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(SA), Italy. vilasi@sa.infn.it
§INFN - Sezione di Napoli, Italy.
¶Fellow of the Italian National Council of Research (CNR) under Grant 203.01.61.



1 Introduction

It is by now well known that completely integrable Hamiltonian dynamical systems
may admit more than one Hamiltonian description (see for instance [Ma], [GD]).
Usually, with these alternative descriptions one associates a (1, 1) tensor field which
can be used (under suitable conditions) as a recursion operator, namely as an operator
which generate enough constants of the motion in involution. It seems to be an
open question whether it is possible to find a recursion operator for any completely
integrable system.

In the hypotesis of non resonance (see later for the meaning of this term) it has
been shown that a recursion operator can always be constructed (even for some infinite
dimensional systems) [DMSV]. A recent paper claims however that this is not the case
[Br].

It seems to us that it is of some interest to comment on possible meanings of recur-
sion operators and to show that in condition of non resonance any integrable system
can be reduced to a linear normal form via a nonlinear non-canonical transforma-
tion. For these normal forms it is straightforward to construct recursion operators.
In particular, we constract one such an operator for the (counter)example given in
[Br].

2 Integrable Systems (ISs)

Let M be a smooth 2n-dimensional manifold. Let us suppose we can find n vector
fields X1, . . . , Xn ∈ X (M) and n functions F1, . . . , Fn ∈ F(M) with the following
properties

[Xi, Xj ] = 0 , (2.1)

LXiF
j = 0 . i, j ∈ {1, . . . n} . (2.2)

Let us suppose also that on an open dense submanifold of M we have that

X1 ∧ · · · ∧Xn 6= 0 , (2.3)

dF 1 ∧ · · · ∧ dF n 6= 0 . (2.4)

We shall show that any dynamical system Γ on M which is of the form

Γ =
n∑

i=1

νiXi , νi = νi(F 1, . . . F n) , (2.5)

is explicitely integrable on the submanifold on which (2.3) and (2.4) are satisfied.

We assume finally, that the level sets of the submersion

F : M → Rn , F = (F 1, . . . , F n) , (2.6)
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are compact. Then the vector fields Xi are complete on each leaf F−1(a), a ∈ Rn,
and they integrate to a locally free action of the abelian group Rn. Moreover, each
leaf is parallelizable and we can find closed 1-forms α1, . . . , αn, dαi = 0, such that

αi(Xj) = δij , i, j ∈ {1, . . . n} . (2.7)

With all previous construction, the vector field Γ in (2.5) can be explicitely in-
tegrated in a neighbourhood of each leaf F−1(a) where we take as coordinates the
functions {F i, φj} with dφj = αj. The equations of motion of Γ are given by

φ̇i = νi(F 1, . . . , F n) ,

Ḟ i = 0 . (2.8)

Therefore, the corresponding solutions are

φi(t) = tνi(F(m0)) + φi(m0) ,

Fi(t) = Fi(m0) , (2.9)

with m0 ∈M the initial point. We see that the functions ν i play the rôle of frequen-
cies.

We stress the fact that up to now we have not used any Hamiltonian structure.

2.1 Alternative Hamiltonian Descriptions for ISs

We shall now investigate under which conditions a dynamical system which is in-
tegrable in the sense stated before admits infinitely many alternative Hamiltonian
descriptions.

With n-functions f 1, . . . , fn obeying the condition df 1
i ∧dF 1∧· · ·∧dF n = 0 ,∀i ∈

{1, . . . , n}, we can associate a closed 2-form by setting

ωf =
∑

i

dfi ∧ αi , (2.10)

which is non degenerate as long as df1 ∧ · · · ∧ dfn 6= 0. Any one of these symplectic
2-forms makes the action of Rn a Hamiltonian one. Indeed, by construction of ωf ,

iXjωf = −dfj , j ∈ {1, . . . , n} . (2.11)

As for the vector field Γ in (2.5) we shall have that

iΓωf = −
∑

i

νidfi . (2.12)

A necessary condition for iΓωF to be exact is that it is closed, namely that
∑

i

dνi ∧ dfi = 0 . (2.13)
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All sets of solutions of this equation for f 1, . . . , fn satisfying df1∧· · ·∧dfn 6= 0 will give
alternative Hamiltonian descriptions for the dynamical systems Γ in (2.4). Moreover,
any such Γ will be completely integrable in the Liouville-Arnold sense, the functions
f1, . . . , fn being constants of the motion (by assumption (2.2)) in involution,

{fi, fj}A = ωf (Xi, Xj) = LXifj = 0 . (2.14)

There are two limiting case where it is easy to exibit solutions of (2.13).

