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On differential invariants of geometric structures

R. A. Sarkisyan

Abstract. We prove that if the fibre dimension m of a bundle of geometric
structures exceeds the dimension n of its base, then the number of sufficiently
general functionally independent local differential invariants of the bundle
increases to infinity as the differential degree of these invariants grows. For
m 6 n we describe all but two canonical forms to which every sufficiently gen-
eral geometric structure can be reduced by an appropriate coordinate change
on the base. The results obtained may be generalized.

§ 1. Introduction

In §§ 1–5 of this paper, all objects (functions, manifolds and so on) are assumed to
be real and infinitely differentiable unless otherwise stated. Bundles are assumed
to be locally trivial. The term “smooth” means “infinitely differentiable”.

A typical example of a bundle of geometric objects over an n-dimensional man-
ifold X is the tangent bundle T (X). This bundle may be obtained as follows. The
coframe bundle Rep1(X) over X is a (right) principal bundle for the group GLn of
all real non-singular matrices of order n. We consider the (left) regular represen-
tation of GLn on the real n-dimensional vector space Rn. Then T (X) is obtained
from the direct product Rep1(X)× Rn by identifying points (e, r) ∼ (eg, g−1r) for
all g ∈ G, e ∈ Rep1(X), r ∈ Rn. A bundle of geometric objects is a generalization
of this construction. First, we replace Rep1(X) by the bundle Repq(X) of coframes
of order q. This is a principal bundle for the differential group Gq(n) of order q (and
dimension n = dimX). Second, let α be an action of the connected component
Gq(n)0 of the identity in Gq(n) on a manifold D. Then the bundle P of geomet-
ric objects with base X and generic fibre D is obtained from the direct product
Repq(X)×D by identifying points (e, r) ∼ (eg, g−1r) for all g ∈ G, e ∈ Repq(X),
r ∈ Rn. The sections of P are called geometric objects (structures).

Every choice of a coordinate system F near a point b ∈ X determines an isomor-
phism tF : Db → D, where Db is the fibre of the bundle P → X at b and D is the
generic fibre. If F , G are coordinate system of the same orientation near b,
then the passage from F to G at b determines an element g ∈ Gq(n)0, and the
corresponding transformation α(g) : D → D coincides with tF t

−1
G . One usually

constructs geometric objects from an action of Gq(n) (not Gq(n)0). Then the
transformation rule α of the geometric object is defined for all non-singular coordi-
nate changes. Our definition of the bundle of geometric structures corresponds to
the case when the base X is oriented and the transformation rule is defined only
for orientation-preserving coordinate changes. We denote by V the group of all
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orientation-preserving diffeomorphisms of X. Each element of this group induces a
diffeomorphism of the bundle P of geometric objects over X.

Important examples of geometric objects are Riemannian metrics, and a typical
example of a differential invariant is the scalar curvature. This is a scalar function on
a Riemannian manifold, and its value in any local coordinate system is given by the
same expression depending on the components gij of the metric tensor and its first
and second derivatives ∂gij

∂xk , ∂2gij

∂xk∂xr , where x1, x2, . . . , xn are the local coordinates
on the manifold. More generally, a function of the components of a geometric
object and their derivatives up to order k is a differential invariant of degree k if
the calculation of this function at a given point gives the same result for all local
coordinate systems. All considerations in this paper are local (in a neighbourhood of
a given point), and differential invariants are also defined locally, in a neighbourhood
of a given value of the arguments. A natural domain for a differential invariant is
the manifold of jets of sections of the corresponding bundle of geometric objects.
As a rule, we consider differential invariants only at sufficiently general points of
the jet manifold. We define the notion of a sufficiently general point and prove that
such points form an open dense invariant subset of the corresponding manifold.

The study of differential invariants was initiated in the classical works [1], [2]
and continued in [3], [4]. (An essential part of [4] is explained in § 6 of the text-
book [5].) Differential invariants were also studied in [6]–[8] (including invariants
for finite-dimensional Lie groups).

In § 2 of this paper we prove (Theorem 1) that if P → X is a bundle of geometric
objects such that the dimension of its generic fibre D exceeds that of its base X,
then the number t(k) of functionally independent differential invariants of degree k
at any sufficiently general point tends to infinity as k grows. We also give an
asymptotic lower bound for t(k). The exact value of t(k) for sufficiently general
Riemannian metrics and other concrete geometric objects is given in [9]. At the end
of § 3 we prove Theorem 2, which generalizes Theorem 1. One can also generalize
Theorem 1 to the case of bundles attached to flat G-structures. The author hopes
to return to this question in the future.

In § 5 we consider bundles P of geometric objects such that the dimension m of
their generic fibre Y does not exceed n = dimX. Such manifolds Y are said to be
special, and the corresponding bundles P are called special bundles. To keep the
notation simple, we study only the case n > 2. The case n = 1 is trivial, and one
can easily make the necessary changes for n = 2.

There are two exceptional special manifolds:
a) the 4-dimensional manifold Ygr, which is the Grassmannian of 2-dimensional

planes in a 4-dimensional space with the natural action of GL4;
b) the 3-dimensional manifold Yfl of flags of type (1, 2) in a 3-dimensional space

with the natural action of GL3, whose stabilizers are its Borel subgroups.
Among the other special manifolds, we distinguish 17 types of (non-exceptional)

sample manifolds Y1, . . . , Y17. They determine 17 types of (non-exceptional) special
bundles P1, . . . , P17, which are referred to as sample bundles. The manifolds Ygr

and Yfl determine (exceptional) sample bundles Pgr and Pfl, giving two further
(exceptional) types of sample bundles. The (partial) action of V near a regular
point of any special bundle (exceptional or not) has the same structure as its action
near an appropriate point of some sample bundle.
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It is known that a sufficiently general differential form on X can be locally
reduced to a canonical form by an appropriate choice of coordinate system (Dar-
boux’ theorem). One can also straighten a non-zero vector field on X. A similar
fact holds for sufficiently general sections of any non-exceptional special bundle:
the section reduces to a canonical form (depending on the type) in an appropri-
ate coordinate system on X. This is proved in Theorem 5. The manifolds Ygr,
Yfl and the bundles Pgr, Pfl will be studied in a future paper, where the results
of this paper will be used to prove that there are only finitely many functionally
independent differential invariants at every sufficiently general point of any special
manifold.

In § 4 and § 7 we list all connected Lie subgroups of codimension at most n in SLn

and Gq(n)0 for n > 2. These results are used in § 5.
The results of this paper have applications to a theorem of Tresse [3], which we

hope to publish separately.
The author thanks all those who gave helpful advice in the preparation of this

paper, in particular, V. I. Arnold, A. V. Arutyunov, A. V. Bolsinov, A. S. Demidov,
L. E. Evtushik, A. A. Zaitsev, P. I. Katsylo, A. L. Onishchik and V. L. Popov.
He is also grateful to the participants in the Shafarevich seminar, especially
V. A. Iskovskikh, where these results were reported.

§ 2. Preliminaries

2.1. We introduce the following notation. Let R be the field of real numbers,
Rn the n-dimensional arithmetic space, Rn∗ its dual space and 0 the zero vec-
tor in Rn or Rn∗. The standard coordinates of an element t in Rn are denoted
by t1, . . . , ti, . . . , tn, and the element itself is written as t = (ti). The standard
coordinates of an element t in Rn∗ are denoted by t1, . . . , ti, . . . , tn, and the ele-
ment itself is written as t = (ti). Unless otherwise stated, we assume summation
over repeated upper and lower indices. We denote by R0 the group of positive real
numbers under multiplication.

Let dimX be the dimension of a manifold (or a vector space) X, and let
codim(X,Y ) be the codimension of a submanifold X in a manifold Y (resp. of
a vector subspace X in a vector space Y ). All neighbourhoods are assumed to be
open. The closure of a set W is denoted by W .

By a Lie group we mean a real finite-dimensional Lie group. We denote the
connected component of the identity in a Lie group G by G0, and the centre of G
is denoted by Z = Z(G). A manifold X acted on by a Lie group G is called a
G-manifold. We denote the stabilizer of a point b ∈ X by Gb. The connected
component of the identity in Gb is denoted by G0

b . We write GU for the image
of a set U under the action of G. The Lie algebra of a Lie group G (the tan-
gent space at the identity) is denoted by Lie(G). If H is a Lie subgroup of G,
and H, G are their Lie algebras, then codim(G,H) = codim(G,H). The commu-
tator of elements x and y in a Lie algebra is denoted by [x, y]. We write G/H
for the space of left cosets of G with respect to a subgroup H. As usual, Lie sub-
groups H of G may be non-closed in G. Given an element g of a Lie group G,
we denote by Ad(g) the inner automorphism of Lie(G) induced by the inner auto-
morphism x → gxg−1 of G. Let GLn (resp. SLn) be the group of real matrices
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(resp. the subgroup of unimodular matrices) of order n, and let GLn, SLn be their
Lie algebras. The connected component of the identity in GLn is denoted by GL0

n.
When we write A = (ai

j), the superscript is the row number and the subscript is
the column number of the matrix A. Given a matrix A, we denote the inverse
(resp. transposed) matrix by A−1 (resp. AT ). Let En be the identity matrix of
order n. We write diag(a1, . . . , ai, . . . , an) for the diagonal matrix with elements
ai = ai

i on the diagonal. If ai = a for all i, then we denote this matrix by skn(a).
Let L be a vector space of dimension n. We denote the dual space by L∗. Given a

basis of L, we write t = (ti) for the vector t ∈ L with coordinates (t1, . . . , ti, . . . , tn)
in this basis. Let STn be the simplest (identity) representation of the group GLn on
the space Rn: the action of a matrix A = (ai

j) on a vector t = (ti) ∈ Rn (regarded
as a column) is given by multiplying the column by the matrix. This yields the
column vector (a) = A(t) = At with the coordinates

ai = ai
jt

j

(we recall that this notation implies summation over j).
We consider the representation of GLn on Rn∗ that is dual to the standard

(identity) representation: the action of a matrix A = (ai
j) on a vector t = (ti) ∈ Rn∗

(regarded as a row) is given by multiplying this row by A−1. This yields the row
vector a = A(t) = tA−1. Writing A−1 = (pi

j), we have

aj = tip
i
j .

We denote this representation by ST∗
n.

The direct product of groups (manifolds and so on) G1 and G2 is written G1×G2.
Elements g ∈ G1 ×G2 are identified with pairs (g1, g2), where gi is the projection
of g onto the ith factor. We write g = (g1, g2). The semidirect product of a
normal subgroup G2 and a subgroup G1 is denoted by G1 i G2. We write δi

j for
the Kronecker delta and denote the trace and determinant of a matrix A by SpA
and detA respectively.

The jet of order K (or simply the k-jet) of a function f : X → R at a point b
of a manifold X is the class of all functions that are tangent of order k to f at b.
Clearly, the notion of a jet is independent of the choice of a coordinate system on X
and may also be defined for maps of X to another manifold Y . The jet of order k
of a function (map) f at b is denoted by jkf(b) or fk(b). If we choose a coordinate
system on X, then the jet fk(b) is determined by those terms of the Taylor series
of f at b whose total degree does not exceed k. The homogeneous jet of order k
is determined by the terms of total degree k in the Taylor series. (This notion
depends on the choice of coordinate system on X.)

A map of a set X to a set Y that sends a point b ∈ X to a point d ∈ Y is said to
be pointed and is denoted by (X, b) → (Y, d). The kth order jets of pointed maps
(Rn,0) → (Rn,0) form a Lie group, which is denoted by Gq(n) and called the
differential group of dimension n and order q. The connected component of
the identity in Gq(n) is denoted by Gq(n)0. Clearly, G1(n) = GLn. The tan-
gent space to a manifold X at a point b is denoted by Tb(X), and the tangent
bundle of X by T (X). Let ϕ : X → Y be a map and let g be a function on Y .
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Then the function sending every b ∈ X to g
(
ϕ(b)

)
is said to be induced by ϕ and

denoted by ϕ∗(g).
Let b be a point of a manifold X. As usual, a germ of a function (map and so

on) at b is determined by an infinitely differentiable function (map and so on) f
defined on a neighbourhood Uf of b. By definition, functions f , g determine the
same germ at b if there is a neighbourhood V of b such that Uf ∩ Ug ⊃ V and
f = g on V . The ring of germs at b of all functions on X is denoted by Ob(X)
and called the local ring of the point b on X. Every map ϕ : X → Y induces a
map ϕ∗ : Ob(Y ) → Ob(X).

A chart F = (U, ti) on a manifold X consists of a neighbourhood U ⊂ X and
local coordinates t1, . . . , ti, . . . , tn in U . We denote differentiation with respect
to the ith coordinate by ∂i, and the corresponding tangent vector by ∂

∂fi . The
notation F for a chart always means that we have a coordinate neighbourhood UF

and local coordinates f i on UF . In other words, by simply writing F , we mean
F = (UF , f

i). Similarly, H = (UH , h
i) and so on. We write or(F ) = or(H)(

resp. or(F )=or(X)
)

if the charts F and H (resp. the chart F and the manifold X)
have the same orientation. By writing b ∈ F , we mean that b ∈ UF . We omit the
subscript of U if it is clear which chart on X is meant. A covering of X by charts is
called an atlas on X. A chart F is said to be centred at b (and called a b-chart) if
its local coordinates f i satisfy f i(b) = 0. We always assume that the base X of any
bundle of geometric objects is oriented and include the condition or(F ) = or(X) in
the definition of a b-chart.

Differential forms will often be referred to simply as forms, and 1-forms are differ-
ential forms of degree 1. We shall use the invariance of the sign of a non-degenerate
top-degree form onX under orientation-preserving diffeomorphisms ofX. The fibre
π−1(b) of a bundle π : P → X over a point b is denoted by Pb.

2.2. We shall use the notion of a geometric structure (see the survey [10]). Every
manifold X of dimension n invariantly determines a manifold Repq(X) of coframes
of order q. This is a (right) principal bundle over X with an action of the dif-
ferential group Gq(n) of order q on the fibre. We consider only arcwise-connected
manifolds X. Given a (left) action α : Gq(n)0×D → D of Gq(n)0 on D, we consider
the bundle πD : P = PX(D) → X associated to Repq(X). We call P the bundle of
geometric objects of type D and order q, or simply the D-bundle, and D is called
the generic fibre of P . A section s : X → P defined on some neighbourhood in X
is called a (local) geometric structure or a (local) geometric object.

Remark 1. For any positive integers q, s with q > s, there is a natural projection
g(q, s) : Gq(n)0 → Gs(n)0. We define the exact order of the action α to be the
minimal s such that α is induced by an action of Gs(n)0 on D.

Remark 2. Unless it affects a proof, we shrink X whenever necessary and do not
indicate this explicitly. Hence we shall always assume that all local geometric
objects, functions, coordinate systems and so on are defined on the whole of X.

Definition 1. Let α be an action of a group G on a manifold D. The α-rank
(α-corank) of a point d ∈ D is the dimension (resp. codimension in D) of
the α-orbit of G passing through d. We denote the α-rank and α-corank of d
by rkα(d) and corα(d) respectively. The point d is said to be α-regular if the
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function rkα(d) (equivalently, corα(d)) is constant in some neighbourhood of d.
The function rkα(d)

(
resp. corα(d)

)
is lower (resp. upper) semicontinuous.

Clearly, the orbit of an α-regular point consists entirely of α-regular points. Such
an orbit is said to be α-regular. If a manifold D consists only of α-regular points,
it is said to be α-regular.

Definition 2. Let α be an action of a Lie group G on a manifold D and let d be a
point ofD. A germ of a function f onD with domain Uf 3 d is called an α-invariant
at d (or an α-invariant defined at d) if f is constant on every connected component
of the intersection of D with each orbit of G. Clearly, the set of all α-invariants
at d is a subring of Od(D). We denote this subring by Id(D;α) and call it the
(local) ring of α-invariants (at d). One can also say that Id(D;α) is the local ring
of invariants of the point d with respect to the induced action of the Lie algebra
Lie(G) on X. If β is an action of G on a manifold Y and ϕ : D → Y is a map
commuting with the action of G, then ϕ induces a map ϕ∗ : Iy(Y ;β) → Id(D;α)
(where y = ϕ(d)).

Remark 3. When it is clear which action α is considered, we omit the symbol α in
our notation and use the terms “rank”, “corank”, “regular point”, “ring Id(D) of
invariants” instead of “α-rank”, “α-corank”, “α-regular point”, “ring Id(D;α)
of α-invariants”. This also applies to all the concepts and notation (to be introduced
below) depending on an action α of G on D.

Lemma 1. The regular points of any G-manifold D form a subset W which is
open, dense in D and invariant under the action of G.

Proof. (We recall that G, D and the action of G on D are assumed to be infinitely
differentiable.) Let W 1 be the set of points belonging to orbits of maximal dimen-
sion. Being upper semicontinuous, the dimension of the orbit can only increase
after a small perturbation of the point. Hence the set W 1 is open (and invariant).
Now consider the complement D1 = D −W

1
of the closure of W 1, and let W 2 be

the set of points belonging to orbits of maximal dimension in D1. As for W1, one
can prove that W 2 is open. Putting D2 = D −W

2
and repeating this process, we

get an open invariant set W = W 1∪W 2∪· · ·∪Wn which is dense in D, as required.

Remark 4. If D is an analytic manifold, then W 1 is dense in D. This is because
W 1 is given locally by the condition that some (non-square) matrix of analytic
functions on D must have maximal rank. These functions determine the action
of Lie(G) on the tangent bundle of D. We do not go into details.

2.3. For every bundle π : P → X we have a manifold JkP of k-jets. (This manifold
is formed by the k-jets of local sections s : X → P .) We shall denote the mani-
fold of k-jets of the bundle P = PX(D) → X by Jk

X(D), Jk(D) or Jk, and we
put J0 = P , J−1 = X. For every pair of integers k, s with k > s > −1,
there is a natural projection π(k, s)D

X : Jk
X(D) → Js

X(D). These projections satisfy
the following condition for every triple k, s, d of integers with k > s > d > −1:

π(s, d)D
Xπ(k, s)D

X = π(k, d)D
X .
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We put π(k,−1)D
X = πD

k and π(k, 0)D
X = βD

k . Then πD
k is the projection of Jk

ontoX, βD
k is the projection ofJk ontoP and π(0,−1)D

X is the projection π : P→X.
We have

πD
s π(k, s)D

X = πD
k , βD

s π(k, s)D
X = βD

k , πβD
k = πD

k .

We omit the superscript D and the subscript X in the notation π(k, s)D
X , πD

k , βD
k

whenever it is clear which manifolds X, D are being considered.
The construction of the manifold of k-jets is functorial. In other words, for every

k > 1 and every diffeomorphism ϕ : X → T there is a map ϕ(k)D : Jk
X(D) → Jk

T (D)
with the usual functorial properties. Let W (T ) be the group of diffeomorphisms of
an arbitrary manifold T , V (T ) the subgroup of all orientation-preserving diffeo-
morphisms in W (T ) and Vb(T ) the subgroup of all diffeomorphisms in V (T ) that
fix the point b. We write W , V , Vb instead of W (X), V (X), Vb(X) respectively.
The group V acts on the manifold P = PX(D). For every ϕ ∈ V there is a
diffeomorphism ψ = ψ(D,ϕ) : P → P generating a commutative diagram

ψ : P −−−−→ Py y
ϕ : X −−−−→ X

The diffeomorphism ϕ acts on a section s : X → P by sending it to the section
sϕ : X → P determined by ψs = sϕϕ. Thus generates an action ϕ → ϕ(k)D of V
on the manifolds Jk

X(D), and this action commutes with π(k, s), πk, βk. We put
ϕ(−1)D = ϕ and ϕ(0)D = ψ(D,ϕ).

2.4. The following definitions are analogous to Definitions 1 and 2. The relation
between these definitions will be clarified in § 3.2. We consider differential invariants
(see Definition 4) only locally, in a neighbourhood of a point a ∈ Jk

X(D).

Definition 3. A point a ∈ Jk = Jk
X(D) is said to be V -regular if it has a neigh-

bourhood U such that the dimension d(b) of the V -orbit passing through b is the
same for all b ∈ U . The number rkV (a) = d(a)−n is called the V -rank of a regular
point a. The codimension of the V -orbit passing through a is called the V -corank
of the regular point a and is denoted by corV (a). Clearly, corV (a) = dim Jk−d(a).

Definition 4. Let a be a point of the manifold Jk = Jk
X(D). The germ of a

function f on Jk defined on Uf 3 a is called a differential invariant (defined) at a
(or a V -invariant) if f is constant on every connected component of the intersection
of Uf and every orbit of V . The number k is called the degree of the differential
invariant.

Clearly, the set of all V -invariants at a is a subring of Oa(Jk). It is denoted
by Ia(Jk;V ) and called the (local) ring of differential invariants (of degree k) or
V -invariants (at a). Since the maps π(k, s) : Jk → Js commute with the action
of V , they induce maps π(k, s)∗: Ia(Jk;V ) → Iu(Js;V ), where π(k, s)(a) = u. The
exact degree of a differential invariant f ∈ Ia(Jk;V ) is defined as the minimal s
such that there is g ∈ Iu(Js;V ) with π(k, s)∗(g) = f , where π(k, s)(a) = u. We
shall usually omit the symbol V in notation relating to the action of V when it is
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clear which action is considered. This also applies to all the notation and definitions
below concerning actions of V .

