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A. Samokhin

Abstract. A description of the full symmetry algebra (i.e., in-
cluding higher symmetries) for a general nonlinear system of ordi-
nary differential equations is given in terms of its general solution
and differential constants. More precisely, the full symmetry alge-
bra of a system is a module over the ring of its differential con-
stants; the module is generated by partial derivatives of the general
solution by the independent constants. Given a general solution,
this description is both effective and explicit. Special solutions,
such as an envelope of a family of solutions is described naturally
in this context. These results are extended to control systems; in
this case the differential constants become operators on controls.
Examples are provided.

1. Introduction

The study of symmetries of ordinary differential equations was ini-
tiated by Sophus Lie himself and has a long history which is described
briefly in [1]. The latest results were obtained in [2] and [3].
To find symmetries for an individual equation still remains a hard

task. The present paper deals, however, with another problem. We
give a full description of a symmetry algebra of a system of ODE in a
nondegenerate situation using the general solution whose (local) exis-
tence is guaranteed by classical theorems. For a linear system of ODEs
this result was obtained in [1]. It was generalized to the normal form
scalar ODEs in [3].
Given a general solution, this description is both effective and ex-

plicit. Special solutions, such as an envelope of a family of solutions is
described naturally in this context.
Of course, these results are of little practical importance since there

is no need in symmetries when a general solution is known. Symme-
tries are used to obtain new solutions, not the other way round. Yet
the interconnection between differential invariants, symmetries and a
general solution are quite transparent in the case of ODEs and may be
used as a model aplicable in other situations.
In this paper, we give two such applications. First, we describe the

symmetries of a boundary / initial value problem for a one-dimensional
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wave equation. The second application deals with symmetries of con-
trol systems. In both cases differential invariants become nonlocal ones.
The paper is organized as follows. Section 2 describes the full sym-

metry algebra for a general nonlinear system of ordinary differential
equations. It also contains the description of special solutions as in-
variants of basic symmetries for a given general solution, (subsection
2.3) and examples (subsection 2.4). Section 3 is an application of this
approach to control systems; examples are also provided.

2. Full symmetry algebra for a general nonlinear
ordinary differential equation and a system of

equations

2.1. General solution and differential constants. We begin with
trivialities to introduce notation.
Let E denote a general scalar ordinary differential equation of nth

order

y(n) − F (x, y, y′, . . . , y(n−1)) = 0.(1)

The equation’s general solution (or a general integral) is of the form

Φ(x, y, c1, c2, . . . , cn) = 0.(2)

When (2) is solved with respect to y, we get

y = f(x, c1, . . . , cn);(3)

almost any solution of (1) is obtained from (3) by a proper choice of
the constants ci. (The solution that is not produced by the general one
is called a special solution. Such solutions are discussed below.)
Differentiating (3) by x we obtain the following system of n indepen-

dent equations




y = f(x, c1, . . . , cn)
y′ = f ′(x, c1, . . . , cn)

. . .
y(n−1) = f (n−1)(x, c1, . . . , cn)

(4)

(further differentiating produce dependent equations since y(k), k ≥ n
are expressed in y(i), i < n via (1)).
One can obtain an expression (not necessary explicit) for ci solving

(4). Thus

ci = ci(x, y, y
′, . . . , y(n−1)), i = 1, . . . , n.(5)
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In this way all ci are differential constants of order less than n. In other
words, they are differential operators of order n−1 or functions on the
jet space Jn−1(R).
In the case of a system of m differential equations,

y(n) − F(x,y,y′, . . . ,y(n−1)) = 0,(6)

where y = (y1, . . . , ym), F = (F1, . . . , Fm), the general solution is of
the form

Φk(x,y, c1, c2, . . . , cmn) = 0, k = 1, . . . ,m(7)

or

y = f(x, c1, . . . , cmn).(8)

Almost any solution of (6) is obtained from (8) by a proper choice of
the constants ci.

