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THE NATURAL CLASSIFICATION OF REAL LIE ALGEBRAS

M. RAINER AND H.-J. SCHMIDT

ABSTRACT. We classify the n-dimensional real Lie algebras according to al-
gebraic, geometric, and topological points of view. For the case that Lie
algebra, Riemannian geometry, and general topology yield the same classifi-
cation we call it the natural one. It turns out that for dimension n < 3 our
classification is natural. For n > 4 partial results are given.

1. Introduction

The classification of real Lie algebras can be performed under several points
of view; no generally accepted notation exists up to now. Here we consider three
approaches which give suitable classification schemes. For the case that all ap-
proaches coincide we call it the natural classification.

2. Notation

The dimensionis n > 1. Let ¢,j,k=1,... ,nand C := {C’fy} be a real tensor
antisymmetric in ¢ and j. With m = "2;1 -n? one gets: C' has m independent
components. So, the set of all these tensors C' can be identified with IR™. Even
for n = 1 this makes sense, because IR’ is a one-point set. The Jacobi condition,
C[lijCﬁl =0, is a continuous relation for these tensors C'. We define
(2.1) W™ = {C|C satisfies the Jacobi condition}.

W™ is a closed subset of IR™. Tt is a proper subset only if n > 3, because for
n < 2 the Jacobi condition is satisfied identically. The set of real Lie algebras of
dimension n will be denoted by K™. Every Lie algebra can be characterized by its
Lie product, i.e. the adjoint representation

[62', ej] = C’Zek
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w.r.t. basis elements e; of the Lie algebra. So we have a surjective map
(2.2) 7. Wn — K",

Two sets of structure constants ' represent the same Lie algebra iff they go into
each other by a regular basis change ¢; — Ale; with A € GL(n), where GL(n) is
represented by the set of all regular real n x n-matrices. So we can write

(2.3) K" =W"/GL(n).
For n = 3, Lie algebras can be defined by

[e1, 2] = nzes — hea,
[e2, €3] = nyey, [e3,€1] = naes + hes
via the quadrupels (h, e1, eq, e3) as follows:

IV (1,0,0,1); VI« (1, =1,0): 111 = VI,; VI, : (h,1,1,0).

3. First set of examples

For every n > 1 there exists one commutative Lie algebra, we denote it by 1)
(and if n is known from the context, simply by I). It corresponds to C’;k = 0. For
n =1 it is the only Lie algebra, K* = {I}.

A Lie algebra h is called trivial iff for all ,y € h the vector [z,y] is a linear
combination of  and y. For every n > 2 there exists exactly one non-commutative
trivial Lie algebra. We denote it by V() (or V). This algebra, which is also
called the pure vector type Lie algebra, corresponds to C’;k = 5Ejvk] with any
non-vanishing vector v,. For n = 2 we find K? = {I,V'}.

For every n > 3 there exists exactly one Lie algebra possessing some basis
{ei}i=1..n such that [ej,es] = es is the only non-vanishing Lie product. We
denote it by 17 (or II). Tt represents a non-trivial Lie algebra. For n > 3 the
set {I,I1,V} is a proper subset of K.

4. Algebraic classification scheme

For transformations C' — C, given by the formula
(4.1) Ol = A A A5,

we look for those elements A € G'L(n) for which C = C. For any Lie algebra h
and structure constants C'(h) of the adjoint representation, we have the set

K(h) = {4 € GL()IC(h) = C(h)}.
K (h) is a closed subgroup of GL(n), namely K(h) = Aut(h), which is the auto-
morphism group of h. It holds: K(h) = GL(n) iff h = I.

Let h # I, then K(h) is a proper closed subgroup of GL(n). Tt is GL(n) =
SL(n) ® IRy, where SL(n) := {A € GL(n)| det A = +1} is its unimodular
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subgroup and IRy := {A € GL(n)|A} = A3}, A > 0} is the group of positive scalar
multiplication operators.

For h # I™ | IR, is never a subgroup of K(h). Hence, in this case K(h) is
isomorphic to a subgroup of SL(n). For the canonical basis freedom &k := dim K,
we obtain k(1)) = n? k(h) < n? =1 for h # I, Let us take all n-dimensional
Lie algebras and look for the possible values of k. Denoting the number of different
k-values by i(n), it is 1 < i(n) < n?. Let these i(n) values be numbered in a

decreasing sequence as ki, ..., ki) Thus, k1 = nZn?—1>ky...> kitny > 0.
We define

(4.2) K"[{]:={h € K"|k(h) = kit1}.