2.5. Let a be a V -regular point of Jk and d a positive integer. Any set of d
differential invariants Fi at a is called an (a; d;V )-set (or a set for short) and is
denoted by F = (F i). We define the rank of the set F at a (denoted by rkF (a)) as
the rank of the Jacobian matrix

(
∂F i

∂zj(a)

)
, where z1, . . . , zs is any local coordinate

system in a neighbourhood of a. Clearly, rkF (a) is independent of the choice of zi.
The set F is said to be functionally independent at the point a if rkF (a) = d.
We always have cor(a) > d for a functionally independent set. A functionally
independent set is said to be complete at a if cor(a) = d.

Suppose that α is an action of a Lie group G on a manifold D and a is an
α-regular point of D. Given an (a; d;α)-set (or simply a set) F , which consists
of d invariants (defined at a) with respect to the action of G on D, we literally
transfer to F the definitions of rank, functional independence and completeness
at a. Clearly, for every V -regular point of Jk and every α-regular point of D, one
can find a complete functionally independent set of invariants defined at this point.

§ 3. Invariants of non-special structures

3.1. As usual, n! = 1·2 . . . n. Let Ck
n = n! /

(
k! (n−k)!

)
be the binomial coefficient.

Using Pascal’s triangle, we get the formula

C0
n + C1

n+1 + · · ·+ Ci
n+i = Ci

n+i+1.

Now we can state the first main result.

Theorem 1. Let P → X be a bundle of geometric structures of type D and order q,
where dimD = m, dimX = n and m > n. Then, for every V -regular point a ∈
Jk

X(D), there are at least t(k) = mCk
n+k −n

(
Ck+q

n+k+q − 1
)

functionally independent
differential invariants of degree k at a. Letting k →∞, we can write

t(k) = (m− n)Ck
n+k − ε(k)Ck

n+k,

where ε(k) tends to zero as k grows. Thus t(k) tends to infinity as k grows. The
number ε(k) depends only on m, n, q and k.

Before proving this, we recall some facts from [10], [11] (see §§ 3.2–3.6 below).

3.2. Given an action α : Gq(n)0×D→D of Gq(n)0 on D and a positive integer k,
one can canonically define a manifold Dk (the k-extension of the manifold D) and
an action αk (the k-extension of the action α) of the group Gq+k(n)0 on Dk in such
a way that there are canonical identifications

γ(k)D
X : Jk

X(D) ≈ PX(Dk).

We recall from § 2.2 that the bundle PX(Dk) is associated with the principal coframe
bundle Repq+k of order q + k by means of the action αk. We put D0 = D. Thus
the fibre Jk

b over any point b ∈ X is non-canonically identified with Dk. This
construction is functorial in the following sense.
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1. For all integers k, s with k > s > 0, the natural projection of groups g(k, s):
Gk(n)0 → Gs(n)0 commutes with the actions αk, αs of these groups on Dk, Ds

under the natural projection µD(k, s) : Dk → Ds. We put µD(k, 0) = µD
k .

2. The natural projection r(k + q, s + q) : Repk+q(X)→ Reps+q(X) of coframe
spaces induces a projection pD

X(k, s): PX(Dk+q) → PX(Ds+q) of the associated
bundles. The identifications γ(k)D

X and γ(s)D
X transform pD

X(k, s) to the projection
π(k, s)D

X . We shall omit the superscript D and subscript X in this notation if it is
clear which manifolds X, D are being considered.

3. A diffeomorphism ϕ : X → T induces diffeomorphisms ϕ(R, k) : Repk(X) →
Repk(T ), ϕ(k)D : Jk

X(D) → Jk
T (D), ψ(Dk, ϕ) : PX(Dk) → PT (Dk) which com-

mute with the identifications γ(k) and projections r(k, s), πD(k, s), µD(k, s) for
the appropriate values of k, s. For example,

γ(k)D
T ϕ(k)D = ψ(Dk, ϕ)γ(k)D

X .

3.3. Let the D-bundle P = PX(D) be determined by an action of the differential
group Gq(n)0 on the generic fibre D. We take any point a ∈ Jk = Jk

X(D) and put
b = πk(a) ∈ X, G = Gq+k(n)0. It is known that any choice of a chart F = (U, f i)
on X determines a trivialization

trF : Jk
U → Dk × U.

Here Jk
U is regarded as the open subset π−1

k (U) of Jk. Now we choose a b-chart F
on X such that the functions f i of F determine a diffeomorphism (denoted by f)
of the neighbourhood U onto a neighbourhood in Rn. We denote the open ball of
radius 1 in Rn by E1 and assume that f(U) = E1. We denote by νi the projection
of the direct productDk×U onto the ith factor and put trF (a) = t, w = ν1(t) ∈ Dk.
It is clear that b = ν2(t), t = (w, b) and f(b) = 0. Let O(a) (resp. O1(a)) be
the orbit of a in Jk under the action of V (resp. Vb). The orbit O1(a) lies in the
fibre Jk

b of the bundle Jk over b. We put π−1
k (U) ∩ O(a) = OU (a). Moreover, put

trF

(
OU (a)

)
= O(a)∗ and trF

(
O1(a)

)
= O1(a)∗. For every vector r ∈ E1, it is easy

to construct an orientation-preserving diffeomorphism E1 → E1 which equals the
identity map near the boundary of E1 and equals the shift by r near the point 0.
Combining this diffeomorphism with the map f−1, we get a diffeomorphism of U
that can be extended to X. Hence we easily obtain the following assertions.

1) We have O(a)∗ = O1(a)∗ × U , whence OU (a) is a trivial bundle over U .
2) The orbit O(a) is a locally trivial bundle over X.
3) Under the trivialization trF , the action of Vb on the fibre Jk

b is transformed
to an action αk of G = Gq+k(n)0 on the k-extension Dk of the generic fibre D.

4) The V -regularity of a ∈ Jk is equivalent to the αk-regularity of w. If a is
V -regular, then we have rk(a) = rk(w) and cor(a) = cor(w). Thus, although the
point w depends on the choice of trivialization, the αk-regularity of w is independent
of this choice. (In what follows we often use the term “regularity” for V -regularity
and αk-regularity.)

5) If R′ is the set of αk-regular points in Dk, then the set RU of V -regular points
in Jk

U is given by RU = tr−1
F (R′ × U). Since R′ is open and dense in Dk, the set

RU is open and dense in Jk
U . Hence the set of all V -regular points in Jk is open

and everywhere dense.
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Now suppose that a is V -regular. Then we easily get the following assertions.
1′) The map trF induces an isomorphism i∗ of the ring Ia(Jk;V ) of V -invariants

onto a subring of Ot(Dk × U). We denote this subring by It. Each element of It
is determined by the germ at t of a function S(y, x), where y ∈ Dk, x ∈ X
and S is constant on the orbits of V0. However, we easily see that S = S(y)
depends only on y ∈ Dk and, therefore, S is determined by its restriction s to the
fibre Dk. The function s is determined in an appropriate neighbourhood T of
the point w ∈ Dk and is constant on the connected components of the intersection
of T with the orbits of G on Dk. Hence it is clear that the map S → s determines an
isomorphism i∗ : Ia(Jk;V ) → It ≈ Iw(Dk;αk) of the ring of differential invariants
at a onto the ring of αk-invariants at w for the action of G on Dk.

2′) Suppose that F = (F i) is an (a; d;V )-set (see § 2.5), i∗(F i) = Si and si

is the restriction of Si to Dk. Then the germs of the si are αk-invariants at w.
If s is the (w; d;αk)-set formed by them, then rkF (a) = rks(w). Hence the set F
is functionally independent (complete) at t if and only if the set s is functionally
independent (complete) at w.

3′) If we choose another b-chart H on X instead of F , then trH(w) = (wH , b)
determines another point wH in Dk. We have wH = gw, where the element g ∈ G
is determined by the (k + q)-jet of the transition map from F to H at b. The set
of elements wH corresponding to all b-charts H is the orbit Gw = O1(a)∗ of the
G-action αk on Dk. This orbit depends only on a (and is independent of the choice
of F ). For any choice of F , the trivialization trF sends O1(a) to O1(a)∗. Thus there
is a natural one-to-one correspondence between M and Mb, where M is the set of
orbits of the G-action αk on Dk and Mb is the set of Vb-orbits on the fibre Jk

b

of the bundle Jk over any point b ∈ X. In what follows we denote the corre-
spondence M → Mb by λb. Let MJ be the set of all V -orbits on Jk. If X is
connected, then, by sending each orbit in MJ to its restriction to the fibre Jk

b , we
get a bijection of MJ onto Mb over any point b ∈ X.

Thus we see that to describe the differential invariants at the regular points of
Jk

X(D), it suffices to describe the αk-invariants at the regular points of Dk. This is
the problem we wish to consider.

3.4. Let F be an arbitrary chart on X containing the point b. We preserve the
notation introduced at the beginning of § 3.3. The manifold Dk decomposes canon-
ically into the direct product

Dk = D ×D1 × · · · ×Dk. (1)

We write the corresponding decomposition of any element d ∈ Dk as d =
(d0, d1, . . . , dk). Equation (1) corresponds to the splitting of the jet f : Rn → D into
a sum of homogeneous summands. This splitting is compatible with the projections
µ(k, s), that is, µ(k, s)(d) = (d0, d1, . . . , ds). The spaces Ds are vector spaces of
dimensions mCs

n+s−1.
We consider the projection µk : Dk → D and put µk(wF ) = w0

F . Choose any
chart Q = (N, yc), 1 6 c 6 m, on D with N 3 w0

F . Then the inverse image
µ−1

k (N) = Nk of the neighbourhood N is given by the direct product

Nk = N ×D1 × · · · ×Dk. (2)
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This decomposition induces a coordinate system (y) on the neighbourhood Nk:

(y) = (yc, yc
j1 , . . . , y

c
j1,...,jk

), 1 6 c 6 m, 1 6 js 6 n, 1 6 s 6 k.

For s > 0 the coordinates yc
j1,...,js

are global coordinates on Ds.
We put Nk(F ) = tr−1

F (Nk × U) ⊂ Jk. Combining the coordinates f i of the
chart F on X and the coordinates (y) on Nk and using the trivialization trF , we
construct the coordinate system π∗k(f i), (yF ) on Nk(F ), where

(yF ) = (yc
F , y

c
F j1 , . . . , y

c
F j1,...,jk

), 1 6 c 6 m, 1 6 js 6 n, 1 6 s 6 k.

Here we write yc
F j1,...,js

=yc
j1,...,js

trF . The subscript F indicates the dependence on
the chart F . We omit this subscript whenever F is fixed or this dependence is iness-
ential. To simplify the notation, we write f i instead of π∗k(f i). We assign weight 0 to
the coordinates (yc

F ) and symbolically write yF 0 = (yc
F ). We assign weight s to each

coordinate yc
F j1,...,js

and denote the set of all coordinates of weight s symbolically
by yF s =

(
yc

F j1,...,js

)
.We also write (yF )=(yF 0, . . . , yF k).One similarly defines the

weights and symbolic notation for the coordinates (y) on Nk. Let Qk(F ) be
the chart on Jk consisting of the neighbourhood Nk(F ) and the coordinate system
(f i), (yF ) and let Qk be the chart on Y k consisting of the neighbourhood Nk and
the coordinate system (y).

3.5. If k = 0, we write simply N , Q, Q(F ) and N(F ) = (N,F ) instead
of N0, Q0, Q0(F ) and N0(F ). The coordinates of a point a ∈ Jk in
the chart Qk(F ) are denoted by (ai

−1, a
c, ac

j1
, . . . , ac

j1,...,jk
). We shall write

a = (ai
−1, a

c, ac
j1
, . . . , ac

j1,...,jk
), where we put f i

(
πk(a)

)
= ai

−1. We also
symbolically write a = (a−1, a0, . . . , ak). The corresponding notation d =
(dc, dc

j1
, . . . , dc

j1,...,jk
) = (d0, d1, . . . , dk) is used for points d ∈ Nk.

3.6. We recall that the differential group G = Gq+k(n)0 consists of (k+q)-jets at 0
of orientation-preserving pointed diffeomorphisms (Rn,0) → (Rn,0). The product
ϕk+q(0)ψk+q(0) of the jets of ϕ and ψ is defined as the jet θk+q(0) of the map
θ = ϕ(ψ). As a topological space, G is a direct product of manifolds,

Gk+q(n)0 = G1 × · · · ×Gk+q, (3)

corresponding to the splitting of jets into homogeneous summands. Coordinates
on G1 are given by the linear part of the jet, whence G1 is identified with GL0

n.
We note that the Gs are not subgroups of G for s > 1, but the Gs × · · · × Gk+q

are normal subgroups of G for any s. We put N = N(k + q) = G2 × · · · × Gk+q.
(Later we shall see that the group N is nilpotent.) The group G may be written as
a semidirect product

G = Gq+k(n)0 = GL0
n iN. (4)

This decomposition is called the algebraic Levi decomposition. The genuine Levi
decomposition into a semisimple factor S and a soluble radical R is obtained as
follows. Let

GL0
n = SLn×Z0 (5)
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be the standard decomposition of GL0
n into the direct product of SLn and the

connected component Z0 of the centre. (Here Z0 is the set of scalar matrices with
positive entries.) Then the soluble radical R = R(k + q) of G is the semidirect
product of the subgroup Z0 of GL0

n = G1 and the normal subgroup N :

R = Z0 iN. (6)

The semidirect factor S in the Levi decomposition of G is the subgroup SLn of G1.
Thus the Levi decomposition of G is given by

G = Gq+k(n)0 = SLn iR. (7)

Coordinates on Gs are given by the Taylor coefficients gi
j1,...,js

of degree s. This
enables us to identify Gs with a vector space of dimension λ(i) = nCs

n+s−1. We
symbolically denote the resulting coordinate system on G by (g1, . . . , gk+q). The
corresponding coordinate system on the Lie algebra G(k + q) = G of the group
Gq+k(n)0 is denoted by

(
bij1 , . . . , b

i
j1,...,jq+k

)
, or symbolically by (b1, . . . , bk+q). The

decomposition (3) induces the decomposition

G = G1 × · · · × Gk+q, (8)

where Gi is the tangent space to Gi at the identity. We note that the Gi are not
subalgebras for i > 1, but the Gi×· · ·×Gk+q are normal subalgebras of G. We use the
notationN = N (k+q) = G2×· · ·×Gk+q. Put Z = Lie(Z0), R = R(k+q) = Lie(R).
Clearly, G1 = GLn, and we have decompositions of Lie algebras corresponding to
the decompositions of groups

GLn = SLn ×Z, (9)
R = Z iN . (10)

We also have the Levi decomposition

G = SLn iR (11)

corresponding to the decomposition (7), and the algebraic Levi decomposition
corresponding to (4):

G = G(k + q) = GLn iN . (12)

The structure of the group Gs(n)0 and its Lie algebra G(s) will be described in
more detail later. Now we calculate the dimensions of the group Gk(n) and the
space Dk.

Lemma 2. If dimD = m and dimX = n, then dimGk(n) = n(Ck
n+k − 1) and

dimDk = mCk
n+k.

Since the dimensions of Gs and Ds are known (see above), the proof follows
directly from (1), (3) and Pascal’s triangle (see § 3.1).

Lemma 3. For any fixed q and n, the quotient of Ck
n+k and Ck+q

n+k+q tends to 1
as k →∞.
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Proof. We have

Ck
n+k

Ck+q
n+k+q

=
(n+ k)! (k + q)!n!
n! k! (n+ k + q)!

=
(k + 1) . . . (k + n)

(q + k + 1) . . . (q + k + n)
,

and each of the n quotients (k + i)/(q + k + i) tends to 1 as k →∞.

Proof of Theorem 1. Remark 1′) of § 3.3 reduces the consideration of t(k) to the
analogous question for the action αk. Near a regular point w ∈ Dk, the number
t(k) of functionally independent αk-invariants is estimated as follows. All orbits in
the neighbourhood of w have the same dimension d (and d 6 dimGk+q(n)). The
invariants are determined by germs of functions that are constant on the orbits.
If we take a submanifold S that passes through w and is transversal to the
orbits near w, then the invariants are determined by their restrictions to S. Hence
we get

t(k) > dimDk − dimGk+q(n).

We put Ck+q
n+k+q/C

k
n+k = p(k). Then

t(k) > mCk
n+k − n

(
Ck+q

n+k+q − 1
)

> mCk
n+k − nCk

n+kp(k)

= Ck
n+k

(
m− np(k)

)
= (m− n)Ck

n+k + nCk
n+k

(
1− p(k)

)
.

The theorem is proved.

3.7. Theorem 1 may be generalized to the case when we consider scalar invari-
ants of several (at least two) geometric objects. More precisely, suppose that the
differential group G = Gq(n)0 acts on several manifolds D1, . . . , Dr. We fix a
tuple K =

(
k(1), . . . , k(r)

)
of positive integers and consider the fibred product

JK = Jk(1)(D1) × · · · × Jk(r)(Dr) over X. The group V of orientation-preserving
diffeomorphisms of X acts on all factors of this fibred product. Hence we have
a diagonal action of V on JK . The differential invariants and V -regular points
are defined in this case in the same way as in Definitions 3 and 4. The number
k = max

(
k(j), 1 6 j 6 r) is called the degree of the differential invariant. We put

mj = dimDj , s = dimZ, m =
∑r

j=1mj .

Theorem 2. For every V -regular point a ∈ JK(D) there are at least

t(K) =
r∑

j=1

mjC
k(j)
n+k(j) − n

(
Ck+q

n+k+q − 1
)

functionally independent differential invariants of degree k defined at a.

In particular, take the set K = (k, k, . . . , k). It follows that

t(K) = (m− n)Ck
n+k − ε(K)Ck

n+k,

where ε(K) tends to zero as k grows. Hence t(K) tends to infinity as k grows. For
this set K, the number ε(K) depends only on m, n, q and k.
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Proof. Consider the manifold DK = Dk(1)×· · ·×Dk(r), which is the direct product
of k(j)-extensions of Dj . Choose a coordinate system on X (shrinking X if neces-
sary). This yields a trivialization JK ≈ DK ×X. Since dimDk(j) = mjC

k(j)
n+k(j), we

complete the proof by a dimension count as in the proof of Theorem 1.

Definition 5. Let G = Gk(n)0. A G-manifold D is said to be non-special
(resp. special) if dimD > n (resp. dimD 6 n). A bundle P = PX(D) of geo-
metric objects is said to be non-special if the dimension m = dimD of the generic
fibre exceeds the dimension n = dimX of the base. If m 6 n, then P is said to be
special.

§ 4. Subgroups of small codimension in Gq(n)

4.1. In this section we list all connected Lie subgroups of GL0
n whose codimension

does not exceed n. As mentioned in § 1, we consider only the case n > 2.
Let σ be the outer automorphism A → (AT )−1 of the group GL0

n. We assume
that Rn is endowed with the standard basis ei and GL0

n acts on Rn by the repre-
sentation STn. We distinguish the following connected subgroups of SLn.

1) The subgroup T1 consists of all matrices that multiply the vector e1 by a
positive number (depending on the matrix).

2) The subgroup T2 = σ(T1) consists of all matrices that multiply the form x1

by a positive number (depending on the matrix). The codimensions of T1 and T2

in SLn are equal to n− 1.
3) The subgroup T3 consists of all matrices that fix the vector e1.
4) The subgroup T4 = σ(T3) consists of all matrices that fix the form x1. The

codimensions of T3 and T4 in SLn are equal to n.

Remark 5. Each of the Ti contains the subgroup SLn−1 that fixes the vector e1 and
the complementary space spanned by e2, . . . , en. It is well known that no two
of the subgroups Ti are conjugate for n > 2. If n = 2, then T1 is conjugate to T2,
and T3 is conjugate to T4. Clearly, the subgroups Ti are connected and closed,
T3 is a normal subgroup of T1, and T4 is a normal subgroup of T2.

We shall use the following fact, which will be proved in § 6.

Assertion 1. Every proper connected Lie subgroup H ⊂ SLn of codimension at
most n in SLn is conjugate by an appropriate inner automorphism either to one of
the subgroups Ti, 1 6 i 6 4, or (for n = 4) to the subgroup P24 consisting of all
matrices that fix the plane spanned by e1, e2, or (for n = 3) to the Borel subgroup
B3 (of upper or lower triangular matrices) of SL3.

In what follows we assume that n > 2. We put Lie(Ti) = Ti.

Lemma 4. If n > 3, then T3 is the unique Lie subgroup in T1 of codimension 1. If
n = 3, then T1 contains precisely one (up to conjugacy) subgroup of codimension 1
other than T3. This is the (non-normal) subgroup B3 of upper triangular matrices.

