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1. Introduction and review. 
1.1. Motivation. This paper, together with a third paper to follow, is a con- 

tinuation of a survey [4] of Lie groups, Lie algebras, and their applications. In 
the previous paper, we were concerned primarily with the classification of Lie 
algebras and, in particular, of semisimple Lie algebras. Much of the applied 
literature makes use of representation theory, and in view of this we are writing 
the present paper to carry the exposition further to the point of classifying the 
finite-dimensional representations of semisimple Lie algebras. As in our first 
paper, our primary intention is to introduce the concepts used in the current 
applied literature in a form accessible to the nonspecialist. We have tried to 
indicate some of the many directions in which research has been carried out, 
but our purpose is not a comprehensive survey of all known applications. Much 
major research has had to be left out to keep the discussion within manageable 
dimensions. On the other hand, we have attempted to provide in some instances 
enough details that our paper could be directly useful. The reader will realize 
that in order to pursue any particular application seriously, one must go beyond 
the material presented here. Our bibliography will serve as a guide for collateral 
reading and amplification of points presented summarily here. So much has been 
written that a complete bibliography is out of the question. We apologize to 
those authors whose work we have left out. 
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Although the representation theory of Lie groups and Lie algebras has long 
been a subject of intensive research activity in pure mathematics, a more wide- 
spread appreciation of the thoroughly practical value of the subject has become 
evident only rather recently. With this appreciation has come a brand new 
assault on the subject by applied mathematicians, having as its aim the further 
development of practical techniques, such as those for computing the Clebsch- 
Gordan and Racah coefficients of the classical Lie groups [6], [9]. In  this effort, 
the use of automatic electronic digital computers has been essential. Concurrently, 
and largely independently, extensive simplifications and generalizations of the 
theory have been made by pure mathematicians [12], [13], [23], [24]. In  view of 
this rapid development of the subject on all levels, it  has become evident that 
there is a need to bridge the growing gap between pure and applied mathe- 
maticians studying the subject and to accelerate the diffusion of these important 
mathematical ideas to a more general public including applied mathematicians, 
physical scienbists and research engineers. This has provided the motivation for 
writing these papers. We have tried to provide basic facts and a general orient'n- 
tion rather than an encyclopedic treatise. 

In  the Introduction of the present paper, we seek to orient the reader and to 
recall some of the ideas presented in our first paper. Following this, the main 
body of the paper is devoted to a discussion of the concepts of module and 
representation, the various operations for combining them, and their classifica- 
tion. In  the third paper to follow, we give a detailed discussion of computational 
methods, including the explicit construction of the irreducible representations, 
and also deal with a few selected applications, chosen to illustrate the great 
diversity of possible topics. In that part, we have not attempted to cover any 
of these topics in depth, being content to provide a brief introduction to each 
subject to orient the nonspecialist. 

1.2. Prerequisites and review of the structure of Lie algebras. While we 
generally assume familiarity with the material presented in the first paper, it 
seems appropriate to give here a brief sketch of some of the more important 
points, and especially to recall some of the main facts about the structJure theory 
of semisimple Lie algebras. 

In the previous paper we began by discussing the functorial relationship be- 
tween Lie groups and Lie algebras, showing how various results about Lie 
groups could be translated into related results about their corresponding Lie 
algebras, and vice versa. I n  particular, we discussed the fact that analytic Lie 
group homomorphisms induce homomorphisms having corresponding kernels 
of the corresponding Lie algebras. We also discussed the fact that there is n 
unique simply connected Lie group for each Lie algebra, and that all other con- 
nected Lie groups corresponding to a given Lie algebra are quotients of this 
universal covering group modulo discrete normal subgroups. Having thus, in a 
sense, reduced Lie group theory to the theory of Lie algebras, we then proceeded 
to analyze the general structure of Lie algebras. 

A Lie algebra L was defined to be a vector space in which there is defined a 



l~roduct rule ( I ,  X L +L )  denoted by [.c, y] \ihich satisfies three auiollis: linearity 
in s and y,anticommutativiry: [s, I/] = - [y, .c], and the Jacobi identity: [[.c, y], z]
+ [[y, z], s]+ [ [ z ,  s],y] = 0. The Jacobi identity plays for Lie algebras the same 
role as the associative lan plays for Lie groups, and the one la117 can be derived 
from the other. A subalgebra X of a Lie algebra L is defined to be a subspace 
nhich is closed under the bracket operation: [X, S] c 8.An ideal S of a Lie 
algebra L is a subalgebra which satisfies [L, S] c S. A Lie algebra is Abelian if 
[L,L] = 0. A simple Lie algebra was defined as a Lie algebra L whose only ideals 
are the trivial ones 0 a i d  L. A semisimple Lie algebra is a non-Abelian Lie algebra 
n bich also has no Abelian ideals other than 0. There are four main series of 
.imple Lie algebras over the complex numbers corresponding to the unitary, 
orthogonal and symplectic Lie groups. The simple Lie algebra A 1 corresponds to 
the Lie group SU(1 + I ) ,  R1 corresponds to SO(21 + I ) ,  C1 to Xp(l), and Dl 
to XO(21). The Levi decomposition theorein stated that any Lie algebra is the 
direct sum, as vector spaces, of its radical (the unique maximal solvable ideal) 
and a semisimple subalgebra, the latter in turn being a direct sum of its simple 
ideals. Thus it became clear that the structure of simple Lie algebras, besides 
being interesting in its onn right, also plays a key role in the general theory of 
Lie algebras, and that for semisimple Lie algebras (those nith zero radical), 
the structure of the simple ideals completely determines the structure of the 
algebra. 

We non revien briefly the pertinent facts about the structure of semisimple 
Lie algebras. Every sernisimple Lie algebra L over the complex numbers has a 
Cartan subalgebra H. This is a maximal Abelian subalgebra having the property 
that, for every h in H, \ye have 

(ad h)"z = [h, [h, . . . [lz, z] . . .]] = 0 

01113 if z is also in f1.While the Cartan subalgebra is not unique, they all have the 
same dimension I ,  called the rank of the semisimple Lie algebra L. Given a 
particular Cartan subalgebra H, a root a is defined to be a linear form on H 
having the property that there exists e, in L such that [h, e,] = a (h )  e,for all 
11 in H. Thus we see that a(h)  is always an eigenvalue of the linear transforma- 
tion ad h defined on I, by (ad h)z = [k, x]. For a semisimple Lie algebra over the 
complex numbers, the root space of a,  consisting of all the vectors e, which satisfy 
(ad h)e, = a(h)e, for all h f H, is a one-dimensional space LHa for each nonzero 
root a.  The ~vliole Lie algebra in this case is the direct sum of the Cartab sub- 
algebra and all the root spaces corresponding to the nonzero roots. 

The Killing form is a bilinear form defined on an arbitrary Lie algebra by 
(x, y) = T r  (ad z) (ad y), here Tr  denotes the trace and ad x the linear trans- 
formation defined previously. The Killing form is nonsingular if and only if the 
Lie algebra is semisimple. The Killing form of a sernisimple Lie algebra L is aln-ays 
~lonsingular on any Cartan subalgebra, so it can be used to identify the Cartan 
subalgebra H with its dual H* by letting every form cu in H* correspond to the 
unique vector h, in H such that a (k )  = (h, , k )  for all h in II. With this identifica- 
tion, the bilinear form can equally well be regarded as being given on the dual 
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space H* with (or, p) = (h , , hS) for all or, p in H*. The extension of this bilinear 
form turns out to be real and positive definite on the space Hz* generated over 
the real numbers by the nonzero roots, thereby introducing an inner product, 
and hence a Euclidean geometry in that space. 

