a ∈ C}. We therefore conclude that an operator P ∈ X (X),
which is not of the form aI, cannot be written as the sum of two operators with a finite
d-characteristic. �

Theorems 8.10, 8.11, 8.12, 8.13, 8.14, 8.15, 8.19 and 8,20 and Corollaries 8.5, 8.7, 8.8,
8.9, 8.10, where there are considered algebras X (X) of linear operators mapping a linear
space X into itself, can be generalized for the case of linear operators mapping a linear
space into another. Even more, they can be generalized for the class of all linear operators
mapping a linear space Xα into a linear space Xβ for arbitrary α, β ∈ A, where {Xα}α∈A
is a class of linear spaces. In order to do it, there is necessary to introduce and to examine
an algebraic structure much more general than an algebra (cf. PR[5]).

Exercises.

Exercise 8.1. Let X be the space (s) of all real sequences. Define the operators Sl and
Sr of the shifts to left and to right by means of formulae

Slx = {x2, x3, ...}, Srx = {0, x1, x2, ...} for x = {x1, x2, ...}.

Prove that the operators Sl and Sr have the index different than zero. �

Exercise 8.2. In the space C[0, 1] consider an integral equation with a degenerate kernel:

(8.17) x(t) + λ

∫ t

0

tsx(s)ds = µt,

where λ, µ are real parameters. Prove that

(i) Equation (8.17) has a unique solution for every µ ∈ R whenever λ 6= −3;

(ii) if λ = −3 then solution to Equation (8.17) exist if and only if µ = 3
2 ;

(iii) determine these solutions. �

Exercise 8.3. In the space C[0, π
2 ] consider an integral equation with a degenerate kernel:

(8.18) x(t)− λ

∫ π/2

0

sin (t + s)x(s)ds = sin 2t− 3
2
,
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where λ ∈ R is a parameter. Prove that

(i) if λ 6= 2
1±π then Equation (8.18) has a unique solution;

(ii) if λ = 2
1±π then there exist at least two solutions to Equation (8.18);

(iii) determine the nullity of the integral operator appearing in Equation (8.18). �

Exercise 8.4. Let T ∈ L0(X) and let λ0 be an eigenvalue of T . A principal space Xλ0

corresponding to the eigenvalue λ0 is said to be splittable if

(8.19) X = Xλ0 ⊕Nλ) ,

where Nλ0 is an invariant subspace for the operator T , i.e. TNλ0 ⊂ Nλ0 and Nλ0 =
(T − λ0I)Nλ0 . Prove that

(i) if the subspace Xλ0 is finite dimensional then the decomposition (8.19) is uniquely
determined;

(ii) if Xλ0 is a finite dimensional splittable principal space then the operator A−λ0I has
a finite dimensional characteristic. �

Exercise 8.5. Suppose that A1, ..., An ∈ L0(X), A = A1...An and αA = βA = 0. Prove
that αAj = 0 and βAj = 0 for j = 1, ..., n. �

Exercise 8.6. Prove that λ is a regular value of the operator Tn, where T ∈ L0(X), if
and only if the n-th roots λ1, ..., λn of the number λ are regular values of the operator T
(cf. Exercise 8.5). �

Exercise 8.7. The spectrum ∗) of an operator is said to be discrete if is either finite or
a denumerable sequence {λ} tending to zero . Let T ∈ L0(X). Prove that the following
conditions are equivalent:

(i) The operator T has a discrete spectrum.

(ii) There is a positive integer n such that the operator Tn has a discrete spectrum.

(iii) For every positive integer n the operator Tn has a discrete spectrum. �

Exercise 8.8. Let T ∈ L0(X). Prove the following theorem: if there is a positive integer
N such that for all n > N the operator Tn has a discrete spectrum and the operator I−Tn

has a finite dimensional characteristic and the index zero, then the operator I − T has a
finite dimensional characteristic and the index zero (cf. Exercise 8.7). �

Exercise 8.9. Define a shift operator by the formula: (Sx)(t) = x(t−h) for x ∈ X, where
X is the linear space of all functions continuous and bounded for t ∈ R and the point
h ∈ R is fixed. Prove that

(i) the operator S is an isomorphism;

(ii) the operator I − S has not a finite dimensional characteristic. �

∗) cf. Chapter 5.
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Chapter 9.

Index of conjugate operators. Generalized Fredholm alternative.

In Chapter 2 we have denoted by X ′ the space conjugate to a space X, i.e. the space of all
linear functionals defined on the space X. A subspace Ξ ⊂ X is said to be total if ξ(x) = 0
for every ξ ∈ Ξ implies x = 0 (where x ∈ X).

Theorem 9.1. The space X ′ is total.