1. The constant case. All the frequencies ν i are constant numbers so that dν i = 0
and (2.13) is automatically satisfied.

Any 2-form in (2.10) is an admissible symplectic structure and the corresponding
Hamiltonian function is given by

ωf =
∑

i

νifi . (2.15)

An example of system for which this happens is given by the n-dimensional har-
monic oscillator written as

Γ =
∑

i

νiΓi ,

Γi =
1√
miki

pi
∂

∂qi
−
√
mikiqi

∂

∂pi
, no sum ,

νi =
ki
mi

. (2.16)

Here mi and ki are the mass and the elastic constant of the i-th oscillator. Now the
functions F i are just given by the partial Hamiltonians

F i =
1

2
(
p2
i

mi

+ kiq
2
i ) , i ∈ {1, . . . , n} . (2.17)

2. The non resonant case. None of the frequencies ν i is constant and we have that
dν1 ∧ . . . ∧ dνn 6= 0. In this case we may think of the ν i as ‘coordinates’ and of
the f j as functions of the ν i.

In this second case, very simple solutions of (2.13) are given by linear functions
fi =

∑
j Aijν

j , i ∈ {1, . . . n} , Aij ∈ R. The corresponding Hamiltonian description
for Γ can given with quadratic Hamiltonian functions by

ωA =
∑

ij

Aijdν
i ∧ αj , (2.18)

HA =
1

2

∑

ij

Aijν
iνj . (2.19)
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Moreover, any other symplectic structure of the form

ωf =
∑

i

dfi(ν
i) ∧ αj , (2.20)

in which any fi depends only on the corresponding frequency ν i, will be admissible
as long as ωf is non degenerate, i.e. as long as df1 ∧ · · · ∧ dfn 6= 0. The associated
Hamiltonian functions depend on the explicit form of the functions fi. For instance,
if fi = ∂Gi

∂νi
(νi), the corresponding Hamiltonian can be written as

HG =
∑

i

(Gi − νi
∂Gi

∂νi
) . (2.21)

A simple example for these case is given again by the n-dimensional harmonic
oscillator written as

Γ =
∑

i

F iΓi , (2.22)

where F i and Γi are given by (2.17) and (2.16) respectively. Now the partial Hamil-
tonians F i play the rôle of frequencies.

Remark. The intermediate cases are more involved. For further comments on them
we refer to [DMSV].

Remark. It is worth stressing that there may be admissible Hamiltonian structures
for Γ which cannot be derived by using the previous construction.

2.2 Recursion Operators for ISs

We shall now show how to construct recursion operators for the ISs which we have
considered in previous sections. As we have seen, given the dynamical system (2.5)
we can costruct infinitely many Hamiltonian structures given for instance by (2.10)
or (2.20).

1. The constant case. dνi = 0, ∀ i ∈ {1, . . . , n}.

Two possible alternative symplectic structures are obtained from (2.10) as

ω1 =
∑

ij

δijdF
i ∧ αj =

∑

k

ωk, (2.23)

ωf =
∑

ij

δijf
i(F i)dF i ∧ αj =

∑

k

fk(F k)ωk , (2.24)
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with the condition df1 ∧ · · · ∧ dfn 6= 0. Given them, we can construct a (1, 1) tensor
field T on M by

T = ωf ◦ ω−1
1 =

∑

k

fk(F k) Ik , (2.25)

where Ik is the identity operator on the k-th two dimensional ‘plane’ of T ∗M with
‘coordinates’ (dF k, αk).