1.3. An important example, the rotation group. lT7hile discussing representa- 
tions in general, it seems appropriate to give a fairly thorough discussion of an 
importanc example, the ordinary rotation group SO(3, R ) ,  in order to provide 
a concrete framework which can be kept in mind during the more general dis- 
cussion. In our first paper, it was shom~n that the Lie algebra so(3, R )  of the rota- 
tion group is isomorphic to ordinary real three-dimensional space with the usual 
vector cross product as the Lie multiplication. Moreover, the simply connected 
group associated with this Lie algebra was shown to be the special unitary group 
SC(2) .  The rotation group SO(3, R )  is isomorphic to SU(2) modulo the dis- 
crete subgroup consisting of the identity and its negative, fI.The relationship 
between the groups SO(3, R )  and SU(2) can be made explicit in the following 
manner. The rotations of SO(3, R )  correspond in a one-to-one fashion with the 
rotations of a sphere about its center. If the points of the sphere other than the 
"north pole" are identified with the complex plane by the usual projection froin 
the "north pole" onto a plane tangent to the sphere at  the "south pole," each 
rotation of the sphere induces a corresponding mapping of the plane o:;to it-
self-a complex function of a complex variable. The complex functions found in 
this manner obviously form a group isomorphic to the rotation group under com- 
position and they are easily seen to be linear fractional transformations of the 
form 

nith a3 - yp $ 0. Obviously f ( x )  is unchanged if all the coefficients or, 6, y, 8 
are multiplied by a common factor, so by introducing an appropriate factor we 
can always make or3 - yp = 1. Since only the square of a common factor enters 
into the expressioi? or6 - yp, however, its negative will serve equally we;! to 
satisfy the condition a6 - yp = 1. To each such f ( x ) ,  therefore, there correspond 
tv;o matrices of coefficients, 

and its negative, both with determinant 1. I t  is easily shon.n -chat i l ~ e  cornposition 
of two linear fractional transformations is a linear fractional tmnsformatlon, 
and that the matrix of the composition is the product of the matrices of the 
composed transformations. We thus have a homomorphism of the group, 
SL(2, C),  of all 2 X 2 matrices of determinant 1 onto the group of linear frac- 
tional transformations of the complex plane, and the kernel of this homomo;.phism 
consists of the identity matrix and its negative, &I.  Not every fractional linear 
transformation, however, corresponds to a rotation of a sphere. A straightforward 
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computation shows that a fractional linear transformation will correspond to a 
rotation of the sphere if and only if its matrix is unitary; that is, it must have the 
form 

:I, 

where the bars denote complex conjugation. Since the 2 X 2 unitary matrices 
with determinant 1are precisely the subgroup SU(2) of SL(2, C), we have the 
desired homomorphism of SU(2) onto SO(3, R )  with kernel fI. Writing 
a = xl + ixz, P  = 2 3  + ix4, it is clear that the condition cm+ PB = 1is precisely 
the condition that the vector x = (21 ,x2,x3 ,x4) lie on the unit sphere in 4-space. 
Thus the group SU(2) is homeomorphic with that sphere (see [8]). 

A representation of a group is a homomorphism onto a group of linear trans- 
formations of a vector space. The representations of SO(3, R)  are identical with 
those representations of SU(2) whose kernels contain the negative of the identity, 
-I. There are no proper ideals in the Lie algebra so(3, R)  = su(2); such an 
ideal would be a proper subspace of 3-space, a line or plane passing through the 
origin in ordinary 3-dimensional space, such that the vector cross product of any 
vector in the subspace by any vector whatever lies in the subspace. Recalling 
that the cross product of two vectors is perpelldicular to both (and is nonzero 
unless the two vectors are collinear or a t  least one is zero), it  is easily seen that no 
line or plane can have this property. Since every closed normal subgroup of 
SO(3, R)  must have as its Liealgebraan ideal of so(3, R),  we can conclude that 
the only proper closed normal subgroups are those with trivial Lie algebras, 
namely, discrete subgroups. If a discrete subgroup is normal in SO(3, R) ,  how-
ever, and if g is one of its elements, then every element of the form A-$A must 
also be in the discrete normal subgroup; that is, all the orthogonal similarity 
transformations of the rotation g must also be in the subgroup. But this is equiva- 
lent to saying that every rotation about any axis by an angle equal to that of the 
rotation g about its axis must be in the normal subgroup. By multiplying g by 
the inverse of an equivalent rotation about an axis which has been shifted a 
small amount, it  is clear that we can obtain an element of the normal subgroup 
not the identity, but as close to the identity as we wish. (Formally, take A to be 
a very small rotation about an axis not that of g. Then g ~ - l g - l ~is close to the 
identity.) Thus no closed normal subgroup of SO(3, R)  can be discrete either, 
and we conclude that SO(3, R )  has no proper closed normal subgroups. 

Since every finite-dimensional representation of SO(3, R)  is a homomorphism 
into the Lie group GL(n, R )  of all nonsingular linear transformations on a 
real n-dimensional vector space, for some n, its kernel must be a closed normal 
subgroup of SO(3, R) .  By our previous remarks, the kernel must be all of 
SO(3, R )  or just the identity, and such a representation either maps all of 
SO(3, R )  onto the identity in GL(n, R )  (the trivial representation) er it  is an 
isomorphism onto a subgroup of GL(n, R) .  Moreover, any normal subgroup of 
S U ( 2 )would have as its image under the homomorphism of SU(2) onto SO(3, R )  
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a normal subgroup of SO(3, R) ,  and thus the kernel { & I ]of the homomorphism 
is the only proper closed normal subgroup of SU(2). Consequently, any finite- 
dimensional representation of SU(2) which is not an isomorphism is induced by 
a representation of SO(3, R). 

Since the group SU(2) is homeomorphic with the unit sphere in 4-space, it is 
clearly compact, and SO(3, R) ,  being a continuous image of SU(2), is also 
compact. Compact Lie groups enjoy certain properties which simplify their 
representation theory substantially (see [23], 1301). 

In general, when we speak of representations of a group, we admit the pos- 
sibility that a representation may be a homomorphism of the given group to a 
group of linear transformations of an infinite-dimensional space. The theory of 
such infinite-dimensional representations is still a topic of active research in- 
terest and will not be discussed in detail in this paper. A survey of work on 
infinite-dimensional representations is given in [21], [22], [25]. I t  is usual, in 
discussing infinite-dimensional representations, to impose restrictions on the 
types of linear transformations which are allowed as representations. A specific 
type of topological structure is frequently demanded of the infinite-dimensional 
vector spaces, the most important case so far, for applications, being that in 
which the space is required to be a Hilbert space, or a subspace of a Hilbert space. 
The transformations considered are often required to behave suitably by being 
continuous, by preserving a metric, or by being otherwise well-behaved. 