Proof. Let x 6= 0 be an arbitrary element of the space X. Denote by X0 a one-dimensional
subspace spanned by the element x, i.e. X0 = {tx : t is a scalar}. Consider a functional
f0 defined on the subspace X0 by means of the formula: f0(tx) = t. Clearly, f0 is a linear
functional. Corollary 2.2 implies that the functional f0 can be extended to a functional f
defined on the whole space X. Then f ∈ X ′ and f(x) = 1 6= 0. The arbitrariness of the
element x ∈ X implies that the space X ′ is total. �

Observe that elements x ∈ X can be treated as functionals defined on a total subspace
Ξ ⊂ X ′, since a mapping

Fx(ξ) = ξ(x) for every x ∈ X and ξ ∈ Ξ.

Therefore, if we denote by Ξ′ the space of all linear functionals defined on Ξ then the
whole space X is mapped in a one-to-one way into the subspace Ξ′. This mapping is said
to be the canonical embedding and is denoted by κ. The image κX of the space X by this
mapping is a total space of functionals defined on the space Ξ, for the condition ξ(x) for
all x ∈ X implies ξ = 0.

In the sequel every total subspace of the space X ′ will be also called a conjugate space
with X.

Let be given two linear spaces X and Y , both over the same field F of scalars. Suppose that
H ⊂ Y ′ is a conjugate space ∗). Then to every operator A ∈ L(X → Y ) there corresponds
the operator ηA, whose domain is the space H and the set of values is X ′, defined by means
of the equality

(ηA)x = η(Ax) for all x ∈ DA and η ∈ H

(cf. Formula (2.18)).

The operator ηA is said to be a conjugate operator with A and will be denoted by A′.
Then, by definition,

A′η = ηA for every η ∈ H.

Similarly, as in Chapter 2, we prove that I ′ = I and if the sum A + B is well defined then
(A + B)′ = A′ + B′ (cf. Formulae (2.20), (2.21)).

∗) Here and in the sequel H denotes the Greek capital letter ”eta”.
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Let Ξ ⊂ X ′ be an arbitrary conjugate space. Consider operators A′ as defined for func-
tionals η ∈ H such that A′η = ηA ∈ Ξ. In this manner to every operator A ∈ L(X → Y )
there corresponds an operator A′ ∈ L(H → Ξ). With this general formulation it may
happens that the operator A′ is defined on the set {0} only. We therefore shall consider
in the sequel only operators A ∈ L0(X → Y ) such that A′ ∈ L0(H → Ξ), i.e. operators
A ∈ L0(X → Y ) such that A′η ∈ Ξ for every η ∈ H. The set of all these operators will be
denoted by L0(X → Y, H → Ξ). Then, by definition,

(9.1) L0(X → Y, H → Ξ) =

= {A ∈ L0(X → Y ) : A′η = ηA ∈ Ξ for every η ∈ H}.

Clearly, this set is a linear space. The space L0(X → Y, H → Ξ) will be denoted shortly
by L0(X, Ξ). Clearly, the space L0(X, Ξ) is an algebra for (AB)′ = B′A′ for all A,B ∈
L0(X, Ξ) (cf. Formula (2.22)).

Theorem 9.2. A finite dimensional operator K defined by means of the equality

Kx =
n∑

j=1

fj(x)yj for x ∈ X,

where f1, ..., fn ∈ X ′ and y1, ..., yn ∈ Y are linearly independent, belongs to the space
L0(X → X, Ξ → Ξ) if and only if fj ∈ Ξ (j = 1, ..., n).

Proof. Indeed, suppose that ξ ∈ H. If f1, ..., fn ∈ Ξ then K ′ξ = ξK =
n∑

j=1

ξ(yj)fj ∈ Ξ. �

For an arbitrary subset E ⊂ Y and an arbitrary conjugate space H ⊂ Y ′ write

(9.2) E⊥ = {η ∈ H : η(y) = 0 for all y ∈ E}.

The set E⊥ is said to be an H-orthogonal complement of the set E.

Theorem 9.3. If A ∈ L0(X → Y, H → Ξ) then αA ≤ βA′ .

Proof. Clearly, αA′ = dim E⊥A = dim (AX)⊥. On the other hand, every functional
η ∈ E⊥A induces a functional in the quotient space Y/EA. If βA = dim Y/A < +∞ then
the dimension of the conjugate space (Y/EA)′ is equal to βA (cf. Corollary 2.3). Then
αA′ ≤ βA. If βA = +∞ then this inequality is always satisfied. �

A subspace E ⊂ Y is said to be H-describable if (E⊥)⊥ = E, where

(9.3) (E⊥)⊥ = {y ∈ Y : η(y) = 0 for η ∈ E⊥}

and H ⊂ Y ′ is a conjugate space.

An operator A ∈ L0(X → Y, H → Ξ) is said to be H-solvable if its range EA is H-
describable.
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Clearly, if an operator A is H-solvable then dim E⊥A = βA. This, and the proof of Theorem
9.3 together imply

Theorem 9.4. If an operator A ∈ L0(X → Y, H → Ξ) is H-solvable then αA′ = βA.