2.2. Full symmetry algebra. By definition of a solution, if right-
hand side of (3), f(x, y, c1, . . . , cn) is substituted for y in (1), we obtain
an identity

f (n) − F (x, f, f ′, . . . , f (n−1)) ≡ 0.(9)

Hence

∀i : ∂

∂ci

(
f (n) − F (x, f, f ′, . . . , f (n−1))

)
= 0(10)

or

∀i :
(
Dn

x −
n∑

j=1

∂F (x, y, y′, . . . , y(n−1))

∂yj
Dj

x

)∣∣∣∣∣
y=f(x,y,c1,...,cn)

fci = 0,

(11)

where D = d
dx
is the total derivative with respect to x.

Recall that

Ly(n)−F
def
= Dn

x −
n∑

j=1

∂F (x, y, y′, . . . , y(n−1))

∂yj
Dj

x(12)

is called an universal linearization of the operator y(n) − F and that a
solution φ of the equation (

Ly(n)−F

)
φ
∣∣
E = 0(13)

is a symmetry of E.

Theorem 1. Partial derivatives fci , i = 1, . . . , n form a full function-
ally independent basis of symmetries for equation (1).
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Proof. The difference between (11) and (13) is that the same operator
is restricted to formally different objects. However, note that the set

{y = f(x, c1, . . . , cn), y
′ = f ′(x, y, c1, . . . , cn) . . . |∀ci ∈ R} ⊂ Jn(R)

essentially coincides with E. Indeed, dimJn(R) = n + 2, codim E ⊂
Jn(R) = 1, so dim E = n + 1. It follows from the existence theorem
for an ordinary differential equation that there is a solution containing
any initial value point x0, y0, y′0, . . . , y

n−1
0 ∈ E. Now, since (3) produces

almost all solutions and

dim{y = f(x, y, c1, . . . , cn), y
′ = f ′(x, y, c1, . . . , cn) . . . |∀ci ∈ R} = n+1

we conclude that (11) coincides with the symmetry equation (13) al-
most everywhere on E.
Therefore, fci , i = 1, . . . , n are symmetries of equation (1). Moreover,

they form a basis of the symmetry algebra.
Indeed, let ϕ be a symmetry. Then it defines a flow on a set of

solutions by the formula :

∂y

∂τ
= ϕ|y,(14)

where y = f(x, y, c1, . . . , cn). It can be solved (see [4]) and a solution
of this equation is a one-parameter family of solutions of (1). By (3),
it has a form

y = f(x, c1(τ ), . . . , cn(τ ))(15)

On the other hand, differentiating (15) by τ , we obtain (via (14))
that

ϕ|y =
(

n∑
i=1

∂ci

∂τ
fci

)∣∣∣∣∣
y

(16)

on any solution y of equation (1). Therefore,

ϕ =

n∑
i=1

∂ci

∂τ
fci(17)

holds everywhere on E.
Note that the derivatives ∂ci

∂τ
|y depend on y, that is, on c1, . . . , c1,

which are functions on Jn−1(R) by virtue of (5). Since any choice of
arbitrary functions ci(τ ) define some symmetry by (15), the functions
∂ci

∂τ
|y are also arbitrary.
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Thus, we got the general form of a symmetry for equation (1)

ϕ =
n∑

i=1

Ai(c1, . . . , cn)
∂

∂ci
f(x, y, c1, . . . , cn);(18)

here f is a general solution, Ai are arbitrary functions and ci are func-
tions on Jn−1(R) given by system (4).
Formula (18) also completes the proof of the theorem.

Remark 1. A full symmetry algebra is a module over the ring of the
equation’s differential constants. The module is generated by partial
derivatives of a general solution by the independent constants.

