
Lectures on Dynamical Systems

Fraydoun Rezakhanlou
Department of Mathematics, UC Berkeley

October 28, 2010

1



PART II

Chapter 1: Invariant Measures and Ergodic Theorem
Chapter 2: Transfer Operator, Liouville Equation
Chapter 3: Entropy
Chapter 4: Lyapunov Exponents
Chapter 5: Ergodicity of Hyperbolic Systems
Chapter 6: Lorentz Gasess

2



1 Invariant Measures and Ergodic Theorem

Given a transformation T : X → X, we may wonder how often a subset of X is visited by
an orbit of T . In the previous sections, we encountered several examples for which some
orbits were dense and every nonempty open set was visited infinitely often. To measure the
asymptotic fraction of times a set is visited, we may look at the limit points of the sequence

(1.1)
1

n

n−1∑
j=0

11A(T j(x))

as n→∞. To have a more tractable situation, let us assume that X is a Polish space (i.e.,
a complete separable metric space) and that T : X → X is continuous. It is also more
convenient to consider

(1.2) lim
n→∞

Φn(f)(x) := lim
n→∞

1

n

n−1∑
j=0

f(T j(x))

where f is a bounded continuous function. If the limit of (1.2) exists for every f ∈ Cb(X),
then the limit `x(f) enjoys some obvious properties:

(i) f ≥ 0⇒ `x(f) ≥ 0, `x(11) = 1.

(ii) `x(f) is linear in f .

(iii) |`x(f)| ≤ supy∈X |f(y)|.

(iv) `x(f ◦ T ) = `x(f).

If X is also locally compact, then we can use Riesz Representation Theorem to assert that
there exists a unique (Radon) probability measure µ such that `x(f) =

∫
fdµ. Evidently,

such a measure µ(A) measures how often a set A is visited by the orbit O+(x). Motivated
by this, we let IT denote the space of probability measures µ such that

(1.3)

∫
f ◦ Tdµ =

∫
fdµ,

for every f ∈ Cb(X). Such a measure µ is an example of an invariant measure.
It seems natural that for analyzing the limit points of (1.1), we should first try to under-

stand the space IT of invariant measures. Note that in (1.2), what we have is
∫
fdµnx where

µnx = 1
n

∑n−1
j=0 δT j(x). We also learned that if (1.2) exists for every f , then µnx has a limit and

its limit is an invariant measure. Of course there is a danger that the limit (1.2) does not
exist in general. This is very plausible if the orbit is unbounded and some of the mass of
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the measure µnx is lost as n→∞ because T j(x) goes off to infinity. This would not happen
if we assume X is compact. To this end, let us review the notion of weak convergence for
measures. We say µn ⇒ µ for µn, µ ∈M(X) if

(1.4)

∫
fdµn →

∫
fdµ,

for every f ∈ Cb(X). It turns out that for the weak convergence, we only need to verify (1.4)
for f ∈ Ub(X) where Ub(X) denotes the space of bounded uniformy continuous functions.
Since Ub(X) is separable, we can metrize the space of probability measuresM(X). (See for
example “Probabilty measures on Metric Spaces” by Parthasarathy.)

Exercise 1.1

(i) Show that the topology associated with (1.4) is metrizable with the metric given by

d(µ, ν) =
∞∑
n=1

2−n
∣∣∫ fndµ− ∫ fndν∣∣

1 +
∣∣∫ fndµ− ∫ fndν∣∣ ,

where {fn : n ∈ N} is a countable dense subset of Ub(X).

(ii) Show that if X is a compact metric space, then M(X) is compact.

Theorem 1.2 Suppose X is a compact metric space.

(i) (Krylov–Bogobulov) IT 6= ∅

(ii) If IT = {µ} is singleton, then

lim
n→∞

1

n

n−1∑
j=0

f(T j(x)) =

∫
fdµ

uniformly for every f ∈ C(X). In fact µnx ⇒ µ uniformly in x.

(iii) If
{

1
n

∑n−1
j=0 f ◦ T j

}
converges uniformly to a constant for functions f in a dense subset

of C(X), then IT is a singleton.

Proof.

(i) This is an immediate consequence of Exercise 1.1(ii) and what we had in the beginning
of this section. In fact any limit point of {µnx} is in IT for every x.

4



(ii) Let {xn} be any sequence in X and put νn = µnxn . One can readily show that any limit
point of {νn} is in IT = {µ}. Hence νn ⇒ µ. From this we can readily deduce that in
fact µnx ⇒ µ uniformly.

(iii) We are assuming that Φn(f) converges uniformly to a constant f̂ for f in a dense set
A ⊆ C(X). The constant f̂ can only be

∫
fdµ because for every µ ∈ IT ,∫

Φn(f)dµ =

∫
fdµ.

Let us write ‖f‖ = supx∈X |f(x)|. Pick any g ∈ C(X) and a sequence fk ∈ A such
that ‖fk − g‖ ≤ k−1. Since ‖Φn(f)‖ ≤ ‖f‖ for every f , we learn

lim sup
n→∞

‖Φn(g)−
∫
gdµ‖ ≤ lim

n→∞
‖Φn(fk)−

∫
fkdµ‖+ 2/k ≤ 2/k.

By sending k → ∞ we deduce that limn ‖Φn(g) −
∫
gdµ‖ = 0. Since f̂ is a constant

independent of µ ∈ IT , we conclude that IT is a singleton.
�

From Theorem 5.2 we learn that when IT is a singleton, the statistics of the orbits are
very simple. However, this does not happen very often. This is a rather rare situation and
when it happens, we say that the transformation T is uniquely ergodic.

Example 1.3 Consider a translation T : Td → Td given by T (x) = x+α with α = (α1 . . . αd)
and α1 . . . αd, 1 rationally independent. We claim that IT consists of a single measure, namely
the Lebesgue measure on Td, normalized to be a probability measure. One way to see this
is by observing that if µ ∈ IT , then∫

f(x+ nα)µ(dx) =

∫
f(x)µ(dx)

for every continuous f and any n ∈ N. Since {nα} is dense, we deduce that µ is translation
invariant. It is well-known that the Lebesgue measure is the only translation invariant
probability measure. In fact we can use Theorem 1.2(iii) to see this directly. According to
this theorem, we need to show that Φn(f) converges uniformly to a constant for f in a dense
subset A of C(X). For A take the set of trigonometric polynomials

∑
j cje

2πij·x where the

summation is over j ∈ Zd and only finitely many cj’s are nonzero. Evidently, it suffices to
verify this for f(x) = e2πij·x. When j 6= 0,

|Φn(f)| =

∣∣∣∣∣ 1n
n−1∑
`=0

e2πij·(x+`α)

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n−1∑
`=0

e2πi`j·α

∣∣∣∣∣
=

1

n

∣∣∣∣1− e2πinj·α

1− e2πij·α

∣∣∣∣→ 0
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uniformly as n → ∞. Thus T is uniquely ergodic. We note that the ergodicity of the
Lebesgue measure also implies the denseness of the sequence {x+ nα}. �

As we mentioned earlier, in most cases IT is not a singleton. There are some obvious
properties of the set IT which we now state. Note that IT is always a convex and closed
subset of M(X). Also, IT is compact when X is compact because M(X) is compact. Let
us state a theorem of Choquet that can be used to get a picture of the set IT . Recall that
if C is a compact convex set then a point a ∈ C is extreme if a = θb + (1 − θ)c for some
θ ∈ [0, 1] and b, c ∈ C implies that either a = b or a = c. According to Choquet’s theorem,
if C is convex and compact, then any µ ∈ C can be expressed as an average of the extreme
points. More precisely, we can find a probability measure θ on the set of extreme points of
C such that

(1.5) µ =

∫
Cex

αθ(dα).

Let us write IexT for the extreme points of IT . The extreme points of IT are called ergodic
measures. In view of (1.5), any µ ∈ IT can be expressed as an average of ergodic ones. Later
we give simpler conditions for ergodicity.

Example 1.4 Consider T : T→ T with T (x) = x+ α (mod 1) with α = 1
`

and ` a positive
integer. It is not hard to see that IexT = {µx : 0 ≤ x < α} where µx = 1

`
[δx + δx+α + · · · +

δx+(`−1)α]. Note that if X(x) = {x, x + α, . . . , x + (` − 1)α} then T =
⋃
x∈[0,α) X(x). Also

observe

1

n

n−1∑
0

f ◦ T (x) =
1

`
[f(x) + · · ·+ f(x+ (`− 1)α)] +O

(
1

n

)
→
∫
fdµx,

as n→∞. �

Given µ ∈ IexT , clearly the set

Xµ = {x : µnx ⇒ µ as n→∞}

is invariant under T . That is, if x ∈ Xµ, then T (x) ∈ Xµ. Also, if µ1 6= µ2 ∈ IexT ,
then Xµ1 ∩ Xµ2 = ∅. Ergodic Theorem below implies that µ(Xµ) = 1. This confirms the
importance of ergodic measures among the invariant measures. Later we find more practical
criterion for ergodicity in terms of invariant sets and functions. This will be achieved in two
Ergodic Theorems we prove.

Theorem 1.5 (von Neumann) Let T : X → X be a Borel measurable transformation and
let µ ∈ IT . If f ∈ L2(µ), then Φn(f) = 1

n

∑n−1
0 f ◦ T j converges in L2-sense to Pf , where

Pf is the projection of f onto the space of invariant functions g satisfying g ◦ T = g.
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Proof. First observe that if f = g ◦ T − g for some g ∈ L2, then Φn(f) → 0 as n → ∞.
Let H denote the linear space of gradient type functions g ◦ T − g. If f ∈ H̄, then we still
have limn→∞Φn(f) = 0. This is because if fk ∈ H converges to f in L2, then ‖Φn(f)‖L2 ≤
‖Φn(fk)‖L2 + ‖f − fk‖L2 because ‖h ◦ T j‖L2 = ‖f‖L2 by invariance. Since ‖Φn(fk)‖L2 → 0
as n→∞ and ‖f − fk‖L2 → 0 as k →∞, we deduce that Φn(f)→ 0 as n→∞.

Given any f ∈ L2(µ), write f = g+h with g ∈ H̄ and h⊥H. If h⊥H, then
∫
h ϕ◦T dµ =∫

hϕ dµ, for every ϕ ∈ L2(µ). Hence
∫

(h ◦T −h)2 dµ = 0. This means that h ◦T = h. As a
result, h is invariant and Φn(f) = Φn(g) + Φn(h) = Φn(g) + h. Since Φn(g)→ 0, we deduce
that Φn(f)→ h with h = Pf . �

What we have in von Neumann’s theorem is an operator Uf = f ◦ T that is an isometry
of L2(µ) and the space of invariant functions {ϕ : ϕ ◦ T = ϕ} is the eigenspace associated
with the eigenvalue one. Hence our theorem simply says 1

n
(I + U + · · ·+ Un−1)→ P . Note

that if λ = eiθ is an eigenvalue of U and if λ 6= 1, then 1
n
(1 +λ+ · · ·+λn−1) = λn−1

n(λ−1)
→ 0 as

n → ∞. The above theorem suggests studying the spectrum of the operator U for a given
T . Later we will encounter the notion of mixing dynamical systems. It turns out that the
mixing condition implies that discrete spectrum of the operator U consists of the point 1
only.

As our next goal, we would like to have a different type of convergence. In our next
theorem we consider an almost everywhere mode of convergence.

To this end let us take a measurable transformation T : X → X and µ ∈ IT . Let
f ∈ L1(µ). First we would like to find a candidate for the limit limn→∞Φn(f). Theorem 5.5
suggests looking at the projection of f onto the space of conserved (invariant) functions.
Motivated by this, let us define

(1.6) FT = {A ∈ F : T−1(A) = A}.

where T is F -measurable. Note that FT is a σ-algebra and consists of sets for which 11A◦T =
11A. We may now define Pf as the unique FT -measurable function such that

(1.7)

∫
A

Pfdµ =

∫
A

fdµ

for every A ∈ FT . Note that since Pf is FT -measurable, we have

Pf ◦ T = Pf,

µ-almost everywhere. Also, Pf is uniquely defined as the Radon–Nikodym derivative fµ
with respect to µ, if we restrict it to FT − σ-algebra. More precisely

Pf =
d(fµ|FT )

dµ|FT
.
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We are now ready for the statement of Birkhoff Ergodic Theorem.

Theorem 1.6 Suppose µ ∈ IT and f ∈ L1(µ). Let Pf be as above. Then

µ

{
x : lim

n→∞

1

n

n−1∑
0

f(T j(x)) = Pf(x)

}
= 1.

Moreover Φn(f) converges to Pf in L1 sense.

Proof. Set g = f −Pf − ε for a fixed ε > 0. Evidently Pg ≡ −ε < 0 and Φn(f −Pf − ε) =
Φn(f)− Pf − ε. Hence, it suffices to show

lim sup
n→∞

Φn(g) ≤ 0 µ− a.e.

We expect to have
g + g ◦ T + · · ·+ g ◦ T n−1 = −εn+ o(n).

From this, it is reasonable to expect that the expression g+· · ·+g◦T n−1 to be bounded above
µ-a.e. Because of this, let us defineGn = maxj≤n

∑j−1
0 g◦T i. SetA = {x : limn→∞Gn(x) = +∞}.

Without loss of generality, we may assume that g is finite everywhere. Clearly A ∈ FT be-
cause Gn+1 = g + max(0, Gn ◦ T ). Note also that if x /∈ A, then lim supn→∞Φn(g) ≤ 0. To
complete the proof, it remains to show that µ(A) = 0. To see this, observe

0 ≤
∫
A

(Gn+1 −Gn)dµ =

∫
A

(Gn+1 −Gn ◦ T )dµ

=

∫
A

[g + max(0, Gn ◦ T )−Gn ◦ T ]dµ =

∫
A

(g −min(0, Gn ◦ T ))dµ.

On the set A, −min(0, Gn ◦ T ) ↓ 0. Hence by Dominated Convergence Theorem, 0 ≤∫
A
gdµ =

∫
A
Pgdµ ≤ −εµ(A). Thus we must have µ(A) = 0.

It remains to show that Φn(f) converges to Pf in L1 sense. To show this, let fk =
f11(f ≤ k) so that

lim
k→∞
‖fk − f‖L1(µ) = 0.

Since Φn(fk) converges to Pfk almost everywhere and |Φn(f)| is bounded by constant k, we
have that Φn(fk) converges to Pfk in L1 sense. Note that

‖Φn(f)− Pf‖L1(µ) ≤ ‖Φn(fk)− Pfk‖L1(µ) + ‖Φn(f − fk)‖L1(µ) + ‖P (f − fk)‖L1(µ)

≤ ‖Φn(fk)− Pfk‖L1(µ) + 2‖f − fk‖L1(µ),

where for the second inequality we used Exercise 1.8(ii). We now send n→∞ and k →∞
in this order. �
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As a consequence of this theorem, we have the following criterion for ergodicity.

Lemma 2.6 µ ∈ IexT iff µ ∈ IT and µ(A) = 0 or 1 for every A ∈ FT .

Proof. Suppose µ ∈ IT and A ∈ FT . If µ(A) ∈ (0, 1), then

µ1(B) =
µ(A ∩B)

µ(A)
, µ2(B) =

µ(Ac ∩B)

µ(Ac)

are well-defined and belong to IT . Moreover, µ = αµ1 + (1− α)µ2 for α = µ(A). Hence if ∃
A ∈ FT with µ(A) ∈ (0, 1), then µ /∈ IexT .

Conversely, suppose µ ∈ IT and that µ(A) = 0 or 1 if A ∈ FT . Note that since Pf is
measurable with respect to FT , we learn that Pf is constant µ-a.e. and the constant can
only be

∫
fdµ. This implies that if

B =

{
x : Φn(f)(x)→

∫
fdµ

}
,

thenµ(B) = 1. If µ = αµ1 + (1−α)µ2 for some µ1, µ2 ∈ IT and α ∈ (0, 1), we also have that
µi(A) = 0 or 1 if A ∈ FT and i = 1 or 2. As a result,

µi

{
x : Φn(f)(x)→

∫
fdµi

}
= 1

for i = 1, 2. Since µ(B) = 1, we know that µ1(B) = µ2(B) = 1. Now if µ 6= µ1, we can find
integrable f such that

∫
fdµ 6=

∫
fdµ1. This contradicts µ(B) = µ1(B) = 1. Thus, we must

have µ = µ1. �

If T is invertible, then we can have an ergodic theorem for T−1 as well. Since FT = FT−1 ,
it is clear that PTf = PT−1f . As a consequence

Lemma 1.7 Suppose T, T−1 : X → X are measurable and µ ∈ IT = IT−1. Then

lim
n→∞

1

n

n−1∑
0

f ◦ T j = lim
n→∞

1

n

n−1∑
0

f ◦ T−j = Pf.

µ− a.e.

Exercise 1.8

• (i) Let A be a measurable set with µ(A∆T−1(A)) = 0. Show that there exists a set
B ∈ FT such that µ(A∆B) = 0.
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• (ii) Show that
∫
Pfdµ ≤

∫
|f |dµ.

As we mentioned in the introduction, many important ergodic measures enjoy a stronger
property known as mixing. A measure µ ∈ IT is called mixing if for any two measurable sets
A and B,

(1.8) lim
n→∞

µ(T−n(A) ∩B) = µ(A)µ(B).

Mixing implies the ergodicity because if A ∈ FT , then T−n(A) = A and T−n(A)∩Ac = ∅.
As a result, µ(A) = limn µ(T−n(A) ∩A) = µ(A)µ(A), which implies that either µ(A) = 0 or
µ(A) = 1. Also note that if µ is ergodic, then

µ

{
x :

1

n

n−1∑
0

11A ◦ T j → µ(A)

}
= 1,

which in turn implies

lim
n→∞

∫ (
1

n

n−1∑
0

11A ◦ T j
)

11B dµ = µ(A)µ(B).

Hence ergodicity means

(1.9) lim
n→∞

1

n

n−1∑
0

µ(T−j(A) ∩B) = µ(A)µ(B).

So, the ergodicity is some type of a weak mixing.

Example 1.9 Let T : Td → Td be a translation T (x) = x+ α (mod 1) with α = (α1 . . . αd)
and α1 . . . αd, 1 rationally independent. We now argue that T is not mixing. To see this,
take a set A with µ(A) > 0 and assume that A is not dense. Pick x0 /∈ A and let δ =
dist.(x0, A) > 0. Take any set B open with µ(B) > 0 and diam(B) < δ/2. By topological
transitivity, x0 ∈ T−n(B) for infinitely many n ∈ N. Since diam(T−n(B)) = diam(B), we
deduce that T−n(B) ∩ A = ∅ for such n’s. Clearly µ(T−n(B) ∩ A) = 0 does not converge to
µ(A)µ(B) 6= 0 as n→∞. �

Before discussing examples of mixing systems, let us give an equivalent criterion for
mixing.

Lemma 1.10 A measure µ is mixing iff

(1.10) lim
n→∞

∫
f ◦ T n g dµ =

∫
fdµ

∫
gdµ
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for f and g in a dense subset of L2(µ).

Proof. If µ is mixing, then (1.10) is true for f = 11A, g = 11B. Hence (1.10) is true if both
f and g are simple, i.e., f =

∑m
j=1 cj11Aj , g =

∑m
j=1 c

′
j11Bj . We then use the fact that the

space of simple functions is dense in L2(µ).
For the converse, observe that if ‖f − f̂‖L2 and ‖g − ĝ‖L2 are small, then∣∣∣∣∫ f ◦ T n g dµ−

∫
f̂ ◦ T n ĝ dµ

∣∣∣∣ ,
is small. Indeed,∣∣∣∣∫ f ◦ T n g dµ−

∫
f̂ ◦ T n ĝ dµ

∣∣∣∣ ≤ ∣∣∣∣∫ (f ◦ T n − f̂ ◦ T n)g dµ

∣∣∣∣+

∣∣∣∣∫ f̂ ◦ T n (g − ĝ) dµ

∣∣∣∣
≤ ‖f − f̂‖‖g‖+ ‖f̂‖‖g − ĝ‖

by invariance and Schwartz Inequality. �

Example 1.11 Let Tm : T → T be the expanding map Tm(x) = mx (mod 1) with m ≥ 2
positive integer. Given any p = (p0, . . . , pm−1) with pj ≥ 0 and p0 + · · ·+ pm−1 = 1, we can
construct a unique probability measure µp such that

µp[·a1 . . . ak, ·a1 . . . ak +m−k) = pa1pa2 . . . pak .

If p = (1, 0, . . . , 0) then the measure µp = δ0 corresponds to the fixed point 0. If p0 = · · · =
pm−1 = 1

m
, then µp is the Lebesgue measure. It is not hard to show that µp is an invariant

measure for Tm.

****Figure Goes Here****

In fact, if
A = {x : x = ·a1a2 . . . ak ∗ ∗ . . . },

then
T−1(A) = {x : x = · ∗ a1a2 . . . ak ∗ . . . }

and

µp(T
−1(A)) =

m−1∑
b=0

pbpa1 . . . pak = pa1 . . . pak = µp(A).

To show that each µp is mixing observe that if

A = {x : x = ·a1a2 . . . ak ∗ ∗ . . . },(1.11)

B = {x : x = ·b1b2 . . . bk ∗ ∗ . . . },
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then
T−n(A) ∩B = {x : x = ·b1b2 . . . bk ∗ ∗ · · · ∗︸ ︷︷ ︸

n

a1 . . . ak ∗ ∗ . . . }

whenever n ≥ k, and
µp(T

−n(A) ∩B) = µp(A)µp(B).

This implies the mixing because the set of simple functions f =
∑`

j=1 cj11Aj with Aj as in

(1.11) is dense in L2(µp) and we can apply Lemma 5.10.

Note also that if x is a periodic point of period `, then µ = 1
`

∑`−1
j=0 δT j(x) is an ergodic

measure. Such µ is never mixing unless ` = 1. �

Exercise 1.12 Let a be a periodic point for T of period `. Show that µ = 1
`

∑`−1
j=0 δT j(x) is

not mixing if ` > 1.

Exercise 1.13

• (i)Show that if µ is mixing and f ◦ T = λf , then either λ = 1 or f = 0.

• (ii) Show that the Lebesgue mesaure λ is ergodic for T (x, y) = (x+ α, x+ y) (mod 1)
iff α is irrational. Show that λ is never mixing.

Example 1.14 Consider a linear transformation on R2 associated with a 2 × 2 matrix

A =

[
a b
c d

]
. If a, b, c, d ∈ Z, then T (x) = Ax (mod 1) defines a transformation on the

2-dimensional torus T2. Here we are using the fact that if x = y (mod 1), then Ax =
Ay (mod 1). If we assume detA = 1, then the Lebesgue measure λ on T2 is invariant for the
transformation T . To have λ mixing, we need to assume that the eigenvalues of T are real
and different from 1 and −1. Let us assume that A has eigenvalues α and α−1 with α ∈ R
and |α| < 1. By Lemma 5.9, λ is mixing if we can show that for every n,m ∈ Z2,

(1.12) lim
N→∞

∫
(ϕn ◦ TN)ϕmdλ =

∫
ϕndλ

∫
ϕmdλ

where ϕn(x) = exp(2πin · x). If n = 0, then (1.12) is obvious. If n 6= 0, then the right-hand
side of (1.12) is zero. We now establish (1.12) for n 6= 0 by showing that the left-hand side
is zero for sufficiently large N .

Clearly

(1.13)

∫
ϕn ◦ TNϕmdλ =

∫
ϕ(AT )Nn+m dλ,

where AT denotes the transpose of A. To show that (1.13) is zero for large N , it suffices to
show that (AT )Nn+m 6= 0 for large N . For this, it suffices to show that limN→∞(AT )Nn =
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∞. This is certainly true unless n is an eigenvector associated with the eigenvalue α, i.e.,
ATn = αn. Such an eigenvector can not exist because αln = (AT )ln would be an integer for
all l ∈ N, which is impossible by 0 < |α| < 1. �

We end this section with some comments on the ergodicity of continuous dynamical
system.

Given a flow {φt : t ∈ R}, let us define

Iφ =

{
µ :

∫
f ◦ φtdµ =

∫
fdµ ∀ (f, t) ∈ Cb(X)× R

}
.

Given µ ∈ Iφ and f ∈ L1(µ), we would like to show

µ

{
x : lim

t→∞

1

t

∫ t

0

f ◦ φθ(x) dθ exists

}
= 1.

To reduce this to the discrete case, let us define Ω =
∏

j∈ZR and Γ : X → Ω by

Γ(x) = (ωj(x) : j ∈ Z) =

(∫ j+1

j

f ◦ φθ(x) dθ : j ∈ Z
)
.