Corollary 9.1. If A ∈ L0(X → Y, H → Ξ) and EA = Y then the operator A′ ∈ L0(H →
Ξ, X → Y ) maps H into Ξ in a one-to-one way.

Proof. Indeed, by our assumption, αA′ = βA = 0. Then ker A′ = {0} and the operator A′

is invertible on the space H. �

Corollary 9.2. If an operator A ∈ L0(X → Y, H → Ξ) is an isomorphism the conjugate
operator A′ is also an isomorphism.

Let E be a subspace of a linear space X. Let ϕE be a mapping of the space X into the
quotient space X/E such that to every element x ∈ X there corresponds a coset [x] = x+E
induced by the element x, i.e. ϕEx = x + E (x ∈ X). Clearly, the mapping ϕE is a linear
operator.

Corollary 9.3. Suppose that E is a subspace of a linear space X and that Ξ ⊂ X ′ is a
conjugate space. If H ⊂ (X/E)′ is a conjugate space satisfying the condition ϕ′EH ⊂ Ξ
then the operator ϕ′E defined on the whole space H maps H in a one-to-one way into the
space E⊥.

Proof. By definition, DϕE
= X, EϕE

= ϕEX = X/E. This, and Corollary 9.1 together
imply that DϕE

= H and that ϕ′E is a one-to-one mapping of H into Ξ. Suppose that
ξ ∈ ϕ′EH, however, ξ 6∈ E⊥. Then there is an element x ∈ E such that ξ(x) 6= 0. Since
ξ = ϕ′Eη for an η ∈ H and ϕEx = 0 for every x ∈ X, we conclude that

ξ(x) = (ϕ′Eη)x = η(ϕEx) = η(0) = 0,

which contradicts to our assumption that ξ(x) = 0. �

Theorem 9.5. Every operator A ∈ L0(X → Y ) is Y ′-solvable.

Proof. Let y0 ∈ Y be an arbitrary element which does not belong to the range EA of the
operator A. Write

Y0 = lin {y0 + EA} = lin {ay + z, where z = Ax, x ∈ X, a is a scalar}.

Define a functional η0 by means of the formula: η0(u) = a for u ∈ Y0. By Corollary 2.2, the
functional η0 can be extended to a functional η̃0 defined on the whole space Y . Observe
that, by definition, η̃0(EA) = η0(EA) = 0. Hence η̃0 ∈ E⊥A . Then for every y0 6=∈ EA there
is a functional η̃ ∈ E⊥A such that η0(y0) = 1. This implies that

EA = {y ∈ Y : η(y) = 0 for all η ∈ E⊥A } = (E⊥A )⊥,

which proves that the operator A is Y ′-solvable. �

Theorems 9.5 and 9.4 together imply
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Corollary 9.4. If A ∈ L0(X → Y, Y ′ → X ′) then αA′ = βA.

Theorem 9.4 does not hold without the assumption that the operator under question is
H-solvable, even if X = Y , Ξ = H. This is shown by the following

Example 9.1. Suppose that X = Y = C∞[0, 1] and that

Ξ = H = {ξ : ξ = ξ(x) =
∫ t

0

x(t)ξ̃(t)dt, where ξ̃ ∈ C∞[0, 1], ξ̃(n)(0) = 0 (n ∈ N)},

where by ξ̃(n) is denoted the nth derivative of the function ξ̃. Let

(Ax)(t) = y(t) =
∫ 1

t

x(s)ds for x ∈ C∞[0, 1].

Clearly, αA = 0, βA > 0 (cf. Example 8.2). Let a functional η ∈ H be given by a function
η̃. Then for every x ∈ C∞[0, 1] we have

(A′η)x = η(Ax) =
∫ 1

0

[ ∫ 1

t

x(s)ds

]
η̃(t)dt =

=
[ ∫ t

0

x(s)ds

( ∫ t

0

η̃(s)ds

)]1

0

+
∫ 1

0

x(t)
[ ∫ t

0

η̃(s)ds

]
dt =

=
∫ 1

0

x(t)
[ ∫ t

0

η̃(s)ds

]
dt.

Then the conjugate operator A′ maps the functional η defined by the formula

η(x) =
∫ t

0

η̃(t)x(t)dt

into a functional ξ given by the formula

ξ(x) =
∫ t

0

ξ̃(t)x(t)dt, where ξ̃(t) =
∫ t

0

η̃(s)ds (x ∈ X).

The operator A′ is a one-to-one mapping of the space H into itself. Hence βA′ = αA′ = 0,
i.e. αA′ < βA. �

Let A ∈ L0(X → Y, H → Ξ). According to the admitted convention, the operator A′

naps the space H into the space Ξ. The spaces Y and X may be treated as spaces of
functionals over H and Ξ, respectively. The definition of a conjugate operator immediately
implies that the operator A′′ = (A′)′ conjugate with A′ ∈ L0(H → Ξ, X → Y ) is equal to
the operator A. This, and the change of roles of the operators A and A′ in Theorem 9.3
together imply



Index of conjugate operators. Generalized Fredholm alternative. 137

Theorem 9.6. If A ∈ L0(X → Y, H → Ξ) then αA ≤ βA′ .

