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1 Invariant Measures and Ergodic Theorem

Given a transformation 7' : X — X, we may wonder how often a subset of X is visited by
an orbit of T. In the previous sections, we encountered several examples for which some
orbits were dense and every nonempty open set was visited infinitely often. To measure the
asymptotic fraction of times a set is visited, we may look at the limit points of the sequence

n—1

(1.1) %ZHA(Tj(J7>)

J=0

as n — oco. To have a more tractable situation, let us assume that X is a Polish space (i.e.,
a complete separable metric space) and that 7' : X — X is continuous. It is also more
convenient to consider

(1.2) lim &, (f)(x) := lim — Zf (T’ (z

n—00 n—oo M

where f is a bounded continuous function. If the limit of (1.2) exists for every f € Cy(X),
then the limit £,(f) enjoys some obvious properties:

(i) f>0=L(f) >0, 0,(1)=1.
(i) £,(f) is linear in f.

(iif) €2 (f)] < supyex | f(y)]

(iv) Le(f o T) = Lu(f).

If X is also locally compact, then we can use Riesz Representation Theorem to assert that
there exists a unique (Radon) probability measure p such that ¢,(f) = [ fdp. Evidently,
such a measure p(A) measures how often a set A is visited by the orbit O*(z). Motivated
by this, we let Zr denote the space of probability measures p such that

(1.3) /fonuz/fdu,

for every f € Cy(X). Such a measure p is an example of an invariant measure.

It seems natural that for analyzing the limit points of (1.1), we should first try to under-
stand the space Zr of invariant measures. Note that in (1.2), what we have is [ fdu! where
ur = %Z?;S O74(z)- We also learned that if (1.2) exists for every f, then p} has a limit and
its limit is an invariant measure. Of course there is a danger that the limit (1.2) does not
exist in general. This is very plausible if the orbit is unbounded and some of the mass of



the measure u” is lost as n — oo because T7(x) goes off to infinity. This would not happen
if we assume X is compact. To this end, let us review the notion of weak convergence for
measures. We say p, = p for u,, p € M(X) if

(1.4) [ fina [ san

for every f € Cp(X). It turns out that for the weak convergence, we only need to verify (1.4)
for f € Uy(X) where Uy(X) denotes the space of bounded uniformy continuous functions.
Since U,(X) is separable, we can metrize the space of probability measures M(X). (See for
example “Probabilty measures on Metric Spaces” by Parthasarathy.)

Exercise 1.1

(i) Show that the topology associated with (1.4) is metrizable with the metric given by

- — ‘ffndp’_ffndl/‘
dpv) =Y 27"
(1) nzl U+ [ fudpt — [ fudv]

where {f,, : n € N} is a countable dense subset of Uy(X).

(ii) Show that if X is a compact metric space, then M(X) is compact.

Theorem 1.2 Suppose X is a compact metric space.
(i) (Krylov-Bogobulov) Ir # 0

(ii) If Zr = {p} is singleton, then

n—1
1 )
N j -
lim 3 1(7(a)) = [ fa
j=0
uniformly for every f € C(X). In fact pl} = p uniformly in x.
(iii) If{% Z;:ol fo Tj} converges uniformly to a constant for functions f in a dense subset

of C(X), then Iy is a singleton.

Proof.

(i) This is an immediate consequence of Exercise 1.1(ii) and what we had in the beginning
of this section. In fact any limit point of {2} is in Zr for every z.
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(ii) Let {x,} be any sequence in X and put v,, = 7 . One can readily show that any limit
point of {v,,} is in Zp = {pu}. Hence v, = p. From this we can readily deduce that in
fact u? = p uniformly.

(iii) We are assuming that ®,(f) converges uniformly to a constant f for f in a dense set
A C C(X). The constant f can only be [ fdu because for every u € Zr,

[t | sau

Let us write || f|| = sup,ex |f(x)]. Pick any g € C(X) and a sequence f;, € A such
that || fx — g|| < k7. Since ||®,(f)|| < ||f]| for every f, we learn

imsup () ~ [ gl < Yim 10,50~ [ fudul +2/k < 2/
n—o00 n—oo
By sending k — oo we deduce that lim, ||®,(9) — [ gdu|| = 0. Since f is a constant
independent of y € Zr, we conclude that Zr is a singleton.
O

From Theorem 5.2 we learn that when Zr is a singleton, the statistics of the orbits are
very simple. However, this does not happen very often. This is a rather rare situation and
when it happens, we say that the transformation 7' is uniquely ergodic.

Example 1.3 Consider a translation 7' : T¢ — T given by T'(z) = x+a with a = (a; ... ay)
and g . .. ayg, 1 rationally independent. We claim that Zr consists of a single measure, namely
the Lebesgue measure on T? normalized to be a probability measure. One way to see this
is by observing that if u € Zr, then

[ s nautdo) = [ soptr)

for every continuous f and any n € N. Since {na} is dense, we deduce that y is translation
invariant. It is well-known that the Lebesgue measure is the only translation invariant
probability measure. In fact we can use Theorem 1.2(iii) to see this directly. According to
this theorem, we need to show that ®,,(f) converges uniformly to a constant for f in a dense
subset A of C'(X). For A take the set of trigonometric polynomials 3° ¢;e*™* where the
summation is over j € Z¢ and only finitely many c¢;’s are nonzero. Evidently, it suffices to
verify this for f(z) = €*™*. When j # 0,

1 n—1
- 2 627rij~(:c+€a)
n

=0

1

n

’(I)n(f)‘ =

S

n—1
l 2 627ri£j~a
=0

1 — 627rinj~a

1 — e2mija
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uniformly as n — oo. Thus T is uniquely ergodic. We note that the ergodicity of the
Lebesgue measure also implies the denseness of the sequence {x + na}. U

As we mentioned earlier, in most cases Zr is not a singleton. There are some obvious
properties of the set Zr which we now state. Note that Zr is always a convex and closed
subset of M(X). Also, Zr is compact when X is compact because M(X) is compact. Let
us state a theorem of Choquet that can be used to get a picture of the set Zr. Recall that
if C is a compact convex set then a point a € C is extreme if a = 0b + (1 — 6)c for some
0 € [0,1] and b,c € C implies that either a = b or a = ¢. According to Choquet’s theorem,
if C is convex and compact, then any p € C can be expressed as an average of the extreme
points. More precisely, we can find a probability measure 6 on the set of extreme points of
C such that

(1.5) = /z af(da).

Let us write Z¢* for the extreme points of Zp. The extreme points of Zp are called ergodic
measures. In view of (1.5), any pu € Zr can be expressed as an average of ergodic ones. Later
we give simpler conditions for ergodicity.

Example 1.4 Consider T : T — T with T'(z) = = + « (mod 1) with v = § and ¢ a positive
integer. It is not hard to see that Z¢ = {u, : 0 < z < a} where p, = %[51 + Opg + -+ F
Op+(e—1)a). Note that if X(z) = {z,2 4+ a,..., 2+ ({ —1)a} then T = |J ) X (z). Also
observe

z€[0,x

n—1

X foT(e) = gl + 4 Sl (6= Dl +0 (3) [

0

as n — 0o. U
Given pu € Z%, clearly the set
X, ={z:p, = pasn— oo}

is invariant under 7. That is, if x € X, then T(z) € X,. Also, if u; # po € I,
then X,, N X,, = 0. Ergodic Theorem below implies that p(X,) = 1. This confirms the
importance of ergodic measures among the invariant measures. Later we find more practical
criterion for ergodicity in terms of invariant sets and functions. This will be achieved in two
Ergodic Theorems we prove.

Theorem 1.5 (von Neumann) Let T': X — X be a Borel measurable transformation and
let w € Ip. If f € L2(n), then ®,(f) = 13°07" f o T converges in L?-sense to Pf, where

T on

Pf is the projection of f onto the space of invariant functions g satisfying go'T’ = g.



Proof. First observe that if f = goT — g for some g € L? then ®,(f) — 0 as n — oo.
Let H denote the linear space of gradient type functions go T — g. If f € H, then we still
have lim,, o, ®,,(f) = 0. This is because if f; € H converges to f in L?, then || ®,(f)||2 <
1P (fe)llze + If — frllz2 because ||h o T?||p2 = || fl|z2 by invariance. Since || ®,(fx)|lz2 — 0
asn — oo and || f — fx|lr2 — 0 as k — oo, we deduce that ®,(f) — 0 as n — 0.

Given any f € L?(u), write f = g+h with g € H and hLH. If hLH, then [h poT du =
[ he du, for every ¢ € L*(ii). Hence [(hoT — h)? du = 0. This means that hoT = h. As a
result, A is invariant and ®,,(f) = ©,,(¢9) + ®,(h) = ®,.(g9) + h. Since @,(g) — 0, we deduce
that ®,(f) — h with h = Pf. O

What we have in von Neumann’s theorem is an operator U f = f oT that is an isometry
of L*(11) and the space of invariant functions {¢ : ¢ o T = } is the eigenspace associated
with the eigenvalue one. Hence our theorem simply says %(I +U+---+U"1) — P. Note
that if A = ¢ is an eigenvalue of U and if A # 1, then (14 A+ +A""1) = n’\(zj) — 0 as
n — o0o. The above theorem suggests studying the spectrum of the operator U for a given
T. Later we will encounter the notion of mixing dynamical systems. It turns out that the
mixing condition implies that discrete spectrum of the operator U consists of the point 1
only.

As our next goal, we would like to have a different type of convergence. In our next
theorem we consider an almost everywhere mode of convergence.

To this end let us take a measurable transformation 7' : X — X and pu € Zp. Let
f € L'(u). First we would like to find a candidate for the limit lim,, o, ®,(f). Theorem 5.5
suggests looking at the projection of f onto the space of conserved (invariant) functions.
Motivated by this, let us define

(1.6) Fr={AeF T A = A}

where T' is F-measurable. Note that Fr is a o-algebra and consists of sets for which 1 40T =
14. We may now define Pf as the unique Fp-measurable function such that

(1.7) | ptan= [ sau

for every A € Fr. Note that since Pf is Fp-measurable, we have
PfoT = Pf,

p-almost everywhere. Also, Pf is uniquely defined as the Radon—Nikodym derivative fu
with respect to pu, if we restrict it to Fp — o-algebra. More precisely

_ d(flj“|]:T)
Pf - d//"J-'T ‘
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We are now ready for the statement of Birkhoff Ergodic Theorem.

Theorem 1.6 Suppose u € Iy and f € L*(n). Let Pf be as above. Then

n—1
1 .
. 1 _ ¥ — —
,u{x ; nh_g)lon 50 f(T7(x)) Pf(a:)} 1.
Moreover ®,(f) converges to Pf in L' sense.

Proof. Set g = f — Pf — e for a fixed € > 0. Evidently Pg = —e < 0 and ®,(f — Pf —¢) =
®,,(f) — Pf — e. Hence, it suffices to show

limsup ®,,(¢9) <0 u—ae.

n—oo

We expect to have

g+goT+---+goT" ' = —en+o(n).
From this, it is reasonable to expect that the expression g+- - -+goT™ ! to be bounded above
p-a.e. Because of this, let us define G, = max;<, Zéfl goT". Set A = {z : lim,_,o, G, (z) = +00}.
Without loss of generality, we may assume that ¢ is finite everywhere. Clearly A € Fr be-
cause G411 = g + max(0,G, o T). Note also that if z ¢ A, then limsup,, . ®,(g) < 0. To
complete the proof, it remains to show that pu(A) = 0. To see this, observe

A A

= /[g +max(0,G,, 0T) — G, o T|dpu = /(g —min(0,G, o T'))dpu.
A A

On the set A, —min(0,G,, o T) | 0. Hence by Dominated Convergence Theorem, 0 <
Sy9dp = [, Pgdp < —eu(A). Thus we must have p(A) = 0.

It remains to show that ®,(f) converges to Pf in L' sense. To show this, let fr =
fU(f < k) so that

li — 1,y = 0.
Jim | fe = fllprgy =0

Since ®,,(fi) converges to P f; almost everywhere and |®,(f)| is bounded by constant k, we
have that ®,(fy) converges to P f; in L' sense. Note that

[2n(f) = Pfllorwy < 1Pulfi) = Phillorgy + 19n(f = filllorg + I1P(f = f)llzrw
< N@u(fr) = Phrllzrg + 20 f = frllzrw,

where for the second inequality we used Exercise 1.8(ii). We now send n — oo and k — oo
in this order. O



As a consequence of this theorem, we have the following criterion for ergodicity.
Lemma 2.6 u € Z%" iff n € Iy and pu(A) =0 or 1 for every A € Fr.
Proof. Suppose p € Iy and A € Fr. If u(A) € (0,1), then

_ WANB) 1(A“N B)
m(B) == (A7)

are well-defined and belong to Zp. Moreover, u = auy + (1 — a)pus for a = p(A). Hence if 3
A € Fr with p(A) € (0,1), then u ¢ Z6.

Conversely, suppose p € Zp and that u(A) = 0 or 1 if A € Fr. Note that since Pf is
measurable with respect to Fr, we learn that Pf is constant p-a.e. and the constant can
only be [ fdu. This implies that if

, H2(B) =

B={es 00 - [ i},

thenu(B) = 1. If u = apy + (1 — a) s for some py, po € Iy and « € (0,1), we also have that
wi(A)=0or 1if Ae Frandi=1or2. Asa result,

wdas (0@ [ fauf =1

for i = 1,2. Since u(B) = 1, we know that p;(B) = p2(B) = 1. Now if u # p;, we can find
integrable f such that [ fdu # [ fduy. This contradicts pu(B) = pq(B) = 1. Thus, we must
have p = pu;. 0

If T is invertible, then we can have an ergodic theorem for 7! as well. Since Fr = Fp-1,
it is clear that Prf = Pr-1f. As a consequence

Lemma 1.7 Suppose T,T~' : X — X are measurable and pn € Iy = Ip-1. Then

1
lim —

n—1 n—1
. 1 :
TV = lim — T77 =Pf.
f 2 fo T =l Sy fo T = Pf
W— a.e.

Exercise 1.8

e (i) Let A be a measurable set with u(AAT!(A)) = 0. Show that there exists a set
B € Fr such that u(AAB) = 0.



e (ii) Show that [ Pfdu < [|f|dpu.

As we mentioned in the introduction, many important ergodic measures enjoy a stronger

property known as mixing. A measure u € Zp is called mizing if for any two measurable sets
A and B,

(L8) lim p(T"(A) N B) = p(A)u(B).

n—oo
Mixing implies the ergodicity because if A € Fr, then T7"(A) = A and T""(A)NA° = 0.

As a result, p(A) = lim, u(T7"(A) N A) = p(A)p(A), which implies that either u(A) =0 or
1(A) = 1. Also note that if p is ergodic, then

n—1

1 .
u{x:E;ﬂAoT]%p(A)}zl,

which in turn implies

n—oo

n—1

1 )
I SN 40T | 1p du = p(A)u(B).
im ("Eo 40 >B = p(A)u(B)

Hence ergodicity means

n—1

LS W(T(A) N B) = w(A)(B)

(1.9) S =

So, the ergodicity is some type of a weak mixing.

Example 1.9 Let T : T¢ — T9 be a translation T'(z) =  + a (mod 1) with a = (a; ... ay)
and o ...aq, 1 rationally independent. We now argue that 7' is not mixing. To see this,
take a set A with u(A) > 0 and assume that A is not dense. Pick zo ¢ A and let 6 =
dist.(zg, A) > 0. Take any set B open with u(B) > 0 and diam(B) < /2. By topological
transitivity, o € T7"(B) for infinitely many n € N. Since diam(7~"(B)) = diam(B), we
deduce that T-"(B) N A = () for such n’s. Clearly u(T-"(B) N A) = 0 does not converge to
w(A)u(B) # 0 as n — oo. O

Before discussing examples of mixing systems, let us give an equivalent criterion for
mixing.

Lemma 1.10 A measure p is mixing iff

(1.10) lim [ foT" gdu= /fdu/gdu

n—o0
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for f and g in a dense subset of L*(j).

Proof. If p is mixing, then (1.10) is true for f = 14, g = 1 5. Hence (1.10) is true if both
f and g are simple, i.e., f =7 cilla;, g = > ", ;. We then use the fact that the
space of simple functions is dense in L?(u).

For the converse, observe that if | f — f| .2 and ||g — §||z2 are small, then

‘/foT”gdu—/foT"Qdu‘,
is small. Indeed,

‘/foT"gdu—/foT”Qdu‘ < ‘/(foT"—foT")gdu‘Jr‘/foT”(g—ﬁ)du
< 1F = Fllgll + 17 lg = 41

by invariance and Schwartz Inequality. OJ

Example 1.11 Let T;,, : T — T be the expanding map T,,(z) = mz (mod 1) with m > 2
positive integer. Given any p = (po, - .., Pm—1) With p; > 0 and py + - - - + pp—1 = 1, we can
construct a unique probability measure p, such that

Ppl-ar ... ag,-ay... a5+ M) = pa,Pay - - - Pay.-

If p=(1,0,...,0) then the measure p, = &y corresponds to the fixed point 0. If py = --- =
Pm—1 = %, then p, is the Lebesgue measure. It is not hard to show that p, is an invariant
measure for 7,,.

Ak Figure Goes Here®***
In fact, if
A={x:z=-a1a9...apx*...},
then
T A)={r:x= -xajay...ap%...}
and

m—1
(T A) =D Dobay - Pay = Pay - - Pay, = tp(A).
b=0
To show that each p, is mixing observe that if

(1.11) A = {z:x=q1a9...ap%%...},
B = {x:x="-biby...bpxx...},

11



then
T_”(A)OB:{x:x:-@1b2...bk**---ﬂjal...ak**...}

-~
n

whenever n > k, and
pp(T"(A) N B) = p1p(A) i (B).
This implies the mixing because the set of simple functions f = Z§:1 cjlla; with A; as in
(1.11) is dense in L?*(p,) and we can apply Lemma 5.10.
Note also that if x is a periodic point of period ¢, then u = %Zf;(l) Ori(z) is an ergodic
measure. Such g is never mixing unless ¢ = 1. 0

/—

Exercise 1.12 Let a be a periodic point for T of period ¢. Show that u = %Zj:é Ori(g) 18

not mixing if ¢ > 1.

Exercise 1.13
e (i)Show that if x is mixing and f o7 = Af, then either A =1 or f = 0.

e (ii) Show that the Lebesgue mesaure A is ergodic for T'(x,y) = (x + o,z + y) (mod 1)
iff o is irrational. Show that A is never mixing.

Example 1.14 Consider a linear transformation on R? associated with a 2 x 2 matrix

A = [CCL Z} If a,b,c,d € Z, then T(z) = Az (mod1) defines a transformation on the

2-dimensional torus T2?. Here we are using the fact that if # = y (mod1), then Az =
Ay (mod 1). If we assume det A = 1, then the Lebesgue measure A on T? is invariant for the
transformation 7. To have A mixing, we need to assume that the eigenvalues of T' are real
and different from 1 and —1. Let us assume that A has eigenvalues o and o~ ! with o € R
and |a| < 1. By Lemma 5.9, ) is mixing if we can show that for every n,m € Z?,

(1.12) lim [ (o 0 T )omd\ = /g@nd)\/cpmd)\

N—oo

where ¢, (z) = exp(2min - ). If n = 0, then (1.12) is obvious. If n # 0, then the right-hand
side of (1.12) is zero. We now establish (1.12) for n # 0 by showing that the left-hand side
is zero for sufficiently large N.