Proof. We give a proof in terms of Lie algebras. The matrices in T1 have block
form

(
λ
0

a
B

)
, where λ is a number, a is a row of length n, B is a square matrix of

order n−1 and trB+λ = 0. We consider the Levi decomposition T1 = SLn−1 iR,
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where the factor SLn−1 is determined by the conditions a = 0, λ = 0, and the
ideal R is generated by the ideal R′ (defined by the equations λ = 0, B = 0) and
the one-dimensional subalgebra spanned by the matrix diag(1−n, 1, . . . , 1). Let H
be a subalgebra of codimension 1 in T1 and H = S iB its Levi decomposition. By
Malcev’s theorem ([12], Ch. 6, Theorem 3), the subalgebra S is conjugate by an
element of T1 to a subalgebra of SLn−1. Therefore we can assume that S ⊂ SLn−1.
Consider the projection θ of T1 to the subalgebra SLn−1 induced by the Levi
decomposition. We put θ(H) = H′ and θ(B) = B′. Clearly, H′ = S i B′ is the
Levi decomposition of H′.

Case 1. Suppose that H′ = SLn−1. Then S = SLn−1 ⊂ H. The subalgebra H∩R′

is of codimension at most 1 and, therefore, contains a non-zero vector h. Since
the action of SLn−1 by conjugation on R′ is isomorphic to STn−1 (that is, to the
ordinary action of SLn−1 on Rn−1), it is clear that conjugation of any non-zero
vector h by elements of the subgroup SLn−1 yield the whole subalgebra R′. Hence
H contains the subalgebra SLn−1 iR′ = T3.

Case 2. Suppose that H′ has codimension 1 in SLn−1. This is possible only for
n = 3. Then H′ is conjugate by an element of SLn−1 to the subalgebra of upper
triangular matrices, and H = θ−1(H′) is conjugate to the Borel subalgebra B3 of
upper triangular matrices. The lemma is proved.

4.2. Consider the decompositions (5) and (9): GL0
n = SLn×Z0 and GLn =

SLn + Z. Let ν1 and ν2 be the projections of GL0
n onto SLn and Z0 respec-

tively. The same notation is used for the projections of GLn onto SLn and Z. Let
H be a proper connected Lie subgroup of GL0

n of codimension at most n and let H
be its Lie algebra. We consider H1 = ν1(H) ⊂ SLn. Three cases may arise.

1◦. The kernel of the projection ν1 : H → H1 contains Z. Then the codimension
of the subalgebra H1 in SLn equals the codimension of H in GLn.

2◦. The projection ν1 : H → H1 is an isomorphism, and H is contained in SLn.
3◦. The projection ν1 : H → H1 is an isomorphism, and H is not contained

in SLn. Then we put H2 = H ∩ SLn. Clearly, H2 is a normal subalgebra of
codimension 1 in H1 and H. It corresponds to the subgroup H2 = H ∩ SLn.

We have codim(H, GLn) = codim(H1, SLn) + 1 in cases 2◦ and 3◦.
In case 1◦ the subgroup H is conjugate to one of the following subgroups: Ti×Z0

for an appropriate i, 1 6 i 6 4, or P24 × Z0 (for n = 4), or B3 × Z0 (for n = 3).
Hence the subgroup H is closed.

In case 2◦ we have either H = SLn, or H is conjugate to T1 or T2. Hence the
subgroup H is closed.

In case 3◦ it is clear that H1 cannot coincide with SLn (for otherwise the sub-
algebra H1, which is isomorphic to SLn, has a non-trivial homomorphism onto the
one-dimensional subalgebra Z, which is impossible). Then codim(H, GLn) = n.
(The case codim(H, GLn) 6 n − 1 is impossible since it follows that codim(H1,
SLn) 6 n− 2 contrary to § 4.1.) Using § 4.1 again, we can assume (after conjugat-
ing by an appropriate inner automorphism of the group SLn) that

(i) either H1 = T1,
(ii) or H1 = T2.
One can easily deduce from this that H is closed (we do not give a proof).
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4.3. Consider case (i). Since H2 is normal in H1, we see from Lemma 4 that
H2 = T3, H1 = T1, H2 = T3. Since codim(H,GLn) = codim(T3,SLn) = n, the
embedding SLn → GL0

n induces a diffeomorphism i: Rn − 0 = SLn /T3 ≈ GL0
n /H

of homogeneous spaces, and i is compatible with the action of SLn. (Here Rn

is endowed with the standard action STn.) Let us calculate the action on
Rn obtained in this way from the action of Z0 on GL0

n /H. To do this, we
consider the one-parameter subgroup t in T1 consisting of the elements
t(s) = diag(s−1, s, 1, . . . , 1), where s ∈ R0. Since ν1 : H → H1 is an isomorphism,
there is a one-parameter subgroup h of H such that ν1 is an isomorphism of h
onto t. Since t does not lie in T3, we see that h does not lie in SLn, whence ν2
isomorphically maps h onto Z0. Thus the map ν2ν

−1
1 : t → Z0 is an isomorphism.

Clearly, this map is given by diag(s−1, s, 1, . . . , 1) → skn(sa) for an appropriate real
number a = a(h) 6= 0.

We consider an element h(s) in h such that ν1
[
h(s)

]
= t(s) and put ν2

[
h(s)

]
=

z(s) = skn(sa). Then h(s) = t(s)z(s). Every vector x ∈ Rn − 0 corresponds to a
coset gT3, where the matrix g ∈ SLn is determined by the condition ge1 = x. The
correspondence i sends the coset gT3 to the coset gH, and the action of z(s) sends
gH to

z(s)gH = gz(s)H = gt−1(s)h(s)H = gt−1(s)H.

Since gt−1(s) ∈ SLn, we see that z(s)gH is the image (under the diffeomorphism i)
of the coset gt−1(s)T3 corresponding to the vector sx ∈ Rn − 0. Hence the matrix
skn(s) acts on the vector x as multiplication by sd, where d = 1/a. We note that
the resulting map h→ d is a one-to-one correspondence between the one-parameter
subgroups h of T1Z

0 with ν1h = t and the real numbers d 6= 0. It is also clear that
H = hT3. Hence we may assign the subgroup hd and the coset H1d = hdT3 to every
real d 6= 0. We also put H10 = T3×Z0. This subgroup was already encountered in
case 1◦ in § 4.2.

We denote the homogeneous space GL0
n /H1d by Rn

d . The spaces Rn
d with dif-

ferent d are pairwise inequivalent as GL0
n-spaces. (By definition, an equivalence

r : D1 → D2 of GL0
n-spaces is a diffeomorphism commuting with the action of

GL0
n.) Indeed, consider an equivalence r : Rn

d → Rn
b as a map of SLn-spaces and

identify Rn
d with Rn − 0 by the above diffeomorphism i. If we define r(0) = 0,

then r maps Rn = (SLn /T3) ∪ 0 to itself. Every G-map of a homogeneous space
G/H to itself sends a coset gH to a coset gnH, where n is a fixed element of the
normalizer of H. In our case, the vector x ∈ Rn − 0 = SLn /T3 is represented
by the matrix g, and the vector r(x) is represented by the matrix gn. Since the
coordinates of x are equal to the entries of the first column of g and the normalizer
of T3 (being equal to T1) consists of matrices whose first column is zero except for
the first entry, we see that r(x) is just the product of x and this non-zero entry.
Hence r is multiplication by a scalar in Rn. Clearly, this map does not commute
with the action of Z0 if b 6= d. Hence, in case (i), the subgroup H is conjugate to
one of the subgroups H1d (for d 6= 0).

Remark 6. The action of GL0
n on Rn

d is described in § 5 below (see Type XII). The
subgroup H1d is the stabilizer of the column vector e1 = (1, 0, . . . , 0)T under this
action.
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4.4. Case (ii) reduces to case (i) by applying the outer automorphism σ. This
also yields that H is conjugate to one of the subgroups H2d (for d 6= 0), where
H2d = σ(H1d). If d = 0, then we get one of the subgroups of case 1◦ in § 4.2. The
corresponding action of GL0

n is described in § 5 below. The subgroup H2d is the
stabilizer of the row vector e1 = (1, 0, . . . , 0) under this action.

Thus we have the following theorem.

Theorem 3. If n > 2, then every connected Lie subgroup of GLn of codimension
at most n is closed and conjugate by an inner automorphism to one and only one
Lie subgroup in the following list :

1) the group GL0
n of codimension 0;

2) the group SLn of codimension 1;
3) the group H1 = T1 × Z0 of codimension n− 1;
4) the group H2 = T2 × Z0 of codimension n− 1;
5) the group T1 of codimension n;
6) the group T2 of codimension n;
7) the group H1d of codimension n, where d is any real number;
8) the group H2d of codimension n, where d is any real number;
9) the group P24 × Z0 of codimension 4, n = 4;
10) the group B3 × Z0 of codimension 3, n = 3.
(We recall that Z0 is the connected component of the identity in the centre

of GLn, the subgroups Ti are introduced in § 4.1, and the subgroups H1d and H2d are
defined in § 4.3 and § 4.4 respectively. All codimensions are with respect to GLn.)

4.5. Here we describe all connected subgroups of codimension at most n in the
groups Gq(n), where q > 2 and n > 2.

Theorem 4. 1) If n > 2, then the group G2(n) contains two non-conjugate con-
nected closed subgroups of codimension n. Every connected subgroup of codimension
at most n either is conjugate to one of these subgroups, or is the full pre-image of a
similar subgroup of GLn (that is, a connected closed subgroup of GLn of codimension
at most n) under the natural projection g(2, 1) : G2(n) → G1(n) = GLn.

2) If q > 3 and n > 2, then every connected subgroup of codimension at most n
in Gq(n) is the full pre-image of a similar subgroup of G2(n) with respect to the
projection g(q, 2) : Gq(n) → G2(n).

The connected subgroups of codimension at most n in the group G1(n) = GLn

have already been described in Theorem 3.

Proof. We consider the following representation ρi of the group GLn on the space
T 1′

i of real tensors with one upper and i lower indices: every tensor t =
(
tuj1,...,ji

)
is

mapped to the tensor ρi(h)t = f =
(
fu

j1,...,ji

)
defined by

fu
j1,...,ji

= hu
s t

s
a1,...,ai

ga1
j1
ga2

j2
. . . gai

ji
. (13)

Here g = (ga
j ), h = (hu

s ) and gh = E. Let G′
i be the subspace of T 1′

i formed
by tensors that are symmetric in the lower indices. We denote the restriction of ρi

to G′
i by ρ′i.
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Lemma 5. The representation ρ′i is the sum of two irreducible invariant subspaces :

G′
i = V 1′

i + V 2′
i . (14)

Here the space V 1′
i consists of all tensors

(
tuj1,...,ji

)
such that the convolution of

the upper index with the last lower index is the zero tensor (then the same holds for
any lower index since the tensor is symmetric in the lower indices):

V 1′
i =

{(
tuj1,...,ji

)
|
(
tuj1,...,ji−1,u

)
= 0

}
.

The subspace V 2′
i is the unique invariant complement of V 1′

i . The existence
of V 2′

i follows since GLn is reductive, and the uniqueness follows since V 1′
i and

V 2′
i are irreducible and inequivalent. The restriction of ρ′i to V 2′

i is isomorphic
to the representation of GLn on the space Ti−1 of symmetric tensors (tj1,...,ji−1)
with i − 1 lower indices. There is a projection map λ′i : G

′
i → Ti−1 com-

muting with the action of GLn. This map is given by convolution : if t =
(
tuj1,...,ji

)
and g = λ′i(t) = (gj1,...,ji−1), then gj1,...,ji−1 = tuj1,...,ji−1,u. The kernel of λ′i equals
V 1′

i , and the restriction of λ′i to V 2′
i is an isomorphism of V 2′

i onto Ti−1. The dimen-
sion of V 2′

i is equal to Ci−1
n+i−2. The dimension of V 1′

i is equal to nCi
n+i−1−C

i−1
n+i−2.

Lemma 5 remains valid if we replace the group GLn by SLn.
We omit the proof of Lemma 5 since it is standard: it is mentioned in [12],

Table 5, Russian p. 312.

4.6. The following Levi decompositions of the group G = Gq(n)0 and its algebra
G were constructed in § 3.6 (we put k = 0 in formulae (4)–(12)):

G = GLn iN, G = SLn iR, R = R(q) = Z0 iN,

G = GLn iN , G = SLn iR, R = R(q) = Z iN ,
N = N(q) = G2 × · · · ×Gq, N = N (q) = G2 × · · · × Gq.

(15)

Using the definition of multiplication in G, we see that every element h ∈ GL0
n

is represented by a linear map h(x) = hs
jx

j with constant coefficients hs
j , and

conjugation by h sends each element t = (tuj1,...,ji
) ∈ Gi to the element f = hth−1

whose coordinates fu
j1,...,ji

are given by (13). It follows that the manifold Gi and its
tangent space Gi at the identity are invariant under conjugation by GL0

n, and the
inner automorphism Ad(h) maps every element b = (buj1,...,ji

) ∈ Gi to the element
d = du

j1,...,ji
given by the analogous formula

du
j1,...,ji

= hu
s b

s
a1,...,ai

ga1
j1
ga2

j2
. . . gai

ji
.

Hence, replacing each element b ∈ Gi by the set of its coordinates buj1,...,ji
and

considering the tensor b′ ∈ G′
i with these coordinates, we get an identification

χ : Gi ≈ G′
i that transforms the action ρi of GL0

n by inner automorphisms on Gi to
the action ρ′i on G′

i. We also get a decomposition

Gi = V1
i × V2

i (16)

induced by the decomposition (14).
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Put λi = λ′iχ. It is known that every element b ∈ Gi may be represented by the
germ (at the origin 0) of some vector field B on Rn with B(0) = 0. Namely,
the element b = (buj , . . . , b

u
j1,...,ji

) is tangent to the one-parameter family of germs of
transformations given by

yu(ε) = xu + ε
(
buj x

j + buj1,j2x
j1xj2 + · · ·+ buj1,...,jq

xj1 . . . xjq
)
.

Here ε is the parameter of the family, and dy/dε|ε=0 is the germ (at 0) of the
vector field B corresponding to the element b. We see that homogeneous elements
bs correspond to germs Bs that are given by homogeneous polynomials of degree s:

Bu
s = buj1,...,js

xj1 . . . xjs .

One can also verify that the Lie bracket of G corresponds to the commutator of
vector fields. It follows that [Gk,Gi] ⊆ Gi+k−1 for i > 2 and k > 2. Hence the Gi

form a grading of the Lie algebra N = G2 × · · · × Gq. In particular, it follows that
the algebra N is nilpotent.

The following lemma will be used only when i = 2.

Lemma 6. We have [Gk,Gi] = Gi+k−1 for i > 2 and k > 2.

Proof. Consider decomposition (16) of the space Gi+k−1. For simplicity, we put
V1

i+k−1 = V1, V2
i+k−1 = V2 and W = [Gk,Gi]. Since W is invariant with respect

to Ad(GLn), it suffices to prove that the projections W1, W2 of W to V1, V2 are
non-zero.

Let us calculate the commutator of the vector fields X1 = (x1)i ∂
∂x1 and Y1 =

x1(x2)k−1 ∂
∂x1 . By definition, the commutator of the vector fields X =

∑
j X

j ∂
∂xj

and Y =
∑

j Y
j ∂

∂xj equals

Z = [X,Y ] =
∑
j,p

(
∂Xp

∂xj
Y j − ∂Y p

∂xj
Xj

)
∂

∂xp
.

Hence Z1 = [X1, Y1] = (i− 1)(x1)i(x2)k−1 ∂
∂x1 . The vector field Z1 corresponds to

a tensor b = buj1,...,ji+k−1
∈ Gi+k−1 which is symmetric in the lower indices and is

given by the following conditions:

b1j1,...,ji+k−1
=

(i− 1)i! (k − 1)!
(i+ k − 1)!

if precisely i elements of the set j1, . . . , ji+k−1 are equal to 1 and the remaining
k − 1 elements are equal to 2, and buj1,...,ji+k−1

= 0 otherwise. Clearly, the image
λi+k−1(b) under the convolution map λi+k−1 : Gi+k−1 → Ti+k−2 is non-zero. Hence
W2 is non-zero.

Now we consider X2 = (x2)i ∂
∂x1 and Y2 = (x2)k ∂

∂x2 . Then Z2 = [X2, Y2] =
i(x2)i+k−1 ∂

∂x1 . The vector field Z2 corresponds to the tensor d = du
j1,...,ji+k−1

∈
Gi+k−1 such that d1

2,...,2 = i and all other components of d are equal to zero. Clearly,
λi+k−1(d) = 0. Hence d belongs to W1. The lemma is proved.
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We now return to the proof of Theorem 4. To prove assertion 1) of the theorem,
we put G = G2(n)0 and describe the multiplication in G in terms of the coordinates
(gu

j , g
u
jk) introduced in § 3.6. An element g, which corresponds to the 2-jet of a

pointed orientation-preserving diffeomorphism ψ : (Rn,0) → (Rn,0), is determined
by the Taylor coefficients of the map ψ = (ψu) up to order 2:

yu = ψu(x) = gu
j x

j + gu
jkx

jxk + o(x2).

Here we assume that ψ maps the space Rn
x of standard variables (xu) to the space

Rn
y of standard variables (yu).
Let ϕ : (Rn

y ,0) → (Rn
z ,0) be a map from Rn

y to the space of the standard variables
(zu):

zu = ϕu(y) = hu
j y

j + hu
jky

jyk + o(y2),
where h ∈ G is the element corresponding to ϕ. By definition, the product t = hg
is the 2-jet of the map θ = ϕ(ψ) at the point 0. We have

zu(x) = hu
s

(
gs

jx
j + gs

jkx
jxk

)
+ hu

sk

(
gs

jx
j
)(
gk

rx
r
)

+ o(x2)

=
(
hu

s g
s
j

)
xj +

(
hu

s g
s
jk + hu

srg
s
jg

r
k

)
xjxk + o(x2).

Thus t = (tuj , t
u
jk), where

tuj = hu
s g

s
j , tujk = hu

s g
s
jk + hu

srg
s
jg

r
k. (17)

We shall sometimes denote the elements h = (hu
j , h

u
jk) ∈ G by h =

(
H,hu

jk

)
, where

H is the non-singular matrix (hu
j ).

It is easy to see that the subgroups GL0
n and R in the algebraic Levi decompo-

sition of G are identified with the sets of elements of the form (H, 0) and (E, hu
jk)

respectively. We shall write (hu
jk) instead of (E, hu

jk) and use the notation H or (hu
j )

for (H, 0), where H = (hu
j ). The normal subgroup R and the corresponding sub-

algebra R are Abelian. Therefore the exponential map exp is an isomorphism of the
vector spaceR and the groupR. Clearly, if b = (bujk) ∈ R, then exp(b) = h is the ele-
ment h = (hu

jk) with hu
jk = bujk. The action of GL0

n by conjugation on R corresponds
to the action Ad on R. Therefore, putting exp(V1

2 ) = V 1 and exp(V2
2 ) = V 2 in

the decomposition (16), we decompose R into the sum of its subgroups V 1 and V 2,
which are normal in G. It follows from Lemma 5 that dimV 1 = n2(n + 1)/2 − n,
dimV 2 = n.

We denote the natural projection of G onto Afn = G/V 1 by φ : G → Afn. The
group Afn has dimension n2 + n and is an extension of the n-dimensional vector
space T1 = R/V 1 by the group GL0

n. Every element p ∈ Afn is uniquely represented
as

p = Aa, (18)
where A ∈ GL0

n, a ∈ T1. Using formula (17) forH = (hu
j ) ∈ GL0

n and t = (tujk) ∈ R,
we get

H−1tH =
(
fu

p t
p
srh

s
ih

r
k

)
, (19)

where H−1 = (fu
p ). Given t = (tujk) ∈ R, we take the functions aj = tuju as

the coordinates of the element φ(t) in T1. Then (19) yields that the action of
H = (hu

j ) ∈ GL0
n on a = (aj) ∈ T1 is given in these coordinates by

H−1aH = c = (cj), cj = auh
u
j .
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4.7. To introduce coordinates in Afn, we consider the decomposition (18) of any
element p ∈ Afn and take the set (A, a) as the coordinates of p. Here A = (hu

j ) is a
non-singular matrix, and the element a ∈ T1 is regarded as a row vector of length n
using the coordinates introduced on T1. We identify elements of the group Afn with
such pairs (A, a). The image φ(h) of an element h = (hu

j , h
u
jk) ∈ G is calculated as

follows.
1) By (17), the algebraic Levi decomposition of h is given by h = At, where

A = (hu
j ) ∈ GL0

n, the matrix D = (du
j ) is inverse to A, t = (tujk) ∈ R and

tujk = du
sh

s
jk.

2) The element φ(h) corresponds to (A, a), where

a = (aj) = tuju = du
sh

s
ju. (20)

The group operation in Afn is given by

(A1, a1)(A2, a2) = (A1A2, a1A2 + a2).

Here and in what follows, a1A2 is the product of a row and a matrix. The group
Afn is the affine group of an n-dimensional vector space.

We consider the space Rn∗ with the following right action of Afn: if t = (ti) is a
row in Rn∗ and p = (A, a) ∈ Afn, then

tp = tA+ a. (21)

Replacing p by p−1 = (A−1,−aA−1), we get the corresponding left action η′ of Afn
on Rn∗:

pt = tp−1 = tA−1 − aA−1. (22)

Under the projection φ, this action induces an action η of the group G on Rn∗.