Then it is K" = Ué»(:ng_lK” [5], a disjoint union of non-empty sets. [Remark:

Using instead of K™[i] the simplified notion of K”[{] = {h € K"
disadvantage that then most of all sets K" = ()]

By definition it is clear that K”[0] = {I(™}. Tt holds i(1) = 1, i(2) = 2 and
i(3) = 4. For n = 2 it holds K*[1] = {V®}. For n = 3 it holds K>[1] = {II,V},
K3[3] = {VIII,IX}, where IX = SO(3) and VIII = SO(2,1) are the semi-
simple Lie algebras. All remaining 3-dimensional Lie algebras together form the
set K3[2]. For completeness let us mention': k; =9, ks =6, ks = 4, kg = 3.

(h) = i} has the

5. Geometric classification scheme

Let & be a Lie algebra of dimension n and H the corresponding simply connected
Lie group. Let g be a positive definite left—invariant metric on H. Let V,(h, g) be
the underlying Riemannian manifold of the pair (H,g) (forgetting its Lie group
structure). [Of course the group structure of H can be resurrected as some sub-
group of the isometry group of V,,(h, g).] There exists a @—parameter set of
positive definite left invariant metrics on H. We identify two metrics ¢ and g iff

Va(h, g) is isometric to V;, (h, §). This identification reduces the w -parameter
set to a set of dimension d(h) < ﬂnz—-l'll

Examples: d(h) = 0 iff all left-invariant metrics are isometric to each other. Tt
is clear that this implies flatness of V,,, and this happens iff h 1s the commutative
Lie algebra. Therefore it holds [with 1.h.s algebraically defined in sct. 4, r.h.s.
geometrically defined in sct. 5]:

Theorem 1:

(1) For alln > 1 one has K"[0] ={h € K™
(2) For alln <3 and for all i one has K™[i]
(3) For alln > 2, d(V(™) = 1.

(4) For alln >3, d(11") = 1.

Proof: (1) is trivial. (2) is lengthy but straightforward (we applied computer
algebra). (3) follows from the fact that every positive definite left-invariant metric
of V(?) leads to a space of constant negative curvature. (4) holds because of 2
with IT € K3[1], 1, and the fact that 717 > 3, is the direct Abelian extension

d(h }

) =0
{he

d(h) = i}.
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of II® and hence for any g, there is a g» of IT® such that Vn(II("),g) =
Vg(II(B),gz) x Va(I"=3) g1), where g; is the unique flat metric of 7*=3). q.e.d.

Remark: d(h) = 1 if and only if there exists a non-flat positive definite left-
invariant metric on A and all such metrics are homothetically equivalent.

6. Topological classification scheme

In this section we propose two versions of a topological classification of the
n-dimensional Lie algebras. Theorem 2 shall help to understand the underlying
topology, Theorem 3 compares the first version of a topological classification with
the algebraic classification of eq. (4.2). Theorem 4 does it with the second version.

Let us go back to (2.2), m : W™ — K", which is a surjective map. W™ C IR™
carries the Euclidean subspace topology. So it is natural to define a topology "
in K" by the condition: " is the finest topology which makes the function =
continuous. It holds:

Theorem 2:

(1) A C K™ is closed in &™ iff 7=1(A) is closed in W".

(2) Given h;,h € K", then h; — h in &" iff there exist

X, X e W™ with X; = X in W and n(X;) = hy, m(X) = h.

Proof: (1) is only a reformulation of the definition. (2) applies the usual con-
struction of quotient topologies. q.e.d.

Remark: Theorem 2.2 can be formulated as follows: A sequence of Lie algebras
converges, h; — h, if and only if for each element of the sequence there exists a
basis such that the corresponding structure constants converge as real numbers.

It holds: (K™, «") is a Hausdorff space iff n = 1. (This is trivial for n = 1,
because K1 is a one-point set.) Let n > 2in the following. Then it holds: K" is the
only open set containing /(). Therefore, (K™, k") is a Ty but not a Ty-space. Such
spaces are not very intuitive, so we try the following: We write (K, k™) as disjoint
union of compact Hausdorff subsets. If there are more than one possibilities we
use a union which has the least number of subsets. To be precise, let us write: We
use the symbol K™ {i} to denote the elements of a minimal disjoint decomposition
of K™ into compact Hausdorff subspaces. For n < 4 this represents a definition,
for larger values n it 1s open yet whether the following requirements make such
a decomposition unique. K" = U‘Z(:%)K”{i} be a disjoint union. The minimality
condition implies K"{i} # @ for all i. j(n) be the smallest number such that
this decomposition into compact Hausdorff sets exists. Let N; be the number of
connected components of the set K" {i}. We set N := max{N;|0 < i < j(n)},
and Ny == max({N;|0 <7 < j(n)}\ {N;|0 < j < k—1}). If there is more than
one possibility, then we select that possibilities where N(gy has its least possible
value. If there are still more than one possibilities we take those with minimal
value N(1), and so on, until there remains -hopefully- only one possibility.