Clearly

(1.13) / ©On 0 TN ppd\ = / ATVt AN,

where AT denotes the transpose of A. To show that (1.13) is zero for large N, it suffices to
show that (AT)Vn +m # 0 for large N. For this, it suffices to show that limy_,(AT)Vn =

12



oo. This is certainly true unless n is an eigenvector associated with the eigenvalue «, i.e.,
ATn = an. Such an eigenvector can not exist because aln = (AT)!n would be an integer for
all [ € N, which is impossible by 0 < |a] < 1. O

We end this section with some comments on the ergodicity of continuous dynamical

system.
Given a flow {¢; : t € R}, let us define

z,—{u: [ooda= [ 1an ¥ (1€ cx) <=},
Given p € Z, and f € L'(u), we would like to show

t
i {x : lim 1/ fode(x) db exists} =1.
t—oo ¢ 0

To reduce this to the discrete case, let us define Q = [[._,Rand I' : X — Q by

P(e) = (wy(z) : j € Z) = (/ o n >deyez)

We then define T'(w; : j € Z) = (wj41 : j € Z). Clearly I'o ¢y =T oI'. Also, if i € 7, then
i defined by ji(A) = u(T~'(A)) belongs to Zr. Indeed,

/gonﬂ = /goTol—‘du
= /goro¢1 du:/gordu:/gdﬂ.

We now apply Theorem 1.6 to assert

{ nhg)lo - Zw] ex1sts} =1.

Hence

{ 11m — f o ¢y(x) db exists} =1.

n—oo N,

From this, it is straightforward to deduce

1 t
14 {:c : lim —/ f oy dd exists} =1.
t—)oot 0

13



To see this, observe

t

1/t t1 [ 1
— df = —— do + — do.
P reonan="g [T resans [ roa
Hence it suffices to show
1 n+1
(1.14) lim — |foggl dd =0 p—ae.

n—oo 1 n

To prove this, observe

1 n
lim — |f o ¢g| dO exists p — a.e.
n—oo 1 Jg

and this implies

1 n+1 1 n+1 1 n
L ireatas = [T iposdas— [ir oo as

n n

n+1 1 n+1 1 n
= / |fogb9|d6’——/ |f o ¢g| dO
n n+1Jj n Jo

converges to 0 u — a.e., proving (1.14).
As before we can readily show that if % fot foggdd — Pf, then Pfo¢, = Pf u— a.e.
for every t, and that Pf is the projection of f onto the invariant sets. In particular, if u is

ergodic, then Pf = [ fdp.
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2 Transfer Operator, Liouville Equation

In the previous section we encountered several examples of dynamical systems for which it
was rather easy to find “nice” ergodic invariant measures. We also observed in the case of
expanding map that the space of invariant measures is rather complex. One may say that
the Lebesgue measure is the “nicest” invariant measure for an expanding map. Later in
Section 3, we show how the Lebesgue measure stands out as the unique invariant measure
of maximum entropy.

In general, it is not easy to find some natural invariant measure for our dynamical sys-
tem. For example, if we have a system on a manifold with a Riemannian structure with a
volume form, we may wonder whether or not such a system has an invariant measure that is
absolutely continuous with respect to the volume form. To address and study these sorts of
questions in a systematic fashion, let us introduce an operator on measures that would give
the evolutions of measures with respect to our dynamical system. This operator is simply
the dual of the operator Uf = f o T. More precisely, define A : M(z) — M(x) by

/de,u:/fonu:/fdAu

for every f € Cp(X). We certainly have
(2.1) (Au)(A) = (T~ (A))

for every measurable A. Even though we have some general results regarding the spectrum
of U, the corresponding questions for the operator A are far more complex. We can now cast
the existence of an invariant measure with some properties as the existence of a fixed point of
A with those properties. The operator A is called Perron—Frobenious, Perron—Frobenious—
Ruelle or Transfer Operator, once an expression for it is derived when p is absolutely con-
tinuous with respect to the volume form. We note that an invariant measure p is mixing iff
A"v converges to p in high n limit, for every v << p. To get a feel for the operator A, let
us examine some examples.

Example 2.1

(i) T:T¢— T? T(x) =+ a (mod 1). The operator A simply translates a measure for
the amount . We assume that the numbers a; . .. a4, and 1 are rationally independent.
We can study the asymptotic behavior of A" for a given u. The sequence {A"u} does
not converge to any limit as n — oo. In facr the set of limit points of the sequence
{A"u} consits of all translates of u. However

n—1
1 .
1 — Ty =
(2.2) nh_}rrgon EOA p=A
J:
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where A denotes the Lebesgue measure. The proof of (2.1) follows from the unique
ergodicity of T that implies

Q)n(f)—>/fd)\

uniformly for every continuous f. This implies

n—1
lim [ @,(f)dpu = lim /fd (%ZA&L) :/fdA,
§=0
proving (2.2).

(ii) Let (X,d) be a complete metric space and suppose T': X — X is a contraction. In
other words, there exists a constant a € (0,1) such that d(T(z),T(y)) < ad(z,y).
In this case T has a unique fix point z and lim, ,,., T"(z) = & for every z (the
convergence is locally uniform). As a consequence we learn that lim,, ., A" = §; for
every measure u € M(X). For example, if X = R and T'(z) = ax with a € (0,1),
then dyp = pdz results in a sequence A" = p,dx with

pul@) =a"p ().

an
In other words, the measure p under A becomes more concentrated about the origin.

(iii) Let T': T — T be the expansion T'(z) = 2z(mod1). If du = pdxr and A"y = p,dz,
then p1(0) = & (0 (5) + p (42)) and

1% [z
pn(:c):2—n p(z_n+2_n>

=0
From this, it is clear that if p is continuous, then lim, ., pn(z) = 1. Indeed
= j = . j i
o) -3 20 (7) z—nZ(f’(z—ﬁz—n)"’(z—n))‘
Jj=0 7=0
= j
2 () - fren

= lim
n—oo

lim
n—oo

This can also be seen by looking at the Fourier expansion of p. We now only need to assume
that p € L?[0,1]. If

p($) _ Z &ne27rinx’
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then ap = 1 and

p1<=73> = Z CLlezmkmy

k
and by induction,

pn(z) = Z Qg€
k

As a result,

1
/ lpn(z) — 1|*dx = Za%nk — 0.
0 k40

U
There is a couple of things to learn from Example 2.1. First, when there is a contraction,
the operator 4 makes measures more concentrated in small regions. Second, if there is an
expansion then A has some smoothing effect. In hyperbolic systems we have both expansion
and contraction. In some sense, if we have more contraction than the expansion, then it is
plausible that there is a fractal set that attracts the orbits as n — oo. If this happens, then
there exists no invariant measure that is absolutely continuous with respect to the volume
measure. Later in this section, we will see an example of such phenomenon. As a result, to
have an absolutely continuous invariant measure, we need to make sure that, in some sense,
the expansion rates and the contraction rates are balanced out. Let us first derive a formula
for A when p is absolutely continuous with respect to a volume form. As a warm up, first
consider a transformation 7" : T¢ — T? that is smooth. We also assume that 7" is invertible

with a smooth inverse, i.e., T" is a diffeomorphism. We then consider du = pdx. We have

foTp dx:/ fpoT HIT| dy
T4 T4

where JT—1 = det DT~!. As a result, if Ay = pdz, then p = |JT po T = %. We
abuse the notation to write

poT 1
2.3 R M,
(23) A= ey

regarding A as an operator acting on probability density functions. More generally, assume
that X is a smooth manifold and 7" is C*. Let w be a volume form (nondegenerate d-form
where d is the dimension of X). Then T*w, the pull-back of w under T', is also a k-form and
we define JT'(x) to be the unique number such that T*w, = JT(x)wp). More precisely,
T*wy(vr ... v) = wrE) (DT (z)vy, ..., DT (z)vy) = JT(2)wr@)(v1 - .. vr). We then have

Jtempw= [ spor T

17



Hence (2.3) holds in general.
If T is not invertible, one can show

()
(2.4) Ap = SACH
ver ey 17T

The next proposition demonstrates how the existence of an absolutely continuous invari-
ant measure forces a bound on the Jacobians.

Proposition 2.2 Let X be a smooth manifold with a volume form w. LetT : X — X be a
diffeomorphism with JT > 0. The following statements are equivalent:

(i) There exists p = pw € Iy for a bounded uniformly positive p.

(ii) The set {JT™(x) :x € X, n € Z} is uniformly bounded.

Proof. (i) = (ii) Observe

poT—2 1 B poT?
JToT-2JToT-1 JI2oT-2

A’p =
because JT? = (JT o T)JT. By induction,

w. _opoTT"
Ap_—JT”oT*n’ n € N.

Also, A 'p = (poT)JT, and by induction

A = (poT")JT"
= (poT™)JT"oT";, neN.

Hence

pol™

2. . ol
(25) A= Jpeo

n € 7.

If pw is invariant, then A"p = p for all n € Z. As a result, (JT" o T ™)p=poT™", or

P

2.6 JI" = ———:
( ) poTn’

n € 7.

Now it is clear that if p is bounded and uniformly positive, then {JT"(z) : n € Z, v € X}
is uniformly bounded.

18



(ii) = (i) Suppose {JT"(z) : n € Z and x € X} is bounded and define

p(x) = sup JT"(x).

nez

We then have

JT(x)(poT)(z) = ilég(JT”)oT(x)JT(x)
— sup J(T" o T)(x) = pl).

nez

Hence Ap = p. Evidently p is bounded. Moreover
1/p=inf[1/JT"(z)] =inf JT "o T" =inf JT" o T™"
is uniformly bounded by assumption. 0

Recall that expansions are harmless and have smoothing effect on Ap. As a test case, let
us consider an expansion of [0, 1] given by

T(2) = Ti(x) z€[0,00) =1
(x) = To(x) € 00,1 = I

with T, Ty smooth functions satisfying |77 (z)| > A for = € I;. We assume A > 1 and that

In this case

_poTi@) | poTy')
Ty OT1_1($) T OTQ_I(QU)'

(2.7) Ap()

Theorem 2.3 If T},T, € C?, then there exists u € Iy of the form du = pdx with p of finite
vartation.

19



Proof. Write S; = T, ! so that
Ap = (po51)S] + (p o 52)S;.
We have
1 1
| iyt < a0t [ e
0 0

1
6o / Ap dz,
0

_ 1S (=) ;1
where 8y = max, jeq1,2) ) and here we used 5] < 1. Hence

1 1
/ (Ap)|dz < A~ / Plde + B
0 0

By induction,
1 1 1—)\"
Jiearyias <xen [+ a0y
; . 1— A

From this we learn that
sup || A" pll By < 0.
n

Hence A"p has convergent subsequences in L'[0, 1]. But a limit point may not be an invariant
density. To avoid this, let us observe that we also have

1 n—1 ‘
w2 A

Hence the sequence { Pn=mn"" Zg_l Al p}n has convergent subsequences by Helley Selection
Theorem. If p is a limit point, then Ap = p because for every J € C(]0, 1]),

< OQ.
BV

sup
n

/(JOT)/S de = lim [(JoT)p, dx

n—oo

= lim [ JAp, dx
n—oo

= lim [ Jp, dz:/Jp dz.
n—oo

Also, for every periodic J € C!,

1 1
/ J'pdx| = lim ’/ J pp dx

const. ||J||pe.

< HJHLOO sup HPnHBV
n

IN

20



Hence p € BV.

O

We now discuss another approach which yields the convergence of A"p. To find a fixed

point of A, let us consider the following function space:
(2.8) Ca = {e? 1 |g(x) — g(y)| < alz —y] for 2,y € [0,1]}.
We note that p € C, U {0}, iff p > 0 and for all z,y € [0, 1],

p(x) < ply)e™ .

Recall that S; = T, ' and fy = max, ieq1,9) ‘Sslrl((x))l.

(2

Lemma 2.4 We have that AC, C Cuo, whenever a > BO — and o > AL

Proof. Let p=e9 € C,. Then

Aplw) = > po Si(z)S|()

IN

2
Y po Sily)eSi@-Sil|g ()
=1
2
- ZPOSZ( Q\S (z)— \|S/( )|elog|S£(x)|—log\Sz’-(y)|

< Y pe SIS

= Ap(y)e(“ ke,

As a result, AC, C Cyr-145, C Coa-

O

What we learn from Lemma 6.3 is that if ¢ € (A7}, 1], then we can find a function space

C, that is mapped into itself by A. Note that indeed C, is a cone in the sense that

if p € Cy, then A\p € C, for A > 0,
if p1,p2 € Cq, then p; + po € C,,.
Define a partial order
(2.9) p1 < p2 iff po — p1 € C, U {0}
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In other words, p; < ps iff p; < po and

(2.10) pa(2) — pr(x) < (p2(y) — pr(y))e™ ¥, @,y € [0,1].

Hilbert metric associated with our cone C, is defined as

(2.11) do(pr, p2) = log(Ba(p1, p2)Ba(p2: 1)),

where ,(p1, p2) = inf{\ > 0 : py < Ap1}. By convention, S,(p1, p2) = oo if there exists no
such A\. We certainly have

(2.12) duo(p1,p2) = supi%f {logg capr < pr X ﬁpl} > 0.

alz—y| N
Lemma 2.5 5a(pla PQ) = sup € pz(y) pg(:v)

v elltvlpi(y) —pi(x) T o pilz)
TFY

Proof. If py < Apy, then py < Ap; and

eyl (—02 (y) + Aps (y>>7
A=pi(2) + e py (y)).

—pa(2) + A (a)
—pa(x) + eV py(y)

IAIA

From this we deduce

= max < su p2() su @alm—y|p2(y) — p2(x)
Ba(p1, p2) = { 2 () o el =vlp () — pi(2) } '

Note that if sup p2(z) — p2(Z)

P o) ()

8

eale=3l p, (T) — pol(2) _ elv =71, (7) ng; — pl(x)Zf—gg - p2(7)
ele=lp, () — pu(x) ety (2) = pi(z) T pala)
This completes the proof of lemma. U

Lemma 2.6
(i) d, is a quasimetric with d,(p1, p2) = 0 iff p1 = A\pa for some A > 0.

(i) If a1 < ag then do,(p1, p2) = day(p1, p2) for pi,p2 € Ca,.
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Proof. (i) If du(p1, p2) = 1, and B,(p1, p2) = A, then B,(p2, p1) = A", Hence P2 < Ap1 < p2
which implies that Ap; = ps. The triangle inequality is a consequence of 3, (p1, p2)Ba(p2, p3) <
Ba(p1, p3). This is a consequence of the fact that if po < Aip; and p3 < Agpe, then ps <
A1 A2p1.
(ii) First observe C,, C C,,. Hence py < Apy in C,, implies the same inequality in C,,.
O

Recall that we are searching for a fixed point for the operator A. By Lemma 6.3, if

e (A41) and a > A —20 - then A(C,) C Coy € C,. As our next step,, we show that A is

a contraction on C,. But first let us demonstrate that in fact that the set C,, is a bounded
subset of C,.

1
Lemma 2.7 diam C,, = sup du(p1,p2) < b:=2log o + 2a0.
pl:p2€cao' 1 — 0
Proof. From py(z) < py(y)e =¥ and py(x) < p1(y)e®* ¥ we deduce

ea‘x_yl — e—fw|$—y| pz(y)
€a|xfy| _ eacr\xfy| 01 (y)

Ba(p1, p2) < sup

x7y

To calculate this, set z = e**=¥|, Then z > 1 and lim,_,; &2~ = HU On the other hand,

z—2z9

z—z" ¢ < 1+cr
z—z9 — 1—
of the exponentlal function;

or equivalently z7 < 12+—"Uz + H—Jz ? which is the consequence of the convexity

20 l—0o
ealogz < elogz —ologz

— 140 1+o0

As a result,

1 1 ac/2 1
Balpr, p2) < +o sup p2(y) < +o pg(yo)e_w/2 _ p2(yo) o0 +o
L—o y pi(y) = 1—opiyo)e p(y) 1—o

for yo = % Hence

1+0\?
Bulpr, p2)Balps 1) < ( 1 ) o
-0
completing the proof of lemma. O

We are now ready to show that A is a contraction.

Lemma 2.8 For every p1, ps € C,,

b
du(Aps, Apy) < tanh (1) dulpr. ).
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Proof. By Lemma 6.7, diam(AC,) < b. As a consequence if Sp; = ps = ap;, then

da(A(p2 — ap1), A(Bp1 —p2)) < b

for every p1,ps € C, and o, 8 > 0. This means that we can find two constants A\, Ao > 0
such that log i—; < b and

5 + Oz)\l ﬁ —+ 05)\2
1+)\1A1\AP2\ 1+/\2Ap1
As a result,
B+ad 14+ X W 1+ )
do(Ap1, Aps) < lo = log & +lo
(Apr, Apa) < log === 5= ENDY 1+ A\
Minimizing over o and (3 yields
eda(prp2) 4 )\ 14+ X
da(‘Ap:l)ApQ) S log eda(p17P2) + AQ + log 1 + Al

da(p1,p2) O( N0 — \ o — /N
/ 96( - 0 2 df < da(pr, 2)M
0 (e? + A1) (€? + A2) Vs + VA

(A2 — A1 \/ v .. .
because max ( ) We now maximize over 22 to obtain

221 (24 M)(z + Ag) \/_+\/_ M

b1

NI

e b
da(Apr, Ap2) < da(p1, p2) 1, = dq(p1, p2) tanh (-) .
ez’ + 1 4
0
(A1),
because tanh (%) < 1 always. We may minimize the rate of contraction tanh (%) by first

choosing the best a, namely a = %7 and then minimizing b in o as ¢ varies in (A™1,1).

Our goal is to show that lim,, ., A"p converges to a unique invariant density p. For this, let
us establish an inequality connecting d,(p1, p2) to ||p1 — pal|r1-

1 1
Lemma 2.9 For every py, ps € C,, with / p1 dx = / p2 dxr =1, we have
0 0

1
/ o1 — pol dx < (e — 1), |py — py| < (%P2 —1)py.
0
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Proof. Let us write d,(p1, p2) = logg with ap; < p2 < Bp1. This in particular implies that
ap; < pa < Bp;. Integrating this over [0, 1] yields a < 1 < 3. As a result,

p2—p1 < (B—=1)p1 < (B—a)p,
p2—p1 = (a=1)p1 = (a—B)pr.

From this we deduce (o — 8)p1 < p1 — p1 < (6 — a)p1. As aresult, [py — pa] < (B —a)pr <
(B/a—1)p; and

1 —
/|/)2—p1|dxg(ﬁ—a)gBaa:é_lzeda(f’hpz)_l_
0

Q

We are now ready to state and prove the first main result of this section.

Theorem 2.10 Let a = —21 and 0 € (\"1,1). Then for every p € Cq with folp =1,

o—\"1
lim,, o A"p = p exists uniformly and p dx € Iy with p € Cy,. Moreover, there exists a

constant ¢; such that

1 1 1
/ foT" gdx — / gdx/ fpdx
0 0 0

where \ = tanh (%), b=2log }f—g +2a0, f € L', and g is Lipschitz.

(2.13) < aA" |l (gl + llg'll =)

An immediate consequence of Theorem 2.10 is the mixing property of p because we may
choose g = hp/ [ hp to deduce

1 1 1
lim foT™ hp dx = / fpdx/ hpdzx.

Proof of Theorem 2.10. We first show that if p € C,, then A"p converges to a function
p € C, in L'-sense. Indeed

A" — A”pl| 1 exp(ila(-Anerpa A'p)) —1
exp(A" o (A p, Ap)) — 1

An—1 F An—1 [P
6)\ b_lg)\n lbeA bSCo)\nl

IAIA

IN

for a constant ¢y that depends on b only. This implies that A"p is Cauchy in L. Let
p = lim p,, where p,, = A"p. Since p,(z) < pn(y)e®¥ and p,, — p a.e. for a subsequence,
we deduce that p(x) < p(y)e®!*¥l for a.e. z and y € [0,1]. By modifying 5 on a set of zero
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Lebesgue measure if necessary, we deduce that p € C,. Note that p is never zero, because
if p(zo) = 0 for some xg, then p(z) < p(xg)e® ™~ implies that p(x) = 0 for every z. But
fol pdx = 1 implies that fol pdx = 1. So p > 0, completing the proof of p € C,.

