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74 M. RAINER AND H.-J. SCHMIDTw.r.t. basis elements ei of the Lie algebra. So we have a surjective map� :Wn ! Kn:(2.2)Two sets of structure constants C represent the same Lie algebra i� they go intoeach other by a regular basis change ei ! Aji ej with A 2 GL(n), where GL(n) isrepresented by the set of all regular real n� n-matrices. So we can writeKn = Wn=GL(n):(2.3)For n = 3, Lie algebras can be de�ned by[e1; e2] = n3e3 � he2;[e2; e3] = n1e1; [e3; e1] = n2e2 + he3via the quadrupels (h; e1; e2; e3) as follows:IV : (1; 0; 0; 1);V Ih : (h; 1;�1; 0); III = V I1;V IIh : (h; 1; 1; 0):3. First set of examplesFor every n � 1 there exists one commutative Lie algebra, we denote it by I(n)(and if n is known from the context, simply by I). It corresponds to Cijk = 0. Forn = 1 it is the only Lie algebra, K1 = fIg.A Lie algebra h is called trivial i� for all x; y 2 h the vector [x; y] is a linearcombination of x and y. For every n � 2 there exists exactly one non-commutativetrivial Lie algebra. We denote it by V (n) (or V). This algebra, which is alsocalled the pure vector type Lie algebra, corresponds to Cijk = �i[jvk] with anynon-vanishing vector vk. For n = 2 we �nd K2 = fI; V g.For every n � 3 there exists exactly one Lie algebra possessing some basisfeigi=1:::n such that [e1; e2] = e3 is the only non-vanishing Lie product. Wedenote it by II (n) (or II). It represents a non-trivial Lie algebra. For n � 3 theset fI; II; V g is a proper subset of Kn.4. Algebraic classi�cation schemeFor transformations C ! ~C, given by the formula~Ckij := AiaAjbA�1kcCcab;(4.1)we look for those elements A 2 GL(n) for which ~C = C. For any Lie algebra hand structure constants C(h) of the adjoint representation, we have the setK(h) := fA 2 GL(n)j ~C(h) = C(h)g:K(h) is a closed subgroup of GL(n), namely K(h) = Aut(h), which is the auto-morphism group of h. It holds: K(h) = GL(n) i� h = I.Let h 6= I, then K(h) is a proper closed subgroup of GL(n). It is GL(n) =SL(n) 
 IR+, where SL(n) := fA 2 GL(n)j detA = �1g is its unimodular



THE NATURAL CLASSIFICATION OF REAL LIE ALGEBRAS 75subgroup and IR+ := fA 2 GL(n)jAij = ��ij ; � > 0g is the group of positive scalarmultiplication operators.For h 6= I(n), IR+ is never a subgroup of K(h). Hence, in this case K(h) isisomorphic to a subgroup of SL(n). For the canonical basis freedom k := dimK,we obtain k(I(n)) = n2, k(h) � n2 � 1 for h 6= I(n). Let us take all n-dimensionalLie algebras and look for the possible values of k. Denoting the number of di�erentk-values by i(n), it is 1 � i(n) � n2. Let these i(n) values be numbered in adecreasing sequence as k1; : : : ; ki(n). Thus, k1 = n2, n2 � 1 � k2 : : : > ki(n) � 0.We de�ne Kn[i] := fh 2 Knjk(h) = ki+1g:(4.2)Then it is Kn = [i(n)�1j=0 Kn[j], a disjoint union of non-empty sets. [Remark:Using instead of Kn[i] the simpli�ed notion of ~Kn[i] = fh 2 Knjk(h) = ig has thedisadvantage that then most of all sets ~Kn = ;.]By de�nition it is clear that Kn[0] = fI(n)g. It holds i(1) = 1, i(2) = 2 andi(3) = 4. For n = 2 it holds K2[1] = fV (2)g. For n = 3 it holds K3[1] = fII; V g,K3[3] = fV III ; IXg, where IX = SO(3) and V III = SO(2; 1) are the semi-simple Lie algebras. All remaining 3-dimensional Lie algebras together form theset K3[2]. For completeness let us mention1: k1 = 9, k2 = 6, k3 = 4, k4 = 3.5. Geometric classi�cation schemeLet h be a Lie algebra of dimension n andH the corresponding simply connectedLie group. Let g be a positive de�nite left{invariant metric on H. Let Vn(h; g) bethe underlying Riemannian manifold of the pair (H; g) (forgetting its Lie groupstructure). [Of course the group structure of H can be resurrected as some sub-group of the isometry group of Vn(h; g).] There exists a n(n+1)2 -parameter set ofpositive de�nite left invariant metrics on H. We identify two metrics g and ~g i�Vn(h; g) is isometric to Vn(h; ~g). This identi�cation reduces the n(n+1)2 -parameterset to a set of dimension d(h) � n(n+1)2 .Examples: d(h) = 0 i� all left-invariant metrics are isometric to each other. Itis clear that this implies 