We recall that a Hilbert space is a complex vector space in which an inner 
product is defined and such that every Cauchy sequence of vectors in the space 
converges to a vector in the space [35]. If we have a representation of a compact 
group by linear transformations on a Hilbert space, then the inner product on 
the Hilbert space can always be redefined such that all the linear transformations 
are unitary, i.e., they are isometries and leave the inner product invariant 
(see [ l l ,  Chap. XI, $111and [27, Chap. VI]). Thus only unitary representations, 
i.e., representations by unitary linear transformations, need be considered when 
one is dealing with compact groups. We say that a representation is decomposable 
when the space on which the linear transformations act is a direct sum of sub- 
spaces each of which is mapped into itself by all linear transformations in the 
image of the representation, and me say such subspaces are invariant. When a 
representation is decomposable, its linear transformations can be regarded as 
acting on each of the invariant subspaces independently, and we say that the 
representation is the direct sum of the representations obtained by restricting 
its transformations to each of the invariant subspaces involved in the decom- 
position. Every unitary representation of a compact group is a direct sum of 
indecomposable unitary representations acting on mutually orthogonal sub- 
spaces. Moreover, every indecomposable unitary representation of a compact 
group is finite-dimensional. Thus for a compact group it is only necessary to 
study the indecomposable unitary representations on finite-dimensional spaces 
in order to obtain the complete theory of representations on Hilbert spaces. 
Groups which are not compact may have nonunitary representations and 
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infinite-dimensional indecomposable representations on Hilbert spaces. We shall 
be primarily concerned in this paper, however, with the finite-dimensional 
representations. 

Returning to the case of the rotation group SO(3,  R )  and its universal cover- 
ing group XU(2) we see that me need only consider the finite-dimensional unitary 
representations of these groups. We shall return repeatedly to this example to 
illustrate various points in our later discussion. 

1.4. Complexification of real simple Lie algebras. In [4] we classified rill the 
simple Lie algebras over the complex nunibers, finding the four general sequences 
of simple Lie algebras: At , BL, C1 and Dl and the exceptional simple Lie al- 
gebras G2 , Fq , Eg , E; and Eg . (Of course, for l < 4, some of the general sequence 
Lie algebras are not defined-they collapse into one another-so we have only 
i l l ,  A2 , Bq , -43 , B3 , C3 .) I t  is apparent that real Lie algebras, such as our ex- 
ample so(3, R ) ,are qcite inipor'cant for many applications, but classifying the real 
simple Lie algebras is only slightly more complicated than classifying the 
complex ones. To see m-liy this is the case, consider a real r-dimensional Lie 
algebra with basis el,  e2 , . . . , e, . By linearity, the Lie product is defined when 
the product of basis vectors is given: 

i.e., it is determined by the structure constants C:,, . Since the definition of a 
Lie algebra essentially amounts to imposing certain restrictions on the structure 
constants (see [-I, p. 16]), we can obviously extend L to a complex Lie algebra 
having the same basis and the same structure constants. This complex Tie 
algebra is called the complexification of L. Conversely, if ITe are given a complex 
Lie algebra L, it can aln ays be regarded as a real Lie algebra LR, since multiplica- 
tion by reals is appropriately defined a fortiori. If this resulting real Lie algebra 
L' can be written as the direct sum LO O iLo for some real subalgebra Lo ,  then 
Lo is called a real form of L, and obviously L is isomorphic to the cornplexifica- 
tion of Lo. I t  can be shown that the simple real Lie algebras are either simple 
complex Lie algebras being written as real Lie algebras or real forms of simple 
complex Lie algebras (but not both). 

The complication of the classification problem for simple real Lie algebras 
arises from the fact that a given simple complex Lie algebra may have several 
distinct real forms (or, putting it the other way, distinct simple real Lie algebras 
may have isomorphic complexifications). For instance, the real Lie algebra of 
the rotation group and that of the plane Lorentz group (the set of all linear 
transformations on (x, y, t )  leaving x2 + y2 - t2 invariant) have isomorphic 
complexifications, namely A1 , without being themselves isomorphic. 

Of all the real forms of a given simple complex Lie algebra, there is precisely 
one which is the real Lie algebra of a compact Lie group. We call this the compact 
real form, and in general a real Lie algebra which is the Lie algebra of some corn- 
pact group is called compact. A less intuitive, but sometimes more useful ch-arac- 
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teri~atiori of conlpact semisimple Lie algebras arises from the fact that a real 
semisinlple Lie algebra is compact if and only if its Killing form is negative defi- 
nite. A11 of the noncompact real forms of a simple complex Lie algebra can be 
obtained from the compact one [IG], [17], [20], [33]. 

Giver: a simple complex Lie algebra L, recall that we can hnd a basis of the 
form hl , 112,. . . , hl, e, , e-, , ea , e-6, form a basis for a. . . , where the (1~~1  
C'nrtarl subalgebra, 1 is thesranl; of L, and the e's are root-vectors, i.e., 

[h, e,] = a(h)e,,  

[h,e-,I = -cr(h)e-, , 
for each 11 in the Cartan subalgebra, and a ranges over all positive roots (cf. 
[4, $3.31). We may normalize the e's so that (e, , e-,) = 2. The vectors ihl , 
zh2, . . . , zhc, i(e, + e-,), i(ea + e-a), . . , (e, - e-,), (eg - e-B), . . . then 
form a basis for the compact real form LO of the simple complex Lie algebra 
L. (These vectors are, of course, only one of many bases for the compact real 
form. This choice malies it particularly easy to compute that the Killing form is 
negative definite over the real space generated by them.) 

I t  must be understood that if we take a complex Lie algebra, L, with basis e, 
and choose to regard it as a real Lie algebra, L ~ ,with basis {e, ,ie,], the imaginary 
unit i loses its intrinsic meaning except as it is involved in defining the Lie 
products of basis elements, 

[e, , iekl = i[e, , e ~ ~ l ,  

[ie, , iek] = -[e, , eL]. 

Ifne are to find a real form of L, we must introduce some operation J correspond-
ing to the desired nlultiplication by i and write the direct sum LR = Lo @ JLO. 
A11 that is required of J is that it be a linear operator on LR having its square the 
i1egat:iie of the identity, J' = -I, and that [x, Jy] = J[x, 2 / ] .  The fact that there 
can be several real forms results from the fact that there can be several distinct 
suitable operators J and corresponding LO'S such that LR = LO@ JLo. If Tve have 
a real form Lo, and the corresponding operator J, we can define a Lie algebra 
"conjugation" S, an automorphism on LR, by S(x + Jy )  = x - Jy. Clearly, 
S' = I, and moreover, X is the identity n hen restricted to Lo, but its negative 
~ihen restricted to the complement JLo . Thus Lo is the eigenspace of the linear 
operator S corresponding to the eigenvalue 1, and JLo is that corresponding to 
the eigenvalue -1. 