We now show that A"p — p uniformly. Indeed from A"p — p in L' we deduce that
[ foT™pdx — [ fpdx for every bounded f, which implies that Ap = p. Moreover

A p—pl = [A"p— A"p| < (e — 1) A"
< (@A) )5 < (T - 1)p
< NN 5 < o\

with ¢g depending on b only. From this we learn that
A" p = pllLe < coX*[|pl o<

for every p € C, with fol pdr = 1.

We now turn to the proof of (2.13). Without loss of generality, we may assume that
g > 0. Given such a function g, find [ > 0 large enough so that p = g+ (p € C,. Indeed, for
y > x, we have that p(y) < g(y) + lp(x) exp(ac(y — x)) =: exp(h(y)). On the other hand

¢(y) +laop(@)e =) _ gl | laop(@)er =) _ [z 1

B (y) = - .
W) =5y Flopmemoa = ipla) T ip(esa = infp 17

This is at most a if we choose .

N
(1—0)infp
Hence ]
ng+ ﬁ —~ N
|2 g < atpl-
LOO

where Z = fol (9 + lp)dz. Since Ap = p, we deduce

< coA"||]| poe
LOO

|A" — (Z = Dpllr= < coN"||p]le=2.

1
HA”g—ﬁ/ g dx < c A" [/g dx—i—l} < e\ [/g dx+||g/||Loo}.
0 Lo

From this, we can readily deduce (2.13). O

Ag Lo
7 t PP

Hence
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As our next scenario, let us study an example of a 2-dimensional system that has ex-
panding and contracting direction but there is no absolutely continuous invariant measure.
As a toy model for such a phenomenon, we consider a (generalized) baker’s transformation:

(%751;2) 1f0§x1 SOK,
(“ﬁ_o‘,ﬁ—i—ozxg) ifa<x <1

T . T2 — TQ, T(Q;l’aj‘Z) = {

with o, 3 >0and o+ 8 = 1.

Note
ifo0<z<a,
fa<z<l.

@I L™

|JT (1, 29)| :{

As we will see later, the transformation 7" does not have an absolutely continuous invariant
measure unless « = = % To analyze Perron-Frobenious operator, let us define F), (21, z2) =
([0, 1] x [0, 25]). If F' = Fy,, then

A i < <
(214) F(I‘l,ﬁ?g) — F(Oél‘l,l‘Q/ﬁ) N 75 . 7ﬁ lf O — IQ — /87
F(ole,l)—i-F(ﬁxl—l—oz, B )—F(oz,QT) if <z <1.

«

To see this, recall that F(zy, z5) = u(T([0,21] x [0,22])). Also

2 if 0 <ay,<
(2.15) TV (a1, 20) = (a$“ ﬁ) f0<z < b,
(a—i—ﬁxl, ”_5) if <y < 1.

[0}

Now if 0 < xy < B, then T71([0,21] x [0,22]) = [0, 1] X [0, %2} which implies that

F(:vl,xz) =F (a:vl, %) in this case. On the other hand, if § < x5 < 1, then

T7H([0,20] x [0,22]) = T7([0,21] x [0, B)) UT ([0, 1] x [B, 22]),
T7H[0,21) x [0,8]) = [0,ax] x [0,1],

T_l([0>331] X (67332]) = [Oé,Oé—l—ﬁ:L‘l] X (07

«

1’1—5}
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Clearly p([0, azq] x [0,1]) = F(axq, 1).

Moreover,

,u([oz,oz+ﬁx1] X (O, $2_ﬁ}) = F(owl—ﬂxl,xz_ﬁ)
a a
—n (0. x (0.277))
o
= F <a—|—ﬁx1,x2;ﬁ> —F (a, x2;6> ,
completing the proof of (2.14).

Since the expanding and contracting directions are the z, y-axis, we may separate variable
to solve the equation AF := F' = F. In other words, we search for a function F (r1,x9) =
Fy(z1)Fy(xz2) such that AF = F. Since for pure expansion in dimension one the Lebesgue
measure is invariant, we may try Fj(z;) = x;. Substituting this in AF yields AF (x1,29) =
331}3’2(132) where

aly (%) 0 <2y <8,
Oé‘i‘ﬂpg(%) B<$2§1

Here we are using Fy(1) = 1. We are now searching for F, such that BFy = Fy. It turns

out that this equation has a unique solution F3 that has zero derivative almost everywhere.

Hence our invariant measure j1 = Ay X Ay with A\; the Lebesgue measure and A\, a singular

measure. One can show that the support of the measure )\, is of Hausdorff dimension

%Wogﬁ =: A. To explain this heuristically, we show that if A denotes the set of points
g B+Bloga

x such that there exists a sequence of intervals I,,(z) with z € I,,(z), N, I, (x) = {x}, and

BF2 = FQ((I?Q) = {

lim log Ao (1, (z)) _A

23 Tog M (1, (1))
then \y(A) = 1. To construct I, let us first define a family of intervals I,, ,., with
ai,...,a, € {0,1}, so that Iy = [0,0), I = [B,1), and if I,, . = [p,q), then I, a0 =
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[p,p+ B(q—p)), and I,, an,l = [p+ B(q—p),q). Tt is not hard to show
(216) )\2([(11 ..... an) = aLnﬁRn7 )\1(Ia1 ..... an) = ﬁLnaRn7

where L,, and R, denote the number of 0 and 1 in the sequence a4, ..., a,, respectively. Given
z, we can find a sequence w(z) = (ay,...,a,,...) € Q= {0,1}N, such that = € I,, _,, for
every n. The transformation = + w(x) pushes forward the measure Ay to the product
measure A\, such that each a, is 0 with probability «. If L, (z) and R,(z) denote the number
of 0 and 1in ay,...,a, with w(z) = (a,...,a,,...), then by Birkhoff Ergodic Theorem

Ao {x : lim Ln(2) =q, lim fn () = ﬂ} = 1.

n n n n

From this and (2.16) we can readily deduce that A(A) = 1.
Note that the support of i is of dimension 1+ A. Evidently A < 1 unless a = 3 = %
What we have constructed is the Sinai-Ruelle-Bowen (SRB) measure i of our baker’s
transformation 7. Note that this measure is absolutely continuous with respect to the
expanding direction z-axis. A remarkable result of Sinai-Ruelle-Bowen asserts

fim + 3" 5 (w) = [ s

n—oo N

for almost all = with respect to the Lebesgue measure. This is different from Birkoft’s
ergodic theorem because Birkhoft’s ergodic theorem only gives us convergence for ji-a.e. and
i is singular with respect to Lebesgue measure.

Exercise 2.11

(i) Show that the baker’s transformation is reversible in the following sense: If ®(z,y) =
(1 — 2,1 — y) then ®* = identity and T~! = ®T'®.

(ii) Show that if o € Zp then u® € Zp-1 where u® is defined by [ fd(u®) = [ f o ®dp.
Exercise 2.12 Let T": (0,1] — (0,1] by T'(z) = {1} where {-} means the fractional part.

Derive the corresponding Perron—Frobenious equation. Show that p(z) = @ﬁ is a fixed
point for the corresponding Perron—Frobenious operator.

We end this section with a discussion regarding the flow-analog of Perron—Frobenious
equation. Given a flow ¢, associated with the ODE 4 = f(z), let us define

Tig = go ¢y
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This defines a group of transformations on the space of real-valued functions g. The dual of
T, acts on measures. More precisely, 77 1 is defined by

/thduz /det*u,

or equivalently T7u(A) = u(d; ' A) = u(d_(A)). The following theorem of Liouville gives
an infinitesimal description of 77 1 when i is absolutely continuous with respect to Lebesgue

measure.

Theorem 2.13 Suppose that there ezists a differentiable function p(x,t) such that d(T; 1) =
p(x,t)dx. Then p satisfies the Liouville’s equation

pe +div(fp) = 0.

Proof. Let g be a differentiable function of compact support. We have

/ 9(y)p(y.t + h)dy

This implies that < [ g(y)p(y,t

— [ slovala)pla.0)ds

— [ s(r(ea)pta,0)is

— [ stontw)ntu. 0ty

_ /g(y +hf(y) +o(h))p(y, )dy

- /g(y)p(y,t)dy-i-h/v 9() - f(W)ply, h)dy
+o(h).

Ydy = [ f(y) - Vg(y)p(y,t)dy. After an integration by parts,

d .
7 | 9Wely, t)dy = /g(pt + div(fp))dy.
Since g is arbitrary, we are done. 0

Exercise 2.14

(i) Let u(z,t) = Tyg(z) = g(¢¢(x)). Show that u satisfies v, = Lu where Lu = f(z) - 2

or’

(ii) Show that u € Z, iff [ Lgdu = 0 for every g € C* of compact support.
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In particular a measure pdx is invariant if

div(fp) =0,

or equivalently pV f+p div f = 0. The generalization of this to manifolds is straightforward.
If L denotes the Lie derivative and f is the velocity of the flow, then pw is invariant if and
only if

Lip+pdiv f=0.

Example 2.15 Let

_x 1
T(z) = 1—3:_ for x € {(1)72),
20 —1 forze [} 1].

Note that for this example, the condition |T"(z)| > 1 is violated at a single point z = 0. It
turns out 71" has no invariant measure which is absolutely continuous with respect to Lebesgue
measure. We omit the proof and refer the reader to [LaYo].

Notes The proof of Theorem 2.10 was taken from [Li].
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3 Entropy

Roughly speaking, the entropy measures the exponential rate of increase in dynamical com-
plexity as a system evolves in time. We will discuss two notions of entropy in this section,
the topological entropy and (Kolmogorov—Sinai) metric entropy. We define the topological
entropy first even though chronologically metric entropy was defined first.

Let (X, d) be a compact metric space and T : X — X be a continuous transformation.
Define

do(z,y) = max{d(z,y),d(T(z),T(y)),....dT" (), 7" (y))},
B"(x,r) = Brg(r,r)={y:du(r,y) <r}.
We then define two numbers. First S} ,(r) is defined as the smallest number & for which we

can find a set A of cardinality & such that X = (., B} 4(%,7). We also define NJ ,(r) to
be the maximal number of points in X with pairwise d,-distances at least r. Set

1
hiop(T5d) = hiop(T) = lim lim sup — log S%d(r),

=0 pso N

. } 1
hiop(T;d) = hiop(T) = lim lim sup — log N7 4(7).

=0 300 M

We will see below that Btop = hiop and we call hop (1), the topological entropy of T. We will
see that hiop(7'; d) is independent of the choice of the metric and depends on the topology
of the underlying space. In some sense, “higher entropy” means “more orbits”. But the
number of orbits is usually uncountably infinite. Hence we fix a “resolution” r, so that
we do not distinguish points that are of distance less than r. Hence N™(r) represents the
number of distinguishable orbits of length n, and this number grows like e™r(1) Here are
some properties of the topological entropy.

Proposition 3.1
(1) If the metrics d and d' induce the same topology, then hiop(T;d) = hiop(T; d').

(ii) If F: X = Y is a homeomorphism, T : X — X, S:Y =Y, SoF = FoT, then
htop(T) = hiop(S).

(iii) hiop(T™) = nhiop(T). Moreover, if T is a homeomorphism, then hiop(T) = hiop(T ).

(V) heop(T) = hrop(T).

Proof.
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(i)

(i)

(iii)

(iv)

Set 1(e) = min{d'(z,y) : d(z,y) > €}. Then
d'(z,y) <nle) = d(z,y) <e.

As aresult, lim. ,o7(€) = 0 and Bf. ;(v,n(e)) C B 4(z,€). Hence ST 4 (n(€)) > 7 4(€).
Thus hiep (T, d) < heop (T, ).

Given a metric d on X, define a metric d on Y by d'(z,y) = d(F'(z), F~(y)).
Evidently hiop (T d) = hiop(S; d').

Evidently Bp¥(x,7) C Bl 4(z, 7). Hence
S7a(r) = St a(r), Teop(T") < nhyop(T).

For the converse, find a function n : (0,00) — (0,00) such that lim, ,on(r) = 0
and Bqy(x,n(r)) C Bf4(z,r). Then Bf. ,(x,n(r)) € ByYy(x,r). This implies that
Stn g(n(r)) > Siy(r), which in turn implies

-1 1
r max —log Séd(r).

1 k
- n >
logS ’d(’I](T)) Zn k  (k=1)n<t<kn £

k

From this, it is not hard to deduce that hiop(1™) > nhiop(T).

For hiop(T ™) = hiop(T), observe T (B 4(x,7)) = Bf 1 (T '(x),r). Hence X =

Ule B} 4(xj,7) implies that X = Ule By (I Y(z;),7). From this we deduce
To1g(r) < Spg(r). This implies that fuep(77") < fiop(T) which in turn implies

that htop(Til) = htop(T)'

This is an immediate consequence of the following straightforward inequalities:
Nf?,d(%) < S%,d(r) < N;“L,d(r)'

The first inequality follows from the fact that if N*(r) = L and {xq,...,z.} is a
maximal set, then X = UJLZI B, (xj,7). The second inequality follows from the fact
that no d,,-ball of radius r can contain two points that are 2r-apart. 0

Exercise 3.2 Let (X1,d;), (X2,d2) be two compact metric spaces and let T; : X; — X;,
i = 1,2 be two continuous functions. show that hiep (11 X T3) = hiop(T1) + hiop(T2).
Hint: For T' =T} x T3 and a suitable choice of a metric d for X; x X5, show that

%d(T) < S%,dl (T)Sﬁ,dg(r)a N’_?,d(r) > Ntr,Ldl (Tl)Nﬁdz(W)-
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Example 3.3 Let T : T¢ — T be a translation. Since T is an isometry, d,(z,y) = d(z,y)
for d(z,y) = | — y|. Thus S"(r) is independent of n and A, (7") = 0. O

Example 3.4 Let X = {0,1,...,N —1}%2. Given w = (w(j) : j € Z) € X, define (Tw)(j) =
w(j 4+ 1). Consider the metric

d(w,w') = Z)\“j‘\w(j) —w'(5)],

JEL
with A > 1. Fix a € X and take any w € X. Evidently
> A lat) - w)l < 2v - 1) 3o a = AR
, -1
li[>m m+1

Also, if w(j) # «a(j) for some j € {—m,...,m}, then

S A bllag) —w(i)l = A7

lil<m

Evidently d induces the product topology on X no matter what A € (1,00) we pick. Choose
A large enough so that 2(N 1) < 1. For such a choice of A,

By (a, A7) = {w: w(j) = a(j) for j € {=m,...,m}},
Since
{w:d(T'(w), T () <A™} ={w:w(j +1) = a(j +19) for j € {~m,...,m}},
we deduce
Bq, (a,A™™) ={w:w(j) = a(j) for j € {-m,...,m+n—1}}.

Evidently every two d,-balls of radius A™™ are either identical or disjoint. As a result,
Sf4(A™™) = N*™". Thus

1
hiop(T) = lim limsup — log N*™*" = log N.

m—00 psoco N

O

Example 3.5 Let (X,T) be as in the previous example and let A = [a;;] be an N x N
matrix with a;; € {0,1} for all 4,5 € {0,1,..., N — 1}. Set

X4 = {w e X: Ao (i) w(i+l) = 1 for all 7 € Z}
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Evidently X4 is an invariant set and the restriction of 7" to X4 gives a dynamical system.
To have a irreducible situation, we assume that each row of A contains at least one 1 (if for
example ag; = 0 for all j, we may replace X with {1,2,..., N — 1}%). For such A,

T.d (/\_m) = # of balls of radius A™"" with nonempty intersection with X4

= #of (apm,. .., Qmyn1) With ag, 0,,, =1 for —m <i<m+4+n+1

N-1
= Z #F{(0—ms s Q1) P Qayap, = LIor —m <i<m4n—1
r,s=0
and a_p, =7, Qpin_1 = S}
N-1

_ Z a2n+m—1 _ ”A2m+n—1||

r,s

r,s=0

where a® _ is the (7, s) entry of the matrix A%, and ||A|| denotes the norm of A, i.e., [|Al| =

78

> s lars|. We now claim

1
hiop(T) = lim limsup - log [ A" = log r(A),

where r(A) = max{|A| : \ an eigenvalue of A}. To see this, first observe that if Av = Av,
then A*v = \*v. Hence

IAlkmjaX!Uj\ < IEYTogl < lallul < AN max [uj].
J ]

As a result, |A¥|| > |AF. This shows that hp(T) > logr(A). For the converse, we choose
a basis so that the off-diagonal entries in Jordan normal form of A become small (see The-
orem 7?7 of Part I). Using this we can show that |Av| < (r(A) + d)|v| which in turn implies
that |A*v| < (r(A) +9)*|v|. From this we deduce that hi.,(T) < log(r(A)+4). Finally send
d — 0 to deduce that hiop(T) < logr(A). This completes the proof of hyp(T') = logr(A).
O

Example 3.6 Let X = T? and T : X — X is given by T(z) = A¢X (mod1) where A,
is an integer-valued matrix with eigenvalues A1, Ay satisfying |Ao] < 1 < |A;| = |Ao|7'. For

with eigenvalues \; = 3+2*/5, Ny = 3%5

the sake of definiteness, let us take A = E }

1 1
and eigenvectors v; = { \/51} , Ug = { \/51] . T is a contraction along v, and an expansion
2 2

along v;. We now draw the eigen lines from the origin and let them intersect several times
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to separate torus into disjoint rectangles. Let us write R; and Ry for these rectangles. We
now study 7'(R;) and T'(Ry). We set

T(Rl) N Rl - ZO U Zl

T(Ry) N Ry = 7 , Ry =2yUZUZs.

We then define Z; so that Ry = Z3U Z;. One can then show that T'(Rs) = Z, U Z;. We now
define Y = {0,1,2,3,4}% and h : Yo — T? = X with

= [ciy]

Q

I
S O = ==
[ Rl R S G
__o oo
[ R Y SN
= R =N =)

where h(w) = z for {z} = ", ez T " (Zuw)) If T denotes the shift on Y, then we have
Toh = hoT. Here we are using the fact that if z € Z; and T'(z) € Z;, then ¢;; = 1.
Also, since T is contracting in wve-direction and 7! is contracting in v;-direction, then
Mnez T ™" (Zum)) has at most one point. To show that the intersection is nonempty, first we
verify that indeed whenever ¢;; = 1, then T'(Z;) N Z; # (). Using this, it is not hard to deduce
that ﬂN T7™(Zumy) # O whenever w € Y. This and the compactness of the space imply
that (e " (Zugw) 7 0.

The transformation h is onto because for each x we can find w € Y¢ such that T"(z) €
Zym). However, h is not one-to-one. For example if & denotes & = (w(n) : n € Z) with
w(n) = a for all n, then 0,1,4 € Ye (but not 2 and 3). Moreover 7/(0) = 0, T(l) 1
T(4) = 4. On the other hand the only z with T'(z) = z is z = 0. In fact h(0) = h(1) = h(4)
is equal to the origin. From T'o h = h o T and Example 3.5 we conclude that hiop(T) <

hiop(T) = log 7(C)). See Exercise 3.7. A straightforward calculation yields 7(C) = A\, = 3+\f
Later we discuss the metric entropy, and using the metric entropy of T we will show in
Example 3.15 below that indeed hip(7") = log =5 3+‘[ O

Exercise 3.7

(i) Let F': X — Y be a continuous function with F(X) =Y. Let T : X - X, T":Y =Y
be continuous and F o T =T" o F. show that hyp(T") < hiop(T).
(ii) Let C be as in Example 3.6. show that r(C) = 2. O

The metric entropy is the measure-theoretic version of the topological entropy. Let
T : X — X be a measurable transformation and take yu € Zp. A countable collection &
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of measurable subsets of X is called a p-partition if u(C N D) = 0 for every two distinct
A B €& and p <X — UAeg A) = 0. If £ and n are two p-partition, then their common
refinement £ V 1 is the partition

Evn={AnB:Aec& Ben, u(AnB) > 0}.
Also, if £ is a p-partition, then we set
T ={T"(4): Aeg},
which is also a p-partition because p € Zp. We also define
f —evT V... vT e

As we discussed in the introduction, the metric entropy measures the exponential gain in the
information. Imagine that we can distinguish two points x and y only if x and y belong to
different elements of the partition £&. Now if the orbits up to time n— 1 are known, we can use
them to distinguish more points. The partition £, represents the accumulated information
gained up to time n — 1. Except for a set of zero pu-measure, each x belongs to a unique
element C,,(z) € £Z,. Let’s have an example.