Remark 2. Formula (18) gives a representation of the algebra of vec-
tor fields on Rn in the full symmetry algebra of (6) by the isomorphism

n∑
i=1

Ai(c1, . . . , cn)
∂

∂ci
←→

n∑
i=1

Ai(c1, . . . , cn)
∂

∂ci
f(x, c1, . . . , cn)

(On the left-hand side, ci are coordinates in Rn; on the right-hand side
they denote differential invariants (5) of (1) or special functions on
Jn−1(R)).

Remark 3. Theorem 1 generalizes easily to the case of a system of
differential equations (6). Its full symmetry algebra is isomorphic to
the algebra of vector fields on Rmn: the representation is given by

mn∑
i=1

Ai(c1, . . . , cmn)
∂

∂ci
←→ ∂f ×A,

where ∂f ,A are respectively m×mn and mn× 1 matrices with matrix
elements given by the formulas

(∂f)j,i =
∂fj

∂ci
, (A)i = Ai

A variant of Theorem (1) is also valid in the case of even more general
system of ordinary differential equations,

y
(nj)
j − Fj(x, y1, y

′
1, . . . , y

(n1−1)
1 , . . . , ym, y′m, . . . , y

(nm−1)
1 ) = 0.

It is not hard to right down the correspondent isomorphism between
vector fields on the solution space and symmetries in this case too. Yet
the formula is awkward to read and therefore it is omitted here. See [2]
for relevant technicalities.

Let us call fci, i = 1, . . . , n basic symmetries. They correspond to
the flows y(τ ) = f(x, c1, . . . , ci + τ, . . . , cn). Thus, in the case of an
explicit general solution (3) basic symmetries are fci = yci .
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Remark 4. If general solution of (1) is given in an implicit form (2)
then

dΦ

dci
=

∂Φ

∂ci
+

∂Φ

∂y

∂y

∂ci
= 0.

It follows immediately that basic symmetries are given by

yci = −
(
∂Φ

∂ci

)
�

(
∂Φ

∂y

)
.(19)

This formula generalizes in a straightforward way in the case of a sys-
tem of equations.

2.3. Special and invariant solutions. Invariant or self-similar so-
lution y of (1) is the solution that satisfy the condition ϕ(y) = 0 for
some symmetry ϕ of the form (18). Hence an invariant solution satisfy
a system of equations

{
E(f) = y(n) − F (x, y, y′, . . . , y(n−1)) = 0
φ(y) =

∑n
i=1 Ai(c1(y), . . . , cn(y))

∂
∂ci

f(x, y, c1(y), . . . , cn(y)) = 0

(20)

Since ci are constants on solutions of (1) so are Ai(c1(y), . . . , cn(y)).
Thus (20) is simply

{
E(f) = y(n) − F (x, y, y′, . . . , y(n−1)) = 0
φ(y) =

∑n
i=1 Aifci(x, y, c1, . . . , cn) = 0

(21)

with constant Ai and ci. The second condition in (21) means that
basic symmetries are linearly dependent on an invariant solution. If
rank{fc1 , . . . , fcn}|y = n − k, it is natural to introduce a notion of a
k-invariant solution.

Remark 5. Recall that fci represent independent vector fields on Rn.
In this way the structure of invariant solutions of ordinary differential
equation is connected with the structure of degenerate points of a system
of n independent vector fields on Rn.

Consider a simple case of (21),

{
y(n) − F (x, y, y′, . . . , y(n−1)) = 0
fci = 0

(22)

Its solution is a fixed point of the flow ci → ci + τ . Geometrically,
such a solution is an envelope for the family of solution generated by
this flow, see section (2.4).
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2.4. Examples.

Example 1.

y′′ +
9

8
(y′)4 = 0

This equation is invariant with respect to the translations in both x
and y, hence its symmetry algebra is obvious. Its general solution is as
follows

Φ(x, y, c1, c2) = (y + c1)
3 − (x+ c2)

2 = 0,

or

y = f(x, c1, c2) = (x+ c2)
2
3 − c1

Therefore, its basic symmetries are fc1 = −1, fc2 =
2
3
(x+ c2)−

1
3 . They

depend on the differential constants c1, c2 that may be found from the
system (4),

(y + c1)3 = (x+ c2)2,

3y′(y + c1)2 = 2(x+ c2).