Suppose n e start with the compact real form Lo of a simple complex Lie algebra 
L, and me find an automorphism So of Lo satisfying S: = I .  Let us denote the 
eigenspace of Socorresponding to the eigenvalue +1 by Lot and that correspond- 
ing to -1 by Lo- so Lo = LO+ @ Lo-. Let el,  . . . , ek be a basis for Lo+ and 
eiT1, e h ~ 2, , e, a basis for Lo-. Since LR = LO+ iLo , we can extend Soto 
an automorphism of the real Lie algebra LR by defining 

S(L0) = So(Lo), 

S(iLo) = -iSo(Lo). 
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Defining L1 = LO' O LO- we find that the vectors of LI are left fked by S and 
those of iL1 = i ~ ~ '  = & O iL1,O L O  are carried to their negatives. Since LR 
S is an operator of order two on L~ (i.e., s2= I) and S(ax) = nS(x) for any 
complex a.A straightfor~vard computation (using the fact that S is an automor- 
phism of LO,  So SO([X,y]) = [SO(X),So(y)] for x, y in Lo) shows that S([x, y]) 
= [S(x), S(y)]  in LR. Since L1 is the set of vectors left fixed by S, we see that 
if x, y are in Ll , then so is [x, y], for 

so L1 is a subalgebra of LR and hence a real form of L. Since every real form of L 
induces a conjugation operation which has the properties we required of So 
on LO,  every real form of L can be obtained in this manner from some automor- 
phism SOon LO.  

Because of the correspondence demonstrated here, we shall deal in general 
only with complex Lie algebras in the rest of this paper. It can be assumed that 
a complex Lie algebra is meant in any further general discussion unless a specific 
exception is made. 

1.5. Complexification of the Lie algebra of the ordinary rotation group. The 
process of complexiflcation may be illuminated by consideration of the real Lie 
algebra ,942) of the rotation group, the three-dimensional space with the usual 
vector cross product. We can take as basis elements el , e2, ea with the Lie 
product defined by [el ,e2]= ea , [e2, e3] = el , [e3,el] = e2.The complexiiication 
of su(2) then has the same basis and same Lie products over the complex num- 
bers. In angular momentum theory it is conventional not to use the elements 
el ,ez,e3, but to replace them with an obviously equivalent set jl = iel ,jz= iez, 
j3 = ie3. Any one of these vectors forms a basis for a Cartan subalgebra. It is 
conventional to choose h = j3= ie3 as the basis of a Cartan subalgebra. The roots 
are zero and the linear forms &a  on the Cartan subalgebra, with & a  defined by 
a(Xh) = X and -&(Ah) = -X for all complex numbers X. The corresponding 
root vectors are e, = j+ = jl $ ijz and e-, = j- = jl - ij2.We have 

[e, ,e-,I = 2h. 

The Lie algebra has three complex dimensions, and h, e, and e-, form a basis. 
This complex Lie algebra is, of course, the simple Lie algebra Al . 

The compact real form of A1 is the original Lie algebra su(2 ) , since the groups 
SU(2) and SO(3, R )  are compact. According to the formula of the preceding 
section, we should have {ih = -e3 , i(e, + e-,) = -2el , ( e ,  - e-,) = -2e2j 
as a basis for su(2), which it obviously is. 

Suppose we had an automorphism SOof su(2) satisfying the condition so2= I. 
From this condition it  follows that SOcan have only f1 as eigenvalues. If all its 
eigenvalues were +1,then SOwould be the identity, and the real form generated 
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by it would just be 5 4 2 ) again. The condition that 1.90 be a Lie algebra automor- 
phism is 

for all z and y in the Lie algebra. If all the eigenvalues of Sowere -1, then SO 
would be - I ,  and we would have 

while 

so that So would not be an automorphism. Thus any nontrivial automorphisin 
must have at least one eigenvalue +l and one eigenvalue -1. Letting x and y 
be corresponding eigenvectors, we have 

[Sox, Soy] = [x, -y1 = -[x, 31, 

so if SOis to be an automorphism we must have 

and [x, y] is also an eigenvector corresponding to the eigenvalue -1. Since the 
Lie product we are dealing with is just the familiar vector cross product, we 
know that [x, y] is a nonzero vector orthogonal to both x and g. The vectors y 
and [x, y] together form an orthogonnl basis for the eigenspace corresponding to 
the eigenvalue -1and, moreover, 

so [y, [x, y]] is an eigenvector of SOcorresponding to the eigenvalue $1. Since this 
eigenspace can only be one-dimensional, [y, [x, y]] is a multiple of x. But we know 
that [y, [x, y]] is perpendicular to y and [x, y], so x must be also. Thus x, y and 
[x, y] are a mutually orthogonal set of vectors. If x and y are taken as unit vectors, 
then [x, y] will also be one. Now we know that in the formulation of the vector 
cross product algebra the vectors el, e2, e3 can be chosen as three orthogonal 
unit vectors such that [el, e2] = e3, different choices of these vectors leading to 
isomorphic Lie algebras. We can, therefore, assume el = x, e2 = y, e3 = [x, y], 
without loss of generality. Thus there is, up to isomorphism, only one noncompact 
real fonn of Al , the complexification of the compact real algebra LO= su(2), 
corresponding to 

Since &+is spanned by el, and L o is spanned by e2 and e3, a basis for the non- 
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compact real form L1 = LO+ O iLo- is given by the vectors el, ie2 and ie3. The 
Lie products of these basic elements are of course given by 

The real Lie algebra so obtained is the real Lie algebra of several Lie groups, 
including the three-dimensional Lorentz group SO(2, 1; R )  leaving invariant 
the form x2 + y2 - t2 in (x, y, t )  space, the real unimodular group SL(2, R), 
the real symplectic group Sp(1, R) ,  and the pseudounitary group SU(1, 1) .  
All of these Lie groups are locally isomorphic since their Lie algebras are iso- 
morphic. The representations of these noncompact groups have been studied 
extensively [2], [5], [31]. 

If the complex Lie algebra A1 with three complex dimensions is regarded as a 
real Lie algebra AIR with six real dimensions, a basis being given by el,  e2, 
e3, iel = jl , ie2 = j2, iea = j3, me obtain the real Lie algebra corresponding to 
several more well-known Lie groups, including the ordinary Lorentz group 
SO(3, 1;R ) leaving invariant the form x2 + y2 + x2 - t2 in (x, y, x, t) space, the 
complex unimodular group SL(2, C), and the complex orthogonal group 
XO(3, C), all of these Lie groups being locally isomorphic. The complexification 
of A? is Al O A,. Note also that SO(3, R )  X SO(3, R) and SO(4, R) have real 
Lie algebras isonlorphic to su(2) O su(2), whose complexification also yields 
Al @ A,. In  other m-ords, both AIR aiid su(2) O su(2) are real forms of the 
semisimple complex Lie algebra A1 @ A1 . 

2. Modules and representations. One of the main tools in applications of 
Lie group theory is the concept of a representation. Often in applications it is 
sufficient to treat this concept in a fairly loose manner; one speaks of vectors, 
tensors, pseudoscalars, spinors and the like as being geometrical objects such as 
directed arrows, ellipsoids, and the like [34]. Representations of the rotation 
group crop up throughout physics in the form of spherical harmonics and 
Legendre functions, multipole expansions, etc. The actual representation con-
cept is often held in the background. For our purposes, however, such an intuitive 
conception is not sufficiently precise, because we want to discuss some of the 
deeper results, and also because we want our discussion to apply to all Lie 
algebras, not just the rotation group. 