Example 3.8 Let T( ) = mx (modl), T : T — T with m € Z, m > 2. Let { =
{[] ]H) j=0,...,m—1}. Then

m’
zgfn:{[~a1...an,~a1...an+m_”) cap...a, €4{0,1,...,m—1}}.
Given z, let -ajas...a, x x... denote its base m expansion. Note that for points on the
boundary of the intervals in 7,,, we may have two distinct expansions. Since we have chosen
closed-open intervals in £, we dismiss expansions which end with infinitely many m. In other
words, between .a; ...aymm ..., with a, < m and .a;...a,00... for aj, = ar+ 1, we choose

the latter. we have
Cp. () =[a1...ap,-a1...0, +mM").

If py € Iy with p = (po, .-, pm—1)s pj = 0, >25p; = 1, pp([rar...an,-ar...ap + m™)) =
ParPas - - - Pan, then p,(Cp () = Pay - - - Pa,, and

1logup Zlogpa = Zlogf(Tj(x))

where f(-ajas...) = p,,. By ergodic theorem,
lim 1 Z 1
Jim_ —Tog 41, (C pjlogp;.
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O

In general, if we are interested in the amount of information the partition n, = &7
carries out, perhaps we should look at u(C,(x)) where C,(z) = C,,(x). This is typically
exponentially small in n. Motivated by Example 3.8, we define

Ie(x) = —log M(Cs(w))

0O = [ Ion(dn) == 3 w(C)ogu(c

Ceg

h,(T,§) = lim 1H(§ )

n—oo N

Theorem 3.9 The limit in the definition h,(T,§) exists. Moreover, if Cp(z) = Cer (z),
then

(3.1) lim

n—oo

1
—log u(Cu (@) + hy(T, §)| du = 0,

provided that 1 is ergodic. (Shannon-McMillan—Breiman Theorem)

We do not give the full proof of (3.1) that involves some results from the probability
theory. The proof of the existence of the limit is an immediate consequence of Lemmas 3.10
and 3.11 below. To this end let us define,

p(Ce(x) N Cy(x))
p(Cp(x))

Hu(&n) = /Igndu:— > wANB)log ((m 5)

A€g,Ben K B)

Iep(z) = —logu(Ce(x) | Cy(x)) — —log©

where 7 and ¢ are two p-partitions.

Lemma 3.10 We have

(3.2) Hu,(§Vn) =H.n)+ H.&|n), H(EVn) < HL(E)+ Hu(n), Hu<T71£) = H,(¢).

Lemma 3.11 Let a,, be a sequence of numbers such that a,pm < ap+ay,. Thenlim, . %an =
inf,, <.
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Proof of Lemma 3.10. We certainly have fgvn = I, + I¢},. From this we deduce the first
equality in (3.2). For the inequality H,(nV ) < (§) + H,(n), it suffices to show that
H,(&n) < Hu(§). Set p(x) = xlogx and note that ¢ is convex. Then

o(u(B)) — (Zu A“B><Zu o (M52

Aen Aen
n(ANB)

= Zu(AﬂB)log (A

Aen

This completes the proof of H,(nV &) < H,(§) + H,(n). The statement H,(T~'¢) = H, (&)
is obvious because pu(T1(A)) = u(A) for every A € &. O

Proof of Lemma 3.11. Evidently liminf, . % > inf, %». On the other hand, if n =
¢m +r with m,¢ € N, r € [0,m), then

Qp = ApmA4r < Qg + Ay < Eam + a,,
a Ima a
n n m n

After sending n — oo, we obtain,

. Qp, m
limsup — < —
n—oo N m

for every m € Z*. This completes the proof. ([l

Proof of Theorem 3.9. Let us define {(n,m) = T~V TV ... v T whenever
n < m. We have

Ier = Igom) = Levr-1600-1)(= Leve(im)

= Ir-1e0n-1) + Ler-160n-1)-
Since Cp-1,(z) = C,(T'(x)), we deduce

Ier = ITgon-1) © T+ Tgeam)-
Applying this repeatedly, we obtain

(3.3) Ler = Igeam + Lgean- o T+ -+ Igeaz) © T" %+ Igprgo T '+ I o TP,

n—1
1 1 n—
e, = _E:[ﬁ\éan)OTj"‘ —leo T
7=0
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If it were not for the dependence of I¢¢(1,n—j) on n — j, we could have used the Ergodic
Theorem to finish the proof. However, if we can show that lim,, o lej¢1,m) = I exists, say in

L*(p1)-sense, then we are almost done because we can replace Iee,_j) with I in (3.3) with
an error that is small in L!-sense. We then apply the ergodic theorem to assert

1 5
i ter, = [ T
Note that if we write F, for the o—algebra generated by 7, then ;(Ce¢(x)|C,(2)) is nothing

other than
w(Ce | F)(x) =D p(A| Fp)(a)la(z),

Aeg

i.e. the conditional expectation of the indicator function of the set Cg, given the o-field F;,.
Hence, we simply have

I(x) = —log { lim »  p(A| 5(Ln>)<x>h<x>} = — log { lim pi(A | 5(1,n)><x>} la(z).

Aeg Aeg

This suggests studying lim,, o, (A | £(1,n)). The existence and interpretation of the limit
involve some probabilistic ideas. We may define F; ,, to be the o-algebra generated by the
partition £(1,n). We then have F15 C Fi3 C ... and if Fj o is the o-algebra generated by
all £(1,n)’s, then

Jim p(AE(1,n)) = p(A | Fieo),

p-almost surely and in L' (y)-sense. The right-hand side is the conditional measure of A given
the o-algebra F . The proof of convergence follows the celebrated martingale convergence
theorem. We only provide a proof for the L'(u)-convergence and refer the reader to any
textbook on martingales for the almost sure convergence.

Write f = pu(A | Fioo) so that

M(A | ]:l,n) = E*(f | fl,n)7

where the right-hand side denotes the p—conditional expectation of f given the o—algebra
Fin. Hence the martingale convergence theorem would follow if we can show

(3.4) lim E*(f | Fin) = f,

n—oo
for every Fi ~-measurable function f. Given such a function f and ¢ > 0, we can find a
positive integer k& and Fj j-measurable function g such that || f — g||11(,) < 0. We certainly
have

lim E*(g | Fin) =9, [E*(f| Fin) = E* (9| Fia)llorw < 0.

n—o0
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We use this and send ¢ to 0 to deduce (3.4). For our purposes, we need something stronger,
namely

(3.5) Tim log u(A | Fin) = log p(A | Fico).

This would follow from (3.4) provided that we can show

(3.6) / (SUP (—logpu(A | Fl,n))> dp < —p(A)log pu(A) + p(A).
A n

Indeed if we pick ¢ > 0 and define

An:{x:u(A\}"l,n)(:E)<e_£, /L(A|.F1,k)($)2€_e fork:1,2,...,n—1},

then A, € Fi, and we can write
I {:B € A:sup(—logu(A| Fin)(x)) > E} =pn(ANU A, = Zu(A NA,)
" 1
=Y [ Al Fian
1 JAn
< Z/ e fdp=e" Zu(An) <e
1 JAn 1

From this we deduce
/A <sglp (—log u(A | Fin)) (:c)) dp = /Ooou {:c € Asup (—log u(A | Fin)(x)) > f} de
< [ min{itd). e e = —p()log(4) + ()

This completes the proof of (3.6). O

The proof of Theorem 3.9 suggests an alternative formula for the entropy. In some sense
h,(T,€) is the entropy of the “presence” £ relative to its “past” £(1,00). To make this
rigorous, first observe that by (3.3),

[y

n—

(3.7) H,(€5,) = Hu(€00,n — 1)) = »  H.(§]€(1,5))

1

<.
I

where H,(§ | £(1,1)) means H,(§). In fact we have
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Proposition 3.12 h,(T,€§) = inf, H,(§ | TV - VT ) and the sequence H, (¢ |
TV - v TNE) is nondecreasing.

Proof. The monotonicity of the sequence a, = H,(§ | T7'¢V -+ v T7¢) follows from
Lemma 3.13 below. We then use (3.7) to assert

1 1n71
lim ~H, (%) = JL%EEHMM(M))
= lim H,(¢[E(1,n)) =inf H,( [ (1, n)).

O

It remains to show the monotonicity of the sequence a,. Let us write o <  when  is
a refinement of a. This means that for every B € [, there exists a set A € « such that
w(B — A) = 0. Evidently £(1,1) < £(1,2) < --- < £(1,n). Let us write X = Y (modO0) if
w(XAY) =0. If a < B, then for every A € o, A=U{B € f: u(B—A) =0}(mod0). For

the monotonicity of a,, it suffices to show this:
Lemma 3.13 If a < 3, then H, (¢ | o) > H, (& | B).

Proof. Recall ¢(z) = zlog z. We have

H,(§ | a)= ZMAWC)log Z“ (;l(—z)c)),Aea,Ceg.

Fix A and write A = U{B : B € J}(mod0) for a family J, so that {B: B € J} C 3. Hence

(50 (S < 5 5 (5a)

BeJ BEJ

From this we deduce H,(§ | o) > H,(§ | 5). O
We finally define the entropy of a transformation by

h,(T) = sup{h,(T,&) : H,(§) < oo, £ a partition}.

Exercise 3.14
(i) If € has m elements, then 0 < H,(§) < logm.

(i) If p1, u2 € Iy and « € [0, 1], then
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Heop+(1-0)ps &) = aH, (&) + (1 —a)H,(¢§)
h’a,u1+(1701)y,2 (T, g) > ahul (T> 6) + (1 - a)h’,UQ (Ta 5)
hau1+(1—a)u2 (T) 2 ah#l (T> + (1 - a)hm (T)

(ili) If o < B, then H,(a) < H,(B) and h,(T,a) < h, (T, B). O

We continue with some basic properties of the entropy.

Proposition 3.15
(1) hul(T,€) < hy(Tym) + Hu(€ | 1)
(ii) h,(T*) = kh,(T) and if T is invertible, then h,(T) = h,(T™").
(iii) If pLlv and p,v € Iy, then hopya—apw(T) = ahy(T) + (1 — a)h, (T).

Proof.
(i) Recall {(m,n) =T""¢V --- v T ™. We certainly have
H,(£(0,n = 1)) < Hu(n(0,n — 1)) + H,(£(0,n — 1) [ n(0,n — 1)).

It suffices to show that H,((0,n —1) | n(0,n —1)) < nH,(£ |n). To show this, first
observe that in general,

Hy(aVB|vy)=Ha|y)+ H,(B]aVy),
which follows from

#(Cavs(z) 0 C, ()

Lavpy(z) = —log AE)
g H(Ca(@) N Cla) N Cy(a))
T T )
_ g MC@) N G@)  i(Cavs() N Cy ()
(G () 1(Cy(z) N Cy(x))

= Ialv(x) + Ig)(av) (z).

Using this we write,

H,(£00,n—1) [9(0,n—1)) < Hu(€|n0,n—1))+ H,(£(L,n—1) [ n(0,n—1) VE)
< Hu(&|m)+Hu(E(Ln—2) [ n(1,n—1))
< Hu(&|n)+Hy(T7'€(0,n—2) | T"'n(0,n — 2))
= Hu(&|n)+ Hu(£(0,n—2) | n(0,n —2))
< nHu(f | 77)



(i)

(i)

We have
/{3 nk—1 1 n—1 '
%HM ( \/ T_%) - HHM (\/(Tk)_](ﬁ VTV v T_kﬂﬁ)) :
0 j=0

Hence kh,(T,&) = h,(T*,n) where n = EVT1EV - - VTFHE Since n > €, we deduce
that kh,(T) = h,(T*).

The claim h,(T~') = h,(T) follows from the invariance of 1 and the fact

EOn—1) =&V VT HE=T eV VT,

Let A be such that pu(A) =1, v(A) = 0. Set B =U,_; Nysm T "(A). We can readily
show that 77'B = B and that u(B) =1, ¥(B) = 0. Set 3 = {B, X — B} and given a
partition &, define £ =&V 8. If v = ap+ (1 — a)v, then

(3:8)  Hy(mm) = aHu(&) + (1 — a)Hy (&) + aloga + (1 —a)log(l — a),

where n, = £V .- VT "¢ and &, = €V --- V T"TLE To see this, observe that if
C € n, and p(z) = zlog z, then

ap(C)log(aun(C)) it C C B,

e(v(C)) = {<1 —a)r(C)log((1 — a)v(C)) ifCC X —B.

This clearly implies (3.8). Hence,

ho(T,€) = ahy,(T,€) + (1 — a)h, (T€).

From this we deduce
hy(T) < ah,(T) 4+ (1 — a)h,(T).

This and Exercise 3.8(ii) complete the proof. O

Exercise 3.16 (Rokhlin Metric) Define d(n,§) = H,(n | £) + H,(§ | n). Show that d is a
metric on the space of u-partition. O

In practice, we would like to know whether h,(T") = h,(T,&) for a partition £. In the
next theorem, we provide a sufficient condition for this.

Theorem 3.17 Let £ be a finite p-partition and assume that the o-algebra consisting of
T—(C), neN, C e, equals to the Borel o-algebra. Then h,(T) = h,(T,§).
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Proof. For a given partition 7, we apply Proposition 3.9 to assert
(3.9) hu(Tyn) < Iy (T, 6V - VT + Hy(n | €V - vV T,

From the definition, it is not hard to see that indeed h,(T,&V --- VvV T ") = h, (T, €).
From this and (3.9), it suffices to show that for every partition 7,

(3.10) Tm Hy,(n [ &V VT ") = 0.

To believe this, observe that if n < «, then H,,(n | ) = 0 because

p(Cy() N Cale)) o plCalw) _
#(Cal)) ERED)

Now if the o-algebra generated by all &, = £V --- VT "¢ n € N* is the full o-algebra, then
n < &, at least asymptotically. We may prove this by the Martingale Convergence Theorem.
In fact if F,, is the o-algebra generated by &,,, then

w(Cy(x) | Ce, () = Y La(a)u(A | Fo)(x)

In|o¢(x) == IOg

Aen
= Y Ma@)p(A| Fo)(x) = > La(x = 1.
Aen A€n
This and (3.6) imply that H,(n | &,) = — [log u(Cy(z) | Ce, (z))pu(dx) — 0. O

Example 3.18 Consider the dynamical system of Example 3.2. Let £ be as in Example 3.2.
The condition of Theorem 3.17 is satisfied for such ¢ and we deduce

m—1
= — Z pjlog p;.
0

O

Example 3.19 Consider a translation 7'(z) = x + a (mod 1) in dimension 1. If a € Q, then
T™ = identity for some m € N*. This implies that h,(T) = =h,(T™) = 0 where y is the
Lebesgue measure. If « is irrational, then set £ = {[0,1/2),[1/2,1)}. By the denseness of
{T(1/2) : n € N}, we deduce that ¢ satisfies the condition of Theorem 3.17. As a result,
h,(T) = h,(T,€). On the other hand £V --- V T~"*1¢ consists of 2n elements. From this
and Exercise 3.8(1), H,(V -+ VvV T7"¢) <log(2n). This in turn implies lim, . %HM(S \Y

vV T~"E) = 0. Thus h,(T) = 0. O
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In fact we can show that the entropy of a translation is zero using the fact that the
topological entropy of a translation zero. More generally we always have

(3.11) sup hy,(T') = hiop(T).

HELT

To prepare for the proof of (3.11), let us make some definitions. Given r,§ > 0, we
define S7.,(r,6) to be the smallest k such that there exists a set E with #FE = k and

1t (Upep Bg(z,r)) > 1 — 6. We then define

. 1
h,(T) = lim lim lim sup — log Str.a(r,0).

0—=0r—=0 500

Evidently

~

(3.12) hy(T) < hyop(T).
Moreover, a theorem of Katok asserts:
Theorem 3.20 For every ergodic i € Ty, we have hy,(T) < h,(T).

Proof. Let ¢ = {Cy,...,C} be a p-partition. Choose compact sets Ki,..., K, with
K; C Cj such that pu(C; — K;) <eforj=1,...,0. Let K =X — K;U---UK,; and put
n ={Ko, Ki,...,K,}. Evidently 7 is a partition and
(C N Kj)
p(K;)
p(Ci N Ky)
1(Ko)

/L C N Ko (Cz N K())
= —u(Ky)
KK Z 1(Ko)

Hu(ﬁ\ﬁ) = _ZMC ﬂK

= —Z,u C-ﬂKg)log

< p(Ko) 10g€ <el logf
by Exercise 3.14(i). From this and Proposition 3.15(i) we deduce,
(3.13) h(T,§) < h,(T,n) + ellog .

Set n, =n V- VT "y Recall that by Theorem 3.9,

lim llog w(Cn(x)) = —hu(T,n)

n—oo 1
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in L'-sense, when C,(z) = C,, (z). Choose a subsequence n; — oo so that

lim ilog,u(C’ ( )):_h’u(Tan)7

n;j—»00 n]

p-almost everywhere. Pick ¢’ > 0 and set
1
Xy = {x € X : —logu(Cy,(z)) < —hu(T,n) + 1 for n; > N} .
1

Since pu(Xy) — 1 as N — oo, for every § > 0, there exists IV such that pu(Xy) > 1—9. Let
1
r= §min{dist(Ki,Kj) i #£ g, 7€ {1, (}}.

Clearly a ball By(x,r) intersects at most two elements of 7, one K; with j € {1,...,n}
and perhaps Ky. We now argue that By, (z,r) intersects at most 2" elements of 7,. To see
this, observe

By, (x,7) = By(z,r) N T H(By(T(x),7)) N --- 0T " HBy(T" *(x),7)).

Also, if A € n,,, then A = AgNT 1 (A)N---NT"(A,_1) with A; € n. Now if B} NAF# 0,
then T79(By(T?(x),r)) NT7(A4;) # 0 for j =0,...,n— 1. Hence By(TV(x),r) N A; # 0 for
j=0,...,n—1. As a result, there are at most 2”—many choices for A. Now assume that
1 (UwEE Bdn (z,7)) > 1 — 4. We would like to bound #E from below. First observe

1-20 < ;L(U Bdn(x,r)ﬂXN>gz,u(Bdn(x,r)ﬂXN)

zel zeE
= ZZ BanL’T ﬂXNﬂA)
zeFE Aeny,

But if By, (z,7)N Xy NA#0 for n=n; > N, then
(B, (z,7) N Xy NA) < p(A) < e nhu@mtel),

As a result,
1—26 < 2mae hulTm==) (L p),

Hence 1
ho(T,n) < lim — log Sy, (r, 0) + &' +log 2.

n;j—>00 n]
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From this we deduce that h,(T,7) < h,(T) 4 &' + log2. From this and (3.13) we learn that
h(T,&) < h,(T) + ellogl + €' +log 2. By sending €, — 0 and taking supremum over §
we deduce h,(T) < h,(T) + log 2. Since this is true no matter what 7" is, we learn

h(T) = —h(T™) <

m

1- log 2
—h, (T™ .
(1) + <2

A repetition of the proof of Proposition 3.1(iii) yields %BH(T’”) — h,(T). We then pass
to the limit m — oo to complete the proof of Theorem. 0

Example 3.21 Consider T': T?> — T? Tz = Az (mod1) with A an integer matrix with
det A = 1. We assume that A is symmetric and its eigenvalues A\;, Ay = A\[' satisfy |A;| >
1 > |Ag]. We claim that if p is the Lebesgue measure, then h,(7) > log|A;|. In case of
T = ? 1 , we can use our result h,(7") < log|A;| from Example 3.6 to conclude that in
fact h,(T) = hiop(T) = log [ A1].