We then define T (ωj : j ∈ Z) = (ωj+1 : j ∈ Z). Clearly Γ ◦ φ1 = T ◦ Γ. Also, if µ ∈ Iφ, then
µ̃ defined by µ̃(A) = µ(Γ−1(A)) belongs to IT . Indeed,∫

g ◦ T dµ̃ =

∫
g ◦ T ◦ Γ dµ

=

∫
g ◦ Γ ◦ φ1 dµ =

∫
g ◦ Γd µ =

∫
g dµ̃.

We now apply Theorem 1.6 to assert

µ̃

{
ω : lim

n→∞

1

n

n−1∑
0

ωj exists

}
= 1.

Hence

µ

{
x : lim

n→∞

1

n

∫ n

0

f ◦ φθ(x) dθ exists

}
= 1.

From this, it is straightforward to deduce

µ

{
x : lim

t→∞

1

t

∫ t

0

f ◦ φθ dθ exists

}
= 1.

13



To see this, observe

1

t

∫ t

0

f ◦ φθ dθ =
[t]

t

1

[t]

∫ [t]

0

f ◦ φθ dθ +
1

t

∫ t

[t]

f ◦ φθ dθ.

Hence it suffices to show

(1.14) lim
n→∞

1

n

∫ n+1

n

|f ◦ φθ| dθ = 0 µ− a.e.

To prove this, observe

lim
n→∞

1

n

∫ n

0

|f ◦ φθ| dθ exists µ− a.e.

and this implies

1

n

∫ n+1

n

|f ◦ φθ| dθ =
1

n

∫ n+1

0

|f ◦ φθ| dθ −
1

n

∫ n

0

|f ◦ φθ| dθ

=
n+ 1

n

1

n+ 1

∫ n+1

0

|f ◦ φθ| dθ −
1

n

∫ n

0

|f ◦ φθ| dθ

converges to 0 µ− a.e., proving (1.14).
As before we can readily show that if 1

t

∫ t
0
f ◦ φθ dθ → Pf , then Pf ◦ φt = Pf µ − a.e.

for every t, and that Pf is the projection of f onto the invariant sets. In particular, if µ is
ergodic, then Pf ≡

∫
fdµ.
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2 Transfer Operator, Liouville Equation

In the previous section we encountered several examples of dynamical systems for which it
was rather easy to find “nice” ergodic invariant measures. We also observed in the case of
expanding map that the space of invariant measures is rather complex. One may say that
the Lebesgue measure is the “nicest” invariant measure for an expanding map. Later in
Section 3, we show how the Lebesgue measure stands out as the unique invariant measure
of maximum entropy.

In general, it is not easy to find some natural invariant measure for our dynamical sys-
tem. For example, if we have a system on a manifold with a Riemannian structure with a
volume form, we may wonder whether or not such a system has an invariant measure that is
absolutely continuous with respect to the volume form. To address and study these sorts of
questions in a systematic fashion, let us introduce an operator on measures that would give
the evolutions of measures with respect to our dynamical system. This operator is simply
the dual of the operator Uf = f ◦ T . More precisely, define A :M(x)→M(x) by∫

Uf dµ =

∫
f ◦ T dµ =

∫
f dAµ

for every f ∈ Cb(X). We certainly have

(2.1) (Aµ)(A) = µ(T−1(A))

for every measurable A. Even though we have some general results regarding the spectrum
of U , the corresponding questions for the operator A are far more complex. We can now cast
the existence of an invariant measure with some properties as the existence of a fixed point of
A with those properties. The operator A is called Perron–Frobenious, Perron–Frobenious–
Ruelle or Transfer Operator, once an expression for it is derived when µ is absolutely con-
tinuous with respect to the volume form. We note that an invariant measure µ is mixing iff
Anν converges to µ in high n limit, for every ν << µ. To get a feel for the operator A, let
us examine some examples.

Example 2.1

(i) T : Td → Td, T (x) = x + α (mod 1). The operator A simply translates a measure for
the amount α. We assume that the numbers α1 . . . αd, and 1 are rationally independent.
We can study the asymptotic behavior of Anµ for a given µ. The sequence {Anµ} does
not converge to any limit as n → ∞. In facr the set of limit points of the sequence
{Anµ} consits of all translates of µ. However

(2.2) lim
n→∞

1

n

n−1∑
j=0

Ajµ = λ

15



where λ denotes the Lebesgue measure. The proof of (2.1) follows from the unique
ergodicity of T that implies

Φn(f)→
∫
fdλ

uniformly for every continuous f . This implies

lim
n→∞

∫
Φn(f)dµ = lim

n→∞

∫
fd

(
1

n

n−1∑
j=0

Ajµ

)
=

∫
fdλ,

proving (2.2).

(ii) Let (X, d) be a complete metric space and suppose T : X → X is a contraction. In
other words, there exists a constant α ∈ (0, 1) such that d(T (x), T (y)) ≤ αd(x, y).
In this case T has a unique fix point x̄ and limn→+∞ T

n(x) = x̄ for every x (the
convergence is locally uniform). As a consequence we learn that limn→∞Anµ = δx̄ for
every measure µ ∈ M(X). For example, if X = R and T (x) = αx with α ∈ (0, 1),
then dµ = ρdx results in a sequence Anµ = ρndx with

ρn(x) = α−nρ
( x
αn

)
.

In other words, the measure µ under A becomes more concentrated about the origin.

(iii) Let T : T → T be the expansion T (x) = 2x(mod 1). If dµ = ρdx and Anµ = ρndx,
then ρ1(x) = 1

2

(
ρ
(
x
2

)
+ ρ

(
x+1

2

))
and

ρn(x) =
1

2n

2n−1∑
j=0

ρ

(
x

2n
+

j

2n

)
.

From this, it is clear that if ρ is continuous, then limn→∞ ρn(x) ≡ 1. Indeed

lim
n→∞

∣∣∣∣∣ρn(x)− 1

2n

2n−1∑
j=0

ρ

(
j

2n

)∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣ 1

2n

2n−1∑
j=0

(
ρ

(
x

2n
+

j

2n

)
− ρ

(
j

2n

))∣∣∣∣∣
+ lim

n→∞

1

2n

2n−1∑
j=0

ρ

(
j

2n

)
=

∫
ρdx = 1.

This can also be seen by looking at the Fourier expansion of ρ. We now only need to assume
that ρ ∈ L2[0, 1]. If

ρ(x) =
∑
n

ane
2πinx,
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then a0 = 1 and
ρ1(x) =

∑
k

a2ke
2πikx,

and by induction,

ρn(x) =
∑
k

a2nke
2πikx.

As a result, ∫ 1

0

|ρn(x)− 1|2dx =
∑
k 6=0

a2
2nk → 0.

�
There is a couple of things to learn from Example 2.1. First, when there is a contraction,

the operator A makes measures more concentrated in small regions. Second, if there is an
expansion then A has some smoothing effect. In hyperbolic systems we have both expansion
and contraction. In some sense, if we have more contraction than the expansion, then it is
plausible that there is a fractal set that attracts the orbits as n→∞. If this happens, then
there exists no invariant measure that is absolutely continuous with respect to the volume
measure. Later in this section, we will see an example of such phenomenon. As a result, to
have an absolutely continuous invariant measure, we need to make sure that, in some sense,
the expansion rates and the contraction rates are balanced out. Let us first derive a formula
for Aµ when µ is absolutely continuous with respect to a volume form. As a warm up, first
consider a transformation T : Td → Td that is smooth. We also assume that T is invertible
with a smooth inverse, i.e., T is a diffeomorphism. We then consider dµ = ρdx. We have∫

Td
f ◦ Tρ dx =

∫
Td
fρ ◦ T−1|JT−1| dy

where JT−1 = detDT−1. As a result, if Aµ = ρ̂dx, then ρ̂ = |JT−1|ρ ◦ T−1 = ρ◦T−1

|JT◦T−1| . We
abuse the notation to write

(2.3) Aρ =
ρ ◦ T−1

|JT ◦ T−1|
,

regarding A as an operator acting on probability density functions. More generally, assume
that X is a smooth manifold and T is C∞. Let ω be a volume form (nondegenerate d-form
where d is the dimension of X). Then T ∗ω, the pull-back of ω under T , is also a k-form and
we define JT (x) to be the unique number such that T ∗ωx = JT (x)ωT (x). More precisely,
T ∗ωx(v1 . . . vk) = ωT (x)(DT (x)v1, . . . , DT (x)vk) = JT (x)ωT (x)(v1 . . . vk). We then have∫

X

(f ◦ T )ρ ω =

∫
X

f(ρ ◦ T−1)|JT−1| ω.

17



Hence (2.3) holds in general.
If T is not invertible, one can show

(2.4) Aρ =
∑

y∈T−1({x})

ρ(y)

|JT (y)|
.

The next proposition demonstrates how the existence of an absolutely continuous invari-
ant measure forces a bound on the Jacobians.

Proposition 2.2 Let X be a smooth manifold with a volume form ω. Let T : X → X be a
diffeomorphism with JT > 0. The following statements are equivalent:

(i) There exists µ = ρω ∈ IT for a bounded uniformly positive ρ.

(ii) The set {JT n(x) : x ∈ X, n ∈ Z} is uniformly bounded.

Proof. (i) ⇒ (ii) Observe

A2ρ =
ρ ◦ T−2

JT ◦ T−2

1

JT ◦ T−1
=

ρ ◦ T 2

JT 2 ◦ T−2

because JT 2 = (JT ◦ T )JT . By induction,

Anρ =
ρ ◦ T−n

JT n ◦ T−n
, n ∈ N.

Also, A−1ρ = (ρ ◦ T )JT , and by induction

A−nρ = (ρ ◦ T n)JT n

= (ρ ◦ T n)JT−n ◦ T n; n ∈ N.

Hence

(2.5) Anρ =
ρ ◦ T−n

JT n ◦ T−n
; n ∈ Z.

If ρω is invariant, then Anρ = ρ for all n ∈ Z. As a result, (JT n ◦ T−n)ρ = ρ ◦ T−n, or

(2.6) JT n =
ρ

ρ ◦ T n
; n ∈ Z.

Now it is clear that if ρ is bounded and uniformly positive, then {JT n(x) : n ∈ Z, x ∈ X}
is uniformly bounded.
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(ii) ⇒ (i) Suppose {JT n(x) : n ∈ Z and x ∈ X} is bounded and define

ρ(x) = sup
n∈Z

JT n(x).

We then have

JT (x)(ρ ◦ T )(x) = sup
n∈Z

(JT n) ◦ T (x)JT (x)

= sup
n∈Z

J(T n ◦ T )(x) = ρ(x).

Hence Aρ = ρ. Evidently ρ is bounded. Moreover

1/ρ = inf
n

[1/JT n(x)] = inf
n
JT−n ◦ T n = inf

n
JT n ◦ T−n

is uniformly bounded by assumption. �

Recall that expansions are harmless and have smoothing effect on Aρ. As a test case, let
us consider an expansion of [0, 1] given by

T (x) =

{
T1(x) x ∈ [0, θ0) = I1

T2(x) x ∈ [θ0, 1] = I2

with T1, T2 smooth functions satisfying |T ′i (x)| ≥ λ for x ∈ Ii. We assume λ > 1 and that
Ti(Ii) = [0, 1].

In this case

(2.7) Aρ(x) =
ρ1 ◦ T−1

1 (x)

T ′1 ◦ T−1
1 (x)

+
ρ ◦ T−1

2 (x)

T ′2 ◦ T−1
2 (x)

.

Theorem 2.3 If T1, T2 ∈ C2, then there exists µ ∈ IT of the form dµ = ρdx with ρ of finite
variation.
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Proof. Write Si = T−1
i so that

Aρ = (ρ ◦ S1)S ′1 + (ρ ◦ S2)S ′2.

We have ∫ 1

0

|(Aρ)′|dx ≤ λ−1

∫ 1

0

A|ρ′| dx

+β0

∫ 1

0

Aρ dx,

where β0 = maxx,i∈{1,2}
|S′′i (x)|
S′i(x)

and here we used S ′i ≤ 1
λ
. Hence∫ 1

0

|(Aρ)′|dx ≤ λ−1

∫ 1

0

|ρ′|dx+ β0.

By induction, ∫ 1

0

|(Anρ)′|dx ≤ λ−n
∫ 1

0

|ρ′|dx+ β0
1− λ−n

1− λ−1
.

From this we learn that
sup
n
‖Anρ‖BV <∞.

HenceAnρ has convergent subsequences in L1[0, 1]. But a limit point may not be an invariant
density. To avoid this, let us observe that we also have

sup
n

∥∥∥∥∥ 1

n

n−1∑
0

Ajρ

∥∥∥∥∥
BV

<∞.

Hence the sequence
{
ρn = n−1

∑n−1
0 Ajρ

}
n

has convergent subsequences by Helley Selection
Theorem. If ρ̄ is a limit point, then Aρ̄ = ρ̄ because for every J ∈ C([0, 1]),∫

(J ◦ T )ρ̄ dx = lim
n→∞

∫
(J ◦ T )ρn dx

= lim
n→∞

∫
JAρn dx

= lim
n→∞

∫
Jρn dx =

∫
Jρ̄ dx.

Also, for every periodic J ∈ C1,∣∣∣∣∫ 1

0

J ′ρ̄ dx

∣∣∣∣ = lim
n→∞

∣∣∣∣∫ 1

0

J ′ρn dx

∣∣∣∣ ≤ ‖J‖L∞ sup
n
‖ρn‖BV

≤ const. ‖J‖L∞ .
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Hence ρ̄ ∈ BV . �

We now discuss another approach which yields the convergence of Anρ. To find a fixed
point of A, let us consider the following function space:

(2.8) Ca = {eg : |g(x)− g(y)| ≤ a|x− y| for x, y ∈ [0, 1]}.

We note that ρ ∈ Ca ∪ {0}, iff ρ ≥ 0 and for all x, y ∈ [0, 1],

ρ(x) ≤ ρ(y)ea|x−y|.

Recall that Si = T−1
i and β0 = maxx,i∈{1,2}

|S′′i (x)|
S′i(x)

.

Lemma 2.4 We have that ACa ⊆ Caσ, whenever a > β0
σ−λ−1 and σ > λ−1.

Proof. Let ρ = eg ∈ Ca. Then

Aρ(x) =
2∑
i=1

ρ ◦ Si(x)S ′i(x)

≤
2∑
i=1

ρ ◦ Si(y)ea|Si(x)−Si(y)||S ′i(x)|

=
2∑
i=1

ρ ◦ Si(y)ea|Si(x)−Si(y)||S ′i(y)|elog |S′i(x)|−log |S′i(y)|

≤
2∑
i=1

ρ ◦ Si(y)|S ′i(y)|eaλ−1|x−y|eβ0|x−y|

= Aρ(y)e(aλ−1+β0)|x−y|.

As a result, ACa ⊆ Caλ−1+β0 ⊆ Cσa. �

What we learn from Lemma 6.3 is that if σ ∈ (λ−1, 1], then we can find a function space
Ca that is mapped into itself by A. Note that indeed Ca is a cone in the sense that{

if ρ ∈ Ca, then λρ ∈ Ca for λ > 0,

if ρ1, ρ2 ∈ Ca, then ρ1 + ρ2 ∈ Ca.

Define a partial order

(2.9) ρ1 4 ρ2 iff ρ2 − ρ1 ∈ Ca ∪ {0}.
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In other words, ρ1 4 ρ2 iff ρ1 ≤ ρ2 and

(2.10) ρ2(x)− ρ1(x) ≤ (ρ2(y)− ρ1(y))ea|x−y|, x, y ∈ [0, 1].

Hilbert metric associated with our cone Ca is defined as

(2.11) da(ρ1, ρ2) = log(βa(ρ1, ρ2)βa(ρ2, ρ1)),

where βa(ρ1, ρ2) = inf{λ ≥ 0 : ρ2 4 λρ1}. By convention, βa(ρ1, ρ2) = ∞ if there exists no
such λ. We certainly have

(2.12) da(ρ1, ρ2) = sup
α

inf
β

{
log

β

α
: αρ1 4 ρ2 4 βρ1

}
≥ 0.

Lemma 2.5 βa(ρ1, ρ2) = sup
x,y
x 6=y

ea|x−y|ρ2(y)− ρ2(x)

ea|x−y|ρ1(y)− ρ1(x)
≥ sup

x

ρ2(x)

ρ1(x)
.

Proof. If ρ2 4 λρ1, then ρ2 ≤ λρ1 and

−ρ2(x) + λρ1(x) ≤ ea|x−y|(−ρ2(y) + λρ1(y)),

−ρ2(x) + ea|x−y|ρ2(y) ≤ λ(−ρ1(x) + ea|x−y|ρ1(y)).

From this we deduce

βa(ρ1, ρ2) = max

{
sup
x

ρ2(x)

ρ1(x)
, sup
x 6=y

ea|x−y|ρ2(y)− ρ2(x)

ea|x−y|ρ1(y)− ρ1(x)

}
.

Note that if sup
x

ρ2(x)

ρ1(x)
=
ρ2(x̄)

ρ1(x̄)
, then

ea|x−x̄|ρ2(x̄)− ρ2(x)

ea|x−x̄|ρ1(x̄)− ρ1(x)
=
ea|x−x̄|ρ1(x̄)ρ2(x̄)

ρ1(x̄)
− ρ1(x)ρ2(x)

ρ1(x)

ea|x−x̄|ρ1(x̄)− ρ1(x)
≥ ρ2(x)

ρ1(x)
.

This completes the proof of lemma. �

Lemma 2.6

(i) da is a quasimetric with da(ρ1, ρ2) = 0 iff ρ1 = λρ2 for some λ > 0.

(ii) If a1 ≤ a2 then da1(ρ1, ρ2) ≥ da2(ρ1, ρ2) for ρ1, ρ2 ∈ Ca1.
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Proof. (i) If da(ρ1, ρ2) = 1, and βa(ρ1, ρ2) = λ, then βa(ρ2, ρ1) = λ−1. Hence ρ2 4 λρ1 4 ρ2

which implies that λρ1 = ρ2. The triangle inequality is a consequence of βa(ρ1, ρ2)βa(ρ2, ρ3) ≤
βa(ρ1, ρ3). This is a consequence of the fact that if ρ2 4 λ1ρ1 and ρ3 4 λ2ρ2, then ρ3 4
λ1λ2ρ1.

(ii) First observe Ca1 ⊆ Ca2 . Hence ρ2 4 λρ1 in Ca1 implies the same inequality in Ca2 .
�

Recall that we are searching for a fixed point for the operator A. By Lemma 6.3, if
σ ∈ (λ−1, 1) and a > β0

σ−λ−1 , then A(Ca) ⊆ Caσ ⊆ Ca. As our next step,, we show that A is
a contraction on Ca. But first let us demonstrate that in fact that the set Caσ is a bounded
subset of Ca.

Lemma 2.7 diam Caσ = sup
ρ1,ρ2∈Caσ

da(ρ1, ρ2) ≤ b := 2 log
1 + σ

1− σ
+ 2aσ.

Proof. From ρ2(x) ≤ ρ2(y)e−aσ|x−y| and ρ1(x) ≤ ρ1(y)eaσ|x−y| we deduce

βa(ρ1, ρ2) ≤ sup
x,y

ea|x−y| − e−aσ|x−y|

ea|x−y| − eaσ|x−y|
ρ2(y)

ρ1(y)
.

To calculate this, set z = ea|x−y|. Then z ≥ 1 and limz→1
z−z−σ
z−zσ = 1+σ

1−σ . On the other hand,
z−z−σ
z−zσ ≤

1+σ
1−σ or equivalently zσ ≤ 2σ

1+σ
z + 1−σ

1+σ
z−σ which is the consequence of the convexity

of the exponential function;

eσ log z ≤ 2σ

1 + σ
elog z +

1− σ
1 + σ

e−σ log z.

As a result,

βa(ρ1, ρ2) ≤ 1 + σ

1− σ
sup
y

ρ2(y)

ρ1(y)
≤ 1 + σ

1− σ
ρ2(y0)eaσ/2

ρ1(y0)e−aσ/2
=
ρ2(y0)

ρ1(y0)
eaσ

1 + σ

1− σ

for y0 = 1
2
. Hence

βa(ρ1, ρ2)βa(ρ2, ρ1) ≤
(

1 + σ

1− σ

)2

e2aσ,

completing the proof of lemma. �

We are now ready to show that A is a contraction.

Lemma 2.8 For every ρ1, ρ2 ∈ Ca,

da(Aρ1,Aρ2) ≤ tanh

(
b

4

)
da(ρ1, ρ2).
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Proof. By Lemma 6.7, diam(ACa) ≤ b. As a consequence if βρ1 < ρ2 < αρ1, then

da(A(ρ2 − αρ1), A(βρ1 − ρ2)) ≤ b

for every ρ1, ρ2 ∈ Ca and α, β ≥ 0. This means that we can find two constants λ1, λ2 ≥ 0
such that log λ1

λ2
≤ b and

β + αλ1

1 + λ1

Aρ1 4 Aρ2 4
β + αλ2

1 + λ2

Aρ1.

As a result,

da(Aρ1,Aρ2) ≤ log
β + αλ1

1 + λ1

1 + λ2

β + αλ2

= log
β
α

+ λ1

β
α

+ λ2

+ log
1 + λ2

1 + λ1

.

Minimizing over α and β yields

da(Aρ1,Aρ2) ≤ log
eda(ρ1,ρ2) + λ1

eda(ρ1,ρ2) + λ2

+ log
1 + λ2

1 + λ1

=

∫ da(ρ1,ρ2)

0

eθ(λ2 − λ1)

(eθ + λ1)(eθ + λ2)
dθ ≤ da(ρ1, ρ2)

√
λ2 −

√
λ1√

λ2 +
√
λ1

because max
x≥1

x(λ2 − λ1)

(x+ λ1)(x+ λ2)
=

√
λ2 −

√
λ1√

λ2 +
√
λ1

. We now maximize over λ2
λ1

to obtain

da(Aρ1,Aρ2) ≤ da(ρ1, ρ2)
e

1
2
b − 1

e
1
2
b + 1

= da(ρ1, ρ2) tanh

(
b

4

)
.

�

This evidently gives us a contraction on Ca for any a ≥ β0
σ−λ−1 provided that σ ∈ (λ−1, 1),

because tanh
(
b
4

)
< 1 always. We may minimize the rate of contraction tanh

(
b
4

)
by first

choosing the best a, namely a = β0
σ−λ−1 , and then minimizing b in σ as σ varies in (λ−1, 1).

Our goal is to show that limn→∞Anρ converges to a unique invariant density ρ̄. For this, let
us establish an inequality connecting da(ρ1, ρ2) to ‖ρ1 − ρ2‖L1 .

Lemma 2.9 For every ρ1, ρ2 ∈ Ca, with

∫ 1

0

ρ1 dx =

∫ 1

0

ρ2 dx = 1, we have

∫ 1

0

|ρ1 − ρ2| dx ≤ (eda(ρ1,ρ2) − 1), |ρ1 − ρ2| ≤ (eda(ρ1,ρ2) − 1)ρ1.
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Proof. Let us write da(ρ1, ρ2) = log β
α

with αρ1 4 ρ2 4 βρ1. This in particular implies that
αρ1 ≤ ρ2 ≤ βρ1. Integrating this over [0, 1] yields α ≤ 1 ≤ β. As a result,

ρ2 − ρ1 4 (β − 1)ρ1 4 (β − α)ρ1,

ρ2 − ρ1 < (α− 1)ρ1 < (α− β)ρ1.

From this we deduce (α− β)ρ1 ≤ ρ1 − ρ1 ≤ (β − α)ρ1. As a result, |ρ1 − ρ2| ≤ (β − α)ρ1 ≤
(β/α− 1)ρ1 and∫ 1

0

|ρ2 − ρ1| dx ≤ (β − α) ≤ β − α
α

=
β

α
− 1 = eda(ρ1,ρ2) − 1.

�

We are now ready to state and prove the first main result of this section.

Theorem 2.10 Let a = β0
σ−λ−1 and σ ∈ (λ−1, 1). Then for every ρ ∈ Ca with

∫ 1

0
ρ = 1,

limn→∞Anρ = ρ̄ exists uniformly and ρ̄ dx ∈ IT with ρ̄ ∈ Caσ. Moreover, there exists a
constant c̄1 such that

(2.13)

∣∣∣∣∫ 1

0

f ◦ T n gdx−
∫ 1

0

gdx

∫ 1

0

fρ̄dx

∣∣∣∣ ≤ c̄1λ̂
n‖f‖L1(‖g‖L1 + ‖g′‖L∞)

where λ̂ = tanh
(
b
4

)
, b = 2 log 1+σ

1−σ + 2aσ, f ∈ L1, and g is Lipschitz.