2. The non resonant case. dν1 ∧ . . . dνn 6= 0.

In this case two possible alternative symplectic descriptions are obtained from
(2.20) as

ω1 =
∑

ij

δijdν
i ∧ αj =

∑

k

ωk, (2.26)

ωf =
∑

ij

δijf
i(νi)dνi ∧ αj =

∑

k

fk(νk)ωk , (2.27)

with the condition df1∧· · ·∧dfn 6= 0. Given these structures we can construct a (1, 1)
tensor field T on M by

T = ωf ◦ ω−1
1 =

∑

k

fk(νk) Ik , (2.28)

where Ik is the identity operator on the k-th two dimensional ‘plane’ of T ∗M with
‘coordinates’ (dνk, αk).

From the way they are constructed, one sees that T in (2.24) and (2.28) are invari-
ant under Γ, have double degenerate spectrum with eigenfunctions without critical
points, and vanishing Nijenhuis torsion NT

∗. Therefore they are recursion operators
for the dynamical system Γ.

2.3 Liouville-Arnold ISs

Assume the dynamical vector field Γ on the symplectic manifold (M,ω0) has n con-
stants of the motion H1, . . . , Hn which are in involution (with respect to the Poisson
structure associated with ω0), functionally independent, dH1 ∧ · · · ∧ dHn 6= 0, and
generate complete vector fields X1, . . . , Xn. We have then an action of Rn on M
which is locally free and fibrating

In this situation one finds ‘angle’ 1-forms α1, . . . , αn such that αi(Xj) = δij and
dαi = 0. Given any function F of the H j, (or dF ∧ dH1 ∧ · · · ∧ dHn = 0) such that
det|| ∂2F

∂Hi∂Hj || 6= 0, the 2-form

ωF = d(
∂F

∂H i
αi) (2.29)

∗We remind that the tensor NT is defined by NT (X,Y ) = [TX, TY ] − T [TX, Y ] − T [X,TY ] +
T 2[X,Y ] , ∀ X,Y ∈ X (M).
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is an admissible symplectic structure for the Rn action. In particular, if

F =
1

2

∑

i

H2
i (2.30)

we just get back the {H i} as Hamiltonian functions.

With a set of action-angles variables (Jk, φ
k) we have that

Γ = νk
∂

∂φk
, (2.31)

ω0 = dJk ∧ dφk , (2.32)

iΓω = νkdJk = −∂H
∂Jk

dJk = −dH , (2.33)

where νk = ∂H
∂Jk

, k ∈ {1, . . . , n} are the frequencies. In the non resonant case when

dν1 ∧ · · · ∧ dνn 6= 0 or equivalently, det|| ∂νk
∂Jl
|| 6= 0, † we can use the νk as variables

and write the admissible symplectic structure

ων =
∑

k

dνk ∧ dφk , (2.34)

with Hamiltonian a quadratic function

Hν =
1

2

∑

k

(νk)2. (2.35)

By using the analysis of section 2.1 we obtain that a not resonant complete integrable
system has infinitely many admissible symplectic structures, some of them having the
form

ωf =
∑

i

dfi(ν
i) ∧ dφi , (2.36)

with the condition df 1 ∧ · · · dfn 6= 0. However, in general, we may not obtain ω0 in
this way. Moreover, such systems do admit recursion operators given by expression
(2.28).

2.4 The example of Brouzet

In [Br] the following 2-degrees of freedom, completely integrable system is considered.
Take M = R2×T2 = {(x, y, θ, η)} with symplectic structure ω0 = dx∧ dθ+ dy ∧ dη.
The dynamical system is described by the Hamiltonian H = x3 + y3 + xy. The
corresponding dynamical vector field is given by

Γ = νθ
∂

∂θ
+ νη

∂

∂η
,

νθ = 3x2 + y ,

νη = 3y2 + x . (2.37)
†This is also equivalent to the notion of nondegeneracy of the Hamiltonian function used in [Br].
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From what we have said before this system admits infinitely may alternative Hamil-
tonian descriptions in the dense open submanifold characterized by dνθ ∧ dνη 6= 0,
namely by 36xy− 1 6= 0, which coincides with the submanifold on which H is nonde-
generate. Two such structures are given by

ω1 = dνθ ∧ dθ + dνη ∧ dη , (2.38)

ω2 = f(νθ)dνθ ∧ dθ + g(νη)dνη ∧ dη , (2.39)

where f and g are any two functions such that df ∧ dg 6= 0. The corresponding
recursion operators are given by

T = ω2 ◦ ω−1
1 = f(νθ)

(
dνθ ⊗

∂

∂νθ
+ dθ ⊗ ∂

∂θ

)
+ g(νη)

(
dνη ⊗

∂

∂νη
+ dη ⊗ ∂

∂η

)
.