For h,(T) > log|\i| we use an idea of Hopf. First observe that by the invariance of
p with respect to T, H,(T""¢V -+ VT") = H,(EV -V T72"E). Hence it suffices to
study lim,, %H W(T7ENV -V T7E). For estimating this, we show that the area of each
C en, =TV VT is exponentially small. This is achieved by showing that diam(C') =
O(|A1|™™). There is a natural metric on T? that is closely related to the Euclidean distance.
Given two points a = (a1, ay), b = (b1, bs), we define d(a,b) = (d(a1,b1)? + d(ag, by)?)'/?
where d(x,y) is the length of shortest arc connecting  to .

Pick C' € n,. To estimate diam(C'), we pick two points x,y € C. Let vy,vy be the
eigenvectors corresponding to A\; and A;. We draw a line through x in direction v; and
a line through y in direction vy. Assume that these lines intersect at z. We also assume
that diam(A) < g for every A € 7. Hence the same is true for A € n,. To estimate
d(x,y), it suffices to estimate d(z,z) and d(y, z). Let us start with d(z,z). Suppose that
we have [T"(z) — T"(z)| < 5. Then d(z,2) < |v — 2| = [T(T"(x)) — T-"(T"(2))| =
A7 T™(x) — T™(z)| because T~! contracts in v; direction with rate |A;|™* = |A|. This
would imply that d(z,z) < [A|7"/10. To show that [T"(x) — T"(z)| < 15, first observe
that d(T™(z), T"(y)) < [Ai]7"d(y,z) < |M|7/20 < 5 and d(T"(x),T"(y)) < 5 because
T™(z),T™(y) belongs to a member of £&. As a result, d(T"(x), T"(z)) < 15. We actually need
|T™(x) —T"(z)| < 15. To prove this, first note that the above argument can be used to show
that indeed d(T*(x), T"(y)) < & for k = 0,1,...,n. We now use induction to show that
| T*(x) = T*(y)| < 15 for k= 0,1,...,n. To see this, observe that if u = x —y, then |u| < {5,
and since T'(u) = T(z) — T(y), we also have |T'(u)| < 15. Indeed |T'(u)| = |A1||u| and since
lu| < 15, [A1llul < 4, which means that d(T'(2)T(y)) < 15 does imply |T'(z) — T(y)| < 15-
Note that we are using the fact that d(T'(z),T(y)) = |T(z) — T(y) + a| for some a € Z?* and
since |Ay|Ju| < 3, we must have a = 0. By induction we can extend this to all k¥ < n. In the

same way we prove d(y, z) < 15|\ Hence d(z,y) < £|A1|" for n € N. This implies that
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1(C) < constant x|A|72" for C' € n,. This evidently implies that 5-H,(n,) > log |Ai|+0(1),
and as n — oo we deduce that h,(T") > log|\|. O

We end this section by establishing (3.11). Half of (3.11) is a consequence of Theorem 3.20
and (3.12). It remains to show this:

Theorem 3.22 hiop(T') < sup,ez, hu(T).

Proof. For each n, pick a set E, such that #FE, = Ny ,(r) = N"(r). In other words, E, is
a maximal set satisfying d,(z,y) > r for z,y € F, with x # y. Define u, = N+m > wcr, Oz

and
1 n—1 ' 1 n—1 ‘
fin = E ;T_J,un = E ;A]Mn-
This means that

n—1

/fdﬂn_ Z/fTﬂ )t (d) = %ZNn > f(T(x)

0 r€Ey

Let @ be a limit point of the sequence {fi,}. It is not hard to show that i € Zr because

lim T — i = (T, — pan) /10— 0,

n—oo

as n — oo. It remains to show

(3.14) lim sup —log N™(r) < ha(T) < suph,(T).
n

n—oo

For (3.14), it suffices to find a partition & such that

1
(3.15) lim sup —log N"(r) < hu(T,€).

n—oo M

Fix 6 > 0. We first would like to find a partition £ = {C ... C;} such that diam(C;) < § for
j=1,...,¢ and p(0C;) = 0 where 0C; denotes the boundary of C;. The construction of
such a partition ¢ is straightforward. First, if By(x,a) is a ball of radius a, then we consider

U{(‘?Bd(x,a') ca—e<d <a},

to observe that there exists a' € (a — ¢,a) such that pu(0B4(x,a’)) = 0. From this, we

learn that we can cover X by finitely many balls B;, 7 = 1,...,¢ of radius at most_g
such that (0B;) = 0 for j = 1,...,¢. We finally define £ = {C...C;} by Cy = By,
Cy=DBy—B,...,C, =B, U B Since 9C; C Uk 1 OBy, we are done. We now argue
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that the partition &, = £V --- VT "1 enjoys the same property; i(0C) = 0 if C € &,. This
is because 9C' C (J 4, Ur—y T77(0A) and by invariance, (T~ (9A)) = i(0A) = 0. Such
a partition is advantageous for our purposes because if 7 is a partition with «(0A) = 0 for
A € n and every n, and if a,, = «, then o, (A) — a(A) for every A € 7, and, as a result,
Ho,(n) = Ha(n).

First observe that H,,(&,) = log N"(r) provided that diam(C) < r for every C' € &.
Indeed diam,,(A) < r for every A € &, if diamn(A) denotes the diameter of A with respect to
d,. This in turn implies that p,(A4) =0 or Nn  for every A € &, simply because each such
A contains at most one element of FE,. As a result H, (&) = N"(r) (— log N”_(r)) N+(ﬂ —
log N"(r). Using this, we would like to estimate from below Hj, (&,). Recall that only a
subsequence of fi,, converges, say lim; o fl,, = p. Let 0 < k <m < n. Set a(k) = [=£] so

that we can write

{0,1,....n—1}={k+tm+i:0<t<a(k), 0<i<m}UR
with R = {0,1,...,k — 1} U{k +ma(k), k+ma(k)+1,...,n — 1} = Ry U R,. Clearly
#R1 < m, #Ry < m. We then write

a(k)—1
\/ T tm+k cee T—m-&—l&-) \/ \/ T_Z§
1€ER

Using H(a Vv B) < H(«a) + H(B) we learn,

a(k)—
log N"(r) = Hy, (€,) < Z H,, (T~ 0g,) + ) | Hy, (T7)
i€R
= Z H ot (6m) + Y Hy (T7'6)
i€ER
a(k)fl
< Z H.Atm+kun (gm) +2m 1Og(#§>
t=0
This is true for every k. Hence
m— 1a(k) 1
mlog N"(r) < Ho oty () + 2m? log (#€)
k=0 t=0
n—1
< H i1, (§m) + 2m* log (#€)
7=0
< nHp, (§n) + 2m* log(#€),
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where for the last inequality we used Exercise 3.14(ii). As a result,

og N™(r) < - Hy, (6) + 27 log(#€).

Choose any sequence of {n;} such that the limit of n; 'log N (r) exists and choose a
subsequence of it {n}} so that fiy = [i for some fi € Ip. We then have

1 1 / 1
lim —log N"(r) = lim —logN"i(r) < lim —H; , (&)
j—oo n; n;%oo nj ngﬁoo m "j
1
= EHﬂ(gm)

We now send m to infinity to deduce

1
lim —log N (1) < hz(T,€) < sup h,(T).

J—00 T HELT

Since {n;} can be chosen any sequence for which the limit exists, we conclude
. 1 n
lim sup —log N"(r) < sup h,(T),
n—oo T UELT

as desired. n

Exercise 3.23 Let o, = a and a(0A) = 0. Deduce that a,(A) — a(A). (Hint: For such
A, we can approximate the indicator function of A with continuous functions.)

Theorem 3.8 provides us with a rather local recipe for calculating the entropy. It turns
out that there is another local recipe for calculating the entropy that is related to ﬁu(T).
A theorem of Brin and Katok[BK] asserts that if u € Zp is ergodic, then < log u(Bq, (z,7))
approximates h,(7"). More precisely,

1
h,(T) = lim limsup | —— log u(Ba, (z, 7))
r—0 5500 n

for p-almost all x.
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4 Lyapunov Exponents

In section 3 we learned that if 4 € Zp with T': X — X continuous and X a compact metric
space, then h,(T') < hyop(T). It turns out that for a nice hyperbolic system a lot more can be
said. For example, if X is a manifold with a volume measure m, then there exists a unique
i = psrp € Iy such that hy,(T) = hy(T), and if I(p) = hiop(T) — bW (T) = hu(T) — bW (T),
then, we roughly have

n—1
1
m {x - zO:(STj(x) is near ,u} ~e MW,

This is known in probability theory as a large deviation principle. Recall that the entropy
h,(T) is affine in p. Hence I is affine, and its convex conjugate, the pressure, is defined by

®(F) = sup (/qu—f(u)>

I

satisfies

1 S
B(F) = lim ~log / exp (; F(T (x))) m(dz).
Also, Pesin’s formula asserts that hyop(T) = hz(T) = >, nil; (i) where [;’s are the logarithm
of the rate of expansions and n; is the multiplicity of ;.

For general 1 € Zr, we have Ruelle’s inequality h,(T) < >, n;l(n). In the case of
T(xz) = Az(mod 1), we simply have [; = log |\;| where \;’s are the eigenvalues of A. In this
section we define the Lyapunov exponents [;’s and establish the Ruelle’s inequality.

Consider a transformation 7' : M — M where M is a compact C' manifold and T is
a C! transformation. To study the rate of expansion and contraction of T, we may study
D, T" : T, M — TrpniyM. We certainly have

(4.1) D,T" = Dpn-1()T ... Dy TD,T.

If we write A(x) = D, T, then (4.1) can be written as

(4.2) An(z) := D, T" = A(T" (2)) ... A(T(2))A(z).

Here we are interested in the long time behavior of the dynamical system associated with
F :TM — TM that is defined by F(z,v) = (T(x),(D.T)(v)) = (T(z), A(z)v). Let us

assume that M is a Riemannian manifold. This means that for each z there exists an inner
product (-,-), and (an associated norm | |,) that varies continuously with z. The formula
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(4.1) suggests an exponential growth rate for D,T™. For example, if we take the norm of
both sides of (4.2) we obtain

14, < TT 1A (=)

Set S, (x) = log ||An(z)||. We then have that Sy = 0 and

(4.3) Sntm () < Sp(x) + Sm(T"(2)).

Theorem 4.1 Let T be a diffeomorphism and assume that o € Z7°. Then there exists A € R
such that

1
u{x : —log || D, T"|| — /\} =
n

This theorem is an immediate consequence of Kingman’s subadditive ergodic theorem:

Theorem 4.2 Let j1 € Z5 and suppose that {S,(-) : n — N} is a sequence of L'(u) functions

satisfying (4.3). Then
I {x : lSn(ac) — >\} =
n

for X=1inf, {1 [ S,du} € [—00,+00).

Proof of Theorem 4.1. On account of Theorem 8.2, we only need to show A\ # —oc.
From id = DpnyT™" D,T", we learn that 1 < ||DTn($)T "IID,T™||. Let us write « for
sup, || DT~ Then

| Dra@yT"|| = || ... Dpo-1(oyT ™' Doy T < a”
Hence ||D,T"|| > a~"™ which implies that A > — log «. O

To prepare for the proof of Theorem 8.2, let us state a useful fact regarding the precom-
pactness of a set of measures.

Exercise 4.3 Let X be a Polish (separable metric complete) space. Suppose {uy} is a
sequence of probability measures on X. Assume that for every 6 > 0 there exists a compact
set K such that supy un(K§) < J. Show that {pux} has a convergent subsequence.
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Proof of Theorem 4.2. Fix N > (0. Any n > N can be written as n = kN + r for some
ke N andr e€{0,1,...,N —1}. As aresult, if i € {1,..., N}, then n =i + [N + m with
k if >4 —i if 7 >4
[=1(i) = PrE = m@) =4 T2 By subadditivity,
E—1 ifr<a r—i+ N ifr <.

Sn<$> S Sz(l‘) + SZN(TZ(JJ)) + Sm(Ti—HN(Z‘))
-1
< Si(x) + Y Sn(THN () + S (THN ().
=0
We now some over ¢ to obtain
1(i))N N

0 < ILEEDS @)+ 5 D S (TN (a).

1

Hence

L5, < 23 T + Rt

where || R, v/ < constant x 2, because [ |S;(T7)|dp = [ |Si|dp. By the Ergodic Theorem,

lim sup -~ S / —d,u
n—oo
Since N is arbitrary,
1
(4.4) limsup =S, (z) < A,
n—oo T

almost everywhere and in L'-sense. For the converse, we only need to consider the case
A > —00.

For the reverse inequality, let us take a function ¢ : R" — R that is nondecreasing in
each of its arguments. We certainly have

/go(Sl, o Sy)dp = /go(Sl oT* ..., S, 0T du
> /@(Skﬂ — Sk Sk1 — Sk -+ s Skpn — Sk)dp

for every k. Hence

(4.5) /gp(Sl, cey Sp)dp

v

N-1

1

N Z / ©(Skt1 = Sk -+, Sk — Sk)dp
0

©(Sk41 — Sk - -+, Skn — Sk)dpvn (dk)

I
—

o4



where vy = % év_l d;. We think of £ as a random number that is chosen uniformly from

0 to N — 1. To this end let us define @ = R?" = {w : Z+* = R} and T : M x N — Q such
that T'(x, k) = w with w(j) = Sk4j(x) — Sk+j—1(x). We then define a measure py on Q by
pun(A) = (p X vy)(T~1(A)). Using this we can rewrite (4.5) as

(4.6) /go(Sl, o S)dp > /gp(w(l),w(l) +w(2),...,w(l)+ - +wn))puy(dw).

We want to pass to the limit N — oo. Note that €2 is not a compact space. To show that
un has a convergent subsequence, observe

[ty untan) = [(Seas(o) = Seepos(w) ulde)on(ds)

= ¥ 2 [ (k) = Sussa) )
<4 [y utan = [ st
[t = 13 [(Se) = Stea(@nta)

uniformly in N. As a result [ w(j)” pun(dw) is uniformly bounded. Hence

sup/ \wj|dpy = B; < oo
N

for every j. We now define

2i+13.
K(;:{w:|wj|§ 6ﬁj}.

The set K is compact and
c 1 —J A=
un(K5) < 5 27787195, =6,
J

From this and Exercise 4.3 we deduce that uy has a convergent subsequence. Let fi be a
limit point and set S; = w(1) + - -+ + w(j). By (4.6),
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for every continuous monotonically decreasing ¢. We now define 7 : Q@ — Q by (rw)(j) =
w(j + 1). It is not hard to see i € Z.. By Ergodic Theorem, %S‘n — Z for almost all w.
Moreover, [ Zdp = [w(1)ia(dw) = limy_e [ % (Sy — So)dp = X\. We use (??) to assert
that for every bounded continuous increasing 1,

/ﬁ(ﬁazﬂdﬂ>/wﬁgzz)“

We now apply the bounded convergence theorem to deduce

[z [vz)dn

where S = liminf,,_,o %2, Choose ¥(z) = ¥"!(2) = (zv(=1)) Ar, ¥y (z) = zv(—1). We then

have /¢z(§)dﬂ > /W’l(ﬁ)dﬂ > /2/17",1<Z)dﬂ

After sending r — oo, we deduce
(4.8) /wl(ﬁ)du > /Zd/l: A, or
() - Nauz 0.

Recall S < limsup % < \. But (4.8) means

| (8= Ndut (<= s < -1} 20
S>—1

Since A > —oo, we can choose [ large enough to have —l — A < 0. For such [, S — XA =0
on the set {S > —I}. By sending | — +o00 we deduce S = X almost everywhere, and this
completes the proof. O

We now state Oseledets Theorem regarding the existence of Lyapunov exponents.

Theorem 4.4 Let T : M — M be a C*-diffeomorphism with dim M = m and let p € Irp.
Let A be a measurable function such that A(x) : T,M — Tp)M is linear for each x and
log" ||A(z)|| € LY (u). Define A,(z) = AT (z)) ... A(T(z))A(x). Then there exists a set
X C M with u(X) =1, numbers Iy <ly < --- <lg and ny,...,ng € N* withny +---+ny =
m, and a linear decomposition Ty,M = E}®---@® E¥ with v — (EL, ..., E¥) measurable such
that

1
lim —log |[An(z)v| =;

n—oo N
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forxe X andveF) =E!®.---®F, —E!®---® E".

Remark If « € M is a periodic point of period N, then p = N~} Zj.vz_ol Ori(a) is an
ergodic invariant measure. In this case the Oseledets Theorem can be readily extablished.
Indeed if Ay, ..., A, denote the eigenvalues of R = A(T""'(a))... A(T(a))A(a), then ¢; <
.-+ < {y are chosen so that {1,..., 0.} = {N"tlog|\],..., N"tlog|\,|} and EI = & {V; :
N-1tlog|\| = ¢; where V; = {v € T,M;(A(a) — X\i)"v = 0 for some 7} is the generalized
eigenspace associated with A;.

Note that when m = 1, Theorem 4.4 is an immediate consequence of the Ergodic Theorem
and the only Lyapunov exponent l; = [log|A(x)|u(dz). We only prove Theorem 4.4 when
m =2 and A(x) = D,T. The proof of general case is similar in spirit but more technical.

Proof of Theorem 4.4 for m =2, A(xz) = D,T. By Theorem 4.1, there exist numbers
[y and [, such that if

1 1
Xy = {:z: : lim —log || D, T"|| = I3, lim —log|| D, T7"| = —ll}
n—oo 1 n—oo M

then (7o) = 1. Evidently |A,v|*> = (A*A,v,v) = |B,v|* where B, = (AXA,)Y% Clearly
Ar A, > 0 and B, is well-deTined. Since B,, > 0, we can Tind numbers pf(x) > pf(xz) >0
and vectors af(x),a5(x) such that [a}| = |af| = 1, (af,a5), = 0 and B,a} = pjaj Tor
j=1,2.

Note that since ||A,(2)|| = || Bn(2)]l,

1
(4.9) lo = lim —log puy.
n—oo 1

To obtain a similar formula Tor [}, Tirst observe that Dp-nT"D,T™" = id implies that
A (z) = D, T = (A (T(x)))"*. If we set S_,(z) = log||A_.(x)| and R,(x) =
log || A, ()| then both {S_,(z) : n € N} and {R,(z) : n € N} are subadditive; S_,,_,, <
S poT™+ S ., Rovmm < R, 0oT™ + R,,,. Clearly, —l; = lim,,_, %S_n by definition.
So, —l; = infn%fS_nd,u. On the other hand [ = lim,, o %Rn = infn%fRnd,u. Since
S_p=R,oT ™ wehave [ R,dp= [S_,du. This in turn implies that [ = —1;. As a result,

1 1
—l; = lim —log ||A Y| = lim —log||AZ™.
n—oo N, n—oo 1
(Recall that [|A|| = ||A*||. We then have

1 1
(4.10) I, = lim —log|/(A5A,) Y% = lim —log | B;!||
n—,oo 1,

n—oo 1

1 1
= — lim =1 "Apy)=— lim —log u}.
im —log(uy A pz) = — lim —log uj

n—o0
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Naturally we expect E? to be the limit of the lines {ta} : t € R} as n — oo. For this,
let us estimate a3 (x) — a3 (z)|. If necessary, replace aj with —a} so that we always have
(a5, aB), > 0. We certainly have

gt -l = 2 2aa),
L= P = (g e

We now use the elementary inequality 1 — 22 < /1 — 22 to assert

= agP = 220 - (™ af))? < 2a5t af)?
= 2(Buiay ™ /uzttat)?
= 2™) g, Bual)?
< 2w Z’ D7 Busaar[* = 2(uy ) P Apsaal?
= 2y AT (2) An(2)af (x)|”
< 2ps™) ool Au(@)al (@)

= 2(uy"") eo| Buall®
= 2co(uy™ /)
for ¢y = max, ||A(z)||. From this, (4.9) and (4.10) we deduce

hmsup log l[abt —al| < —(Iy — 1y).

n—0o0

Let us now assume that [, —I; > ¢ > 0. We then have that for constants ¢y, ca,

n+1 n+r —on

laf ™ — al| < cre™™, |abtT — al| < cqe

for all positive n and r. As a result, lim,,_,, aj = by exists for x € X and
la — by| < cpe™"

for all n. We now define E5 = {tby(x) : t € R}. To show that lim,,_, & log |A,(z)bs(z)| = s,
observe

| Anbs| [ Anas| + |An(ag — bo)|
| Bnas| + (| Anllaz — b

45 + [ Aulese ™"

IN A IA

As a result,

1
(4.11)  limsup — log | Ay bo|

n—oo

IN

1 1
max (hmsup loqu,hmsup log(||An ]\66"))

= maX(ZQ, l2 — 5) = lQ.
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Similarly,

|Anb2|

v

#5 = [ Anllc2e™",

1 1 1
I, = lim —logu? < liminfmax (—log]Anbg|,—log||AnHe_5">
n n n

n—00 - n—00

1
< liminf max (— log |A,ba, ls — 5) .
n—00 n

From this we can readily deduce that I < liminf,,_,. % log |A,bo|. From this and (4.11) we
conclude

1
lim —log |A,(x)bs| = lo

n—oo N
for z € X.
To find E?, replace f with 771 in the above argument. This completes the proof when
Iy # .