An immediate consequence of Theorem 2.10 is the mixing property of ρ̄ because we may
choose g = hρ̄/

∫
hρ̄ to deduce

lim
n→∞

∫ 1

0

f ◦ T n hρ̄ dx =

∫ 1

0

fρ̄dx

∫ 1

0

hρ̄dx.

Proof of Theorem 2.10. We first show that if ρ ∈ Ca, then Anρ converges to a function
ρ̄ ∈ Ca in L1-sense. Indeed

‖An+mρ−Anρ‖L1 ≤ exp(da(An+mρ,Anρ))− 1

≤ exp(λ̂n−1da(Am+1ρ,Aρ))− 1

≤ eλ̂
n−1b − 1 ≤ λ̂n−1beλ̂

n−1b ≤ c0λ̂
n−1

for a constant c0 that depends on b only. This implies that Anρ is Cauchy in L1. Let
ρ̄ = lim ρn where ρn = Anρ. Since ρn(x) ≤ ρn(y)eaσ|x−y| and ρnk → ρ̄ a.e. for a subsequence,
we deduce that ρ̄(x) ≤ ρ̄(y)eaσ|x−y| for a.e. x and y ∈ [0, 1]. By modifying ρ̄ on a set of zero
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Lebesgue measure if necessary, we deduce that ρ̄ ∈ Ca. Note that ρ̄ is never zero, because
if ρ̄(x0) = 0 for some x0, then ρ̄(x) ≤ ρ̄(x0)eaσ|x0−x| implies that ρ̄(x) = 0 for every x. But∫ 1

0
ρdx = 1 implies that

∫ 1

0
ρ̄dx = 1. So ρ̄ > 0, completing the proof of ρ̄ ∈ Ca.

We now show that Anρ → ρ̄ uniformly. Indeed from Anρ → ρ̄ in L1 we deduce that∫
f ◦ T nρdx→

∫
fρ̄dx for every bounded f , which implies that Aρ̄ = ρ̄. Moreover

|Anρ− ρ̄| = |Anρ−Anρ̄| ≤ (eda(Anρ,Anρ̄) − 1)Anρ̄
≤ (eλ̂

n−1da(Aρ,Aρ̄) − 1)ρ̄ ≤ (eλ̂
n−1b − 1)ρ̄

≤ λ̂n−1beλ̂
n−1bρ̄ ≤ c0λ̂

nρ̄

with c0 depending on b only. From this we learn that

‖Anρ− ρ̄‖L∞ ≤ c0λ̂
n‖ρ̄‖L∞ ,

for every ρ ∈ Ca with
∫ 1

0
ρdx = 1.

We now turn to the proof of (2.13). Without loss of generality, we may assume that
g ≥ 0. Given such a function g, find l > 0 large enough so that ρ = g + lρ̄ ∈ Ca. Indeed, for
y > x, we have that ρ(y) ≤ g(y) + lρ̄(x) exp(aσ(y − x)) =: exp(h(y)). On the other hand

h′(y) =
g′(y) + laσρ̄(x)eaσ(y−x)

g(y) + lσρ̄(x)eaσ(y−x)
≤ ‖g

′‖L∞
lρ̄(x)

+
laσρ̄(x)eaσ(y−x)

lρ̄(x)eaσ(y−x)
≤ ‖g

′‖L∞
inf ρ̄

1

l
+ aσ.

This is at most a if we choose

l =
‖g′‖L∞

(1− σ) inf ρ̄
.

Hence ∥∥∥∥An g + lρ̄

Z
− ρ̄
∥∥∥∥
L∞
≤ c0λ̂

n‖ρ̄‖L∞

where Z =
∫ 1

0
(g + lρ̄)dx. Since Aρ̄ = ρ̄, we deduce∥∥∥∥AngZ +

l

Z
ρ̄− ρ̄

∥∥∥∥
L∞

≤ c0λ̂
n‖ρ̄‖L∞ ,

‖Ang − (Z − l)ρ̄‖L∞ ≤ c0λ̂
n‖ρ̄‖L∞Z.

Hence ∥∥∥∥Ang − ρ̄∫ 1

0

g dx

∥∥∥∥
L∞
≤ c1λ̂

n

[∫
g dx+ l

]
≤ c2λ̂

n

[∫
g dx+ ‖g′‖L∞

]
.

From this, we can readily deduce (2.13). �
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As our next scenario, let us study an example of a 2-dimensional system that has ex-
panding and contracting direction but there is no absolutely continuous invariant measure.
As a toy model for such a phenomenon, we consider a (generalized) baker’s transformation:

T : T2 → T2, T (x1, x2) =

{(
x1
α
, βx2

)
if 0 ≤ x1 ≤ α,(

x1−α
β
, β + αx2

)
if α < x1 ≤ 1.

with α, β > 0 and α + β = 1.

Note

|JT (x1, x2)| =

{
β
α

if 0 ≤ x ≤ α,
α
β

if α < x ≤ 1.

As we will see later, the transformation T does not have an absolutely continuous invariant
measure unless α = β = 1

2
. To analyze Perron–Frobenious operator, let us define Fµ(x1, x2) =

µ([0, x1]× [0, x2]). If F̂ = FAµ, then

(2.14) F̂ (x1, x2) =

{
F (αx1, x2/β) if 0 ≤ x2 ≤ β,

F (αx1, 1) + F
(
βx1 + α, x2−β

α

)
− F

(
α, x2−β

α

)
if β < x2 ≤ 1.

To see this, recall that F̂ (x1, x2) = µ(T−1([0, x1]× [0, x2])). Also

(2.15) T−1(x1, x2) =

{(
αx1,

x2
β

)
if 0 ≤ x2 ≤ β,(

α + βx1,
x2−β
α

)
if β < x2 ≤ 1.

Now if 0 ≤ x2 ≤ β, then T−1([0, x1] × [0, x2]) = [0, αx1] ×
[
0, x2

β

]
which implies that

F̂ (x1, x2) = F
(
αx1,

x2
β

)
in this case. On the other hand, if β < x2 ≤ 1, then

T−1([0, x1]× [0, x2]) = T−1([0, x1]× [0, β]) ∪ T−1([0, x1]× [β, x2]),

T−1([0, x1)× [0, β]) = [0, αx1]× [0, 1],

T−1([0, x1]× (β, x2]) = [α, α + βx1]×
(

0,
x1 − β
α

]
.

27



Clearly µ([0, αx1]× [0, 1]) = F (αx1, 1).

Moreover,

µ

(
[α, α + βx1]×

(
0,
x2 − β
α

])
= F

(
α + βx1,

x2 − β
α

)
−µ
(

[0, α)×
(

0,
x2 − β
α

))
= F

(
α + βx1,

x2 − β
α

)
− F

(
α,
x2 − β
α

)
,

completing the proof of (2.14).
Since the expanding and contracting directions are the x, y-axis, we may separate variable

to solve the equation ÂF := F̂ = F . In other words, we search for a function F (x1, x2) =
F1(x1)F2(x2) such that ÂF = F . Since for pure expansion in dimension one the Lebesgue
measure is invariant, we may try F1(x1) = x1. Substituting this in ÂF yields ÂF (x1, x2) =
x1F̂2(x2) where

BF2 := F̂2(x2) =

{
αF2

(
x2
β

)
0 ≤ x2 ≤ β,

α + βF2

(
x2−β
α

)
β < x2 ≤ 1.

Here we are using F2(1) = 1. We are now searching for F2 such that BF2 = F2. It turns
out that this equation has a unique solution F2 that has zero derivative almost everywhere.
Hence our invariant measure µ̄ = λ1 × λ2 with λ1 the Lebesgue measure and λ2 a singular
measure. One can show that the support of the measure λ2 is of Hausdorff dimension
α logα+β log β
α log β+β logα

=: ∆. To explain this heuristically, we show that if A denotes the set of points

x such that there exists a sequence of intervals In(x) with x ∈ In(x), ∩nIn(x) = {x}, and

lim
n→∞

log λ2(In(x))

log λ1(In(x))
= ∆,

then λ2(A) = 1. To construct In, let us first define a family of intervals Ia1,...,an , with
a1, . . . , an ∈ {0, 1}, so that I0 = [0, β), I1 = [β, 1), and if Ia1,...,an = [p, q), then Ia1,...,an,0 =
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[p, p+ β(q − p)), and Ia1,...,an,1 = [p+ β(q − p), q). It is not hard to show

(2.16) λ2(Ia1,...,an) = αLnβRn , λ1(Ia1,...,an) = βLnαRn ,

where Ln and Rn denote the number of 0 and 1 in the sequence a1, . . . , an, respectively. Given
x, we can find a sequence ω(x) = (a1, . . . , an, . . . ) ∈ Ω = {0, 1}N, such that x ∈ Ia1,...,an for
every n. The transformation x 7→ ω(x) pushes forward the measure λ2 to the product
measure λ′2 such that each an is 0 with probability α. If Ln(x) and Rn(x) denote the number
of 0 and 1 in a1, . . . , an with ω(x) = (a1, . . . , an, . . . ), then by Birkhoff Ergodic Theorem

λ2

{
x : lim

n

Ln(x)

n
= α, lim

n

Rn(x)

n
= β

}
= 1.

From this and (2.16) we can readily deduce that λ2(A) = 1.
Note that the support of µ̄ is of dimension 1 + ∆. Evidently ∆ < 1 unless α = β = 1

2
.

What we have constructed is the Sinai–Ruelle–Bowen (SRB) measure µ̄ of our baker’s
transformation T . Note that this measure is absolutely continuous with respect to the
expanding direction x-axis. A remarkable result of Sinai–Ruelle–Bowen asserts

lim
n→∞

1

n

n−1∑
0

f(T j(x)) =

∫
fdµ̄

for almost all x with respect to the Lebesgue measure. This is different from Birkoff’s
ergodic theorem because Birkhoff’s ergodic theorem only gives us convergence for µ̄-a.e. and
µ̄ is singular with respect to Lebesgue measure.

Exercise 2.11

(i) Show that the baker’s transformation is reversible in the following sense: If Φ(x, y) =
(1− x, 1− y) then Φ2 = identity and T−1 = ΦTΦ.

(ii) Show that if µ ∈ IT then µΦ ∈ IT−1 where µΦ is defined by
∫
fd(µΦ) =

∫
f ◦ Φdµ.

Exercise 2.12 Let T : (0, 1] → (0, 1] by T (x) =
{

1
x

}
where {·} means the fractional part.

Derive the corresponding Perron–Frobenious equation. Show that ρ(x) = 1
log 2

1
1+x

is a fixed
point for the corresponding Perron–Frobenious operator.

We end this section with a discussion regarding the flow-analog of Perron–Frobenious
equation. Given a flow φt associated with the ODE dx

dt
= f(x), let us define

Ttg = g ◦ φt.
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This defines a group of transformations on the space of real-valued functions g. The dual of
Tt acts on measures. More precisely, T ∗t µ is defined by∫

Ttfdµ =

∫
fdT ∗t µ,

or equivalently T ∗t µ(A) = µ(φ−1
t A) = µ(φ−t(A)). The following theorem of Liouville gives

an infinitesimal description of T ∗t µ when µ is absolutely continuous with respect to Lebesgue
measure.

Theorem 2.13 Suppose that there exists a differentiable function ρ(x, t) such that d(T ∗t µ) =
ρ(x, t)dx. Then ρ satisfies the Liouville’s equation

ρt + div(fρ) = 0.

Proof. Let g be a differentiable function of compact support. We have∫
g(y)ρ(y, t+ h)dy =

∫
g(φt+h(x))ρ(x, 0)dx

=

∫
g(φh(φt(x)))ρ(x, 0)dx

=

∫
g(φh(y))ρ(y, t)dy

=

∫
g(y + hf(y) + o(h))ρ(y, t)dy

=

∫
g(y)ρ(y, t)dy + h

∫
∇ g(y) · f(y)ρ(y, h)dy

+o(h).

This implies that d
dt

∫
g(y)ρ(y, t)dy =

∫
f(y) · ∇g(y)ρ(y, t)dy. After an integration by parts,

d

dt

∫
g(y)ρ(y, t)dy =

∫
g(ρt + div(fρ))dy.

Since g is arbitrary, we are done. �

Exercise 2.14

(i) Let u(x, t) = Ttg(x) = g(φt(x)). Show that u satisfies ut = Lu where Lu = f(x) · ∂u
∂x

.

(ii) Show that µ ∈ Iφ iff
∫
Lgdµ = 0 for every g ∈ C1 of compact support.
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In particular a measure ρdx is invariant if

div(fρ) = 0,

or equivalently ρ∇ f+ρ div f = 0. The generalization of this to manifolds is straightforward.
If Lf denotes the Lie derivative and f is the velocity of the flow, then ρω is invariant if and
only if

Lfρ+ ρ div f = 0.

Example 2.15 Let

T (x) =

{
x

1−x for x ∈
[
0, 1

2

)
,

2x− 1 for x ∈
[

1
2
, 1
]
.

Note that for this example, the condition |T ′(x)| > 1 is violated at a single point x = 0. It
turns out T has no invariant measure which is absolutely continuous with respect to Lebesgue
measure. We omit the proof and refer the reader to [LaYo].

Notes The proof of Theorem 2.10 was taken from [Li].
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3 Entropy

Roughly speaking, the entropy measures the exponential rate of increase in dynamical com-
plexity as a system evolves in time. We will discuss two notions of entropy in this section,
the topological entropy and (Kolmogorov–Sinai) metric entropy. We define the topological
entropy first even though chronologically metric entropy was defined first.

Let (X, d) be a compact metric space and T : X → X be a continuous transformation.
Define

dn(x, y) = max{d(x, y), d(T (x), T (y)), . . . , d(T n−1(x), T n−1(y))},
Bn(x, r) = Bn

T,d(x, r) = {y : dn(x, y) < r}.

We then define two numbers. First SnT,d(r) is defined as the smallest number k for which we
can find a set A of cardinality k such that X =

⋃
x∈AB

n
T,d(x, r). We also define Nn

T,d(r) to
be the maximal number of points in X with pairwise dn-distances at least r. Set

htop(T ; d) = htop(T ) = lim
r→0

lim sup
n→∞

1

n
logSnT,d(r),

h̄top(T ; d) = h̄top(T ) = lim
r→0

lim sup
n→∞

1

n
logNn

T,d(r).

We will see below that h̄top = htop and we call htop(T ), the topological entropy of T . We will
see that htop(T ; d) is independent of the choice of the metric and depends on the topology
of the underlying space. In some sense, “higher entropy” means “more orbits”. But the
number of orbits is usually uncountably infinite. Hence we fix a “resolution” r, so that
we do not distinguish points that are of distance less than r. Hence Nn(r) represents the
number of distinguishable orbits of length n, and this number grows like enhtop(T ). Here are
some properties of the topological entropy.

Proposition 3.1

(i) If the metrics d and d′ induce the same topology, then htop(T ; d) = htop(T ; d′).

(ii) If F : X → Y is a homeomorphism, T : X → X, S : Y → Y , S ◦ F = F ◦ T , then
htop(T ) = htop(S).

(iii) htop(T n) = nhtop(T ). Moreover, if T is a homeomorphism, then htop(T ) = htop(T−1).

(iv) htop(T ) = h̄top(T ).

Proof.
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(i) Set η(ε) = min{d′(x, y) : d(x, y) ≥ ε}. Then

d′(x, y) < η(ε)⇒ d(x, y) < ε.

As a result, limε→0 η(ε) = 0 and Bn
T,d′(x, η(ε)) ⊆ Bn

T,d(x, ε). Hence SnT,d′(η(ε)) ≥ SnT,d(ε).
Thus htop(T, d) ≤ htop(T, d′).

(ii) Given a metric d on X, define a metric d′ on Y by d′(x, y) = d(F−1(x), F−1(y)).
Evidently htop(T ; d) = htop(S; d′).

(iii) Evidently Bnk
T,d(x, r) ⊆ Bk

Tn,d(x, r). Hence

SnkT,d(r) ≥ SkTn,d(r), htop(T n) ≤ nhtop(T ).

For the converse, find a function η : (0,∞) → (0,∞) such that limr→0 η(r) = 0
and Bd(x, η(r)) ⊂ Bn

T,d(x, r). Then Bk
Tn,d(x, η(r)) ⊂ Bkn

T,d(x, r). This implies that

SkTn,d(η(r)) ≥ SknT,d(r), which in turn implies

1

k
logSkTn,d(η(r)) ≥ n

k − 1

k
max

(k−1)n≤`≤kn

1

`
logS`T,d(r).

From this, it is not hard to deduce that htop(T n) ≥ nhtop(T ).

For htop(T−1) = htop(T ), observe T n−1(Bn
T,d(x, r)) = Bn

T−1,d(T
n−1(x), r). Hence X =⋃k

j=1B
n
T,d(xj, r) implies that X =

⋃k
j=1 B

n
T−1,d(T

n−1(xj), r). From this we deduce

SnT−1,d(r) ≤ SnT,d(r). This implies that htop(T−1) ≤ htop(T ) which in turn implies

that htop(T−1) = htop(T ).

(iv) This is an immediate consequence of the following straightforward inequalities:

Nn
T,d(2r) ≤ SnT,d(r) ≤ Nn

T,d(r).

The first inequality follows from the fact that if Nn(r) = L and {x1, . . . , xL} is a
maximal set, then X =

⋃L
j=1 Bdn(xj, r). The second inequality follows from the fact

that no dn-ball of radius r can contain two points that are 2r-apart. �

Exercise 3.2 Let (X1, d1), (X2, d2) be two compact metric spaces and let Ti : Xi → Xi,
i = 1, 2 be two continuous functions. show that htop(T1 × T2) = htop(T1) + htop(T2).

Hint: For T = T1 × T2 and a suitable choice of a metric d for X1 ×X2, show that

SnT,d(r) ≤ SnT1,d1(r)S
n
T2,d2

(r), Nn
T,d(r) ≥ Nn

t,d1
(r1)Nn

T,d2
(r2).

�
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Example 3.3 Let T : Td → Td be a translation. Since T is an isometry, dn(x, y) = d(x, y)
for d(x, y) = |x− y|. Thus Sn(r) is independent of n and htop(T ) = 0. �

Example 3.4 Let X = {0, 1, . . . , N − 1}Z. Given ω = (ω(j) : j ∈ Z) ∈ X, define (Tω)(j) =
ω(j + 1). Consider the metric

d(ω, ω′) =
∑
j∈Z

λ−|j||ω(j)− ω′(j)|,

with λ > 1. Fix α ∈ X and take any ω ∈ X. Evidently∑
|j|>m

λ−|j||α(j)− ω(j)| ≤ 2(N − 1)
∞∑
m+1

λ−` =
2(N − 1)

λm(λ− 1)
.

Also, if ω(j) 6= α(j) for some j ∈ {−m, . . . ,m}, then∑
|j|≤m

λ−|j||α(j)− ω(j)| ≥ λ−m.

Evidently d induces the product topology on X no matter what λ ∈ (1,∞) we pick. Choose

λ large enough so that 2(N−1)
λ−1

< 1. For such a choice of λ,

Bd

(
α, λ−m

)
= {ω : ω(j) = α(j) for j ∈ {−m, . . . ,m}}.

Since {
ω : d(T i(ω), T i(α)) < λ−m

}
= {ω : ω(j + i) = α(j + i) for j ∈ {−m, . . . ,m}},

we deduce

Bdn

(
α, λ−m

)
= {ω : ω(j) = α(j) for j ∈ {−m, . . . ,m+ n− 1}}.

Evidently every two dn-balls of radius λ−m are either identical or disjoint. As a result,
SnT,d (λ−m) = N2m+n. Thus

htop(T ) = lim
m→∞

lim sup
n→∞

1

n
logN2m+n = logN.

�

Example 3.5 Let (X,T ) be as in the previous example and let A = [aij] be an N × N
matrix with aij ∈ {0, 1} for all i, j ∈ {0, 1, . . . , N − 1}. Set

XA = {ω ∈ X : aω(i),ω(i+1) = 1 for all i ∈ Z}.
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Evidently XA is an invariant set and the restriction of T to XA gives a dynamical system.
To have a irreducible situation, we assume that each row of A contains at least one 1 (if for
example a0j = 0 for all j, we may replace X with {1, 2, . . . , N − 1}Z). For such A,

SnT,d
(
λ−m

)
= # of balls of radius λ−m with nonempty intersection with XA

= # of (α−m, . . . , αm+n−1) with aαi,αi+1
= 1 for −m ≤ i < m+ n+ 1

=
N−1∑
r,s=0

#{(α−m, . . . , αm+n−1) : aαi,αi+1
= 1 for −m ≤ i < m+ n− 1

and α−m = r, αm+n−1 = s}

=
N−1∑
r,s=0

a2n+m−1
r,s = ‖A2m+n−1‖

where akr,s is the (r, s) entry of the matrix Ak, and ‖A‖ denotes the norm of A, i.e., ‖A‖ =∑
r,s |ar,s|. We now claim

htop(T ) = lim
m→∞

lim sup
n→∞

1

n
log ‖A2m+n−1‖ = log r(A),

where r(A) = max{|λ| : λ an eigenvalue of A}. To see this, first observe that if Av = λv,
then Akv = λkv. Hence

|λ|k max
j
|vj| ≤ |λ|k

∑
j

|vj| ≤
∑
i,j

|aki,j||vi| ≤ ‖Ak‖max
j
|vj|.

As a result, ‖Ak‖ ≥ |λ|k. This shows that htop(T ) ≥ log r(A). For the converse, we choose
a basis so that the off-diagonal entries in Jordan normal form of A become small (see The-
orem ?? of Part I). Using this we can show that |Av| ≤ (r(A) + δ)|v| which in turn implies
that |Akv| ≤ (r(A) + δ)k|v|. From this we deduce that htop(T ) ≤ log(r(A) + δ). Finally send
δ → 0 to deduce that htop(T ) ≤ log r(A). This completes the proof of htop(T ) = log r(A).

�

Example 3.6 Let X = T2 and T : X → X is given by T (x) = A0X (mod 1) where A0

is an integer-valued matrix with eigenvalues λ1, λ2 satisfying |λ2| < 1 < |λ1| = |λ2|−1. For

the sake of definiteness, let us take A =

[
2 1
1 1

]
with eigenvalues λ1 = 3+

√
5

2
, λ2 = 3−

√
5

2

and eigenvectors v1 =

[
1√
5−1
2

]
, v2 =

[
1

−
√

5−1
2

]
. T is a contraction along v2 and an expansion

along v1. We now draw the eigen lines from the origin and let them intersect several times
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to separate torus into disjoint rectangles. Let us write R1 and R2 for these rectangles. We
now study T (R1) and T (R2). We set

T (R1) ∩R1 = Z0 ∪ Z1

T (R1) ∩R2 = Z3
, R1 = Z0 ∪ Z1 ∪ Z2.

We then define Z4 so that R2 = Z3 ∪Z4. One can then show that T (R2) = Z2 ∪Z4. We now
define Y = {0, 1, 2, 3, 4}Z and h : YC → T2 = X with

C =


1 1 0 1 0
1 1 0 1 0
1 1 0 1 0
0 0 1 0 1
0 0 1 0 1

 = [cij]

where h(ω) = x for {x} =
⋂
n∈Z T

−n(Zω(n)). If T̂ denotes the shift on YC , then we have

T ◦ h = h ◦ T̂ . Here we are using the fact that if x ∈ Zi and T (x) ∈ Zj, then cij = 1.
Also, since T is contracting in v2-direction and T−1 is contracting in v1-direction, then⋂
n∈Z T

−n(Zω(n)) has at most one point. To show that the intersection is nonempty, first we
verify that indeed whenever cij = 1, then T (Zi)∩Zj 6= ∅. Using this, it is not hard to deduce

that
⋂N
−N T

−n(Zω(n)) 6= ∅ whenever ω ∈ YC . This and the compactness of the space imply
that

⋂
n∈Z T

−n(Zω(n)) 6= ∅.
The transformation h is onto because for each x we can find ω ∈ YC such that T n(x) ∈

Zω(n). However, h is not one-to-one. For example if ᾱ denotes ᾱ = (ω(n) : n ∈ Z) with

ω(n) = α for all n, then 0̄, 1̄, 4̄ ∈ YC (but not 2̄ and 3̄). Moreover T̂ (0̄) = 0̄, T̂ (1̄) = 1̄,
T̂ (4̄) = 4̄. On the other hand the only x with T (x) = x is x = 0. In fact h(0̄) = h(1̄) = h(4̄)
is equal to the origin. From T ◦ h = h ◦ T̂ and Example 3.5 we conclude that htop(T ) ≤
htop(T̂ ) = log r(C). See Exercise 3.7. A straightforward calculation yields r(C) = λ1 = 3+

√
5

2
.