4.8. The stabilizer H ′
1 of any vector in Rn∗ under the action η′ has codimension

n in Afn. Hence the full pre-image H1 of H ′
1 in G also has codimension n. For any

hyperplane L of dimension n − 1 in Rn∗, the elements of Afn that leave L fixed
form a subgroup H ′

2 of codimension n. The full pre-image H2 of H ′
2 in G also has

codimension n in G.
Thus, for q = 2, we have found two closed connected subgroups of codimension

n in G = G2(n)0, H1 and H2.
Now we take an arbitrary q > 2. Let H be a connected subgroup of G = Gq(n)0

that does not contain Gq (see § 4.6), let H = Lie(H) be its Lie subalgebra and let
(15) be the Levi decomposition of G. Then

1) the intersection W = H ∩ Gq is a vector subspace of codimension at most n
in Gq,

2) the subalgebra S in the Levi decomposition H = S i B of H is conjugate
by an element of G to a subalgebra of SLn (Malcev’s theorem: see [12], Ch. 6,
Theorem 3). Therefore we can assume that S ⊂ SLn.

Consider the projection θ of the algebra G onto the subalgebra GLn along N
according to the algebraic Levi decomposition (15). Put θ(H) = H′ and θ(B) = B′.
Clearly, H′ = S i B′ is the Levi decomposition for H′, and the codimension of H′

in GLn does not exceed n.



328 R. A. Sarkisyan

By Theorem 3 we have the following cases for H′.
1. Suppose that H′ = SLn or H′ = GLn. Then S = SLn and inner automor-

phisms of SLn leave W fixed. By (16), Gq = V1
q + V2

q . If W 6= 0, then Lemma 5
yields that W must coincide with either V1

q or V2
q . By the same lemma, we have

codim(V1
q ,Gq) > n and codim(V2

q ,Gq) > n, with equality only for q = 2. Hence
this case is possible only when q = 2, S = SLn and W = V2

q . In this case, H is
conjugate to the subgroup H1.

2. Suppose that H′ 6= SLn and H′ 6= GLn. Using the list in Theorem 3, we see
that codim(H′, GLn) must be equal ton orn−1. Since we are assuming that Gq 6=W,
it follows that codim(H′, GLn) = n − 1 and codim(W,Gq) = codim(H1,N ) = 1,
where H1 = HnN . Therefore the list in Theorem 3 shows that we have either
H ′ = T1×Z0 or H ′ = T2×Z0 (after an appropriate conjugation of H by an element
of GL0

n). In both cases, S contains the subgroup SLn−1 that leaves the coordinate
x1 (in the representation STn) fixed and transforms the set of coordinates x2, . . . , xn

to itself.
Let Rn = R1 + Rn−1 be the corresponding decomposition of Rn into subspaces

invariant under SLn−1.
The subgroup T = H ∩ SLn is contained in Ti = H ′ ∩ SLn, i = 1, 2. Since

codim(T,SLn) 6 n, we have codim(T, Ti) 6 1. If n > 3, then the proof of Lemma 4
shows that T contains either T3 (for i = 1) or T4 (for i = 2). If n = 3, then
there are additional possibilities: after an appropriate conjugation by an element
of SL2 ⊆ S ⊆ H, the subgroup T may contain the group of upper (for i = 1) or
lower (for i = 2) triangular matrices. For any n, the subgroup T contains either s1
(if i = 1) or s2 (if i = 2), where

s1 =

1 1 0
0 1 0
0 0 En−2

 , s2 =

1 0 0
1 1 0
0 0 En−2

 .

This will be used later.
1. We start with the case q = 2. In this case N = G2. The representation ρ2

of GLn on G2 equals Sym2[ST∗
n] ⊗ STn, where Symi stands for the ith symmetric

power (of a representation or vector space) and where

Sym2[ST∗
n] = Sym2

(
R1∗) +

(
R1 ⊗ Rn−1

)∗ + Sym2
(
Rn−1∗).

Hence we can write

G2 = Sym2
(
R1∗)⊗ R1 + Sym2

(
R1∗)⊗ Rn−1 +

(
R1 ⊗ Rn−1

)∗ ⊗ R1

+
(
R1 ⊗ Rn−1

)∗ ⊗ Rn−1 + Sym2
(
Rn−1∗)⊗ R1 + Sym2

(
Rn−1∗)⊗ Rn−1.

(23)

We denote the ith term of this decomposition by Vi. All the Vi are invariant
under the subgroup SLn−1 of S. The space V1 is one-dimensional. The spaces
V2 and V3 are irreducible (with respect to SLn−1) and (n − 1)-dimensional. By
Lemma 5, the space V6 is the direct sum of two irreducible invariant subspaces
of dimension n − 1 and (n − 1)2n/2 − n + 1 respectively. It is well known (and
easily proved) that V5 is irreducible and has dimension n(n− 1)/2 while V4 is the
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sum of two irreducible subspaces, V1
4 and V2

4 . The space V4 consists of tensors
t = (tujk) ∈ G2 whose only non-zero components are tu1k with 2 6 u 6 n, 2 6 k 6 n.
The subspace V1

4 has dimension (n− 1)2 − 1 and is defined by the extra equation

n∑
u=2

tu1u = 0. (24)

The subspace V2
4 is one-dimensional. It is spanned by any tensor t with t212 =

t313 = · · · = tn1n and all other components vanishing. Since codim(W,G2) = 1 and
W is invariant, we have only two possibilities (we recall that n > 2).

1) W = V2 + V3 + V4 + V5 + V6. It is easy to verify that this case is realized for
H = H2.

2) W = V1 + V2 + V3 + V2
4 + V5 + V6. Then W is given by one equation (24)

in G2.
Let us prove that case 2) is impossible.
We claim that equation (24) is not invariant under the action of s1 and s2.

Indeed, given t = (tujk) ∈ G2, we put

ρ2(s1)[t] = f, ρ2(s2)[t] = g.

We have f2
12 = t212 − t211, f i

1i = ti1i for i > 3 and g2
12 = t112 − t122 + t212 − t222, gi

1i =
ti1i − ti2i for i > 3. The condition (24) is not preserved by these transformations.
This proves assertion 1) of Theorem 4.

2. Now we consider the case when q > 2. We recall thatN = N (q) = G2×· · ·×Gq.
If the projection of W onto G2 along G3×· · ·×Gq does not coincide with G2, then W
contains G3 × · · · × Gq because codim(W,N ) = 1. Hence this projection coincides
with G2. (We recall that W does not contain Gq.) Consider

W ∩ (Gq−1 × Gq) = W1.

Clearly, the codimension of W1 in (Gq−1 × Gq) equals 1. The projection of W1

onto Gq−1 along Gq coincides with Gq−1 (for otherwise the kernel of this projection
contains Gq contrary to the assumption that Gq 6= W). We have [G2,Gq−1] = Gq by
Lemma 6. Then [W1,W] = Gq because the value of [w, u] for w ∈ W1 and u ∈ W is
determined by the values of w mod Gq and u mod G3× · · · ×Gq respectively. Since
W is a subalgebra, we get Gq ⊂ W contrary to the assumption that Gq 6= W. The
theorem is proved.

§ 5. Local classification of special structures

5.1. We put G = Gq(n)0 and recall that a G-manifold D is said to be special
if dimD 6 n.

Let D be any G-manifold, w a regular point of D and Lw the tangent subspace
to the G-orbit through w. It is known that the family of all Lw is an involu-
tive distribution in an appropriate neighbourhood W of the point w. This means
that the dimension of Lw is constant in W and the commutator of any two vec-
tor fields with values in the family of Lw takes its values in this family. Applying
Frobenius’ theorem and shrinking W if necessary, we see that W is diffeomorphic
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to the direct product S×A of the submanifoldsS,Apassing throughw and, moreover,
the image of every point z ∈ S under the action of an appropriate neighbourhood
of the identity in G equals z × A. We consider the subset M =

⋃
z∈S(z,G0

z) of
the direct product S × G, where G0

z is the connected component of the identity
in the stabilizer of z.

Definition 6. We say that G0
z depends smoothly on z if the Lie algebra Gz =

Lie(Gz) depends smoothly on z. This in turn means that every regular point
of D possesses a neighbourhood W such that the subalgebra Lie(Gz) has a basis
X1(z), . . . , Xt(z) depending smoothly on z ∈W .

Lemma 7. The group G0
z depends smoothly on z ∈ S. The subset M is a smooth

submanifold of S ×G.

Proof. This follows from the smooth dependence of the Lie subalgebra Gz = Lie(Gz)
on z, which is proved as follows.

Let e1, . . . , ef be tangent vectors to G at the identity that form a basis of the Lie
algebra G = Lie(G). Their images under the action of G on D determine f vector
fields on W : X1(z), . . . , Xf (z), where z ∈W . We may assume that the rank of the
point z ∈ W is constant and equals r. Then there are f − r independent relations
between the Xj(z). For z ∈ S, every relation

a1(z)X1(z) + · · ·+ af (z)Xf (z) = 0

determines a vector a1(z)e1+ · · ·+af (z)ef belonging to Gz. Since the Xi(z) depend
smoothly on z, we can choose f −r independent relations depending smoothly on z
(shrinking W if necessary). This completes the proof.

5.2. Consider the bundle θ: Y = G×S/M → S obtained from the direct product
G×S→ S by taking the quotient of each fibre G×z over z ∈ S by G0

z. Then Y
has a natural structure of a smooth manifold such that θ becomes a smooth map
with epimorphic differentials and the fibrewise action of G on Y is smooth. This
can be justified as follows. There is a smooth map ν : G × S → D sending
a point (g, z) to gz ∈ D. For every z ∈ S ⊂ D, the restriction of ν to the fibre
G × z maps G onto the homogeneous space G/Gz by the formula g → gz. It is
known that this map has a smooth local section G/Gz → G in a neighbourhood
of z. Therefore G contains a smooth submanifold L (depending on z) which passes
through the identity e and is mapped diffeomorphically onto its image in G/Gz.
Then the differential at e× z of the restriction of ν to L× S is an isomorphism of
the tangent spaces Te×z(L× S) and Tz(D). Here Te×z(L× S) is the tangent space
to L×S at the point e×z ∈ L×S and Tz(D) is the tangent space to D at z. Hence
we can shrink L to L1 and S to S1 (preserving the conditions e ∈ L1, z ∈ S1) in
such a way that ν is a diffeomorphic (that is, bijective) map of S1 × L1 onto its
image in D.

Let µ : G × S → Y be the map sending each point (g, z) to the point of Y
determined by the coset gG0

z of the fibre G × z over z. Left multiplication by
elements of G determines actions of G on G×S and Y that are compatible with µ.
Consider the map ε from Y to D that sends each coset gG0

z of the fibre G×z over z
to the point gz ∈ D. The map ε is well defined, commutes with the action of G
and satisfies ν = εµ. Hence µ maps L1 × S1 bijectively onto µ(L1 × S1) = W ′,
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and εmapsW ′ bijectively onto ν(S1×L1) = W . By definition, the smooth structure
on W ′ is transferred from L1 × S1. The union of the shifts gW ′ of W ′ over all
z ∈ S and g ∈ G coincides with Y . The smooth structure of gW ′ is transferred
from W ′. This determines a smooth structure on Y such that θ : Y → S is a smooth
projection, the action of G on Y is smooth and ε(Y ) is an open subset of D which
is invariant under the action of G and contains the orbit passing through w.

We define a section γ : S → Y of the projection θ : Y → S by sending z ∈ S
to γ(z) = µ(e × z) ∈ Y . The construction of Y shows that, for every point
z ∈ ε(Y ) ⊂ D, the point γ(z) ∈ Y has a neighbourhood U ⊂ Y such that ε is a
diffeomorphism of U onto its image. Since ε commutes with the action of G on Y
and D, we get a local isomorphism of the action of G on Y in a neighbourhood
of γ(z) and the action of G on D in a neighbourhood of z.

The resulting covering ε : Y → ε(Y ) ⊂ D is called an unfolding (or an
S-unfolding) of D. Clearly, the covering ε induces coverings εk : Y k → Dk. Any
points y ∈ Y k and d ∈ Dk with εk(y) = d have neighbourhoods that are diffeomor-
phically mapped to each other by εk.

Lemma 8. Let ε1 : Y1 → D1 ⊂ D and ε2 : Y2 → D2 ⊂ D be unfoldings of a regular
G-manifoldD. Take points c1∈Y1 and c2∈Y2 such that ε1(c1)=ε2(c2)=c. Then one
can find an open G-invariant neighbourhood D3 ⊂ D1 ∩D2 of the point c such that
the coverings Y ′

1 = ε−1
1 (D3) and Y ′

2 = ε−1
2 (D3) are related by a G-isomorphism χ

with χ(c1) = c2.

Proof. Consider open neighbourhoods U1, U2 and U of the points c1, c2 and c
respectively such that the restrictions ε̄1 and ε̄2 of ε1 and ε2 to U1 and U2 are
diffeomorphisms onto U . The map χ̄ = ε̄−1

2 ε̄1 is a diffeomorphism of U1 onto U2.
Consider any point u1 in U1 and its image u2 = χ̄(u1). Then ε1(u1) = ε2(u2) = u.
Clearly, Gui

= G0
u by the construction of Yi. This means that χ̄ may be extended

to a G-invariant map χ : Y ′
1 → Y ′

2 , where Y ′
1 = GU1 and Y ′

2 = GU2. It is clear that
χ is an isomorphism and Y ′

i = εi(D3), where D3 = GU . This proves the lemma.

Remark 7. Using the space Y of an unfolding ε : Y → D, we may construct a bundle
πY : P = PX(Y ) → X of geometric objects with generic fibre Y . The covering ε
determines a covering εX : PX(Y ) → PX(D) and a map εk

X : Jk(Y ) → Jk(D) of
the corresponding jet spaces. The bundle PX(Y ) is called an unfolding of the
bundle PX(D). Clearly, for every regular point d ∈ PX(D) there is an unfolding
ε : Y → D such that d lies in the image of εX : PX(Y ) → PX(D). Moreover, any
points y ∈ PX(Y ) and d ∈ PX(D) with εX(y) = d have neighbourhoods U and
V such that εX is a diffeomorphism of U onto V commuting with the action of
the group V of orientation-preserving diffeomorphisms. For every pair of points
y ∈ Jk(Y ) and d ∈ Jk(D) with εk

X(y) = d one can similarly find neighbourhoods
U and V such that εk

X is a diffeomorphism commuting with the action of V .

Remark 8. The usual example of a non-closed one-parameter subgroup of the torus
shows that D may contain orbits whose intersection with S is dense. In the
S-unfolding of D, there is precisely one orbit through each point of S.

Lemma 9. Suppose that the assumptions of § 5.1 hold and all subgroups G0
z of the

family M are conjugate to a fixed subgroup K of G. Then one can locally choose a
conjugating element that depends smoothly on z ∈ S.
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Proof. The subgroup K is obviously closed. The set of all subgroups in G conjugate
to K forms the homogeneous space T = G/N(K), where N(K) is the normalizer
of K. The family G0

z determines a smooth path in T . It is well known that
the bundle G → G/H is locally trivial for every Lie group G and every closed
subgroup H. This proves the lemma.

Remark 9. Under the assumptions of § 5.1 and Lemma 9, let g(z): S → G be
a smooth function that conjugates G0

z to K in a neighbourhood of w, that is,
g(z)G0

zg
−1(z) = K. Replacing S by the manifold S0 consisting of all points(

z, g−1(w)g(z)z
)
, where z ∈ S, we can assume that the family G0

z is constant
in a neighbourhood of the point w ∈ S. More precisely, the following lemma holds.

Lemma 10. Consider a map θ : Y → S admitting a section γ : S → Y and an
action of the Lie group G on Y such that each fibre of the projection θ is precisely
one orbit of the action of G. Suppose that the stabilizer Gy of any point y ∈ Y is
conjugate to the same connected subgroup K of G. Let w ∈ γ(S) be an arbitrary
point. Then there is a neighbourhood S0 ⊂ S of θ(w) such that the manifold Y1 =
θ−1(S0) admits an isomorphism ν : Y1 → S0 × Y0 onto the direct product of S0 and
Y0 = G/Gw commuting with the action of G. Here Y0 is the homogeneous space
of G by the stabilizer Gw of w.

Remark 10. Since S can be taken arbitrarily small, we assume in what follows that
ν is an isomorphism between Y and S × Y0.

Proof of Lemma 10. By Lemma 9 there is a neighbourhood S0 of the point θ(w)
such that we have a smooth function g(z) : S1 → G conjugating Gz to K on the set
S1 = γ(S0):

g(z)Gzg
−1(z) = K. (25)

Let S2 be the image of S0 under the map u ∈ S0 → g−1(w)g
(
γ(u)

)
γ(u). Then

the stabilizers Gp are equal to Gw for all points p of the manifold S2. Indeed,
we have p = g−1(w)g

(
γ(u)

)
γ(u) for some point u ∈ S0. Applying the formula

Gax = aGxa
−1 to x = γ(u) and a = g−1(w)g

(
γ(u)

)
, we get

Gp = g−1(w)g
(
γ(u)

)
Gγ(u)g

−1
(
γ(u)

)
g(w).

Since K = g
(
γ(u)

)
Gγ(u)g

−1
(
γ(u)

)
by formula (25), we have Gp = g−1(w)Kg(w) =

Gw by the same formula. We now define a map S0 × Y0 → Y1 by (p, gGw) → gp.
This map is well defined. We easily see that its inverse is the desired map ν.

5.3. From now until the end of this section, we fix an oriented manifold X, a point
b ∈ X and an orientation of X. Using this orientation, we can define the sign of a
non-degenerate form of top degree on X. Up to the end of the section, we consider
the bundles πY : P = PX(Y ) → X of geometric structures whose generic fibre Y is
an S-unfolding of a special G-manifold D near a regular point.

Let θ : Y → S and γ : S → Y be the corresponding projection and section (see
§ 5.2). We shall define the property of a section s : X → P of being “sufficiently
general” in a neighbourhood of the point b ∈ X, introduce the notion of a canonical
form for such sections and show how to reduce a sufficiently general section to
canonical form.
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We use the following notation. Let F = (UF , f
i) and H = (UH , h

i) be charts
on X. We write J(H/F ) for the Jacobian matrix (∂hi/∂f j) of the transition map
from F to H. Choose a chart Q = (T, yc) on Y . A geometric object (section)
s : X → P is given in the chart (Q,F ) by a map sF : X → Y , that is, by m = dimY
real functions yc = sc

F (f i) of f1, . . . , fn. The functions sc
F are called the components

of s in the chart (Q,F ). We say that a section s : X → P , which is defined in a
neighbourhood of b, is representable in a chart V of Y if sF (b) ∈ V . The dependence
on Q is not indicated in this notation because, by definition, the reduction of s to
canonical form is done by choosing an appropriate chart F on X (depending on s)
with or(F ) = or(X) while the chart Q on Y remains fixed independently of s. A
chart on X is said to be canonical (for the section s) if s has a canonical form in
this chart. Let sc

F (b) be the value of the function sc
F at the point b ∈ X, that is,

sc
F (f i) for f i = f i(b). The vector field e and the differential form ω are written in

the chart F on X as eF = ei
F (∂/∂f i) and ωF = ωFi df

i.

Thus, let s : X → P be a section defined in a neighbourhood of the point b ∈ X.
We start with the case q = 1 (first-order structures). Then G is just the connected
component of the identity in the group GL0

n of real matrices of order n = dimX.
Theorem 3 yields a list of all possible stabilizers for the actions of G on a manifold
Y with m = dimY 6 n. We consider all items in this list except for the cases 9)
and 10), which will be studied in a future paper. Every case consists of one or
several of the types stated below.

Type I (the action of G on Y is trivial). Then D = Y , and w = s(b) determines
a point of Y which does not depend on the choice of the coordinate system on X.
Replacing Y by an appropriate neighbourhood of w, we may assume that Y is
covered by an atlas of only one chart Q = (Y, yc). Choose a chart F 3 b on X
with or(F ) = or(X). The section s is given in the chart (Q,F ) by m functions
yc = sc

F (f i), where 1 6 c 6 m, 1 6 i 6 n. We may write sc
F (f i) = sc(f i) since

the components sc
F are independent of the choice of F for this type. A section

s of this type is said to be sufficiently general if the Jacobian matrix (∂sc/∂f i),
1 6 c 6 m, 1 6 i 6 n, has rank m at the point b. If m < n, we can assume
without loss of generality that det(∂sc/∂f i)(b) 6= 0 for 1 6 c 6 m, 1 6 i 6 m.
Then the implicit function theorem enables us to choose a b-chart H on X in such
a way that si = λi + hi for 1 6 i 6 m and f i = hi for m + 1 6 i 6 n. Here
the λi = si(b) are constants independent of hi. This yields the canonical form for
m < n. If m = n, then we also have another canonical form si = λi + hi for i < n,
sn = λn − hn. These two canonical forms are inequivalent since the differential
forms dh1 ∧ · · · ∧ dhn and −dh1 ∧ · · · ∧ dhn cannot be transformed to each other by
an orientation-preserving diffeomorphism.