It remains to treat the case [y = l5. We certainly have
|Ayol® = [Byol? = (v, a7)* (1) + (v, ay)?(p3)?.
Hence
py o] < [Apv] < pylvl.

We are done because lim % log pf = lim % log ut =1, = ls. 0
Example 4.5

(i) Let T': T™ — T™ be a translation. Then D,T™ = id and the only Lyapunov exponent
1S zero.

(ii) Let T : T™ — T™ be given by T'(z) = Az(mod 1) with A a matrix of integer entries.
Let Aq,...,\. denote the eigenvalues of A. Let [; < l; < --- < [y be numbers with
{ly, ... I} = {log|\],...,log| A\ |}. We also write n; for the sum of the multiplic-
ities of eigenvalues \; with log|\;| = [;. The space spanned by the corresponding
generalized eigenvectors is denoted by E;. We certainly have that if v € E; then
lim,, o0 %log |A™| = ;. U

Some comments on Oseledets Theorem is in order. First the identity A, (7(z))A(z)v =
A,11(x)v implies that for j =1,...,k
R Y]
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where 7 = El @ --- @ EJ. Also, we have
1 1n—1
“log |det A, (z)] = — det A(T? log | det D, T|d,
o et An(a)] = 3 aet AT )] = [ tog et DT

by Ergodic Theorem. On the other hand, if B, = (A*A,)Y? then (det B,)? = (det 4,)?,
or det B, = |det A,|. It turns out that if u} > --- > uf are the eigenvalues of B, then
%log,u? — l}, where {l;,..., [t} = {Zl, o ,Zm} This in turn implies that %log det B,, —
S 1; because det B, = pf ... p”,. In summary

k
(4.13) /log | det D, T|dp = njl;.
1

It turns out that the most challenging part of Theorem 4.4 is the existence of the limit.
Indeed if we define

1
(4.14) [(xz,v) = limsup — log |A,(z)v],
n

n—oo

then we can show that as in Theorem 4.4 there exists a splitting T,M = El @ --- @ E* with
l(z,v) =1, for v € Fj(x).

Exercise 4.6 Verify the following properties of I(z,v) without using Theorem 4.4:

(i) l(xz,av1) = l(z,v1), l(z,v1 + v2) < max(l(z,v1),l(z,vq)) for every x, vy, and vy and
scalar o # 0.

(i) U(T(x), A(z)v) = I(z,v)
(iii) We have p{x : l(x,v) € [—00,+00)} =1 for every v € R™ and ergodic u € Zp.

(iv) The space {v : l(z,v) < t} = V,(¢) is linear and that V. (s) C V,(¢) for s < t,
A@)Valt) € Vg (1),

(v) There exists k(x) € N, numbers l1(z) < ly(z) < -+ < lyy)(z) and splitting T, M =
El@.--- @B such that if v € E' @ --- & El — EL & --- @ EI™! then I(x,v) = [.
Indeed E} & --- & EI = V,(1;).

We now state and prove an inequality of Ruelle.

Theorem 4.7 Let T : M — M be C*' and pu € Iy be ergodic. Then
k
h(T) <) il
1
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Proof. We only present the proof when dim M = m = 2. First we would like to divide M
into “small squares”. For this we take a triangulation of M; M = U;A; where each A; is
a diffeomorphic copy of a triangle in R? and A; N A, is either empty, or a common vertex,
or a common side. We then divide each triangle into squares of side length £ and possibly
triangles of side length at most € (we need these triangles near the boundary of A;’s).

The result is a covering of M that is denoted by £°. Note that we may choose members of
&° such that u(0A) = 0 for A € &°. (If not move each element of £° by small amount and
use the fact that for some translation of boundary side we get zero measure. Otherwise we
have ) a, < oo with a, > 6 > 0 for an infinite sum.) As a result, £° is a p-partition. It is
not hard to show

(4.15) h,(T) = lir% h, (T, &°).
Recall that hy, (T, &%) = limy_ o0 [ Leejgendp where E9F = T7HE) VT 72(E5) V- vV T7H(EF)

and
nANB) . (AN B)
Iss,k:_zz lOg ]1
13 B
2o 2B )

Given z, let B = B, j(x) be the unique element of £&* such that x € B. Such B is of the
form T-Y(Cy) N ---NT*(Cy) with Cy...C) € &, where C; = Cee(T?(z)). Let us write
simply write C;(x) for Ce-(T*(z)). We have

< log#{A €& AN B.y(x) # 0}
< log#{A €& ANT YOy () # 0}

(
(4.16) Leeiee ()

Each Ci(x) is a regular set; either a diffcomorphic image of a small square or a triangle.
Since the volume of C is of order O(g?), we have

vol(TH(C)) < ¢1€? max |det D, T,
zZe
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for a constant ¢;. If ANTH(C) # 0, then for a constant ay,
A CH{y: |y — xo| < ape for some x4 € T‘l(O)} =:D.

We now want to bound vol(D). The boundary of T~1(C') is a regular curve. Hence its length
is comparable to the diameter of T71(C'), and this is bounded above by a multiple of the
norm of DT 1. In other words we have a bound of the form

const. e max || D, T
zeC

Using this we obtain

(4.17) vol(D) < ¢y ng;(l + | DT + | det D, T~ 1)e?.
K4S

for a constant cy. (We could have bounded vol(A) by (||D,T7!||€)* but (4.17) is a better
bound.)
We now use (4.17) to obtain an upper bound for the right-hand side (4.16). Indeed

(4.18) #{AANTHCH(2)) £ 0} < c3 mac;g(l + |D. T + |det D, T|)
ze
for a constant c3. This is because the union of such A’s is a subset of D, for two distinct

A, B, we have u(AN B) = 0, and for each A € & we have that vol(A4) > c4e? for some
positive constant ¢4. From (4.18) and (4.16) we learn

Tgege () < 5 + log max([| DT + | det D.T ™| + 1)
for C = Cy(r). By sending k — oo we deduce

(4.19) ho(T,€°) < 5 + / log  max (14| D.T-" + | det D.T~")dp.
2€Cee(T(@))

By the invariance of p,
h (T, &%) < cs5 + /log rgau(( )(1 + | DT + | det DT~ ) u(dx).
z€lee (T

Send ¢ — 0 to yield
h(T) < c5 + /log(l + | DT || + | det D, T p(der).
The constant c; is independent of f. This allows us to replace T" with T~ to have

nh,(T) < c¢s + /log(l + [|DT"| + | det D,T"|)p(dz).
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First assume that there are two Lyapunov exponents. Since + log || D,T"|| — I3 and £ log | det D, T"| —
l1 + I, we deduce

(420) hu(T) S IIlaX(O, lg, ll + lg) S lii_ + l;_
In the same way we treat the case of one Lyapunov exponent. 0

The bound (4.20) may appear surprising because h,(7) > 0 would rule out the case
l1,l5 < 0. In fact we can not have ly,lo < 0 because we are assuming 7" is invertible. An
invertible transformation can not be a pure contraction. Moreover if h,(T) > 0 we must
have a hyperbolic transformation in the following sense:

Corollary 4.8 Ifdim M > 2 and h,(T) > 0, then there exists a pair of Lyapunov exponents
a, B such that o > 0, f < 0. In particular, if dim M =2 and h,(T) > 0, then l; <0 < l,.

Proof. Observe that if [; < --- < [} are Lyapunov exponents of T', then —[;, < --- < —[; are
the Lyapunov exponents of 7!, Simply because if A,(z) = D,T™, then A_, o T" = AL
Now by Theorem 4.7,

=
=
~
~
Il
>
=
—
3
IN

ho(T) < > il

From these we deduce that .17 <0 < >, I whenever h,(T) > 0. O

Pesin’s theorem below gives a sufficient condition for having equality in Theorem 4.7.
We omit the proof of Pesin’s formula.

Theorem 4.9 Let M be a C'-manifold and assume T : M — M is a C' diffeomorphism.
Assume DT is Holder continuous. Let u € Iy be an ergodic measure that is absolutely
continuous with respect to the volume measure of M. Then

h(T) = nilf.

In the context of Theorem 4.7, it is natural to define

E:=EDE. E'=E.

;<0 1;>0
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If there is no zero Lyapunov exponent, we have T, M = ES @ E? p-almost everywhere. If we
write [* = min, [, then we have

1
lim —log|(D, T ")v| < —I*

n—oo N,
for v € E* — {0}, and
1
lim —log |(D,T")v| < —I~

n—oo M

for v € E2 — {0}, p-almost everywhere. If this happens in a uniform fashion, then we say
that p is an Anosov measure. More precisely, we say a that the measure p € Z§" is Anosowv if
there exists a decomposition T,M = E* @ E? and constants K > 0 and « € (0,1) such that

(D.T)E; = Efyy, (DoT)E; = Exqy,
(D, T")v| < Ka™|v| for v € ES,
(DT ")v| < Ka"|v| for v € E}.

IT we deTine

n—o0

Wi(z) = {y: lim d(T™"(z), T™"(y)) = o}

n—o0

Wo(r) = {y: lim d(T"(z), T"(y)) :o}

with d a metric on M, then we have a nice foliation of M. In fact

Wi x) N W3(y) # 0 = W(x) = W(y),
W () N W (y) # 0 = W"(z) = W"(y),
EY = T,W"x), E’=T,W*).

We also have a simple formula for the topological entropy:
huop(T) = / log | det D, T 1(de)

An obvious example of an Anosov transformation is the Arnold cat transformation.

In the continuous case the Lyapunov exponents are defined likewise. Consider a group of
C'-transformations {¢; : t € R}. Here each ¢; is from an m-dimensional manifold M onto
itself. We then pick an ergodic measure i € Z, and find a splitting T,M = E! & --- & E*
such that forve E! @ --- @ F! —El @ ... @ FI7,

.1
Jim + log [(D.01)0] =
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It turns out that we always have a zero Lyapunov exponent associated with the flow direction.
More precisely, if 4¢;(z)|—o = &(x), then

Jim ~10g|(D.0,)€(x)] = 0

Intuitively this is obvious because two phase points that lie close to each other on the same
trajectory do not separate exponentially.

In the next section we study the Lyapunov exponents for Hamiltonian systems. As a
prelude, we show that the Lyapunov exponents for a Hamiltonian flow come in a pair of
numbers of opposite signs.

In the case of a Hamiltonian system, we have a symplectic transformation T : M — M.
This means that M is equipped with a symplectic form w and if A(z) = D, T, then

(4.21) wy(a,b) = wr) (A(x)a, A(x)b).

By a symplectic form we mean a C*' map x — w,, wy : Tu,M x TyM — R such that w, is
bilinear, w,(a,b) = —w,(b,a), and if w,(a,b) = 0 for every b € T, M, then a = 0. Indeed
one can find a basis for T, M such that with respect to this basis, w,(a,b) = w(a,b) with

w(a,b) = Ja - b, and
0 I
=%l

where I is the d x d identity matrix and dim M = 2d. Use this basis for T, M and T, M
yields

(4.22) w(a,b) = w(A(z)a, A(z)b).
Equivalently,
(4.23) A(z)' JA(z) = J.

As is well-known, this in particular implies that det A(x) = 1. Of course we already know
this for Hamiltonian systems by Liouville’s theorem, namely the volume is invariant under
a Hamiltonian flow.

Theorem 4.10 The Lyapunov exponents Iy < lo < --- < i satisfy l; + l—j41 = 0 and
n; = ngr_j1 for j = 1,2,..., k. Moreover the space FI~' := @J_] Ei is w-orthogonal
complement of B2+,

Proof. Write [(x,v) = lim,_, + log |A,(x)v] where A,(z) = D,T" and v € T,M. Note
that since M is compact, we can Tind a constant ¢y such that

|wa(a, 0)] < colal |0]
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Tor all a,b € T, M and all z € M. As a result,
|wa (@, 0)] = |wrm () (An(z)a, An(2)b)| < col An()al|An(2)b],
and if w,(a,b) # 0, then
(4.24) l(z,a) + l(x,b) > 0.
By Theorem 4.4, there exist numbers 8; < 85 < -+ < (54 and spaces
{0y =W CVi(z) C -+ C Voga(x) € Vou(z) =T, M

such that dim Vj(x) = j and if v € Vj4(z) — Vj(x), then l(z,v) = ;. Of course [; < --- <,

are related to By < -+ < fBaq by {l1,..., Ik} = {B1,..., Paa} and n; = #{s : B; = [;}. Note
that if W is a linear subspace of T,,M and

Wb = {be T,M : w(a,b) =0 for all a € W},

then one can readily show that dim W + dim W+ = 2d. As a result, we can use dim V; +
dim Va4 j41 = 2d+1 to deduce that there exist a € V; and b € Va4_;41 such that w(a,b) # 0.
Indeed the set

A= {(a,b) € (T,M)*:a €V, b€ Vag_ji1, wi(a,b) # 0}
is a nonempty open subset of V; x Vaq_;1. Hence
A={(a,b) € (TM)*:a€V; =V, b€ Vag_ji1 — Vaa_j, wala,b) # 0}

is also nonempty. As a result, we can use (4.24) to assert

(4.25) Bi + Baa—j+1 > 0,
for j € {1,2,...,d}. On the other hand
d
2(53‘ + Bod—j+1) = Znili =0
j=1 i

by (4.14) because det D, 7™ = 1. From this and (4.25) we deduce that
Bj + Bada—j+1 = 0.

From this we can readily deduce that [; 4+ l;_j41 = 0 and nj; = ng_j41.

For the last claim, observe that since [;41;_;11 = 0, we have [;+1; < 0 whenever i4j < k.
From this and (4.25) we learn that if i +-j < k and (a,b) € E} x EJ, then w,(a,b) = 0.
Hence £~ C (EFt1)L. Since

n1+---+nk_j+1+n1+-~~+nj_1 :n1—i—---+nk_j+1+nk+-~-—|—nk_j+2:2d,
we deduce that N o
dim £~ = dim(EF+,

This in turn implies that EJ~' = (EF-+1)L, O
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5 Ergodicity of Hyperbolic Systems

Lyapunov exponents can be used to measure the hyperbolicity of dynamical systems. Anosov
measures (systems) are examples of uniformly or strongly hyperbolic systems which exhibit
chaotic and stochastic behavior. In reality, dynamical systems are rarely strongly hyperbolic
and those coming from Hamiltonian systems are only weakly (or even partially) hyperbolic.

An argument of Hopf shows that hyperbolicity implies ergodicity. We examin this ar-
gument for two models in this sections; Example 5.1 and Example 5.2. To explain Hopf’s
argument, let us choose the simplest hyperbolic model with expansion and contraction,
namely Arnold cat transformation, and use this argument to prove its ergodicity. In fact in
Example 1.14 we showed the mixing of Arnold cat transformation which in particular implies
the ergodicity. But our goal is presenting a second proof of ergodicity which is the key idea
in proving ergodicity for examples coming from Hamiltonian systems.

1+a? «

a 1
m(a) = a(mod1) and define T : T2 — T2 by T o = 7 o T where T'(a) = Aa. Since o € Z
and det A = 1, we know that T is continuous and that the normalized Lebesgue measure p
on T? is invariant for 7. The eigenvalues of A are

M= A@) = S22+ 0t~ avEF e <1< ho = (Aa)

Exercise 5.1 Let A = [ } with a € Z. Let m : R* — T? be the projection

provided that o > 0. The corresponding eigenvectors are denoted by v; and v,. Define
We(a) = {a+tv, : t € R}, W¥(a) = {a+tvy: t € R}.
We then have that W*(z) and W*(z) defined by
W*(r(a)) = m(W*(a)), W*(x(a)) = m(W*(a))

are the stable and unstable manifolds. Take a continuous periodic f - R? — R. This induces
a continuous f : T? — R such that fow = f. We have that foT™ om = f o T". Define X+
to be the set of points a such that

o1
lim —
n—,oo N,

S (05 (@) = f(a)

exists. Then ’/T(X *) = X+ with X* consisting of points x such that

o1
lim —
n—oo 1

S FTH() = f ()
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exists with f* = fi om. Evidently ffoT :AfjE on X* and fi ol = fi on X*. From
definition, we see that if b € W*(a) (resp. b € W*(a)), then

77 (b) = T™(a)| = A"|a — b,

(resp. |[T7"(b) — T~"(a)| = A"|a — b]).

for n € N. Hence a € X* (resp. X~) implies that W*(a) C X+ (resp. W*(a) C X 7). Let
d(-,-) be the standard distance on the torus. More precisely,

d(z,y) =min{|a — b| : 7(a) = z, 7(b) = y}.
Again if y € W*(x) (resp. y € W*(z)), then

d(T"(z), T"(y)) = X"d(z,y),

(resp. d(T"(x), T""(y)) = A"d(z,y))

for n € N. Similarly x € X (resp. X ) implies that W*(z) C X* (resp. W¥(z) C X 7).
Let Y denote the set of points z € X~ N X7 such that f*(x) = f~(z). By Lemma 1.7,
1(Y) = 1. Choose a point zq such that W¥(zo) — Y is a set of 0 length. The function f is
constant on W*(xo). The function f* is constant on W#(y) for every y € W¥(z0) NY and
this constant coincides with the value f ~ at y. Hence f+ = f ~ is a constant on the set

U ww.

yeEW U (20)NY

But this set is of full measure. So f* = f~ is constant a.e. and this implies that f* = f~ is
constant a.e. 0

Let us call a discrete dynamical system hyperbolic if its Lyapunov exponents are nonzero.
According to a result of Pesin, a hyperbolic diffeomorphism with a smooth invariant measure
has at most countably many ergodic components. Pesin’s theory also proves the existence
of stable and unstable manifolds for hyperbolic systems.

Sinai studied the issue of ergodicity and hyperbolicity for a system of colliding balls in
the late 60’s. These systems can be regarded as hyperbolic systems with discontinuities. To
get a feel for Sinai’s method, we follow a work of Liverani and Wojtkowski [LiW] by studying
a toral transformation as in Example 9.1 but now we assume that the entry a ¢ Z so that
the induced transformation is no longer continuous. As we will see below, the discontinuity
of the transformation destroys the uniform hyperbolicity of Example 9.1 and, in some sense
our system is only weakly hyperbolic.
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Exercise 5.2 As in Example 5.1, let us write 7 : R? — T? for the (mod 1) projection onto

2 A
[1 ta ﬂ and T'(a) = Aa which induces T : T2 — T2 by

Tor=mnoT. If 0 < a <1, then T is discontinuous. However the Lebesgue measure p is
still invariant for 7. To understand T, let us express T' =Ty 0o T1, T =Ty 0o T, T;(a) = Asa

for i = 1,2, where
10 1 «
a=fo i)l )

If we regard T as [0, 1] with 0 = 1, then

i ([]) = Len s Shan)
7 ([2]) _ [xl - ax;(mod 1)}

with x1, 25 € [0,1]. Note that 7; is discontinuous on the circle z; € {0,1}. As a result, T is
discontinuous on the circle x5 € {0,1} and on the curve x; + axy € Z. One way to portray
this is by introducing the sets

the torus and consider A =

I = {(z1,22) :0< @ +ar; <1, 0< 2 <1}
'™ = {(z1,22):0< 22 <1, ary <z <oy + 1}

and observing that T maps ' onto '™ but T is discontinuous along S = 9I'*. Moreover
T =T, oIy with T, (a) = A;'a for i = 1,2, where

1 0 1 —«
-1 _ -1 _
NI
Since Ty ' is discontinuous on the circle z, € {0,1} and T, ' is discontinuous on the circle
z; € {0,1}, we deduce that T~ is discontinuous on S~ = 9T ~.