It follows that
c1 = ( 2

3y′ )
2 − y,

c2 = ( 2
3y′ )

3 − x.

Now, basic symmetries come to

fc1 = −1,
fc2 = y′,

which are (not surprisingly) translation in y and x respectively.
So the general symmetry for this equation is of the form (18)

ϕ = A1(c1, c2)fc1 +A2(c1, c2)fc2 =

− A1

(
(
2

3y′
)2 − y, (

2

3y′
)3 − x

)
+A2

(
(
2

3y′
)2 − y, (

2

3y′
)3 − x

)
y′,

where A1, A2 are arbitrary functions of two variables.
Invariant solutions have to satisfy the system (21)

A+ y′B = 0,
y′′ + 9

8
(y′)4 = 0,

for some constants A,B. It follows that y′ = 0, so y = const. This is a
family of special solutions (in the sense they are not obtained from the
general integral). Each special solution is an envelope for the family

(y − const)3 − (x+ c2)
2 = 0

for all c2, see figure 1.

Example 2.

yy′′ + 2(y′
2
+ 1) = 0
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Figure 1. Enveloping invariant solution y = 2

The general integral in this case is as follows

Φ =

∫
y2 dy√
c1 − y4

± x+ c2.

Basic symmetries are obtained here by the formula (19):

ϕ1 = −Φc1

Φy
= 1

2

√
c1−y4

y2

∫
y2 dy

(
√

c1−y4)3
,

ϕ2 = −Φc2

Φy
= −
√

c1−y4

y2 .

To obtain a final form for these symmetries it remains to express
differential constants as functions on J1(R) using (4):∫

ya dy√
c1−y2a

± x+ c2 = 0

y′
√

c1−y4

y2 ± 1 = 0.
It follows immediately that

c1 = y4(y′2 + 1),

c2 = ±
∫
dx∓ x = c2.

Substituting these expressions into basic symmetries we obtain

ϕ1 =
y′

2

∫
dy

y′3y4 ,

ϕ2 = y′.

Note that φ1 is a nonlocal symmetry.

Example 3. Linear equations (cf.[2])

y(n) +

n−1∑
i=0

ai(x)y
(i) = 0
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Here the general integral is if the form

y =
n∑

i=1

cifi(x),

where fi(x) are independent solutions, i.e., their Wronskian is nonzero:

W = W (f1, . . . , fi, . . . , fn) =

∣∣∣∣∣∣∣∣
f1 . . . fi . . . fn

f ′
1 . . . f ′

i . . . f ′
n

. . . . . . . . . . . . . . .

f
(n−1)
1 . . . f (n−1)

i . . . f (n−1)
n

∣∣∣∣∣∣∣∣
�= 0

Independent solutions fi coincide with basic symmetries in this case:
fi = fci.
Differential constant ci is given by the formula

ci(y, y
′, . . . , y(n−1)) =

Wi

W
,

whereWi is obtained fromW by changing the entries of the i-th column
of W for y, y′, . . . , y(n−1) in respective order.
The general form of the symmetry is

ϕ =
n∑

i=1

Ai

(
W1

W
, . . . ,

Wi

W
, . . . ,

Wn

W

)
fi(x).

Example 4. Linear boundary problem

utt − uxx = 0, u|x=0 = u|x=π = 0

This example is a rather wide generalization of the previous one.
Fourier’s general solution on [0, π] for this string is

u =
∞∑

n=0

sinnx(an cosnt+ bn sin nt),

where an, bn are constants, but neither differential nor local: the Fourier
coefficient formula states that

an =
2

π

∫ π

0

u|t=0 sinnx dx, bn =
2

πn

∫ π

0

ut|t=0 sinnx dx(23)

A general form of the symmetry is given by

ϕ =
∞∑

n=0

sinnx [An(a1, b1, . . . , ai, bi, . . . ) cosnt+

Bn(a1, b1, . . . , ai, bi, . . . ) sin nt] .