In what follows, we abbreviate the notation by using the term b-sections for
sections that are sufficiently general at the point b.

Type II (the dimension of the G-orbits in Y equals 1). The stabilizer G0
w of any

point w ∈ Y is equal to SLn. By Lemma 10 we have a G-isomorphism

ν : Y → S × R0. (26)
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It should be noted that GL0
n /SLn = R0. Here dimS = m − 1. We define a

canonical coordinate y0 on R0 by the condition

y0(g mod SLn) = det g. (27)

Choose a chart F 3 b on X with or(F ) = or(X). Given a section s : X → P ,
we consider the trivialization trF corresponding to the chart F and consider
ν
(
trF

[
s(b)

])
= wF ∈ S × R0. The projection wS of wF onto the factor S is

independent of the choice of F . Replacing S by an appropriate neighbourhood of
the point wS , we may assume that S is covered by an atlas of only one chart with
coordinates (y1, . . . , ym−1). Then Y is covered by one chart Q with the coordinate
system y0, y1, . . . , ym−1. The resulting chart on Y is said to be adapted. Given an
adapted chart Q on Y , we say that the chart (Q,F ) on P is adapted to F , or sim-
ply adapted. We easily see that the component s0F (f i) of the section s in the chart
(Q,F ) satisfies s0F > 0. When F is changed, this component is transformed as a
differential n-form on X while the components s1F (f i), . . . , sm−1

F (f i) are functions
on X. Therefore we write sF = (ωF ,Ψ1, . . . ,Ψm−1), where ωF = aF df

1∧· · ·∧dfn,
aF > 0 and Ψi = Ψi(f1, . . . , fn).

Definition 7. A section s is called a b-section (or is said to be sufficiently general
at the point b) if rk(∂Ψc/∂f i)(b) = m − 1, 1 6 c 6 m − 1, 1 6 i 6 n. This
definition is easily seen to be independent of the choice of an adapted chart Q on Y
and a chart F on X.

Let us bring the b-section s to a canonical form. There is no loss of generality
in assuming that det(∂Ψc/∂f i)(b) 6= 0 for 1 6 c 6 m − 1, 1 6 i 6 m − 1. Then
we can find a chart H on X such that Ψi = hi for 1 6 i 6 m − 1, hi = f i for
m− 1 6 i 6 n− 1 and hn = ±fn, where the sign of fn is chosen to guarantee that
or(H) = or(X). We write

ωH = aH dh1 ∧ · · · ∧ dhn.

Clearly, aH > 0. Now take a b-chart G on X such that gi = hi−λi for i < n, gn =
Ψ(h1, . . . , hn). Here Ψ is a function to be defined and the λi = Ψi(b) are constants.
Clearly, J(G/H) = ∂Ψ/∂hn. Choose Ψ using the condition ∂Ψ/∂hn = aH . This
yields the canonical form si = gi + λi for i < m, s0 = 1.

We now construct the coordinates for all further types of Y using the same
scheme as for Type II. The only difference is that we generally obtain an atlas on Y
because some types of sample manifolds do not admit a global coordinate system.
We start by defining a class of atlases on Y which are said to be adapted (for this
type). If we choose an adapted atlas Q on Y , then we again obtain that every choice
of a chart F on X determines a trivialization trF : P = PU (Y ) → Y × U . Hence
we get an atlas on P , which is said to be adapted to F (or simply adapted) and is
denoted by (Q, F ). Coordinates are said to be adapted if they are determined by
an adapted atlas.

We consider the case when the dimension of G-orbits in Y equals n− 1. There
are two subcases: dimY = n and dimY = n− 1. We first consider the case when
dimY = n.
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Take a point w ∈ Y . In our case, dimS = 1. We claim that the subgroups G0
y

(with any y ∈ Y ) are conjugate to the same subgroup K ⊂ G, which equals either
H1 or H2 in Theorem 3. Indeed, we may assume that y ∈ γ(S). Consider the
Grassmannian manifold Γ of all vector subspaces of codimension n−1 in GLn. Let
Γ1 (resp. Γ2) be the connected subset of Γ consisting of all subalgebras conjugate
to the Lie algebra H1 (resp. H2) of the group H1 (resp. H2). The intersection of Γ1

and Γ2 is empty. Assigning the Lie subgroup G0
γ(z) to every point z ∈ S, we see

that the Lie algebras of G0
γ(z) form a connected curve in Γ, and the family G0

γ(z) is
uniquely determined by this curve. However, if a connected curve is contained in
Γ1 ∪Γ2, then it is actually contained in one of the sets Γi. Hence we encounter two
cases, K = H1 and K = H2. Remark 10 enables us to assume that Y = S×GL0

n /K
in both cases.

Type III (K = H1). In this case, Sn−1 = GL0
n /K is the set of non-zero vectors

(up to a positive scalar factor) in the space Rn of the representation STn (see § 2.1).
One can identify Sn−1 with a sphere. There is a natural projection Rn−0 → Sn−1

which sends each non-zero vector of Rn to the ray spanned by this vector. This
projection commutes with the action of G and is denoted by µ. Elements of Sn−1

are called spherical vectors. Consider the G-space M = S × (Rn − 0) with a trivial
action of G on S. Let θ : M → Y = S × Sn−1 be equal to the identity map on S
and to µ on Rn−0. Then θ commutes with the action of G and, therefore, induces
an epimorphism

θX : L = PX(M) → P = PX(Y )

of the corresponding bundles over X.
We denote the standard coordinates in Rn by t1, . . . , ti, . . . , tn. Shrinking S, we

can assume that S is endowed with a global coordinate v (since dimS = 1). Regard
(v, ti) as an adapted coordinate system on M and let Q be the corresponding global
chart. Then we can identify every section s : X → L with a pair s = (Ψ, e), where
Ψ is a scalar-valued function on X and e is a vector field without zeros on X. It
follows that, for every chart F = (f i) on X, the section s is given in the chart
(Q,F ) (which is adapted to F ) on L by the functions v = Ψ(f), ti = ei(f), where
ei(f) are the coordinates of the vector field e in the base ∂/∂f i.

Let s̄ be a section of the bundle P → X. Since θX is epimorphic, there is a section
s : X → L with θX(s) = s̄. Then we shall say that s̄ represents s. The function Ψ
in the identification s = (Ψ, e) is uniquely determined by s̄, and the vector field e
is determined up to multiplication by any positive function. We define a spherical
vector field ē to be the set of all vector fields obtained from e by multiplication by
any positive function, and we say that e represents ē.

Thus a section s̄ : X → P may be identified with a pair s̄ = (Ψ, ē), where Ψ is a
scalar function and ē is a spherical field on X. Let e be a vector field representing ē.

Definition 8. A section s̄ = (Ψ, ē) : X → P is called a b-section if

∂Ψ
∂e(b)

6= 0. (28)

In other words, the derivative of Ψ at b in the direction of e is different from zero.
(In particular, it follows that e(b) 6= 0.)
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We easily see that this condition for s̄ to be sufficiently general at b is independent
of all choices involved: the choice of an adapted chart Q on L, the choice of any
chart F on X and the choice of a representative e for ē.

Let s̄ = (Ψ, ē) be a b-section. We know that the vector field e is straightened
in some chart H 3 b on X. This means that the expression eH of e in H has
components e1H = 1, ei

H = 0 for i > 1. Replacing hn by −hn if necessary, we may
also assume that or(H) = or(X).

Now we define a chart G onX as follows. We put gi = hi−hi(b) for 2 6 i 6 n−1,
and g1 = Ψ−Ψ(b) (resp. g1 = −Ψ + Ψ(b)) if ∂Ψ/∂e(b) > 0 (resp. ∂Ψ/∂e(b) < 0).
Finally, we put gn = ±

(
hn−hn(b)

)
, where the sign is chosen so that or(H) = or(G).

Then H is a canonical b-chart for s̄ (see the definition of a b-chart in § 2.1), and
the section s takes the following form in the atlas (Q,H). If ∂Ψ/∂e(b) > 0, then
v = g1 +λ1, where λ1 = Ψ(b), and if ∂Ψ/∂e(b) < 0, then v = −g1 +λ1; t2 = · · · =
tn = 0, t1 > 0. In § 6 below we shall construct an adapted atlas on Y and give
a canonical form of the section s̄ for this and further types of sample spaces up to
Type XI.

Suppose that K = H2. In this case we consider the space Rn∗ of the represen-
tation ST∗

n. Non-zero elements of Rn∗ are called linear forms. A spherical linear
form is a linear form defined up to multiplication by a positive number. We denote
the set of spherical linear forms by S∗n−1 and identify it with a sphere. We have
S∗n−1 = GL0

n /K. As above, we define M∗ = S × (Rn∗ − 0), µ∗ : Rn∗ − 0 → S∗n−1,
θ∗ : M∗ → Y and an epimorphism θ∗X : L∗ = PX(M∗) → P = PX(Y ). We define an
adapted chart Q∗ on Y ∗ consisting of the coordinate v on S and the standard coor-
dinates u1, . . . , ui, . . . , un in Rn∗. Any section s : X → L∗ may be identified with a
pair s = (Ψ, ω), where Ψ is a scalar function and ω is a differential 1-form without
zeros on X. A section s̄ : X → P may be identified with the pair s̄ = (Ψ, ω), where
Ψ is a scalar function and ω is a 1-form without zeros determined up to multi-
plication by any positive function. We define a spherical form ω to be the set of
1-forms obtained from ω by multiplication by any positive function and say that ω
represents ω. We say that a section s : X → L∗ represents a section s̄ : X → L∗

if θ∗X(s) = s̄. Writing s = (Ψ, ω) and s̄ = (Ψ1, ω), we may rephrase this by saying
that Ψ1 = Ψ and ω represents ω.

We recall some notions introduced in [13], Appendix, § 1.
Let ω be a 1-form on an n-dimensional manifold X. For every positive integer

k 6 n we define a form

ω(k) =


dω ∧ · · · ∧ dω︸ ︷︷ ︸

c

for k = 2c,

ω ∧ dω ∧ · · · ∧ dω︸ ︷︷ ︸
c

for k = 2c+ 1.

Here ∧ means the exterior product of differential forms.
Consider the form λω, where λ is a scalar function. It is easy to see that d(λω) =

dλ ∧ ω + λ dω. Hence we have

(λω)(k) =

{
λcω(k) + cλc−1 dλ ∧ ω(k−1) for k = 2c, (29)
λc+1ω(k) for k = 2c+ 1. (30)
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Lemma 11. Suppose that n = 2a is even and the 1-form ω is given by ω =∑a
i=1 u

i dvi in an appropriate coordinate system ui, vi on a neighbourhood U of
a point b ∈ X . If ω(b) 6= 0, then there is a new coordinate system ri, si on a
neighbourhood V ⊆ U of b such that

1) ω is given in the new coordinates again by

ω =
a∑

i=1

ri dsi,

2) one can arbitrarily prescribe the values ri(b), si(b) of the new coordinates at
the point b provided that the ri(b) are not all equal to zero,

3) the Jacobian of the transfer map to the new coordinate system equals 1.
Now suppose that n = 2a + 1 is odd and the 1-form ω is given by ω =∑a
i=1 u

i dvi + dw in an appropriate coordinate system ui, vi, w on a neighbour-
hood U of a point b ∈ X . One can always find a new coordinate system ri, si, z on
a neighbourhood V ⊆ U of b such that

1) ω is given in the new coordinates again by

ω =
a∑

i=1

ri dsi + dz,

2) one can arbitrarily prescribe the values ri(b), si(b), z(b) of the new coordinates
at the point b,

3) the Jacobian of the transfer map to the new coordinate system equals 1.

Proof. Let n = 2a be even. Since ω(b) 6= 0, there is j, 1 6 j 6 a, such that
uj(b) 6= 0. We make a linear transformation vi = bikt

k, 1 6 i 6 a, 1 6 k 6 a.
Then ω takes the following form in the coordinates u, t:

ω =
a∑

k=1

( a∑
i=1

biku
i

)
dtk.

We put
∑

i b
i
ku

i = rk. Clearly, we may assume that the matrix B = (bik) is
non-singular and the ri(b) have prescribed values, not all equal to zero. The form
ω is given by ω =

∑a
i=1 r

i dti in the coordinates r, t. If we write the variables
u, v, r, t as columns, then the transformation of coordinates may be written in
matrix form as v = Bt, r = BTu. It follows that the Jacobian of the transfer map
from u, v to r, t equals 1. We shall look for the variables si in the form si = ti + qi,
where the qi are constants. Since we can choose the qi arbitrarily, the case n = 2a
is proved.

Now let n = 2a+ 1 be odd. We put ri = ui − pi, si = vi − qi for 1 6 i 6 a, and
z = w +

∑a
i=1 p

isi + d. Then

ω =
a∑

i=1

ri dsi + dz.

This proves the lemma since we can choose the constants pi, qi, d arbitrarily.
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Darboux’ theorem (see [13]) says that every 1-form µ on X with µ(n)(b) 6= 0 and
µ(b) 6= 0 (the second inequality follows from the first if n is odd) is locally reduced
to the following canonical form in an appropriate chart F ∈ b:

µF =


a∑

i=1

f2i−1 df2i for n = 2a, (31)
a∑

i=1

f2i−1 df2i + df2a+1 for n = 2a+ 1. (32)

When the manifold X is oriented, we must also know a canonical form for µ
in a chart F with or(F ) = or(X). We easily see from the above results that the
condition or(F ) = or(X) yields another canonical form,

µF =


−f1 df2 +

a∑
i=2

f2i−1 df2i for n = 2a, (33)
a∑

i=1

f2i−1 df2i − df2a+1 for n = 2a+ 1. (34)

These cases differ by the sign of the form µ(n).
Lemma 11 implies that there is a b-centred chart V on X such that the Jacobian

of the transition map from F to V equals 1 and µ is given in V by

µV =


(1 + v1) dv2 +

a∑
i=2

v2i−1 dv2i in case (31), (35)

(1− v1) dv2 +
a∑

i=2

v2i−1 dv2i in case (33), (36)

µV =


a∑

i=1

v2i−1 dv2i + dv2a+1 in case (32), (37)
a∑

i=1

v2i−1 dv2i − dv2a+1 in case (34). (38)

Now suppose that we are given a section s̄ : X → P = PX(Y ), and let s : X →
L∗ = PX(M∗) be a section representing s̄. We identify s with the pair s = (Ψ, ω).
Type IV. Here K = H2 (the case n = 2a).

Definition 9. A section s̄ is called a b-section if, at b,

dΨ ∧ ω(n−1) 6= 0. (39)

This condition is easily seen to be independent of the choice of ω.
Suppose that s satisfies (39). Then ω(n−1)(b) 6= 0, ω(b) 6= 0. Therefore, multi-

plying ω by a positive function λ (if necessary) and using (29), we can always
assume that the following condition holds at b:

0 < (λω)(n) = λaω(n) + aλa−1 dλ ∧ ω(n−1).

We put ε = λω and assume that ε(n)(b) > 0. Then ε takes the following form in
some chart F oriented in the same way as X:

εF =
a∑

i=1

f2i−1 df2i. (40)
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By Lemma 11 we can assume that

f1(b) > 0, f i(b) = 0 for i > 1. (41)

Now we define a new chart G on X by g1 = Ψ(f1, . . . , fn), g2i−1 = f2i−1/f1

for 2 6 i 6 a, and g2i = f2i for 1 6 i 6 a. Condition (39) guarantees that
the transition map from F to G is non-degenerate. Indeed, we easily see that the
determinant j of the transition matrix J = J(G/F ) from F to G remains unaltered
if we omit all even rows and columns. The resulting matrix J ′ is given by

J ′ =



∂Ψ
∂f1

∂Ψ
∂f3

∂Ψ
∂f5

∂Ψ
∂f7 . . . ∂Ψ

∂f2a−1

− f3

(f1)2
1
f1 0 0 . . . 0

− f3

(f1)2 0 1
f1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− f2a−1

(f1)2 0 0 0 . . . 1
f1

 .

It is easy to calculate that the determinant of J equals

j =
1

(f1)a

(
f1 ∂Ψ
∂f1

+ f3 ∂Ψ
∂f3

+ · · ·+ f2a−1 ∂Ψ
∂f2a−1

)
.

On the other hand, ε(n−1) = λaω̇(n−1) by (30), whence (39) implies that
(
ε(n−1) ∧

dΨ
)
(b) 6= 0. Using (40), we can explicitly find the expression

(
ε(n−1) ∧ dΨ

)
F

for
ε(n−1) ∧ dΨ in the chart F :(
ε(n−1)∧dΨ

)
F

= (a−1)!
(
f1 ∂Ψ
∂f1

+f3 ∂Ψ
∂f3

+· · ·+f2a−1 ∂Ψ
∂f2a−1

)
df1∧df2∧· · ·∧dfn.

It follows that j(b) 6= 0, so the transition to G is non-degenerate. The form ε is
expressed in G as

εG = f1 dg2 +
a∑

i=2

f1g2i−1 dg2i.

Put λ1 = g1(b) = Ψ(b). If or(G) = or(X), then we define a chart H on X by
hi = gi−gi(b). Then or(H) = or(X) and H is a canonical b-chart for the section s̄.
The section s is given in H by

sH =
(
λ1 + h1, f1 dh2 +

a∑
i=2

f1h2i−1 dh2i

)
.

If the orientations of G and X are opposite, then we put h1 = g1(b) − g1, hi =
gi − gi(b) for i > 1. Then we again have or(H) = or(X), and H is a canonical
b-chart for s̄. The section s is given in H by

sH =
(
λ1 − h1, f1 dh2 +

a∑
i=2

f1h2i−1 dh2i

)
.

The canonical form of s̄ will be given in § 6.
Type V. Here K = H2 (n = 2a+ 1).
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Definition 10. A section s̄ : X → P is called a b-section if the following conditions
hold at the point b ∈ X:

1) ω(2a+1)(b) 6= 0,
2) (dω(2a−1) ∧ dΨ)(b) 6= 0.

We easily see from (30) that these conditions do not depend on the choice
of ω.

In what follows, the property of a section of being sufficiently general is always
independent of the choice of coordinate system and the auxiliary constructions used
to define this property. This fact will not be mentioned explicitly.

Let s̄ be a b-section in the original chart G, which is oriented in the same way
as X. To reduce s̄ to canonical form, we recall the proof of Darboux’ theorem [13].
This shows that the first step in finding a canonical chart F for a 1-form ε (originally
defined in G) is to find the second coordinate function f2 = f(gi) of this chart as
a solution of the following linear partial differential equation of the first order:

df ∧ ε(2a) = 0. (42)

Let (Ψ, ω) be a pair representing s̄. We can replace ω by ε = λω for any function
λ(gi) > 0. By (29), equation (42) for ε takes the form

λa df ∧ ω(2a) + a df ∧ dλ ∧ ω(2a−1) = 0. (43)

Now we put f = Ψ and regard (43) as an equation for the unknown function λ.
This is a quasilinear partial differential equation of the first order. Condition 2) of
Definition 10 implies that at least one partial derivative ∂λ/∂gi occurs non-trivially
in this equation. Therefore this equation has a local solution λ in a neighbourhood
of b with λ(b) > 0.

Thus, when we start to prove Darboux’s theorem for ε, we may take f2 = Ψ.
Then we continue the proof without change, construct the other coordinate func-

tions f i and, as a result, obtain the coordinate system of a canonical chart F for ε
such that

εF =
a∑

i=1

f2i−1 df2i + df2a+1.

We may assume that f i(b) = 0 for i 6= 2 (for example, use the proof of Lemma 11).
Now we put λi = f i(b). If the form ω(n) is positive, we define a chart H by putting
hi = f i − λi. Then H and X have the same orientation, H is a canonical b-chart
for s̄ and the section s is given in H by

sH =
(
λ2 + h2,

a∑
i=1

h2i−1 dh2i + dh2a+1

)
.

If the form ω(n) is negative, then we define the chart H by putting hi = f i − λi

for i < n, h2a+1 = −f2a+1. Then H and X have the same orientation, H is a
canonical b-chart for s̄ and the section s is given in H by

sH =
(
λ2 + h2,

a∑
i=1

h2i−1 dh2i − dh2a+1

)
.
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Clearly, these two canonical forms are inequivalent, that is, they are not mapped to
each other by an orientation-preserving change of coordinates. The canonical form
of s̄ is described in § 6.

Now we consider the case when Y is a GL0
n-orbit of dimension n− 1.

Type VI (K = H1). We have Y = Sn−1 = GL0
n /K, and this case is even simpler

than Type III since S is absent and the role of M is played by Rn − 0.
We put T (X) = PX(Rn−0) and let µX be the natural epimorphism T (X)−0 →

P = PX(Y ) induced by the epimorphism µ. We choose the standard coordinates
of Rn for the adapted coordinates in the space of representation STn. A section
ē : X → P is a spherical vector field on X. It is called a b-section if e(b) 6= 0 for
some genuine vector field e representing ē. If F is a chart that straightens e (that
is, e = ∂/∂f1 and or(F ) = or(X)), then the section ē takes a canonical form in F
(see § 6).