Later we discuss the metric entropy, and using the metric entropy of T we will show in
Example 3.15 below that indeed htop(T ) = log 3+

√
5

2
. �

Exercise 3.7

(i) Let F : X → Y be a continuous function with F (X) = Y . Let T : X → X, T ′ : Y → Y
be continuous and F ◦ T = T ′ ◦ F . show that htop(T ′) ≤ htop(T ).

(ii) Let C be as in Example 3.6. show that r(C) = 3+
√

5
2

. �

The metric entropy is the measure-theoretic version of the topological entropy. Let
T : X → X be a measurable transformation and take µ ∈ IT . A countable collection ξ
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of measurable subsets of X is called a µ-partition if µ(C ∩ D) = 0 for every two distinct

A,B ∈ ξ, and µ
(
X −

⋃
A∈ξ A

)
= 0. If ξ and η are two µ-partition, then their common

refinement ξ ∨ η is the partition

ξ ∨ η = {A ∩B : A ∈ ξ, B ∈ η, µ(A ∩B) > 0}.

Also, if ξ is a µ-partition, then we set

T−1ξ = {T−1(A) : A ∈ ξ},

which is also a µ-partition because µ ∈ IT . We also define

ξT−n = ξ ∨ T−1ξ ∨ · · · ∨ T−n+1ξ.

As we discussed in the introduction, the metric entropy measures the exponential gain in the
information. Imagine that we can distinguish two points x and y only if x and y belong to
different elements of the partition ξ. Now if the orbits up to time n−1 are known, we can use
them to distinguish more points. The partition ξT−n represents the accumulated information
gained up to time n − 1. Except for a set of zero µ-measure, each x belongs to a unique
element Cn(x) ∈ ξT−n. Let’s have an example.

Example 3.8 Let T (x) = mx (mod 1), T : T → T with m ∈ Z, m ≥ 2. Let ξ ={[
j
m
, j+1
m

)
: j = 0, . . . ,m− 1

}
. Then

ηn = ξT−n = {[·a1 . . . an, ·a1 . . . an +m−n) : a1 . . . an ∈ {0, 1, . . . ,m− 1}}.

Given x, let ·a1a2 . . . an ∗ ∗ . . . denote its base m expansion. Note that for points on the
boundary of the intervals in ηn, we may have two distinct expansions. Since we have chosen
closed-open intervals in ξ, we dismiss expansions which end with infinitely many m. In other
words, between .a1 . . . akmm. . . , with ak < m and .a1 . . . a

′
k00 . . . for a′k = ak + 1, we choose

the latter. we have
Cηn(x) = [·a1 . . . an, ·a1 . . . an +m−n).

If µp ∈ IT with p = (p0, . . . , pm−1), pj ≥ 0,
∑

j pj = 1, µp([·a1 . . . an, ·a1 . . . an + m−n)) =
pa1pa2 . . . pan , then µp(Cηn(x)) = pa1 . . . pan and

1

n
log µp(Cηn(x)) =

1

n

n∑
1

log paj =
1

n

n−1∑
0

log f(T j(x))

where f(·a1a2 . . . ) = pa1 . By ergodic theorem,

lim
n→∞

1

n
log µp(Cηn(x)) =

m∑
1

pj log pj.
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In general, if we are interested in the amount of information the partition ηn = ξT−n
carries out, perhaps we should look at µ(Cn(x)) where Cn(x) = Cηn(x). This is typically
exponentially small in n. Motivated by Example 3.8, we define

Iξ(x) = − log µ(Cξ(x)),

Hµ(ξ) =

∫
Iξ(x)µ(dx) = −

∑
C∈ξ

µ(C) log µ(C),

hµ(T, ξ) = lim
n→∞

1

n
Hµ(ξT−n).

Theorem 3.9 The limit in the definition hµ(T, ξ) exists. Moreover, if Cn(x) = CξT−n(x),
then

(3.1) lim
n→∞

∫ ∣∣∣∣ 1n log µ(Cn(x)) + hµ(T, ξ)

∣∣∣∣ dµ = 0,

provided that µ is ergodic. (Shannon–McMillan–Breiman Theorem)

We do not give the full proof of (3.1) that involves some results from the probability
theory. The proof of the existence of the limit is an immediate consequence of Lemmas 3.10
and 3.11 below. To this end let us define,

Iξ|η(x) = − log µ(Cξ(x) | Cη(x)) = − log
µ(Cξ(x) ∩ Cη(x))

µ(Cη(x))
,

Hµ(ξ | η) =

∫
Iξ|ηdµ = −

∑
A∈ξ,B∈η

µ(A ∩B) log
µ(A ∩B)

µ(B)
,

where η and ξ are two µ-partitions.

Lemma 3.10 We have

(3.2) Hµ(ξ ∨ η) = Hµ(η) +Hµ(ξ | η), Hµ(ξ ∨ η) ≤ Hµ(ξ) +Hµ(η), Hµ(T−1ξ) = Hµ(ξ).

Lemma 3.11 Let an be a sequence of numbers such that an+m ≤ an+am. Then limn→∞
1
n
an =

infn
an
n

.
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Proof of Lemma 3.10. We certainly have Iξ∨η = Iη + Iξ|η. From this we deduce the first
equality in (3.2). For the inequality Hµ(η ∨ ξ) ≤ Hµ(ξ) + Hµ(η), it suffices to show that
Hµ(ξ|η) ≤ Hµ(ξ). Set ϕ(x) = x log x and note that ϕ is convex. Then

ϕ(µ(B)) = ϕ

(∑
A∈η

µ(A)
µ(A ∩B)

µ(A)

)
≤
∑
A∈η

µ(A)ϕ

(
µ(A ∩B)

µ(A)

)
=

∑
A∈η

µ(A ∩B) log
µ(A ∩B)

µ(A)
.

This completes the proof of Hµ(η ∨ ξ) ≤ Hµ(ξ) +Hµ(η). The statement Hµ(T−1ξ) = Hµ(ξ)
is obvious because µ(T−1(A)) = µ(A) for every A ∈ ξ. �

Proof of Lemma 3.11. Evidently lim infn→∞
an
n
≥ infn

an
n

. On the other hand, if n =
`m+ r with m, ` ∈ N, r ∈ [0,m), then

an = a`m+r ≤ a`m + ar ≤ `am + ar,
an
n
≤ `m

n

am
m

+
ar
n
.

After sending n→∞, we obtain,

lim sup
n→∞

an
n
≤ am

m

for every m ∈ Z+. This completes the proof. �

Proof of Theorem 3.9. Let us define ξ(n,m) = T−nξ ∨ T−n−1ξ ∨ · · · ∨ T−mξ whenever
n < m. We have

IξT−n−1
= Iξ(0,n) = Iξ∨T−1ξ(0.n−1)(= Iξ∨ξ(1,n))

= IT−1ξ(0,n−1) + Iξ|T−1ξ(0,n−1).

Since CT−1η(x) = Cη(T (x)), we deduce

IξT−n = Iξ(0,n−1) ◦ T + Iξ|ξ(1,n).

Applying this repeatedly, we obtain

IξT−n−1
= Iξ|ξ(1,n) + Iξ|ξ(1,n−1) ◦ T + · · ·+ Iξ|ξ(1,2) ◦ T n−2 + Iξ|T−1ξ ◦ T n−1 + Iξ ◦ T n,(3.3)

1

n
IξT−n−1

=
1

n

n−1∑
j=0

Iξ|ξ(1,n−j) ◦ T j +
1

n
Iξ ◦ T n−1.
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If it were not for the dependence of Iξ|ξ(1,n−j) on n − j, we could have used the Ergodic

Theorem to finish the proof. However, if we can show that limm→∞ Iξ|ξ(1,m) = Î exists, say in

L1(µ)-sense, then we are almost done because we can replace Iξ|ξ(1,n−j) with Î in (3.3) with
an error that is small in L1-sense. We then apply the ergodic theorem to assert

lim
n→∞

1

n
IξT−n =

∫
Îdµ.

Note that if we write Fη for the σ–algebra generated by η, then µ(Cξ(x)|Cη(x)) is nothing
other than

µ(Cξ | Fη)(x) =
∑
A∈ξ

µ(A | Fη)(x)11A(x),

i.e. the conditional expectation of the indicator function of the set Cξ, given the σ-field Fη.
Hence, we simply have

Î(x) = − log

{
lim
n→∞

∑
A∈ξ

µ(A | ξ(1, n))(x)11A(x)

}
= −

∑
A∈ξ

log
{

lim
n→∞

µ(A | ξ(1, n))(x)
}

11A(x).

This suggests studying limn→∞ µ(A | ξ(1, n)). The existence and interpretation of the limit
involve some probabilistic ideas. We may define F1,n to be the σ-algebra generated by the
partition ξ(1, n). We then have F1,2 ⊆ F1,3 ⊆ . . . and if F1,∞ is the σ-algebra generated by
all ξ(1, n)’s, then

lim
n→∞

µ(A | ξ(1, n)) = µ(A | F1,∞),

µ-almost surely and in L1(µ)–sense. The right-hand side is the conditional measure of A given
the σ-algebra F1,∞. The proof of convergence follows the celebrated martingale convergence
theorem. We only provide a proof for the L1(µ)–convergence and refer the reader to any
textbook on martingales for the almost sure convergence.

Write f = µ(A | F1,∞) so that

µ(A | F1,n) = Eµ(f | F1,n),

where the right-hand side denotes the µ–conditional expectation of f given the σ–algebra
F1,n. Hence the martingale convergence theorem would follow if we can show

(3.4) lim
n→∞

Eµ(f | F1,n) = f,

for every F1,∞-measurable function f . Given such a function f and δ > 0, we can find a
positive integer k and F1,k-measurable function g such that ‖f − g‖L1(µ) ≤ δ. We certainly
have

lim
n→∞

Eµ(g | F1,n) = g, ‖Eµ(f | F1,n)− Eµ(g | F1,n)‖L1(µ) ≤ δ.
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We use this and send δ to 0 to deduce (3.4). For our purposes, we need something stronger,
namely

(3.5) lim
n→∞

log µ(A | F1,n) = log µ(A | F1,∞).

This would follow from (3.4) provided that we can show

(3.6)

∫
A

(
sup
n

(− log µ(A | F1,n))

)
dµ ≤ −µ(A) log µ(A) + µ(A).

Indeed if we pick ` > 0 and define

An =
{
x : µ (A | F1,n) (x) < e−`, µ (A | F1,k) (x) ≥ e−` for k = 1, 2, . . . , n− 1

}
,

then An ∈ F1,n and we can write

µ

{
x ∈ A : sup

n
(− log µ(A | F1,n)(x)) > `

}
= µ (A ∩ ∪∞n=1An) =

∞∑
1

µ(A ∩ An)

=
∞∑
1

∫
An

µ(A | F1,n)dµ

≤
∞∑
1

∫
An

e−`dµ = e−`
∞∑
1

µ(An) ≤ e−`.

From this we deduce∫
A

(
sup
n

(− log µ(A | F1,n)) (x)

)
dµ =

∫ ∞
0

µ

{
x ∈ A : sup

n
(− log µ(A | F1,n)(x)) > `

}
d`

≤
∫ ∞

0

min{µ(A), e−`}d` = −µ(A) log µ(A) + µ(A).

This completes the proof of (3.6). �

The proof of Theorem 3.9 suggests an alternative formula for the entropy. In some sense
hµ(T, ξ) is the entropy of the “presence” ξ relative to its “past” ξ(1,∞). To make this
rigorous, first observe that by (3.3),

(3.7) Hµ(ξT−n) = Hµ(ξ(0, n− 1)) =
n−1∑
j=1

Hµ(ξ | ξ(1, j))

where Hµ(ξ | ξ(1, 1)) means Hµ(ξ). In fact we have
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Proposition 3.12 hµ(T, ξ) = infnHµ(ξ | T−1ξ ∨ · · · ∨ T−nξ) and the sequence Hµ(ξ |
T−1ξ ∨ · · · ∨ T nξ) is nondecreasing.

Proof. The monotonicity of the sequence an = Hµ(ξ | T−1ξ ∨ · · · ∨ T nξ) follows from
Lemma 3.13 below. We then use (3.7) to assert

lim
n→∞

1

n
Hµ(ξT−n) = lim

n→∞

1

n

n−1∑
1

Hµ(ξ | ξ(1, j))

= lim
n→∞

Hµ(ξ | ξ(1, n)) = inf
n
Hµ(ξ | ξ(1, n)).

�

It remains to show the monotonicity of the sequence an. Let us write α ≤ β when β is
a refinement of α. This means that for every B ∈ β, there exists a set A ∈ α such that
µ(B − A) = 0. Evidently ξ(1, 1) ≤ ξ(1, 2) ≤ · · · ≤ ξ(1, n). Let us write X = Y (mod 0) if
µ(X∆Y ) = 0. If α ≤ β, then for every A ∈ α, A = ∪{B ∈ β : µ(B − A) = 0}(mod 0). For
the monotonicity of an, it suffices to show this:

Lemma 3.13 If α ≤ β, then Hµ(ξ | α) ≥ Hµ(ξ | β).

Proof. Recall ϕ(z) = z log z. We have

Hµ(ξ | α) = −
∑
A,C

µ(A ∩ C) log
µ(A ∩ C)

µ(A)
= −

∑
A,C

µ(A)ϕ

(
µ(A ∩ C)

µ(A)

)
, A ∈ α, C ∈ ξ.

Fix A and write A = ∪{B : B ∈ J}(mod 0) for a family J , so that {B : B ∈ J} ⊆ β. Hence

ϕ

(
µ(A ∩ C)

µ(A)

)
= ϕ

(∑
B∈J

µ(B)

µ(A)

µ(C ∩B)

µ(B)

)
≤
∑
B∈J

µ(B)

µ(A)
ϕ

(
µ(C ∩B)

µ(B)

)
.

From this we deduce Hµ(ξ | α) ≥ Hµ(ξ | β). �

We finally define the entropy of a transformation by

hµ(T ) = sup{hµ(T, ξ) : Hµ(ξ) <∞, ξ a partition}.

Exercise 3.14

(i) If ξ has m elements, then 0 ≤ Hµ(ξ) ≤ logm.

(ii) If µ1, µ2 ∈ IT and α ∈ [0, 1], then
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Hαµ1+(1−α)µ2(ξ) ≥ αHµ1(ξ) + (1− α)Hµ2(ξ)

hαµ1+(1−α)µ2(T, ξ) ≥ αhµ1(T, ξ) + (1− α)hµ2(T, ξ)

hαµ1+(1−α)µ2(T ) ≥ αhµ1(T ) + (1− α)hµ2(T ).

(iii) If α ≤ β, then Hµ(α) ≤ Hµ(β) and hµ(T, α) ≤ hµ(T, β). �

We continue with some basic properties of the entropy.

Proposition 3.15

(i) hµ(T, ξ) ≤ hµ(T, η) +Hµ(ξ | η).

(ii) hµ(T k) = khµ(T ) and if T is invertible, then hµ(T ) = hµ(T−1).

(iii) If µ⊥ν and µ, ν ∈ IT , then hαµ+(1−α)ν(T ) = αhµ(T ) + (1− α)hν(T ).

Proof.

(i) Recall ξ(m,n) = T−mξ ∨ · · · ∨ T−nξ. We certainly have

Hµ(ξ(0, n− 1)) ≤ Hµ(η(0, n− 1)) +Hµ(ξ(0, n− 1) | η(0, n− 1)).

It suffices to show that Hµ(ξ(0, n − 1) | η(0, n − 1)) ≤ nHµ(ξ | η). To show this, first
observe that in general,

Hµ(α ∨ β | γ) = Hµ(α | γ) +Hµ(β | α ∨ γ),

which follows from

I(α∨β)|γ(x) = − log
µ(Cα∨β(x) ∩ Cγ(x))

µ(Cγ(x))

= − log
µ(Cα(x) ∩ Cβ(x) ∩ Cγ(x))

µ(Cγ(x))

= − log
µ(Cα(x) ∩ Cγ(x))

µ(Cγ(x))
− log

µ(Cα∨β(x) ∩ Cγ(x))

µ(Cα(x) ∩ Cγ(x))

= Iα|γ(x) + Iβ|(α∨γ)(x).

Using this we write,

Hµ(ξ(0, n− 1) | η(0, n− 1)) ≤ Hµ(ξ | η(0, n− 1)) +Hµ(ξ(1, n− 1) | η(0, n− 1) ∨ ξ)
≤ Hµ(ξ | η) +Hµ(ξ(1, n− 2) | η(1, n− 1))

≤ Hµ(ξ | η) +Hµ(T−1ξ(0, n− 2) | T−1η(0, n− 2))

= Hµ(ξ | η) +Hµ(ξ(0, n− 2) | η(0, n− 2))

. . .

≤ nHµ(ξ | η).
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(ii) We have

k

nk
Hµ

(
nk−1∨

0

T−rξ

)
=

1

n
Hµ

(
n−1∨
j=0

(T k)−j(ξ ∨ T−1ξ ∨ · · · ∨ T−k+1ξ)

)
.

Hence khµ(T, ξ) = hµ(T k, η) where η = ξ∨T−1ξ∨· · ·∨T−k+1ξ. Since η ≥ ξ, we deduce
that khµ(T ) = hµ(T k).

The claim hµ(T−1) = hµ(T ) follows from the invariance of µ and the fact

ξ(0, n− 1) = ξ ∨ · · · ∨ T−n+1ξ = T−n+1(ξ ∨ · · · ∨ T n−1ξ).

(iii) Let A be such that µ(A) = 1, ν(A) = 0. Set B =
⋃∞
m=1

⋂
n≥m T

−n(A). We can readily
show that T−1B = B and that µ(B) = 1, ν(B) = 0. Set β = {B,X − B} and given a
partition ξ, define ξ̂ = ξ ∨ β. If γ = αµ+ (1− α)ν, then

(3.8) Hγ(ηn) = αHµ(ξn) + (1− α)Hν(ξn) + α logα + (1− α) log(1− α),

where ηn = ξ̂ ∨ · · · ∨ T−n+1ξ̂ and ξn = ξ ∨ · · · ∨ T−n+1ξ. To see this, observe that if
C ∈ ηn and ϕ(z) = z log z, then

ϕ(γ(C)) =

{
αµ(C) log(αµ(C)) if C ⊆ B,

(1− α)ν(C) log((1− α)ν(C)) if C ⊆ X −B.

This clearly implies (3.8). Hence,

hγ(T, ξ̂) = αhµ(T, ξ) + (1− α)hν(T, ξ).

From this we deduce
hγ(T ) ≤ αhµ(T ) + (1− α)hν(T ).

This and Exercise 3.8(ii) complete the proof. �

Exercise 3.16 (Rokhlin Metric) Define d(η, ξ) = Hµ(η | ξ) + Hµ(ξ | η). Show that d is a
metric on the space of µ-partition. �

In practice, we would like to know whether hµ(T ) = hµ(T, ξ) for a partition ξ. In the
next theorem, we provide a sufficient condition for this.

Theorem 3.17 Let ξ be a finite µ-partition and assume that the σ-algebra consisting of
T−n(C), n ∈ N, C ∈ ξ, equals to the Borel σ-algebra. Then hµ(T ) = hµ(T, ξ).
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Proof. For a given partition η, we apply Proposition 3.9 to assert

(3.9) hµ(T, η) ≤ hµ(T, ξ ∨ · · · ∨ T−n+1ξ) +Hµ(η | ξ ∨ · · · ∨ T−n+1ξ).

From the definition, it is not hard to see that indeed hµ(T, ξ ∨ · · · ∨ T−n+1ξ) = hµ(T, ξ).
From this and (3.9), it suffices to show that for every partition η,

(3.10) lim
n→∞

Hµ(η | ξ ∨ · · · ∨ T−n+1ξ) = 0.

To believe this, observe that if η ≤ α, then Hµ(η | α) = 0 because

Iη|α(x) = − log
µ(Cη(x) ∩ Cα(x))

µ(Cα(x))
= − log

µ(Cα(x))

µ(Cα(x))
= 0.

Now if the σ-algebra generated by all ξn = ξ∨· · ·∨T−n+1ξ, n ∈ N∗ is the full σ-algebra, then
η ≤ ξn at least asymptotically. We may prove this by the Martingale Convergence Theorem.
In fact if Fn is the σ-algebra generated by ξn, then

µ(Cη(x) | Cξn(x)) =
∑
A∈η

11A(x)µ(A | Fn)(x)

→
∑
A∈η

11A(x)µ(A | F∞)(x) =
∑
A∈η

11A(x)11A(x) = 1.

This and (3.6) imply that Hµ(η | ξn) = −
∫

log µ(Cη(x) | Cξn(x))µ(dx)→ 0. �

Example 3.18 Consider the dynamical system of Example 3.2. Let ξ be as in Example 3.2.
The condition of Theorem 3.17 is satisfied for such ξ and we deduce

hµp(T ) = −
m−1∑

0

pj log pj.

�

Example 3.19 Consider a translation T (x) = x+α (mod 1) in dimension 1. If α ∈ Q, then
Tm = identity for some m ∈ N∗. This implies that hµ(T ) = 1

m
hµ(Tm) = 0 where µ is the

Lebesgue measure. If α is irrational, then set ξ = {[0, 1/2), [1/2, 1)}. By the denseness of
{T−n(1/2) : n ∈ N}, we deduce that ξ satisfies the condition of Theorem 3.17. As a result,
hµ(T ) = hµ(T, ξ). On the other hand ξ ∨ · · · ∨ T−n+1ξ consists of 2n elements. From this
and Exercise 3.8(i), Hµ(ξ ∨ · · · ∨ T−n+1ξ) ≤ log(2n). This in turn implies limn→∞

1
n
Hµ(ξ ∨

· · · ∨ T−n+1ξ) = 0. Thus hµ(T ) = 0. �
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In fact we can show that the entropy of a translation is zero using the fact that the
topological entropy of a translation zero. More generally we always have

(3.11) sup
µ∈IT

hµ(T ) = htop(T ).

To prepare for the proof of (3.11), let us make some definitions. Given r, δ > 0, we
define SnT,d(r, δ) to be the smallest k such that there exists a set E with #E = k and

µ
(⋃

x∈E B
n
T,d(x, r)

)
> 1− δ. We then define

ĥµ(T ) = lim
δ→0

lim
r→0

lim sup
n→∞

1

n
logSnT,d(r, δ).

Evidently

(3.12) ĥµ(T ) ≤ htop(T ).

Moreover, a theorem of Katok asserts:

Theorem 3.20 For every ergodic µ ∈ IT , we have hµ(T ) ≤ ĥµ(T ).

Proof. Let ξ = {C1, . . . , C`} be a µ-partition. Choose compact sets K1, . . . , K` with
Kj ⊆ Cj such that µ(Cj −Kj) ≤ ε for j = 1, . . . , `. Let K0 = X −K1 ∪ · · · ∪K` and put
η = {K0, K1, . . . , K`}. Evidently η is a partition and

Hµ(ξ | η) = −
∑
i,j

µ(Ci ∩Kj) log
µ(Ci ∩Kj)

µ(Kj)

= −
∑
i

µ(Ci ∩K0) log
µ(Ci ∩K0)

µ(K0)

= −µ(K0)
∑
i

µ(Ci ∩K0)

µ(K0)
log

µ(Ci ∩K0)

µ(K0)

≤ µ(K0) log ` ≤ ε` log `

by Exercise 3.14(i). From this and Proposition 3.15(i) we deduce,

(3.13) hµ(T, ξ) ≤ hµ(T, η) + ε` log `.

Set ηn = η ∨ · · · ∨ T−n+1η. Recall that by Theorem 3.9,

lim
n→∞

1

n
log µ(Cn(x)) = −hµ(T, η)
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in L1-sense, when Cn(x) = Cηn(x). Choose a subsequence nj →∞ so that

lim
nj→∞

1

nj
log µ(Cnj(x)) = −hµ(T, η),

µ-almost everywhere. Pick ε′ > 0 and set

XN =

{
x ∈ X :

1

nj
log µ(Cnj(x)) ≤ −hµ(T, η) + 1 for nj > N

}
.

Since µ(XN)→ 1 as N →∞, for every δ > 0, there exists N such that µ(XN) > 1− δ. Let

r =
1

2
min{dist(Ki, Kj) : i 6= j, i, j ∈ {1, . . . , `}}.

Clearly a ball Bd(x, r) intersects at most two elements of η, one Kj with j ∈ {1, . . . , n}
and perhaps K0. We now argue that Bdn(x, r) intersects at most 2n elements of ηn. To see
this, observe

Bdn(x, r) = Bd(x, r) ∩ T−1(Bd(T (x), r)) ∩ · · · ∩ T−n+1(Bd(T
n−1(x), r)).

