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ABSTRACT Optimal control has strongly in�uenced geometry since
the early days of both subjects� In particular� it played a crucial role
in the birth of di�erential geometry in the nineteenth century through
the revolutionary ideas of rede�ning the notion of �straight line� 	now
renamed �geodesic�
 by means of a curve minimization problem� and
of emphasizing general invariance and covariance conditions� More re�
cently� modern control theory has been heavily in�uenced by geometry�
One aspect of this in�uence is the geometrization of the necessary con�
ditions for optimality� which are recast as geometric conditions about
reachable sets� thus becoming special cases of the broader question of
the structure and properties of these sets� Recently� this has led to a
new general version of the �nite�dimensional maximum principle� stated
here in full detail for the �rst time� A second aspect�in which Roger
Brocketts ideas have played a crucial role�is the use in control the�
ory of concepts and techniques from di�erential geometry� In particu�
lar� this leads to regarding a control system as a collection of vector
�elds� and exploiting the algebraic structure given by the Lie bracket
operation� This approach has led to new important developments on
various nonlinear control problems� In optimal control� the vector��eld
view has produced invariant formulations of the maximum principle on
manifolds�using either Poisson brackets or connections along curves�
which� besides being more general and mathematically natural� actually
have real advantages for the solution of concrete problems�

��� Introduction

The interplay among control� geometry� and physics goes back to ancient
times� The words �control theory� are� of course� of recent origin� but the
subject itself is much older� since it contains the classical calculus of varia�
tions as a special case� and the �rst calculus of variations problems go back
to classical Greece� 	The same is true of the calculus of variations� whose
name was introduced by Euler in ����� although the subject itself is at
least as old as the classical isoperimetric problem�


In this discussion we will describe some aspects of the relationship be�
tween optimal control and geometry� beginning with a brief outline of some
events prior to the formulation of the Maximum Principle in the ����s� and
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then focusing on the geometrization of optimal control theory that took
place after ����� The pre�Maximum Principle relationship is primarily one�
sided� with optimal control 	in the form of its ancestor� the calculus of varia�
tions
 exercising a decisive in�uence on geometry� and serving as the source
of some of the ideas that revolutionized geometry� such as di�erential geom�
etry� In the much shorter post�Maximum Principle era� the in�uence goes
mainly in the other direction� with control theory being heavily in�uenced
by geometric ideas� 	An important exception is provided by recent devel�
opments in subriemannian geometry� discussed by V� Jurdjevic in Chapter
� of this volume�


The geometrization of control theory has brought into the �eld many
mathematical concepts and structures borrowed from di�erential geome�
try and related areas�such as Lie algebras of vector �elds� integral man�
ifolds� systems of di�erential forms and Cartan prolongations� distribu�
tions�� Carnot�Carath�eodory metrics� Lie groups� homogeneous spaces� sym�
plectic structures� Hamiltonian mechanics�together with tools from real
analytic geometry such as subanalytic sets� strati�cations and desingular�
ization� The combined use of these tools has led to new results on several
important control�theoretic questions� such as 	i
 controllability� observ�
ability and minimal realizations of nonlinear systems� 	ii
 path �nding�
	iii
 feedback stabilization� 	iv
 system equivalence under state space di�eo�
morphisms� static feedback� and dynamic feedback� 	v
 system linearization
under state space di�eomorphisms and under feedback� 	vi
 disturbance de�
coupling� 	vii
 tracking� and 	viii
 optimal control�

Our primary area of interest here will be optimal control� and we will not
review other aspects of the di�erential�geometrization of nonlinear control
theory since those topics have been extensively discussed elsewhere�for
example in the books by Jurdjevic ����� Isidori ����� Nijmeijer and var der
Schaft ����� and the survey books ���� ����� ����� ����� �����or are covered
by other papers in this volume� e�g� in the contributions by A�J� Krener
and V� Jurdjevic� One of the aspects that will not be covered here is the
relationship with mechanics� which is beautifully described in the paper by
Bloch and Crouch 	Chapter � in this volume
�

Even more narrowly� we will focus on the geometrization of the Maximum
Principle based on two independent ideas� �rst� the �di�erential geometric�
formulation� invariant under arbitrary nonlinear changes of coordinates�
and second� the reformulation of the Maximum Principle as a geometric
property of reachable sets� namely� a condition for a reachable set and
some other set to be separated� Underlying both ideas lies the emphasis
on regarding a control system as a system of vector �elds�� This makes
it possible to exploit the algebraic structure of the space of vector �elds�
given by the usual linear operations and the Lie bracket� As will be ex�
plained below� this can be used to do at least two important things� namely�
	a
 give a coordinate�free user�friendly formulation of the Maximum Princi�

�That is� subbundles of a tangent bundle�
�For example� Kaskosz and �Lojasiewicz proposed in ���� to refer to a general family of

time	varying vector 
elds as a �generalized control system�� We adopt the more radical
view that the Kaskosz	�Lojasiewicz approach provides the most reasonable way to de
ne
the concept of a control system�
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ple� and 	b
 generate high�order variations and obtain high�order necessary
conditions for optimality� Since the �rst idea� pertaining to the di�erential�
geometrization of the Maximum Principle� has already been described at
length in Sussmann ����� we will pay special attention here to the second
idea� and mainly concentrate on one of its by�products� namely� our recent
general version of the �nite�dimensional Maximum Principle� This result�
of which several special cases have already been presented in preliminary
announcements in Sussmann ���������� will be stated here in a complete�
self�contained form�

A natural alternative to the systems of vector �elds point of view is that
of di�erential inclusions� For about �� years it has been widely believed
that the di�erential inclusions approach is strictly more general than the
one based on vector �eld systems� owing to the fact that set�valued maps�
even if they are very smooth� do not usually admit continuous single�valued
selections� 	For example� the map z � jzjNpz� on the complex plane� has
two values at each nonzero point� and is of class CN � but has no continuous
single�valued selections on any neighborhood of the origin�


We will argue that�at least as far as the �nite�dimensional Maximum
Principle is concerned�the vector��eld point of view is actually su�cient
to cover the di�erential inclusions case� The reason for this is that all the
di�erential inclusions for which there appears to be a version of the Maxi�
mum Principle are given by set�valued maps that admit su�ciently many
selections that� even though they may fail to be continuous� are nice enough
to make it possible to construct needle variations and extend the method of
proof of the classical Maximum Principle to a di�erential�inclusions setting�
	These facts are based on ideas due to A� Bressan �������� The application to
the Maximum Principle is discussed in Sussmann �����
 So the vector��elds
point of view su�ces� provided that we allow our vector �elds to be very
nonsmooth 	i�e�� not necessarily Lipschitz continuous or even continuous
�

The key mathematical tools needed to carry out this program turn out
to be

I� A concept of �generalized di�erential� having the right properties�
especially the chain rule and suitable open mapping and transver�
sal intersection theorems� Two such concepts�the �semidi�erentials�
and the �multidi�erentials��were introduced in Sussmann ����������
����� and will be reviewed here�

II� Separation and transversality theorems� giving necessary conditions
for two sets S�� S� to be �separated� at a point q� in the sense that
S� � S� � fqg� These conditions are stated in terms of objects Dj

that �linearly approximate� the sets Sj near q� A natural choice is
to take the Dj to be multidi�erentials�at 	�� q
�of set�valued maps
Fj that map cones Cj into the Sj �

III� An extension to set�valued maps 	cf� Theorem ����� and Remark
�����
 of a theorem from homotopy theory� originally formulated by
Leray and Schauder ����� and proved rigorously by Browder in ���
	cf� also Rabinowitz ���� ���
� about the existence of connected sets
of zeros of certain homotopies� This makes it possible to extend the
usual transversality results and include the su�cient condition for
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local controllability along a reference trajectory as a special case of
the maximum principle�

IV� An extension of Bressans ideas of ������� to �almost lower semicontin�
uous maps�� with a strengthening of the conclusions of his selection
theorems� to obtain selections that are continuous at a given point�

V� An extension to the pseudo�Lipschitz case of the results of Colombo et
al� ����� and those of Fryszkowski and Rze�zuchowski ����� on uniform
approximation of relaxed trajectories of a di�erential inclusion by
ordinary trajectories�

As explained in Sections ��� and ���� this theory makes it possible to give
a geometric� intrinsic version of the Maximum Principle that covers the
nonsmooth case of families of Lipschitz�continuous vector �elds� the di�er�
ential inclusions case� and many problems with discontinuous vector �elds�
while at the same time it includes� in the smooth case� the extra results
arising from high�order conditions corresponding to complicated variations
constructed using Lie brackets�

��� From Queen Dido to the Maximum Principle

The �rst optimal control result ever discovered must have been the state�
ment that

	LS
 The shortest path joining two points is a straight line segment�

This is of course a rather trivial observation� but it is undoubtedly 	a
 very
old� 	b
 geometric� and 	c
 a result in optimal control� Moreover� we shall
see later that� in spite of its deceptive obviousness� 	LS
 is a fact of enor�
mous importance that� properly interpreted or reinterpreted� has led to key
discoveries in geometry and theoretical physics�

Next came the isoperimetric problem 	IP
�� the solution of which
was known in classical Greece� The IP is the problem of �nding� among all
simple closed plane curves of a given length� one that encloses the largest
possible area� Once again� this is obviously a geometric question� and it is
also an optimal control problem in at least two ways�

�� If one uses the well�known formula A	�
 � �
�

R
�
	x dy � y dx
 for the

area enclosed by a simple closed curve �� oriented counterclockwise�
then the IP asks us to maximize the integralA	�
 among all the curves
� � ��� �� � IR� that satisfy endpoint constraints �	�
 � �	�
 � 	�� �


and the side constraint
R �
�
k  �	t
k dt � P � where P � � is given�

�According to the story told by Virgil in the Aeneid about the foundation of Carthage
ca� ��� B�C�E��� �when Dido landed in North Africa� she persuaded the local chief to
sell her as much land as an oxhide could contain� She then cut a hide into very narrow
strips� and joined them to make a continuous thread more than two	and	a	half miles
long� She was then able to enclose between the thread and the sea the land on which
Carthage was built� Pars ������
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�� Alternatively� our curves can be thought of as trajectories of a three�
dimensional control system  x � u�  y � v�  z � vx � uy� and the
IP as the minimum�time optimal control problem for this system�
with control constraint u� ! v� � �� as well as endpoint constraints
xinitial � x�nal � yinitial � y�nal � zinitial � �� z�nal � "A� where "A � �
is given�

	The justi�cation for the second formulation is that minimizing the length
of the boundary of a region given the area is easily proved to be equivalent
to maximizing the area given the length of the boundary�


If we use Formulation �� then the IP is a standard �xed�endpoint cal�

culus of variations problem�minimize I�
def
�
R b
a
L	�	t
�  �	t

dt among all

curves �a� b� � t � �	t
 such that �	a
 � "q� �	b
 � #q�with an extra

constraint I� � �� where I� is an integral of the form
R b
a
L�	�	t
�  �	t

dt�

Calculus of variations problems of this form� with one or several constraintsR b
a
Li	�	t
�  �	t

dt � �i� are in fact called isoperimetric problems� �

If we use Formulation �� then the IP is just a standard �xed�endpoint
minimum�time optimal control problem� with no extra quali�cations�

The solution of the IP was known to be what the most obvious guess im�
mediately suggests� namely� a circle� 	It is almost evident that the solution�
modulo translations�has to be rotationally symmetric� since the question�
as stated� treats all directions in the plane equally� This� however� is not a
rigorous argument� since it might conceivably happen that there is �sym�
metry breaking�� so that the solution modulo translations is not unique�
and each solution individually is not rotationally symmetric� even though
the set of all solutions is� � To transform the rotational symmetry argument
into a rigorous proof that the solution of the IP is a circle� one would have
to establish� for example� uniqueness of the solution modulo translations�


Knowing that the solution of the IP was a circle� Greek scholars could
not help thinking that this fact had to mean something about the physical
world� even if they couldnt quite tell what this might be� For example�
Aristotle reasoned that

Clearly� the movement of the heavens must be the swiftest of all
movements� Now of lines which return upon themselves the line
which bounds the circle is the shortest� and that movement is the
swiftest which follows the shortest line� Therefore� if the heaven
moves in a circle and moves more swiftly than anything else� it
must necessarily be spherical�

To the extent that one can make sense of Aristotles argument� it would
appear to be saying that planetary motion is circular because the circle is

�Throughout this paper� the letters q� u� and p will denote the usual state� control
and momentum variables� Greek letters will be used for curves in the spaces of these
variables� For example� the letters �� �� and � will denote curves in q� u� and p space�
respectively�

�This is exactly what happens� for example� for the problem of minimizing rather
than maximizing an enclosed area� In this case� the set S of solutions is very large�
and consists of all loops of length P that enclose a zero area� For example� S contains
all �degenerate rectangles� with two opposite sides of length P�� and the other two of
length zero�� None of these solutions is rotationally symmetric� but of course the family
of all the solutions is symmetric�
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the solution of the IP� For Aristotles logic to work� even if we ignore minor
details such as the failure to distinguish between circles and spheres� one
needs to know or assume that� for some reason� planets are trying to move
as fast as possible� that each planet wants its orbit to enclose in its motion
some �xed�planet�dependent�area� and� �nally� that the speed of motion
is a �xed�planet�dependent�constant� These assumptions�especially the
planets insistence on wanting to enclose a given area�would be considered
somewhat implausible today� even by those who believe in a Creator who
for some reason is seeking to minimize some cost functional�

The �rst two examples of minimization properties of curves that were
truly tied to physics in a way that we still �nd credible today were two
minimum principles of geometrical optics� namely�

�� The observation by Hero of Alexandria 	ca� ���ca� ���
 that the
laws of the re�ection of light can be explained by assuming that light
follows a shortest path�

�� The minimum time principle of Fermat 	���������
� according to
which� in a medium of variable velocity of propagation of light� the
light rays are precisely the minimum�time paths�

Fermats principle provides� in particular� an �explanation� for Snells Law
of refraction� The statement of Fermats principle can be interpreted in
at least two ways� namely� 	a
 as a description of the physics of a certain
process 	light propagation
 that takes places in ordinary space� in which
the governing principle is time minimization� or 	b
 as asserting that the
governing principle is still that of motion along shortest paths� except that
the geometry of space is now di�erent�the �length� of a curve being� by
de�nition� travel time along the curve�so shortest paths no longer have to
be ordinary line segments� The �rst point of view looks simpler and more
natural� but the second one has turned out� in the long run� to be more
fruitful� as we shall see below�

In ����� Newton studied the problem of characterizing the solid of
revolution of least resistance� Mathematically� this means that� for given
a� b� "y� #y� with a � b� we have to �nd the function y � y	x
 that minimizes
the integral

I �

Z b

a

x

� ! y�	x
�
dx

subject to y	a
 � "y� y	b
 � #y�
�n ����� Johann Bernoulli 	���������
 challenged the mathematicians

of his time to solve the �brachystochrone problem�� in which it is desired
to determine� among all curves � going from a point A to a point B in a
vertical plane� the one for which a particle falling freely along ��subject
only to the action of the gravitational force plus whatever �virtual force�
is needed to keep the particle on ��will reach B from A in minimum time�
Mathematically� one can formulate this by observing that� if our curve � is
given�in terms of a parameter s which is an increasing function of time
t�by s � 	x	s
� y	s

� � � s � �� A � 	a� �
� B � 	b� �
� and t is time�
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initialized so that t	�
 � �� then the total energy

E �
�

�

��dx
dt

��
!
�dy
dt

���
! gy

is constant 	taking the mass to be �
� So

dt �

s
dx� ! dy�

�E � �gy
�

If we assume that a � b� and make the Ansatz that our minimizing curve is

the graph of a function x� y	x
� then dt �
q

��y��x��

�E��gy dx� so our problem

becomes that of minimizing the integral
R b
a
L	y	x
� y�	x

 dx� subject to the

constraints y	a
 � �� y	b
 � �� where

L	y� u

def
�

s
� ! u�

�E � �gy
� 	�


On the other hand� without assuming that a � b and without making any
Ansatz about y being a function of x� we can formulate our problem as that
of minimizing the integral

I �

Z �

�

$	x	s
� y	s
�  x	s
�  y	s

 ds � 	�


subject to x	�
 � a� y	�
 � �� x	�
 � b� y	�
 � �� where

$	x� y� u� v

def
�

s
u� ! v�

�E � �gy
� 	�


	The curves under consideration are� of course� restricted to lie in the closed
half�plane HE � f	x� y
 � y � E

g
g�
 Finally� we can also use a minimum�

time optimal control formulation� by writing the equations of motion 	after
choosing units so that �g � �� and changing y to �E � y
 as

 x � u
p
y �  y � v

p
y � u� ! v� � � � 	�


where x and y are the state variables� u and v are the controls� and y is
restricted to satisfy y � �� This third formulation is clearly more natu�
ral than the �rst two� since it is a direct mathematical translation of the
problem� This is the �rst of a number of reasons that in our view show
that Johann Bernoullis question properly belongs to optimal control� 	Cf�
Sussmann and Willems ���� ��� for a more detailed argument
�

The brachystochrone problem attracted a lot of interest in �������� lead�
ing to the publication� in June ����� of an issue of Acta Eruditorum con�
taining six responses to Johann Bernoullis challenge� by Johann Bernoulli
himself� his brother Jakob� Leibniz� Newton� lH#opital� and Tschirnhaus�
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What made the problem appealing at the time was that the solution
was a curve that everybody knew�a cycloid�but there was no obvious
way to guess that this was so� and one had to resort to the new methods
of in�nitesimal calculus that were being invented at that time in order
to �gure out the formula for the solution� 	This should be contrasted with
the case of the isoperimetric problem�for which� as indicated above� it is a
fairly natural guess that the solution must be a circle�and that of Newtons
���� problem� whose solution is a curve of no particular signi�cance�


What makes the solution of the brachystochrone problem important for
us now� ��� years later� is that it marked the beginning of the systematic
study�which would be given the name �calculus of variations� by Euler
in �����of minimization problems of the form

	SCV
 Minimize
R b
a
L	�	t
�  �	t
� t
dt

subject to �	a
 � "q � �	b
 � #q �

	Here we will refer to 	SCV
 as a standard calculus of variations problem�
to distinguish this question from other� �nonstandard� ones such as isoperi�
metric problems and problems with constraints other than �xed endpoints�


Remark ����� Johann Bernoullis problem happens to have a very signif�
icant di�erential�geometric aspect� that Bernoulli himself failed to appre�
ciate� thereby failing to make an important discovery for which he had all
the clues in front of his eyes� In fact� 	�
 describes the curves parametrized
by arc�length for a Riemannian metric on the upper half�plane� given by

ds� �
dx� ! dy�

y
� 	�


The cycloids that solve the problem are the geodesics of this metric� Johann
Bernoulli studied the same problem with other functions instead of

p
y in

	�
� and in particular for the function y� which in modern terms corresponds
to the metric

ds� �
dx� ! dy�

y�
� 	�


In this case� he found that the minimum�time paths were half�circles
rather than cycloids� So Johann Bernoulli had found what we would call
today the Poincar�e half�plane� i�e�� the simplest model of a non�Euclidean
	hyperbolic
 geometry� All that was missing was for him to take the �small
step� of calling his travel time �length�� i�e� of thinking that an expression
such as 	�
 or 	�
 could serve as just another way of measuring length� Had
he hit upon this idea� it would have been natural for him to turn 	LS

around and regard it as a de�nition of �segment�� for a new �geometry� in
which �length� was measured di�erently� This step�which would eventu�
ally be taken by Riemann in �����was perfectly within Johann Bernoullis
reach� and would have enabled him to show that his minimum�time arcs�
for the Poincar�e half�plane�gave rise to a geometry where all of Euclids
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axioms held� except for the famous Fifth Postulate��

It is worth noting that Johann Bernoulli lived at a time when the question
of Euclids postulate was at the center of mathematicians interest� 	For
example� the book Euclides ab Omni Naevo Vindicato� by G� Saccheri
	���������
� claiming to give a proof of Euclids Fifth Postulate in terms
of the other ones� was published in �����
 Moreover� Johann Bernoulli had
an obsessive desire for fame and glory�� so it is a sad irony that he� of all
people� should have come so close to a truly momentous discovery� and
missed it� �

With Euler 	���������
 and Lagrange 	���������
� it became clear
that a necessary condition for a curve �a� b� � t � ��	t
 � IRn to be a
solution of a problem 	SCV
 is that it satisfy the Euler�Lagrange equation

d

dt

	L

	  q
�

	L

	q
� 	�


i�e�� if we use u instead of  q�

d

dt

	L

	u

�
��	t
�  ��	t
� t

�
�

	L

	q

�
��	t
�  ��	t
� t

�
� 	�


or
d

dt

	L

	ui

�
��	t
�  ��	t
� t

�
�

	L

	qi

�
��	t
�  ��	t
� t

�
� i � �� � � � � n � 	�


In addition� Lagrange tried to free mechanics from �geometry� by doing
everything analytically� But he unwittingly took a fundamental step leading
towards the geometrization of physics and the birth of di�erential geometry�
by proving the invariance of the Euler�Lagrange equations under
arbitrary� nonlinear coordinate changes�

Lagranges invariance theorem was the �rst example of what we would
call today a �proof that some object is di�erential�geometrically intrin�
sic�� In modern terminology� Lagranges result says that 	�
 makes sense
intrinsically on manifolds� What Lagrange proved� in his M�ecanique Ana�
lytique� was that ��� has the same form in arbitrary 	curvilinear

or 	generalized
 coordinates�

Remark ����� A more modern formulation of Lagranges invariance re�
sult would be that� for a su�ciently smooth curve �� in a smooth manifold
Q� if TQ denotes the tangent bundle of Q� and L � TQ 	 IR � IR is a
su�ciently smooth function� and we de�ne

EL�� 	t
 �
d

dt

	L

	u
	��	t
�  ��	t
� t
� 	L

	q
	��	t
�  ��	t
� t
 � 	��


�The cycloids that minimize arc	length for the metric �� do not have this property�
For example� the length of these cycloids is 
nite�

�He was involved in many 
ghts about priorities� He was jealous of the scienti
c
achievements of his brother Jakob and his own son Daniel� whom he once expelled from
the house for having dared to win a scienti
c prize for which the father was also a
candidate�



�� Geometry and Optimal Control ��


then EL���the �Euler�Lagrange form along ����is a well�de�ned �eld
of covectors along ��� This implies that the equation EL��	t
 � � makes
sense intrinsically� but it also implies that other things that can be writ�
ten using EL�� make sense intrinsically� For example� if the Lagrangian L
governs the motion of a particle that is subject in addition to constraints

i	q
�  q � �� where the 
i� i � �� � � � � k� are di�erential ��forms on Q� such
that 
�	q
� � � � � 
k	q
 are linearly independent at each q� then the statement
that

EL��	t
 � linear span
�
f
�	�	t

� � � � � 
k	�	t

g

�
for all t 	��


also makes sense intrinsically�
Formula 	��
 is the well�known D�Alembert principle� governing con�

strained motion� If we think of the covector EL�� 	t
 as a �virtual force��
then 	��
 says that the �force��i� e�� d

dt
�L
� �q � the time derivative of the mo�

mentum p � �L
� �q �is equal to �L

�q
plus the virtual force� Then 	�
 says that

for unconstrained motion the virtual force should be zero� and 	��
 says
that that for constrained motion the virtual force a point q must be orthog�
onal to the set fv � 
i	q
�v � � � i � �� � � � � kg of feasible velocity vectors at
q� �

Lagrange was aware of the importance of his invariance proof� He wrote�

It is perhaps one of the principal advantages of our method that it
expresses the equations of every problem in the most simple form
relative to each set of variables and that it enables us to see be�
forehand which variables one should use in order to facilitate the
integration as much as possible�

Remark ����� An obvious illustration of the power of this idea is pro�
vided by the calculation showing that the three laws of Kepler follow from
Newtons inverse�square law� The calculation is made much simpler by us�
ing spherical coordinates� i�e�� by writing the equations in terms of those
variables that �facilitate the integration as much as possible�� �

Remark ����� The era of Euler and Lagrange also saw the birth of the
least action principle� that made the link between curve minimization
and physics much stronger� According to the principle� the behavior of
mechanical systems is such as to minimize an action functional

S �

Z b

a

L	�	t
�  �	t
� t
 dt �

Moreover� at least some of the discoverers of this principle felt� like Aristo�
tle� that the fact that Nature obeys a minimization principle had to have a
profound meaning� For example� the least action principle was thought to
express the fact that the Creator was making the wisest possible use of his
power� as Maupertuis wrote in �����

Notre principe� le plus conforme aux id�ees que nous devons avoir
des choses� laisse le monde dans le besoin continuel de la puissance
du Cr�eateur� et est une suite n�ecessaire de lemploi le plus sage de
cette puissance � � �Ces lois si belles et si simples sont peut�#etre les
seules que le Cr�eateur et lOrdonnateur des choses a �etablies dans
la mati%ere pour y op�erer tous les ph�enom%enes de ce Monde visible�
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A radically di�erent view was expressed by Hamilton in �����

Although the law of least action has thus attained a rank among
the highest theorems of physics� yet its pretensions to a cosmolog�
ical necessity� on the ground of economy of the universe� are now
generally rejected� And the rejection appears just� for this� among
other reasons� that the quantity pretended to be economized is in
fact often lavishly expended � � �� We cannot� therefore� suppose the
economy of this quantity to have been designed in the divine idea
of the universe�

The least action principle remains to this day one of the basic principles
of physics� classical as well as relativistic and quantum mechanical 	cf�
Yourgrau and Mandelstam ����
� �

In ���� and ����� W�R� Hamilton 	���������
 published papers on
dynamics showing how to rewrite the Euler�Lagrange equations in what we
would now call �Hamiltonian form� � for a curve t 
� ��	t
� 	�
 is exactly
equivalent to the system of equations

d��
dt

	t
 � �H
�p

�
��	t
�  ��	t
� �	t
� t

�
�

d�

dt
	t
 � ��H

�q

�
��	t
�  ��	t
� �	t
� t

�
�

� � �H
�u

�
��	t
�  ��	t
� �	t
� t

�
�

	��


where the Hamiltonian H and the momentum � are de�ned by

H	q� u� p� t

def
� hp� ui � L	q� u� t
 � 	��


�	t

def
�

	L

	u

�
��	t
�  ��	t
� t

�
� 	��


The system 	��
�	��
 is not exactly what is commonly known as �Hamil�
tons equations�� although in our view it is how Hamiltons equations should
be written� The usual Hamilton equations are

dq

dt
�

	H
	p

�
dp

dt
� �	H

	q
� 	��


where 	q� p� t
 � H	q� p� t
 is a function of p� q and t alone� de�ned by the
formula

H	q� p� t

def
� hp�  qi � L	q�  q� t
 � 	��


This is certainly similar to 	��
�	��
� but with a crucial di�erence� in 	��

and 	��
  q is supposed to be treated not as an independent variable� but
as a function of q� p� and t� de�ned implicitly by the equation

p �
	L

	  q
	q�  q� t
 � 	��


whereas in 	��
�	��
 q� u� p� and t are treated as independent variables�
The fact that Hamiltons equations were written in the form 	�����


rather than 	��������
 has had important consequences� discussed in detail
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in Sussmann and Willems ���� ���� Indeed� it is argued in ���� ��� that the
maximum principle of optimal control theory could have been discovered
much earlier� perhaps by Weierstrass� if only the �correct� Hamiltonian
system 	��������
 been used�

Hamiltons equations also have the coordinate invariance property proved
by Lagrange for the Euler�Lagrange equations� provided that the p vari�
ables are transformed according to the correct law� for a coordinate change
qnew � F 	q
� i�e� qnewi � Fi	q�� � � � � qn
� the new variables pnewi must be
related to the old ones via

pi �
X
j

	Fj
	qi

pnewj �

which is the dual of the transformation law

 qnewi �
X
j

	Fi
	qj

 qj �

and guarantees that X
i

pi  qi �
X
i

pnewi  qnewi �

In other words� using modern terminology� the pi are the components of a
covector�

In ����� B� Riemann 	���������
 introduced a number of ideas that
today lie at the foundation of di�erential geometry�

�� He turned Statement 	LS
 around� and made it into a de�nition of
�line segment�� now called �geodesic��

�� He introduced more general ways of measuring the length of an arbi�
trary curve t� 	q�	t
� � � � � qn	t

 by using the arc�length element

ds� �
X
ij

gij	q
 dq
idqj � 	��


where 	gij

n
i�j�� is an n	n matrix of smooth functions of q� assumed

to be positive de�nite for each q�

�� He introduced the systematic use of �covariant quantities�� i� e�� quan�
tities that transform under general nonlinear coordinate changes ac�
cording to a speci�c law� Two examples of that� namely� �vectors�
such as  q� and �covectors� such as p� have already been discussed
before� A third example is the Riemannian metric itself� which is a
tensor with two covariant indices� meaning that the gij transform
according to

gij �
X
k��

	Fk
	qi

	F�
	qj

gnewk�� �
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Moreover� in his e�ort to understand the properties of what we now call
�Riemannian metrics�� given locally by 	��
� Riemann introduced the cur�
vature tensor� whose components are given� in coordinates� by

Ri
jk� �

	&ij�
	qk

� 	&ijk
	q�

!
X
s

�
&isk&sj� � &is�&

s
jk

�
� 	��


where the &ijk are the �Christo�el symbols�� given by

&ijk �
�

�

X
�

gi�

�
	g�k
	qj

!
	g�j
	qk

� 	gjk
	q�

�
� 	��


and the gij are the entries of the inverse of the matrix 	gij
� so thatX
j

gijgjk � �ik �

	Here �ik � � if k �� i� �ii � ��

The crucial points about the curvature tensor R are�

	�
 Its covariance property� i�e�� the fact that the components 'R�
�	
 of

R relative to a coordinate chart 'q � F 	q
 are related by a speci�c
formula to the components Ri

jk� relative to q� The transformation law
is

'R�
�	
 �

X
ijk�

Ri
jk� �

	F�

	qi
� 	G

j

	'q�
� 	G

k

	'q	
� 	G

�

	'q

�

where 'q � G	'q
 is the inverse transformation of q � F 	q
� This
implies� in particular� that if R  � in some coordinate system� then
R  � in every coordinate system� So R  � is an invariant property�

	�
 The fact that R locally determines the metric up to isometry� for
example� R  � near a point "q i� the metric is �at 	i�e�� such that�
for some coordinate chart� the gij are constant functions
 near "q�

It then follows that �atness can be detected even if the metric is presented
to us in completely arbitrary �curvilinear� coordinates� since it su�ces to
check whether R  �� and this property holds in one coordinate system i�
it holds in every such system�

Through Riemanns ideas� optimal control exercised a decisive in�uence
on the birth of di�erential geometry by showing that certain optimal con�
trol problems could be used as sources of new geometries� Moreover�

�The general statement of the result that �R determines the metric up to isometry�
is more delicate� because� if M�g� and  �M� �g� are two di�erent Riemannian manifolds�
then the corresponding curvature tensors live in di�erent spaces� so it is not clear how
to de
ne what it means for them to be the same� One way to do this is given in Do
Carmo �����
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the concept of invariance under general nonlinear changes of coordinates�
which had �rst surfaced with Lagranges proof of the invariance of the
Euler�Lagrange system� turned out to play a crucial role in the theory� In
fact� the systematic use of general covariant quantities and the search
for intrinsic formulations became the hallmarks of modern di�erential
geometry� As we shall see below� the ideas of covariant objects and intrin�
sic formulations have in turn been in�uential in recent developments in
optimal control�

��� Invariance� Covariance and Lie Brackets

The evolution of nonlinear control theory exhibits some interesting sim�
ilarities to that of di�erential geometry� In both cases� a special class of
situations 	�at Euclidean spaces� linear control systems
 was studied �rst�
and a rich theory was developed� In both cases� there was a mathemati�
cal language 	Euclidean geometry� linear algebra
 adequate for the special
theory� but not appropriate for the general case� In both cases� the general
theory requires the use of the language of covariant quantities� some of
which turn out to play a key role� For di�erential geometry� one needs the
various spaces of tensors and other covariant quantities 	densities� spinors�
jets� connections� etc�
� of which the most important ones for classical 	Rie�
mannian
 di�erential geometry are the metric and the curvature tensor� For
nonlinear control� one needs many covariant objects� such as vector �elds
and di�erential forms� and covariant operations such as the Lie bracket�
exterior multiplication� and exterior di�erentiation�

The analogue of the Riemann curvature tensor in this setting is the
structure of the accessibility Lie algebra of a system� More precisely� for an
autonomous control system ( �  q � f�	q� u
� u � U � on a smooth manifold
Q�� de�ne $� to be the free Lie algebra generated by a family fFu � u � Ug
of indeterminates indexed by the set U � Let L� be the Lie algebra of vector
�elds generated by the f�u � u � U � where we let f�u 	q
 � f�	q� u
� Then
there is a unique Lie�algebra homomorphism P� � $� � L� that sends
Fu to f�u for each u� Given a point q � Q�� we can de�ne a linear map
EV �

q � $� � TqQ
��where TqQ

� is the tangent space of Q� at q�by

letting EV �
q 	V 
 � P�	V 
	q
�

Denition ����� The kernel

REL�q
def
� ker

�
EV �

q

�
is the set of Lie�bracket relations at q of the vector �elds of (� �

Example ����� Suppose u� v� and w are three members of U � Then the
formal expression �Fu� �Fv� Fu�� ! ��Fu� Fw� ! Fv belongs to REL�q if and
only if �fu� �fv� fu��	q
 ! ��fu� fw�	q
 ! fv	q
 � �� �

The following can be proved by a simple application of E� Cartans graph
method�
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Theorem ����� For a �xed control set U � if we consider pairs 	(� q
 such
that ( is a real analytic system with control set U � q belongs to the state
space Q� of (� and ( has the accessibility property at q� then the space
REL�q is a complete set of local invariants for the germ of ( at q under
di	eomorphisms� �

	Cf� for example Sussmann ����� Theorem �
� The precise meaning of the
conclusion of Theorem ����� is the following�

�CSI� Given two pairs 	(i� qi
� i � �� �� the following two conditions are
equivalent�

�i� There exists a di�eomorphism) from a neighborhood U� of q� in Q
��

onto a neighborhood U� of q� in Q
�� that maps each vector �eld f��

u

to the corresponding vector �eld f��
u and is such that )	q�
 � q��

�ii� REL��
q�

� REL��
q�
�

	Recall that the �accessibility property at q�� for a system (� is the property
that fX	q
 � X � L�g � TqQ

��

Theorem ����� tells us that�for real�analytic systems�all properties

of interest that are invariant under nonlinear coordinate changes are de�
termined by the Lie bracket relations� For systems where U is a linear
space and the control enters the equations in an a�ne�linear way� it can be
shown the class of linear systems is characterized by the vanishing of certain
brackets� 	Precisely� for a real�analytic system  q � f	q
 !