(2.40)

We stress the fact that ω0 is not among the symplectic structures constructed in
(2.39) and that our recursion operators (2.40) cannot be ‘factorized’ through ω0.

From this exemple it is clear that there is some ambiguity on what is a recursion
operator for a given dynamical system. In the coming section we would like to make
more clear this point.

3 Recursion operators

We notice that in studying the integrability of a given system Γ we could start directly
with a (1, 1) tensor field T satisfying LΓT = 0, with double degenerate spectrum, with
eigenfunctions without critical points, and vanishing Nijenhuis torsion NT . It is not
necessary to require that T be factorizable via symplectic structures. Indeed this non
unique decomposition can be constructed afterwards [DMSV].

In this section we shall comment some more on the meaning of recursion operators
and on their use in the analysis of complete integrability [ZC], [Mar].

Therefore let us suppose we have a dynamical vector field Γ ∈ X (M) and a
compatible (1, 1) tensor T , namely LΓT = 0 , so that the functions trT k , k ≥ 1
are constants of the motion. By applying powers of T we get vector fields Γk =
T k(Γ) which are symmetries for Γ. The Lie algebra {Γk , k ≥ 0} is abelian if
NT = 0.

If F ∈ F(M) is a constant of the motion for Γ, we say that T is an F -weak
recursion operator if NT = 0 and d(T (dF )) = 0 (we use the same symbol for T and
for its dual). If T is an F -weak recursion operator, one can prove that d(T k(dF )) =
0 , ∀ k > 1 . Locally, one finds functions Fk ∈ F(M) by dFk = T k(dF ) which are
constants of the motion for Γ.
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It is worth stressing that a given operator T may be a recursion operator for the
constant of the motion F and not a recursion for another constant of the motion
G. Moreover, it may also happen that the tensor T is an F -recursion operator but
T k(dF ) ∧ dF = 0 , ∀ k ≥ 1, so that one cannot use T and F to generate new
constants of the motion. This is what happens for instance with the Kepler problem
if one starts with the standard Hamiltonian function [MV]. However, it is always true
that T (d( 1

k
trT k)) = d( 1

k+1
trT k+1).

If ω is an admissible symplectic structure for Γ, namely LΓω = 0, we say that T
is an ω-weak recursion operator if NT = 0 and d(T (ω)) = 0 (again, we use the same
symbol for the extension of T to forms). If T is an ω-weak recursion operator one
proves that d(T k(ω)) = 0 , ∀ k > 1 . All 2-forms ωk = T k(ω) are then admissible
symplectic structures for Γ.

It is worth stressing that given any two admissible symplectic structures ω1 and ω2

for Γ, it need not be true that they are connected by a recursion operator. Moreover,
it may happen that T k(ω) ∧ ω = 0 , ∀ k ≥ 1 so that one does not generate new
symplectic structures.

If Γ is Hamiltonian with respect to the couple (ω,H), namely iΓω = −dH, we
say that T is a strong recursion operator if it is both an H-recursion operator and an
ω-recursion operator. If this is the case, any vector field Γk is an Hamiltonian one
with respect to ω with Hamiltonian function Hk as well as with respect to ωk with
Hamiltonian function H. Moreover, the constants of the motion Hk are pairwise in
involution with respect to the Poisson structure constructed by inverting anyone of
the symplectic structures ωk , k ≥ 0.

4 Conclusions

We have shown that any non resonant integrable system admits infinitely many al-
ternative symplectic structures and strong recursion operators. This class of systems
include Hamiltonian ones with non degenerate Hamiltonian functions.

The result proven in [Br] seems rather to exlude the possibility of constructing
recursion operators while keeping fixed one symplectic structure ω0, namely to con-
struct ω0-recursion operator. But this not surprising result seems less relevant for the
analysis of complete integrable systems.
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