Also, if A ∈ ηn, then A = A0∩T−1(A1)∩· · ·∩T−n+1(An−1) with Aj ∈ η. Now if Bn
T,d∩A 6= ∅,

then T−j(Bd(T
j(x), r)) ∩ T−j(Aj) 6= ∅ for j = 0, . . . , n− 1. Hence Bd(T

j(x), r) ∩Aj 6= ∅ for
j = 0, . . . , n − 1. As a result, there are at most 2n-many choices for A. Now assume that
µ
(⋃

x∈E Bdn(x, r)
)
> 1− δ. We would like to bound #E from below. First observe

1− 2δ ≤ µ

(⋃
x∈E

Bdn(x, r) ∩XN

)
≤
∑
x∈E

µ(Bdn(x, r) ∩XN)

=
∑
x∈E

∑
A∈ηn

µ(Bdn(x, r) ∩XN ∩ A).

But if Bdn(x, r) ∩XN ∩ A 6= ∅ for n = nj > N , then

µ(Bdn(x, r) ∩XN ∩ A) ≤ µ(A) ≤ e−n(hµ(T,η)+ε′).

As a result,
1− 2δ ≤ 2nje−n(hµ(T,η)−ε′)(#E).

Hence

hµ(T, η) ≤ lim
nj→∞

1

nj
logS

nj
T,d(r, δ) + ε′ + log 2.
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From this we deduce that hµ(T, η) ≤ ĥµ(T ) + ε′ + log 2. From this and (3.13) we learn that

hµ(T, ξ) ≤ ĥµ(T ) + ε` log ` + ε′ + log 2. By sending ε, ε′ → 0 and taking supremum over ξ

we deduce hµ(T ) ≤ ĥµ(T ) + log 2. Since this is true no matter what T is, we learn

hµ(T ) =
1

m
hµ(Tm) ≤ 1

m
ĥµ(Tm) +

log 2

m
.

A repetition of the proof of Proposition 3.1(iii) yields 1
m
ĥµ(Tm) = ĥµ(T ). We then pass

to the limit m→∞ to complete the proof of Theorem. �

Example 3.21 Consider T : T2 → T2, Tx = Ax (mod 1) with A an integer matrix with
detA = 1. We assume that A is symmetric and its eigenvalues λ1, λ2 = λ−1

1 satisfy |λ1| >
1 > |λ2|. We claim that if µ is the Lebesgue measure, then hµ(T ) ≥ log |λ1|. In case of

T =

[
2 1
1 1

]
, we can use our result htop(T ) ≤ log |λ1| from Example 3.6 to conclude that in

fact hµ(T ) = htop(T ) = log |λ1|.
For hµ(T ) ≥ log |λ1| we use an idea of Hopf. First observe that by the invariance of

µ with respect to T , Hµ(T−nξ ∨ · · · ∨ T nξ) = Hµ(ξ ∨ · · · ∨ T−2nξ). Hence it suffices to
study limn→∞

1
2n
Hµ(T−nξ ∨ · · · ∨ T nξ). For estimating this, we show that the area of each

C ∈ ηn = T−nξ∨· · ·∨T nξ is exponentially small. This is achieved by showing that diam(C) =
O(|λ1|−n). There is a natural metric on T2 that is closely related to the Euclidean distance.
Given two points a = (a1, a2), b = (b1, b2), we define d(a, b) = (d̄(a1, b1)2 + d̄(a2, b2)2)1/2

where d̄(x, y) is the length of shortest arc connecting x to y.
Pick C ∈ ηn. To estimate diam(C), we pick two points x, y ∈ C. Let v1, v2 be the

eigenvectors corresponding to λ1 and λ2. We draw a line through x in direction v1 and
a line through y in direction v2. Assume that these lines intersect at z. We also assume
that diam(A) < 1

20
for every A ∈ η. Hence the same is true for A ∈ ηn. To estimate

d(x, y), it suffices to estimate d(x, z) and d(y, z). Let us start with d(x, z). Suppose that
we have |T n(x) − T n(z)| < 1

10
. Then d(x, z) ≤ |x − z| = |T−n(T n(x)) − T−n(T n(z))| =

|λ1|−n|T n(x) − T n(z)| because T−1 contracts in v1 direction with rate |λ1|−1 = |λ2|. This
would imply that d(x, z) ≤ |λ1|−n/10. To show that |T n(x) − T n(z)| < 1

10
, first observe

that d(T n(z), T n(y)) ≤ |λ1|−nd(y, z) ≤ |λ1|−n/20 < 1
20

and d(T n(x), T n(y)) ≤ 1
20

because
T n(x), T n(y) belongs to a member of ξ. As a result, d(T n(x), T n(z)) < 1

10
. We actually need

|T n(x)−T n(z)| < 1
10

. To prove this, first note that the above argument can be used to show
that indeed d(T k(x), T k(y)) < 1

10
for k = 0, 1, . . . , n. We now use induction to show that

|T k(x)−T k(y)| < 1
10

for k = 0, 1, . . . , n. To see this, observe that if u = x− y, then |u| < 1
10

,
and since T (u) = T (x) − T (y), we also have |T (u)| < 1

10
. Indeed |T (u)| = |λ1||u| and since

|u| < 1
10

, |λ1||u| < 1
2
, which means that d(T (x)T (y)) < 1

10
does imply |T (x) − T (y)| < 1

10
.

Note that we are using the fact that d(T (x), T (y)) = |T (x)− T (y) + a| for some a ∈ Z2 and
since |λ1||u| < 1

2
, we must have a = 0. By induction we can extend this to all k ≤ n. In the

same way we prove d(y, z) < 1
10
|λ1|−n. Hence d(x, y) < 1

5
|λ1|n for n ∈ N. This implies that
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µ(C) ≤ constant ×|λ1|−2n for C ∈ ηn. This evidently implies that 1
2n
Hµ(ηn) ≥ log |λ1|+o(1),

and as n→∞ we deduce that hµ(T ) ≥ log |λ1|. �

We end this section by establishing (3.11). Half of (3.11) is a consequence of Theorem 3.20
and (3.12). It remains to show this:

Theorem 3.22 htop(T ) ≤ supµ∈IT hµ(T ).

Proof. For each n, pick a set En such that #En = Nn
T,d(r) = Nn(r). In other words, En is

a maximal set satisfying dn(x, y) ≥ r for x, y ∈ En with x 6= y. Define µn = 1
Nn(r)

∑
x∈En δx

and

µ̂n =
1

n

n−1∑
0

T−jµn =
1

n

n−1∑
0

Ajµn.

This means that∫
fdµ̂n =

1

n

n−1∑
0

∫
f(T j(x))µn(dx) =

1

n

n−1∑
0

1

Nn(r)

∑
x∈En

f(T j(x)).

Let µ̄ be a limit point of the sequence {µ̂n}. It is not hard to show that µ̄ ∈ IT because

lim
n→∞

T−1µ̄− µ̄ = (T−nµn − µn)/n→ 0,

as n→∞. It remains to show

(3.14) lim sup
n→∞

1

n
logNn(r) ≤ hµ̄(T ) ≤ sup

µ
hµ(T ).

For (3.14), it suffices to find a partition ξ such that

(3.15) lim sup
n→∞

1

n
logNn(r) ≤ hµ̄(T, ξ).

Fix δ > 0. We first would like to find a partition ξ = {C1 . . . C`} such that diam(Cj) ≤ δ for
j = 1, . . . , `, and µ̄(∂Cj) = 0 where ∂Cj denotes the boundary of Cj. The construction of
such a partition ξ is straightforward. First, if Bd(x, a) is a ball of radius a, then we consider⋃

{∂Bd(x, a
′) : a− ε ≤ a′ ≤ a},

to observe that there exists a′ ∈ (a − ε, a) such that µ(∂Bd(x, a
′)) = 0. From this, we

learn that we can cover X by finitely many balls Bj, j = 1, . . . , ` of radius at most δ
2

such that µ̄(∂Bj) = 0 for j = 1, . . . , `. We finally define ξ = {C1 . . . C`} by C1 = B̄1,

C2 = B̄2 − B̄1, . . . , Cn = B̄n −
⋃n−1
j=1 B̄j. Since ∂Cj ⊆

⋃`
k=1 ∂Bk, we are done. We now argue
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that the partition ξn = ξ∨· · ·∨T−n+1ξ enjoys the same property; µ̄(∂C) = 0 if C ∈ ξn. This
is because ∂C ⊆

⋃
A∈ξ
⋃n−1
k=0 T

−j(∂A) and by invariance, µ̄(T−j(∂A)) = µ̄(∂A) = 0. Such
a partition is advantageous for our purposes because if η is a partition with α(∂A) = 0 for
A ∈ η and every n, and if αn ⇒ α, then αn(A) → α(A) for every A ∈ η, and, as a result,
Hαn(η)→ Hα(η).

First observe that Hµn(ξn) = logNn(r) provided that diam(C) < r for every C ∈ ξ.
Indeed diamn(A) < r for every A ∈ ξn if diamn(A) denotes the diameter of A with respect to
dn. This in turn implies that µn(A) = 0 or 1

Nn(r)
for every A ∈ ξn simply because each such

A contains at most one element of En. As a result Hµn(ξn) = Nn(r)
(
− log 1

Nn(r)

)
1

Nn(r)
=

logNn(r). Using this, we would like to estimate from below Hµ̂n(ξm). Recall that only a
subsequence of µ̂n converges, say limj→∞ µ̂nj = µ. Let 0 ≤ k < m < n. Set a(k) =

[
n−k
m

]
so

that we can write

{0, 1, . . . , n− 1} = {k + tm+ i : 0 ≤ t < a(k), 0 ≤ i < m} ∪R

with R = {0, 1, . . . , k − 1} ∪ {k + ma(k), k + ma(k) + 1, . . . , n − 1} =: R1 ∪ R2. Clearly
#R1 ≤ m, #R2 ≤ m. We then write

ξn =

a(k)−1∨
t=0

T−(tm+k)(ξ ∨ · · · ∨ T−m+1ξ) ∨
∨
i∈R

T−iξ.

Using H(α ∨ β) ≤ H(α) +H(β) we learn,

logNn(r) = Hµn(ξn) ≤
a(k)−1∑
t=0

Hµn(T−(tm+k)ξm) +
∑
i∈R

Hµn(T−iξ)

=

a(k)−1∑
t=0

HAtm+kµn(ξm) +
∑
i∈R

Hµn(T−iξ)

≤
a(k)−1∑
t=0

HAtm+kµn(ξm) + 2m log(#ξ).

This is true for every k. Hence

m logNn(r) ≤
m−1∑
k=0

a(k)−1∑
t=0

HAtm+kµn(ξm) + 2m2 log(#ξ)

≤
n−1∑
j=0

HAjµn(ξm) + 2m2 log(#ξ)

≤ nHµ̂n(ξm) + 2m2 log(#ξ),
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where for the last inequality we used Exercise 3.14(ii). As a result,

1

n
logNn(r) ≤ 1

m
Hµ̂n(ξm) + 2

m

n
log(#ξ).

Choose any sequence of {nj} such that the limit of nj
−1 logNnj(r) exists and choose a

subsequence of it {n′j} so that µ̂n′j ⇒ µ̄ for some µ̄ ∈ IT . We then have

lim
j→∞

1

nj
logNnj(r) = lim

n′j→∞

1

n′j
logNn′j(r) ≤ lim

n′j→∞

1

m
Hµ̂n′

j

(ξm)

=
1

m
Hµ̄(ξm).

We now send m to infinity to deduce

lim
j→∞

1

nj
logNnj(r) ≤ hµ̄(T, ξ) ≤ sup

µ∈IT
hµ(T ).

Since {nj} can be chosen any sequence for which the limit exists, we conclude

lim sup
n→∞

1

n
logNn(r) ≤ sup

µ∈IT
hµ(T ),

as desired. �

Exercise 3.23 Let αn ⇒ α and α(∂A) = 0. Deduce that αn(A) → α(A). (Hint: For such
A, we can approximate the indicator function of A with continuous functions.)

Theorem 3.8 provides us with a rather local recipe for calculating the entropy. It turns
out that there is another local recipe for calculating the entropy that is related to ĥµ(T ).
A theorem of Brin and Katok[BK] asserts that if µ ∈ IT is ergodic, then 1

n
log µ(Bdn(x, r))

approximates hµ(T ). More precisely,

hµ(T ) = lim
r→0

lim sup
n→∞

[
− 1

n
log µ(Bdn(x, r))

]
for µ-almost all x.
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4 Lyapunov Exponents

In section 3 we learned that if µ ∈ IT with T : X → X continuous and X a compact metric
space, then hµ(T ) ≤ htop(T ). It turns out that for a nice hyperbolic system a lot more can be
said. For example, if X is a manifold with a volume measure m, then there exists a unique
µ̄ = µSRB ∈ IT such that htop(T ) = hµ̄(T ), and if I(µ) = htop(T )− hµ(T ) = hµ̄(T )− hµ(T ),
then, we roughly have

m

{
x :

1

n

n−1∑
0

δT j(x) is near µ

}
≈ e−nI(µ).

This is known in probability theory as a large deviation principle. Recall that the entropy
hµ(T ) is affine in µ. Hence I is affine, and its convex conjugate, the pressure, is defined by

Φ(F ) = sup
µ

(∫
Fdµ− I(µ)

)
satisfies

Φ(F ) = lim
n→∞

1

n
log

∫
exp

(
n−1∑

0

F (T j(x))

)
m(dx).

Also, Pesin’s formula asserts that htop(T ) = hµ̄(T ) =
∑

i nil
+
i (µ̄) where li’s are the logarithm

of the rate of expansions and ni is the multiplicity of li.
For general µ ∈ IT , we have Ruelle’s inequality hµ(T ) ≤

∑
i nil

+
i (µ). In the case of

T (x) = Ax(mod 1), we simply have li = log |λi| where λi’s are the eigenvalues of A. In this
section we define the Lyapunov exponents li’s and establish the Ruelle’s inequality.

Consider a transformation T : M → M where M is a compact C1 manifold and T is
a C1 transformation. To study the rate of expansion and contraction of T , we may study
DxT

n : TxM → TTn(x)M . We certainly have

(4.1) DxT
n = DTn−1(x)T . . .DT (x)TDxT.

If we write A(x) = DxT , then (4.1) can be written as

(4.2) An(x) := DxT
n = A(T n−1(x)) . . . A(T (x))A(x).

Here we are interested in the long time behavior of the dynamical system associated with
F : TM → TM that is defined by F (x, v) = (T (x), (DxT )(v)) = (T (x), A(x)v). Let us
assume that M is a Riemannian manifold. This means that for each x there exists an inner
product 〈·, ·〉x and (an associated norm | |x) that varies continuously with x. The formula
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(4.1) suggests an exponential growth rate for DxT
n. For example, if we take the norm of

both sides of (4.2) we obtain

‖An(x)‖ ≤
n−1∏

0

‖A(T j(x))‖.

Set Sn(x) = log ‖An(x)‖. We then have that S0 = 0 and

(4.3) Sn+m(x) ≤ Sn(x) + Sm(T n(x)).

Theorem 4.1 Let T be a diffeomorphism and assume that µ ∈ IexT . Then there exists λ ∈ R
such that

µ

{
x :

1

n
log ‖DxT

n‖ → λ

}
= 1.

This theorem is an immediate consequence of Kingman’s subadditive ergodic theorem:

Theorem 4.2 Let µ ∈ IexT and suppose that {Sn(·) : n→ N} is a sequence of L1(µ) functions
satisfying (4.3). Then

µ

{
x :

1

n
Sn(x)→ λ

}
= 1

for λ = infn
{

1
n

∫
Sndµ

}
∈ [−∞,+∞).

Proof of Theorem 4.1. On account of Theorem 8.2, we only need to show λ 6= −∞.
From id = DTn(x)T

−n DxT
n, we learn that 1 ≤ ‖DTn(x)T

−n‖‖DxT
n‖. Let us write α for

supx ‖DxT
−1‖. Then

‖DTn(x)T
−n‖ = ‖ . . . DTn−1(x)T

−1DTn(x)T
−1‖ ≤ αn.

Hence ‖DxT
n‖ ≥ α−n which implies that λ ≥ − logα. �

To prepare for the proof of Theorem 8.2, let us state a useful fact regarding the precom-
pactness of a set of measures.

Exercise 4.3 Let X be a Polish (separable metric complete) space. Suppose {µN} is a
sequence of probability measures on X. Assume that for every δ > 0 there exists a compact
set Kδ such that supN µN(Kc

δ) ≤ δ. Show that {µN} has a convergent subsequence.
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Proof of Theorem 4.2. Fix N > 0. Any n > N can be written as n = kN + r for some
k ∈ N∗ and r ∈ {0, 1, . . . , N − 1}. As a result, if i ∈ {1, . . . , N}, then n = i + lN + m with

l = l(i) =

{
k if r ≥ i

k − 1 if r < i
, m = m(i) =

{
r − i if r > i

r − i+N if r < i.
By subadditivity,

Sn(x) ≤ Si(x) + SlN(T i(x)) + Sm(T i+lN(x))

≤ Si(x) +
l−1∑
j=0

SN(T i+jN(x)) + Sm(T i+lN(x)).

We now some over i to obtain

Sn(x) ≤ 1

N

N∑
1

Si(x) +

l(i)N∑
1

SN
N

(T i(x)) +
1

N

N∑
1

Sm(i)(T
i+lN(x)).

Hence
1

n
Sn(x) ≤ 1

n

n∑
1

SN
N

(T i(x)) +Rn,N(x),

where ‖Rn,N‖L1 ≤ constant× N
n

, because
∫
|Sl(T r)|dµ =

∫
|Sl|dµ. By the Ergodic Theorem,

lim sup
n→∞

1

n
Sn(x) ≤

∫
SN
N
dµ.

Since N is arbitrary,

(4.4) lim sup
n→∞

1

n
Sn(x) ≤ λ,

almost everywhere and in L1-sense. For the converse, we only need to consider the case
λ > −∞.

For the reverse inequality, let us take a function ϕ : Rn → R that is nondecreasing in
each of its arguments. We certainly have∫

ϕ(S1, . . . , Sn)dµ =

∫
ϕ(S1 ◦ T k, . . . , Sn ◦ T k)dµ

≥
∫
ϕ(Sk+1 − Sk, Sk+1 − Sk, . . . , Sk+n − Sk)dµ

for every k. Hence∫
ϕ(S1, . . . , Sn)dµ ≥ 1

N

N−1∑
0

∫
ϕ(Sk+1 − Sk, . . . , Sk+n − Sk)dµ(4.5)

=

∫
ϕ(Sk+1 − Sk, . . . , Sk+n − Sk)dµνN(dk)
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where νN = 1
N

∑N−1
0 δj. We think of k as a random number that is chosen uniformly from

0 to N − 1. To this end let us define Ω = RZ+
= {w : Z+ → R} and T : M × N → Ω such

that T (x, k) = w with w(j) = Sk+j(x) − Sk+j−1(x). We then define a measure µN on Ω by
µN(A) = (µ× νN)(T−1(A)). Using this we can rewrite (4.5) as

(4.6)

∫
ϕ(S1, . . . , S)dµ ≥

∫
ϕ(w(1), w(1) + w(2), . . . , w(1) + · · ·+ w(n))µN(dw).

We want to pass to the limit N → ∞. Note that Ω is not a compact space. To show that
µN has a convergent subsequence, observe∫

w(j)+µN(dw) =

∫
(Sk+j(x)− Sk+j−1(x))+µ(dx)νN(dx)

=
1

N

N−1∑
0

∫
(Sk+j(x)− Sk+j−1(x))+µ(dx)

≤ 1

N

N−1∑
0

∫
(S1(T k+j−1(x)))+µ(dx) =

∫
S+

1 dµ,∫
w(j)µN(dw) =

1

N

N−1∑
0

∫
(Sk+j(x)− Sk+j−1(x))µ(dx)

=
1

N

∫
(Sj+N−1 − Sj−1)dµ ≥ λ

j +N − 1

N
− 1

N

∫
Sj−1dµ

> −∞,

uniformly in N . As a result
∫
w(j)−µN(dw) is uniformly bounded. Hence

sup
N

∫
|wj|dµN = βj <∞

for every j. We now define

Kδ =

{
w : |wj| ≤

2j+1βj
δ

}
.

The set Kδ is compact and

µN(Kc
δ) ≤

1

2

∑
j

2−jβ−1
j δβj = δ.

From this and Exercise 4.3 we deduce that µN has a convergent subsequence. Let µ̄ be a
limit point and set S̄j = w(1) + · · ·+ w(j). By (4.6),

(4.7)

∫
ϕ(S1, . . . , S)dµ ≥

∫
ϕ(S̄1, . . . , S̄n)dµ̄,

55



for every continuous monotonically decreasing ϕ. We now define τ : Ω → Ω by (τw)(j) =
w(j + 1). It is not hard to see µ̄ ∈ Iτ . By Ergodic Theorem, 1

n
S̄n → Z for almost all w.

Moreover,
∫
Zdµ̄ =

∫
w(1)µ̄(dw) = limN→∞

∫
1
N

(SN − S0)dµ = λ. We use (??) to assert
that for every bounded continuous increasing ψ,∫

ψ

(
min
k≤n≤l

Sn
n

)
dµ ≥

∫
ψ

(
min
k≤n≤l

S̄n
n

)
dµ̄.

We now apply the bounded convergence theorem to deduce∫
ψ(S)dµ ≥

∫
ψ(Z)dµ̄

where S = lim infn→∞
Sn
n

. Choose ψ(z) = ψr,l(z) = (zv(−l)) ∧ r, ψl(z) = zv(−l). We then
have ∫

ψl(S)dµ ≥
∫
ψr,l(S)dµ ≥

∫
ψr,l(Z)dµ̄.

After sending r →∞, we deduce∫
ψl(S)dµ ≥

∫
Zdµ̄ = λ, or(4.8) ∫

(ψl(S)− λ)dµ ≥ 0.

Recall S ≤ lim sup Sn
n
≤ λ. But (4.8) means∫

S≥−l
(S − λ)dµ+ (−l − λ)µ{S ≤ −l} ≥ 0.

Since λ > −∞, we can choose l large enough to have −l − λ < 0. For such l, S − λ = 0
on the set {S ≥ −l}. By sending l → +∞ we deduce S = λ almost everywhere, and this
completes the proof. �

We now state Oseledets Theorem regarding the existence of Lyapunov exponents.

Theorem 4.4 Let T : M → M be a C1-diffeomorphism with dimM = m and let µ ∈ IT .
Let A be a measurable function such that A(x) : TxM → TT (x)M is linear for each x and
log+ ‖A(x)‖ ∈ L1(µ). Define An(x) = A(T n−1(x)) . . . A(T (x))A(x). Then there exists a set
X ⊆M with µ(X) = 1, numbers l1 < l2 < · · · < lk and n1, . . . , nk ∈ N∗ with n1 + · · ·+ nk =
m, and a linear decomposition TxM = E1

x⊕· · ·⊕Ek
x with x 7→ (E1

x, . . . , E
k
x) measurable such

that

lim
n→∞

1

n
log |AN(x)v| = lj
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for x ∈ X and v ∈ F j
x := E1

x ⊕ · · · ⊕ Ej
x − E1

x ⊕ · · · ⊕ Ej−1
x .

Remark If a ∈ M is a periodic point of period N , then µ = N−1
∑N−1

j=0 δT j(a) is an
ergodic invariant measure. In this case the Oseledets Theorem can be readily extablished.
Indeed if λ1, . . . , λm denote the eigenvalues of R = A(TN−1(a)) . . . A(T (a))A(a), then `1 <
· · · < `k are chosen so that {`1, . . . , `k} = {N−1 log |λ1|, . . . , N−1 log |λm|} and Ej

a = ⊕i{Vi :
N−1 log |λi| = `j where Vi = {v ∈ TaM ; (A(a) − λi)

rv = 0 for some r} is the generalized
eigenspace associated with λi.

Note that when m = 1, Theorem 4.4 is an immediate consequence of the Ergodic Theorem
and the only Lyapunov exponent l1 =

∫
log |A(x)|µ(dx). We only prove Theorem 4.4 when

m = 2 and A(x) = DxT . The proof of general case is similar in spirit but more technical.

Proof of Theorem 4.4 for m = 2, A(x) = DxT . By Theorem 4.1, there exist numbers
l1 and l2 such that if

X0 =

{
x : lim

n→∞

1

n
log ‖DxT

n‖ = l2, lim
n→∞

1

n
log ‖DxT

−n‖ = −l1
}

then µ(x0) = 1. Evidently |Anv|2 = 〈A∗nAnv, v〉 = |Bnv|2 where Bn = (A∗nAn)1/2. Clearly
A∗nAn ≥ 0 and Bn is well-deTined. Since Bn ≥ 0, we can Tind numbers µn2 (x) ≥ µn1 (x) ≥ 0
and vectors an1 (x), an2 (x) such that |an1 | = |an2 | = 1, 〈an1 , an2 〉x = 0 and Bna

n
j = µnj a

n
j Tor

j = 1, 2.
Note that since ‖An(x)‖ = ‖Bn(x)‖,

(4.9) l2 = lim
n→∞

1

n
log µn2 .