Here An, Bn are arbitrary functions depending on any finite number of
ai, bj which are given by (23).
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3. Full symmetry algebra for a general control system

3.1. General solution and differential constants. Consider a first
order control system

y′ = F(x,y,v(x)),(24)

where y ∈ Rm is an m-vector of unknown functions and v(x) ∈ Rk in
an k-vector of control functions.
With any fixed choice of controls, (24) comes to (6), where n = 1.

Thus, the general solution of (24) is of the form

y = f(x, c1, . . . , cm,v(x)),(25)

where ci are constants. From (25) it follows that there exists (at least
an implicit) dependence

ci = ci(x,y(x),y
′(x),v(x)), i = 1, . . . ,m(26)

of differential constants ci on x,y(x),y′(x),v(x). Both f and ci are
operators on v. Examples show that these operators may be nonlocal.

3.2. Full symmetry algebra. Technically, equation (24) is an equa-
tion with two types of dependent variables, that is, with y and v. Put
this equation in a form

H(y,v) = y′ − F(x,y,v(x)) = 0.

The symmetry equation in this case is as follows:

(D − Fy)A− FvB|H=0 = 0,(27)

where (A,B) is a symmetry (if it defines a flow, then yτ = A, vτ = B).
Besides, Fy is an m×m matrix with entries (Fi)yj

and Fv is an m× k

matrix with entries (Fi)vj
.

It is convenient to put (27) in a vector form,

(D − Fy,−Fv) ·
(

A
B

)∣∣∣∣
H=0

= 0.(28)

The left factor in this formula is the linearization of H, denoted by
LH = (D − Fy,−Fv).

Theorem 2. Partial derivatives vectors(
fc
0

)
,

(
fv
I

)
(29)

form a full functionally independent basis of symmetries for the equa-
tion (24).
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Proof. In terms of the general solution, the general form of a flow on
the set of solutions of equation (24) is given by the formula

y = f(x, c1(τ ), . . . , cm(τ ),v(x, τ )),(30)

where τ is the parameter of the flow. Since (30) is a solution for any
τ , we have

f ′(x, c1(τ ), . . . , cm(τ ),v(x, τ ))−
F(x, f(x, c1(τ ), . . . , cm(τ ),v(x, τ )),v(x, τ )) = 0

Therefore,

d

dτ
[f ′(x, c1(τ ), . . . , cm(τ ),v(x, τ ))−

F(x, f(x, c1(τ ), . . . , cm(τ ),v(x, τ )),v(x, τ ))] = 0.

It follows that

(31) [(D − Fy)(fc · cτ + fv · vτ)− Fvvτ ]H=0 =

(D −Fy,−Fv) ·
(

fc · cτ + fv · vτ

vτ

)∣∣∣∣
H=0

=

LH

(
fc · cτ + fv · vτ

vτ

)∣∣∣∣
H=0

= 0.

Thus, the general solution of the symmetry equation is (compare
with (17)) (

fc
0

)
· cτ +

(
fv
I

)
· vτ(32)

Here fc = (fi)cj
is an m×m matrix, fv is an m× k matrix and I is the

k × k identity matrix.
To obtain the general form of the symmetry for equation (24) it

remains to notice that

• vτ is an arbitrary vector-function;
• for any fixed v equation (24) coincides with (6), so ciτ are the
components of a vector field on the solution space for the chosen
v. Therefore, ciτ = Ai(c,v) are arbitrary functions;
• ci are differential constants on solution of (24) given by (26).

Finally, we can write down the general form of the symmetry for
(24).