In order to obtain a theorem dual to Corollary 9.4, we should say what it means that the
operator A′ is X-describable. Write

A = {x ∈ X : ξ(x) = 0 for all ξ ∈ EA′}.

Then
EA′ = {ξ ∈ Ξ : ξ(x) = 0 for all x ∈ A}.

But this fact that ξ ∈ EA′ implies that ξ = A′η for an η ∈ H. Then ξ(x) = η(x). Since
the space H is total, we conclude that A = {x ∈ X : Ax = 0} = ker A. This implies that
EA′ = ker A⊥. WE therefore obtain the following

Theorem 9.7. If A ∈ L0(X → Y, H → Ξ) and EA′ = ker A⊥ then αA = βA′ .

Theorem 9.8. If A ∈ L0(X → Y, Y ′ → X ′) then αA = βA′ .

Proof. Decompose spaces X and Y onto direct sums: X = ker A⊕ V1, Y = EA ⊕ V2. The
operator A is a one-to-one mapping of the subspace V1 onto the subspace EA. This, and
Corollary 9.2 together imply that the operator A′ maps the space of all linear functionals
defined on the subspace EA onto the space V ′

1 of all linear functionals defined on the
subspace V1. Every linear functional defined on the subspace V1 can be extended to the
whole space X in such a manner that f(x) = 0 for x ∈ ker A (cf. Corollary 2.2). Then
βA′ = dim X/V1 = dim ker A = αA. �

The above considerations show us that the equalities βA′ = αA, αA′ = βA do not hold
always. Hence also the equality κA′ = −κA does not hold always. We therefore shall
introduce a new notion.

Let A ∈ L0(X → Y, H → Ξ). Write βH
A = αA′ . An ordered pair (αA, βH

A) is said to be a
dH-characteristic of the operator A. A dH-characteristic is finite (semi-finite) if αA < +∞
and βH

A < +∞ (either αA < +∞ or βH
A < +∞, respectively). For operators having either

finite or semi-finite dH-characteristic we may define H-index κH
A in the following way:

κH
A =


βH

A − αA if αA < +∞, βh
A = αA′ < +∞,

+∞ if αA < +∞, βH
A = +∞,

−∞ if αA = +∞, βH
A < +∞.

Theorem 9.3 implies that βH
A = αA′ ≤ βA. Then

(9.4) κH
A ≤ κA for A ∈ L0(X → Y, H → Ξ).

It is easy to see that the pair (αA′ , αA) is a dX -characteristic of the operator A′. Then

(9.5) κH
A = −κX

A′ for A ∈ L0(X → Y, H → Ξ).
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Corollary 9.4 and Theorem 9.8 immediately imply

Corollary 9.5. If A ∈ L0(X → Y, Y ′ → X ′) then the dX -characteristic of the operator A
is equal to its d-characteristic, hence κY ′

A = κA.

Example 9.1 showed that a dH-characteristic of an operator A is not always equal to its
d-characteristic, even if X = Y , Ξ = H. This example also implies that for the H-index of
a superposition of operators a formula similar to Formula (2.2) does not hold. Indeed, if
the space X and the operator A are defined as in Example 9.1 and B = d

dt then AB = −I.
Hence κH

BA = κBA = 0. On the other hand, κH
B = κB = - 1 and κH

A = 0. Then

κH
BA 6= κH

A + κH
B = −1.

Suppose that the operator A ∈ L0(X → Y, Y ′ → X ′) has a finite d-characteristic (nullity,
deficiency) and the dH-characteristic of the operator A is equal to its d-characteristic. Then
A is said to be a ΦH-operator (Φ+

H-operator, Φ−H-operator, respectively).

Theorem 9.9. If an operator K ∈ L0(X, Ξ) is finite dimensional then the operator I +K
is a ΦΞ-operator.

Proof. Let Kx =
N∑

j=1

fj(x)xj for x ∈ X, where f1, ..., fn ∈ X ′, x1, ..., xn ∈ X are linearly

independent. We have shown (in the proof of Theorem 8.4) that αI+K = βI+K = n − k,
where k is the rank of the matrix [ξi(xj) + δij ]i,j=1,...,n. Consider the conjugate operator

I + K ′, where ξK ′ =
n∑

j=1

ξ(xj)fj . Clearly, αI+K′ = βI+K′ = n− k′, where k′ is the rank

of the matrix
[ξj(xi) + δij ]i,j=1,...,n = [ξi(xj) + δij ]Ti,j=1,...,n.

Then k′ = k. Hence βH
I+K = αI+K′ = n− k′ = n− k = αI+K = βI+K . �

Let X be a linear space and let X0 ⊂ X be its subspace. Let Ξ0 be a family (non-
necessarily linear) of linear functionals defined on the space X. The subspace X0 is said
to be described by the family Ξ0 when ξ0(x) = 0 for all ξ0 ∈ Ξ0 if and only if x ∈ X0, i.e.
when

X0 = {x ∈ X : ξ0(x) = 0 for all ξ0 ∈ Ξ0}.