To obtain a similar formula Tor l1, Tirst observe that DT−n(x)T
nDxT

−n = id implies that
A−n(x) = DxT

−n = (An(T−n(x)))−1. If we set S−n(x) = log ‖A−n(x)‖ and Rn(x) =
log ‖An(x)−1‖ then both {S−n(x) : n ∈ N} and {Rn(x) : n ∈ N} are subadditive; S−n−m ≤
S−n ◦ T−n + S−m, Rn+m ≤ Rn ◦ Tm + Rm. Clearly, −l1 = limn→∞

1
n
S−n by definition.

So, −l1 = infn
1
n

∫
S−ndµ. On the other hand l̂ = limn→∞

1
n
Rn = infn

1
n

∫
Rndµ. Since

S−n = Rn ◦T−n, we have
∫
Rndµ =

∫
S−ndµ. This in turn implies that l̂ = −l1. As a result,

−l1 = lim
n→∞

1

n
log ‖A−1

n ‖ = lim
n→∞

1

n
log ‖A∗−1

n ‖.

(Recall that ‖A‖ = ‖A∗‖. We then have

−l1 = lim
n→∞

1

n
log ‖(A∗nAn)−1/2‖ = lim

n→∞

1

n
log ‖B−1

n ‖(4.10)

= − lim
n→∞

1

n
log(µn1 ∧ µn2 ) = − lim

n→∞

1

n
log µn1 .
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Naturally we expect E2
x to be the limit of the lines {tan2 : t ∈ R} as n → ∞. For this,

let us estimate |an+1
2 (x)− an2 (x)|. If necessary, replace an2 with −an2 so that we always have

〈an+1
2 , an2 〉x ≥ 0. We certainly have

|an+1
2 − an2 |2 = 2− 2〈an+1

2 , an2 〉,
1 = |an+1

2 |2 = 〈an+1
2 , an1 〉2 + 〈an+1

2 , an2 〉2.

We now use the elementary inequality 1− z2 ≤
√

1− z2 to assert

|an+1
2 − an2 |2 = 2− 2(1− 〈an+1

2 , an1 〉2)1/2 ≤ 2〈an+1
2 , an1 〉2

= 2〈Bn+1a
n+1
2 /µn+1

2 , an1 〉2

= 2(µn+1
2 )−2〈an+1

2 , Bn+1a
n
1 〉2

≤ 2(µn+1
2 )−2|Bn+1a

n
1 |2 = 2(µn+1

2 )−2|An+1a
n
1 |2

= 2(µn+1
2 )−2|A(T n(x))An(x)an1 (x)|2

≤ 2(µn+1
2 )−2c0|An(x)an1 (x)|2

= 2(µn+1
2 )−2c0|Bna

n
1 |2

= 2c0(µn+1
2 /µn1 )−2

for c0 = maxx ‖A(x)‖. From this, (4.9) and (4.10) we deduce

lim sup
n→∞

1

n
log |an+1

2 − an2 | ≤ −(l2 − l1).

Let us now assume that l2 − l1 > δ > 0. We then have that for constants c1, c2,

|an+1
2 − an2 | ≤ c1e

−δn, |an+r
2 − an2 | ≤ c2e

−δn

for all positive n and r. As a result, limn→∞ a
n
2 = b2 exists for x ∈ X and

|an2 − b2| ≤ c2e
−δn

for all n. We now define Ex
2 = {tb2(x) : t ∈ R}. To show that limn→∞

1
n

log |An(x)b2(x)| = l2,
observe

|Anb2| ≤ |Anan2 |+ |An(an2 − b2)|
≤ |Bna

n
2 |+ ‖An‖|an2 − b2|

≤ µn2 + ‖An‖c2e
−δn.

As a result,

lim sup
n→∞

1

n
log |Anb2| ≤ max

(
lim sup

1

n
log µn2 , lim sup

1

n
log(‖An‖e−δn)

)
(4.11)

= max(l2, l2 − δ) = l2.
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Similarly,

|Anb2| ≥ µn2 − ‖An‖c2e
−δn,

l2 = lim
n→∞

1

n
log µn2 ≤ lim inf

n→∞
max

(
1

n
log |Anb2|,

1

n
log ‖An‖e−δn

)
≤ lim inf

n→∞
max

(
1

n
log |Anb2|, l2 − δ

)
.

From this we can readily deduce that l2 ≤ lim infn→∞
1
n

log |Anb2|. From this and (4.11) we
conclude

lim
n→∞

1

n
log |An(x)b2| = l2

for x ∈ X.
To find Ex

1 , replace f with T−1 in the above argument. This completes the proof when
l1 6= l2.

It remains to treat the case l1 = l2. We certainly have

|Anv|2 = |Bnv|2 = 〈v, an1 〉2(µn1 )2 + 〈v, an2 〉2(µn2 )2.

Hence
µn1 |v| ≤ |Anv| ≤ µn2 |v|.

We are done because lim 1
n

log µn2 = lim 1
n

log µn1 = l1 = l2. �

Example 4.5

(i) Let T : Tm → Tm be a translation. Then DxT
n = id and the only Lyapunov exponent

is zero.

(ii) Let T : Tm → Tm be given by T (x) = Ax(mod 1) with A a matrix of integer entries.
Let λ1, . . . , λr denote the eigenvalues of A. Let l1 < l2 < · · · < lk be numbers with
{l1, . . . , lk} = {log |λ1|, . . . , log |λr|}. We also write nj for the sum of the multiplic-
ities of eigenvalues λi with log |λi| = lj. The space spanned by the corresponding
generalized eigenvectors is denoted by Ej. We certainly have that if v ∈ Ej then
limn→∞

1
n

log |Anv| = lj. �

Some comments on Oseledets Theorem is in order. First the identity An(T (x))A(x)v =
An+1(x)v implies that for j = 1, . . . , k

(4.12) A(x)F j
x = F j

T (x),
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where F j
x = E1

x ⊕ · · · ⊕ Ej
x. Also, we have

1

n
log | detAn(x)| = 1

n

n−1∑
0

| detA(T j(x))| →
∫

log | detDxT |d,

by Ergodic Theorem. On the other hand, if Bn = (A∗nAn)1/2 then (detBn)2 = (detAn)2,
or detBn = | detAn|. It turns out that if µn1 ≥ · · · ≥ µnk are the eigenvalues of Bn, then
1
n

log µnj → l̂j, where {l1, . . . , lk} = {l̂1, . . . , l̂m}. This in turn implies that 1
n

log detBn →∑k
1 l̂j because detBn = µn1 . . . µ

n
m. In summary

(4.13)

∫
log | detDxT |dµ =

k∑
1

njlj.

It turns out that the most challenging part of Theorem 4.4 is the existence of the limit.
Indeed if we define

(4.14) l(x, v) = lim sup
n→∞

1

n
log |An(x)v|,

then we can show that as in Theorem 4.4 there exists a splitting TxM = E1
x ⊕ · · · ⊕Ek

x with
l(x, v) = lj for v ∈ Fj(x).

Exercise 4.6 Verify the following properties of l(x, v) without using Theorem 4.4:

(i) l(x, αv1) = l(x, v1), l(x, v1 + v2) ≤ max(l(x, v1), l(x, v2)) for every x, v1, and v2 and
scalar α 6= 0.

(ii) l(T (x), A(x)v) = l(x, v)

(iii) We have µ{x : l(x, v) ∈ [−∞,+∞)} = 1 for every v ∈ Rm and ergodic µ ∈ IT .

(iv) The space {v : l(x, v) ≤ t} = Vx(t) is linear and that Vx(s) ⊆ Vx(t) for s ≤ t,
A(x)Vx(t) ⊆ VT (x)(t).

(v) There exists k(x) ∈ N, numbers l1(x) < l2(x) < · · · < lk(x)(x) and splitting TxM =

E1
x ⊕ · · · ⊕ E

k(x)
x such that if v ∈ E1

x ⊕ · · · ⊕ Ej
x − E1

x ⊕ · · · ⊕ Ej−1
x then l(x, v) = lj.

Indeed E1
x ⊕ · · · ⊕ Ej

x = Vx(lj).

We now state and prove an inequality of Ruelle.

Theorem 4.7 Let T : M →M be C1 and µ ∈ IT be ergodic. Then

hµ(T ) ≤
k∑
1

njl
+
j .
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Proof. We only present the proof when dimM = m = 2. First we would like to divide M
into “small squares”. For this we take a triangulation of M ; M = ∪i∆i where each ∆i is
a diffeomorphic copy of a triangle in R2 and ∆i ∩∆j is either empty, or a common vertex,
or a common side. We then divide each triangle into squares of side length ε and possibly
triangles of side length at most ε (we need these triangles near the boundary of ∆i’s).

The result is a covering of M that is denoted by ξε. Note that we may choose members of
ξε such that µ(δA) = 0 for A ∈ ξε. (If not move each element of ξε by small amount and
use the fact that for some translation of boundary side we get zero measure. Otherwise we
have

∑
α aα <∞ with aα > δ > 0 for an infinite sum.) As a result, ξε is a µ-partition. It is

not hard to show

(4.15) hµ(T ) = lim
ε→0

hµ(T, ξε).

Recall that hµ(T, ξε) = limk→∞
∫
Iξε|ξε,kdµ where ξε,k = T−1(ξε) ∨ T−2(ξε) ∨ · · · ∨ T−k(ξε)

and

Iξε|ξε,k = −
∑
A∈ξε

∑
B∈ξε,k

µ(A ∩B)

µ(B)
log

µ(A ∩B)

µ(B)
11B.

Given x, let B = Bε,k(x) be the unique element of ξε,k such that x ∈ B. Such B is of the
form T−1(C1) ∩ · · · ∩ T−k(Ck) with C1 . . . Ck ∈ ξε, where Ci = Cξε(T

j(x)). Let us write
simply write C1(x) for Cξε(T

1(x)). We have

Iξε|ξε,k(x) ≤ log #{A ∈ ξε : A ∩Bε,k(x) 6= ∅}(4.16)

≤ log #{A ∈ ξε : A ∩ T−1(C1(x)) 6= ∅}.

Each C1(x) is a regular set; either a diffeomorphic image of a small square or a triangle.
Since the volume of C is of order O(ε2), we have

vol(T−1(C)) ≤ c1ε
2 max
z∈C
| detDzT

−1|,
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for a constant c1. If A ∩ T−1(C) 6= ∅, then for a constant α0,

A ⊆ {y : |y − x0| ≤ α0ε for some x0 ∈ T−1(C)} =: D.

We now want to bound vol(D). The boundary of T−1(C) is a regular curve. Hence its length
is comparable to the diameter of T−1(C), and this is bounded above by a multiple of the
norm of DT−1. In other words we have a bound of the form

const. εmax
z∈C
‖DzT

−1‖.

Using this we obtain

(4.17) vol(D) ≤ c2 max
z∈C

(1 + ‖DxT
−1‖+ | detDzT

−1)ε2.

for a constant c2. (We could have bounded vol(A) by (‖DxT
−1‖ε)2 but (4.17) is a better

bound.)
We now use (4.17) to obtain an upper bound for the right-hand side (4.16). Indeed

(4.18) #{A : A ∩ T−1(Cε,k(x)) 6= ∅} ≤ c3 max
z∈C

(1 + ‖DzT
−1‖+ | detDzT

−1|)

for a constant c3. This is because the union of such A’s is a subset of D, for two distinct
A,B, we have µ(A ∩ B) = 0, and for each A ∈ ξε we have that vol(A) ≥ c4ε

2 for some
positive constant c4. From (4.18) and (4.16) we learn

Iξε|ξε,k(x) ≤ c5 + log max
z∈C

(‖DzT
−1‖+ | detDzT

−1|+ 1)

for C = C1(x). By sending k →∞ we deduce

(4.19) hµ(T, ξε) ≤ c5 +

∫
log max

z∈Cξe (T (x))
(1 + ‖DzT

−1‖+ | detDzT
−1|)dµ.

By the invariance of µ,

hµ(T, ξε) ≤ c5 +

∫
log max

z∈Cξε (x)
(1 + ‖DzT

−1‖+ | detDzT
−1|)µ(dx).

Send ε→ 0 to yield

hµ(T ) ≤ c5 +

∫
log(1 + ‖DxT

−1‖+ | detDxT
−1|)µ(dx).

The constant c5 is independent of f . This allows us to replace T with T−n to have

nhµ(T ) ≤ c5 +

∫
log(1 + ‖DxT

n‖+ | detDxT
n|)µ(dx).
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First assume that there are two Lyapunov exponents. Since 1
n

log ‖DxT
n‖ → l2 and 1

n
log | detDxT

n| →
l1 + l2, we deduce

(4.20) hµ(T ) ≤ max(0, l2, l1 + l2) ≤ l+1 + l+2 .

In the same way we treat the case of one Lyapunov exponent. �

The bound (4.20) may appear surprising because hµ(T ) ≥ 0 would rule out the case
l1, l2 < 0. In fact we can not have l1, l2 < 0 because we are assuming T is invertible. An
invertible transformation can not be a pure contraction. Moreover if hµ(T ) > 0 we must
have a hyperbolic transformation in the following sense:

Corollary 4.8 If dimM ≥ 2 and hµ(T ) > 0, then there exists a pair of Lyapunov exponents
α, β such that α > 0, β < 0. In particular, if dimM = 2 and hµ(T ) > 0, then l1 < 0 < l2.

Proof. Observe that if l1 < · · · < lk are Lyapunov exponents of T , then −lk < · · · < −l1 are
the Lyapunov exponents of T−1. Simply because if An(x) = DxT

n, then A−n ◦ T n = A−1
n .

Now by Theorem 4.7,

hµ(T ) = hµ(T−1) ≤
∑
i

ni(−li)+ =
∑
i

nil
−
i ,

hµ(T ) ≤
∑
i

nil
+
i .

From these we deduce that
∑

i l
−
i < 0 <

∑
i l

+
i whenever hµ(T ) > 0. �

Pesin’s theorem below gives a sufficient condition for having equality in Theorem 4.7.
We omit the proof of Pesin’s formula.

Theorem 4.9 Let M be a C1-manifold and assume T : M → M is a C1 diffeomorphism.
Assume DT is Hölder continuous. Let µ ∈ IT be an ergodic measure that is absolutely
continuous with respect to the volume measure of M . Then

hµ(T ) =
∑
i

nil
+
i .

In the context of Theorem 4.7, it is natural to define

Es
x =

⊕
li<0

Ei
x, E

u
x =

⊕
li>0

Ei
x.
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If there is no zero Lyapunov exponent, we have TxM = Es
x⊕Eu

x µ-almost everywhere. If we
write l± = mini l

±
i , then we have

lim
n→∞

1

n
log |(DxT

−n)v| ≤ −l+

for v ∈ Eu
x − {0}, and

lim
n→∞

1

n
log |(DxT

n)v| ≤ −l−

for v ∈ Es
x − {0}, µ-almost everywhere. If this happens in a uniform fashion, then we say

that µ is an Anosov measure. More precisely, we say a that the measure µ ∈ IexT is Anosov if
there exists a decomposition TxM = Eu

x ⊕Es
x and constants K > 0 and α ∈ (0, 1) such that

(DxT )Eu
x = Eu

T (x), (DxT )Es
x = Es

T (x),

|(DxT
n)v| ≤ Kαn|v| for v ∈ Es

x,

|(DxT
−n)v| ≤ Kαn|v| for v ∈ Eu

x .

IT we deTine

W s(x) =
{
y : lim

n→∞
d(T n(x), T n(y)) = 0

}
W u(x) =

{
y : lim

n→∞
d(T−n(x), T−n(y)) = 0

}
with d a metric on M , then we have a nice foliation of M . In fact

W s(x) ∩W s(y) 6= ∅ ⇒ W s(x) = W s(y),

W u(x) ∩W u(y) 6= ∅ ⇒ W u(x) = W u(y),

Eu
x = TxW

u(x), Es
x = TxW

s(x).

We also have a simple formula for the topological entropy:

htop(T ) =

∫
log | detDxT |Eux |µ(dx)

=
∑
i

nil
+
i .

An obvious example of an Anosov transformation is the Arnold cat transformation.
In the continuous case the Lyapunov exponents are defined likewise. Consider a group of

C1-transformations {φt : t ∈ R}. Here each φt is from an m-dimensional manifold M onto
itself. We then pick an ergodic measure µ ∈ Iφ and find a splitting TxM = E1

x ⊕ · · · ⊕ Ek
x

such that for v ∈ E1
x ⊕ · · · ⊕ Ej

x − E1
x ⊕ · · · ⊕ Ej−1

x ,

lim
t→∞

1

t
log |(Dxφt)v| = lj.
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It turns out that we always have a zero Lyapunov exponent associated with the flow direction.
More precisely, if d

dt
φt(x)|t=0 = ξ(x), then

lim
t→∞

1

t
log |(Dxφt)ξ(x)| = 0.

Intuitively this is obvious because two phase points that lie close to each other on the same
trajectory do not separate exponentially.

In the next section we study the Lyapunov exponents for Hamiltonian systems. As a
prelude, we show that the Lyapunov exponents for a Hamiltonian flow come in a pair of
numbers of opposite signs.

In the case of a Hamiltonian system, we have a symplectic transformation T : M → M .
This means that M is equipped with a symplectic form ω and if A(x) = DxT , then

(4.21) ωx(a, b) = ωT (x)(A(x)a,A(x)b).

By a symplectic form we mean a C1 map x 7→ ωx, ωx : TxM × TxM → R such that ωx is
bilinear, ωx(a, b) = −ωx(b, a), and if ωx(a, b) = 0 for every b ∈ TxM , then a = 0. Indeed
one can find a basis for TxM such that with respect to this basis, ωx(a, b) = ω̄(a, b) with
ω̄(a, b) = Ja · b, and

J =

[
0 I
−I 0

]
,

where I is the d × d identity matrix and dimM = 2d. Use this basis for TxM and TT (x)M
yields

(4.22) ω̄(a, b) = ω̄(A(x)a,A(x)b).

Equivalently,

(4.23) A(x)tJA(x) = J.

As is well-known, this in particular implies that detA(x) = 1. Of course we already know
this for Hamiltonian systems by Liouville’s theorem, namely the volume is invariant under
a Hamiltonian flow.

Theorem 4.10 The Lyapunov exponents l1 < l2 < · · · < lk satisfy lj + lk−j+1 = 0 and

nj = n2r−j+1 for j = 1, 2, . . . , k. Moreover the space Êj−1
x :=

⊕j−1
i=1 E

j
x is ω–orthogonal

complement of Ê2d−j+1
x .

Proof. Write l(x, v) = limn→∞
1
n

log |An(x)v| where An(x) = DxT
n and v ∈ TxM . Note

that since M is compact, we can Tind a constant c0 such that

|ωx(a, b)| ≤ c0|a||b|
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Tor all a, b ∈ TxM and all x ∈M . As a result,

|ωx(a, b)| = |ωTn(x)(An(x)a,An(x)b)| ≤ c0|An(x)a||An(x)b|,
and if ωx(a, b) 6= 0, then

(4.24) l(x, a) + l(x, b) ≥ 0.

By Theorem 4.4, there exist numbers β1 ≤ β2 ≤ · · · ≤ β2d and spaces

{0} = V0 ⊆ V1(x) ⊆ · · · ⊆ V2d−1(x) ⊆ V2d(x) = TxM

such that dimVj(x) = j and if v ∈ Vj+1(x)−Vj(x), then l(x, v) = βj. Of course l1 < · · · < lk
are related to β1 ≤ · · · ≤ β2d by {l1, . . . , lk} = {β1, . . . , β2d} and nj = #{s : βs = lj}. Note
that if W is a linear subspace of TxM and

W bot = {b ∈ TxM : ω(a, b) = 0 for all a ∈ W},
then one can readily show that dimW + dimW⊥ = 2d. As a result, we can use dimVj +
dimV2d−j+1 = 2d+1 to deduce that there exist a ∈ Vj and b ∈ V2d−j+1 such that ω(a, b) 6= 0.
Indeed the set

Λ = {(a, b) ∈ (TxM)2 : a ∈ Vj, b ∈ V2d−j+1, ωx(a, b) 6= 0}
is a nonempty open subset of Vj × V2d−j+1. Hence

Λ̃ = {(a, b) ∈ (TxM)2 : a ∈ Vj − Vj−1, b ∈ V2d−j+1 − V2d−j, ωx(a, b) 6= 0}
is also nonempty. As a result, we can use (4.24) to assert

(4.25) βj + β2d−j+1 ≥ 0,

for j ∈ {1, 2, . . . , d}. On the other hand

d∑
j=1

(βj + β2d−j+1) =
∑
i

nili = 0

by (4.14) because detDxT
n = 1. From this and (4.25) we deduce that

βj + β2d−j+1 = 0.

From this we can readily deduce that lj + lk−j+1 = 0 and nj = nk−j+1.
For the last claim, observe that since lj+lk−j+1 = 0, we have lj+li < 0 whenever i+j ≤ k.

From this and (4.25) we learn that if i + j ≤ k and (a, b) ∈ Ei
x × Ej

x, then ωx(a, b) = 0.
Hence Êj−1

x ⊆ (Êk−j+1
x )⊥. Since

n1 + · · ·+ nk−j+1 + n1 + · · ·+ nj−1 = n1 + · · ·+ nk−j+1 + nk + · · ·+ nk−j+2 = 2d,

we deduce that
dim Êj−1

x = dim(Êk−j+1
x )⊥.

This in turn implies that Êj−1
x = (Êk−j+1

x )⊥. �
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5 Ergodicity of Hyperbolic Systems

Lyapunov exponents can be used to measure the hyperbolicity of dynamical systems. Anosov
measures (systems) are examples of uniformly or strongly hyperbolic systems which exhibit
chaotic and stochastic behavior. In reality, dynamical systems are rarely strongly hyperbolic
and those coming from Hamiltonian systems are only weakly (or even partially) hyperbolic.

An argument of Hopf shows that hyperbolicity implies ergodicity. We examin this ar-
gument for two models in this sections; Example 5.1 and Example 5.2. To explain Hopf’s
argument, let us choose the simplest hyperbolic model with expansion and contraction,
namely Arnold cat transformation, and use this argument to prove its ergodicity. In fact in
Example 1.14 we showed the mixing of Arnold cat transformation which in particular implies
the ergodicity. But our goal is presenting a second proof of ergodicity which is the key idea
in proving ergodicity for examples coming from Hamiltonian systems.

Exercise 5.1 Let A =

[
1 + α2 α
a 1

]
with α ∈ Z. Let π : R2 → T2 be the projection

π(a) = a(mod 1) and define T : T2 → T2 by T ◦ π = π ◦ T̂ where T̂ (a) = Aa. Since α ∈ Z
and detA = 1, we know that T is continuous and that the normalized Lebesgue measure µ
on T2 is invariant for T . The eigenvalues of A are

λ1 = λ(α) =
1

2
[2 + α2 − α

√
4 + α2] < 1 < λ2 = (λ(α))−1,

provided that α > 0. The corresponding eigenvectors are denoted by v1 and v2. Define

Ŵ s(a) = {a+ tv1 : t ∈ R}, Ŵ u(a) = {a+ tv2 : t ∈ R}.

We then have that W s(x) and W u(x) defined by

W s(π(a)) = π(Ŵ s(a)), W u(π(a)) = π(Ŵ a(a))

are the stable and unstable manifolds. Take a continuous periodic f̂ : R2 → R. This induces
a continuous f : T2 → R such that f ◦ π = f̂ . We have that f ◦ T n ◦ π = f̂ ◦ T̂ n. Define X̂±

to be the set of points a such that

lim
n→∞

1

n

n−1∑
0

f̂(T̂±j(a)) =: f̂±(a)

exists. Then π(X̂±) = X± with X± consisting of points x such that

lim
n→∞

1

n

n−1∑
0

f(T±j(x)) =: f±(x)
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exists with f± = f̂± ◦ π. Evidently f± ◦ T = f± on X± and f̂± ◦ T̂ = f̂± on X̂±. From
definition, we see that if b ∈ Ŵ s(a) (resp. b ∈ Ŵ u(a)), then

|T̂ n(b)− T̂ n(a)| = λn|a− b|,

(resp. |T̂−n(b)− T̂−n(a)| = λn|a− b|).

for n ∈ N. Hence a ∈ X̂+ (resp. X̂−) implies that Ŵ s(a) ⊆ X̂+ (resp. Ŵ u(a) ⊆ X̂−). Let
d(·, ·) be the standard distance on the torus. More precisely,

d(x, y) = min{|a− b| : π(a) = x, π(b) = y}.