To be precise, a representation of a Lie algebra L consists of a vector space V 
and a homomorphism f from L into the Lie algebra E(V)  of all linear trans- 
formations on V. (The notation E(V)  derives from the use of the term "endo- 
morphism" to denote a linear transformation from a vector space V back into V 
itself.) If a, b are in E(V), their Lie product [a, b] in E(V) is defined as ab - ba. 
The term "representation" strictly refers to the pair (V,  f ) ,although colloquially 
it is often used to refer just to the homomorphism f:L +E(V)  alone. We also 
note that the requirement that f be a homomorphism means that if x is in L, 
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then f(x)  is a linear transformation on V, and f (z)  depends on x linearly: 
f(c1xl + ~2x2)= cf (x1) + c2f(x2) for a11 51, x2 in L and complex numbers cl 
and c2 . Also TT-ehave 

f ( [ ~ l ,521) = f(~l)f(x2)- f(x2)f(x1). 

Before proceeding, let us give two simple examples of representations of Lie 
algebras. In  our first example we consider the simple complex Lie algebra Al 
obtained by conlplexifying the real Lie algebra of the ordinary three-dimensional 
rotation group SO(3, R ) . A basis for A1 is given by j l ,  j2,j3as explained earlier. 
These elements generate the rotations about the x, y, x axes, respectively. Let 
V be a two-dimensional vector space over the complex numbers, which we shall 
call the spinor space. Let a basis for V be selected. Then the Pauli matrices 

define linear transformations in the spinor space V. If we let f :  A1 +E (  V) denote 
the linear mapping which takes j, into i n , ,  a = 1,2,3,  then (V, f )  is a representa- 
tion of the Lie algebra Al .  I t  is called the spinor representation, or the spin 
half representation [29]. 

For our second example, we consider an arbitrary Lie algebra L, and we recall 
that for any element x in L, the adjoint operator a d z  in E(L)  is defined by 
(ad x)y = [x, y] for all y in L. The mapping ad:  L -+ E(L)  which takes x into 
ad x is a homomorphism from L to E ( L ) .  The pair (L, ad) is then a representa- 
tion of the Lie algebra L. I t  is called the adjoint representation of the Lie al- 
gebra. 

2.1. Modules over Lie algebras. In some respects the concept of a representa- 
tion is unnecessarily complicated; the object being represented (e.g., a group or 
algebra) is first mapped by a homomorphism into a similar object composed of 
linear transformations, acting in turn on a vector space. There is no loss of 
generality, of course, if we regard the elements of the original object as affecting 
the linear transformations on the vector space directly, disregarding the inter- 
mediate homomor.phism. When we take this viewpoint and the object being 
represented is a group, we speak of the vector space as a module over the group. 
When we are dealing with an algebra, me refer to the vector space as a module 
over the algebra. The study of modules over an algebra is equivalent to the 
study of the representations. The only difference is a point of emphasis. In  
talking about modules we emphasize the vector spaces involved, whereas in 
talking about representations, we emphasize the homomorphisms. Generally 
speaking, the module formulation is the easier to work with. 

Let us now give a precise definition. We deal here and in the sequel with finite- 
dimensional Lie algebras over the complex numbers, although obviously some 
of our basic definitions can be formulated more generally. A module over a Lie 
algebra L is a vector space M with a product rule L X M -+ M such that if u 
is a vector in M and x is an element of the Lie algebra, then,xu in N satisfies the 
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following laws: 

where a! is any complex number. 
If M is a module over a Lie algebra L, then for any x in L, let f ( x )  in E ( M )  

be the linear transformation which maps v in M into xu. Then (M,f )  is a repre- 
sentation of the Lie algebra L. Conversely, given a representation (M,f )  we can 
make the vector space M into a module by defining the product xv of x in L and 
v in ill to be f(x)v.  Thus the concepts of module and representation are equiva- 
lent. 

A homomorphism h of one module M over a Lie algebra L into another module 
N over L is a linear transformation h:M -+ N which preserves the multiplica- 
tion by elements of L, that is, h(xv)  = xh(v) .If the homomorphism h is one-to- 
one and onto, and hence is invertible, then we call it an isomorphism, and in this 
case we also say that the two modules M and N are isomorphic. Iff is the repre- 
sentation of L associated with the module M and i f f '  is the representation of L 
associated with the isomorphic module N, then we have h f ( x )  = f ' ( x )h ,  and h 
being invertible, we may write this as f f ( x )  = hf(x)h-l. Thus the linear trans- 
formations f ( x )  and f f ( x )  are related by a similarity transformation which is 
independent of x. Such representations, corresponding to isomorphic modules, 
are called equivalent. 

If a basis vl , . . . ,v, is selected in the vector space M ,  then the linear transforma- 
tions f ( x )  correspond to matrices ( ( f i j ( x )) ) , defined by 

The mapping which assigns the matrix ( ( f i j ( x )) ) to x is called a matrix represen- 
t,ation of the Lie algebra L. If a different basis is selected for M, of course, the 
n~at~ricesof the matrix representation will all be subjected to a common similarity 
taransformation. Thus again, matrix representations related by a common 
similarity transformation are considered to be equivalent or isomorphic. I t  
seems clear that equivalent representations or isomorphic modules will not 
differ in any important respect. It is easy to show that if M and N are isomorphic 
modules, then there exists a choice of bases for both of these modules such that 
the representation matrices obtained will be the same matrices for both modules. 

If a module M over a Lie algebra L has a subspace S which remains invariant 
under the action of L, symbolically LS c S, then S itself can be regarded as a 
module over L, and we call it a submodule of the module M. That is, a subspace 
S of a module M is a submodule if xu is in Sfor all x in L and all v in S.A module 
which has no submodules other than zero and itself is called an irreducible 
module. The corresponding representation is then also called irreducible. 
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Since a module 114 is a fortiori an Abelian group, and a submodule N is a 
normal subgroup, we can form the quotient group M/N whose elements are 
cosets of the form v + N, with v in M. Since N is a vector space, multiplication 
by complex numbers is well-defined on M/N, and hence M/N is a vector space; 
similarly, since N is a module, multiplication by elements of L is well-defined on 
M/N, and hence M/N may be considered a module over the Lie algebra. It is 
easily shown that if h is a homomorphism of a module d l  onto a module N, then 
the kernel K of the homomorphism is a submodule of M ,  and the quotient mod- 
ule M / K  is isomorphic with the image N of the homomorphism. 

Representations and modules can be defined for Lie groups as well as for Lie 
algebras. If G is a Lie group, then an analytic representation of G is a pair (iM,f ) ,  
where M is a vector space (module), and f now is an analytic homomorphism of 
G into the Lie group GL(M) of all automorphisms in M ,  that is, invertible 
linear transformations of M onto itself. If n is the dimension of M ,  then GL(M) 
is isomorphic to the Lie group GL(n, C) of nonsingular n X n matrices over C. 
We see therefore that a representation of a Lie group is equivalent to a matrix 
representation, a homomorphism D of the Lie group G into the matrix group 
GL(n, C). Then D(g) is an n X n matrix representing the element g in G. The 
notation D(g) arises from the German "Darstellung" for "representation." 

Equivalence of group representations is defined just as before, two matrix 
representations being equivalent or isomorphic if they are related by a common 
similarity transformation. 