Let K = H2. We have Y = GL0
n /K. We similarly define T ∗X = PX(Rn − 0)

and µ∗X : T ∗X − 0 → P = PX(Y ). We choose the standard coordinates of Rn∗ for
the adapted coordinates in the space of representation ST∗

n. A section ω : X → P
is a spherical form on X. Let ω be a 1-form representing ω.

Type VII (n = 2a). In this case, ω is called a b-section if ω(n−1)(b) 6= 0. Arguing
as above, we get a chart F (oriented in the same way as X) in which the form
ε = λω is given by (40), and (41) holds. We define a b-chart H on X by putting
h1 = f1 − f1(b), h2i−1 = f2i−1/f1 for 2 6 i 6 a, and h2i = f2i for 1 6 i 6 a. The
chart H is canonical for ω, and

εH = f1

(
dh2 +

a∑
i=2

h2i−1 dh2i

)
(see § 6 below).

Type VIII (n = 2a + 1). In this case, ω is called a b-section if ω(n)(b) 6= 0. The
discussion of Type V shows that, up to proportionality, ω can be reduced to the
canonical form

ω =
a∑

i=1

f2i−1 df2i + df2a+1 or ω =
a∑

i=1

f2i−1 df2i − df2a+1

in an appropriate b-chart F . (We recall that a b-chart, by definition, is oriented in
the same way as X.) Clearly, these two canonical forms cannot be transformed to
each other because the signs of ω(n) are different. This yields two canonical forms
for the section ω (see § 6).

It remains to consider the case dim GL0
n /K = n when Y is homogeneous and

K is the stabilizer of a point p ∈ Y .

Type IX. Suppose that K = T1 and Y = GL0
n /K = Z0 × SLn /T1 = Z0 × Sn−1,

where Z0 ∼= R0 (see § 3.6). Consider the G-manifold B = R0× (Rn− 0), where the
action of a matrix g ∈ G on R0 is multiplication by the determinant of g, and
the action of g on Rn is determined by the representation STn. Let ξ : B → Y be a
map which equals the identity on R0 and equals µ on Rn − 0. The map ξ induces
an epimorphism ξX : E = EX(B) → P = PX(Y ). We take the coordinate y0 on R0
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given by (27). By definition, the adapted coordinates on B are (y0, t1, . . . , tn),
where the ti are the standard coordinates in Rn. It is easy to see that every section
s : X → E may be identified with a pair (π, e), where π is an n-form on X and e is
a vector field without zeros on X. A section s̄ : X → P may similarly be identified
with a pair (π, ē), where π is an n-form on X and ē is a spherical field on X. We
say that a section s = (π, e) represents s̄ = (π, ē) if ξX(s) = s̄. This is equivalent
to saying that e represents ē.

Suppose that (ω, ē) = s̄ : X → P is a section and s = (π, e) represents s̄.

Definition 11. We say that s̄ is a b-section if e(b) 6= 0.

Let s be a b-section. We choose a chart H on X such that or(H) = or(X) and
eH = ∂/∂hn. (H is a straightening chart for e.) Put πH = aH dh1 ∧ · · · ∧ dhn.
Clearly, aH > 0. Now we pass to the chart G defined as in the discussion of Type II.
In this chart, we have sG = (dg1∧· · ·∧dgn, c(g)∂/∂gn), where c(g) > 0. This yields
a canonical form for the section s̄ (see § 6).

Let K = T2, Y = GL0
n /K = Z0 × SLn /T2 = Z0 × S∗n−1. We define

B∗ = R0 × (Rn∗ − 0), ξ : B∗ → Y , ξX : E∗ = EX(B∗) → P = PX(Y ). The
adapted coordinates on E∗ are defined as (y0, t1, . . . , tn), where the ti are the stan-
dard coordinates in the space Rn∗ of the representation ST∗

n. We easily see that a
section s : X → E∗ may be identified with a pair (π, ω), where π and ω are forms
of degree n and 1 (respectively) on X, π > 0 and ω never vanishes on X. One
can similarly identify a section s̄ : X → P with a pair (π, ω), where π is a positive
n-form on X and ω is a spherical form on X. We say that a section s = (π, ω)
represents s̄ = (π, ω) if ξ∗X(s) = s̄. This is equivalent to saying that ω represents ω.
Type X (n = 2a). Suppose that (π, ω) = s̄ : X → P is a section and s = (π, ω)
represents s̄.

Definition 12. A section s̄ is called a b-section if

ω(n−1)(b) 6= 0. (44)

Suppose that (44) holds. Arguing as in the discussion of Type IV, we get a chart
F (oriented in the same way as X) in which ε = λω is given by (40), and (41)
holds. Write

πF = ΦF df
1 ∧ df2 ∧ · · · ∧ dfn,

where ΦF > 0. We define a new chart G on X by putting g1 = Ψ(f1, . . . , fn),
g2i−1 = f2i−1/f1 for 2 6 i 6 a, g2i = f2i for 1 6 i 6 a. The determinant j of the
matrix J(G/F ) is given by

j =
1

(f1)a

(
f1 ∂Ψ
∂f1

+ f3 ∂Ψ
∂f3

+ · · ·+ f2a−1 ∂Ψ
∂f2a−1

)
.

We can find the function Ψ from the equation ΦF = (f1∂Ψ/∂f1 + f3∂Ψ/∂f3 +
· · ·+ f2a−1∂Ψ/∂f2a−1)/(f1)a. The form ω is expressed in the chart G as

ωG = f1

[
dg2 +

a∑
i=2

g2i−1 dg2i

]
,

and πG = dg1 ∧ dg2 ∧ · · · ∧ dgn. This yields a canonical form for s̄ (see § 6).
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Type XI (n = 2a+1). Suppose that (π, ω) = s̄ : X → P is a section and s = (π, ω)
represents s̄.

Definition 13. A section s̄ is called a b-section if

ω(n)(b) 6= 0. (45)

Suppose that (45) holds. It follows from (30) that ε = λω satisfies the hypotheses
of Darboux’ theorem for any function λ > 0, and one can always choose λ in such
a way that either ε(n) = a!π or ε(n) = −a!π. We always have π > 0. If ε(n) = a!π,
then there is a canonical b-chart H for ε with

εH =
a∑

i=1

h2i−1 dh2i + dh2a+1.

If ε(n) = −a!π, then there is a canonical b-chart H for ε with

εH =
a∑

i=1

h2i−1 dh2i − dh2a+1.

In both cases, πH = dh1 ∧ dh2 ∧ · · · ∧ dhn. This yields two canonical forms for s̄
(see § 6).

Type XII. Here K = H1d. In this case, Y = GL0
n /K = Rn

d (see § 4.3). An element
g of the group GL0

n = G acts on a column vector x ∈ Rn − 0 ∼= Rn
d by g(x) = v,

where v = det(gi
j)

(d−1)/ngx. The standard coordinate system of Rn is declared
to be the adapted coordinate system on Y . This choice of an adapted coordinate
system enables one to identify sections s : X → P = PX(Y ) with non-zero vector
fields e′ having a modified transformation rule under coordinate changes: passing
from a chart F to a chartH with the Jacobian matrix J = J(H/F ) and determinant
j = det J > 0, we have

e′H = j(d−1)/nJe′F . (46)

We shall use the term quasifield for the geometric structure e′. Choose a chart
F on X and consider a genuine vector field e on X such that eF = e′F .

Definition 14. For d 6= 1− n, a quasifield e′ is called a b-quasifield if e(b) 6= 0.

Let e′ be a b-quasifield. We choose a chart V 3 b (oriented in the same way
as X) such that e = ∂/∂v1. Clearly, e′ is expressed in V as e′V = (R, 0, . . . , 0),
where R = R(v) > 0. We define a chart H by putting h1 = Ψ(v), hi = vi for
i > 1. Write J = J(H/V ) and j = det J . Then it is clear that j = ∂Ψ/∂v1 and
Je′V = ∂Ψ/∂v1(e′V ), whence e′H = (∂Ψ/∂v1)(n+d−1)/nR. If d 6= 1− n, then we can
always choose Ψ in such a way that e′H = (1, 0, . . . , 0): it suffices to find Ψ from the
equation (∂Ψ/∂v1) = Rn/(n+d−1). This yields a canonical form for the section e′.

If d = 1− n, then (46) takes the form

e′H = j−1Je′F . (47)
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Definition 15. Suppose that d = 1 − n and fix a quasifield e′ with e′(b) 6= 0. A
chart W is said to be special (for the quasifield e′) if or(W ) = or(X), W 3 b and all
the components of e′W vanish in the chart W except for the first: e′W = (S, 0, . . . , 0)
and, moreover, S > 0. It is clear that special charts exist. We denote the first
component of the quasifield e′ in a special chart F by SF instead of e′1F . A quasifield
e′ is called a b-quasifield if e′(b) 6= 0 and there is a special chart V such that
[∂SV /∂v

1](b) 6= 0.

Remark 11. If e′ is a b-quasifield, then [∂SF /∂f
1](b) 6= 0 for any special chart F .

Indeed, for every such chart F , the Jacobian matrix J = J(F/V ) satisfies
∂f2/∂v1 = 0, . . . , ∂fn/∂v1 = 0. Therefore j = det J = (∂f1/∂v1)t, where
t = det(∂f i/∂vj), 2 6 i, j 6 n, and we get SF = t−1SV by formula (47). Since t
is independent of v1, differentiation of the last equation with respect to v1 yields
that

∂SF

∂f1

∂f1

∂v1
= t−1 ∂SV

∂v1
.

This proves the remark.
Suppose that e′ is a b-quasifield and V is a special chart. We define a special

b-chart F by putting f2 = SV (b)
(
v2 − v2(b)

)
, f i = vi − vi(b) for 3 6 i 6 n

f1 = SV (v)/SV (b) − 1 if [∂SV /∂v
1](b) > 0, and f1 = 1 − SV (v)/SV (b)

if [∂SV /∂v1](b) < 0. Thus we get two inequivalent canonical forms, e′F =
(1± f1, 0, . . . , 0).

Suppose thatK = H2d. In this case, Y = GL0
n /K. We write Y = Rn∗

d (see § 4.4).
We can assume that Rn∗

d is the space Rn∗−0 and the action of a matrix g ∈ GL0
n = G

on a row vector x ∈ Rn∗ is given by g(x) = v, where v = xg−1 det(gi
j)

(d−1)/n. The
standard coordinate system of Rn∗ is declared to be the adapted coordinate system
on Y . It follows easily that one can identify sections s : X → P = PX(Y ) with
non-zero differential 1-forms µ on X with a modified transformation rule under
coordinate changes: passing from a chart F to a chart H with Jacobian matrix
J = J(H/F ) and determinant j = det J > 0, we have

µH = j(d−1)/n
(
JT

)−1
µF . (48)

1. Suppose that d = 1. Then µ is an ordinary 1-form, and we have already seen
its canonical form provided that µ(n)(b) 6= 0 and µ(b) 6= 0 (that is, µ is sufficiently
general at b). Namely, if n = 2a, then µ reduces in an appropriate b-chart V to one
of the two inequivalent canonical forms (35), (36). If n = 2a+ 1, then µ reduces in
an appropriate b-chart V to one of the two inequivalent canonical forms (37), (38).
These cases differ by the sign of µ(n).

2. Suppose that d 6= 1 and write (d− 1)/n = u 6= 0. We use the term quasiform
for the geometric structure µ. Let F 3 b be a chart (oriented in the same way as X)
and let ω be an ordinary 1-form on X such that ωF = µF . We put µ(k)

(F ) = ω(k).

One can assume that µ(k)
(F ) is an ordinary k-form depending on the chart F used

in its definition: passing from F to a chart H with Jacobian matrix J = J(H/F ),
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determinant j = det J > 0 and λ = ju, we have

µ
(k)
(H) =

{
λcµ

(k)
(F ) + cλc−1 dλ ∧ µ(k−1)

(F ) for k = 2c,

λc+1µ
(k)
(F ) for k = 2c+ 1.

(49)

Although the definition of µ(k)
(F ) depends on the choice of F , the property

µ
(k)
(F )(b) 6= 0 is independent of this choice if k is odd. Since X is oriented, the

sign of the form µ
(n)
(F )(b) is also independent of F (if n = dimX is odd) and is

preserved under orientation-preserving coordinate changes. Hence the conditions
µ(k)(b) 6= 0, µ(n)(b) > 0 make sense for odd k and n.
Type XIII (n = 2a). We begin with a definition.

Definition 16. A section µ is called a b-section if µ(n−1)(b) 6= 0.

Remark 12. Since n− 1 is odd, the condition µ(n−1)(b) 6= 0 implies that µ(b) 6= 0.

Let µ be a b-section. We choose a chart F 3 b (oriented in the same way as X)
and consider µ(k)

(F ). We claim that there is a chart H (oriented in the same way

as X) such that µ(n)
(H)(b) > 0. Indeed, let H be given by h1 = Φ(f), hi = f i for

i > 1. Then j = det
[
J(H/F )

]
= ∂Φ/∂f1. Formula (49) with k = n yields that

µ
(n)
(H) = λa−1

(
λµ

(n)
(F ) + a dλ ∧ µ(n−1)

(F )

)
.

Since µ
(n−1)
(F ) (b) 6= 0, one can choose a function λ > 0 with

[
λµ

(n)
(F ) + a dλ ∧

µ
(n−1)
(F )

]
(b) > 0 and then find Φ from the equation ∂Φ/∂f1 = λ1/u. This guar-

antees that µ(n)
(H)(b) > 0.

We put ε = µ(H). Since ε(n)(b) > 0 and ε(b) 6= 0, Darboux’ theorem yields
a chart V (oriented in the same way as X) in which ε takes the canonical form
εV =

∑a
i=1 v

2i−1 dv2i. By (48) we have µV = ΨεV , where Ψ is a scalar function
with Ψ(b) > 0. The explicit form of Ψ is irrelevant. We look for the chart W in
the form w2i−1 = Θ(v)v2i−1, w2i = v2i for 1 6 i 6 a. The determinant j of the
Jacobian matrix J = J(W/V ) is easily calculated:

j = Θa−1

(
Θ + v1 ∂Θ

∂v1
+ · · ·+ v2a−1 ∂Θ

∂v2a−1

)
.

Making a change of variables, we get

εW = Θ−1

( a∑
i=1

w2i−1 dw2i

)
.

Therefore µW =juJµV =juΨJεV =juΨεW . We get Θ from the condition juΨ=Θ,
which is equivalent to the quasilinear partial differential equation

Θa−1

(
Θ + v1 ∂Θ

∂v1
+ · · ·+ v2a−1 ∂Θ

∂v2a−1

)
=

(
Θ
Ψ

)1/u
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provided that Θ > 0. This equation has a solution Θ with Θ(b) > 0. Hence or(W ) =
or(X) and the quasiform µ takes the canonical form µW =

∑a
i=1 w

2i−1 dw2i in the
chart W .

To find the canonical form for µ, we consider a differential 1-form whose expres-
sion in W is

∑a
i=1 w

2i−1 dw2i. Lemma 11 yields a b-chart Z in which this form is
given by (1+z1) dz2 +

∑a
i=2 z

2i−1 dz2i, and the determinant of the Jacobian matrix
J(Z/W ) equals 1. Clearly,

µZ = (1 + z1) dz2 +
a∑

i=2

z2i−1 dz2i.

This yields the canonical form for the section µ.
Type XIV (n = 2a+ 1). We begin with a definition.

Definition 17. Suppose that u(a + 1) 6= 1. A quasiform µ : X → P = PX(Y ) is
called a b-section if µ(n)(b) 6= 0.

Let µ be a b-section. We choose a chart F 3 b oriented in the same way as X.
Let ε be a 1-form such that εF = µF . We write ε(n) = Φ df1 ∧ df2 ∧ · · · ∧ dfn

and suppose that Φ(b) > 0. Let Ψ be a function (to be specified later) on X with
Ψ(b) > 0. Darboux’ theorem yields a chart V (oriented in the same way as X)
which reduces Ψε to the canonical form

(Ψε)V =
a∑

i=1

v2i−1 dv2i + dv2a+1.

Then we have
(Ψε)(n)

V = a! dv1 ∧ dv2 ∧ · · · ∧ dv2a+1. (50)

Clearly,

(Ψε)(n)
F = Ψa+1ε

(n)
F = Ψa+1Φ df1 ∧ df2 ∧ · · · ∧ df2a+1. (51)

We put J = J(V/F ) and j = det J . Comparing (51) and (50), we get a! j = Ψa+1Φ.
We have

µV = ju
(
JT

)−1
εF = Ψ−1

[
(Ψa+1Φ)(a!)−1

]u(
JT

)−1(Ψε)F

= (a!)−uΨu(a+1)−1Φu(Ψε)V .

We want to find the function Ψ > 0 from the condition Ψu(a+1)−1 = Φ−u(a!)u.
This can be done if u(a + 1) − 1 6= 0. In this case we have or(V ) = or(X) and
the quasiform µ takes the canonical form µV =

∑a
i=1 v

2i−1 dv2i + dv2a+1 in the
chart V .

Now suppose that Φ(b) < 0. Using Darboux’ theorem, we get a chart V (oriented
in the same way as X) such that (Ψε)V =

∑a
i=1 v

2i−1 dv2i − dv2a+1. Then

(Ψε)(n)
V = −a! dv1 ∧ dv2 ∧ · · · ∧ dv2a+1.

As above, we get the equation a! j = −Ψa+1Φ and find the function Ψ > 0 from
the condition Ψu(a+1)−1 = (−Φ)−u(a!)u. Then or(V ) = or(F ) and the quasiform
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µ has the canonical form µV =
∑a

i=1 v
2i−1 dv2i − dv2a+1 in the chart V . The two

canonical forms cannot be transformed to each other because of the different signs
of µ(n). Applying Lemma 11 as above, we may assume that the canonical chart V
is centred at b.

It remains to consider the case u(a+ 1)− 1 = 0. Then (48) takes the form

µH = j1/(a+1)
(
JT

)−1
µF . (52)

Let µ : X → P = PX(Y ) be a quasiform with µ(n)(b) 6= 0. We choose a chart
F 3 b (oriented in the same way as X) and consider a 1-form ω such that ωF = µF .
Write

ω(n) = Ω(f1, . . . , fn) df1 ∧ df2 ∧ · · · ∧ df2a+1. (53)

We claim that the scalar function Ω = Ω(f1, . . . , fn) is a differential invariant (of
order 1) if u(a+1) = 1. Indeed, consider another chart H (oriented in the same way
asX) and a 1-form α with αH = µH . We see from (52) that αH = µH = j1/(1+a)ωH .
Hence (30) implies that α(n) = jω(n). However, (53) yields that

ω(n) = Ωj−1 dh1 ∧ dh2 ∧ · · · ∧ dh2a+1.

Hence α(n) = Ω dh1 ∧ dh2 ∧ · · · ∧ dh2a+1, as required.
The differential invariant constructed from the quasiform µ will be denoted by Ωµ

(or simply by Ω if µ is clear from the context).

Definition 18. Suppose that u(a+ 1) = 1. A section µ is called a b-section if
1) µ(n)(b) 6= 0,
2) Ω(b) 6= 0,
3)

[
dΩ ∧ µ(n−2)

]
(b) 6= 0.

Let µ be a b-section. We choose a chart V 3 b (oriented in the same way as X)
and consider a 1-form ω such that ωV = µV . There is a b-chart F on X in which
ω has a canonical form. Suppose that

µF = βωF = β

( a∑
i=1

f2i−1 df2i + df2a+1

)
,

where β > 0 is a scalar function. Then

[βω](n)
F = βa+1a! df1 ∧ df2 ∧ · · · ∧ df2a+1,

and, therefore, Ω = a!βa+1. Put βω = ε. We consider a scalar function α > 0 (to
be specified later) and look for a canonical chart H on X for the 1-form αε. The
second coordinate function h2 of H is found from the relation dh2 ∧ (αε)(2a) = 0,
which may be rewritten as

αdh2 ∧ ε(2a) − a dh2 ∧ dα ∧ ε(2a−1) = 0.

We look for a function α such that h2 = β. The desired function α is a solution of
the equation

αdβ ∧ ε(2a) − a dβ ∧ dα ∧ ε(2a−1) = 0. (54)
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This is a quasilinear partial differential equation of the first order with respect to α.
By a trivial calculation, condition 3) of Definition 18 implies that dβ ∧ ε(2a−1) 6= 0,
whence at least one partial derivative ∂α/∂f i occurs non-trivially in equation (54).
Hence the desired function α > 0 exists. Then, following the proof of Darboux’
theorem (see [13]), we construct a coordinate system H = (h1, . . . , hn) such that

1) h2 = β,
2) (αε)H = (αβω)H =

∑a
i=1 h

2i−1 dh2i + dh2a+1.
We put J = J(H/F ) and j = det J . We have

(αβω)(n)
F = a!αa+1βa+1ω

(n)
F = a!αa+1βa+1 df1 ∧ df2 ∧ · · · ∧ df2a+1.

Since the expression (αβω)H is canonical, we get

(αβω)(n)
H = a! dh1 ∧ dh2 ∧ · · · ∧ dh2a+1.