Again if y ∈ W s(x) (resp. y ∈ W u(x)), then

d(T n(x), T n(y)) = λnd(x, y),

(resp. d(T−n(x), T−n(y)) = λnd(x, y))

for n ∈ N. Similarly x ∈ X+ (resp. X−) implies that W s(x) ⊆ X+ (resp. W u(x) ⊆ X−).
Let Y denote the set of points x ∈ X− ∩ X+ such that f+(x) = f−(x). By Lemma 1.7,
µ(Y ) = 1. Choose a point x0 such that Ŵ u(x0)− Y is a set of 0 length. The function f̂− is
constant on Ŵ u(x0). The function f̂+ is constant on Ŵ s(y) for every y ∈ Ŵ u(x0) ∩ Y and
this constant coincides with the value f̂− at y. Hence f̂+ = f̂− is a constant on the set⋃

y∈Ŵu(x0)∩Y

Ŵ s(y).

But this set is of full measure. So f̂+ = f̂− is constant a.e. and this implies that f+ = f− is
constant a.e. �

Let us call a discrete dynamical system hyperbolic if its Lyapunov exponents are nonzero.
According to a result of Pesin, a hyperbolic diffeomorphism with a smooth invariant measure
has at most countably many ergodic components. Pesin’s theory also proves the existence
of stable and unstable manifolds for hyperbolic systems.

Sinai studied the issue of ergodicity and hyperbolicity for a system of colliding balls in
the late 60’s. These systems can be regarded as hyperbolic systems with discontinuities. To
get a feel for Sinai’s method, we follow a work of Liverani and Wojtkowski [LiW] by studying
a toral transformation as in Example 9.1 but now we assume that the entry â /∈ Z so that
the induced transformation is no longer continuous. As we will see below, the discontinuity
of the transformation destroys the uniform hyperbolicity of Example 9.1 and, in some sense
our system is only weakly hyperbolic.
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Exercise 5.2 As in Example 5.1, let us write π : R2 → T2 for the (mod 1) projection onto

the torus and consider A =

[
1 + α2 α
α 1

]
and T̂ (a) = Aa which induces T : T2 → T2 by

T ◦ π = π ◦ T̂ . If 0 < α < 1, then T is discontinuous. However the Lebesgue measure µ is
still invariant for T . To understand T , let us express T̂ = T̂2 ◦ T̂1, T = T2 ◦ T1, T̂i(a) = Aia
for i = 1, 2, where

A1 =

[
1 0
α 1

]
, A2 =

[
1 α
0 1

]
.

If we regard T as [0, 1] with 0 = 1, then

T1

([
x1

x2

])
=

[
x1

αx1 + x2(mod 1)

]
,

T2

([
x1

x2

])
=

[
x1 + αx2(mod 1)

x2

]
with x1, x2 ∈ [0, 1]. Note that Ti is discontinuous on the circle xi ∈ {0, 1}. As a result, T is
discontinuous on the circle x2 ∈ {0, 1} and on the curve x1 + αx2 ∈ Z. One way to portray
this is by introducing the sets

Γ+ = {(x1, x2) : 0 ≤ x2 + αx1 ≤ 1, 0 ≤ x1 ≤ 1}
Γ− = {(x1, x2) : 0 ≤ x2 ≤ 1, αx2 ≤ x1 ≤ αx2 + 1}

and observing that T̂ maps Γ+ onto Γ− but T is discontinuous along S+ = ∂Γ+. Moreover
T̂−1 = T̂−1

2 ◦ T̂−1
1 with T̂−1

i (a) = A−1
i a for i = 1, 2, where

A−1
1 =

[
1 0
−α 1

]
, A−1

2 =

[
1 −α
0 1

]
.

Since T−1
1 is discontinuous on the circle x2 ∈ {0, 1} and T−1

2 is discontinuous on the circle
x1 ∈ {0, 1}, we deduce that T−1 is discontinuous on S− = ∂Γ−.

Note that the line x2 = 0 is mapped onto the line x2 = ax1 and the line x2 = 1 is mapped
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onto the line x2 = ax1 +1. Also note that distinct points on S+ which correspond to a single
point on T2 are mapped to distinct points on T2.

We now examine the stable and unstable manifolds. For the unstable manifold, we need
to have that if y ∈ W u(x), then d(T−n(x), T−n(y))→ 0 as n→ +∞. We may try

W n
0 (x) = {π(a+ v2t) : t ∈ R}

where a is chosen so that π(a) = x and v2 is the expanding direction. This would not do
the job because of the discontinuity. Indeed the discontinuity set S− cut the set W u

0 (x) into
pieces.

Let us write W u
1 (x) for the connected component of W u

0 (x) inside Γ−. Since crossing S−

causes a jump discontinuity for T−1, we have that d(T−n(x), T−n(y)) 6→ 0 if y ∈ W u
0 (x) −

W u
1 (x). However note that if y ∈ W u

1 (x), then d(T−1(x), T−1(y)) = λd(x, y). As a result,
d(T−1(x), T−1(y)) gets smaller than d(x, y) by a fator of size λ. To have d(T−n(x), T−n(y)) =
λnd(x, y), we need to make sure that the segment joining T−n(x) to T−n(y) is not cut into
pieces by S−. That is, the segment xy does not intersect T n(S−). Motivated by this, let us
pick x ∈ T2 −

⋃∞
i=0 T

i(S−) and define W u
j (x) to be the component of W u

0 (x) which avoids⋃j
i=0 T

i(S−). We now claim that for µ-almost all points, W u(x) =
⋂∞
j=0W

u
j (x) is still a

nontrivial segment. (This would be our unstable manifold.) More precisely, we show that

for µ-almost all x, there exists a finite N(x) such that W u(x) =
⋂∞
j=0 W

u
j (x) =

⋂N(x)
j=0 W u

j (x).
To see this, let us observe that for example

W u
2 (x) = T (T−1W u

1 (x) ∩W u
1 (T−1(x))).

In other words, we take W u
1 (x) which is a line segment with endpoints in S−. We apply T−1

on it to get a line segment T−1W u
1 (x) with T−1(x) on it. This line segment is shorter than

W u
1 (x); its length is λ times the length of W u

1 (x). If this line segment is not cut by S−, we
set W u

2 (x) = W u
1 (x); otherwise we take the connected component of T−1W u

1 (x) which lies
inside S− and has T−1(x) on it. This connected component lies on W u

1 (T−1(x)). We then
map this back by T . Note that W u

2 (x) 6= W u
1 (x) only if d(T−1(x), S−) = distance of T−1(x)

from S− is less than
length(T−1W u

1 (x)) = λ−1 length(W u
1 (x)).

More generally,
W u
i+1(x) = T i(T−iW u

i (x) ∩W u
1 (T−i(x)),
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and W u
i+1(x) 6= W u

i (x) only if

d(T−i(x), S−) < λ−i length (W u
i (x)).

Since length (W u
i (x)) ≤ length (W u

1 (x)) =: c0, we learn that if W u(x) = {x}, then

d(T−i(x), S−) < c0λ
i,

for infinitely many i. Set S−δ = {x ∈ Γ− : d(x, S−) < δ}. We can write

{x : W u(x) = {x}} ⊆
∞⋂
n=1

∞⋃
i=n

T i(S−
c0λi

),

µ({x : W u(x) = {x}}) ≤ lim
n→∞

∞∑
i=n

µ(T i(S−
c0λi

))

= lim
n→∞

∞∑
i=n

µ(S−
c0λi

)

≤ lim
n→∞

∞∑
i=n

c1c0λ
i = 0

for some constant c1. From this we deduce that for µ-almost all points x, the set W u(x) is
an interval of positive length with endpoints in

⋃∞
i=0 T

i(S−). Moreover, if y ∈ W u(x), then

d(T−n(y), T−n(x)) = λnd(x, y)→ 0

as n→∞. In the same fashion, we construct W s(x).
We now apply the Hopf’s argument. To this end, let us take a dense subset A of C(T2)

and for f ∈ C(T2) define f± as in Example 5.1. Set

Xf = {x ∈ T2 : f±(x),W s(x),W u(x) are well-defined and f+(x) = f−(x)}
X =

⋂
f∈A

Xf .

So far we know that µ(X) = 1. Regarding T2 as [0, 1]2 with 0 = 1 and slicing T2 into line
segments parallel to vi for i = 0, 1, we learn that each stable or unstable leaf intersects X
on a set of full length, except for a family of leaves of total µ-measure 0. Let us pick a leaf
W s(x0) which is not one of the exceptional leaf and define

Z0 =
⋃
{W u(y) : y ∈ W s(x0) and y ∈ X}.
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Since W u(y) is of positive length, for each y ∈ W s(x), we deduce that µ(Z0) > 0. On the
other hand f+ is constant on W s(x0) and f− is constant on each W u(y), y ∈ W s(x0) ∩X.
Since f+ = f− on W s(x0), we deduce that f+ = f− is constant on Z0 for every f ∈ A.

With the aid of Hopf’s argument, we managed to show that f± is constant on a set of
positive µ-measure. But for ergodicity of µ, we really need to show this on a set of µ-full
measure. This is where Hopf’s argument breaks down, however it does show that µ has at
most countably many ergodic components. Indeed if we define

Z(x0) = {x : f±(x) exist and f±(x) = f±(x0)},

then µ(Z(x0)) > 0 because Z(x0) ⊇ Z0. Since this is true for µ-almost all x0, we deduce
that µ can only have countably many ergodic components.

We now explain how Sinai’s method can be used to prove the ergodicity of µ. To this
end, let us take a box B with boundary lines parallel to v1 and v2 and define

W u(B) = {y ∈ B ∩ Y : W u(y) ∩ Y is of full length and W u(y)

reaches the boundary of B on both ends}

where
Y = {y : f+(y) and f−(y) are defined and f+(y) = f−(y)}.

In the same fashion we define W s(B). We now claim that f+ is constant on W s(B), f− is
constant on W u(B), and these constants coincide. To see this, we fix W u(y) ⊆ W u(B) and
take all z ∈ W u(y) ∩ Y . We have that f− is constant on W u(y) and that f−(z) = f+(z) for
such z ∈ W u(y) ∩ Y . Since f+ is constant on each W s(z), we deduce that f+ is constant
on
⋃
z∈Wu(y)∩Y (W s(z) ∩ Y ) and this constant coincides with f−(y). By varying y ∈ W u(B),

we obtain the desired result. (Here we are using the fact that if W u(y) ⊆ W u(B) and
W s(z) ⊆ W s(B), then W u(y) and W s(z) intersect.)

We now take two boxes which overlap. For example, imagine that B1 = I1 × J1, B2 =
I2 × J2 in the (v1, v2) coordinates, where either J1 = J2 and I1 ∩ I2 6= ∅, or I1 = I2 and
J1 ∩ J2 6= ∅.
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We wish to have that the constant f± of W u(s)(B1) equaling the constant f± of W u(s)(B2).
We know that f+ is constant on W s(B1) ∪W s(B2) and that f− is constant on W u(B1) ∪
W u(B2). We also know that f+ = f− in Y . Clearly if J1 = J2, I1 ∩ I2 6= ∅ and W s(B1) ∩
W s(B2) 6= ∅ (respect. I1 = I2, J1∩J2 6= ∅ and W u(B1)∩W u(B2) 6= ∅), then the constant f+

(respect. f−) for W s(B1) (respect. W u(B1)) conincides with the constant f+ (respect. f−)
for W s(B2) (respect. W u(B2)). Let us identify a scenario for which µ(W s(B1)∩W s(B2)) > 0.
Given β > 0, let us call a box B β-uconnected if the set

Bu = {x ∈ B : W u(x) is defined and reaches

the boundary of B on both ends}

satisfies µ(Bu) > βµ(B). The set Bs is defined in a similar way and we say that B is β-
sconnected if µ(Bs) > βµ(B). Note that if µ(Bu(s)) > βµ(B), then µ(W u(s)(B)) > βµ(B)
because Y is of full-measure. (Here we are using Fubini’s theorem to write the measures
of Y as an integral of the lengths of v1 or v2 slices of Y .) Now if both B1 and B2 are
β-uconnected (respect. sconnected), B2 is to the right of B1 (respect. B2 is on the top of
B1) and µ(B1 ∩ B2) ≥ (1 − β) max(µ(B1), µ(B2)), then for sure µ(W s(B1) ∩W s(B2)) > 0
(respect. µ(W u(B1) ∩W u(B2)) > 0).

Based on this observation, let us take a box B̄ and cover it by overlapping small boxes.
Pick β ∈ (0, 1/2) and take a grid {

β

n
i ∈ B̄ : i ∈ Z2

}
and use the points of this grid as the center of squares of side length 1

n
. Each such square

has area 1
n2 , and two adjacent squares overlap on a set of area (1− β) 1

n2 .

Let us write Bβn(B̄) for the collection of such overlapping squares. We now state a key result
of Sinai regarding the α-u(s)connected boxes.

Theorem 5.3 There exists α0 < 1 such that for every β ∈ (0, α0),

lim
n→∞

nµ
(
∪{B ∈ Bβn(B̄) : B is not either β-uconnected or β-sconnected }

)
= 0.
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We now demonstrate how Theorem 9.3 can be used to show that f+ and f− are constant
almost everywhere in B̄. We choose β < α < α0 and would like to show that if y, z ∈ Xf ∩B̄,
then f−(y) = f+(z).

To prove this, we first claim that there exists a full column of boxes in Bβn(B̄) such that
each box B in this column is α-uconnected and W u(y) reaches two boundary sides of a box
in the column provided that n is sufficiently large.

Here y is fixed and since W u(y) is a nontrivial interval, it crosses c1n many columns of total
area c2n

2. If each such column has a box which is not α-uconnected, then

µ(∪{B ∈ Bβn(B̄) : B is not α-uconnected}) ≥ c3n ·
1

n2

for some c3 > 0 (note that a point x belongs to at most
(

1
2β

+ 1
)2

many boxes). This

contradicts Theorem 2.2 for large n. Hence such a column exists. Similarly, we show that
there exists a full row of boxes in Bβ

n(B̄) such that each box is α-sconnected and at least one
box in this row is fully crossed by W s(z). Since β < α, we now that f− is constant (with
the same constant) on ∪W s(B) with the union over the boxes B on that row, and that f+

is constant on ∪W u(B) with union over the boxes B on that column. Since the row and
the column intersect on a box, we deduce that f+(y) = f−(z). This completes the proof of
f+ = f− = constant a.e. in B̄.

We now turn to the proof of Theorem 5.3.

Proof of Theorem 5.3. First we define a sector

C = {(a, b) ∈ R2 : |a| ≤ γ|b|}
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which is symmetric about the unstable line v2 and contains the two directions of sides of Γ−.
We use the explicit value of the slope of v2 to see that in fact γ can be chosen in (0, 1). We
now argue that all the line segments in

⋃∞
0 T i(S−) have directions in the sector C. This is

because C already has the directions of S−. On the other hand, since the sides of S− are not
parallel to v1, T i pushes these lines toward v2.

Now let us measure the set of points not in W u(B) for a box in Bβn(B). Note that if a
point x ∈ B is not in W u(B), it means that W u(x) is cut by one of T i(S−), i ∈ N∗ inside
B. Let us first consider the case when B is intersected by precisely one line segment of⋃
i T

i(S−). Since this line segment is in sector C, we learn that µ(B −W u(B)) ≤ γ
n2 .

This means
µ(W u(B)) ≥ (1− γ)µ(B).

Let us choose α0 = 1
2
(1 − γ) so that if β < α0 and B is not β-uconnected, then B must

intersect at least two segments in
⋃
i T

i(S−). (This would be true even when β < 1− γ but

we need a smaller β later in the proof.) We now look at RL =
⋃L−1
i=0 T

i(S−) and study those
boxes which intersect at least two line segments in RL. Note that each box B is of length
1/n and the line segments in RL are distinct. So, a box B ∈ Bβn intersects at least two lines
in RL only if it is sufficiently close to an intersection point of two lines in RL.

More precisely, we can find a constant c1(L) such that such a box is in a c1(L)
n

neighborhood
of an intersection point. (In fact c1(L) can be chosen to be a constant multiple of L2ec0L

because there are at most 4L(4L − 1) intersection points and the smallest possible angle
between two line segment in RL is bounded below by e−c0L for some constant c0.) Hence the
total area of such boxes is c1(L)n−2. Now we turn to those boxes which intersect at most
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one line in RL and at least one line in R′L =
⋃∞
i=L T

i(S−). Let us write DL for the set of
such boxes. Let us write B −W u(B) = B′L ∪B′′L, where

B′L = {x ∈ B : W u(x) ∩B ∩RL 6= ∅}
B′′L = {x ∈ B : W u(x) ∩B ∩R′L 6= ∅} .

If B ∈ DL, then B can intersect at most one line segment in RL. Hence µ(B′L) ≤ γµ(B) ≤
(1− 2β)µ(B). If B ∈ DL is not β-uconneted, then

(1− β)µ(B) ≤ µ(B −W u(B)) ≤ (1− 2β)µ(B) + µ(B′′L).

From this we deduce

µ(∪{B ∈ DL : B is not α-uconnected}) ≤
∑
{µ(B) ∈ DL : B is not α-uconnected}

≤ β−1
∑
{µ(B′′L) ∈ DL : B is not α-uconnected}

≤ c(β)

β
µ (∪{B′′L ∈ DL : B is not α-uconnected}) ,

where for the last inequlity we have used the fact that each point belongs to at most c(β) =
(1/(2β) + 1)2 many boxes in Bβn. Let x ∈ B′′L for some B ∈ DL. This means that W u(x)∩B
intersects T i(S−) for some i ≥ L. Hence T−i(W u(x)∩B)∩S− 6= ∅. Note that T−i(W u(x)∩B)
is a line segment of length at most λ−in−1. As a result, T−ix must be within λ−in−1-distance
of S−. That is, x ∈ T i(S−

λin−1). So,

µ(∪{B′′L : B ∈ DL}) ≤ µ

(
∞⋃
i=L

T i(S−λ−in−1)

)

≤
∞∑
i=L

µ(T i(S−λ−in−1))

=
∞∑
i=L

µ(S−λ−in−1)

≤ c2

∞∑
i=L

n−1λi ≤ c3n
−1λ−L.

This yields

µ(∪{B ∈ Bβn(B̄) : B is not α-usconnected} ≤ c1(L)n−2 + c4(β)n−1λ−L

for every n and L. This completes the proof of Theorem 5.3. �
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6 Lorentz Gases

So far we have discussed various statistical notions such as ergodicity, entropy and Lyapunov
exponents, for dynamical systems. We have examined these notions for a rather limited
number of examples, namely toral automorphisms, translations (or free motions) and one-
dimensional expansions. In this section we study examples coming from classical mechanics.
A Lorentz gas is an example of a gas in which heavy molecules are assumed to be immobile
and light particles are moving under the influence of forces coming from heavy particles.
The dynamics of a light particle with position q(t) is governed by the Newton’s law

(6.1)
d2q

dt2
= −∇V (q),

where V (q) =
∑

jW (|q − qj|) with qj denoting the center of immobile particles and W (|z|)
represents a central potential function. For simplicity we set the mass of the light particle
to be zero. We may rewrite (6.1) as

(6.2)
dq

dt
= p,

dp

dt
= −∇V (q).

Recall that the total energy H(q, p) = 1
2
|p|2 + V (q) is conserved. Because of this, we may

wish to study the ergodicity of our system restricted to an energy shell

{(q, p) : H(q, p) = E}.

When W is of compact support, we may simplify the model by taking

(6.3) W (|z|) =

{
0 if |z| > ε,

∞ if |z| ≤ ε.

To interpret (6.2) for W given by (6.3), let us first assume that the support of W (|q − qi|),
i ∈ Z are nonoverlapping. Assume a particle is about to enter the support of W (|q−qi|). For
such a scenario, we may forget about other heavy particles and assume that the potential
energy is simply given by W (|q − qi|). For such a potential we have two conservation laws:

conservation of energy:
d

dt

(
1

2
|p|2 + V (|q − qi|)

)
= 0

conservation of angular momentum:
d

dt
p× (q − qi) = 0.

Let us assume that a particle enters the support at a position q with velocity p and exits
the support at a position q′ with velocity p′. For a support choose a ball of center qi and
diameter ε. If n = q−qi

|q−qi| and n′ = q′−qi
|q′−qi| , then we can use the above conservation laws to
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conclude that |p′| = |p| and the angle between (p, n) is the negation of the angle between
(p′, n′).

The same conservation laws hold for the case (6.3). We are now ready for interpretation
of dynamics when W is given by (6.3). Draw a ball of diameter ε and center qi for each i.
Then the phase space is

X = {(q, p) : |q − qi| ≥ ε for all i, and p ∈ Rd}

=

(
Rd −

⋃
i

Bε/2(qi)

)
× Rd.

For q /∈ ∂X we simply have dq
dt

= p. When |q− qi| = ε then the dynamics experiences a jump
discontinuity in p-component. More precisely

(6.4) |q(t)− qi| = ε implies p(t+) = p(t−)− 2p(t−) · ni(t)ni(t),

where ni(t) = q(t)−qi
|q(t)−qi| . As our state, we may consider

M = {q : |q − qi|γε for all i} × {p : |p| = 1}
=: Yε × Sd−1.

Classically two possibilities for the configurations of qi’s are considered. As the first possibil-
ity, imagine that the qi’s are distributed periodically with period 1. Two cases occur. Either
ε < 1 which corresponds to an infinite horizon because a light particle can go off to infinity.
Or ε ≥ 1 which corresponds to a finite horizon.

As our second possibility we distribute qi’s randomly according to a Poissonian probability
distribution.

In this section we will study Lorentz gases on tori. In the periodic case of an infinite
horizon, we simply have a dynamical system with phase space

M = (Td −Bε)× Sd−1 = Yε × Sd−1,

where Td −Bε represents a torus from which a ball of radius ε/2 is removed. In the case of
finite horizon our M = Yε × Sd−1 but now Yε is a region confined by 4 concave arcs. In the
random case we may still restrict the dynamics to a torus. For example, we select N points
q1, . . . , qj randomly and uniformly from the set

Xε = {(q1, . . . , qN) : |qi − qj| > ε for i 6= j},

and then we set
Yε = {q : |q − qi| ≥ ε for i = 1, . . . , N}.
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Next we find an invariant measure for the dynamical system (q(t), p(t)). We write x for
(q, p) and denote its flow by φt(x). Recall that the phase space is M = Yε × Sd−1 = Y × S.
This is a manifold of dimension 2d−1 =: m. We have ∂M = ∂Y ×S with ∂M =

⋃
j(Γ

+
j ∪Γ−j )

where Γ±j = {(q, p) : |q − qi| = ε, p ∈ S, ±ni(q) · p ≥ 0} where ni(q) = q−qi
|q−qi| . If (q, p) ∈ Γ−j ,

then we have a pre-collisional scenario and (q, p) corresponds to a post-collisional scenario.
For an invariant measure we take a normalized Lebesgue measure 1

Z
dq dp = 1

Z
dx where Z is

a normalizing constant. To prove this, let us take a smooth test function J : M → R such
that J(q, p′) = J(q, p) whenever (q, p) ∈ ∂M and p′ = p− 2p ·n n with n = nj(q) in the case
of (q, p) ∈ Γ−j . Such a test function produces

(TtJ)(x) = u(x, t) = J(φt(x)),

that is continuous in (x, t). In fact u satisfies a Liouville-type equation with boundary
conditions:

(6.5)

{
ut = p · uq, x ∈M − ∂M ;

u(q, p′, t) = u(q, p, t), t ≥ 0, (q, p) ∈ ∂M.

We expect (6.5) to be true weakly; if K is a smooth function, then

(6.6)

d

dt

∫
u(x, t)K(x)dx =−

∫
u(x, t)v ·Kx(x)dx

− εd−1
∑
j

∫
|p|=1

dp

∫
|n|=1

u(qj + εn, p)K(qj + εn, p)(p · n)dn.

Let us verify (6.6) when the horizon is infinite. Under such an assumption, we find a sequence
of functions

τ0(x) = 0 < τ1(x) < τ2(x) < . . .

for almost all x, such that φt(x) ∈M − ∂M for t ∈ (τj(x), τj+1(x)),
φτj(x)(x) ∈ ∂M if j > 0, and each finite interval [0, T ] can have only finitely many τi’s. Let

us explain this further. Note that if v = (v1, . . . , vd) with v1, . . . , vd rationally independent,
then x + vt would enter any open set eventually. This proves the existence of τ1 for such
v. Since the set of such v is of full measure, we have the existence of τ1(x) for almost all x.
Similarly we can prove the existence of τj’s inductively for almost all x.

Note that u(x, t) = J(φt(x)) is as smooth as J in (x, t) provided φt(x) /∈ ∂M . This means
that u is as smooth as J with ut = p · uq, provided (x, t) ∈M × (0,∞)−

⋃
j Sj, where

Sj = {(x, t) : τj(x) = t}.