atness of Vn, and this happens i� h is the commutativeLie algebra. Therefore it holds [with l.h.s algebraically de�ned in sct. 4, r.h.s.geometrically de�ned in sct. 5]:Theorem 1:(1) For all n � 1 one has Kn[0] = fh 2 Knjd(h) = 0g.(2) For all n � 3 and for all i one has Kn[i] = fh 2 Knjd(h) = ig.(3) For all n � 2, d(V (n)) = 1.(4) For all n � 3, d(II (n)) = 1.Proof : (1) is trivial. (2) is lengthy but straightforward (we applied computeralgebra). (3) follows from the fact that every positive de�nite left-invariant metricof V (n) leads to a space of constant negative curvature. (4) holds because of 2with II 2 K3[1], 1, and the fact that II (n), n � 3, is the direct Abelian extension



76 M. RAINER AND H.-J. SCHMIDTof II (3), and hence for any g, there is a g2 of II (3), such that Vn(II (n); g) =V3(II (3); g2)� V3(I(n�3); g1), where g1 is the unique 
at metric of I(n�3). q.e.d.Remark: d(h) = 1 if and only if there exists a non-
at positive de�nite left-invariant metric on h and all such metrics are homothetically equivalent.6. Topological classi�cation schemeIn this section we propose two versions of a topological classi�cation of then-dimensional Lie algebras. Theorem 2 shall help to understand the underlyingtopology, Theorem 3 compares the �rst version of a topological classi�cation withthe algebraic classi�cation of eq. (4.2). Theorem 4 does it with the second version.Let us go back to (2.2), � : Wn ! Kn, which is a surjective map. Wn � IRmcarries the Euclidean subspace topology. So it is natural to de�ne a topology �nin Kn by the condition: �n is the �nest topology which makes the function �continuous. It holds:Theorem 2:(1) A � Kn is closed in �n i� ��1(A) is closed in Wn.(2) Given hi; h 2 Kn, then hi ! h in �n i� there existXi; X 2Wn with Xi ! X in Wn and �(Xi) = hi, �(X) = h.Proof : (1) is only a reformulation of the de�nition. (2) applies the usual con-struction of quotient topologies. q.e.d.Remark: Theorem 2.2 can be formulated as follows: A sequence of Lie algebrasconverges, hi ! h, if and only if for each element of the sequence there exists abasis such that the corresponding structure constants converge as real numbers.It holds: (Kn; �n) is a Hausdor� space i� n = 1. (This is trivial for n = 1,because K1 is a one-point set.) Let n � 2 in the following. Then it holds: Kn is theonly open set containing I(n). Therefore, (Kn; �n) is a T0 but not a T1-space. Suchspaces are not very intuitive, so we try the following: We write (Kn; �n) as disjointunion of compact Hausdor� subsets. If there are more than one possibilities weuse a union which has the least number of subsets. To be precise, let us write: Weuse the symbol Knfig to denote the elements of a minimal disjoint decompositionof Kn into compact Hausdor� subspaces. For n < 4 this represents a de�nition,for larger values n it is open yet whether the following requirements make sucha decomposition unique. Kn = [j(n)i=0Knfig be a disjoint union. The minimalitycondition implies Knfig 6= ; for all i. j(n) be the smallest number such thatthis decomposition into compact Hausdor� sets exists. Let Ni be the number ofconnected components of the set Knfig. We set N(0) := maxfNij0 � i � j(n)g,and N(k) := max(fNij0 � i � j(n)g n fN(j)j0 � j � k� 1g). If there is more thanone possibility, then we select that possibilities where N(0) has its least possiblevalue. If there are still more than one possibilities we take those with minimalvalue N(1), and so on, until there remains -hopefully- only one possibility.Now we expect the representation to be unique up to a permutation of the sets.We �x the order by the requirement that Knfig is a closed subset of [j(n)k=iKnfkg.Then it holds