Pm

i�� uigi	q
� if
f	"q
 � � and the system has the accessibility property at "q� then the sys�
tem is linear near "q�up to a nonlinear change of coordinates that sends "q
to ��if and only if all the iterated brackets of f and the gi that involve at
least two gis vanish at "q�


The fact that the Lie bracket relations give a complete set of invariants
under di�eomorphism makes it reasonable to expect that the structural�
coordinate invariant properties of a nonlinear system should be expressible
in terms of Lie brackets� in perfect analogy with the way that the structural�
coordinate invariant properties of a Riemannian manifold are expressible
in terms of the curvature tensor� For example� the structure of the time�
optimal trajectories 	e� g�� whether the time�optimal controls are bang�
bang
 should be determined by Lie bracket conditions� Since the main
tool for analyzing this structure is the necessary condition for optimality
given by the Maximum Principle� it is clear that it would be useful to
have a statement of the Maximum Principle where the Lie brackets appear
explicitly� We will describe such a formulation in Section ���� 	outlining the
much more detailed exposition of Sussmann ����
� and then show by means
of a simple example how this formulation can be used to derive qualitative
properties of optimal trajectories�

But �rst we must proceed to our discussion of the Maximum Principle�

��� The Maximum Principle

The Pontryagin Maximum Principle ��� ��� extends the necessary con�
ditions for optimality of the calculus of variations to the much more general
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setting of �xed�endpoint optimal control problems with a state space Q
which is an open subset of IRn� and a set U of control values�

	FEOCP


Minimize
subject to

and

R b
a
L	�	t
�  �	t
� t
dt

 �	t
 � f	�	t
� 	t
� t
 for a�e� t�
	�	t
� 	t

 � Q	 U for all t�
�	a
 � "q � �	b
 � #q �

or to problems

	GEOCP


Minimize
subject to

and

R b
a
L	�	t
�  �	t
� t
dt

 �	t
 � f	�	t
� 	t
� t
 for a�e� t�
	�	t
� 	t

 � Q	 U for all t�
	�	b
� �	a

 � S �

with a more general endpoint condition�
The result is� modulo technical conditions that will not be discussed at

this point� that� for a trajectory�control pair �a� b� � t� 	��	t
� �	t

 to
be a minimizer� it is necessary that there exist an absolutely continuous
curve �a� b� � t � �	t
 � IRn and a constant �� � � such that the adjoint
equation

�  �	t
 �
	H

	q
	��	t
� �	t
� �	t
� ��� t


and the maximization condition

H	��	t
� �	t
� �	t
� ��� t
 � maxfH	��	t
� u� �	t
� ��� t
 � u � Ug
hold for a�e� t � �a� b�� as well as the nontriviality condition

	�	t
� ��
 �� 	�� �
 for some 	and hence every
 t �

and the transversality condition

	��	b
� �	a

 � Cy �

Here

�� H is the Hamiltonian� de�ned by

H	q� u� p� p�� t
 � p�f	q� u� t
� p�L	q� u� t
 �

�� C is a �tangent cone� at the point 	��	b
� ��	a

 to the set S��

�� if K is any subset of a real linear space X� then Ky is the polar cone
of K� i�e� the set

Ky def
� fv � X� � hv� wi � � for all w � Kg �

where X� is the dual space of X�

	The question of how to give a precise de
nition of �tangent cone� will be discussed
later� cf� Section ����
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and

�� the symbol IRn denotes the set of n�dimensional real row vectors�
whereas the members of IRn are column vectors�

��� The Maximum Principle as a Necessary
Condition for Set Separation

It turns out that the maximumprinciple� as formulated� is really a �geomet�
ric� result� giving a necessary condition for a separation property between
a reachable set of a control system and some other set�

To see this� we �rst observe that the Maximum Principle for problems of
the form 	GEOCP
 can easily be reduced to the special case of a problem
of the same form but with a more restrictive endpoint condition of the form

�	a
 � "q � �	b
 � S � 	��


where S is a given subset of Q� Indeed� suppose we are given a problem
	GEOCP
� and an optimal trajectory�control pair 	��� �
� Consider a new
problem

	GEOCP new


Minimize
R b
a�� Lnew	�new	t
�  �new	t
� t
dt

subject to  �new	t
 � fnew	�new	t
� new	t
� t
 for a�e� t�
	�new	t
� new	t

 � Qnew 	 Unew for all t�

and �new	a� �
 � "qnew� �new	b
 � Snew �

where Qnew � Q 	 Q� Unew � U 	 IRn� Snew � S� "qnew � 	��	a
� ��	a

�
and� for q� � Q� q� � Q� u � U � v � IRn� a� � � t � b� we let

Lnew	q�� q�� u� v� t
 � �
�a�b�

	t
L	q�� u� t
 �

fnew	q�� q�� u� v� t
 � �
�a�b�

	t
�
�
f	q�� u� t
� �

�
! 	���

�a�b�
	t

�	v� v
 �

where� if E is a set� then �
E

denotes the indicator function of E� i� e��
�
E

	x
 � � if x � E and �
E

	x
 � � if x �� E�
It is then readily shown that the new reference trajectory�control pair�

consisting of the curve �a� b�� t����new	t

def
� 	��	t
� ��	a

� and the corre�

sponding control �a� b� � t� ��new	t

def
� 	�	t
� �
 	extended to the inter�

val �a � �� b� by letting ���new	t
 � 	��	a
� ��	a

 and ��new	t
 � 	�� �
 for
a�� � t � a
 is optimal for 	GEOCP new
� Moreover� it is easy to see that
	GEOCP new
 is of our more special form� Applying to our situation the
conclusion of the Maximum Principle for problems of this special form� we
get precisely the conclusion of the general result�
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We are now ready to �geometrize� the problem by reducing it to a ques�
tion about separation of sets�

Denition ����� We say that two subsets R and S of a topological space
Q are separated at a point #q � Q if R � S � f#qg� and that R and S
are locally separated at #q if there exists a neighborhood V of #q such that
R � S � V � f#qg� �

For a control system ( with dynamical law

 q � f	q� u� t
 � q � Q � u � U � t � I � 	��


where I is a subinterval of IR 	and for the time being we take Q to be
an open subset of IRn
� let us de�ne R�

�a�b�	"q
�the (�reachable set from "q

over �a� b��to be the set of all points �	b
� for all possible trajectory�control
pairs � � 	�� 
 of ( such that � is de�ned on �a� b� and �	a
 � "q� Also�
de�ne H��the Hamiltonian of (�to be the function

Q 	 U 	 IRn 	 I � 	q� u� p� t
 � H�	q� u� p� t
 � hp� f	q� u� t
i � 	��


Then it is not hard to show that the Maximum Principle follows from a
necessary condition for a reachable set R�

�a�b�	"q
 to be separated from some

other set S�
Before we state this condition� we give a precise de�nition of the class of

control systems to which it will apply�

Denition ����� A control system in IRn is a ��tuple ( � 	Q�U� I�U � f

such that


CS�� Qthe �state space� of (is an open subset of IRn�


CS�� Uthe �space of control values� of (is a set�


CS�� I � IRthe �time interval� of (is a subinterval of IR�


CS�� Uthe �class of admissible controls� of (is a set of maps
Dom	
 � t� 	t
 � U such that each  � U is de�ned on a set
Dom	
 � �a�� b�� which is a compact subinterval of I�

and


CS�� fthe �dynamics� of (is a map from Q	 U 	 I to IRn� �

Remark ����� We emphasize that the control set U is just an abstract
set� with no extra structure� Working on this level of generality has many
advatages� 	For a simple illustration� we refer the reader to the derivation
of the equation of the Riemannian geodesics from the maximum principle�
outlined in Example ������ below� where we take U to be the set of all
smooth vector �elds on a manifold�
 �

Then the following statement is the set separation version of the
Maximum Principle�
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	SSMP


Let ( � 	Q�U� I�U � f
 be a control system in IRn� Assume that
S � Q� a � b� a� b � I� �� � �a� b� � Q is a trajectory of (
corresponding to a control � � �a� b� � U � and ��	b
 � S� Let C
be a tangent cone to S at ��	b
 which is not a linear subspace of
IRn� Then a necessary condition for R�

�a�b�	��	a

 to be locally

separated from S at ��	b
 is that there exist a nonzero row	
vector	valued map �a� b� � t� �	t
 � IRn that satis�es�

�� the Hamiltonian maximization condition

�HMC� H�	��	t
� �	t
� �	t
� t
 �

max
n
H�	��	t
� u� �	t
� t
 � u � U

o
�

�� the adjoint equation

�AE�  �	t
 � �	H�

	q

�
��	t
� �	t
� �	t
� t

�
�

and

�� the transversality condition

�TC� ��	b
 � Cy �

Naturally� 	SSMP
 as stated is not yet a rigorous mathematical theorem�
because some crucial technical hypotheses and de�nitions are still missing�
What is needed to render 	SSMP
 precise is the following�

	TH�
 a speci�cation of technical conditions on the map f and the class
U of open�loop controls�

	TH�
 a precise de�nition of �trajectory�control pair of (��
	TH�
 precise technical conditions on the reference trajectory�control

pair 	��� �
�
	TH�
 a precise de�nition of �tangent cone��
	TH�
 a precise speci�cation of what it means� for an IRn�valued map

p on �a� b��
	TH��i
 to satisfy the maximization condition 	HMC
�
and

	TH��ii
 to be a �solution� of the adjoint equation 	AE
�

Remark ����� We include 	TH�
 as a separate item� because we wish to
allow for the possibility that in the �nal rigorous version of 	SSMP
 the
reference trajectory�control pair might be required to satisfy special con�
ditions that are not necessarily true of general trajectory�control pairs���

Notice that� once 	TH���������
 are taken care of� nothing else is needed

�
This is a common situation in optimization theory� For example� we all learn in
freshman calculus that the simplest necessary condition for a function f of one variable
to have a local minimum at an interior point p of its domain is that f �p� � �� provided
that p is a point where f is di�erentiable� But f need not be di�erentiable anywhere
else�
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to make 	SSMP
 precise� since the concepts of �polar cone�� �local separa�
tion�� and �reachable set� are unambiguously de�ned� �

We claim that 
SSMP�� once it is made precise by �lling all the technical
gaps� implies the usual Maximum Principle for optimal control� In fact�
each version V of 	SSMP
�i� e�� each true theorem obtained from 	SSMP

under appropriate technical assumptions�implies a version V � of the usual
Maximum Principle� with technical conditions corresponding in a natural
way to those of V �

To see this� consider the standard optimal control problem 	GEOCP
�
with the special endpoint condition 	��
� Suppose 	��� �
 is a solution�
Form the �augmented system� (� � 	Q�� U� I� f�
� where

	A��
 Q� � IR	 Q�

	A��
 f� � Q� 	 U 	 I � IRn�� is the map

	r� q� t� u
� 	�L	q� u� t
� f	q� u� t

 �

	A��
 S�
def
�
n

	c� q
 � q � S � c � #c ! kq � #qk�
o

�

	A��
 c�	t
 � � R t
a
L	��	s
� �	s
� s
 ds for a � t � b�

	A��
 #c � c�	b
 and #q � ��	b
�

If we de�ne ��� 	t
 � 	c�	t
� ��	t

� then 	��� � �
 is a trajectory�control

pair for (�� such that ��� 	a
 � "q�
def
� 	�� "q
 and ��� 	b
 � S�� The fact that

	��� �
 is a solution of 	GEOCP
 implies that R��

�a�b�	"q�
 � S� � f"q�g� If

we apply 	SSMP
� and make the reasonable assumption that

	P�
 if S � IRn� #q � S� #c � IR� C is a tangent cone to S at #q� and S� is

de�ned by 
A���� then C� def
� ���!��	C is a tangent cone to S� at

	#c� #q
�

then we get the usual Maximum Principle� Notice that for this application
it is not necessary to require that the cone C not be a linear subspace�
because C� will never be a linear subspace� even if C is�

Remark ����� The hypothesis that C is not a linear subspace of IRn is
necessary� for otherwise 	SSMP
 can obviously fail for trivial reasons� To
see this� take Q � IRn� let S be a linear subspace of IRn� let T be a
complementary subspace of S� and consider the control system  q � u�
u � T � q � IRn� Then the reachable set from � over any interval �a� b� with
a � b is T � So this set is separated from S at �� On the other hand� the
adjoint equation just says that  � � �� and the Hamiltonian maximization
condition implies that �	t
 must annihilate T � An obvious choice for C is
S itself� and then the requirement that ��	b
 � Cy says that �	b
 must
annihilate S� So �	t
  �� contradicting the nontriviality of �� �
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In addition to implying the usual necessary conditions for optimality� the
separation theorem 	SSMP
 has the additional advantage that� properly
interpreted� it also implies a su�cient condition for local controllability
along a reference trajectory� i�e�� equivalently� a necessary condition for a
system not to be locally controllable along a reference trajectory�

Precisely� recall that ( is locally controllable along a trajectory�control
pair 	��� �
 de�ned on an interval �a� b� if ��	b
 is an interior point of
R�
�a�b�	��	a

� So� if ( is not locally controllable along 	��� �
� then there

must exist a sequence fqjg of points of Q that converge to ��	b
 and do
not belong to R�

�a�b�	��	a

� By taking a subsequence� if necessary� we can

assume that the limiting direction

v � lim
j��

qj � #q

kqj � #qk 	��


exists� Let
S � f#qg � fqj � j � �� �� � � �g � 	��


Then it is clear that the sets S and R�
�a�b�	��	a

 are separated at ��	b
�

Suppose we could take the tangent cone C to S at ��	b
 to be the half�
line frv � r � �g� Then we could apply 	SSMP
 to get the following local
controllability version of the Maximum Principle�

	LCMP


Let ( � 	Q�U� I�U � f
 be a control system in IRn� Assume
that a � b� a� b � I� and �� � �a� b� � Q is a trajectory of (
corresponding to a control � � �a� b� � U � Then a necessary
condition for R�

�a�b�	��	a

 not to be a neighborhood of ��	b


is that there exist a nonzero map �a� b� � t � �	t
 � IRn

such that �HMC� and �AE� hold�

From now on we will take 	SSMP
 to be the �true� statement of the Maxi�
mum Principle� and will seek to understand its geometric meaning further�
We will� however� insist on wanting �LCMP� to be a special case
of �SSMP�� This means that we need to use in 	SSMP
 a concept of �tan�
gent cone� to a set S at a point #q � S having�in addition to 	P�
�the
property that�

	P�
 if S is given by 
���� where fqjg is a sequence such that qj � #q�
qj �� #q� and the limit 
��� exists� then the half�line frv � r � �g is a
tangent cone to S at #q�

Property 	P�
 excludes many of the concepts of �tangent cone to a set at
a point� that appear in the literature� such as the Clarke tangent cone� or
Boltyanskiis �approximating cones�� The most natural concept of �tangent
cone� for which 	P�
 holds is the Bouligand 	or �contingent�
 tangent
cone� It is well known� however� that this concept is too weak to be of
use for the Maximum Principle� 	For example� let us consider the control
system  x � u�  y � � in IR�� the initial point 	�� �
� and the terminal set
S � f	x� y
 � x � � � jyj � x�g� Take a � �� b � �� and consider the
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trajectory t � 	�� �
� corresponding to the control 	t
  �� Then the
Bouligand tangent cone to S at 	�� �
 is the half�space C � ���!��	IR�
So the hypotheses of 	SSMP
 hold in this case� but the conclusion clearly
does not�


��� Weakly Approximating Cones and
Transversality

It turns out that there is at least one concept of �tangent cone� that has
all the desired properties� Suppose S � IRn� #q � S� and C � IRn� We say
that C is a weakly approximating cone to S at #q if

�WAC�
� C is a closed convex cone�

�WAC��� there exist a closed subset C� of C� and a continuous map
F � C� � S� such that

�WAC���a� lim��� gsup
n
k�	�
k � � � C�	��� ��� CnC�
� jj�	�
jj � �

o
� � �

�WAC���b� F 	v
 � #q ! v ! o	kvk
 as v � � � v � C� �

In this de�nition� C�	��� ��� CnC�
 is the set of continuous maps from ��� ��
to CnC�� The expression �gsup� stands for �supremum in the set ���!���
so that gsup	�
 � ���� It then follows that �WAC���a� holds� in particular�
if C� is a full relative neighborhood of � in C�

Notice that 	WAC��
 implies in particular that � � C� because� if � �� C��
then there would exist a convex neighborhood U of � such that U �C� � ��
since C� is closed� But then there would be a curve � � C�	��� ��� CnC�

such that �	�
 � � and �	�
 �� �� contradicting 	WAC���a
�


Condition 	WAC���a
 says� roughly� that �within C� it is not possible to
join points that are close to � to points that are far from � without hitting
the set C���

If the set C� can be taken to be a full relative neighborhood of � in C�
then we call C an approximating cone to S at #q� In other words� C is an
approximating cone to S at #q if

�AC�
� C is a closed convex cone�

�AC��� there exist a neighborhood U of � and a continuous map F from
C �U to S� such that F 	v
 � #q! v! o	kvk
 as v � � via values
in C�

It turns out that 	SSMP
 is true if the words �tangent cone� are in�
terpreted to mean �weakly approximating cone� as in our de�nition� pro�
vided that appropriate technical assumptions are made on the system (�
To understand how this works� let us �rst quote the following separation
theorem proved recently� in a more general setting� in Sussmann �����

��If we had used �sup� instead of �fsup�� then the supremum of the empty set would
have been equal to ���



��� H� J� Sussmann

Theorem ����� Let C� be a closed convex cone in IRm� let U be a neigh�
borhood of � in IRm� let f � U � C� � IRn be a continuous map� and let
L � IRm � IRn be linear� Suppose that f is di	erentiable at � with di	eren�
tial L� i�e� that

f	x
 � f	�
 ! L�x! o	jjxjj
 as x�C� � � 	��


Let S be a subset of IRn having a cone C� as weakly approximating cone
at f	�
� Assume that C� is not a linear subspace of IRn� Then a necessary
condition for the sets f	U � C�
 and S to be locally separated at f	�
 is
that 	LC�


y � 	�C�

y �� f�g� �

In other words� if f	U �C�
�S �V � ff	�
g for some neighborhood V of
f	�
� then there exists a nonzero row vector "z � IRn such that "z�L�v� � �
for all v � C� and "z�v� � � for all v � C��

��	 A Streamlined Version of the Classical
Maximum Principle

As a �rst step in our discussion of recent formulations of the Maximum
Principle� we now present a rigorous version that resembles in spirit the
�classical� version given in the ���� book by Pontryagin et al� ����� Actually�
the theorem to be given here is much stronger than the classical result�
especially because of the stronger form of the Transversality Condition� as
will be explained below� It is� however� a distillation of what lies behind
the method of proof of ����� whose main point is� in our view� that it relies
on the construction of needle variations ��� and the di�erentiability
in the classical sense of the reference �ow and the variations�

The proof strategy consists of constructing needle variations� studying
the corresponding endpoint maps� computing their di�erentials� and then
applying a separation result� The �classical� case arises when the di�eren�
tials used are classical di�erentials� In that case� the appropriate separa�
tion result is our Theorem ������ In Section ��� we will show how� using
essentially the same approach but relying on more general concepts of dif�
ferential� it is possible to derive much stronger results that contain� extend�
and strengthen various �nonsmooth� versions of the Maximum Principle�

First� let us de�ne the needle variation of a map  � �a� b� � U obtained
by inserting a control value u � U at a time s � �a� b� to be the family
f�s�u	r
	
g��r�b�s of maps �s�u	r
	
 � �a� b� � U de�ned by

�s�u	r
	
	t
 �

�
	t
 if t � �a� b� n �s� s! r� �
u if t � �s� s! r� �

	��


With this de�nition� each �s�u	r
 �for � � r � b � s�is a map from the
set MAP 	�a� b�� U 
 of all maps  � �a� b� � U into itself� and �s�u	�
	