Note that when t is restricted to a finite interval [0, T ], then finitely many Sj’s are relevant,
each Sj is of codimension 1 in M × (0, T ), and different Sj’s are well-separated. It is a
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general fact that if u is continuous and ut = p · uq off
⋃
j Sj, then ut = p · uq weakly in M .

To see this, take a test function R(x, t) with support in an open set U such that exactly one
of the Sj’s bisect U into U+ and U−. We then have

∫
u(Rt − p · Rq)dx dt =

∫
U+ +

∫
U−

and
that if we integrate by parts on each U± we get two contributions. One contribution comes
from carrying out the differentiation on u, i.e.,

∫
U±

(−ut + p · uq)R dx dt, which is 0 because
ut = p · uq in U±. The other contribution comes from the boundary of U±, and they cancel
each other out by continuity of u. In a similar fashion we can verify (6.6). In the periodic
case of infinite horizon, we only have one heavy particle per period. This means that in (6.6)
the summation has one term.

As a consequence of (6.5) we have that the Lebesgue measure dq dp is invariant. In
fact if initially x is selected according to a probability measure dµ = f 0(x)dx, then at later
times x(t) is distributed according to dµt = f(x, t)dx where f(x, t) = f 0(φ−t(x)). To see
this observe that if we choose K ≡ 1 in (6.6) we yield

(6.7)
d

dt

∫
J(φt(x))dx = −εd−1

∫
|p|=1

dp

∫
|n|=1

u(q̄ + εn, p)p · n dn

where q̄ denotes the center of the only existing ball in the unit square. If we integrate over
p first and make a change of variable p 7→ p′ = p− 2p · n n, then u does not change and p · n
becomes p′ · n = −p · n. Also the Jacobian of such a transformation is 1. As a result, the
right-hand side of (6.7) is equal to its negation. This implies

(6.8)

∫
J(φt(x))dx =

∫
J(x)dx,

for every t and every J continuous with J(q, p′) = J(q, p) on ∂M . If K and f 0 have the
same property and we choose

J(x) = f 0(φ−t(x))K(x),

then we deduce ∫
K(x)f 0(φ−t(x))dx =

∫
K(φt(x))f 0(x)dx.

From this we conclude

(6.9) f(x, t) = f 0(φ−t(x)),

as was claimed before.
Our dynamical system is a simple free motion between collision times. Perhaps we should

free out system from the free motion part by focusing on the collisions. For example, let us
define

Γ = {(n, p) : |p| = |n| = 1, p · n ≥ 0} ⊆ T2,
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and T : Γ → Γ by T (n, p) = (n′, p′) where φτ1(q̄+εn,p)+(q̄ + εn, p) = (q̄ + εn′, p′) and p′ =
p− 2n′ · p n′. In other words, if (q̄+ εn, p) is a post-collisional pair then at the next collision
we get (q̄ + εn′, p), and after the collision the result is (q̄ + εn′, p′). Here τ1(x) is the first
collision time of the point x. Again for a set of full measure, the transformation T is well-
defined. Let us write m for the Lebesgue measure on M . This invariant measure induces an
invariant measure on Γ. For this let us define Γ̂ = {(y, t) : y = (q̄ + εn, p), 0 ≤ t < τ1(y)}
and F : Γ̂ → M by F (y, t) = φt(y). It is not hard to see that F is invertible. In fact
F is an automorphism between the measure spaces (M,dm) and (Γ̂, |n · p|dσ(y)dt) where
dσ(y) = εd−1dn dp denotes the surface measure on Γ. This simply follows from the fact that
the Jacobian of the transformation

(q̄ + εn, t) 7→ q̄ + εn+ pt = q

equals εd−1|n · p|. In other words dq = εd−1|n · p|dn dt. The transformation F provides us
with a useful representation of points in M . Using this representation we can also represent
our dynamical system in a special form that is known as special flow representation. Let us
study F−1 ◦ φθ ◦ F . Let us write T (ȳ + εn, p) = (ȳ + εn′, p′) where T (n, p) = (n′, p′)

(6.10) φ̂θ := F−1 ◦ φθ ◦ F (y, t) =


(y, θ + t) θ + t < τ1(y)

(T (y), θ + t− τ1(y)) θ + t− τ1(y) < τ1(T (y))
...

The measure εd−1|n · p|dσ(y)dt is an invariant measure for the flow φ̂θ. We now claim that if

(6.11) dµ = εd−1|n · p|dσ(y)

then µ is an invariant measure for T . To see this take a subset of Γ̄. We choose A sufficiently
small in diameter so that we can find θ1, θ2 and θ3 with the following property:

t ∈ [θ1, θ2]⇒ τ1(y) < θ3 + t < τ1(T (y))

for every y ∈ A. This means

φ̂θ(A× [θ1, θ2] = {(T (y), θ3 + t− τ1(y) : y ∈ A, t ∈ [θ1, θ2]}.

Since φ̂θ has dµdt for an invariant measure,

(θ2 − θ1)µ(A) = (θ2 − θ1)µ(T (A)).

Since T is invariant, we deduce that µ is invariant.
There are various questions we would like to ask concerning the ergodicity of the dynam-

ical system (φt,m).
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For example, we would like to know whether m is an ergodic invariant measure. Does
φt have nonzero Lyapunov exponents? Can we calculate hm(φ)? For the last two questions,
we need to study Dxφt. Recall that if φt is the flow associated with an ODE of the form
dx
dt

= f(x), then the matrix-valued function A(x, t) = Dxφt solves

(6.12)
dA

dt
= (Dφt(x)f)A.

This means that for small δ,

φt(x+ δx̂)− φt(x) ≈ δA(x, t)x̂,

with A solving (6.12). Hence, x̂(t) = A(x, t)x̂ solves the equation

dx̂

dt
= B(x, t)x̂,

where B(x, t) = (Dφt(x)f). In the case of a Hamiltonian flow of the form (6.2), we have
f(q, p) = (p,−∇V (q)) and we simply that x̂ = (q̂, p̂) solves

dq̂

dt
= p̂,

dp̂

dt
= −D2

qV q̂.

But for our Lorentz gas model associated with (6.3), some care is needed because φt(x) is
not differentiable. Let us examine the evolution of x̂ for a billiard in a domain Y . That is,
a particle of position q travel according to its velocity p, and the velocity p changes to the
new velocity p′ = p− 2p · n n after a collision with the boundary. Here n denotes the inner
unit normal at the point of the collision.

To this end, let us take the bounded domain Y where ∂Y is piecewise smooth and
study the flow of a billiard inside Y . For this, we compare two trajectories x(t) and x∗(t)
where x∗(0) = x + δx̂, x(0) = x, with δ � 1. Then at later times we would have x∗(t) =
x(t)+δx̂(t)+o(δ) and we would like to derive an equation for the evolution of x̂(t). In between
collisions, we simply have dq̂

dt
= p̂, dp̂

dt
= 0. To figure out how (q̂, p̂) changes at a collision,

assume that a collision for x occurs at time 0 and a collision at time t̄ = δτ + o(δ) occurs
for x∗. Without loss of generality, we may assume that τ ≥ 0. Assume that at this collision,
the coordinates are (q, p, q̂, p̂) and right after collision we have the coordinates (q, p′, q̂′, p̂′).
Collision for x and x∗ occur at a = x and a∗ on ∂Y . Let us assume that near a, the boundary
∂Γ is represented by g(y) = 0 for a smooth function g. We write a∗ = a + δâ + o(δ) and
n∗ = n+ δn̂+ o(δ) where n and n∗ are normal vectors at a and a∗ respectively. We know

a∗ = a+ δâ+ o(δ) = q∗ + t̄p∗ = a+ δ(q̂ + τp) + o(δ),

which means that â = q̂+ τp. Since g(a∗) = g(a+ δâ+ o(δ)) == 0, we deduce that n · â = 0.
Hence

(6.13) τ = − q̂ · n
p · n

, â = V q̂ :=

(
I − p⊗ n

p · n

)
q̂.
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The operator V is the p-projection onto n⊥. That is (I − V )q̂ is parallel to p and V q̂ · n = 0

always. Since ν(a∗) = n∗, ν(a) = n, for ν(y) = ∇g(y)
|∇g(y)| , we deduce

(6.14) n̂ = (Dν(a))â = Dν(a)V (q̂).

The operator Dν(a) is known as the shape operator of ∂Y at a. To figure out what q̂′ is, we
calculate

q∗(t̄)− q(t̄) = a∗ − (q + t̄p′) = δ(q̂ + τ(p− p′)) + o(δ)

= δ(q̂ − 2q̂ · nn) + o(δ),

and for t > t̂,

q∗(t)− q(t) = δ(q̂ − 2q̂ · nn) + (p∗′ − p′)(t− t̄) + o(δ)

= δ(q̂ − 2q̂ · nn) + (p∗′ − p′)t+ o(δ).

From this we deduce

(6.15) q̂′ = Rq̂ = (I − 2n⊗ n)q̂

with R denoting the reflection with respect to n. Moreover

p∗′ − p′ = p∗ − 2p∗ · n∗n∗ − p+ 2p · nn
= p∗ − p− 2(p∗ − p) · nn− 2p∗ · n∗n∗ + 2p∗ · nn
= δ(p̂− 2p̂ · nn)− 2p∗ · (n+ δn̂)(n+ δn̂) + 2p∗ · nn+ o(δ)

= δ[p̂− 2p̂ · nn− 2(p∗ · n)n̂− 2(p∗ − n̂)n] + o(δ)

= δ[p̂− 2p̂ · nn− 2(p · n)n̂− 2(p · n̂)n] + o(δ).

As a result, p∗′ = p′ + δp̂′ + o(δ) where

(6.16) p̂′ = Rp̂− 2Aq̂,

with

(6.17)
Aq̂ = (p · n)n̂+ (p · n̂)n = (p · n)n̂+ (n⊗ p)n̂

= (p · n)V̂ Dν(a)V q̂,

where Ṽ = I + n⊗p
p·n . Note that |ν| = 1 implies that nDν(a) = 0, or Dν(a) map n⊥ onto n⊥.

Also the range of V is n⊥ and V : p⊥ → n⊥ is an isomorphism. Moreover, Ṽ restricted to
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n⊥ equals I − n⊗p′
p′·n , and that Ṽ : n⊥ → p′⊥ is an isomorphism, which simply n-projects onto

p′⊥. Also, for w,w′ ∈ n⊥,

RṼ = (I − 2n⊗ n)

(
I +

n⊗ p
n · p

)
= R +

n⊗ p
n · p

− 2
n⊗ p
n · p

= R− n⊗ p
n · p

,

w · (RṼ )w′ = w ·
(
I − n⊗ p

n · p

)
w′ = w · w′ − (p · w′)(n · w)

n · p
= (V w) · w′,

so RṼ = V t is the transpose of V . As a result,

(6.18) A = (p · n)RV tDν(a)V q̂.

One way to explore the dispersive behavior of a dispersive billiard is to study the evolution
of the quadratic form Q(q̂, p̂) = q̂ · p̂. If we write Q(t) = Q(q̂(t), p̂(t)), then in between
collisions, dQ

dt
= |p̂|2 and at a collision,

Q(t+) = q̂′ · p̂′ = Rq̂ · (Rp̂− 2Aq̂)

= Q(t−)− 2q̂ · (RAq̂) = Q(t−)− 2(p · n)(q̂ · V tDν(a)V q̂)

= Q(t−)− 2(p · n)V q̂ ·Dν(a)V q̂.

Note that if V q̂ 6= 0 and Dν(a) > 0, then Q(t+) > Q(t−) because p · n < 0. Also V q̂ 6= 0 if
q̂ 6= 0 and q̂ ∈ p⊥. The condition Dν(a) > 0 means that the boundary is concave and this is
exactly what we mean by a dispersive billiard. For such a billiard we expect to have d − 1
positive Lyapunov exponent, and since we have a Hamiltonian flow, then by Theorem ??,
we have d − 1 negative Lyapunov exponents also. The remaining Lyapunov exponent is 0.
This has to do with the fact that in the flow direction, the Lyapunov exponent is 0. To
avoid the vanishing Lyapunov directions, we assume that initially p̂ · p = 0 (conservation of
1
2
|p|2) and that q̂ · p = 0 (i.e., (q̂, p̂) is orthogonal to the flow direction (p, 0)). This suggests

that we restrict (q̂, p̂) to W (x) = {(q̂, p̂) : q̂ · p = p̂ · p = 0} = p⊥ for x = (q, p). Note
that if (q̂, p̂) ∈ W (x) initially, then (q̂(t), p̂(t)) ∈ W (φt(x)) at later times. This is obvious in
between collisions and at a collision use the fact that the range of Ṽ is p′⊥.

Once (q̂, p̂) is chosen in W (x) initially, then we can say that Q(t) is strictly increasing
for a dispersive billiard. To take advantage of this, let us define a sector

C(x) = {(q̂, p̂) ∈ W (x) : q̂ · p̂ > 0}.

What we have learned so far is that

(6.19) D̂xφt(C(x)− {0}) $ C(φt(x))
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where D̂xφt is a short hand for the flow of x̂, so that when φt is differentiable, then D̂x is
the same as Dx. The property (6.19) is promising because by iteration, we get a slimmer
and slimmer sector and in the limit, we expect to get E+(x) associated with the positive
Lyapunov exponents. To see how this works in principle, let us examine an example.

Example 6.1. Consider a matrix-valued function A(x), x ∈ T2 such that for almost all
x, A has positive entries and detA(x) = 1. Let T : T2 → T2 be invariant with respect
to the Lebesgue measure µ and define l(x, v) = limn→∞

1
n

log |An(x)v|, where An(x) =

A(T n−1(x))A(T n−2(x)) · · ·A(T (x))A(x). Define the sector C(x) ≡ C =

{[
v1

v2

]
: v1v2 > 0

}
.

Note that if

[
v′1
v′2

]
= A(x)

[
v1

v2

]
, and A(x) =

[
a(x) b(x)
c(x) d(x)

]
, then

Q(v′1, v
′
2) = v′1v

′
2 = (av1 + bv2)(cv1 + dv2)

≥ v1v2 + acv2
1 + bdv2

2

≥ v1v2 + 2bc

√
ad

bc
v1v2

> (1 + 2bc)Q(v1, v2).

Hence A maps C onto a sector which lies strictly inside C. If An(x)vn = (vn1 , v
n
2 ), then

|An(x)v|2 ≥ 2vn1 v
n
2 ≥ v1v2

n−1∏
i=0

(1 + 2b(T i(x))c(T i(x))),

lim inf
n→∞

1

n
log |An(x)v| ≥ 1

2

∫
log(1 + 2b(x)c(x))µ(dx) =: l̄ > 0,

whenever v1v2 > 0. In particular, by choosing any v with v2
1 + v2

2 = 1, v1v2 > 0, we get

lim
n→∞

1

n
log ‖An(x)‖ ≥ lim inf

n→∞

1

n
|An(x)v| ≥ l̄,

or l2 > 0. Since detAn ≡ 1, we know that l1 + l2 = 0. So l1 < 0 < l2. �

From this example, we learn that perhaps we should try to get a lower bound on
Q(q̂′, p̂′)/Q(q̂, p̂). Note that q̂ is gaining in size in between collisions. However the gain
in the p̂ is occuring only at collisionss. If we have a reasonable lower bound on the ratio of
Q(q̂′, p̂′) and Q(q̂, p̂), then the gain is exponential as a function of time.

Let us consider T : Γ→ Γ where

Γ = {(q, p′) : q ∈ ∂Y and p′ · ν(q) > 0}
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with ν(q) the inner unit normal to the boundary ∂Y , and T (q, p′) = (q̃, p̃) where q̃ denotes
the location of the next collision and p̃ denotes the post-collisional velocity after such a
collision. We also write τ : Γ → (0,∞) for the time between the collision at (q, p) and the
next collision at (q̃, p̃). Now the total gain in Q from the time of a previous collision, till
right after a collision at (q, p) is given by

∆Q = τ(T−1(q, p′))|p̂|2 + 2(p · n)+V q̂ ·Dν(a)V q̂.

If we assume that ∂Y is uniformly concave, i.e., Dν(a) ≥ δI, then

∆Q ≥ τ(T−1(q, p′))|p̂|2 + 2δ|p · n| |V q̂|2.

Note that for q̂ ∈ p⊥,

|V q̂|2 = |q̂|2 +

(
n · q̂
n · p

)2

|p|2.

If initially we start from the sector C, then (q̂, p̂) stays in C for all times and for such (q̂, p̂),

Q(q̂, p̂) = q̂ · p̂ ≥ 1

2
(|q̂|2 + |p̂|2).

As a result,

(6.20)

∆Q

Q
≥ 2

τ |p̂|2 + 2δ|p · n|
[
|q̂|2 +

(
n·q̂
n·p

)2

|p̂|2
]

|q̂|2 + |p̂|2

≥ 2 min

(
τ + 2δ

(n · q̂)2

|n · p|
, 2δ|p · n|

)
≥ 2 min(τ, 2δ|p · n|).

From this we deduce that if tn is the time of the n-th collision, then

(6.21) lim inf
n→∞

1

n
logQ(tn) ≥

∫
log(1 + min(2τ, 4δ|p · n|))dµ > 0

where dµ = |p · n|dn with dn the surface measure on ∂Y .
As in Example 6.1, we can use (6.21) to deduce that there are two Lyapunov exponents

l+, l− with l+ + l− = 0, l− < 0 < l+ when d = 2. Also the sector C can be used to construct
the corresponding Osledect’s directions,

E+(x) =
⋂
n>0

DT−n(x)T
nC+(T−n(x)), E−(x) =

⋂
n>0

DTn(x)T
−nC−(T n(x))

where C± = {(q̂, p̂) : ±q̂ · p̂ > 0}.
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There is a simple geometric interpretation for x̂(t). Assume that γ is a curve with
γ(0) = x, γ̇(0) = x̂. This means that γ(δ) = x + δx̂ + o(δ), φt(γ(t)) = x(t) + δx̂(t) + o(δ),
with x(t) = φt(x). In analogy with Riemannian geometry, we may regard x̂(t) on the Jacobi
field associated with x(t), and (6.15), (6.16) are the corresponding Jacobi’s equations at a
collision.

If we take a surface Λ of codimension one in M = Ȳ × Rd, then TΛ ⊆ TM evolves
to Tφt(Λ). In this case, it is easier to study the evolution of the unit normal vectors. If
z(t) = (a(t), b(t)) ∈ TM is normal to T (φt(Λ)) at all times, then we would like to derive an
evolution equation for it. The vector (a, b) is chosen so that for every t,

a(t) · q̂(t) + b(t) · p̂(t) = 0,

where (q̂(t), p̂(t)) ∈ Tx(t)Λ(t) with Λ(t) = φt(Λ). In between collisions, x̂(t) = (q̂ + tp̂, p̂) and
a(t)·(q̂+tp̂)+b(t)·p̂ = 0, or a(t)·q̂+(ta(t)+b(t))·p̂ = 0. Hence if initially (a(0), b(0)) = (a, b),
then a(t) = a and b(t) = b − ta. So in between collisions we simply have da

dt
= 0, db

dt
= −a.

At a collision (a, b) experiences a jump discontinuity. If after a collision the normal vector
is given by (a′, b′), then

a′ · (Rq̂) + b′ · (Rp̂− 2Aq̂) = 0,

(Ra′) · q̂ + (Rb′) · p̂− 2(Atb′) · q̂ = 0.

This suggests

(6.22)

{
b′ = Rb

a′ = Ra+ 2RAtRb =: Ra+ 2Bb.

Note that if Q(t) = a(t) · b(t), then in between collisions,

dQ

dt
= −|a|2,

and at a collision

Q(t+) = a′ · b′ = (Ra+ 2RAtRb) ·Rb
= Q(t−) + 2AtRb · b
= Q(t−) + 2b ·RAb
= Q(t−) + 2(p · n)Dν(a)(V b) · V (b),

and in the case of a dispersive billiard,

Q(t+)−Q(t−) ≤ 2δ(p · n)|V b|2 < 0.
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Hence Q(t) is decreasing.
As an example of a submanifold Λ of codimension 1, take a function f 0 : Ȳ × Rd → R

and set
Λ = {(q, p) : f 0(q, p) = c}

for a regular value c. If f(q, p, t) = f 0(φ−t(q, p)), then φt(Λ) = {(q, p) : f(q, p, t) = c} and
for z = (a, b) we may choose z = (fq, fp). We know

(6.23)

{
ft + p · fq = 0 inside Y × Rd,

f(q, p, t−) = f(q, p′, t+) on ∂Y × Rd,

where q ∈ ∂Y and t is collision time. Setting a (q, p, t) = fq(q, p, t), b(q, p, t) = fp(q, p, t), we
then have

(6.24)

{
at + pDqa = 0,

bt + pDpa = −a,

which is consistent with da
dt

= 0, db
dt

= −a in between collisions. The formula (6.24) provides a
relationship between z(q, p, t) on ∂Y ×Rd. In the case of smooth potential (6.1), if f(x, t) =
f 0(φ−t(x)), then f solves the Liouville’s equation

(6.25) ft + p · fq −∇V (q) · fp = 0.

If α = fq and β = fp, then after differentiating (6.25) we obtain{
αt + αqp− αp∇V (q) = D2V (q)β,

βt + βqp− βp∇V (q) = −α.

This is consistent with (6.22) if we interpret the hard-sphere model as a Hamiltonian system

with potential V (q) =

{
∞ if q /∈ Y ,

0 if q ∈ Y
. In fact, in some sense, D2V (q)β = 2Bβ of (6.27)

when V is the above “concave” function. We note that if ᾱ(x, t) = α(φt(x), t), then

dᾱ

dt
= D2V (q(t))β̄

dβ̄

dt
= −ᾱ

where (q(t), p(t)) = φt(x). Here (ᾱ, β̄) is the normal vector to the level sets of f as we
mentioned earlier. Hence our method of showing the hyperbolicity of dispersive billiards
should be applicable to general V if V is uniformly concave. Indeed, if

Q(x, t) = fq(x, t) · fp(x, t) = α(x, t) · β(x, t),
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then
Qt + p ·Qq −∇V (q) ·Qp = D2V (q)β · β − |α|2

or equivalently
Q̄t = D2V (q(t))β̄ · β̄ − |ᾱ|2

for Q̄(x, t) = Q(φt(x), t), and if for some δ ∈ (0, 1), −D2V (q) ≥ δI, then

Q̄t ≤ −δ(|ᾱ|2 + |β̄|2) ≤ −2δQ̄

which implies that |Q̄(t)| ≥ e2δt|Q̄(0)|. However, in the case of a billiard, we only have
−D2V (q) ≥ δI only at collisions, which makes the proof of hyporbolicity much harder.

A particularly nice example of Λ is a normal bundle of a q-surface. More precisely,
suppose Θ is a surface of codimension one in Y and set

Λ = {(q, p) : q ∈ Θ, p is the normal vector at q}.

Here we are assuming that Λ is orientable and a normal vector p at each q ∈ Θ is specified.
In this case (q, p, q̂, p̂) ∈ TΛ means that q̂ ∈ TqΘ and that p̂ = C(q)q̂ for a suitable matrix
C(q) which is known as the curvature matrix. (If p = p(q) is the normal vector, then
C(q) = Dp(q).) At later times, (q(t), p(t), q̂(t), C(q, t)q̂(t)) ∈ Tφt(Λ). In between collisions,
p̂(t) stays put, so

d

dt
(Cq̂) =

(
d

dt
C

)
q̂ + C

(
d

dt
q̂

)
= 0.

But d
dt
q̂ = p̂ = Cq̂, so

(6.26)
d

dt
C(t, q) = −C2(t, q).

At a collision C changes to C ′ with p̂′ = C ′q̂′. Using (6.15) and (6.16), we deduce

(6.27) C ′ = RCR− 2AR.

Recall that by our choice, p is the unit normal vector of Θ. Hence q̂ · p = 0 and p̂ · p = 0.
This means that q̂, p̂ ∈ p⊥. As a result, we only need a matrix C⊥ which is acting on p⊥.
Since the same is true after collision, we have C⊥ is the restriction of C to p⊥ and maps p⊥

onto p⊥. The same is true for C⊥′. Hence

(6.28)

{
dC⊥

dt
= −(C⊥)2 in between collisions,

C⊥′ = RC⊥R− 2AR at a collision.

Note that C⊥′ : (p′)⊥ → (p′)⊥. Indeed if v ∈ (p′)⊥ = (Rp)⊥, then Rv ∈ p⊥, and A maps p2

onto (p′)⊥. Moreover C⊥ : p⊥ → p⊥ and R maps p⊥ onto (Rp)⊥.
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