THE NATURAL CLASSIFICATION OF REAL LIE ALGEBRAS 77Theorem 3:(1) For all n � 1, Knf0g = fI(n)g.(2) For n = 2, Knf1g = fV (2)g, i.e. K2fig = K2[i] for all i.(3) For n = 3, K3fig = K3[i] for all i. K3f1g = fII; V g. K3f2g has thetopology of a closed interval, from V I0, increasing h of V Ih to III at h = 1, andfurther to limh!1 V Ih =IV= limh!1 V IIh, and �nally decreasing h of V IIh, toV II0. K3f3g = fV III ; IXg.Proof : (1) fI(n)g is the only Hausdor� subset of Kn containing I(n). SofI(n)g = Knfig for some i. But a set not containing I(n) cannot be closed inKn, hence i = 0. (2) is trivial. (3) is not trivial; obviously one needs at least foursubsets to have all of them Hausdor� ones. With exactly four, one has two di�er-ent possibilities. One of them will be excluded because it contains the three-pointset fIV ; V III ; IXg. The remaining one contains only two connected sets and twotwo-point sets. So it is a unique decomposition. q.e.dNow we de�ne another topological classi�cation: For i 2 IN0,~Knfig := fh 2 Knjfhg is a closed subset of Si := Kn n [i�1j=0 ~Knfjgg:The de�ning condition is sometimes (see [3]) also reformulated as \h is an atomw.r.t. Si". As usual, the result of S�1j=0 is de�ned as empty set. So every ~Knfigis a well-de�ned set (in principle, for each i 2 IN0). It holdsTheorem 4:(1) For all n � 1, ~Knf0g = Knf0g.(2) For all n � 3 and all i, ~Knfig = Knfig.(3) For all n � 3, ~Knf1g = fII (n); V (n)g.Proof : (1) is trivial, (2) uses Theorem 1.2, (3) uses the de�nition of atoms, (seebelow). q.e.d.De�nition: For every n � 2, the n-dimensional atoms are the elements of~Knf1g.Another de�nition of an atom can be found in [1].7. The idea of the proofsThe number k(h) de�ned in sct. 4 can be found as follows (cf. (2.2), � :Wn !Kn): k(h) = n2 � dim��1(h):(7.1)Now we de�ne a subset V n of Wn of eq. (2.1) byV n := fC 2Wnj nXi;j;k=1(Ckij)2 = 1g:(7.2)We get V n 
 IR = Wn n f0g, where Ckij 
 � = �Ckij with the factor � 2 IR+corresponding to a scalar multiplication operator, Aji = ��ji , in GL(n). Therefore,



78 M. RAINER AND H.-J. SCHMIDTwe have the restriction of eq. (2.2):� : V n ! Kn n fI(n)g(7.3)is a surjective map. V n is compact, hence Kn n fI(n)g is compact, too. [Thecontinuous image of a compact set is compact.] In connection with eq. (7.1) weget for h 6= I dim��1jV n(h) = n2 � k(h)� 1:(7.4)The largest value k gives the subsets of V n of smallest dimension. So they are thebest candidates for closed subsets.8. Second set of examplesFor n = 3, Bianchi type IV is the only Lie algebra which has both atoms inits closure. All other non-commutative non-atoms converge to II but not to V, cf.Theorem 4.3.For n � 4 we only know: every non-commutative non-atom converges at leastto one of the two atoms.Theorem 5: Let n � 3 and g; h be n-dimensional Lie algebras. Then it holdsg! h in �n if and only if to every positive de�nite left-invariant metric � in h thereexists a sequence of left-invariant metrics in g which converge, as Riemannianmanifolds, to the Riemannian manifold de�ned by (h; �).Note: There exists exactly one further decomposition of (K3; �3) into fourdisjoint compact Hausdor� subsets. It has the shape fIg, fIIg, fIV ; V III ; IXgplus a closed interval which is K3f2g with IV replaced by V. It was excludedbecause a 3-point set is contained.By the way: The decomposition into Hausdor� compact subsets is not alwayspossible. It holds: The open interval cannot be represented as countable in�niteunion of disjoint compact subsets.9. OutlookThe present paper represents a continuation of the papers [1, 2, 3, 4]. It wouldbe interesting to check which of these statements hold true for higher dimensionand di�erent signature.The numeration of Lie algebras as used here was �rst introduced by Bianchi[5]; now it is the standard classi�cation within relativity theory. For the generalbackground the reader is referred to the following basic monographs: [6] for homo-geneous structures, [7] for Lie algebras, [8] for homogeneous cosmological modelsand explanation of ref. [5], [9] for General topology.AcknowledgementsThe authors would like to thank for �nancial support by Deutsche Forschungsge-meinschaft (M.R.) and by the Wissenschaftler - Integrations - Programm(H.-J.S.).
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