In other words: a subspace X0 ⊂ X is described by a family Ξ0 if and only if X0 is
Ξ0-describable and X⊥

0 = lin Ξ0.

An operator A ∈ L0(X → Y, H → Ξ) is H-solvable if and only if its range EA can be
described by a family H0 ⊂ H. It is easy to verify that an operator A ∈ L0(X → Y, H → Ξ)
with a finite d-characteristic is a ΦH-operator if and only if its range EA can be described
by a finite system of linear functionals. If a subspace X0 ⊂ X can be described by a finite
system of linear functionals Ξ0 ⊂ Ξ then every subspace X1 ⊂ X containing X0, i.e. such
that X0 ⊂ X1 ⊂ X, can be described by a finite system Ξ1 ⊂ Ξ0 ⊂ Ξ of linear functionals.
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An operator T ∈ L0(X → Y, H → Ξ) satisfies the Fredholm alternative if three following
conditions hold:

(a) The homogeneous equation (I + T )x = 0 has the finite number k of linearly indepen-
dent solutions.

(b) The conjugate homogeneous equation (I ′ + T ′)ξ = 0 has the finite number k′ of
linearly independent solutions and k′ = k.

(c) The equation
(I + T )x = y, y ∈ Y,

has a solution if and only if ξ(y) = 0 for every solution ξ of the conjugate homogeneous
equation (I ′ + T ′)ξ = 0.

This alternative, i.e. Conditions (a), (b), (c), have been proved firstly for some integral
equations by Swedish mathematician Ivar Fredholm in the years 1901-1904.

The Fredholm alternative here was presented in a traditional way. Now, using notions
introduced in Chapter 8 and in this chapter, we can formulate it in another way. Namely,

An operator T ∈ L0(X → Y, H → Ξ) satisfies the Fredholm alternative if three following
conditions hold:

(a’) αI+T < +∞;

(b’) αI′+T ′ = αI+T ;

(c’) the space EI+T = (I + T )X is described by the family Z = {ξ1, ..., ξn} of linear
functionals such that ker (I ′ + T ′) = lin Z and n = αI+T = αI′+T ′ .

The above conditions immediately imply

Theorem 9.10. An operator T ∈ L0(X → Y, H → Ξ) satisfies the Fredholm alternative
if and only if the operator I + T is a ΦH-operator and κH

I+T = 0.

An operator T ∈ L0(X → Y, H → Ξ) satisfies the generalized Fredholm alternative (oth-
erwise we say: T is a Noether operator) if

(i) αI+T < +∞;

(ii) αI′+T ′ < +∞;

(iii) the space EI+T = (I + T )X is described by the family Z = {ξ1, ..., ξn} of linear
functionals such that ker (I ′ + T ′) = lin Z and n′ = αI′+T ′ .

In other words, in the generalized Fredholm alternative we do not assume that the nullities
of the operator I + T and its conjugate I ′ + T ′ are equal.

Conditions (i), (ii), (iii) of the generalized Fredholm alternative together imply

Theorem 9.11. An operator T ∈ L0(X → Y, H → Ξ) satisfies the generalized Fredholm
alternative if and only if the operator I + T is a ΦH-operator.
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Note that, by definitions, an operator T ∈ L0(X → Y, H → Ξ) is a Noether operator if
and only if I + T is a ΦH-operator.

Theorems 9.9 and 9.10 together imply that finite dimensional operators satisfy the Fred-
holm alternative. The operator D − I, where the operator D is defined in Example 8.2,
satisfies the generalized Fredholm alternative.

Corollary 9.5 implies

Corollary 9.6. If an operator A ∈ L0(X → Y, Y ′ → X ′) has a finite d-characteristic then
the operator T = A− I satisfies the generalized Fredholm alternative,

Theorem 9.12. If A ∈ D(X → Y ) ∩ L0(X → Y ) then for every conjugate space Ξ ⊂ X ′

there is a ΦΞ-operator B ∈ L0(Y → X) such that the operators AB − I and BA − I are
finite dimensional in the spaces Y and X, respectively.

Proof. By our assumption, αA = dim ker A < +∞. Let αA = n. Consider a system
{f1, .., fn} ⊂ Ξ of linear functionals whose restrictions to the subspace ker A are linearly
independent. Let V = {x ∈ X : fj(x) = 0 for j = 1, ..., n}. Decompose the space X onto
the direct sum: X = ker A ⊕ V . The restriction of the operator A to the subspace V is
invertible and maps V into the set EA. Let A−1

1 be its inverse defined on the subspace EA.
Decompose the space Y onto the direct sum: Y = EA ⊕ V1 and define an operator B in
the following way:

By =
{

A−1
1 for y ∈ EA,

0 for y ∈ V1.