Hence j = αa+1βa+1. Moreover,

µH = j1/(a+1)
(
JT

)−1
µF = j1/(a+1)

(
JT

)−1
εF

= α−1j1/(a+1)
(
JT

)−1(αε)F = α−1j1/(a+1)(αε)H .

Substituting j = αa+1βa+1 and (αε)H =
∑a

i=1 h
2i−1 dh2i + dh2a+1, we get

µH = α−1αβ

( a∑
i=1

h2i−1 dh2i + dh2a+1

)
.

Clearly, or(H) = or(X). Since β = h2, this yields the first canonical form

µH = h2

( a∑
i=1

h2i−1 dh2i + dh2a+1

)
for the section µ.

It remains to consider the case when

µF = βωF = β

( a∑
i=1

f2i−1 df2i − df2a+1

)
, β > 0.

In this case, Ω = −a!βa+1. We again put βω = ε and look for a coordinate system
H = (h1, . . . , hn) such that or(H) = or(X) and

1) h2 = β,
2) (αε)H = (αβω)H =

∑a
i=1 h

2i−1 dh2i − dh2a+1.
Arguing as in the previous case, we get the second canonical form

µH = h2

( a∑
i=1

h2i−1 dh2i − dh2a+1

)
for the section µ. The two canonical forms are inequivalent because the invariant
Ω equals a! (h2)a+1 in the first case and −a! (h2)a+1 in the second. We may pass
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to a centred chart V by putting λi = hi(b) for 1 6 i 6 2a + 1 and defining the
coordinates as follows.

1) If µH = h2
(∑a

i=1 h
2i−1 dh2i + dh2a+1

)
, then vi = hi − λi for 1 6 i 6 2a and

v2a+1 = h2a+1 +
a∑

i=1

λ2i−1h2i − λ2a+1 −
a∑

i=1

λ2i−1λ2i.

2) If µH = h2
( ∑a

i=1 h
2i−1 dh2i − dh2a+1

)
, then vi = hi − λi for 1 6 i 6 2a and

v2a+1 = h2a+1 −
a∑

i=1

λ2i−1h2i − λ2a+1 +
a∑

i=1

λ2i−1λ2i.

The canonical forms are given in the chart V by

µV = (v2 + λ2)
( a∑

i=1

v2i−1 dv2i ± dv2a+1

)
,

and the invariants Ω are equal to ±a! (v2 + λ2)a+1 respectively.
Having found the canonical forms for special structures of the first order, we

pass to structures of higher order. By Theorem 4 there are no special bundles of
geometric structures of order exceeding 2, and there are two non-isomorphic special
bundles of geometric structures of order 2. Both bundles are determined by the
subgroups H ′

1,H
′
2 ⊂ Afn (see § 4.8). To describe them we first put G = G2(n)0.

We define a homomorphism ε : Afn → GLn+1 by sending every p = (A, a) ∈ Afn
to the matrix

ε(p) =
(
A 0
a 1

)
(55)

of order n + 1. The embedding ε is an isomorphism of Afn onto the subgroup
Bn ⊂ GLn+1 of matrices whose last column consists of zeros except for the lowest
element of the principal diagonal, which equals 1 (the other entries are arbitrary).
The group GLn+1 acts on Rn+1 by the identity representation STn+1.
Type XV. We can identify the sphere Sn ⊂ Rn+1 with the set of rays in Rn+1.
Hence the restriction of STn+1 to Bn induces an action of Afn on Sn via the
embedding ε. This action has fixed points Q1 = (0, . . . , 1) and Q2 = (0, . . . ,−1)
and is transitive on the complement Y = Sn − Q1 − Q2. Let K be the stabilizer
of (1, . . . , 0) under this action. The embedding ε sends K to the subgroup of Bn

whose elements are matrices
(

A
a

0
1

)
such that A preserves the plane x1 = 0. In

other words, all the elements in the first column of A vanish except for a1
1, and the

first coordinate a1 of the vector a = (ai) also vanishes. Hence K preserves the plane
x1 = 0 under the action (22) of Afn on Rn∗. It follows by § 4.8 that K coincides
with H ′

2. Thus Y = Afn/H ′
2 is of type XV, and the epimorphism φ : G→ Afn from

§ 4.6 induces a φ-compatible isomorphism Afn/H ′
2 ≈ G/H2 of homogeneous spaces.

Let us describe the action of G on Y . We identify Sn with the unit sphere
in Rn+1. Let t1, . . . , tn+1 be the standard coordinates in Rn+1. This provides n+1
coordinates z1, . . . , zn+1 for every point y ∈ Y (regarded as a point of Sn).
We introduce coordinates on Y by putting yi = zi/(1 − zn+1) for 1 6 i 6 n
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(the stereographic projection of the sphere from the point Q1) and declare them to
be adapted. An element p = (A, a) ∈ Afn sends a point y ∈ Y with coordinates
(y1, . . . , yn) to the point py = v ∈ Y whose adapted coordinates vi are deter-
mined as follows. Let z be the same point y regarded as a point of the unit
sphere Sn in Rn+1 and let z1, . . . , zn+1 be its coordinates. The image w =
pz = (w1, . . . , wn+1) of z under the action of p ∈ Afn has coordinates
wi = hi

jz
j for 1 6 i 6 n and wn+1 = zn+1 + ajz

j , where A = (hi
j). Let

u = (ui) be the point of intersection of Sn with the ray through w. Then
ui = wi/r, where r =

√
(w1)2 + · · ·+ (wn+1)2 and vi = ui/(1 − un+1) for

16 i6n. Thus we see that the coordinates vi of the image v of y are given by

vi =
(
hi

jy
j
)
R(y1, . . . , yn; p). (56)

Here R is a function of yi and p whose explicit form is irrelevant.
Thus we see that the adapted coordinates of any point y ∈ Y
1) are finite and not all equal to zero,
2) are transformed under the action of G as the coordinates of a vector, up to a

scalar factor.
Therefore a section s : X → P = PX(Y ) may be regarded as a vector field on X

with the modified transformation rule (56) under coordinate changes. We call such
a geometric object a pseudofield.

Let s : X → P be a pseudofield defined in a neighbourhood of b ∈ X. We
choose a chart N 3 b (oriented in the same way as X) and consider a vector field
e on X such that eN = sN . As already mentioned, we have sN 6= 0, whence
eN 6= 0. Thus there is a chart Q such that or(Q) = or(X) and eQ = ∂/∂q1.
Therefore sQ =

(
Ψ(q), 0, . . . , 0

)
, Ψ(q) 6= 0. We define a chart F by the conditions

or(F ) = or(X), f1 = Φ(q) and f i = qi for i > 1. The function Φ will be specified
in a moment.

The transition from Q to F determines an element h ∈ G by h = (hi
j , h

i
jk), where

(hi
j) =


h1

1 h1
2 h1

3 . . . h1
n−1 h1

n

0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1

 ,

h1
j =

∂Φ
∂qj

, h1
jk =

∂2Φ
∂qj∂qk

, (57)

hi
j = δi

j for i > 1, and hi
jk = 0 for i > 1.

The inverse matrix D = (di
j) of the matrix A = (hi

j) is given by

D =

d1
1 . . . d1

n

. . . . . . . . . . . .
dn
1 . . . dn

n

 =


(h1

1)
−1 −(h1

1)
−1h1

2 −(h1
1)
−1h1

3 . . . −(h1
1)
−1h1

n

0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1

 .

To calculate p = (A, a) = φ(h) ∈ Afn, we must find a = (aj) =
(∑

s,u d
u
sh

s
ju

)
from

formula (20). Clearly, aj =d1
1h

1
j1 =(h1

1)
−1h1

1j . Then we must find the coordinates vi
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of the element v = py for y = (yi), where y1 = Ψ(q) and yi = 0 for i > 1. To
do this, we first determine z = (zi). Clearly, zi = 0 for i > 1. The conditions
(z1)2 + (zn+1)2 = 1 and z1 = y1(1− zn+1) imply that

z1 =
2y1

(y1)2 + 1
, zn+1 = 1− 2

(y1)2 + 1
. (58)

Now let us find the coordinates of w = pz = (wi). Clearly, w1 = z1h1
1, w

i = vi = 0
for 2 6 i 6 n, and

wn+1 = zn+1 + a1z
1 = zn+1 + z1(h1

1)
−1h1

11. (59)

Now let us determine the function Φ(q) from the condition wn+1 ≡ 0. Substituting
(57) and (58) in (59), we get

1− 2
[
(y1)2 + 1

]−1 + (h1
1)
−1h1

11 · 2y1
[
(y1)2 + 1

]−1 = 0,

which yields an ordinary differential equation for h1
1(q) = ∂Φ

∂q1 :

h1
1

[(
Ψ(q)

)2 − 1
]
+ 2Ψ(q)

∂h1
1

∂q1
= 0.

Since Ψ(q) 6= 0, we can find a solution h1
1(q) of this equation with h1

1(b) > 0. Given
this solution, we find the function Φ(q) from the condition h1

1(q) = ∂Φ
∂q1 . Then the

transition to F preserves the orientation. The condition wn+1 ≡ 0 implies that
un+1 ≡ 0 and v1(q) ≡ 1. Thus the section s has the canonical form s = (1, 0, . . . , 0)
in the chart F . This completes the discussion of Type XV.

To consider the remaining types, we note that the second necessary homogeneous
space Y = G/H2 = Afn/H ′

1 has already been constructed in § 4.8. Indeed, the space
Rn∗ with the action (22) of Afn may be taken for Y because this action is transitive
and the stabilizer of 0 ∈ Rn∗ coincides with H ′

1 = (GL0
n, 0). We take the standard

coordinate system of Rn∗ for the adapted coordinate system on Y .
Sections s : X → P = PX(Y ) are referred to as pseudoforms. Let F 3 b and

V 3 b be any charts oriented in the same way as X. By (22), to find a formula
for the transformation of sF = (sF 1, . . . , sF n) to sV = (sV 1, . . . , sV n), one must
find the element h ∈ G corresponding to the transition from F to V , take the
element p = (A, a) = φ(h) ∈ Afn and take the element w = p−1 = (A−1,−aA−1).
Then we get

sV = sFw = sFD + d, D = A−1, d = −aA−1. (60)

Put h−1 = f . Clearly, φ(f) = w. Write f = (f i
j , f

i
jk) ∈ G, where f i

j = ∂fi

∂vj and

f i
jk = ∂2fi

∂vj∂vk . Let A = (vi
j) be the inverse matrix of D = (f i

j). By (20), we have
w = (D, d), where d = (dj) and

dj =
∑
s,u

vu
s f

s
ju. (61)
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Lemma 12. Let Ψ(v) = ln
[
det(D)

]
. Then dj = ∂Ψ

∂vj .

Proof. We put R = det(D). Then ∂Ψ
∂vj = (R−1) ∂R

∂vj . Differentiating the determi-
nant, we get

∂R

∂vj
=

∣∣∣∣∣∣∣∣
f1
1j . . . f1

nj

f2
1 . . . f2

n

. . . . . . . . . . . . .
fn
1 . . . fn

n

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
f1
1 . . . f1

n

f2
1j . . . f2

nj

. . . . . . . . . . . . .
fn
1 . . . fn

n

∣∣∣∣∣∣∣∣ + · · ·+

∣∣∣∣∣∣∣∣
f1
1 . . . f1

n

f2
1 . . . f2

n

. . . . . . . . . . . . .
fn
1j . . . fn

nj

∣∣∣∣∣∣∣∣ .
Expand the sth term with respect to the sth row. Since the cofactor Ds

u of the
entry fs

u equals Rvu
s , we get

∂R

∂vj
= R

∑
s,u

vu
s f

s
ju.

The lemma is proved.

Let s : X → P = PX(Y ) be a pseudoform and let F 3 b be any chart oriented
in the same way as X. We denote by ω a 1-form on X such that sF = ωF . As
usual, sF and ωF are regarded as row vectors. We recall that ωV = ωFD. Using
formulae (60), we see from Lemma 12 that

sV = ωV + dΨ. (62)

Type XVI (n = 2a). Let s, F , ω be as just defined and put s(n) = ω(n). Note
that s(n) is a well-defined n-form on X. For if we choose another chart V on X
and a 1-form ε on X with sV = εV , then (62) implies that εV = ωV + dΨ, whence
ε(n) = ω(n).

Definition 19. A pseudoform s is called a b-section if s(n)(b) 6= 0 and s satisfies
an additional condition (to be stated later).

Suppose that s is a b-section, F and ω are as above and V is a canonical chart
for ω oriented in the same way as X. Then sV = ωV + dΨ. We first assume that
ωV =

∑a
i=1 v

2i−1 dv2i. Denote the 1-form ω+dΨ by ε. Clearly, ω(n)(b)=ε(n)(b) 6=0.
Hence Darboux’ theorem yields a chart H in which ε has the canonical form
εH =

∑a
i=1 h

2i−1 dh2i. The determinant j of the Jacobian matrix J(H/V ) equals 1.
Indeed,

ε
(n)
V = (a!) dv1 ∧ · · · ∧ dv2a, ε

(n)
H = (a!) dh1 ∧ · · · ∧ dh2a,

whence j = 1. Now Lemma 12 implies that sH = εH =
∑a

i=1 h
2i−1 dh2i also has

the canonical form.
It remains to consider the case when ωV = −v1 dv2 +

∑a
i=2 v

2i−1 dv2i. We again
put ε = ω + dΨ and pass to a chart H in which ε has the canonical form εH =
−h1 dh2 +

∑a
i=2 h

2i−1 dh2i. We similarly get the canonical form sH = −h1 dh2 +∑a
i=2 h

2i−1 dh2i. It is clear that the resulting canonical forms of s are inequivalent:
they differ by the sign of s(n).
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We can now state the additional condition occurring in Definition 19. This
condition requires that sF (b) 6= 0 in some canonical chart F . Then the same holds
in any other canonical chart W because the determinant j of the transition matrix
from W to F is identically equal to 1. Indeed, we have s(n)

F = aF df
1 ∧ · · · ∧ df2a,

s
(n)
W = aW dw1 ∧ · · · ∧ dw2a and jaF = aW . Since aF = aW = ±1 for a canonical

chart, we see that j = 1. It follows that the pseudoform s is transformed as a
differential 1-form when we pass from F to W . Hence the condition sF (b) 6= 0
implies that sW (b) 6= 0 after passage to W .

Thus, for every b-section there is a canonical chart F with sF (b) 6= 0. Hence
there is a canonical b-chart H (since the determinant of the transition from F
to H is identically equal to 1) in which the canonical forms of s are equal to
(1± h1) dh2 +

∑a
i=2 h

2i−1 dh2i.
Type XVII (n = 2a+ 1). Let s : X → P = PX(Y ) be a pseudoform and let F 3 b
be any chart oriented in the same way as X. We denote by ω a 1-form on X such
that sF = ωF . As in the discussion of Type XVI, we see that s(n−1) = ω(n−1) is a
well-defined form of degree n− 1 = 2a on X.

Definition 20. A pseudoform s is called a b-section if s(n−1)(b) 6= 0.

Let s be a b-section and let F and ω be as above. We can always assume that
ω

(n)
F (b) > 0. For otherwise let V be a chart which is tangent to F up to order 2

at b and let µ be a differential 1-form on X such that µV = sV . It follows from
(62) that µ = ω + dΨ, where

Ψ(v) = ln
[
det(f i

j)
]
, f i

j =
∂f i

∂vj
.

Clearly, µ(n) = µ(n−1) ∧ µ = ω(n−1) ∧ (ω + dΨ).
We write

ω
(n−1)
V =

n∑
i=1

wi dv
1 ∧ · · · ∧dv̂i ∧ · · · ∧dvn, dΨ =

n∑
i=1

di dv
i, ωV =

n∑
i=1

ti dv
i.

Here and in what follows, the symbol ˆ over a term means that this term is omitted.
We note that the values wi(b), ti(b) of the components of the forms ω(n−1), ω in the
chart V coincide with the values of the corresponding components in the chart F .
Then

ω
(n)
V = µ

(n)
V = mdv1 ∧ · · · ∧ dvi ∧ · · · ∧ dvn, m =

n∑
i=1

(−1)i−nwi(di + ti).

Since ω(n−1)(b) = s(n−1)(b) 6= 0, the wi are not all equal to zero. Using the explicit
form (61) of dj , it is easy to attach either sign to m(b) by choosing the chart V
and changing fs

ju(b) =
[

∂2fs

∂vj∂vu

]
(b). Hence we can modify our notation and assume

that ω(n)
F (b) > 0 in the original chart F . Darboux’ theorem yields a chart H

such that ωH =
∑a

i=1 h
2i−1 dh2i + dh2a+1. It is clear that the transition map

from F to H preserves orientation. We know that sH = ωH + dΨH . We look
for a canonical chart V given by vi = hi for 1 6 i 6 2a, v2a+1 = h2a+1 + Φ(h).
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Then sV = ωV + dΨV + dΘV , where Θ = − ln[det J ] and J = J(V/H) is the
Jacobian matrix of the transition from H to V . We have

J =

 En−1 0
∂Φ
∂h1

∂Φ
∂h2

. . .
∂Φ

∂hn−1
1 +

∂Φ
∂hn


and, therefore, Θ = − ln

(
1 + ∂Φ

∂hn

)
. It is also clear that ωV =

∑a
i=1 v

2i−1 dv2i +
dv2a+1 − dΦV . Hence, if the function Θ satisfies

dΨ− d ln
(

1 +
∂Φ
∂hn

)
− dΦ = 0,

then the section s has the canonical form ωV =
∑a

i=1 v
2i−1 dv2i + dv2a+1 in the

chart V .
Thus it suffices to find the function Φ from the relation Ψ− ln

(
1+ ∂Φ

∂hn

)
−Φ = 0.

This equation is equivalent to the equation eΨ−Φ = 1 + ∂Φ
∂hn , which obviously has

solutions. It is clear that the chart V is oriented in the same way as X. Finally,
Lemma 11, 3) shows that we can replace V by a chart centred at b.

5.4. We earlier defined the notion of an S-unfolding for every regular point w of a
special manifold D (the manifold Y constructed in § 5.2). We have shown that there
are only 19 types of non-isomorphic manifold Y (after an appropriate shrinking
of S). For the convenience of the reader, we give a list of these G-manifolds in
§ 6. They are called sample manifolds, and the corresponding bundles of geometric
structures are called sample bundles. We recall that all objects (functions, manifolds
and so on) and maps are assumed to be real and infinitely differentiable, and a
bundle of geometric structures is said to be special if the dimension of its generic
fibre does not exceed n = dimX.

If Q is an atlas on the G-manifold Y , then any choice of a chart F on X deter-
mines a natural trivialization trF : P = P (Y ) → Y × X and thus an atlas on P .
This atlas is denoted by (Q, F ). For every type I–XVII of sample manifold Yi, the
list in § 6 indicates an atlas Qi (called the adapted atlas) for which the assertion of
Theorem 5 holds, along with the canonical forms for b-sections (see Theorem 5).

§ 6. The list of sample manifolds and corresponding canonical forms

6.1. Consider the case when q = 1. Put G = G1(n)0. Let yi = ϕi(x1, . . . , xn) be
the 1-jet of a germ of an orientation-preserving map Φ: Rn → Rn sending 0 to 0.
We consider the matrix g(Φ) = (gi

j) = ∂ϕi/∂xj |x=0, where i (resp. j) is the row
(resp. column) number of the matrix g(Φ). This yields an identification G = GL0

n,
which is often used below.

Type I. The action of G on Y1 is trivial. We may assume that Y1 is the open
ball with centre 0 and radius 1 in the m-dimensional vector space Rm, and the
standard coordinates y1, . . . , ym of this space define the adapted atlas Q1 on Y1.
For every b-section s there is a b-chart F such that s takes the form y1 = f1+λ1, . . . ,
ym = fm+λm in the atlas (Q1, F ). Form = n there is another canonical form: y1 =
f1+λ1, . . . , ym−1 = fm−1+λm−1, ym = λm−fm. The functions yi are invariants.
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(Here and in what follows, an invariant means a local invariant with respect to
the action of V on Pi = P (Yi), where V is the group of orientation-preserving
diffeomorphisms of X.)

Type II. Here the sample manifold is Y2 = S ×R0. The action of G on S is trivial
and the action of g ∈ G = GL0

n on the set R0 of positive numbers is multiplication
by det g. Let y0 be the natural coordinate on R0 defined by y0(g mod SLn) = det g.
We may assume that S is an open ball with centre 0 and radius 1 in the vector
space Rm−1 of dimension m − 1 with standard coordinates y1, . . . , ym−1, and the
adapted atlas Q2 on Y2 is determined by the coordinates y0, y1, . . . , ym−1. The
canonical form of a b-section is given by yi = f i + λi for 1 6 i 6 m − 1, y0 = 1.
The functions y1, . . . , ym−1 are invariants.