Note that the line zo = 0 is mapped onto the line x5 = ax; and the line x5 = 1 is mapped
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onto the line x5 = axy + 1. Also note that distinct points on S which correspond to a single
point on T? are mapped to distinct points on T2.

We now examine the stable and unstable manifolds. For the unstable manifold, we need
to have that if y € W*(x), then d(T"(x), T ™(y)) — 0 as n — +o0o. We may try

Wi(z) ={m(a+ vat) : t € R}

where a is chosen so that w(a) = x and v, is the expanding direction. This would not do
the job because of the discontinuity. Indeed the discontinuity set S~ cut the set W{'(z) into
pieces.

Let us write Wi*(x) for the connected component of W{'(x) inside I'". Since crossing S~
causes a jump discontinuity for 771, we have that d(T"(x), T "(y)) 4 0 if y € W(x) —
W (x). However note that if y € W(x), then d(T(z), T (y)) = Ad(z,y). As a result,
d(T~(z), T~ (y)) gets smaller than d(z,y) by a fator of size . To have d(T~"(z), T "(y)) =
A'd(z,y), we need to make sure that the segment joining 7" (x) to T~ "(y) is not cut into
pieces by S~. That is, the segment xy does not intersect 7"(S~). Motivated by this, let us
pick z € T? — |72, T*(S™) and define W (x) to be the component of W' (z) which avoids

7, T'(S7). We now claim that for p-almost all points, W*(z) = Ny W} () is still a
nontrivial segment. (This would be our unstable manifold.) More precisely, we show that
for p-almost all z, there exists a finite N () such that W"(x) = 2, W}(z) = m;\/:(g) Wi(zx).
To see this, let us observe that for example

W3 (x) = T(T7 Wy (z) nW(T ™ ())).

In other words, we take WW;*(x) which is a line segment with endpoints in S~. We apply 7!
on it to get a line segment T 'W(x) with T~!(x) on it. This line segment is shorter than
Wi (z); its length is A times the length of Wi*(x). If this line segment is not cut by S—, we
set Wi(z) = W (x); otherwise we take the connected component of T-'W}*(x) which lies
inside S~ and has T~!(z) on it. This connected component lies on W;*(T~!(x)). We then
map this back by T. Note that Wi (z) # W(z) only if d(T~(x), S™) = distance of T~ (x)
from S~ is less than
length(T'Wi(z)) = A~" length(W;*(z)).

More generally, A A .
Wi (x) =TT Wi (x) n Wi (T (),
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and W}, (z) # W (x) only if
d(T7"(z),57) < A" length (W} (z)).
Since length (W (x)) < length (W{*(z)) =: ¢y, we learn that if W*(z) = {x}, then
d(T™"(x),S7) < co\',
for infinitely many i. Set Sy = {x € I'" : d(z,57) < 0}. We can write

{w: W@ ={z}} < (VUT(S0)

n=1i=n

Pl W) = {2} < Jim Y a(TS,,0)
= Jlim D u(Se)

o
< lim c1coNt = 0
- n—>ooZ %0

=n

for some constant ¢;. From this we deduce that for p-almost all points x, the set W*(x) is
an interval of positive length with endpoints in (J;2, T"(S™). Moreover, if y € W*(z), then
d(T™"(y), T"(x)) = A"d(z,y) = 0

as n — oo. In the same fashion, we construct W#(z).
We now apply the Hopf’s argument. To this end, let us take a dense subset A of C(T?)
and for f € C(T?) define f* as in Example 5.1. Set

X; = {zeT?: fF(x), Ws(x), W*(z) are well-defined and f*(z) = f~(2)}

X = ()X

feA

So far we know that u(X) = 1. Regarding T? as [0, 1]*> with 0 = 1 and slicing T? into line
segments parallel to v; for © = 0,1, we learn that each stable or unstable leaf intersects X
on a set of full length, except for a family of leaves of total y-measure 0. Let us pick a leaf
W#(xo) which is not one of the exceptional leaf and define

Zo = J{W"(y) : y € W*(x) and y € X}.

71



Since W*(y) is of positive length, for each y € W?*(x), we deduce that u(Z;) > 0. On the
other hand f is constant on W*(xg) and f~ is constant on each W*(y), y € W*(xo) N X.
Since fT = f~ on W*(xq), we deduce that f* = f~ is constant on Z, for every f € A.

With the aid of Hopf’s argument, we managed to show that f* is constant on a set of
positive pu-measure. But for ergodicity of u, we really need to show this on a set of u-full
measure. This is where Hopf’s argument breaks down, however it does show that u has at
most countably many ergodic components. Indeed if we define

Z(wo) = {x : f*(x) exist and f*(x) = [*(z0)},

then u(Z(zo)) > 0 because Z(xy) 2 Zy. Since this is true for p-almost all x, we deduce
that 1 can only have countably many ergodic components.

We now explain how Sinai’s method can be used to prove the ergodicity of p. To this
end, let us take a box B with boundary lines parallel to v; and vy and define

WYB) = {yeBNnY :W*y)NY is of full length and W*(y)
reaches the boundary of B on both ends}

where

Y ={y: f"(y) and f(y) are defined and f*(y) = f~(y)}.

In the same fashion we define W#(B). We now claim that f* is constant on W*(B), f~ is
constant on W*(B), and these constants coincide. To see this, we fix W*(y) C W*(B) and
take all z € W*(y) NY. We have that f~ is constant on W*(y) and that f~(z) = f*(z) for
such z € W*"(y) NY. Since f* is constant on each W?*(z), we deduce that f* is constant
on U, cpuyny (W?(2) NY) and this constant coincides with f~(y). By varying y € W*(B),
we obtain the desired result. (Here we are using the fact that if W*(y) € W*(B) and
W#(z) C W#(B), then W*(y) and W*(z) intersect.)

We now take two boxes which overlap. For example, imagine that By = [} x J;, By =
I, x Jo in the (v1,v9) coordinates, where either J; = Jy and Iy N I # (), or I} = I, and
JiNJy £ 0.
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We wish to have that the constant f* of W*()(B,) equaling the constant f* of W"()(B,).
We know that f* is constant on W*(B;) U W#*(B,y) and that f~ is constant on W*(By) U
W*(By). We also know that f* = f~ in Y. Clearly if J, = Jo, I N Iy # () and W#(By) N
W#(By) # 0 (vespect. Iy = I, J1NJy # 0 and W*(By) NW*"(By) # ), then the constant f*
(respect. f7) for W#(By) (respect. W*(B;)) conincides with the constant f* (respect. f7)
for W*(Bsy) (respect. W*(By)). Let us identify a scenario for which u(W*(B)NW?*(By)) > 0.
Given § > 0, let us call a box B S-uconnected if the set

B* = {x € B:W"(z) is defined and reaches
the boundary of B on both ends}

satisfies u(B") > Bu(B). The set B® is defined in a similar way and we say that B is /-
sconnected if u(B*) > Bu(B). Note that if u(B“*)) > Bu(B), then u(W**)(B)) > Bu(B)
because Y is of full-measure. (Here we are using Fubini’s theorem to write the measures
of Y as an integral of the lengths of v; or vy slices of Y.) Now if both By and B, are
p-uconnected (respect. sconnected), By is to the right of By (respect. By is on the top of
By) and p(B; N By) > (1 — B) max(u(By), u(Bs)), then for sure p(W?*(By) N W#(By)) > 0
(respect. u(W*(B;) NW*(By)) > 0).

Based on this observation, let us take a box B and cover it by overlapping small boxes.
Pick g € (0,1/2) and take a grid

{éz €B:ic 22}
n

and use the points of this grid as the center of squares of side length

has area #, and two adjacent squares overlap on a set of area (1 — 3)

%. Each such square
I
n?

Let us write B2(B) for the collection of such overlapping squares. We now state a key result
of Sinai regarding the a-u(s)connected boxes.

Theorem 5.3 There exists ag < 1 such that for every f € (0, ),

lim np (U{B € BE(B) : B is not either S-uconnected or B-sconnected }) = 0.
n—oo
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We now demonstrate how Theorem 9.3 can be used to show that f* and f~ are constant
almost everywhere in B. We choose 8 < a < agp and would like to show that if y, z € X;N B,
then f~(y) = f*(2). .

To prove this, we first claim that there exists a full column of boxes in B?(B) such that
each box B in this column is a-uconnected and W*(y) reaches two boundary sides of a box
in the column provided that n is sufficiently large.

Here y is fixed and since W*(y) is a nontrivial interval, it crosses ¢;n many columns of total
area cyn?. If each such column has a box which is not a-uconnected, then

_ 1
w(U{B € B%(B) : B is not a-uconnected}) > csn - 3

2
for some ¢3 > 0 (note that a point = belongs to at most (% + 1) many boxes). This

contradicts Theorem 2.2 for large n. Hence such a column exists. Similarly, we show that
there exists a full row of boxes in B?(B) such that each box is a-sconnected and at least one
box in this row is fully crossed by W*(z). Since f < «a, we now that f~ is constant (with
the same constant) on UW*(B) with the union over the boxes B on that row, and that f+
is constant on UW"(B) with union over the boxes B on that column. Since the row and
the column intersect on a box, we deduce that f*(y) = f~(z). This completes the proof of
f* = f~ = constant a.e. in B.

We now turn to the proof of Theorem 5.3.

Proof of Theorem 5.3. First we define a sector

C={(a,b) € R*: ]a] <]}
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which is symmetric about the unstable line v, and contains the two directions of sides of I'".
We use the explicit value of the slope of v to see that in fact  can be chosen in (0,1). We
now argue that all the line segments in |J;” 7%(S™) have directions in the sector C. This is
because C already has the directions of S~. On the other hand, since the sides of S~ are not
parallel to v;, T% pushes these lines toward vs.

Now let us measure the set of points not in W*(B) for a box in B2(B). Note that if a
point x € B is not in W¥(B), it means that W"(z) is cut by one of T%(S™), i € N* inside
B. Let us first consider the case when B is intersected by precisely one line segment of
U, T"(S™). Since this line segment is in sector C, we learn that (B — W*(B)) < .

This means
pW*(B)) = (1 =7)u(B).

Let us choose ay = %(1 — ) so that if § < oy and B is not [-uconnected, then B must
intersect at least two segments in [ J, 7°(S™). (This would be true even when 3 < 1 —~ but
we need a smaller 3 later in the proof.) We now look at Ry, = (=) T(S~) and study those
boxes which intersect at least two line segments in R;. Note that each box B is of length
1/n and the line segments in Ry, are distinct. So, a box B € BY intersects at least two lines
in Ry only if it is sufficiently close to an intersection point of two lines in Ry .

More precisely, we can find a constant ¢;(L) such that such a box is in a % neighborhood
of an intersection point. (In fact ¢;(L) can be chosen to be a constant multiple of LZe®l
because there are at most 4L(4L — 1) intersection points and the smallest possible angle
between two line segment in Ry, is bounded below by e~“% for some constant ¢;.) Hence the

total area of such boxes is ¢;(L)n™2. Now we turn to those boxes which intersect at most
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one line in Ry, and at least one line in R} = (J;2, T%(S™). Let us write Dy, for the set of
such boxes. Let us write B — W*(B) = B}, U B}, where

By = {ze€B:W"x)NBNRL # 0}
BY = {reB:W"(x)NBNR; #0}.

If B € Dy, then B can intersect at most one line segment in Ry. Hence u(B}) < vyu(B) <
(1 =2B)u(B). If B € Dy, is not B-uconneted, then

(1= B)u(B) < (B —-W*(B)) < (1 -28)u(B) + u(BY).
From this we deduce

w(U{B € Dy, : B is not a-uconnected}) < Z{,u(B) € Dy, : B is not a-uconnected}

< p7t Z{M(Bg) € Dy : B is not a-uconnected}
< %u (U{B}] € D, : B is not a-uconnected}),

where for the last inequlity we have used the fact that each point belongs to at most ¢(f5) =
(1/(28) + 1)? many boxes in BY. Let x € B} for some B € Dy. This means that W*(z) N B
intersects T%(S™) for some i > L. Hence T~*(W*(z)NB)NS~ # 0. Note that T~*(W*(z)NB)
is a line segment of length at most A=n~!'. As a result, 7'z must be within A\~'n~!-distance
of S~. That is, x € T'(S},, -1). So,

pU{BL: BE€DL}) < p (U Ti(S_/\inl)>

> uT(S 3 )

= Z p(S™ a—in-1)
=L

o0
Co E nTIN < egnIAE
i=L

IN

IN

This yields
w(U{B € B%(B) : B is not a-usconnected} < ci(L)n"2 + cu(f)n A7

for every n and L. This completes the proof of Theorem 5.3. 0
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6 Lorentz Gases

So far we have discussed various statistical notions such as ergodicity, entropy and Lyapunov
exponents, for dynamical systems. We have examined these notions for a rather limited
number of examples, namely toral automorphisms, translations (or free motions) and one-
dimensional expansions. In this section we study examples coming from classical mechanics.
A Lorentz gas is an example of a gas in which heavy molecules are assumed to be immobile
and light particles are moving under the influence of forces coming from heavy particles.
The dynamics of a light particle with position ¢(¢) is governed by the Newton’s law

d*q

(6.1) L

=-VV(q),

where V(g) = >_; W(lg — ¢;|) with ¢; denoting the center of immobile particles and W(|z|)
represents a central potential function. For simplicity we set the mass of the light particle
to be zero. We may rewrite (6.1) as

dq dp

- =—VV(q).

6.2 _
(6.2) il S

Recall that the total energy H(q,p) = 3|p|* + V(g) is conserved. Because of this, we may
wish to study the ergodicity of our system restricted to an energy shell

{(g,p) - H(q,p) = E}.

When W is of compact support, we may simplify the model by taking

(63) W(j2]) = {0 bl

oo if 2] <e.
To interpret (6.2) for W given by (6.3), let us first assume that the support of W(|q — ¢l),
i € Z are nonoverlapping. Assume a particle is about to enter the support of W (|g—g¢;|). For
such a scenario, we may forget about other heavy particles and assume that the potential
energy is simply given by W (|q — ¢;|). For such a potential we have two conservation laws:

d (1
conservation of energy: pr (§|p|2 +V(lg— qz|)> =0
conservation of angular momentum: P (¢ —q)=0.

Let us assume that a particle enters the support at a position ¢ with velocity p and exits
the support at a position ¢’ with velocity p’. For a support choose a ball of center ¢; and

. —_ . /— . .
diameter €. If n = ‘Z_Z?‘ and n' = \Z’—ZZ-I’ then we can use the above conservation laws to
1 1
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conclude that |p'| = |p| and the angle between (p,n) is the negation of the angle between
(', n').

The same conservation laws hold for the case (6.3). We are now ready for interpretation
of dynamics when W is given by (6.3). Draw a ball of diameter € and center ¢; for each 1.
Then the phase space is

X ={(¢;p) : |g — qi| > € forall i, and p € Rd}
= (Rd - UBs/Q(QZ)> X Rd-

For ¢ ¢ 0X we simply have % = p. When |q — ¢;| = € then the dynamics experiences a jump

discontinuity in p-component. More precisely

(6.4) |q(t) — ¢i| = & implies p(t;) = p(t-) — 2p(t-) - ni()ns (1),

t)—q; i
= lggt;_g?‘. As our state, we may consider
3

where n;(t)
M ={q:|q—glye for all i} x {p: |p| =1}
=Y. x S

Classically two possibilities for the configurations of ¢;’s are considered. As the first possibil-
ity, imagine that the ¢;’s are distributed periodically with period 1. Two cases occur. Either
€ < 1 which corresponds to an infinite horizon because a light particle can go off to infinity.
Or € > 1 which corresponds to a finite horizon.

As our second possibility we distribute ¢;’s randomly according to a Poissonian probability
distribution.

In this section we will study Lorentz gases on tori. In the periodic case of an infinite
horizon, we simply have a dynamical system with phase space

M = (T’ - B,) x S™' =Y. x §*,

where T¢ — B, represents a torus from which a ball of radius £/2 is removed. In the case of
finite horizon our M = Y. x S%~! but now Y. is a region confined by 4 concave arcs. In the
random case we may still restrict the dynamics to a torus. For example, we select N points
qi,---,q; randomly and uniformly from the set

Xe={(q1,---,qn) : |gi — q;| > ¢ for i # j},

and then we set
Yo={q:l¢g—q| >efori=1,...,N}.
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Next we find an invariant measure for the dynamical system (q(t), p(t)). We write z for
(¢,p) and denote its flow by ¢;(z). Recall that the phase space is M =Y, x S1 =Y x S.
This is a manifold of dimension 2d—1 =: m. We have OM = 9Y x S with OM = Uj(F;L ury)

where I7 = {(¢,p) : l¢ — @l = ¢, p € S, £ni(q) - p > 0} where n,(q) = =2 If (¢,p) € I},
then we have a pre-collisional scenario and (g, p) corresponds to a post-collisional scenario.
For an invariant measure we take a normalized Lebesgue measure %dq dp = %dx where Z is
a normalizing constant. To prove this, let us take a smooth test function J : M — R such
that J(q,p') = J(q, p) whenever (¢,p) € OM and p’ = p—2p-n n with n = n;(¢) in the case

of (¢,p) € T';. Such a test function produces

(Ti))(2) = u(z,t) = J(ou(x)),

that is continuous in (x,t). In fact u satisfies a Liouville-type equation with boundary
conditions:

(6.5) {ut:p'uq, x € M—0M,

u(q,p' t) = u(g,p,t), t>0, (¢,p) € IM.

We expect (6.5) to be true weakly; if K is a smooth function, then
d
pr w(z, t)K(z)de = — [ u(z,t)v- K,(z)dz

(6.6) :
— € zj: /|p:1 dp /n:1 U(Qj + en,p)K(qj + 5”7]9)(}9 ) n)dn

Let us verify (6.6) when the horizon is infinite. Under such an assumption, we find a sequence
of functions
() =0 < m(x) < m(z) < ...

for almost all x, such that ¢,(x) € M — OM for t € (7;(z), 7j41(x)),

¢r,(2)(x) € OM if j > 0, and each finite interval [0, T] can have only finitely many 7;’s. Let
us explain this further. Note that if v = (v!,...,v?) with v!, ..., v? rationally independent,
then x + vt would enter any open set eventually. This proves the existence of 7 for such
v. Since the set of such v is of full measure, we have the existence of 71 (z) for almost all x.
Similarly we can prove the existence of 7;’s inductively for almost all .

Note that u(z,t) = J(¢i(x)) is as smooth as J in (x,t) provided ¢;(x) ¢ OM. This means
that u is as smooth as J with u; = p - u,, provided (z,t) € M x (0,00) — Uj S;, where

S; =A{(z,t) : 7j(x) = t}.

Note that when ¢ is restricted to a finite interval [0, T, then finitely many S;’s are relevant,
each S; is of codimension 1 in M x (0,7), and different S;’s are well-separated. It is a
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general fact that if u is continuous and u; = p - u, off |J ;5j, then uy = p - uy weakly in M.
To see this, take a test function R(z,t) with support in an open set U such that exactly one
of the S;’s bisect U into U and U~. We then have [w(R; —p- R,)dx dt = fU+ —I—fU,
that if we integrate by parts on each U* we get two Contrlbutlons One contribution comes
from carrying out the differentiation on w, i.e., [« (—u; + p- ug)R dx dt, which is 0 because
u; = p - u, in U, The other contribution comes from the boundary of U%, and they cancel
each other out by continuity of w. In a similar fashion we can verify (6.6). In the periodic
case of infinite horizon, we only have one heavy particle per period. This means that in (6.6)
the summation has one term.