2.2. Module operations. There are several useful ways of combining modules 
to obtain new ones. The most immediate of these is the direct sum. The direct sum 
can actually be defined in two very slightly different ways which are essentially 
equivalent; these are called the internal and external direct sums. Given two 
modules M1 and Mz over a Lie algebra L, their external direct sum as vector 
spaces is the vector space consisting of ordered pairs (vl ,vz), where VI is in iUl 
and vz in M z ,  with addition and multiplication by complex numbers defined 
componentwise. If multiplication by elements of the Lie algebra L is also defined 
componentwise, 

we again have a module over L called the external direct sum of MI and M z ,  
denoted by M1 O A l z .  When a module M has two submodules M1 and M z  
such that every element in M has a unique expression as a sum of an element 
of M1 and an element of Mz ,then we say that M is the internal direct sum of its 
submodules MI and Mz . In  this case it is also true that M is isomorphic to the 
external direct sum of MI and Mz .More generally, the sum of two subspaces of 
a vector space is the set of all linear combinations of vectors in both of the 
subspaces. In other words, the sum of two subspaces is the linear subspace 
generated by their union. The sum of two subspaces is a direct sum when the 
intersection of the two subspaces consists of the zero vector. Note that the in- 
ternal direct sum can only be defined when both vector spaces are subspaces of 
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some common vector space and have zero intersection, whereas the external 
direct sum can be defined for an arbitrary pair of vector spaces. We shall use the 
same notation O for both internal and external direct sums; the distinction 
between the two can usually be understood from context. 

If a module M is the direct sum of two nonzero submodules, we say that ill 
is decomposable, and the corresponding representation is also said to be de- 
composable. Obviously an irreducible module cannot be decomposable, but the 
converse need not be true. Every finite-dimensional module which is decom- 
posable is a direct sum of indecomposable modules. 

A module having the property either of being itself irreducible or of being 
the direct sum of irreducible submodules is called completely reducible. An 
obvious necessary and sufficient condition for a finite-dimensional module to be 
completely reducible is that every submodule should be a direct summand, that 
is, for every submoduIe N, there is another submoduIe N' such that M = N O N'. 

Every finite-dimensional module over a semisimple Lie algebra is completely 
reducible. Thus the irreducible modules of a semisimple Lie algebra form the 
building blocks out of which any other module over the Lie algebra can be con- 
structed, and our attention can therefore be directed in this case to a study of the 
irreducible modules. This is not true however for a general Lie algebra. For 
general Lie algebras it suffices to consider the indecomposable modules, but these 
need not be irreducible. 

A second important way of combining modules is by means of the tensor 
product. There are several ways to define the tensor product. The best way is 
to give a universal definition, defining the tensor product by means of its prop- 
erties. Another way, which assures us of the existence of the object being de- 
fined, is to give a constructive definition, which is what we shall do. 

In  order to define the tensor product of modules over a Lie algebra, we first 
recall the definition of the tensor product of two vector spaces. Given two 
vector spaces V1 and V2 ,  we shall write an ordered pair having its first element 
211 in V1 and its second v2  in V2 as v1 0 v 2 .  The set of all such ordered pairs can 
be regarded as the basis of an infinite-dimensional vector space consisting of all 
their finite formal linear combinations. A typical vector in this space has the 
form a2(v120 212%). 

Now consider the set of all vectors in this space of the form 

These vectors span a subspace. Taking the factor space, the cosets of the original 
space with respect to this subspace, we obtain a vector space which we call 
1'1 0 V2. I t  is customary to write elements of the space Vl '1 V2 in terms of 
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coset representatives: 

and to keep in mind that one inust consider 

for any complex number a,and that 

and 

I t  is easily shon-n that the coset representative 

can aln-ays be chosen so that the vectors vl, are linearly independent in V1 and 
the vectors vzlare linearly independent in V2.If the vl,are not independent, then 
one of these vectors, say vll, is a linear combination of the others: 

Then, 

and we can proceed in this manner until we obtain a coset representative having 
its terms vl, linearly independent. A similar argument can then be applied to the 
vectors v2,without destroying the independence of the vectors vl, .From this it is 
apparent that if (vl,) is a basis in V1and (v2,f a basis in Vz , then the cosets of 
{q,@ val] form a basis in V1 @ V2.Thus the dimension of the tensor product 
V1 V2is the product of the dimensions of I/;and Vz ,and a coset representative 
can always be written as 

The array of coefficients a,,is uniquely determined by the element of V1@ V2 
being represented, and it changes appropriately when the bases in V1and I/;are 
changed. Similarly, any array of coefficients which is made to change appropri- 
ately when the bases of V1 and V2 are varied determines a unique element of 
V1@ V2.This accounts for the "folk" definition of a tensor as an array of 
quantities which varies appropriately when coordinate systems are changed. 
*Frequently one has in mind the case V1 = V2 = V,and one calls an element of 
V O V a contravariant tensor of rank two. 

The construction of the tensor product given above is not the only one possible. 
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Another rather clever way to construct the tensor product Vl O Tiz is to define 
it to be the dual space of the linear space of all bilinear forms on the Cartesian 
product 1%X Vz . This alternative definition can be shown to be equivalent to the 
one given above when the vector spaces involved are finite-dimensional, as we 
assume here. 

There is a natural identification between the elements of (Vl O V2) O VQand 
those of V1 @I (Vz @ V3). Making this identification, we can define iteratively 
the tensor product of any number of vector spaces. 

A useful property of the tensor product arises from the fact that any linear 
transformation on its factors V1 and V2 generates a linear mapping of the product 
Vl @ Vz . In particular, if fi:Vl + ~ 1 '  V;and fz:V2+ are linear mappings, then 
fl @ fz:T i l  @ T/J? -+ T7: @ vzrcan be defined as the following linear transforma- 
tion: 

Also, a bilinear mapping (function of two vector variables, linear in both) on 
Til and V2 generates a linear mapping on the tensor product. A bilinear mapping 
0:Vl X V2-t W generates a linear mapping /3*: Vl '1V2 + W by 

Notice that the operations on the tensor product Vl @ V2 are defined in terms of 
coset representatives, so that they must be shown to be well-defined, dependent 
only on the coset, not on the particular representation of the coset chosen. The 
selection of the generators determining the subspace with respect to which the 
cosets are defined, however, was made precisely with this end in view; the rela- 
tians imposed on two representatives by being in the same coset are precisely 
those needed for the mappings to be well-defined. 

Some special cases of such mappings should be mentioned. We use complex 
spaces for illustration. The real number field R could equally well appear in place 
of the complex number field C in the following paragraphs. If Vl (or Vz) is just 
the complex number field and V2 (or V1) is a complex vector space, then 

is a bilinear mapping and hence defines a linear mapping of C O V2 to V2. This 
mapping is clearly an isomorphism and it is generally used to identify C O Vz 
with V2 . If Vl is the dual space of V2, the space of all complex-valued linear func- 
t~ionson V2, then the function 

is a bilinear complex-valued function on V1 and V2 , and consequently defines a 
linear mapping of Vl O V2 to C. In  this latter case one generally refers to the 
elements of V1 O V2 as mixed tensors of rank two, and one refers to the induced 
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linear mapping from VI O VZ to C as contraction of the tensor. Similar remarks 
can be made, obviously, with the roles of V1 and Vz interchanged. 