Now we expect the representation to be unique up to a permutation of the sets.
We fix the order by the requirement that K™{i} is a closed subset of U‘,Z(:ni)[(”{k}.
Then it holds
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Theorem 3:

(1) For alln > 1, K*{0} = {10},

(2) Forn =2, K?{1} = {V®}, ie. K*{i} = K*[4] for all i.

(3) Forn = 3, K*{i} = K3[i] for all i. K3{1} = {II,V}. K?{2} has the
topology of a closed interval, from V Iy, wncreasing h of VI to Il at h =1, and
further to limp_, oo VI =IV=1limp_ oo VI, and finally decreasing h of VIIy, to
VIlg. K3{3} ={VIII,IX}.

Proof: (1) {I™} is the only Hausdorff subset of K™ containing ™). So
{It")} = K"{i} for some 7. But a set not containing I(®) cannot be closed in
K", hence i = 0. (2) is trivial. (3) is not trivial; obviously one needs at least four
subsets to have all of them Hausdorff ones. With exactly four, one has two differ-
ent possibilities. One of them will be excluded because it contains the three-point
set {IV,VIII , IX}. The remaining one contains only two connected sets and two
two-point sets. So it is a unique decomposition. q.ed

Now we define another topological classification: For ¢ € INg,

{h} is a closed subset of S; := K" \UZ_OINX’”{j}}.

Jj=

K™{i} :={he K"

The defining condition is sometimes (see [3]) also reformulated as “h is an atom
w.r.t. S;”. As usual, the result of Uj_zlo is defined as empty set. So every K"{i}
is a well-defined set (in principle, for each ¢ € INg). It holds

Theorem 4:

(1) For alln > 1, K*{0} = K"{0}.

(2) For alln <3 and all i, K™{i} = K"{i}.
(3) For alln >3, Kn{1} = {11™) vy},

Proof: (1) is trivial, (2) uses Theorem 1.2, (3) uses the definition of atoms, (see
below). q.e.d.

_ Definition: For every n > 2, the n-dimensional atoms are the elements of
K™{1}.

Another definition of an atom can be found in [1].

7. The idea of the proofs

The number k(h) defined in sct. 4 can be found as follows (cf. (2.2), 7 : W™ —
K™Y

(7.1) k(h) = n* —dim7~ ! (h).

Now we define a subset V™ of W” of eq. (2.1) by

(7.2) Vi={Cewr| > (CF)P =1}
i,,k=1

n — n k — k :
We get V" @ IR = W™\ {0}, where C; ® A = ACY; with the factor A € IR,

corresponding to a scalar multiplication operator, A7 = Ad?, in GL(n). Therefore,
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we have the restriction of eq. (2.2):
(7.3) TV KU\ {1}

is a surjective map. V" is compact, hence K™ \ {I(®)} is compact, too. [The
continuous image of a compact set is compact.] In connection with eq. (7.1) we

get for h £ |
(7.4) dim 7~y (h) = n? — k(h) — 1.

The largest value k gives the subsets of V" of smallest dimension. So they are the
best candidates for closed subsets.

8. Second set of examples

For n = 3, Bianchi type IV is the only Lie algebra which has both atoms in
its closure. All other non-commutative non-atoms converge to II but not to V, cf.
Theorem 4.3.

For n > 4 we only know: every non-commutative non-atom converges at least
to one of the two atoms.

Theorem 5: Let n < 3 and g, h be n-dimensional Lie algebras. Then it holds
g = h in &" if and only if to every positive definite left-invariant metric n in h there
exists a sequence of left-invariant metrics in g which converge, as Riemannian
manifolds, to the Riemannian manifold defined by (h,n).

Note: There exists exactly one further decomposition of (K3, k%) into four
disjoint compact Hausdorfl subsets. It has the shape {I}, {IT}, {IV ,VIII IX}
plus a closed interval which is K3{2} with IV replaced by V. It was excluded
because a 3-point set is contained.

By the way: The decomposition into Hausdorff compact subsets is not always
possible. It holds: The open interval cannot be represented as countable infinite
union of disjoint compact subsets.

9. Outlook

The present paper represents a continuation of the papers [1, 2, 3, 4]. It would
be interesting to check which of these statements hold true for higher dimension
and different signature.

The numeration of Lie algebras as used here was first introduced by Bianchi
[5]; now it is the standard classification within relativity theory. For the general
background the reader is referred to the following basic monographs: [6] for homo-
geneous structures, [7] for Lie algebras, [8] for homogeneous cosmological models
and explanation of ref. [5], [9] for General topology.
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