As a consequence of (6.5) we have that the Lebesgue measure dq dp is invariant. In
fact if initially z is selected according to a probability measure du = f°(x)dx, then at later
times z(t) is distributed according to du; = f(z,t)dx where f(x,t) = fo(¢_(x)). To see
this observe that if we choose K =1 in (6.6) we yield

d
(6.7) g [ Jotepde == [ ap [ aenppon dn

where ¢ denotes the center of the only existing ball in the unit square. If we integrate over
p first and make a change of variable p — p’ = p —2p-n n, then u does not change and p-n
becomes p' - n = —p - n. Also the Jacobian of such a transformation is 1. As a result, the
right-hand side of (6.7) is equal to its negation. This implies

(6.8) / T((x))dz = / J(z)da

for every t and every J continuous with J(q,p') = J(¢,p) on OM. If K and f° have the
same property and we choose

J(x) = [(¢—(2) K (2),
then we deduce

[ K@ 0ain = [ Ko s a)da

From this we conclude

(6.9) fla,t) = f(o-e()),

as was claimed before.
Our dynamical system is a simple free motion between collision times. Perhaps we should

free out system from the free motion part by focusing on the collisions. For example, let us
define
T ={(n,p):[p|=Inl=1, p-n>0} CT?
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and T : I' = T" by T'(n,p) = (n,p’) where ¢, (grenp)+(7 + en,p) = (¢ +en',p') and p/ =
p—2n'-pn'. In other words, if (7+ en, p) is a post-collisional pair then at the next collision
we get (¢ + en’,p), and after the collision the result is (g + en’,p’). Here 7i(x) is the first
collision time of the point z. Again for a set of full measure, the transformation 7" is well-
defined. Let us write m for the Lebesgue measure on M. This invariant measure induces an
invariant measure on I'. For this let us define I' = {(y,t) : y = (§+en,p), 0 <t < 7 (y)}
and F : ' = M by F(y,t) = ¢,(y). It is not hard to see that F is invertible. In fact
F is an automorphism between the measure spaces (M, dm) and (T',|n - p|do(y)dt) where
do(y) = 4~ Ldn dp denotes the surface measure on I'. This simply follows from the fact that
the Jacobian of the transformation

(G+en,t) = G+en+pt=gq

equals 27 |n - p|. In other words dg = €% |n - p|dn dt. The transformation F' provides us
with a useful representation of points in M. Using this representation we can also represent
our dynamical system in a special form that is known as special flow representation. Let us
study F'=1 o ¢go F. Let us write T'(§ + en,p) = (y + en’, p') where T'((n,p) = (0, p')

(y,0 + 1) 0+t <m(y)
(6.10) do:=F ltoggo Fy,t) =S (T(y),0+t—7i(y) 6+t—7(y) <n(T(y))

The measure % |n - p|do(y)dt is an invariant measure for the flow ¢g. We now claim that if
(6.11) dp =" - pldo(y)

then p is an invariant measure for 7. To see this take a subset of I'. We choose A sufficiently
small in diameter so that we can find 6,, 6, and 63 with the following property:

t€[0h,0:] = m(y) <O+t <7n(T(y))
for every y € A. This means
Go(A X [01,05] = {(T(y), 05+t —i(y) sy € A, T € [0, 0]}
Since ée has dudt for an invariant measure,
(62 = 01)u(A) = (02 — 61)u(T(A)).

Since 7' is invariant, we deduce that y is invariant.
There are various questions we would like to ask concerning the ergodicity of the dynam-
ical system (¢, m).
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For example, we would like to know whether m is an ergodic invariant measure. Does
¢; have nonzero Lyapunov exponents? Can we calculate h,,(¢)? For the last two questions,
we need to study D,¢;. Recall that if ¢; is the flow associated with an ODE of the form
4z — f(z), then the matrix-valued function A(x,t) = D,¢; solves

dt
dA
(6.12) — = (Do) /) A.

This means that for small 9,
P +02) — ¢u(x) = 6 A(z, 1),
with A solving (6.12). Hence, &(t) = A(x,t)Z solves the equation

P
d—f = B(x, )3,

where B(x,t) = (Dg,(2)f). In the case of a Hamiltonian flow of the form (6.2), we have
f(q,p) = (p,—VV(q)) and we simply that z = (¢, p) solves

dg _ . dp 2, -

% =D, % = —qu q.
But for our Lorentz gas model associated with (6.3), some care is needed because ¢;(x) is
not differentiable. Let us examine the evolution of Z for a billiard in a domain Y. That is,
a particle of position ¢ travel according to its velocity p, and the velocity p changes to the
new velocity p’ = p — 2p - n n after a collision with the boundary. Here n denotes the inner
unit normal at the point of the collision.

To this end, let us take the bounded domain Y where QY is piecewise smooth and
study the flow of a billiard inside Y. For this, we compare two trajectories x(t) and x*(t)
where 2*(0) = = + 0, x(0) = z, with § < 1. Then at later times we would have xz*(t) =
x(t)+0z(t)+0(d) and we would like to derive an equation for the evolution of Z(¢). In between
collisions, we simply have % = p, % = 0. To figure out how (g, p) chﬁanges at a collision,
assume that a collision for x occurs at time 0 and a collision at time ¢t = d7 + o(d) occurs
for z*. Without loss of generality, we may assume that 7 > 0. Assume that at this collision,
the coordinates are (q,p, ¢, p) and right after collision we have the coordinates (q,p’, ¢, p’).
Collision for z and z* occur at a = x and a* on dY. Let us assume that near a, the boundary
Ol is represented by g(y) = 0 for a smooth function g. We write a* = a + da + o(d) and

n* =n+ o0n+ o(d) where n and n* are normal vectors at a and a* respectively. We know
a*=a+da+0(0)=q¢ +tp"=a+ G+ 71p)+0(9),

which means that @ = ¢+ 7p. Since g(a*) = g(a+da+o0(d)) == 0, we deduce that n-a = 0.
Hence

(6.13) r=-L" G- vg= <J—p®"> .




The operator V is the p-projection onto nt. That is (I — V')q is parallel to p and V§-n =0

always. Since v(a*) = n*, v(a) = n, for v(y) = gzgz;‘, we deduce
(6.14) n = (Dv(a))a = Dv(a)V(q).

The operator Dv(a) is known as the shape operator of Y at a. To figure out what ¢’ is, we
calculate

q(t) —q(t) =a" = (g +tp) =0(Gg+1(p— 1)) + 0(9)
= 0(G — 24 - nn) + o(0),

and for ¢t > t,

q*(t) = q(t) = 0(q — 2¢ - nn) + (p* — p')(t — t) + o(6)
=0(q —2q¢-nn)+ (p” —p)t + o(9).

From this we deduce
(6.15) ¢ =Rj=(I-2n®n)q
with R denoting the reflection with respect to n. Moreover

pr—p =p"=2p"-n'n" —p+2p-nn

=p"—p—=2(p"—p) -nn—2p" -n'n" +2p"-nn
d(p—2p-nn) —2p" - (n+dn)(n+ dn) + 2p* - nn + o(9)
d[p—2p-nn —2(p*-n)i — 2(p* —n)n| + o(9)
S[p—2p-nn—2(p-n)n—2(p-n)n] + o(9).

As a result, p*' = p' + 0p’ + 0(6) where
(6.16) 7 = Rp — 24,

with
(6.17)

where V = I + %. Note that |v| = 1 implies that nDv(a) = 0, or Dv(a) map nt onto nt.

Also the range of V is n* and V : p* — n' is an isomorphism. Moreover, V restricted to
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nt equals I — ”®p ,and that V : nt — p/t is an isomorphism, which simply n-projects onto
'+, Also, for w w' €nt

RV =(I—-2n®n) ([+ ®p)

n-p
_p4 8P _ N8P _p nEP
n-p n-p n-p
. / .
w.(Rv)w/:w.(1_”®p)w/:w.wf_w
n-p n-p
= (Vw) -,
so RV = V' is the transpose of V. As a result,
(6.18) A= (p-n)RV'Dv(a)V3.

One way to explore the dispersive behavior of a dispersive billiard is to study the evolution
of the quadratic form Q(q,p) = ¢-p. If we write Q(t) = Q(q(t),p(t)), then in between
collisions, % = |5|? and at a collision,

) dt
Q(t+) =4q - p' = Rq- (Rp — 2Aq)
ZQ( =) =24 (RAG) = Q(t=) = 2(p-n)(¢- V' Dv(a)V()
= Q=) =2(p-n)Vq- Dv(a)Vq.

Note that if V¢ # 0 and Dv(a) > 0, then Q(t+) > Q(t—) because p-n < 0. Also V¢ # 0 if
G # 0 and ¢ € p*. The condition Dv(a) > 0 means that the boundary is concave and this is
exactly what we mean by a dispersive billiard. For such a billiard we expect to have d — 1
positive Lyapunov exponent, and since we have a Hamiltonian flow, then by Theorem 77,
we have d — 1 negative Lyapunov exponents also. The remaining Lyapunov exponent is 0.
This has to do with the fact that in the flow direction, the Lyapunov exponent is 0. To
avoid the vanishing Lyapunov directions, we assume that initially p - p = 0 (conservation of
£Ip|?) and that G- p =0 (i.e., (¢,p) is orthogonal to the flow direction (p,0)). This suggests
that we restrict (¢,p) to W(x) = {(¢,p) : G-p = p-p = 0} = p* for z = (q,p). Note
that if (¢,p) € W(x) initially, then (¢(¢),p(t)) € W (¢:(z)) at later times. This is obvious in
between collisions and at a collision use the fact that the range of V is p/t

Once (g, p) is chosen in W (x) initially, then we can say that Q(t) is strictly increasing
for a dispersive billiard. To take advantage of this, let us define a sector

C(x) ={(¢,p) e W(x) : ¢-p > 0}.

What we have learned so far is that
(6.19) Dy¢(C(x) — {0}) G C(¢n(x))
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where D,¢; is a short hand for the flow of #, so that when ¢, is differentiable, then D, is
the same as D,. The property (6.19) is promising because by iteration, we get a slimmer
and slimmer sector and in the limit, we expect to get E*(z) associated with the positive
Lyapunov exponents. To see how this works in principle, let us examine an example.

Example 6.1. Consider a matrix-valued function A(x), z € T? such that for almost all
z, A has positive entries and det A(z) = 1. Let T : T?> — T? be invariant with respect

to the Lebesgue measure p and define I(z,v) = lim, o = log|A,(z)v|, where A,(z)

A(T™ Y (x))A(T™%(z)) - - - A(T(x))A(z). Define the sector C(x) = C

A(x) [Zj and A(z) = [Zg; ZE?)

Q(v],vh) = vivh = (avy + bug)(cvy + dug)
> 01U + acvi + bdvy

lad
> 109 + 2bc ad V1Vs
be

> (14 2bc)Q(vy, v2).

!/
Note that if {U}} = }, then
L)

Hence A maps C onto a sector which lies strictly inside C. If A, (z)v

n—1

| A (z)v]* > 20T0) > vivy H(l +2b(T"(2))c(T"(x))),

U] oo}

"= (v}, vy), then

1 1 _
liminf — log |A,(x)v| > 5 /log(l +2b(z)c(x))pu(dr) =1 >0,
n—oo N

whenever vyv, > 0. In particular, by choosing any v with v +v2 = 1, vjv, > 0, we get

1 1 _
lim —log ||A,(x)| > liminf —|A,(x)v| >,

or Iy > 0. Since det A,, = 1, we know that [; + 1, =0. So l; <0 < [.

O

From this example, we learn that perhaps we should try to get a lower bound on

Q(7,p")/Q(q,p). Note that ¢ is gaining in size in between collisions.

However the gain

in the p is occuring only at collisionss. If we have a reasonable lower bound on the ratio of

Q(d,p') and Q(q,p), then the gain is exponential as a function of time.
Let us consider T": I' — I' where

I'={(¢,p") : ¢ € 0Y and p’ - v(q) > 0}
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with v(q) the inner unit normal to the boundary 9Y", and T'(¢,p") = (¢, p) where ¢ denotes
the location of the next collision and p denotes the post-collisional velocity after such a
collision. We also write 7 : I' — (0, 00) for the time between the collision at (¢, p) and the
next collision at (¢,p). Now the total gain in @) from the time of a previous collision, till
right after a collision at (g, p) is given by

AQ = 7(T™ g, P)IBI* +2(p-n)" V- Dv(a)Vi.
If we assume that Y is uniformly concave, i.e., Dv(a) > 61, then
AQ > (T~ (q,p))|pP* +20|p - n| Vi[>,

Note that for ¢ € p*,
N\ 2
N A n-q
Val* = lgl* + (—) [p|*.
n-p
If initially we start from the sector C, then (¢, p) stays in C' for all times and for such (g, p),

S A R
Qa,p) =q-p = 5(dl* +[p*)-
As a result,

A12 2 (na) a2
ag By e+ (22)" b
Q |q1* + |p[?

> 2min (7’ + 20— 20|p- n|)
n - pl

> 2min(7,26|p - nl).

From this we deduce that if ¢, is the time of the n-th collision, then

1
(6.21) liminf — log Q(t,,) > /log(l + min(27,40|p - n|))dp > 0

n—oo Mn

where dp = |p - n|dn with dn the surface measure on 9Y'.

As in Example 6.1, we can use (6.21) to deduce that there are two Lyapunov exponents
[T, 07 with [T +17 =0,1" <0 <[" when d = 2. Also the sector C' can be used to construct
the corresponding Osledect’s directions,

E*(z) = () DrorT"CHT (), E(2) = (] DpoioyT"C (17 (@)

n>0 n>0

where C* = {(¢,p) : ¢ - p > 0}.
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There is a simple geometric interpretation for #(t). Assume that v is a curve with
7(0) = z, 4(0) = . This means that 7(6) = x + 0% + 0(0), ¢:(v(t)) = z(t) + dz(t) + o(9),
with z(t) = ¢;(z). In analogy with Riemannian geometry, we may regard Z(¢) on the Jacobi
field associated with z(t), and (6.15), (6.16) are the corresponding Jacobi’s equations at a
collision.

If we take a surface A of codimension one in M = Y x R¢, then TA C TM evolves
to T'¢i(A). In this case, it is easier to study the evolution of the unit normal vectors. If
z(t) = (a(t),b(t)) € TM is normal to T'(¢:(A)) at all times, then we would like to derive an
evolution equation for it. The vector (a,b) is chosen so that for every ¢,

a(t) - q(t) + b(t) - p(t) = 0,

where (q(t),p(t)) € TowA(t) with A(t) = ¢4(A). In between collisions, #(t) = (¢ + tp, p) an
a(t)-(¢+tp)+b(t)-p =0, or a(t)-q+(ta(t)+b(t))-p = 0. Hence 1f1n1t1ally( (0),b(0 )) (a, )
then a(t) = a and b(t) = b — ta. So in between collisions we simply have % =0, £ = —q.
At a collision (a,b) experiences a jump discontinuity. If after a collision the normal vector
is given by (a’,1'), then

a - (Rq)+10b - (Rp—2Aq) =0,

Ra') -G+ (RV)-p—2(A)-G=0.

This suggests

VY =Rb
(6.22)
a = Ra+ 2RA'Rb =: Ra + 2Bb.

Note that if Q(t) = a(t) - b(t), then in between collisions,

d
L =P

dt

and at a collision

Q(t+)=d -V = (Ra+2RA'RD) - Rb
=Q(t—)+2A'Rb-b
=Q(t—)+2b- RAb
= Q(t=) +2(p-n)Dv(a)(V) - V(b),

and in the case of a dispersive billiard,
Q(t+) — Q(t—) < 25(p-n)|VbH|* < 0.
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Hence Q(t) is decreasing. )
As an example of a submanifold A of codimension 1, take a function f°:Y x R? = R
and set

A={(q,p): f°(q,p) = ¢}

for a regular value c. If f(q,p,t) = f°(¢—i(q.p)), then ¢(A) = {(¢,p) : f(¢.p,t) = ¢} and
for z = (a,b) we may choose z = (f, f,). We know

(6.23) {ft +p-fg=0 inside Y x R,

flg,p.t=) = f(g.p/,t+) on Y x R?

where ¢ € Y and t is collision time. Setting a (¢, p,t) = f,(¢,p.1t), b(q,p,t) = fp(q,p, 1), we
then have

(6.24) a; + pDgya = 0,
b +pDya = —a,
which is consistent with fl—‘; =0, % = —a in between collisions. The formula (6.24) provides a

relationship between z(q,p,t) on Y x R% In the case of smooth potential (6.1), if f(z,t) =
f%(¢_¢(x)), then f solves the Liouville’s equation

(6.25) fitp-fy—VV(g)- J,=0.
If « = f, and § = f,, then after differentiating (6.25) we obtain

oy + agp — a, VV (q) = D*V ()8,
ﬁt + ﬁqp - prv(Q) = —a.

This is consistent with (6.22) if we interpret the hard-sphere model as a Hamiltonian system

oo ifgédy,

0 ifgeY

when V' is the above “concave” function. We note that if a(z,t) = a(¢(z),t), then
W DVl

i

dt

with potential V(q) = . In fact, in some sense, D*V(q)3 = 2B of (6.27)

where (q(t),p(t)) = ¢¢(z). Here (@, 3) is the normal vector to the level sets of f as we
mentioned earlier. Hence our method of showing the hyperbolicity of dispersive billiards
should be applicable to general V' if V' is uniformly concave. Indeed, if

Q(ZE,T,) = fq(x7t> ’ fp(mat) = Oé(]?,t) ) B<x7t)7
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then
Qi+ Qy—=VV(9) Q= DV(9)B- 5~ laf
or equivalently
Q= D*V(q(t))B- B — |af?
for Q(z,t) = Q(¢¢(x),t), and if for some 6 € (0,1), —D?*V (q) > 01, then

Q¢ < —0(lal* +1B[°) < —26Q

which implies that |Q(t)| > €?!|Q(0)|. However, in the case of a billiard, we only have
—D?V(q) > I only at collisions, which makes the proof of hyporbolicity much harder.

A particularly nice example of A is a normal bundle of a g-surface. More precisely,
suppose O is a surface of codimension one in Y and set

A ={(q,p) : ¢ € O, pis the normal vector at ¢}.

Here we are assuming that A is orientable and a normal vector p at each ¢ € © is specified.
In this case (¢, p,q,p) € TA means that ¢ € 7,0 and that p = C(q)q for a suitable matrix
C(q) which is known as the curvature matriz. (If p = p(q) is the normal vector, then
C(q) = Dp(q).) At later times, (q(t),p(t),q(t),C(q,t)4(t)) € T¢i(A). In between collisions,
p(t) stays put, so

(0= (%c) i+C (%q) 0

But 44 =p=Cq, so

(6.26) %C(t, q) = —C*(t,q).

At a collision C' changes to C” with p’ = C'¢’. Using (6.15) and (6.16), we deduce
(6.27) C" = RCR — 2AR.

Recall that by our choice, p is the unit normal vector of ©. Hence ¢-p =0 and p-p = 0.
This means that §,p € p~. As a result, we only need a matrix C* which is acting on p*.
Since the same is true after collision, we have C* is the restriction of C' to p* and maps p*
onto pt. The same is true for C*+'. Hence

dt

e — _(CL)2 in between collisions,
(6.28) .
C+ = RC*R —2AR at a collision.

Note that C*" : (p')t — (p')*. Indeed if v € (p/)t = (Rp)*, then Rv € p*, and A maps p?
onto (p')*. Moreover C+ : p* — pt and R maps p* onto (Rp)=.
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