Since the set EB = V can be described by a finite system of linear functionals, we conclude
that B is a ΦΞ-operator.

The operator PEA
= AB is a projector onto the set EB while the operator PV = BA is a

projector onto the subspace V . Since αA and βA are finite, these operators differ from the
identity operator only by finite dimensional operators. The subspace V can be described
by a finite system of linear functionals belonging to the space Ξ. Hence PV = I − K,
where the operator K ∈ L0(X, Ξ) is finite dimensional. Similarly, PEA

= I −K1 where the
operator K1 is finite dimensional. In particular, if A is a ΦH-operator then K1 ∈ L0(Y, H).

�

Theorem 9.13. If a ΦH-operator B ∈ L0(X → Y ), a ΦΣ-operator A ∈ L0(Y → Z) and
A′H ⊂ Σ then the superposition is a ΦΣ-operator and

(9.6) κΣ
AB = κΣ

A + κH
B .

Proof. Similarly, as in the proof of Theorem 8.1, decompose the space Y onto the direct sum
(8.4): Y = EB⊕V2⊕V3. Since B is a ΦH-operator, the space EB can be described by a finite
system of linear functionals of dimension equal to the dimension of the space V2⊕V3. Then
every space Y0 ⊃ EB can be described by a finite system of linear functionals. In particular,
the space EB⊕V2 can be described by a finite system f1, ..., fn3 of linear functionals, where
n3 = dim V3. The set EA can be described by a finite system g1, ..., gβA

of linear functionals,
because A is a ΦΣ-operator. Since A′H ⊂ Σ, Formula (8.4′) implies that EA = EAB ⊕AV3.
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Then the set EAB can be described by a finite system g1, ..., gβA
, f1A, ..., fn3A of linear

functionals. This, and Theorem 8.1 together imply that

κΣ
AB = κAB = κA + κB = κΣ

A + κH
B .

�

Theorem 9.14. Suppose that B ∈ L(X → Y ) and A ∈ L0(Y → Z,H → Σ). If
βAB < +∞ and βΣ

AB = βAB then βA < +∞ and βH
A = βA.

Proof. Theorem 8.2 implies that βA < +∞ for βAB < +∞. By the assumption that
βΣ

AB = βAB , it follows that the set EAB can be described by a finite system of linear
functionals. Then every space containing EAB , in particular the space EA = EAB ⊕ AV3

(cf. Formula (8.4′)), can be described by a finite system of linear functionals. Then
βH

A = βA. �

Theorem 9.14 and Corollary 8.1 immediately imply

Corollary 9.7. If A ∈ L0(X → Y ), B ∈ L0(Y → X), AB is a ΦΞ-operator and B is a
ΦH-operator then A is a ΦΞ-operator.

Let P (X, Ξ) ⊂ L0(X) be an arbitrary algebra of linear operators and let KP (X, Ξ) be the
set of all finite dimensional operators contained in P (X, Ξ). A proper ideal J ⊂ P (X, Ξ)
is said to be a Ξ-quasi-Fredholm ideal if the I + T is a ΦΞ-operator whenever T ∈ J .

Theorem 9.9 implies

Corollary 9.8. If P (X, Ξ) ⊂ L0(X) is an arbitrary algebra of linear operators then the set
KP (X, Ξ) of all finite dimensional operators contained in P (X, Ξ) is a Ξ-quasi-Fredholm
ideal in P (X, Ξ).

Theorem 9.15. Suppose that A ∈ L0(X → Y, H → Ξ) and that there is an operator
RA ∈ L0(X → Y, H → Ξ) such that

ARA − I ∈ JH, RAA− I ∈ JΞ,

where JH is a H-quasi-Fredholm ideal and JΞ is a Ξ-quasi-Fredholm ideal. Then A is a
ΦΞ-operator.

Proof. By the assumptions, ARA is a ΦH-operator and RAA is a ΦΞ-operator. This, and
Corollary 9.7 together imply that A is a Φ− Ξ-operator and RA is a ΦH-operator. �

Theorem 9.15 implies

Corollary 9.9. If an operator A belonging to an algebra P (X, Ξ) ⊂ L0(X, Ξ) of linear
operators has a simple regularizer to a Ξ-quasi-Fredholm ideal J ⊂ P (X, Ξ) then A is a
ΦΞ-operator.

Theorem 9.16. Every quasi-Fredholm ideal J contained in a regularizable algebra
P (X, Ξ) ⊂ L0(X, Ξ) of linear operators is a Ξ-quasi-Fredholm ideal.
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Proof. Suppose that T ∈ J . Then the operator I + T has a finite d-characteristic. Since
the algebra P (X, Ξ) is regularizable, the operator I+T has a simple regularizer to the ideal
KP (X, Ξ) of all finite dimensional operators contained in P (X, Ξ) which, by Corollary 9.8,
is a Ξ-quasi-Fredholm ideal. Corollary 9.9 implies that I + T is a ΦΞ-operator. This, and
the arbitrariness of the operator T ∈ J implies that J is a Ξ-quasi-Fredholm ideal. �

Theorem 9.17. Suppose that an algebra X (X) of linear operators contains the ideal
K(X, Ξ) of all finite dimensional operators belonging to L0(X, Ξ) and that I + K is a
ΦΞ-operator for every K ∈ K(X, Ξ). Then X (X) ⊂ L0(X, Ξ).