For types III–XI of sample manifolds, we use the identity representation STn

of G and the dual representation. We recall that STn acts on Rn. The set of rays
in Rn is identified with the sphere Sn−1, which is thus acted on by G. We consider
the standard coordinate system t1, . . . , ti, . . . , tn in Rn and use it to construct an
atlas on Sn−1. Let S(i)+ (resp. S(i)−) be the hemisphere of Sn−1 defined by ti > 0
(resp. ti < 0). We define coordinates y1, . . . , ŷi, . . . , yn on S(i)± by putting yj =
tj/ti. The charts S(i)± form an atlas S on Sn−1. In a similar way, ST∗

n acts on Rn∗,
and the set of rays in Rn∗ is identified with the sphere S∗n−1, which thus admits
the induced action of G. We use the coordinate system u1, . . . , ui, . . . , un in Rn∗

to construct an atlas on S∗n−1. Let S∗(i)+ (resp. S∗(i)−) be the hemisphere in S∗n−1

defined by ui > 0 (resp. ui < 0). We define coordinates y1, . . . , ŷi, . . . , yn on S∗(i)±
by putting yj = uj/ui. The charts S∗(i)± form an atlas S∗ on S∗n−1.

Let S be the interval (−1,+1) with a trivial action of G, and let v be the natural
coordinate on S.

Type III. Here the sample manifold is Y3 = S×Sn−1. The adapted atlas Q3 on Y3

consists of the charts S × S(i)± with local coordinates (v, y1, . . . , ŷi, . . . , yn). For
every b-section s : X → P3 there is a b-chart F on X such that s is representable
in the chart S×S(1)+ of the atlas Q3 on Y3 and has the canonical form v = λ± f1,
y2 ≡ · · · ≡ yn ≡ 0 in the chart (F, S × S(1)+) of the atlas (F,Q3) on P3. The
function v is an invariant.

For types IV and V we have Y4,5 = S × S∗n−1. The adapted atlas Q∗
4,5 consists

of the charts S × S∗(i)± with local coordinates (v, y1, . . . , ŷi, . . . , yn).

Type IV (n = 2a). For every b-section s : X → P4 there is a b-chart F such that
s is representable in the chart S × S∗(2)+ and has the canonical form v = λ ± f1,
y2i−1 ≡ 0 for 1 6 i 6 a, y2i = f2i−1 for 2 6 i 6 a. The function v is an invariant.

Type V (n = 2a + 1). In this case, every b-section s in the canonical b-chart F
is either representable in S × S∗(1+2a)+ and has the canonical form v = λ + f2,
y2i−1 ≡ 0, y2i = f2i−1 for 1 6 i 6 a, or representable in S × S∗(1+2a)− and has the
canonical form v = λ + f2, y2i−1 ≡ 0, y2i = −f2i−1 for 1 6 i 6 a. The function
v is an invariant.

Type VI. The sample manifold is Y6 = Sn−1. The adapted atlas Q6 equals S.
Every b-section s : X → P6 in the canonical b-chart F is representable in the chart
S(1)+ and takes the form y2 ≡ · · · ≡ yn ≡ 0.
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For types VII and VIII, we have Y7,8 = S∗n−1 and the adapted atlas Q7,8

equals S∗.
Type VII (n = 2a). For every b-section s : X → P7 there is a b-chart F such that
s is representable in S∗(2)+ and has the canonical form y2i−1 ≡ 0 for 1 6 i 6 a,
y2i = f2i−1 for 2 6 i 6 a.
Type VIII (n = 2a+1). In this case, every b-section s in the canonical b-chart F is
either representable in S∗(1+2a)+ and has the canonical form y2i−1 ≡ 0, y2i = f2i−1

for 1 6 i 6 a, or representable in S∗(1+2a)− and has the canonical form y2i−1 ≡ 0,
y2i = −f2i−1 for 1 6 i 6 a.
Type IX. The sample manifold is Y9 = R0 × Sn−1. The adapted atlas Q9 on Y9

consists of the charts R0 × S(i)± with local coordinates (y, y1, . . . , ŷi, . . . , yn). In
this case, every b-section s in a canonical b-chart F is representable in R0 × S(n)+

and has the canonical form y ≡ 1, y1 ≡ · · · ≡ yn−1 ≡ 0.
For types X and XI we have Y10,11 = R0 × S∗n−1. The adapted atlas Q10,11

consists of the charts R0 × S∗(i)± with local coordinates (y, y1, . . . , ŷi, . . . , yn).

Type X (n = 2a). For every b-section s : X → P10 there is a b-chart F such that
s is representable in R0 × S∗(2)+ and has the canonical form y = 1, y2i−1 ≡ 0 for
1 6 i 6 a, y2i = f2i−1 for 2 6 i 6 a.
Type XI (n = 2a+ 1). Every b-section s in a canonical b-chart F is either repre-
sentable in R0 × S∗(1+2a)+ and has the canonical form y ≡ 1, y2i−1 ≡ 0, y2i = f i

for 1 6 i 6 a, or representable in R0 × S∗(1+2a)− and has the canonical form y ≡ 1,
y2i−1 ≡ 0, y2i = −f2i−1 for 1 6 i 6 a.
Type XII. In this case, Y12 equals Rn−0 and the adapted coordinate system in Y12

is the standard coordinate system on Rn. However, the action of G on Rn depends
on a real parameter d, so we write Y12 = Rn

d . The action of a matrix g ∈ G on a
column vector x ∈ Rn is given by g(x) = det(g)(d−1)/ngx.

a) Suppose that d 6= 1−n. Then every b-section s reduces to the canonical form
y1 ≡ 1, yi ≡ 0 for i > 2 in an appropriate b-chart F .

b) Suppose that d = 1−n. Then every b-section s reduces to the canonical form
y1 ≡ 1± f1, yi ≡ 0 for i > 2 in an appropriate b-chart F .

For types XIII and XIV, the sample manifolds Y13,14 are equal to Rn∗−0 and the
adapted coordinate system is the standard coordinate system on Rn∗. The action
of a matrix g ∈ G on a row vector x ∈ Rn∗ is given by g(x) = det(g)(d−1)/nxg−1.
This action also depends on the real parameter d, so we write Y13,14 = Rn∗

d .
Type XIII (n = 2a). Two cases may occur.

a) If d 6= 1, then every b-section s reduces in an appropriate b-chart F to the
canonical form y2i−1 ≡ 0 for 1 6 i 6 a, y2 = 1 + f1, y2i = f2i−1 for 2 6 i 6 a.

b) If d = 1, then every b-section s reduces in an appropriate b-chart F to the
canonical form y2i−1 ≡ 0 for 1 6 i 6 a, y2 = 1± f1, y2i = f2i−1 for 2 6 i 6 a.
Type XIV (n = 2a+ 1). Two cases may occur.

a) If (d − 1)/n 6= 1/(1 + a), then every b-section s reduces in an appropriate
b-chart F to the canonical form y2i−1 ≡ 0, y2i = f2i−1 for 1 6 i 6 a, y2a+1 = ±1.

b) If (d − 1)/n = 1/(1 + a), then every b-section s reduces in an appropriate
b-chart F to the canonical form y2i−1 ≡ 0, y2i = (λ + f2)f2i−1 for 1 6 i 6 a,
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y2a+1 = ±(λ+ f2). There is a differential invariant Ω of the first order (that is, it
is expressible in terms of the components of s and their first derivatives). We have
Ω = ±(λ+ f2)a+1 in the chart F .

We have listed all the non-exceptional types of sample manifolds for q = 1.

6.2. There are three types of sample manifolds for q = 2. To describe them, we
put G = G2(n)0. Let ψ : Rn → Rn be an orientation-preserving diffeomorphism
with ψ(0) = 0. It can be written as yi = ψi(x1, . . . , xn). Its 2-jet at x = 0 is
determined by the matrix g = (gi

j), which corresponds to the 1-jet, and the tensor
gi

jk = ∂2ψi/∂xkxj |x=0. The elements of G are identified with pairs (gi
j , g

i
jk), and

multiplication is induced by the rule (ϕψ)(x) = ϕ
(
ψ(x)

)
, where ϕ and ψ map Rn

to Rn and satisfy ϕ(0) = ψ(0) = 0. It follows that (hi
j , h

i
jk)(gi

j , g
i
jk) = (tij , t

i
jk),

where tij = hi
sg

s
j and tijk = hi

sg
s
jk + hi

srg
s
jg

r
k.

We recall that Afn stands for the affine group of Rn. It is identified with the set
of pairs (A, a), where A is a non-singular matrix of order n and a is a column vector
in Rn∗. The group operation in Afn is given by (A1, a1)(A2, a2) = (A1A2, a1A2+a2).
The group Afn acts on Rn∗ on the right: the action of p = (A, a) ∈ Afn on a
row vector t = (ti) ∈ Rn∗ is equal to tp = tA + a (see (21)). We also use the
corresponding left action pt = tp−1 = tA−1 − aA−1 (see (22)). To define an
epimorphism φ : G → Afn, we write (A, gi

jk) = g ∈ G, let D = (di
j) be the matrix

inverse to A and put tijk = di
sg

s
jk and aj = tuju. Then φ(g) = (A, a) ∈ Afn, where

a = (aj) (see (20)). We also have an embedding ε : Afn → GLn+1 defined by (55).
The image of ε is a subgroup of GLn+1, and we denote this subgroup by Bn. The
group GLn+1 acts on Rn+1 by the identity representation STn+1.

The manifolds Y15–Y17 and their adapted atlases are described above.

Type XV. Every section s reduces to the canonical form sF = (1, 0, . . . , 0) in an
appropriate b-chart F .

Type XVI (n = 2a). Every b-section s reduces in an appropriate b-chart F to the
canonical form y2i−1 ≡ 0 for 1 6 i 6 a, y2 = 1± f1, y2i = f2i−1 for 2 6 i 6 a.

Type XVII (n = 2a + 1). Every b-section s reduces in an appropriate b-chart F
to the canonical form y2i−1 ≡ 0, y2i = f2i−1 for 1 6 i 6 a, y2a+1 ≡ 1.

Type XVIII (n = 4). The sample manifold is Y18 = Ygr, the Grassmannian
manifold of 2-dimensional planes in 4-dimensional space. It is endowed with the
natural action of GL4.

Type XIX (n = 3). The sample manifold is Y19 = Yfl, the 3-dimensional mani-
fold of flags of type (1, 2) in 3-dimensional space. It is endowed with the natural
action of GL3. The stabilizers of this action are Borel subgroups of GL3.

6.3. The following theorem combines the results obtained above. We assume that
n > 2. The analogues for n 6 2 are obtained by an easy modification (and hence
omitted).

Theorem 5. LetX be an oriented n-dimensionalmanifold,G=Gq(n)0 the connec-
ted component of the identity in the differential group of order q and dimension n,
and D a special G-manifold, that is, a manifold of dimension at most n acted on
by the Lie group G, n > 2. Then there are 19 types of special G-manifold Yi
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(called sample manifolds) as listed above. For every regular point w of any special
G-manifold there is a local G-isomorphism ε (that is, an isomorphism commuting
with the local action of G) from an appropriate neighbourhood of w onto an open
subset of a sample manifold Yi. This sample manifold Yi is uniquely determined.
Let Qi be an adapted atlas on Yi. The exact order q of the sample manifolds equals
1 or 2.

Fix any point b ∈ X and consider a section s : X → Pi = P (Yi) which is defined
in a neighbourhood of b and is sufficiently general at b. We recall that such sections
are called b-sections. The notion of a b-section is defined separately for each type Yi.
For types I–XVII, each b-section s admits a b-centered chart F oriented in the same
way as X (a b-chart for brevity) with coordinate functions f1, . . . , fn such that the
expression of s in the atlas (Qi, F ) of the manifold Pi takes the canonical form
stated in the list. All the canonical forms in the list are inequivalent.

The notion of a b-section and canonical forms can also be defined for types
XVIII, XIX. This will be done in a future paper. Types XVIII and XIX are said
to be exceptional and types I–XVII non-exceptional.

The proof of Theorem 5 follows from the previous content of the paper. Indeed,
applying the construction of § 5.2, we get an S-unfolding Y and a point y ∈ Y such
that the actions near w and y are locally isomorphic. By construction, all points
of Y are regular and the stabilizer Gs of any point s ∈ Y is a closed connected
subgroup whose codimension is independent of s and does not exceed n. The list
of all possible stabilizers Gs is given in Theorem 3 for q = 1 and in Theorem 4
for q > 2. If q = 1, then Gq(n)0 = GL0

n and hence Gy is a subgroup of GL0
n.

All possible cases are discussed above. For example, if Gy = GL0
n, then we have

Gs = GL0
n for all s ∈ Y . Hence the action on Y is trivial, and we get type I, which

is discussed in § 5.3. If Gy = SLn, then we have Gs = SLn for all s ∈ Y . Hence
all orbits are 1-dimensional, and we get type II, which is also discussed above. The
other cases are studied in a similar way.

§ 7. Subgroups of small codimension in SLn

Here we prove Assertion 1 in § 4.1. We follow a plan suggested by Onishchik and
apply the arguments of [14], Proposition 5, where a similar problem is solved. We
use well-known results from Lie group theory (see, for example, [14]–[18]).

Proof of Assertion 1. Let H be a proper connected subgroup of SLn whose codi-
mension does not exceed n > 2. We regard the embedding of H in SLn as a faithful
representation ρ of H on Rn. The assertion will be proved if we can show that ρ
is reducible over R. For if a subgroup of SLn has an invariant subspace of dimen-
sion m in Rn, then its codimension in SLn cannot be less than m(n −m). If the
codimension of such a subgroup does not exceed n, then n > m(n−m). For every
n > 2, this inequality holds only when m = 1 or m = n − 1, except for the case
n = 4, m = 2. If m = 1 (resp. m = n−1), then H is conjugate to a subgroup of T1

(resp. of T2). If n = 4 and m = 2, then H is conjugate to the group P24. Hence
the assertion follows from Lemma 4.

Thus we assume that ρ is irreducible over R and seek a contradiction.

Lemma 13. The representation ρ is irreducible over C.
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Proof. Let L ⊂ Cn be a proper non-zero irreducible invariant subspace of ρ. We
denote by L1 the subspace complex-conjugate to L. Then L1 is also invariant with
respect to ρ. We put dimL1 = dimL = m. If m < n, then the space L2 = L+ L1

is defined over R and is invariant with respect to ρ, a contradiction. If m > n, then
either L3 = L ∩ L1 is non-zero or L3 is the zero subspace. In the first case, L3 is
defined over R and is invariant with respect to ρ, a contradiction. In the second case
we have n = 2m, Cn = L+L1 and the projection of Cn onto L along L1 determines
an embedding of H in the group GLm(C) of all complex non-singular matrices. The
real dimension of this group equals 2m2. However, dimH > n2 − n− 1 > 2m2 for
n > 2. The lemma is proved.

We put H = Lie(H) and continue the argument in terms of Lie algebras. Extend
the field of scalars of the Lie algebra H to C and denote the resulting algebra
by HC. Then ρ determines a representation (again denoted by ρ) of the algebra H
in SLn. In what follows we regard C as the base field. All algebras, decompositions,
dimensions and so on will be considered over C. We write GLn(C) and SLn(C)
respectively for the Lie algebra of all complex matrices of order n and the subalgebra
of traceless matrices. The extension of ρ to HC is denoted by ρC : HC → SLn(C).
Clearly, the (complex) codimension of ρC(HC) in SLn(C) does not exceed n.

Lemma 14. The algebra HC is semisimple.

Proof. Let R be the soluble radical of the Lie algebra HC. If R is not the zero
subalgebra, then the representation ρ of R has a non-zero eigenvector. Consider
the weight subspace L of this vector. Since R is an ideal in HC, we easily see that
L is an eigenspace for ρ. Hence L = Cn and the action of any element of R on Cn

is multiplication by a scalar matrix. Since ρ(HC) ⊆ SLn(C), it follows that R is
the zero subalgebra. The lemma is proved.

Put m = dimHC. Let HC = H1 + · · ·+Hr be a decomposition of the Lie algebra
HC into a direct sum of simple complex algebras. Since ρC is an irreducible complex
representation of a semisimple algebra, it splits into the tensor product (over C)
of the corresponding irreducible complex representations ρj of the algebras Hj .
We denote the dimension of a representation π by dimπ. Note that dim ρC = n,
dimHC = m and m > n2 − n− 1.

Lemma 15. The algebra HC is simple.

Proof. Suppose that H1 and H2 are semisimple Lie algebras, m1 = dimH1, m2 =
dimH2, ρ1 and ρ2 are faithful irreducible representations of them, HC = H1 +H2,
and ρC = ρ1⊗ρ2, n1 = dim ρ1 and n2 = dim ρ2. Then n = n1n2 and m = m1+m2.
We have

m1 +m2 > (n1n2)2 − (n1n2)− 1.

Clearly, n2
1 > m1 and n2

2 > m2. It follows that

n2
1 + n2

2 > (n1n2)2 − (n1n2)− 1.

This is impossible for n1 > 2, n2 > 2. The lemma is proved.

Thus we may assume thatHC is a simple Lie algebra and ρC is an irreducible rep-
resentation of HC. It is known that every irreducible representation of a semisimple
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(in particular, simple) Lie algebra is uniquely determined by its dominant character,
which is the highest weight of the representation. Let ρ(Λ) be the representation
with highest weight Λ.

Lemma 16. If Λ, M are dominant characters and M > Λ, then dim ρ(M) >
dim ρ(Λ).

For a proof, see [14], Ch. 1, § 3.8, Proposition 4.
We can now complete the proof of Assertion 1 by exhausting all types of sim-

ple Lie algebra. The following assertions on the dimensions of the fundamental
representations of simple Lie algebras are based on Table 2 in [17], Russian p. 272.

We start with the exceptional Lie algebras. The minimal dimensions k of fun-
damental representations for algebras of type E6, E7, E8, F4, G2 are equal to 27,
56, 248, 26, 7 respectively, and the dimensions m of these algebras are equal to 78,
133, 248, 52, 14 respectively. We see that k2−k−1 exceeds m for all these algebras.

Now we consider the classical Lie algebras.
Series Ds, s > 4. The dimension of the algebra Ds of rank s is m = s(2s − 1).
The minimal dimension of the fundamental representation of Ds is k = 2s. Hence
k2 − k − 1 always exceeds m.
Series Bs, s > 2. The dimension of the algebra Bs of rank s is m = s(2s+1). The
minimal dimension of the fundamental representation of Bs is k = 2s+ 1 for s > 3
and k = 4 for s = 2. Hence k2 − k − 1 always exceeds m.
Series Cs, s > 3. The dimension of the algebra Cs of rank s is m = s(2s + 1).
The dimensions of the fundamental representations of Cs are equal to dim ρ(πk) =
Ck

2s − Ck−2
2s , 1 6 k 6 s. The following estimate is proved in Proposition 5 of [14]

for s > k > 3:

dim ρ(πk) > r(s) =
4s(2s− 1)(s− 1)

3(s+ 2)
.

The dimensions dim ρ(π1) and dim ρ(π2) of the fundamental representations π1 and
π2 are equal to 2s and s(2s − 1) − 1 respectively. We easily see that r(s) > 2s
and s(2s − 1) − 1 > 2s. Hence the minimal dimension of a fundamental represen-
tation is k = 2s. It is easy to see that k2 − k − 1 always exceeds m.

Thus the minimal dimension k of a fundamental representation and the dimen-
sion m of the algebra satisfy k2 − k − 1 > m for all the algebras considered above.
Since every dominant weight dominates some fundamental weight, the dimension
n of any irreducible representation satisfies n > k by Lemma 16. Since k > 1, it
follows that n2 − n − 1 > k2 − k − 1. This enables us to exclude all types except
for As.
Series As, s > 1. The dimension of the algebra As of rank s is m = s(s+ 2). The
fundamental representations ρ(π1) and ρ(πs) have dimension s+ 1, and the images
of As under these representations coincide with the whole of SLn(C). Therefore
we can assume that the highest weight Λ of the representation ρ is not equal to π1

or πs. The following dimensions are calculated in [14] for s > 2:

n1 = dim ρ(2πs) = dim ρ(2π1) =
(s+ 1)(s− 2)

2
+ 2(s+ 1),

n2 = dim ρ(π1 + πs) = s2 + 2s.
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If s > 2, then As also has fundamental representations ρ(π2), . . . , ρ(πs−1) of
dimensions dim ρ(πj) = Cj

s+1. The minimal dimension is n3 = C2
s+1. Clearly, the

highest weight Λ dominates either 2π1, 2πs, π1 + πs or πj for 1 < j < s.
Hence the number n = dim ρ(Λ) always satisfies n > n4 = min(n1, n2) > 1 for s = 2
and n > n4 = min(n1, n2, n3) > 1 for s > 2.

A direct examination shows that n2
4 − n4 − 1 > m. Hence n2 − n − 1 > m by

Lemma 16. This excludes the case s > 2.
It is also easy to exclude the remaining case, the algebra A1 of rank s = 1.

Indeed, it is well known that, for every positive integer k, this algebra has a unique
irreducible representation, which has dimension k+1 and highest weight kπ1. These
dimensions are always greater than or equal to 3 for k > 2. Since 32 − 3 − 1 > 3,
the assertion is proved.
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[15] N. Bourbaki, Groupes et algèbres de Lie, Ch. IV–VI, Hermann, Paris 1968; Russian
transl., Mir, Moscow 1972.
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