 � �

��The idea of using needle variations goes back to Weierstrass ����	������ who gave
three series of lectures on the calculus of variations� in ����� ����� and ����� Using
needle variations� Weierstrass proved the �side condition�� which amounts� in modern
terms� to the Maximum Principle for the problem SCV��
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Clearly� we can consider composites of the maps �sj�uj 	rj
� Precisely� if
a� s� � s� � � � �� sm � b� u� 	u�� � � � � um
 �Um is an m�tuple of control
values� and s � 	s�� � � � � sm
� we de�ne maps

�s�u	r�� � � � � rm
 � MAP 	�a� b�� U 
�MAP 	�a� b�� U 
 �

if � � ri � b� si for i � �� � � � �m� by letting

�s�u	r�� � � � � rm

def
� �s��u�	r�
 � �s��u�	r�
 � � � � � �sm�um	rm
 � 	��


We then de�ne a needle�variational neighborhood of  to be a set N
such that� for every m � IN� every choice of s � 	s�� � � � � sm
 such that
a � s� � s� � � � � � sm � b� and every choice of u � 	u�� � � � � um
 in
Um� there exists an "r � � such that �s�u	r
	
 � N for every m�tuple
r � 	r�� � � � � rm
 � ��� "r�m� such that s! r � �a� b�m�

To every map  � �a� b� � U � we associate a time�varying vector �eld
f� � Q	 �a� b� � IRn by letting

f�	q� t

def
� f	q� 	t
� t
 �

We say that a time�varying IRn�valued vector �eld F � de�ned on some
subset Dom	F 
 of IRn	 IR� satis�es a C��Carath	eodory condition near
a curve � � �a� b� � IRn if there exists a tube

T 	�� �

def
� f	q� t
 � a � t � b� kq� �	t
k � �g � 	��


such that

�M	Car� F 	q� t
 is measurable with respect to ton the compact set
ft � 	q� t
 � T 	�� �
gfor each �xed q� and of class C� with
respect to qon the closed ball fq � IR � kq � �	t
k � �gfor
each �xed t � �a� b��

�C�	Car� there is a function � � L�	�a� b�� IR
 such that

kF 	q� t
k!
���	F
	q

	q� t

��� � �	t


for all 	q� t
 � T 	�� �
�

We then assume that

�CTH�
� The class U of admissible controls is a needle	variational neigh	
borhood of ��

�CTH��� For every control  which is either constant or equal to the
reference control �� the corresponding time	varying vector �eld
f� satis�es a C�	Carath�eodory condition near ���

�CTH��� A trajectory for a control  � U is a locally absolutely con	

tinuous map � � �a�� b�� � Q such that  �	t
 � f	�	t
� 	t
� t
 for
almost all t � �a�� b��� A trajectory�control pair is a pair 	�� 

such that  � U and � is a trajectory for �
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�CTH��� A solution of the adjoint equation �AE� along the ref�
erence trajectory�control pair �� � 	��� �
 is an absolutely
continuous map � � �a� b�� IRn such that the equality

�  �	t
 � �	t
�
	f

	q
	��	t
� �	t
� t


holds for almost all t � �a�� b���

�CTH��� The Hamiltonian minimization condition �HMC� is interpreted
weakly� as the statement that

�WHMC� for every u � U � the inequality

�	t
�f	��	t
� �	t
� t
 � �	t
�f	��	t
� u� t


holds for almost all t � �a� b��

�CTH��� �Tangent cone� means weakly approximating cone�

	For simplicity� we shall refer to 	CTH
 as the �classical technical hypothe�
ses�� because they are roughly those of ����� although they di�er from them
in some important technical aspects that will be discussed later�


Under 	CTH
� all the terms occurring in 	SSMP
 are now precisely de�
�ned� and the following rigorous result holds�

Theorem ����� Under the classical technical hypotheses 
CTH�� the Max�
imum Principle 
SSMP� is true� �

We now outline the proof of Theorem ������ following the ideas of ����� Let
'U be the union of f�g and the set of all constant controls  � �a� b� � U �

Then the C��Carath�eodory condition implies that every control  � 'U
gives rise to a �ow of class C�� i�e�� to a family )� � f)�

t�sga�s�t�b of maps

of class C�� each one of which is de�ned on an open subset Dom	)�
t�s


of Q� The maps )�
t�s are uniquely characterized by the condition that� if

a � s � t � b� and q � Q� then )�
t�s	q
 is de�ned if and only if the solution

� � �q���s	� 
 of the initial value problem  �	� 
 � f	�	� 
� 	� 
� � 
� �	s
 � q�
is de�ned on �s� t�� and in that case )�

t�s	q
 � �q���s	t
� The �ow maps )�
t�s

satisfy the obvious identities )�
t�t � identity and )�

t��t� �
)�
t��t�

� )�
t��t�

whenever a � t� � t� � t� � b�
The di�erentials D)��

t�s of the maps )��
t�s satisfy the variational equation�

D)��
t�s	q
 � identity !

Z t

s

	f

	q

�
)��
�s	q
� �	� 
� �

�
�D)��

�s	q
 d� � 	��


Use �� to denote the reference trajectory�control pair 	��� �
� We then
de�ne the linearized �ow L	� to be the family L	� � fL	� 	t� s
ga�s�t�b of
linear maps L	� 	t� s
 � IRn � IRn given by

L	� 	t� s
 � D)��
t�s	��	s

 �
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Also� de�ne

M	� 	t
 �
	f

	q

�
��	t
� �	t
� t

�
�

Then the linear maps L	� 	t� s
 satisfy the identities L	� 	t� t
 � identity and
L	� 	t�� t�
 � L

	� 	t�� t�
 � L	� 	t�� t�
 whenever a � t� � t� � t� � b� Also�
	��
 says that

L	� 	t� s
 � identity!

Z t

s

M	� 	� 
L	� 	�� s
 d� if a�s� t�b� 	��


It then follows easily that

L	� 	t� s
 � identity!

Z t

s

L	� 	t� �
M	�	�
 d� if a�s� t�b� 	��


This implies� in particular� that a map �a� b� � t� �	t
 � IRn is a solution
of the adjoint equation if and only if it satis�es the �integrated adjoint
equation�

�	t
 � �	b
�L	� 	b� t
 for a � t � b� 	��


Now� let #U be a �xed �nite subset of U � We then construct needle varia�
tions of the reference trajectory�control pair �� � 	��� �
 using control

values in #U � Precisely� we pick an m�tuple s � 	s�� � � � � sm
 such that
a � s� � s� � � � � � sm � b� and an m�tuple u � 	u�� � � � � um
 of members

of #U � Our hypotheses then imply that there exists an "r � � such that

�� the controls �s�u	r
	�
 are in U whenever r � 	r�� � � � � rm
 � ��� "r�m�

�� the endpoint map Es�u��� � given by

Es�u���	q� r

def
� )

�s�u�r�����
b�a 	q
 � 	��


is de�ned and continuous on B	��	a
� "r
	 ��� "r�m� where

B	��	a
� "r

def
� fq � IRn � kq � ��	a
k � "rg �

Moreover� one can prove that� if the times s�� � � � � sm are chosen in a special
way� then the map Es�u��� is di�erentiable at 	��	a
� �
� and the di�erential
DEs�u��� 	��	a
� �
 is the linear map from IRn 	 IRm to IRn given by

DEs�u��� 	�q� �r�� � � � � �rm


� L	� 	b� a
��q!
mX
i��

�ri�L
	� 	b� si
�v

	� 	si� ui
 � 	��


where
v	� 	s� u


def
� f	��	s
� u� s
 � f	��	s
� �	s
� s
 �

Precisely� what is required for 	��
 to hold is to choose the si belonging to

the �good set� G	�� #U
 of all times s � �a� b� such that
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�G� there exist a compact subset K of �a� b� and an integrable function
� � �a� b� � ������ such that

lim
r��

�

r

�
meas	K � �s� s! r�


�
� � � 	��


lim
r��

�

r

Z s�r

s

j�	t
� �	s
j dt � � � 	��


the inequality
kf	q� u� t
k � �	t
 	��


holds whenever t � �s� s! r� and u � #U � f�	t
g�

lim
q����s��r���s�r	K

f	q� u� s!r
�f	��	s
� u� s
 for all u � #U � 	��


and

lim
q����s��r���s�r	K

f	q� �	s ! r
� s!r
�f	��	s
� �	s
� s
 � 	��


It follows from the Scorza�Dragoni theorem that� under our assumptions�
the set �a� b�nG	�� #U
 has measure zero�

Now suppose that R�
�a�b�	��	a

 and S are locally separated at ��	b
� Then

a fortiori the sets Es�u���
�
f��	a
g 	 ��� "r�m

�
and S are locally separated at

��	b
� if "r � � is small enough� Applying Theorem ������ we �nd that there
exists a covector "p � IRn such that k"pk � �� "p�v � � for all v � C� and

"p�L	� 	b� si
�v
	� 	si� ui
 � � for i � �� � � � �m � 	��


If we de�ne
�	t
 � "p�L	�	b� t
 for t � �a� b� �

we have �	b
�v � � for all v � C� and

�	t
�v	� 	si� ui
 � � for i � �� � � � �m � 	��


The conclusion of the Maximum Principle follows from this by an ele�
mentary compactness argument� Indeed� using Lusins Theorem� we can
write G	�� #U
 �

S�
k��Ek� where meas	E�
 � � and� for k � �� the set Ek

is compact and such that the restrictions to Ek of the maps t� v	�	t� u


are continuous for every u � #U � For k � �� let Dk be the set of points of
density of Ek� Let D �

S�
k��Dk� so meas	D
 � b� a� If F is an arbitrary

subset of D 	 #U � let *	F� #U
 be the set of all "p � IRn such that k"pk � ��

�"p � Cy� and "p�L	�	b� t
�v	� 	t� u
 � � for all 	t� u
 � F � Then *	F� #U 
 is
clearly compact� and

*	F� � F�� #U
 � *	F�� #U
 �*	F�� #U
 for all F�� F� �
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We already know that *	F� #U
 �� � if F � f	s�� u�
� � � � � 	sm� um
g with

s� � s� � � � � � sm� If F is an arbitrary �nite subset of D 	 #U � we can
write F � f	s�� u�
� � � � � 	sm� um
g with s� � s� � � � � � sm� Each si be�
longs to Dk�i� for some k	i
� so si � limj�� si�j� where si�j � Dk�i�

and s��j � s��j � � � �� sm�j for each j� If Fj � f	s��j � u�
� � � � � 	sm�j � um
g�
then *	Fj � #U
 �� �� Pick "pj � *	Fj� #U 
� Then k"pjk � �� Pick a subsequence
f"pj���g of f"pjg that converges to a limit "p� Then

"pj����L
	� 	b� si�j���
�v

	� 	si�j���� ui
 � � for all i� � �

Since si�j � si� si�j � Ek�i�� si � Ek�i�� and the function s� v	� 	s� ui
 is
continuous on Ek�i�� we have

"p�L	� 	b� si
�v
	� 	si� ui
 � � for i � �� � � � �m �

Clearly� k"pk � � and �"p � Cy� so "p � *	F� #U 
� Therefore *	F� #U 
 �� � if

F is an arbitrary �nite subset of D 	 #U � So f*	F� #U 
gF
D��U�card�F ��� is

a family of compact subsets having the �nite intersection property� This
implies that the intersection of all the *	F� #U 
� as F ranges over all �nite

subsets of D 	 #U � is nonempty� Therefore

*	D 	 #U 
 �� � �

Now� for an arbitrary subset #U of U � let '*	 #U 
 be the set of all "p � IRn such

that k"pk � �� �"p � Cy� and� for every u � #U � "p�L	� 	b� t
�v	�	t� u
 � � for al�

most all t � �a� b�� Once again� '*	 #U 
 is compact for every #U � and '*	 #U�� #U�


is equal to '*	 #U�
� '*	 #U�
 for all #U�� #U�� 	The compactness of '*	 #U 
 follows

because� if "pj � '*	 #U 
 and "pj � "p� then
R �
�

"pj �L	�	b� t
�v	� 	t� u
 dt � �

whenever a � � � � � b and u � #U � so
R �
�

"p�L	� 	b� t
�v	�	t� u
 dt � �

whenever a � � � � � b and u � #U � and then� for each �xed u� the
inequality "p�L	� 	b� t
�v	� 	t� u
 � � must hold for almost all t � �a� b��
 So

f'*	 #U 
g�U
U�card� �U��� is a family of compact subsets having the �nite in�

tersection property� This implies that the intersection of all the '*	 #U 
� as #U
ranges over all �nite subsets of U � is nonempty� Therefore '*	U 
 �� �� which
is precisely the desired conclusion� �

The proof of the Maximum Principle outlined above is essentially based
on the ideas of ����� There are� however� some major di�erences between our
technical assumptions and those of ����� which make our version stronger�

First of all� in ���� f is assumed to depend on q and u only���

��As explained in Chapter � of ����� a result in which fq� u� is assumed to be of class
C� with respect to the state q can be transformed immediately into a result in which
f is allowed to be time	dependent�i� e�� f � fq� u� t��provided that f is of class C�

with respect to q and t� This is done by adding time as extra state variable q
� obeying
the equation �q
 � �� This procedure does not� however� allow the extra generality of
considering systems where f is only measurable with respect to t�
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Second� ���� assumes that U is a subset of some Euclidean space IRm���

and both f	q� u
 and �f

�q
	q� u
 are jointly continuous with respect to q and

u on the product Q 	 "U � It is assumed that every admissible control is
a bounded measurable U �valued map on �a� b�� where �bounded� means
�with values in a compact subset of U �� The class U of admissible controls
is assumed to contain the reference control� and to be such that� if  � U
has domain �a�� b��� t� and t�� are numbers such that a� � t� � t�� � b��
and u � U � then the control �a�� b�� � t � 	t
 ! �

�t��t���
	t
	u � 	t

 also

belongs to U �
This is more than enough to guarantee that our technical hypotheses

hold� Moreover� since U is a subset of IRm� and f	q� u
 is continuous with
respect to u� the �weak� Hamiltonian minimization condition of 	CTH��

implies the �strong� version of 	HMC
�

	SHMC
 The inequality

�	t
�f	��	t
� �	t

 � max
n
�	t
�f	��	t
� u
 � u � U

o
holds for almost all t � �a� b��

	Indeed� U is a separable metric space� If � satis�es 	WHMC
� then we
can pick a countable dense subset U� of U � and a �bad� subset B � �a� b�
of measure zero such that �	t
�f	��	t
� �	t

 � �	t
�f	��	t
� u
 whenever
t � �a� b�nB and u � U�� The continuity of f with respect to u then implies
that 	SHMC
 holds�


Third� there is a fundamental di�erence between our version of the
Transversality Condition �TC� and that of ����� arising from the fact that
our version uses a much weaker concept of �tangent cone� than that of �����
Indeed� the concept of tangent cone implicitly used in ���� in the formula�
tion of 	TC
 is the one that we have called �approximating cone� in this
discussion���

The following example shows how this makes a di�erence�

Example ����� Consider the optimal control problem in IR��with coor�
dinate point q � 	x� y
�in which it is desired to minimize the integral

J � �
Z �

�
u	t
dt �

��The authors of ���� were obviously aware of the possibility of generalizing the Max	
imum Principle to the case when U is an arbitrary set� Indeed� they state in a footnote�
on page ��� that their arguments �carry over without any change to the case where U
is an arbitrary subset of some topological Hausdor� space with a denumerable basis��
They then add that �an insigni
cant modi
cation of the proof even makes it possible to
remove the requirement that there exist a denumerable basis��

��The de
nition of �tangent cone� as �approximating cone� is not given explicitly in
����� The crucial topological argument needed to establish the transversality conditions
corresponds to our Theorem ������ with �approximating cone� instead of �weakly ap	
proximating cone�� The argument is only sketched in ����� and the reader is referred
for full details to ���� Cf� Remark ����� below for a comparison of the two separation
theorems�
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subject to the dynamical law  x � u�  y � v and the endpoint constraints
�	�
 � 	�� �
� �	�
 � S� where

S �
n

	x� y
 � x � � � y � x sin
�

x

o
� f	�� �
g �

Then the trajectory ��� �� � t � 	�� �
� corresponding to the controls
u	t
  v	t
  �� obviously fails to be a minimizer� since the choice of con�
trols v	t
  �� u	t
  �

k
� for any positive integer k� will yield a trajectory

satisfying our endpoint constraints and having a lower cost�
On the other hand� the version of the Maximum Principle given in ����

will not exclude this trajectory as a candidate for a minimum� This can be
seen by explicitly �nding an adjoint vector that satis�es all the conditions�
which is quite easy to do� There is� however� an even simpler argument� It
su�ces to notice that the only approximating cone for the set S at 	�� �
 is
f	�� �
g� Hence the conclusion of the Maximum Principle for our optimiza�
tion problem is identical to that arising from any modi�ed problem with
the same dynamics and cost functional� and with the set S replaced by
another set S� having f	�� �
g as an approximating cone at 	�� �
� In par�
ticular� we can take S� � f	�� �
g� Since the cost of any feasible trajectory
t � �	t
 � 	x	t
� y	t

 is just �x	�
� we see that all feasible trajectories
of our original problem that end at 	�� �
 are actually minimizers for the
modi�ed problem� so they satisfy the conditions of the Maximum Principle
of �����

It turns out� however� that our version of the transversality condition
excludes the trajectory ��� �� � t � 	�� �
� To see this� notice that the
cone C � f	x� y
 � jyj � xg is a �tangent cone� to S at 	�� �
 in our
sense� To satisfy the necessary condition of the Maximum Principle we
need a vector 	��� ��
 � IR� and a nonnegative �� such that� to begin
with� ��u!��v!��u is maximized by u � v � �� for which we must have
�� � � and �� ! �� � �� Moreover� since 	��� ��� ��
 �� 	�� �� �
� we need
�� � � and �� � �� But the transversality condition yields �	��� ��
 � Cy�
so �� � �� since 	�� �
 � C� So we have reached a contradiction� �

For a second illustration of the extra power of our version of the �clas�
sical� Maximum Principle� we observe that� if �tangent cone� is taken to
mean �approximating cone�� then Condition �P�� does not hold� so the
local controllability result is not a special case of the general separation
theorem� and must be handled separately� On the other hand� if �tangent
cone� is taken to mean �weakly approximating cone�� then �P�� holds� so
the local controllability result becomes a special case of the general
maximum principle� and does not require a separate analysis�

Remark ����� The most important technical di�erence between our ver�
sion of the classical Maximum Principle and that of ���� is our use of weakly
approximating cones� This� in our view� solves a puzzling question regard�
ing the proof given in ����� The crucial point of that proof is found on page
�� of ����� where the authors�assuming that the necessary condition of the
Maximum Principle is violated�are trying to prove that the intersection
of two sets contains more than one point� They do this by proving the exis�
tence of a one�parameter family of points q�� one for each su�ciently small
positive value of �� This argument strongly suggests that one ought to be
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able to prove the existence of a full curve of intersection points and get a
result stronger than what is actually proved in ����� It turns out that this is
not quite true� but is nearly true� What actually follows when the argument
is carried out with care� is the existence of a nontrivial connected set of
intersection points� The set may� however� fail to be path�connected� The
key result is the following theorem 	cf� Leray�Schauder ����� Browder ���
�
in which we use IBn to denote the closed unit ball in IRn�

Theorem ����� Let F � ��� ��	 IBn � IRn be a continuous map� such that

�� � �� F
�
��� ��	 	IBn

�
�

�� the map 	IBn � x� F 	�� x
 � IRnnf�g is homotopic 
in the class of
continuous maps from 	IBn to IRnnf�g� to the inclusion map x� x�

Then there exists a compact connected subset Z of ��� ��	 IBn � IRn such
that Z � 	f�g 	 IBn
 �� �� Z � 	f�g 	 IBn
 �� �� and F 	t� x
 � � whenever
	t� x
 � Z�

In other words� if fFtg��t�� is a homotopy of maps from IBn to IRn that
never take the value � on the boundary of IBn� and F�� restricted to the
boundary of IBn� is homotopic to the inclusion map� then not only is there
a zero of F at each level of the homotopy�as implied by standard degree
theory�but in addition there must exist a connected set of zeros of the
map 	t� x
 � Ft	x
 that contains a zero at each end of the homotopy�

Theorem ����� is the basic tool used in ���� to prove Theorem ����� and its
generalizations� Our de�nition of �weakly approximating cone� is precisely
what is needed to make this work� �

��
 Clarke�s Nonsmooth Version and the
�Lojasiewicz Improvement

Theorem ����� and its proof� as sketched in Section ���� admit an ob�
vious generalization� obtained by observing that� in the proof� the C��
Carath�eodory condition for the controls other than the reference control is
never used� In fact� the formula for the di�erential of the endpoint map is
valid without any change if the �constant control� time�varyingvector �elds
	q� t
 � f	q� u� t
 are only assumed to satisfy the following �+Lojasiewicz
technical hypothesis��

	LTH
 There exists an �u � � such that f	q� u� t
 is continuous in q
for each �xed t and measurable in t for each �xed q on the
tube T 	��� �u
� and the bound kf	q� u� t
k � �	t
 holds for some
integrable function �a� b� � t� �	t
�

and to be such that

	U
 the ordinary di�erential equation  q � f	q� u� t
 has uniqueness
of solutions�
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Condition 	U
 is only needed if one insists on having a single�valued con�
tinuous endpoint map that is di�erentiable in the classical sense� but can
be dispensed with if one drops this requirement� Indeed� it turns out that
there is a very nice class of set	valued maps for which a concept very similar
to that of classical di�erentiability exists� and the analogues of Theorems
����� and ����� are still valid� Precisely� let us call a set�valued map F from
a compact metric space X to a metric space Y regular if

	REG��
 the graph GR	F 
 � f	x� y
 � y � F 	x
g is compact�

	REG��
 there exists a sequence fFjg�j�� of single	valued continuous maps
from X to Y that converges to F in the graph sense� i�e� is such
that

lim
j��

sup

�
dist
�

	x� y
� GR	F 

�

� 	x� y
 � GR	Fj


	
� � �

With this de�nition� it turns out that

Theorem ����� Theorem ����� also holds if F is assumed to be set�valued
and regular� rather than single�valued and continuous� �

Remark ����� Actually� the �regular� version of Theorem ����� is more
elegant and natural than the �continuous� version� because the resulting
set Z can be taken to be of the form �	��� ��
� where � is a regular set�valued
map from ��� �� to ��� ��	 IBn� �

Moreover� Theorem 
���� is true for regular maps� 	The de�nition of
�di�erential� is still the obvious analogue of that of the classical di�erential
of a single�valued map� if F is a set�valued map from IRn to IRm� x � IRn�
y � IRm� F 	x
 � fyg� C is a closed convex cone in IRn� and L � IRn � IRm

is linear� we say that F is di�erentiable at x in the direction of C� with
di�erential L� if

sup
n
ky� � y � L	x� � x
k � y� � F 	x�


o
� o	kx� � xk


as x� � x�C ��

The �ow maps 	t� s� q
 � )u

t�s	q
 turn out to be regular near 	t� t� q
 for
every 	t� q
 � �a� b�	Q and every constant control u� as long as the vector
�eld 	q� t
 � f	q� u� t
 satis�es 	LTH
� 	The single�valued approximations
required by 	REG��
 are obtained by approximating the �ow )u by the
regularized �ows )u��� where )u�� is the �ow of the regularized vector �eld
	q� t
 � f�	q� u� t
� with

f�	q� u� t

def
�

Z
IRn

f	q ! �h� u� t
�	h
dh

where � � IRn � IR is a smooth nonnegative function supported in the ball
fx � kxk � �g and such that

R
� � ��
 Moreover� even though the endpoint

maps constructed in Section ��� no longer need to be single�valued� they
turn out to be regular near 	��	a
� �
 and� if the insertion times si of the
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needle variations are chosen as explained in Section ���� then the di�erenti�
ation formula remains unchanged� So the proof given in Section ��� is valid
in the more general setting� and we get the classical Maximum Principle
with the �Lojasiewicz improvement���

Theorem ����� Assume that the classical technical hypotheses 
CTH� hold�
except that only the reference control � is required to satisfy a C��Carath�eo�
dory condition near ��� and for the constant controls u � U we only as�
sume that the weaker condition 
LTH� holds� Then the Maximum Principle

SSMP� is true� �

A di�erent extension of the classical version of the Maximum Principle was
proposed by F�H� Clarke in ���� and ����� and has become known as the
�nonsmooth Maximum Principle�� In this version� Condition 	CTH��
 is re�
placed by the weaker requirement that the vector �elds 	q� t
 � f	q� 	t
� t

be Lipschitz continuous� with an integral bound on the Lipschitz constant�

Precisely� let us say that a time�varying vector �eld F � de�ned on some
subset Dom	F 
 of IRn	IR� satis�es a Lipschitz�Carath	eodory condition
near a curve � � �a� b� � IRn if there exists a tube T 	�� �
 such that 	M�Car

holds� and

�Lip	Car� there is a function � � L�	�a� b�� IR
 such that

kF 	q� t
k � �	t
 and kF 	q�� t
� F 	q� t
k � �	t
�kq� � qk
whenever 	q� t
 � T 	�� �
 and 	q�� t
 � T 	�� �
�

In the Clarke version of the Maximum Principle� Condition 	CTH��
 is
replaced by the followin�

�CTH���Cl� For every control  that is either constant or equal to the
reference control �� the corresponding time	varying vector
�eld f� satis�es a Lipschitz	Carath�eodory condition near ���

Naturally� when this weaker condition holds� it is no longer possible to in�
terpret the adjoint equation in the classical sense� so 	CTH��
 has to be
modi�ed� The modi�cation proposed by Clarke was that the adjoint equa�
tion be interpreted as a di�erential inclusion with the classical Jacobian
matrix replaced by a Clarke generalized Jacobian� In other words� Clarke
suggested that� instead of 	CTH��
� the following be used�

�CTH���Cl� A solution of the adjoint equation �AE� along the
reference trajectory�control pair �� � 	��� �
 is an ab	
solutely continuous map � � �a� b� � IRn such that

�  �	t
��	t
�	�f	��	t
� �	t
� t
 for a� e� t� �a� b� � 	��


��Communicated to us by S� �Lojasiewicz� Jr�� in a personal conversation that took
place in May ����� �Lojasiewicz�s brilliant idea was explained to us for the much more
general setting of the nonsmoothMaximumPrinciple� discussed below� and to our knowl	
edge still remains unpublished�
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Here 	�f	"q� u� t
 is the Clarke generalized Jacobian 	CGJ
 at "q of the
map q� f	q� u� t
���

Clarkes own proof technique is not �classical�� in the sense that it does
not proceed as we did in Section ���� i� e�� by constructing needle varia�
tions� di�erentiating the endpoint maps� and then using a separation the�
orem such as Theorem ������ It turns out� however� that a classical proof
of Clarkes result can be given� and this classical proof has a number of
advantages over the nonsmooth one� as we now show�

The link between Clarkes nonsmooth Maximum Principle and the clas�
sical approach is provided by J� Wargas theory of �derivate containers�
	cf� Warga ���������
� A derivate container of a Lipschitz�continuous map
� � Q � IRm� where Q is open in IRn� at a point q � Q is a kind of
�generalized di�erential of � at q�� The precise de�nition is as follows�

Denition ����� Let Q be open in IRn� let � � Q � IRm be Lipschitz�
continuous� and let "q � Q� A compact set L of linear maps IRn � IRm is a
derivate container of � at "q � Q if for every � � � there exist a neighborhood
V� of "q and a sequence �j of maps of class C� from V� to IRm� such that
�j � � uniformly on V� as j � � and the di�erential D�j	q
 satis�es
dist	D�j 	q
�L
 � � for every j and every q � V�� �

What makes this concept useful is� to begin with� that it satis�es the chain
rule� if Qi are open in IRni for i � �� �� �i � Qi � IRni�� are Lipschitz
continuous� ��	Q�
 � Q�� q� � Q�� q� � ��	q�
� and Li are� for i � �� ��
derivate containers of �i at qi� then

L� � L�
def
� fL� � L� � L� � L� � L� � L�g

is a derivate container of �� � �� at q��
�

In addition� Wargas derivate containers provide a natural extension to
�ows of Lipschitz vector �elds of the di�erentiation results of Section ���
for �ows of vector �elds of class C�� Indeed� if 	CTH���Cl
 holds� then the
reference �ow )�� � f)��

t�sga�s�t�b consists of Lipschitz continuous maps�

each one of which is de�ned on an open subset Dom	)��
t�s
 of Q� Moreover�

derivate containers�� D)��
t�s	��	s

 of the maps )��

t�s at the points ��	s
 can
be computed by solving a set of variational equations� Precisely� de�ne

��For a Lipschitz continuous map � � Q� IRm� where Q is open in IRn� the CGJ of �
at q � Q is the convex hull ��q� of the set of all linear maps L � IRn � IRm such that
L � limj�� Lj for some sequence fLjg such that there are qj � Q for which qj � q
and � is di�erentiable at qj with di�erential Lj� The existence of many such sequences
fqjg follows because � is di�erentiable almost everywhere by Rademacher�s Theorem�
The set ��q� is then nonempty� compact and convex�

��A somewhat similar rule for the composition of maps holds for Clarke general	
ized Jacobians� suppose that Q�� Q�� q�� q�� ��� and �� are as above� then the inclusion
��� � ���q�� � co���q�� � ���q��� holds� This� however� is insu�cient for the appli	
cation to the Maximum Principle� since the operation of taking convex hull can produce
sets that are too large� The advantage of the derivate containers is that the chain rule
holds without having to take convex hulls�

�	We are choosing our language carefully� Derivate containers are not unique� so one
cannot talk about the derivate container of a map at a point� The expressionD ��t�s��s��

does not denote �the derivate container of  ��t�s at ��s��� It is just the name we choose
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M	� 	t
 � 	�f	��	t
� �	t
� t
 for a � t � b� If �a� b� � t � M 	t
 � M	� 	t

is an arbitrary measurable selection of the set�valued map M	� � we de�ne
the linearized �ow LM to be the family fLM 	t� s
ga�s�t�b of linear maps
from IRn to IRn such that

LM 	t� s
 � identity !

Z t

s

M 	� 
LM 	�� s
 d� � 	��


We then de�ne L	� 	t� s
 to be the set fLM	t� s
 � M � &	M	� 
g� where
&	M	� 
 is the set of all measurable selections of M	� � It is clear that
each L	�	t� s
 is compact and nonempty� 	The compactness follows from
the facts that 	i
 &	M	� 
 is weakly compact in L�	�a� b�� IRn
� since M	�

is a measurable integrably bounded set�valued map with compact convex
values� and 	ii
 the map M � LM is continuous with respect to the weak
topology for M and the topology of uniform convergence for LM �


Moreover� it is easy to see that the set�valued maps

	t� s
 � L	�	t� s
 � IRn�n

satisfy the identities

L	� 	t� t
 � fidentityg for t � �a� b� � 	��


and

L	� 	t�� t�
 � L
	� 	t�� t�
 � L	� 	t�� t�
 whenever a� t�� t�� t��b � 	��


It was proved by Warga that L	� 	t� s
 is a derivate container of )��
t�s at

��	s
� So we choose to de�ne

D)��
t�s	��	s



def
� L	� 	t� s
 �

Moreover� it is easy to see that a map �a� b� � t � �	t
 � IRn is a solution
of the adjoint equation in the sense of �CTH���Cl� if and only if it satis�es
the �integrated adjoint equation�

�	t
 � �	b
�LM 	b� t
 for a � t � b 	��


for some M � &	M	� 
� 	Indeed� if 	��
 holds� then an argument similar to

that used in Section ��� shows that  �	t
 � ��	t
�M 	t
 a�e�� so 	��
 holds�
Conversely� if 	��
 holds� then one can show that there is a measurable

selection M � &	M	� 
 such that  �	t
 � ��	t
�M 	t
 for a�e� t� and then
	��
 holds�


to give to one particular derivate container of  ��t�s at ��s�� to emphasize the analogy

with the classical C� case� Notice that �D ��t�s��s��� should not be read as �D of the

map  ��t�s at ��s��� since D 
��
t�s��s�� is not uniquely determined by the map  

��
t�s and

the point ��s�� because the same map could arise from two di�erent !ows� and in that
case the derivate container de
ned here could depend on which !ow is used�
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Unfortunately� this is not enough yet to carry out the proof of x��� in the
more general setting� The reason for this is that the class of Lipschitz maps
is not large enough to contain the endpoint maps de�ned by the needle
variations�

A class with the desired properties was introduced in Sussmann ����������
The maps in this class are called �semidi�erentiable�� and their generalized
di�erentials are called �semidi�erentials�� The precise de�nition is quite
simple�

Denition ����� Let F be a set�valued map from IRn to IRm� Let "q � IRn�
and let C be a closed convex cone in IRn� Let L be a compact set of
linear maps from IRn to IRm� We say that F is semidi	erentiable at "q in
the direction of C� with semidi	erential L�and write L � SDC 	F � "q
�if
there exist a compact neighborhood V of "q in IRn� and a Lipschitz map
H � V � IRm� such that 	a
 the restriction of F to V � 	"q ! C
 is a
regular set�valued map from V � 	"q ! C
 to IRm� 	b
 H is a ��rst�order
approximation to F in the direction of C near "q�� in the sense that

sup
n
ky �H	q
k � y � F 	q


o
� o	kq � "qk
 as q � "q�C � �

and 	c
 L is a derivate container of H at "q� �

Semidi�erentials also satisfy the chain rule� if

	a
 Fi are set�valued maps from IRni to IRni�� for i � �� ��
	b
 Ci are closed convex cones in IRni�
	c
 qi � IRni�
	d
 F�		q� ! C�
 � U�
 � q� ! C� for some neighborhood U� of q��
	e
 Li belongs to SDCi 	Fi� qi
 for i � �� ��

then L� � L� � SDC� 	F� � F�� q�
�

Moreover� it is clear that a Lipschitz�continuous map is semidi�erentiable
in the direction of any closed convex cone� and any derivate container of the
map is also a semidi�erential� So Wargas result on derivate containers of
�ow maps arising from Lipschitz vector �elds says in particular that these
�ow maps are semidi�erentiable� and gives us an explicit construction�if
	CTH���Cl
 holds�of a family fL	� 	t� s
ga�s�t�b of compact sets of linear
maps from IRn to IRn such that

L	� 	t� s
 � SDIRn 	)��
t�s� ��	s

 whenever a � s � t � b � 	��


and in addition 	��
 and 	��
 hold�
It follows trivially from the de�nition of semidi�erentiability that if a

continuous single	valued or regular set	valued map F is di�erentiable at a
point "q in the classical sense in the direction of a cone C with di�erential
L� then fLg � SDC 	F � "q
� Thus the theory of semidi�erentials contains
both that of derivate containers of Lipschitz continuous maps and that of
regular classically di�erentiable maps� and brings them both into a uni�ed
framework where the chain rule holds�

In addition� it turns out that the semidi�erentiable analogue of Theorem
����� holds�
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Theorem ����� Let C� be a closed convex cone in IRm� let U be a neigh�
borhood of � in IRm� let f � U � C� � IRn be a set�valued map� and let
L � SDC� 	f � �
� Let S be a subset of IRn having a cone C� as weakly ap�
proximating cone at f	�
� Assume that C� is not a linear subspace of IRn�
Then a necessary condition for the sets f	U �C�
 and S to be locally sepa�
rated at f	�
 is that 	LC�


y � 	�C�

y �� f�g for some L � L� i�e� that there

exist an L � L and a nonzero covector "p � IRn such that p�L�v� � � for all
v� � C� and p�v� � � for all v� � C�� �

	This is a special case of the more general theorem of Sussmann �����

Using these results� the proof of Section ��� carries over to the current

setting� It su�ces to observe that� if the endpoint maps Es�u��� are de�ned as
in Section ���� then Es�u��� is semidi�erentiable at 	��	a
� �
 in the direction
of IRn 	 IRm

� � and one member of SDIRn�IRm
�

	Es�u��� � 	��	a
� �

 is the set

Ds�u�	� � fE	L
 � L � $	�g �
where $	� is the set of all �compatible selections of L	�� 	i�e�� the set of
all families L � fL	t� s
ga�s�t�b such that L	t� s
 � L	� 	t� s
 for each s� t�
and L	t�� t�
 � L	t�� t�
 � L	t�� t�
 whenever a � t� � t� � t� � b
 and� for
L � $�

E	L
	�q� �r�� � � � � �rm

def
� L	b� a
��q!

mX
i��

�ri�L	b� si
�v
	� 	si� ui
 � 	��


It can be proved that $	� coincides with the set of all maps L	�M de�ned
earlier� Using this� the proof of the Maximum Principle given in Section ���
applies in this case� and we get the nonsmooth Maximum Principle with
the �Lojasiewicz improvement�

Theorem ����� Assume that 
i� the classical technical hypotheses 
CTH����

CTH���� 
CTH���� 
CTH��� hold� 
ii� the concept of �solution of the ad�
joint equation� is interpreted in the sense of 
CTH���Cl�� 
iii� the reference
vector �eld f�� satis�es a Lipschitz�Carath�eodory condition near ��� and

iv� condition 
LTH� holds for every u � U � Then the Maximum Principle

SSMP� is true� �

This result includes the nonsmooth Maximum Principle as a special case�
but is more general because of the +Lojasiewicz improvement� 	The result
of ���� requires the stronger assumption that f	q� u� t
 be Lipschitz with
respect to q for all u� t�


�� Multidi�erentials� Flows� and a General
Version of the Maximum Principle

Proving the nonsmooth version of the maximum principle by classical
needle�variation techniques has several advantages� two of which should
already be apparent from the previous discussion� 	i
 the proof is concep�
tually close in spirit to the elegant classical idea of geometrizing the argu�
ment by making everything revolve around the construction of a suitable
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�tangent cone� to the reachable set� and 	ii
 the proof yields a stronger
result because of the +Lojasiewicz improvement�

These� however� are only the �rst two of a long list of reasons that make
it worthwhile to pursue the classical approach� It su�ces to look at the
basic structure of the proof to see that� with practically no change� one can
go much farther and prove a more general theorem�

To begin with� the Lipschitz�Carath�eodory conditions for the reference
control are only needed to establish the semidi�erentiability of the reference
�ow )�� and to show that L	� is a semidi�erential of the �ow� Once this is
understood� one can do away with the technical assumptions for the refer�
ence vector �eld and impose instead the much weaker requirement that the
reference trajectory be part of a general semidi�erentiable �ow )� It is then
no longer necessary to assume that the state space Q is �xed� and we can
allow it to depend on t� The �reachable set� will just be a subset R of the
terminal state space Qb� and the Maximum Principle will give a necessary
condition for R to be separated from some other set� This condition will
involve the other basic ingredient of our general situation� namely� a set V
of variations� The variations should then give rise to endpoint maps� and
should be such that these endpoint maps� when applied starting at ��	a
�
always yield points of R�

Finally� and most importantly� the proofs of Sections ��� and ��� have es�
sentially the same structure� and di�er mainly in the speci�c di�erentiation
theory they use� This strongly suggests that everything might work equally
well if� instead of the semidi�erentials� we use an even more general di�er�
entiation theory� provided only that this theory has some basic properties�
such as the chain rule and a transversality theorem such as Theorems �����
and ������

This suggestion turns out to be true� At least one such theory� that of
the multidi�erentials� was introduced in Sussmann ����� Using multidif�
ferentials� one can prove an even more general version of the maximum
principle� which applies to systems of di�erential inclusions as well as to
control systems of the usual kind�

We now make all this precise� and begin by listing the basic de�nitions�

Multidi�erentials� If X� Y are �nite�dimensional real linear spaces� we
write L	X�Y 
 to denote the set of all linear maps from X to Y � If X is

normed� we write BX
def
� fx � X � kxk � �g� If S is a convex subset of X�

D � L	X�Y 
� and k � �� �� � � � � we de�ne Ck
D

	S� Y 
 to be the set of all

maps H � S � Y that admit an extension to a Ck map 'H � , � Y � de�ned
on an open subset , of X such that Clos	S
 � ,� and having the property
that

D 'H	x
 �D for all x � S � 	��


	If D is closed in L	X�Y 
� then of course 	��
 is equivalent to the require�
ment that D 'H	x
 �D for all x � Clos	S
�


Denition ����� Let X� Y be �nite�dimensional normed real linear spaces�
and let X be normed� Let F � X � �Y be a set�valued map� Let 	"x� "y
 be
a point in X 	 Y � and let D be a compact subset of L	X�Y 
� Let C be a
closed convex cone in X� We say that D is a multidi	erential of F at 	"x� "y
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in the direction of C� and write

D � MDC	F � "x� "y
 �

if the following is true�

	MD
 for every neighborhood D� of D in L	X�Y 
 there exists a pair 	��-

such that

	MMD��
 � � �� and - is a function on the interval ��� �� with values in
����� and such that lims�� -	s
 � ��

	MMD��
 for every � � � there exist f�H such that

	MMD����
 f is a regular set�valued map from "x! 	C � �BX 
 to Y �

	MMD����
 Graph	f
 � Graph	F 
�

	MMD����
 H � C�
D�	"x! 	C � �BX 
� Y 
�

	MMD����
 H	"x
 � "y�

	MMD����
 the inequality

sup
n
jjy�H	x
jj � y�f	x


o
��!-	jjx�"xjj
jjx�"xjj 	��


holds whenever x� "x � C � �BX � �

Time interval� A time interval is a totally ordered set� In what follows�
a time interval I will be �xed� and we will use ��� to denote the order
relation� The reader may assume that I is a subinterval of IR� but this fact
will never be used� We prefer the more general setting of a totally ordered
set both because it is mathematically more natural and because in several
applications this extra generality is actually useful�

State bundles� If I is a time interval� a state space bundle�or state
bundle� for short�over I is a familyQ � fQtgt	I of nonempty sets� indexed
by t � I� If J is a subset of I� then J is a time�interval 	i� e�� a totally

ordered set
 as well� so the family QdJ def
� fQtgt	J is a state bundle� called

the restriction of Q to J �

Sections� Given a state bundle Q over a time interval I� a section of
Q is a map I � t � �	t
 � Qt� No requirement such as smoothness� or
continuity� or even measurability� is made in the de�nition of section� In
fact� such a requirement would be meaningless in this general setting� since
the Qt are just sets� and could be all di�erent� We use .	Q
 to denote
the set of all sections of Q� We should think of the members of .	Q
 as
�curves� on the time�varying state space Qt� at least in some formal sense�

Flows� If I is a time interval� and Q is a state bundle over I� then a �ow
on Q is a family ) � f)t�s � s� t � I� s � tg of set�valued maps� such that

a� for each s� t � I such that s � t� )t�s is a map from Qs to subsets of
Qt�

b� for each t � I� )t�t is the identity map of Qt�
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and

c� the identity
)t��t� � )t��t� � )t��t� 	��


holds whenever t� � t� � t� and the ti are in I�

We use FLOW 	Q
 to denote the set of all �ows on Q�
If ) � FLOW 	Q
 and J is a subset of the time interval I of Q� then the

family )dJ � f)t�sgs�t	J�s�t is a �ow on QdJ � called the restriction of )
to J �

Trajectories� A trajectory of a �ow ) on Q is a section � � .	Q
 such
that �	t
 � )t�s	�	s

 whenever s� t � I� s � t� We write TRAJ	)
 to
denote the set of all trajectories of )�

Variations� If k � IN� then a k	parameter variation in a set S is� simply�
a map � from the nonnegative orthant IRk

� of IRk into S� If �	�
 � s� s � S�
then s is the base point of �� and � is said to be a �k	parameter� variation
of s in S� We write VARk	S
 to denote the set of all k�parameter variations
in S� and VARk	S� s
 to denote the set of all � � VARk	S
 whose base point
is s�

Given a �ow ) on a state bundle Q over a time interval I� a� b � I� and
a � b� a k	parameter variation of ) carried by the interval �a� b� is a k�
parameter variation of )b�a in the set SVM 	Qa� Qb
 of all set�valued maps
from Qa to Qb� We use VARk	)� a� b
 to denote the set of all k�parameter
variations of ) carried by �a� b��

The endpoint map of a variation� If k � IN� )� Q� I� a� b are as above�
and � � VARk	)� a� b
� the endpoint map E	�� )� a� b
 is the set�valued map
from Qa 	 IRk

� to Qb such that

E	�� )� a� b
	q� r�� � � � � rk
 � �	r�� � � � � rk
	q
 	��


for q � Qa� r�� � � � � rk � ������

Linear bundles and �ows� If Q is a state bundle and the sets Qt are
linear spaces� then Q is called a linear bundle��� If all the linear spaces are
�nite�dimensional then Q is a �nite	dimensional linear state space bundle�

Naturally� when Q is a real linear state space bundle we can talk about
linear �ows� We use LFLOW 	Q
 to denote the set of all linear �ows on Q�

Linear multi�ows� A linear multi�ow on a linear state bundle X over
the time interval I is a family $ � f$t�s � s� t � I� s � tg such that each
$t�s is a nonvoid set of linear maps from Xs to Xt� having the property
that $t�t � fidentityXt

g for each t� and

$t��t� � $t��t� � $t��t� 	��


whenever t� � t� � t� and the ti are in I� If X is �nite�dimensional� we call
a linear multi�ow $ on X compact if all the sets $t�s are compact� We use
LMFLOW 	X
� LMFLOWc	X
 to denote� respectively� the set of all linear
multi�ows on X� and that of all $ � LMFLOW 	X
 that are compact�

�
Throughout this discussion� the 
eld of scalars is always IR� No other 
eld is ever
considered�
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OFD bundles� An open �nite	dimensional �OFD� state space bundle is
a state bundle Q such that each Qt is a nonempty open subset of a �nite�
dimensional linear space Xt� In that case� the bundle X � fXtgt	I is the
tangent bundle of Q�

Di�erentiable �ows� If Q is an OFD state bundle over a time interval
I� with tangent bundle X� we de�ne a �ow ) to be di	erentiable along a
trajectory � of ) if )t�s is continuous near �	s
 and di�erentiable at �	s

whenever s� t � I� s � t� If ) is di�erentiable along �� then we can de�ne
a �ow D)	�
 � LFLOW 	X
�called the di�erential� or the linearization� of
) along ��by letting D)	�
t�s be the di�erential D)t�s	�	s

� so D)	�
t�s
is a linear map from Xs to Xt� The fact that D)	�
 is a linear �ow follows
from the chain rule for classical di�erentials�

Multidi�erentials of �ows� Let Q be an OFD a state space bundle
over a time interval I� and let X be its tangent bundle� We then de�ne a
multidi�erential of a �ow ) � FLOW 	Q
 along a trajectory � � TRAJ	)

to be a linear multi�ow $ � f$t�sgs�t	I�s�t � LMFLOW 	X
 such that $t�s

belongs to MDXs
	)t�s� �	s
� �	t

 whenever s� t � I� s � t� 	This implies� in

particular� that $ � LMFLOWc	X
�
 We use MD	)� �
 to denote the set of
all multidi�erentials of ) along �� and call ) multidi�erentiable along � if
MD	)� �
 �� ��
Remark ����� It is possible to give counterexamples showing that if each
map )t�s is multidi�erentiable at �	s
� then a family $ of multidi�erentials
satisfying the compatibility condition 	��
 may fail to exist� For this reason�
we impose the requirement that such a family exist as an extra condition
in our de�nition of multidi�erentiability of a �ow along a trajectory� �

Compatible selections� If X is a �nite�dimensional linear state space
bundle over I� and $ is a linear multi�ow over X� a compatible selection
of $ is a linear �ow L � fLt�s � s� t � I� s � tg � LFLOW 	X
 such that
Lt�s � $t�s whenever s � t and s� t � I� We use CS	$
 to denote the set of
all compatible selections L of $�

It is not hard to prove� using Zorns Lemma together with the compact�
ness of the sets $t�s� that compatible selections always exist if $ is compact�
Moreover� if $ belongs to LMFLOWc	X
� and J is a subset of I� then every
compatible selection L � CS	$dJ
 of the restriction $dJ � f$t�s � s �
J� t � J� s � tg can be extended to a compatible selection L� � CS	$
�

Impulse innitesimal variations� Given a �nite�dimensional linear
state bundle X over the time interval I� a �	parameter impulse in�nitesimal
variation in X is a pair V � 	t� v
 such that t � I and v � Xt� If a � I�
b � I are such that a � b and a � t � b� then V is said to be carried
by the interval �a� b�� If k � IN� then a k	parameter impulse in�nitesimal
variation in X is a k�tuple V � 	V�� � � � � Vk
 of ��parameter in�nitesimal
variations in X� If a � I� b � I are such that each Vj is carried by �a� b��
then we say that V is carried by �a� b�� We use IIV k	X
 to denote the set
of all k�parameter impulse in�nitesimal variations in X� and IIV k	X� a� b

to denote the set of all V � IIV k	X
 that are carried by the interval �a� b��

Given a �ow ) on an OFD state bundle Q over the time interval I with
tangent bundle X� we will also refer to the members of IIV k	X
 as k	
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parameter impulse in�nitesimal variations of )� and we will write IIV k	)
�
IIV k	)� a� b
 instead of IIV k	X
� IIV k	X� a� b
�

The innitesimal endpoint map determined by an impulse in�
nitesimal variation� Suppose we are given a compact linear multi�ow
X on a �nite�dimensional linear state bundle X over the time interval I�
Let k � IN� and assume that a� b � I� a � b� Let V � IIV k	X� a� b
� and
suppose that V � 	V�� � � � � Vk
� Vj � 	tj� vj
 for j � �� � � � � k�

For each compatible selection L�CS	$
� de�ne a linear mapE	L�V� a� b

from Xa 	 IRk to Xb by

E	L�V� a� b
	x� r�� � � � � rk
 � Lb�ax!
kX
j��

rjLb�tjvj � 	��


The set E	$�V� a� b
 � fE	L�V� a� b
 � L � CS	$
g is the in�nitesimal
endpoint map associated to V and $� It is clear that E	$�V� a� b
 is a
nonempty compact set of linear maps from Xa 	 IRk to Xb�

Impulse innitesimal variations generated by a variation� Sup�
pose we are given I� X� a� b� $� k� V � 		t�� v�
� � � � � 	tk� vk

� Q� )� � as
above� Let � � VARk	)b�a
� We say that V is generated by 	��)� ��$� a� b

if

E	$�V� a� b
 �MDXa�IRk
�

	E	�� )� a� b
 � 	�	a
� �
� �	b

 � 	��


Adjoint vectors� Assume that X is a �nite�dimensional linear state bun�
dle over the time interval I� and $ � LMFLOW 	X
� We then de�ne a $	
adjoint vector to be a map I � t� �	t
 � X�

t �where X�
t is the dual space

of Xt�having the property that ��

�	s
 � �	t
 � $t�s whenever s � I� t � I� s � t � 	��


An equivalent characterization is the following� a $	adjoint vector is a map
I � t� �	t
 � X�

t such that there is a compatible selection L � CS	$
 for
which

�	s
 � �	t
 � Lt�s whenever s � I� t � I� s � t � 	��


We use ADJ	$
 to denote the set of all $�adjoint vectors�

Strong admissibility� Let Q be an OFD state bundle with time interval
I� and assume I has a minimum a and a maximum b� Let ) � FLOW 	Q
�
� � TRAJ	)
� $ � MD	)� �
� Let V � IIV �	)
 be a �nite set of one�
parameter in�nitesimal variations of )� and let R be a subset of Qb� We
say that V is strongly admissible for 	R�)� ��$
 if�

��Recall that "t�s is a set of linear maps from Xs to Xt� and �t� is a linear map
from Xt to IR� so the composite �t� �"t�s � f�t� � L � L � "t�sg is well de
ned� The
composite �t� � L is the usual pullback of the functional �t� � Xt � IR to a functional
from Xs to IR via L� Often� one uses L� to denote the pullback map� so what we call
�t� � L would be called L��t�� instead� but we prefer to write �t� � L� This notation
has the advantage of giving the usual matrix formula �s� � �t�	Lt�s if the Xt are
Euclidean spaces� thought of as spaces of column vectors� and then the X�

t are regarded
as spaces of row vectors�
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	SADM
 There exist an integer k � IN� a variation � � VARk	)
� a
V � 	V�� � � � � Vk
 � IIV k	)
� and an "r � �� such that

�
� E	�� )� a� b
	�	a
� r
�R whenever r�	r�� � � � � rk
� ��� "r�k�
��� V is generated by 	��)� ��$� a� b
�

and

��� V � fVj � j � �� � � � � kg�
Convergence of impulse innitesimal variations� Given a time in�
terval I having a minimum a and a maximum b� a linear �nite�dimensional
state bundle X over I� and a compact linear multi�ow $ on I� we can
de�ne a topology T 	X�$
 on IIV �	X
 as follows� We pick� in an arbitrary
fashion� a compact neighborhood K of � in X�

b � We then let ADJ	$�K

denote the set of all adjoint vectors � � ADJ	$
 such that �	b
 � K�
equipped with the topology of pointwise convergence� Then ADJ	$�K
 is
a topological subspace of the product space *t	I$�b�t	K
� which is com�
pact by Tikhonovs theorem� It is easy to prove that ADJ	$�K
 is it�
self compact� Each V � 	t� v
 � IIV �	X
 gives rise to a continuous map
�V � ADJ	$�K
 � IR� de�ned by letting �V 	�
 � �	t
�v� Then T 	$� X

is the topology of uniform convergence of the functions �V on ADJ	$�K
�
	This topology is easily seen to be independent of the choice of K� Notice�
however� that T 	$� X
 need not be Hausdor�� since it may happen� for
example� that $b�t � f�g for some t � b but dim	Xt
 � �� in which case� if
V � 	t� v
� with v � Xt and v �� �� and V � � 	t� �
� then the functions �V
and �V � will coincide� even though V �� V ��


Admissibility� Let Q be an OFD state bundle with time interval I and
tangent bundle X� Assume that I has a minimum a and a maximum b�
Let ) � FLOW 	Q
� � � TRAJ	)
� $ � MD	)� �
� Let V be a set of
��parameter $ � SD	)� �
� Let V be a set of ��parameter impulse in�nites�
imal variations of )� Let R be a subset of Qb� We call V admissible for
	R�)� ��$
 if every �nite subset of V can be approximated in the topology
T 	$� x
 of IIV �	)
 by strongly admissible �nite subsets of IIV �	)
� The
precise meaning of this condition is as follows�

	ADM
 Let K be a �xed compact neighborhood of � in Xb� Then for ev	
ery �nite subsetW ofV and every � � � there exists a �nite sub	
set W� of IIV �	)
 which is strongly admissible for 	R�)� ��$

and such that

max
W	W

min
W �	W�

max
�	ADJ���K�

j�W 	�
 � �W � 	�
j � � � 	��


	It is easy to see that the validity of 	ADM
 does not depend on the choice
of the compact set K�


We are now ready to state the �ows� variations� and multidi�erentials
version of the Maximum Principle�

Theorem ����� Let I be a time interval having a minimum a and a max�
imum b� Let Q be an OFD state bundle over I� and let X be its tangent



�� Geometry and Optimal Control �	�

bundle� Let ) � FLOW 	Q
� � � TRAJ	)
� $ � MD	)� �
� Let R� S be
subsets of Qb� Let C be a closed convex cone in Xb which is a weakly ap�
proximating cone to S at �	b
 and is not a linear subspace of Xb� Let V
be a subset of IIV �	)
 which is admissible for 	R�)� ��$
� Assume that R
and S are locally separated at �	b
� Then there exists a � � ADJ	$
 such
that �	b
 �� �� ��	b
 � Cy and �	t
�v � � for all 	t� v
 � V� �

This theorem contains as special cases all the versions stated earlier� but
is much more general in a number of ways� For example�

�� Non�Lipschitz and discontinuous reference vector elds� For
control systems of the classical form  q � f	q� u� t
� Theorem ����� applies in
many cases when the time�varying vector �eld f�� arising from the reference
control � fails to be Lipschitz or even continuous with respect to q� Two
simple illustrations of this are the re�ected brachystochrone problem and
the light refraction problem�

Example ����� �The re�ected brachystochrone problem�� We con�
sider the minimum�time optimal control problem in IR��with coordinates
x� y�whose dynamical law is  x � u

pjyj�  y � v
pjyj� the controls u� v

being subject to the constraint u� ! v� � �� 	It is easy to reformulate the
problem as one involving a �xed interval such as I � ��� ��� It su�ces to

rewrite the dynamical equations as  x � wu
pjyj�  y � wv

pjyj and seek

to minimize
R �
�
w	t
dt� where w is a new control with values in ������
 In

this case� the right�hand side of the dynamical equations is continuous but
not Lipschitz continuous� Moreover� if one wants to join optimally a point
A in the upper half�plane to a point B in the lower half�plane� then the
optimal trajectory will obviously go from A to a point C in the x�axis and
then from C to B� The parts from A to C and from C to B are solutions
of the classical brachystochrone problem� so they are arcs of cycloids� This
still leaves one free parameter� namely the choice of C� For a given C�
the corresponding curve �C and control C are such that the time�varying
vector �eld f�C is not Lipschitz continuous with respect to the state� This
means that we cannot even apply the nonsmooth maximum principle with
+Lojasiewicz modi�cation to the pair 	�C � C
� because the reference vector
�eld is not Lipschitz� It turns out that Theorem ����� does apply� because
the �ow determined by C is multidi�erentiable�and� in fact� di�erentiable
in the classical sense�along �C � provided that we restrict it to the totally
ordered set I �f�g� where � is the unique point such that �C	� 
 lies in the
x axis�

An application of Theorem ����� gives the extra junction condition� Pre�
cisely� the cycloids satisfy a di�erential equation 	y�
�jyj � K � jyj� The
extra conditions is that the constants K� and K� corresponding to the
two arcs of cycloid that make up �C be equal� �

Example ����� �The refraction problem�� This is similar to the re�
�ected brachystochrone problem� except that the dynamical law is now
jj  qjj � c� if y � �� jj  qjj � c� if y � �� where c�� c� are positive constants
such that c� �� c�� Now the dynamical law has a discontinuous right�hand
side� Once again� Theorem ����� applies� The answer is� of course� that of
the well known Snell law of refraction� but this time the derivation of the
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result does not require an extra ad hoc argument and �ts directly within
the framework of the necessary conditions for optimality� �

Remark ����� Example ����� is also covered by the theory of �optimal
multiprocesses� of Clarke and Vinter� cf� ����� �

�� Stronger conclusions for nonsmooth problems� Even in situations
where the nonsmooth version applies� it can happen that Theorem �����
gives strictly stronger results� as the following example shows�

Example ����� �A problem with Lipschitz�continuous data� for
which the usual nonsmooth maximum principle does not give the
best possible result�� We consider the one�dimensional optimal control
problem in which the dynamical law is

 x � u! x� sin
�

x
� 	��


the control constraint is u � f��� �� �g� and the objective is to minimize the

integral
R �
�
etu	t
dt subject to the endpoint constraints x	�
 � x	�
 � ��

Suppose we want to test the trajectory ��� �� � t � x	t
 � � and corre�
sponding control u	t
  � for optimality� The nonsmooth maximum princi�

ple will give the adjoint equation  � � ��j�j� j�j�� one of whose solutions is
'�	t
 � et� The Hamiltonian 	assuming that �� � �� which is easily justi�ed
for this problem
 is H � ��u! ��x� sin �

x
� etu� So the Hamiltonian max�

imization condition is satis�ed for '�� Therefore the nonsmooth maximum
principle does not exclude the zero trajectory as a candidate for optimality�
On the other hand� Theorem ����� does� because the reference �ow ) is also
di�erentiable in the classical sense� since )t�s	x
 � x ! o	jxj
 as x� � for
each t� s� as can easily be seen� for example� using Gronwalls inequality� So�
using the classical di�erential in the role of $� we get the adjoint equation
 � � �� which is not satis�ed by any Hamiltonian�maximizing choice of
�� �

The preceding example shows the advantage of a theory with a nonunique
�generalized di�erential�� our version of the maximum principle gives a
nontrivial Hamiltonian�maximizing adjoint vector for every multidi�eren�
tial $ �MD	)� ��
� when the conditions of the nonsmooth maximum prin�
ciple 	NSMP
 hold� the usual statement of the NSMP only gives an adjoint
vector corresponding to one of these multidi�erentials� whereas our version
allows for the possibility of selecting other multidi�erentials that may yield
stronger conclusions�

Example ����� �A non�Lipschitz analogue of Example 
������ It
is easy to modify Example ����� to get a problem where the conditions of
the maximum principle are not satis�ed but those of our Theorem �����
are� It su�ces to substitute for x� in 	��
 a factor of the form jxj�� where
� � � � �� Then the right�hand side of the dynamical equation is not
Lipschitz continuous� but Theorem ����� still applies� �

�� High�order variations� Theorem ����� is also stronger� for a di�erent
reason� in situations where the dynamics is very smooth� and the classical



�� Geometry and Optimal Control �	�

version applies� This is because the theorem uses a general� abstract de��
nition of �variation�� so that the usual needle variations are special cases�
but other� �high�order� variations� expressed in terms of Lie brackets of the
vector �elds of the system under consideration� are also allowed� 	For some
simple examples of such variations� cf� Kawski and Sussmann ����� For a
more general discussion of high�order conditions� cf� Gabasov�Kirillova �����
Kelley� Kopp and Moyer ����� Knobloch ����� Krener �����


�� Jumps� Theorem ����� allows jump maps� For example� it could happen
that at some time "t the state jumps from q to J	q
� where J is a map� It
could even happen that the state spaces Q�t� � Q�t� before and after the jump
are di�erent� 	To include such jumps in our framework it is convenient to
change the time�interval I and treat "t� and "t� as di�erent points� which�
incidentally� is one of several reasons why it is preferable to work with
general totally ordered sets rather than ordinary intervals�
 If the jump
time "t and the map J are �xed in advance� and J is multidi�erentiable at
	��	"t�
� �	"t�

 with multidi�erential D� then the corresponding condition
on the adjoint covector � is �	"t�
 � �	"t�
 �D� If "t and J are not �xed�
then one gets extra inequality conditions involving the variations of the
pair 	"t� J
�

�� Di�erential inclusions� Our result also applies to systems of di�er	
ential inclusions� For example� the following is a special case of Theorem
������

Theorem ����� Let I � �a� b� be a compact subinterval of IR� Let n � IN�
let Q be an open subset of IRn� and let F � fF� � � � Ag be a family
of set�valued maps Q 	 I � 	q� t
 � F�	q� t
 � IRn� such that each F�
is almost lower semicontinuous and locally integrably lower bounded� Let
�� � A� and let �� � �a� b� � Q be a trajectory of F�� such that F�� is
integrably pseudo�Lipschitz along ��� Let R � Q be such that� whenever
k � IN� a � �� � � � � � �k � b� and ��� � � � � �k � A� there exists an "r � �
such that� if 	r�� � � � � rk
 � ��� "r�k� then every solution � of the inclusion

 �	t
 �
kX
j��

���j ��j�r�
	t
F�j 	�	t
� t
 !



��

kX
j��

���j ��j�r�
	t


�
F��	�	t
� t


for which �	a
 � ��	a
 satis�es �	b
 � R� Let S � Q� and let C be a closed
convex cone in IRn which is a weakly approximating cone to S at ��	b
 and
is not a linear subspace of IRn� Assume that R and S are locally separated
at ��	b
� Then�


i� If lim
�� sup
n

dist	  ��	t
� F��	x� t

 � a � t � b� jjx� ��	t
jj � �
o

� ��

then there exists a time�varying vector �eld 	q� t
 � f	q� t
� de�ned on
some tube T 	��� �
 
cf� Eq� 
����� that satis�es a Lipschitz�Carath�eo�

dory condition near �� and is such that  �	t
 � f	�	t
� t
 for almost
every t� and f	q� t
 � co	F 	q� t

 for all 	q� t
 � T 	��� �
�


ii� For every f that satis�es the conditions of 
i� there exists an abso�
lutely continuous solution � � �a� b�� IRn of the di	erential inclusion
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�  �	t
 � �	t
 � 	ft	��	t

where ft	q

def
� f	q� t
such that �	b
 �� ��

��	b
 � Cy� and� for every � � A�

�	t
�  ��	t
 � maxf�	t
�v � v � F�	��	t
� t
g
for almost all t � I� �

	The de�nitions of �almost lower semicontinuous�� �locally integrably lower
bounded�� and �integrably pseudo�Lipschitz� can be found� for example�
in Sussmann �����


Remark ����� Theorem ����� gives a necessary condition for separation
in terms of the adjoint equation for a selection of the convexi�ed inclusion�
So this condition is also the necessary condition for the relaxed problem�
The observation that the condition arising from the relaxed problem is
also necessary for the nonrelaxed one is known as the �Kaskosz maximum
principle� 	cf� Kaskosz ����� Warga ����
� �

Remark ����� A result similar to Theorem ����� but for a single Lipschitz
nonconvex inclusion was proved by Q� J� Zhu in ���� and by H� D� Tuan in
����� �

�� Hybrid problems� Theorem ����� applies to problems that are �hy�
brid� in the sense that the technical assumptions Tj of various existing
necessary conditions for optimality 	such as the classical smooth maximum
principle with high�order conditions� the nonsmooth maximum principle�
and the maximum principle for di�erential inclusions
 hold near the refer�
ence trajectory on various subintervals Ij of its time interval I� but none
of these technical conditions holds all the time� In this case� the other the�
orems will give for each j an adjoint vector �j de�ned on Ij and satisfying
the conclusions Cj of the theorem that applies on Ij � but it will not follow
that these results can be combined into one that yields the existence of a
global � satisfying Cj on Ij for each j�

Example ����� �High�order conditions for a problem whose dy�
namics is not everywhere smooth�� Consider a minimum�time prob�
lem with dynamical law

 q � f	q
 ! ug	q


and control constraint juj � �� The high�order maximum principle gives
an extra inequality�the Legendre�Clebsch condition�valid when f and
g are su�ciently smooth� e�g� of class C�� On the other hand� if f and g
are only Lipschitz continuous� the nonsmooth maximum principle applies�
It is natural to ask what happens if f and g are smooth in some open
region QS of the state space� but just Lipschitz continuous in some other
open region QL� Suppose � � �a� b� � QS � QL is a trajectory that is not
entirely contained in either of the two regions and corresponds to a control
 � �a� b� � ���� ��� A reasonable conjecture is that� if � is time�optimal� then
there will exist a nontrivial �eld of covectors � that satis�es the conclusion
of the nonsmooth principle while �	t
 is in QL� and those of the smooth
high�order principle when �	t
 � QS� In other words� � will satisfy the
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adjoint di�erential inclusion and the Hamiltonian maximization condition
on the whole interval �a� b�� and in addition the Legendre	Clebsch condition

h�	t
� �g� �f� g��	�	t

i � �

at every time t such that j	t
j � �� t is a Lebesgue point of � and f and
g are of class C� near �	t
� 	For details of how to construct the variation
that gives rise to the impulse in�nitesimal variation 	t���g� �f� g��	�	t


� cf�
�����


Neither the classical high�order maximum principle nor the nonsmooth
maximum principle can be used to prove that the conjecture is true� but
Theorem ����� applies� �

���� Three Ways to Make the Maximum Principle
Intrinsic on Manifolds

So far� the state spaces have been open subsets of Euclidean spaces� and
the formulations of the Maximum Principle have depended strongly on
this fact� Naturally� it is desirable to have a formulation that works intrin�
sically on manifolds� This is essentially equivalent to having a formulation
in Euclidean spaces that is invariant under arbitrary nonlinear changes of
coordinates� Such a formulation would make it possible� even when we are
working in IRn� to follow Lagranges strategy of expressing �the equations
of every problem in the most simple form relative to each set of variables��
and seeing �beforehand which variables one should use in order to facilitate
the integration as much as possible��

It turns out that this can be done in several ways� all of which are useful
and enhance the power of the Maximum Principle as a technical tool�

Let us �rst consider� for simplicity� the classical maximumprinciple� Since
this case is discussed in great detail in Sussmann ����� we will only review
it brie�y�

Although the adjoint equation �  �	t
 � �H
�q

	��	t
� �	t
� �	t
� t
 is not

manifestly invariant under nonlinear coordinate changes� it is quite easy to
prove its invariance� as we now show�

��The Hamiltonian formulation� One way to prove invariance of the
adjoint equation is to use the canonical symplectic structure of the cotan�
gent bundle T �Q of a manifold Q� This structure gives rise to a canonical
�ber�preserving isomorphism J � T �	T �Q
 � T 	T �Q
� which enables us to
asign to every covector 
 � T �z 	T �Q
 a tangent vector Jz	

 � Tz	T �Q
� In
particular� if H � T �Q� IR is a function� and z � T �Q is a point where H

is di�erentiable� then there is a well de�ned tangent vector �H	z
 � TzT
�Q�

given by �H	z
 � Jz	dH	z

�
Now suppose that we are given a control system  q � f	q� u� t
 on a

manifold Q� and a reference trajectory�control pair �� � 	��� �
 such that
f�� satis�es a C��Carath�eodory condition near ��� For each u� t� de�ne

Hu�t	q� p

def
� H�	q� u� p� t
 	

def
� p�f	q� u� t

 �
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Then the function H���t��t is of class C� for almost every t� The system

 �	t
 � f	�	t
� �	t
� t
 � 	��


�  �	t
 � �	t
�
	f

	q
	�	t
� �	t
� t
 	��


is then easily seen to be equivalent to

 �	t
 � �H���t��t	�	t

 � 	��


if we write �	t
 � 	�	t
� �	t

� So the system 	�����
 is clearly intrinsically
de�ned in a coordinate�free way�

At this point� it is worth noticing that� if ( � 	Q�U� I�U � f
 is a control
system on a manifoldQ� such that for every  � U the corresponding vector
�eld f� satis�es a C��Carath�eodory condition� then we can de�ne

f�	z� u� t
 � �Hu�t	z
 � for 	z� u� t
 � T �Q	 U 	 I �

and obtain a new control system (� � 	T �Q�U� I�U � f�
 with state space
T �Q� called the Hamiltonian lift of (� Then the necessary condition given
by the Maximum Principle can be viewed as stating that the reference
trajectory�control pair �� � 	��� �
 must be the projection of a
reference trajectory�control pair &� � 	.�� �
 of the Hamiltonian
lift such that &� has some special properties� namely� nontriviality�
Hamiltonian maximization� and the transversality condition� This seem�
ingly trivial remark has turned out to be useful because� once it is under�
stood that the Maximum Principle relates certain trajectories of a control
system ( to special trajectories of (�� then it is at least conceivable in
principle that this construction may be iterated�

We now present an example�based on Sussmann ���� ��� ����showing
how the idea of iterating Hamiltonian lifts can be used to prove a �weak
regularity theorem� for trajectories�

Example ������ The following result was announced in ���� for the case
when U is an interval and in ���� for the general case� A detailed proof
appears in �����

Theorem ������ Let Q be a real�analytic manifold� let U be a compact
subanalytic subset of a real�analytic manifold #U � and let f � Q 	 U �
TQ be an analytic map such that f	q� u
 � TqQ for every q � Q� u �
U � Let � � �a� b� � Q be an absolutely continuous curve that satis�es the

equation  �	t
 � f	�	t
� 	t

 a�e� for some measurable control  � �a� b� �
U � Then there exists a trajectory�control pair 	��� �
� de�ned on some
interval �a�� b��� such that ��	a�
 � �	a
� ��	b�
 � �	b
� and � is real�
analytic on an open dense subset of �a�� b���

Theorem ������ says� roughly� that for an analytic system� whenever a point
"q can be steered to some other point #q by means of some measurable control
it follows that this can also be done using a control that has an extra reg�
ularity property� This theorem can be applied to optimal control problems
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of the general form 	FEOCP
�as long as f and L do not depend on t and
are analytic with respect to q and u�by considering an augmented system
in which the running cost is added as a new state variable� In that case�
Theorem ������ implies that� if "q can be steered to #q with cost c by means of
some measurable control� then "q can be steered to #q with cost c by means
of a control that is real	analytic on an open dense subset of its domain�
In particular� we can take c to be the optimal cost� and conclude�under
the analyticity hypothesis�that if 	FEOCP
 has a solution then it has a
solution that is real�analytic on an open dense subset of its domain� For
problems having a unique solution� this result gives a regularity property
of the solution�

The proof of Theorem ������ is quite long� and uses highly nontrivial
facts about real�analytic maps� such as resolution of singularities� Without
going into any details� we just single out one noteworthy fact� the proof
uses in a crucial way the idea of iterating the Hamiltonian lifting� The
way this idea enters the proof is roughly as follows� If �	b
 is an interior
point of the reachable set R from �	a
� then it follows from general results
about real�analytic systems that �	b
 is reachable from �	a
 by means of a
piecewise constant control��� If �	b
 belongs to the boundary of R� then the
Maximum Principle says that � is the projection of a �special� trajectory .
of the lifted Hamiltonian system� What makes . special is the Hamiltonian
maximization condition� according to which 	t
 cannot be an arbitrary
point of U � but must belong to Umax	.	t

� where

Umax	q� p
 �
n
u � U � p�f	q� u
 � maxfp�f	q� v
 � v � Ug

o
�

So . is a trajectory of a system (��max which is of the same kind as (�
but has a �smaller� control space� The trouble with this is that the new
control space Umax	q� p
 depends on the point 	q� p
 in the state space T �Q
of the new system� so (��max is not the kind of control system to which
the Maximum Principle can be applied� At this point� the machinery of
real�analytic strati�cations and desingularization turns out to be helpful�
by enabling us to construct a partition P of T �Q into connected embedded
real�analytic submanifolds such that 	a
 for every t in an open dense subset
J of �a� b�� the restriction of the curve . to a neighborhood V 	t
 of t is
entirely contained in one of the members of P� and 	b
 for every P � P�

the set Umax�P 	z
 � fu � Umax	z
 � �Hu	z
 � TzPg is �the same for all
z � P� and is �smaller than U �� The expressions �the same� and �smaller�
are� of course� vague� but they can be given a precise de�nition� using
desingularization theory� It then turns out that locally� on an open dense
subset of �a� b�� the pair 	.� 
 is �exactly like� the pair 	�� 
� but with a
smaller control set� One can then iterate the construction� and keep making
the control set smaller and smaller� Moreover� this process can be proved
to terminate in a �nite number of steps� and Theorem ������ follows� �

��Connections along curves� A second way to reformulate the adjoint
equation invariantly is to use connections along curves� as explained in

��It is not necessarily true that �b� is reachable from �a� by means of a piecewise
constant control in the same time b� a�
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Sussmann ����� Precisely� recall that� if Q is a smooth manifold� then a
vector �eld along a curve � � �a� b� � Q is a map �a� b� � t� �	t
 � T��t�Q
that assigns to each t � �a� b� a tangent vector �	t
 to Q at �	t
� 	The
de�nition of a �eld of covectors is similar� except that in this case the value
at each t must belong to the cotangent space T ���t�Q�


Denition ������ Let Q be a smooth manifold� A connection along an
absolutely continuous curve � � �a� b�� Q is a map r that assigns to every
absolutely continuous vector �eld � along � an integrable vector �eld r�
along �� in such a way that r	�� ! ��
 � r	��
 ! r	��
 for all ��� ��� and
r	��
 � �r� !  �� whenever � is an absolutely continuous vector �eld
along � and � � �a� b� � IR is an absolutely continuous function� �

It is easy to see that� if � is an integral curve of a time�varying vector �eld
	q� t
 � f	q� t
 that satis�es a C��Carath�eodory condition near �� then
the pair 	�� f
 gives rise in a canonical way to a connection r��f along ��
characterized by the fact that� if X is a smooth vector �eld on Q� and X � �
is the vector �eld along � de�ned by 	X � �
	t
 � X	�	t

� then

r��f 	X � �
	t
 � �ft� X�	�	t



for t � �a� b�� where ft is the vector �eld q� ft	q

def
� f	q� t
�

A connection along a curve induces an operator of �parallel translation�
along the curve� Precisely� if � � �a� b� � Q is a curve and r is a connection
along �� then a vector �eld � along � is r�parallel if r�  �� It is easy to see
that if s � �a� b� and v � T��s�Q� then there is a unique vector �eld � along
� which is r�parallel and satis�es �	s
 � v� If we de�ne ���r�t�s	v
 � �	t
�
then the map ���r�t�s is a linear isomorphism from T��s�Q to T��t�Q for
each s� t � �a� b�� The maps ���r�t�s satisfy the obvious �ow identities 	i�e��
���r�t�t � identity� and ���r�t��t� � ���r�t��t� � ���r�t��t�
�

Although a connection r along a curve � is de�ned as a di�erential
operator on vector �elds along �� such an object induces in a standard way
di�erential operators on �elds of covectors and on �elds of higher�order
tensors� If � is a �eld of vectors and 
 is a �eld of covectors along �� then
the �product rule�

d

dt

�

	t
��	t


�
� 	r

	t
��	t
 ! 
	t
�	r�
	t


holds� In particular� if � and 
 are parallel 	i�e� if r
  � and r�  �

then the function t� 
	t
��	t
 is a constant�

If � is an integral curve of a time�varying vector �eld f � and r � r��f �
then the equations r� � � and r
 � � are� respectively� the variational
equation and the adjoint equation along 	�� f
� In the setting of the maxi�
mum principle� when f is the vector �eld f�� corresponding to the reference
control �� the adjoint equation that appears in the maximum principle is
precisely the equation

r���f��
�  � �

We now give a few examples�borrowed from Sussmann ����� where the
reader can �nd a much more detailed discussion�to illustrate the advan�
tages of the connection point of view�
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Example ������ �The geodesic equation for Riemannian metrics��
The maximum principle� formulated in terms of connections along curves�
can be used to give a very elegant� completely coordinate�free derivation of
the geodesic equation for Riemannian metrics that elucidates the special
role of the Levi�Civita connection without ever having to write formulas
for the Christo�el symbols�

Suppose Q is a Riemannian manifold� Let U be the set of all smooth
vector �elds u on M such that jju	q
jj � � for all q� Let ( be the control

system  q � f	q� u
� u � U � where f	q� u

def
� u	q
� and the class of admis�

sible controls is the set U of all maps  � �a�� b�� � U such that the map
	q� t
 � f	q� 	t

 satis�es a C��Carath�eodory condition on every com�
pact subset of Q� Then the minimum�time trajectories of ( are exactly the
length�minimizers parametrized by arc�length� Let � be a minimum�time
trajectory of (� and let � satisfy  �	t
 � f	�	t
� 	t

 for some control �
Let � be a �eld of covectors given by the maximum principle� Then the
Hamiltonian maximization condition implies that � � ��G	  �
� where G is
the metric� regarded as a vector bundle homomorphism from TQ to T �Q�
and � is a positive function� The constancy of the minimized Hamiltonian
implies that � is constant� so we may assume that �  �� The adjoint
equation says that

r��f��  � �

Let rLC be the Levi�Civita connection� Then� if X is any smooth vector
�eld on Q� we haveD

	r��f��
	t
� X	�	t


E

�
d

dt

D
�	t
� X	�	t



E
�
D
�	t
�

�
r��f� 	X � �


�
	t

E

�
d

dt

D
�	t
� X	�	t



E
�
D
�	t
� �f��t�� X�	�	t



E
�

d

dt

D
�	t
� X	�	t



E
�
D
�	t
� 	rLC

f��t	
X �rLC

X f��t�
	�	t


E
�

using the fact that rLC is torsion�free�
For each t� the function q � jjf��t�	q
jj� has a local maximum at the

point q � �	t
� so its derivative in any direction vanishes at �	t
� But

X�jjf��t�jj� � �
D
G	f��t�
�rLC

X f��t�

E
�

since rLCG � �� So
D
�	t
� 	rLC

X f��t�
	�	t


E

� �� ThenD
r��f��	t
� X	�	t



E
�

d

dt

D
�	t
� X	�	t



E
�
D
�	t
� 	rLC

f��t	
X
	�	t



E
�

D
rLC
f�

�	t
� X	�	t


E
�

Since X is arbitrary� we conclude that r��f��  rLC
f�

�� Therefore the

adjoint equation r��f�� � � implies 	rLC
f��t	

�
	t
 � � for all t�



�
� H� J� Sussmann

Since � � G	  �
 and rLCG � �� we get rLC
f��t	

 �  �� i�e�� rLC
���t�

 �  ��

which is the usual geodesic equation� �

Example ������ �How the adjoint equation treats all vector elds
equally�� The adjoint equation r���f��

� � � implies� for any smooth vec�
tor �eld X on Q� the equation

d

dt

�
�	t
�X	��	t



�
� �	t
��f���t��t� X�	��	t

 � 	��


where we write fu�t	q

def
� f	q� u� t
� In fact� it is easy to prove that the ad	

joint equation holds if and only if ���� holds for all smooth vector �elds
X� The usual way of writing the adjoint equation in coordinates corre�
sponds to singling out some special vector �elds X� namely� the coordinate
vector �elds� Indeed� if q � 	x�	q
� � � � � xn	q

 is a chart� and we write
�	t
 �

P
j
�j	t
dxj� f	q� u� t
 �

P
j
fj 	q� u� t
	j� where 	j is the vector

�eld usually called �
�xj

� then �	t
�	j � �j	t
� and

�f���t��t� 	j�	��	t

 � �
X
i

	jf
i	��	t
� �	t
� t
	i �

so 	��
� for X � 	j � says that

 �j � �
X
i

�i�	jf
i	��	t
� �	t
� t
 � 	��


Naturally� the usual form of the adjoint equation says that 	��
 holds for
j � �� � � � � n� Comparing with 	��
� we see that ���� says that some�
thing happens for all vector elds� whereas ��
� says that the
same thing happens for the special vector elds arising from a
coordinate chart� In other words� 	��
 treats all vector �elds equally�
whereas 	��
 singles out some vector �elds attached to a chart�

Paraphrasing the statement by Lagrange quoted earlier� one may expect
that the more general formulation 	��
 might make it possible to

express the equations of every optimal control problem in the
most simple form relative to each set of variables and enable us
to see beforehand which vector �elds one should use in order to
facilitate the analysis as much as possible�

It may happen that� to analyze a particular problem� the functions that
play the most important role are the �momentum functions� ��Xi arising
from certain vector �elds Xi that are not the 	j corresponding to a given
chart� 	Even more strongly� if the Xi do not commute then they cannot
arise as coordinate vector �elds of any chart�
 �

Example ������ �A simple example of trajectory analysis using
Lie brackets and the intrinsic Maximum Principle�� In Sussmann
����� we discuss many examples of how the qualitative analysis of the opti�
mal trajectories becomes much simpler by using 	��
� The simplest of them
is given by the proof of the following theorem�
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Theorem ������ Consider a control system ( �  q � f	q
 ! ug	q
 in an
open subset Q of IR�� with control constraint juj � �� Suppose that


I� g	q
 and �f� g�	q
 are linearly independent at every q � Q�

Then every time�optimal trajectory of ( is bang�bang with �nitely many
switchings� If� in addition�


II� f	q
 and g	q
 are linearly independent at every q � Q�

then every time�optimal trajectory of ( is bang�bang with at most one
switching�

Proof� Let � � �a� b� � Q be time�optimal� and let � � �a� b� � IR� be an
adjoint vector given by the Maximum Principle� Let

��	t
 � �	t
�g	�	t

 � ��	t
 � �	t
��f� g�	�	t

 � ��	t
 � �	t
�f	�	t

 �

Then 	��
 tells us that  �� � ��� and 	I
 implies that �� and �� never
vanish simultaneously� So all zeros of �� are isolated� and then � is bang�
bang� as stated� Now suppose that 	II
 holds as well� Then we can write
�f� g� � ��f ! ��g� where � and � are smooth functions on Q� Condition
	II
 implies that � never vanishes along �� so the function t� �	�	t

 has
constant sign� Clearly� �� � ����!���� along �� Suppose �� vanishes more
than once� Let t�� t� be two consecutive zeros� Then  ��	t�
�  ��	t�
 � �� So
��	t�
���	t�
 � �� But

��	t�
���	t�
 � �	�	t�

��	�	t�

���	t�
���	t�
 �

Since � has constant sign along �� we �nd ��	t�
���	t�
 � �� On the other
hand� the Hamiltonian H is equal to �� ! u��� and this function must be
constant along 	�� �
� In particular� this implies that ��	t�
 � ��	t�
� so
��	t�
���	t�
 � �� This contradiction proves our statement� �

��The intrinsic form of the general 	�ows� variations� and mul�
tidi�erentials
 version of the Maximum Principle� So far� we have
concentrated on seeking intrinsic formulations of the classical smooth Max�
imum Principle� The next natural step would be to write intrinsic formu�
lations of Clarkes nonsmooth principle� and other versions that generalize
the classical one�

This is not hard to do� For example� Clarkes nonsmooth principle can be
formulated in Hamiltonian form� by observing that the Clarke generalized
gradient 	h	z
 of a Lipschitz�continuous function h � T �Q� IR at a point
z � T �Q is a well�de�ned nonempty compact convex subset of TzT �Q�
and then rewriting the combined system 	�����
� which now becomes a

di�erential inclusion� as  �	t
 � J
�
	H���t��t	�	t



�
� Alternatively� we can use

the connections approach� and observe that the set &	M	� 
 now becomes
a set of connections along ��� rather than a single connection as in the
classical case�

It is better� however� to jump directly to the most general version of the
Maximum Principle� namely� Theorem ������ It turns out that in this case
very little work needs to be done� because Theorem ����
 is already almost
intrinsic as it stands� To render it completely intrinsic� it su�ces to observe
that
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�� The concept of a multidi�erential at a point 	q� q�
 � Q 	 Q� of a

set�valued map F � Q � �Q
�

between manifolds of class C� is well
de�ned� and the multidi�erentials D � MD	F � q� q�
 are nonempty
compact subsets of L	TqQ� Tq�Q�
� the space of linear maps from TqQ

to Tq�Q
�� 	To see this� choose charts x � U � IRn� x� � U � � IRn�

of Q� Q�� de�ned on neighborhoods U � U � of q� q�� Then� if we let
G � x� � F � x��� it follows that G is a set�valued map from IRn

to IRn�� and MD	G�x	q
� x�	q�

 is a well�de�ned set of nonempty

compact subsets of L	IRn� IRn�
� Then

MD	F � q� q�

def
�
n
Dx�	q�
 �D � 	Dx	q

�� � D�MD	G�x	q
� x�	q�



o
is clearly a well de�ned set of nonempty compact subsets of the space
L	TqQ� Tq�Q

�
� Moreover� the Chain Rule for multidi�erentials im�
plies that MD	F � q� q�
 is independent of the choice of the charts x�
x��
 More generally� if C is a closed convex cone in IRm� then the
concept of a multidi�erential at 		q� �
� q�
 of a set�valued map from
Q	 C to subsets of Q� is well de�ned�

�� There is an obvious way to de�ne what is meant by a �C��manifold
bundle� Q � fQtgt	I over a time interval I� by just requiring the Qt

to be manifolds of class C��

�� If Q � fQtgt	I is a C��manifold bundle� ) is a �ow on Q� and
� � TRAJ	)
� then the tangent bundle of Q along � is the linear
space bundle

T�Q
def
� fT��t�Qtgt	I � 	��


Then the concept of a multidi�erential of ) along � is well de�ned� and
we can write MD	)� �
 to denote the set of all such multidi�erentials�
The members of MD	)� �
 are compact linear multi�ows on the linear
bundle T�Q�

�� The concepts of variation� impulse in�nitesimal variation� in�nites�
imal endpoint map� strong admissibility� admissibility� and adjoint
vector� carry over with no change to this more general setting�

�� The concept of a �weakly approximating cone� C � TqQ to a subset
S of a C� manifold Q at point q � Q makes sense intrinsically�

We then get the following intrinsic verson of the general Maximum
Principle�

Theorem ������ Let I be a time interval having a minimum a and a
maximum b� Assume that Q is a C��manifold state space bundle over I
and ) is a �ow on Q� Let � � TRAJ	)
� and let X be the tangent bundle
T�Q� so Xt � T��t�Qt for t � I� Let $ � MD	)� �
 be a multidi	erential
of ) along �� Let R� S be subsets of Qb� Let C be a closed convex cone
in Xb which is a weakly approximating cone to S at �	b
 and is not a
linear subspace of Xb� Let V be a subset of IIV �	)
 which is admissible for
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	R�)� ��$
� Assume that R and S are locally separated at �	b
� Then there
exists a � � ADJ	$
 such that �	b
 �� �� ��	b
 � Cy and �	t
�v � � for
all 	t� v
 � V� �

���� Conclusion

Optimal control� in its earlier form known as the calculus of variations� has
been the driving force behind some of the most important developments
that have taken place in geometry� The systematic study of curves that
minimize �length� turned out to be the key that unlocked the door open�
ing up to modern di�erential geometry� This study was made possible by
the availability of techniques invented by the practitioners of the calculus
of variations for the analysis of even more general curve optimization prob�
lems� Besides� it was in the context of the calculus of variations that the
�rst important discoveries were made of results that are �invariant under
arbitrary nonlinear coordinate changes�� leading to the general notions of
covariance and invariance introduced in the nineteenth century�

After the calculus of variations expanded its scope in the ����s and took
on the new name of optimal control theory� it bene�tted in many ways
from the incorporation of geometric insights� The necessary conditions for
optimality have been geometrized in two ways� namely� 	a
 by reformulating
the maximumprinciple as a separation result for a reachable set� and 	b
 by
making it intrinsically invariant on manifolds� The combined e�ect of these
two geometrizations� coupled with

�� the use of results from homotopy theory 	Leray�Schauder ����� Brow�
der ���
 to get a stronger form of the transversality condition�

�� the adaptation of the needle�variations method of ���� to a broader
setting� involving a theory of generalized di�erentials obtained by
extending Wargas theory of derivate containers 	Warga ���������
�

�� the use of selection theorems for almost lower semicontinuous inclu�
sions� based on extending the ideas of Bressan ��������

and� �nally�

�� the use of uniform approximation theorems for relaxed trajectories of
pseudo�Lipschitz di�erential inclusions� based on extending the ideas
of Fryszkowski and coworkers ���� ����

has led to the formulation of a nonsmooth� intrinsic maximum principle of
great generality and power�

Much work remains to be done� For example� the ideas of the previ�
ous sections should be extended to problems with state space constraints�
Also� a more systematic analysis is needed of the high�order variations
that can occur� Finally� the precise relation between our version of the
maximum principle and other recent nonsmooth versions 	e�g� Io�e �����
Io�e�Rockafellar ����� Loewen�Rockafellar ���� ���� Rockafellar ����
 is not
yet completely clear� and it is not known whether these other versions can
be combined with ours in a truly uni�ed framework�
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