Proof. Suppose that an operator T ∈ X (X) does not preserve the conjugate space Ξ, i.e.
there is a linear functional ξ ∈ Ξ such that η = T ′ξ 6∈ Ξ. Let an operator P ∈ K(X, Ξ) be
of the form Px = ξ(x)x0 for x ∈ X. Then PTx = ξ(Tx)x0 = η(x)x0 for x ∈ X. Choose
an x0 such that η(x0) 6= 0. Let

Kx =
η(x)
η(x0)

x0 for x ∈ X.

By this definition, K is a finite dimensional operator belonging to X (X). But EI−K =
{x ∈ X : η(x) = 0}. Indeed,

η(x−Kx) = η(x)− η(x)
η(x0)

η(x0) for x ∈ X.

However, by definition, η 6∈ Ξ. This implies that the operator I −K is not a ΦΞ-operator,
a contradiction with our assumption. Hence every operator T ∈ X (X) preserves the
conjugate space. �

Suppose that we are given an algebra X (X) ⊂ L0(X, Ξ) of linear operators. Denote by
P ′(X, Ξ) the set of all operators conjugate to operators belonging to P (X, Ξ). It is easy
to verify that this set is also an algebra. Let J be an ideal in the algebra P (X, Ξ). Then
the set J ′ of all operators conjugate to operators belonging to J is an ideal in the algebra
P ′(X.Ξ). Indeed, if A ∈ P (X, Ξ), T1, T2 ∈ J and a1, a2 are scalars then A′ ∈ P (X, Ξ),
T ′1, T

′
2 ∈ J ′ and

a1T
′
1 + a2T

′
2 = (a1T1 + a2T2)′ ∈ J ′,

A′T ′1 = (T1A)′ ∈ J ′, T ′2A
′ = (AT2) ∈ J ′.

Hence, if the operator A has a left regularizer to the ideal J , i.e. RAA = I + T , where
T ∈ J , then

A′R′
A = (RAA)′ = (I + T )′ = I ′ + T ′, where T ′ ∈ J ′,

i.e. R′
A is a right regularizer of the operator A′ to the ideal J ′. Similarly, If RA is a right

regularizer of the operator A to the ideal J then R′
A is a left regularizer of the operator

A′ to the ideal J ′. In particular, if the operator A has a simple regularizer to the ideal J
then the operator A′ has a simple regularizer to the ideal J ′ and RA′ = R′

A.
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Theorem 9.18. If an operator A ∈ D(X → Y ) is a ΦH-operator then every operator
K ∈ K(X → Y, H → Ξ) is a ΦH-perturbation of the operator A.

Proof. Since K ∈ K(X → Y, H → Ξ), we have

Kx =
n∑

j=1

gj(x)yj , for x ∈ X, where gj ∈ Ξ, yj ∈ Y (j = 1, ..., n).

Theorem 8.6 implies that A + K ∈ D(X → Y ). Let Z = {x : gj(Ax) = 0 (j = 1, ..., n)}.
Clearly, (A + K)x = Ax for x ∈ Z. But

AZ = EA ∩ {y : gj(y) = 0 (j = 1, ..., n)}.

By our assumption, A is a ΦH-operator. Then the set EA can be described by a finite
system of linear functionals. Hence the set AZ ⊃ EA can be described by a finite set of
linear functionals. Furthermore, since EA+K ⊃ AZ, we conclude that the set EA+K can be
also described by a finite set of linear functionals. This proves that A+K is a ΦH-operator.
Then K is a ΦH-perturbation of the operator A. �

Theorem 9.19. If an algebra P (X, Ξ) ⊂ L0(X, Ξ) of linear operators is regularizable to
a Ξ-quasi-Fredholm ideal J ⊂ P (X, Ξ) then all operators belonging to the ideal J are
perturbations of the class of all ΦΞ-operators belonging to the algebra P (X, Ξ).

Proof. If A ∈ P (X, Ξ) is an arbitrary ΦΞ-operator then it has a simple regularizer RA to
the ideal J , i.e. we have

RAA = I + T1, ARA = I + T2, where T1, T2 ∈ J .

Suppose that T ∈ J . Then

RA(A + T ) = I + RAT + T1 = I + T3, where T3 ∈ J ,

(A + T )RA = I + TRA + T2 = I + T4, where T4 ∈ J .