ϕ =

(
fc
0

)
· A(c,v(x)) +

(
fv
I

)
· u(x)(33)
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Here A(c,v(x)) and u(x) are arbitrary proper-sized matrices.

Remark 6. Generally, the solution (25) and its derivatives as well as
expressions of the type A(c,v(x)) or u(x) are operators on v(x). In
the case these are differential operators of order l, we obtain lth order
higher symmetries by the formula (33).

3.3. Examples.

Example 5. A linear scalar equation

y′ = xy + v(x).(34)

The general solution in this case is easy to obtain:

y = e
x2

2

∫ x

x0

e−
t2

2 v(t) dt+ c · e x2

2 .

Thus,

c = y · e−x2

2 − I(x), where I(x) =

∫ x

x0

e−
t2

2 v(t) dt,

is a constant on any solution of (34).
Therefore, from (33) it follows that the general form of the symmetry

in this example is

ϕ =

(
e

x2

2

0

)
· A(y · e−x2

2 − I(x), v(x)) +

(
e

x2

2

∫ x

x0
e−

t2

2 [ • ] dt
1

)
· u(x)

(35)

Here A(c, v(x)) and u(x) are arbitrary operator and function respec-

tively; fv = e
x2

2

∫ x

x0
e−

t2

2 [ • ] dt is an operator acting on u(x) by the
formula (

e
x2

2

∫ x

x0

e−
t2

2 [ • ] dt
)
u(x) = e

x2

2

∫ x

x0

e−
t2

2 u(t) dt

This example shows that, since a general solution f = f(v) of a
control system is an operator on controls, fv in the formula (33) is a
linearization of this operator.
In Theorem 2 the flow of the control function v is arbitrary, so v

is a functional parameter. Suppose it is a subject to some differential
constraint vτ = G(x, v, v′, . . . , v(r)). (This constitutes an alternative
approach since v is then considered as an unknown on par with y, cf.
[6]).
If r is the maximal order of the derivative of v entering this such a

constraint, then yτ can depend on v(s), s ≤ r−1 only, cf. [5]. The next
example is an illustration of this general statement.

Example 6. vτ = v, cτ = 0.
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¿From (28) and (32) we obtain

(D − Fy,−Fv) ·
(

fvv
v

)∣∣∣∣
H=0

= 0.(36)

The highest order derivative of v entering this equation is v′. It
enters linearly and its coefficient is fv+vfvv so it must be zero. Solving
fv + vfvv = 0 we obtain fv = 1/v and yτ = fvv = 1. In particular, it
does not depend on v in a perfect accordance with the result of [5].

References

[1] A. V. Samokhin, Symmetries of Linear Ordinary Differential Equations, Amer.
Math. Soc. Transl. (2), 167 (1995).

[2] A. V. Samokhin, Symmetries of Linear and Linearizable Systems of Differential
Equations, Acta Appl. Math., 56 (1999), 253–300.

[3] P. W. Doyle, Symmetry and Ordinary Differential Constraints, Int. J. of Non-
linear Mech., 34, (1999), 1089–1102

[4] V. N. Chetverikov, On the structure of integrable C-fields Diff. Geom. Appl. 1
(1991), 309–325

[5] A. V. Samokhin, Symmetries of control systems, Banach Center Publications,
33 (1996), 337–342

[6] P.H.M. Kersten, The general symmetry algebra structure of the underdetermined
equation ux = vxx, J. Math. Phys. 32 (1991), 2043–2050

Department of Mathematics, Moscow State Technical University

of Civil Aviation, 20 Kronshtadtsky Blvd., Moscow 117331, Russia

E-mail address: asamohin@online.ru


	Introduction
	Full symmetry algebra for a general nonlinear ordinary differential equation and a system of equations
	General solution and differential constants
	Full symmetry algebra
	Special and invariant solutions
	Examples

	Full symmetry algebra for a general control system
	General solution and differential constants
	Full symmetry algebra
	Examples