In general, if we have an iterated tensor product Vl O . . O V, ,where each 
V, is either a given vector space V, or else its dual v*, one calls elements of the 
iterated tensor product tensors of rank p, contravariant as many times as V 
appears in the product and covariant as many times as its dual V" appears. A 
contraction can be defined on any appearance of the vector space V and its dual 
17* in V1 O . O V?,,and this is described as contracting on various upper and 
lower indices. The indices appear here because of the custom of choosing a basis 
el , . . . ,e, (say) in V and the corresponding dual basis el, .. . ,en in the dual space 
v*, where eYs the linear function on V such that ei(ej) 6:= (zero for i f j and 
one for i = j ) .  Every member of the tensor product space is then determined by 
an array of coefficients with p indices. When the basis in V is changed, say to 
G I ,  . . . , err, where 6, = CjP,3ej,, the corresponding dual basis changes auto- 
matically to C' , . . . ,zn,given by C" Qjie', where the matrix Q is the inverse xCj

of the matrix P. The array of coefficients determining a fixed element of the tensor 
product space varies according to an obvious formula, that is, contravariantly on 
those indices corresponding to the space V and covariantly with respect to the 
indices corresponding to the dual space v". I t  is a custom in this case to write the 
covariant indices as subscripts and the contravariant indices as superscripts. A 
member of V O V O 17*, for instance, ~vould be written 

If we substitute for the e-bases in terms of the new 6-bases, we obtain 

In this sense the upper indices require transformations contrary to the basis 
e; (hence, the term "contravariant"), while the lower indices require transforma- 
tions akin to that of the basis ei (hence, "covariant"). For this same tensor, 
contraction on the first and third indices, and using the standard identification 
of C @ V with V ,yields 

in V. Thus contraction in this notation corresponds to setting an upper index of 
the coefficient array equal to a lower index and summing on it. 

While on the subject of tensor products, we should mention that two elements 
of different iterated tensor products can always be tensored together to get a 
member of a larger iterated tensor product by defining, for instance, 
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This leads to the idea of the (contravariant) tensor algebra on a vector space T7, 
n-hich is simply the infinite weak external direct sum 

T(V)  = C O  V O  v 2 0v 3 @' . ' ,  

vn = 0 v 0 . . .  0 V (72 copies). 

Again, C denotes the complex numbers. The infinite direct sum is weal; in the 
sense that we consider only finite linear combinations of the elements of the spaces 
C, V, v2, . . . . S o  actual infinite summations are involved, so no convergence 
questions arise. As a direct sum of vector spaces, the contravariant tensor algebra 
is obviously a vector space. With the tensoring together operation @ as rrLu!tipli- 
cation, the tensor algebra T(V)  is an associative algebra. 

Having discussed at  some length the tensor product for vector spaces, we sre 
now ready to discuss tensor products for modules. Let and M2 be modules 
over a Lie group G. We can make the tensor product space J11 @ ,112 a module 
over the group G by defining 

g [Cml, o m2,]= C (ymlL)o (gm.2t). 
i. Z 

We can pass from modules over Lie groups to modules over Lie algebras by 
differentiation, or vice versa by exponentiation. Choosing the latter method, if .c 
is an element of a Lie algebra L, then g = et" = 1 + tx + . . . is an element of a 
Lie group. For sufficiently small real numbers t, we could ignore higher order 
terms. Then, inserting this expansion for g in the above definition of its action on 
the tensor product space, and comparing po~vers of t, we arrive at the formula 

If J l l  and JJ2 are modules over a Lie algebra L, this formula is used to define a 
multiplication nhich makes the tensor product M I  @ ;lJza module over L. I t  
can be verified directly that the axioms for a module are satisfied ni tho~lt  refer- 
ence to Lie groups. We only started with Lie groups for the purpose of motivat- 
ing the definition. 

Consider the tensor product of two modules over a Lie algebra. If the Lie 
algebra is semisimple, then the original two n~odules are completely reducible, 
and so can be nritten as a direct sum of irreducible modules. The tensor :)rocluct 
is then just the direct sum of all the tensor products of these irreducible morlules. 
To reduce the tensor product of arbitrary modules over a semisimple Lie algebra, 
therefore, it is sufficient to study the reductions of tensor products of irreducible 
modules as direct sums of irreducible modules. This expansion of a tensor product 
of irreducible modules as a direct sum of irreducible submodules is frequently 
called a Clebsch-Gordan series (although this name applies more specifically to 
the case of t<he rotation group) and it is quite important in applications. 

Given any module JI over a Lie algebra I;, the dual space ~ l * ,  consisting of 
all linear complex-valued functions on J i ,  can be made into a module over L by 
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defining the action of any x in L on any f in I!?* to be given by (xf) (m) 
= --,f(znz) for all m in M. Straightforward computation verifies that M* satis-
fies the axioms of a module. If a basis {e,) is chosen in J I ,  and the corresponding 
dual basis (e') is chosen in M*, then the representation matrices in the dual 
module are the negative transposes of the representation matrices in the original 
module. The action of x on the basis elenlents e, can be written as 
xe, = x,DZ3(x)e,.Then, using xeye,) = -e"(s3), a simple computation shows 
that 29% {-D3"x)}e3. Thus here DZ3(z) is the matrix representative as- xC, 
sociated with the module M, and the negative transpose-D3"x) gives the cor- 
responding matrix representation associated with the dual module M*. 

For Lie algebras of type B1 , C I,and also for the Lie algebras A1 and Gz ,Fq,E-i , 
E s ,  eseh module is isomorphic with its own dual. ;\lost modules over Dl-type 
algebras also are self-dual [26]. The dual operation thus plays no particularly 
important role for these Lie algebras. In fact, the main application for the con- 
cept of dual module in the theory of semisimple Lie algebras occurs for the Lie 
algebras of type Al with I 2 2. 

Yet another way of building new modules froin given ones can be obtained by 
antibymmetrizing the tensor product. Starting with the tensor algebra T(Jf )  of 
a module dl,which is an associative algebra under the @ operation, consider the 
t~~o-sided O m. The quotient ideal A generated by all elements of the form m 
algebra T ( M ) / A forms a new associative algebra E(111) called the Grassmann 
algebra or the exterior algebra of M .  I t  has become the custom to denote the 
multiplication operation induced by @ in E(AI) by the symbol A .  Thus ?ill A 1122 

means the coset (Inl O 11%~)+ A. I t  is clear that m A m = 0 (that is, the coset 
0 + A )  since ~n @ m is in A by definition. Since (nzl + n12)A ( ~ n l+ 1122) = 0, 
writicg it out and using ml A Inl = mz 1122 = 0 yields 

We see that the multiplication in the exterior algebra is antisymmetric as in a 
Lie algebra. Unlike a Lie algebra, however, the multiplication is also associative. 
The exterior algebra can be broken up into pieces each having a given degree by 
considering the direct summands of the tensor algebra T ( M ) ,the tensor products 
of Jl with itself. Let TT(M) denote the tensor product of ilf with itself r times, 
the tensors of rank r.  Since T(M)  is the direct sum of the various Tr(M),  we can 
look individually at the portion A' of the ideal A lying in each Tr(M) and form 
the vector space A' (M) = T'(M)/Ar. The exterior algebra is then the direct 
sum of these spaces A' ( J I ) .  Now A' is simply the subspace generated by those 
members of T'(il4) having a repeated factor m @ m appearing somewhere in 
their composition, being of the form a @ m @ m @ b, where a, b denote tensors 
whose ranks sum to r - 2. I t  is clear that T'(M) is a module over the Lie algebra 
L. A conlputation of the effect of multiplying an element such as a @ m O m O b 
by an element x of the Lie algebra shows that A' is invariant under L; hence it is a 
submodule of Tr(M).  The quotient space A' (M) = Tr(M)/A' is therefore also 
a module. The construction of these "antisymmetric tensor modules" A' (M) 
from a basic module M is a standard method for generating modules and ~vill be 
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dealt with later in connection with our discussion of elementary representations. 
The action of an element x in L on the cosets in A' ( 6 4 ) is induced by the action 
of x in T r ( M ) ,namely, 

+ A (xmz) A . . A rn, 
+ ... 