Since J is a Ξ-quasi-Fredholm ideal, the operators RA(A + T ) and (A + T )RA are ΦΞ-
operators. By Theorem 9.18, A + T is a ΦΞ-operator. The arbitrariness of the operator
A ∈ P (X, Ξ) implies that every operator T ∈ J is a perturbation of the class of all
ΦΞ-operators belonging to the algebra P (X, Ξ). �

Theorem 9.20. Suppose that all assumptions of Theorem 9.19 are satisfied. Then every
operator belonging to a Ξ-quasi=Fredholm ideal J1 ⊂ P (X, Ξ) is a perturbation of the
class of all ΦΞ-operators belonging to the algebra P (X, Ξ).

Proof. Let J̃ = J + J1. Similarly, as in the proof of Theorem 8.14, we show that J̃
is a Ξ-quasi-Fredholm ideal. Theorem 9.19 implies that all operators belonging to J̃ , in
particular, operators belonging to J1, are perturbations of the class of all ΦΞ-operators
belonging to the algebra P (X, Ξ). �
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A Ξ-quasi-Fredholm ideal J is said to be a Ξ-Fredholm ideal if κΞ
I+T = 0 whenever T ∈ J .

Since for ΦΞ-operators their Ξ-index is equal to their index, Theorems 8.14 and 9.20
together immediately imply

Corollary 9.10. If J and J1 are Ξ-Fredholm ideals in an algebra P (X, Ξ) ⊂ L0(X, Ξ) of
linear operators regularizable to the ideal J then all operators belonging to the ideal J̃ =
J +J1 are perturbations of the class of all ΦΞ-operators belonging to the algebra P (X, Ξ)
and these perturbations preserve the Ξ-index, i.e.

κΞ
A+T = κΞ

A

for every ΦΞ-operator A ∈ P (X, Ξ) and for every T ∈ J1.

It has been shown in Example 9.1 that dΞ-characteristic may change together with a change
of a conjugate space Ξ. However, two following theorems show that in some cases a change
of spaces X and Ξ does not imply a change of the corresponding dΞ-characteristic. This
fact plays an important role, in particular, when solving integral equations.

Theorem 9.21 (First reduction theorem). Suppose that Ξ ⊂ X ′ is a conjugate space
and that an operator A = I + T , where T ∈ L0(X), has a finite dΞ-characteristic. Let X0

be an arbitrary subspace of the space X containing the set TX and let Ξ0 be an arbitrary
subspace of the space Ξ containing the set ΞT = T ′Ξ:

TX ⊂ X0 ⊂ X, ΞT ⊂ Ξ0 ⊂ Ξ.

Then the operator A restricted to the subspace X0 has a finite dΞ0-characteristic which is
equal to a dΞ-characteristic of the operator A on the whole space X.

Proof. It is an immediate consequence of the fact that all solutions of the equation (I +
T )x = 0 in the space X belong to the subspace X0, i.e. ker (I + T ) ⊂ X0. Similarly, all
solutions of the conjugate equation ξ(I + T ) = (I ′ + T ′)ξ = 0 in the space Ξ belong to the
space Ξ0, i.e. ker (I ′ + T ′) ⊂ Ξ0. �

Theorem 9.22 (Second reduction theorem). Let X0 be a subspace of a linear space
X and let Ξ0 be a subspace of a conjugate space Ξ ⊂ X ′. Suppose that an operator
A ∈ L0(X0,Ξ0) has a simple regularizer RA such that

ARA = I + T1, RAA = I + T2,

where the operators T1, T2 can be extended to operators T̃1, T̃2 ∈ L0(X, Ξ) such that
both, I + T̃1, I + T̃2 are ΦΞ-operators. Then the operator A is a ΦΞ0-operator.

Proof. The operators I + T̃1, I + T̃2 are defined on the whole space X and, by our
assumption, they are ΦΞ-operators. Theorem 9,21 implies that the operators I +T1, I +T2

are ΦΞ0-operators. Then ARA and RAA are also ΦΞ0-operators. This, and Corollary 9.7
together imply that A is a ΦΞ0-operator. �
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Exercises.

Exercise 9.1. An operator B is said to be generalized inverse for an operator A (otherwise:
almost inverse of A) if

(9.7) ABA = A and BAB = B.

Prove that

(i) If the operator A has a generalized inverse B then B has a generalized inverse A.

(ii) The operators A and B determined in Theorem 9.12 are generalized inverses each to
another.

(iii) If A ∈ D(X → Y ) ∩ L0(X → Y ) then to every conjugate space Ξ ⊂ X ′ there is a
ΦΞ-operator B ∈ D(X → Y ) ∩ L0(X → Y ) which is a generalized inverse of A. �

Exercise 9.2. Suppose that T ∈ L0(X) and there is a positive integer m such that I−Tm

is a ΦΞ-operator for a conjugate space Ξ ⊂ X ′. Prove that I − T is a ΦΞ-operator. �

Exercise 9.3. Are theorems similar to Theorems 9.13, 9.19, 9.20 and Corollary 9.10 true
for Φ+

Ξ -operators and Φ−Ξ -operators? �
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