It is of interest also to note that for modules iM of dimension n, the tensor algebra 
T(M) is infinite-dimensional, each TT(M) having dimension nr, but tfhe exterior 
algebra E ( M ) is of finite dimension equal to 2", each AT(M) having dimension 

(:) = n!/r!(n - r . ) !  for 0 5 1. 5 n and zero for i. > n. This is readily seen by 

choosing a basis el , e2, . . , e, in M. The products e , ~  A eIzA . . - A ejr with 
strictly increasing indices jl < j2< . . < jr then form a basis for AT(M) ,  since 
a change in ordering of a product changes at most its sign. 

2.3. The universal enveloping algebra. Intuitively, the universal enveloping 
associative algebra U(L) of a Lie algebra L is obtained by forming all possible 
formal products and sums of elements of the Lie algebra and an identity element, 
where we identify the commutator [x, y] for x and y in L with the expression 
xy - yx. 

More formally, we can construct the universal enveloping algebra U as follows. 
Since the Lie algebra L is a vector space, it is possible to construct its (contravari- 
ant) tensor algebra T(L) = C O L O L~O . - - ,where Ln = L O L O ., . O L 
(n factors), as in the preceding section. In this associative algebra T(L), we con- 
sider the two-sided ideal K generated by the set of elements of the form 

[x,yI - (x 0 y - y 0 x), 

where x, y are elements of L. The ideal K thus contains the differences between 
Lie algebra products and the corresponding commutators in the associative 
tensor algebra. If we consider the associative quotient algebra U(L) = T(L)/K, 
then Lie algebra products will not be distinguishable from commutators since 
they belong to the same coset. The associative algebra U(L) = T(L)/K is called 
the universal enveloping algebra of L. As with any associative algebra, we can 
also make U(L) a Lie algebra using the commutator operation as the Lie prod- 
uct. If we do this, we can consider L to be injected homomorphically into U(L),  
considered as a Lie algebra. (The injection is induced by regarding L as a direct 
summand of T(L), for the ideal K in T(L) has been constructed so that for x, y 
in L we have [x, y] + K = x O y - y O x + K, so the coset of [x, y] is identical 
with that of the commutator Lie product in T(L) .) 

The associative algebra U(L) plays a unique role with respect to this property. 
Suppose that A is an arbitrary associative algebra, and A is also given the com- 
mutator Lie algebra structure. Any homomorphism of L into A ,  considered as a 
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Lie algebra, has a unique extension to an associative algebra homomorphism of 
U(L) into A, i.e., if 4 is the canonical homomorphism of L into U(L) and O is 
the homomorphism of L into A,  then there is a unique associative algebra 
homomorphism # such that #4(1) = O(1) for all 1 in L. 

Now a representation of a Lie algebra is a homomorphism inlo the associative 
algebra of linear transformations on the module with Lie multiplication of the 
linear transformations being the commutator operator. Thus every representa- 
tion of a Lie algebra L can be extended to a representation of its associative 
universal enveloping algebra U(L) .  STTe define a module over an associative 
algebra A in much the same way we defined a module over a Lie algebra except 
that the requirement that [x, y ] ? i z  = x(y11z) - y(x??z) for a11 x and y in the Lie 
algebra and m in the module is replaced by (xy )m = x(ym) for all x, y in the 
associative algebra and m in the module. Thus we see that every module over L 
can also be regarded as a module over its enveloping algebra U(L). The associ- 
ative algebra U(L) acts on the module 21.1by letting 

for all n, xi in L, and 7n in M ,  and extending the definition to all of U(L) .  I t  is 
easily checked that this definition is independent of the choice of a represent- 
ative from a K-coset of T ( L ) and so actually defines an action of U(L) = 
T(L)/K on M. 

The enveloping algebra U(L) has a structure which may be described as 
follows. Let {xi) be a basis for L. The "monoinials" of the form 

where we take the "trivial monomial" 1 for the case n = 0, yield a basis for 
T ( L )and hence their cosets span U(L). Results of PoincarB, Birkhoff and Witt 
show that if we only take monomials having their indices ij in ascending order 
(allowing repetition), then the cosets of these monomials (again, including 1)  
form a basis for U(L). The universal enveloping algebra bears much the same 
sort of "functorial" relationship to the Lie algebra that the Lie algebra itself 
bears to a Lie group, i.e., homomorphisms of one Lie algebra into another induce 
a corresponding homomorphism of their universal enveloping algebras, and more- 
over, the ideal generated in the universal enveloping algebra by the kernel of the 
Lie algebra homomorphism is the kernel of the induced homomorphism on the 
universal enveloping algebras. Nore generally, Lie subalgebras and Lie algebra 
ideals yield corresponding associative subalgebras and ideals in the universal 
enveloping algebra. 

It can be shown that U(L)  has no nonzero zero divisors and that, for finite- 
dimensional L, there cannot be an infinite sequence of ideals (or one-sided ideals) 
in U(L) each properly contained in the next. Every ideal of U is finitely gener- 
ated. From this, one could conclude that U has right and left quotient division 
rings (Qoldie-Ore theorem, cf. [24, p. 1651). 

The universal enveloping algebra plays an important role in constructing ir- 
reducible modules over semisimple Lie algebras. For the case of a semisimple Lie 
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algeijrz we can make some further remarks about the structure of the enveloping 
algebra based on the decomposition of the Lie algebra in terms of its root spaces. 
Let L be a semisimple Lie algebra, and let H be a Cartan subalgebra of L. A 
choice of an arbitrary ordered basis for the real space H ~ * ,  generated by the 
roots, induces an ordering on that space. The ordering is produced by calling a 
vector in HR* positive when its first nonzero component with respect to the basis 
is positive and saying one vector is greater than another when their difference is 
positive (see [4, p. 261). A simple root is a positive root which is not the sum of 
tno  others, and these simple roots form a basis for the dual of the Cartan sub- 
algebra. The root vectors of the simple roots are called simple raising operators. 
The negative of a simple root is always a root, and a convenient multiple of the 
root vector of the negative of a simple root is called a lowering operator (see 
[4, p. 271). We shall denote by L+ the subspace of the Lie algebra L spanned by 
the root vectors of positive roots and by L- that spanned by the root vectors of 
negative roots. A simple computation using Jacobi's identity shows that if e, and es 
:%reroot vectors corresporlding to roots a! and P, then [e, , ea] is a root vector 
corresponding to a! -1P if a +9is a root, and [e, ,e3] is zero otherwise. Since L is 
the direct sum of H ar:d the one-dimensional subalgebras spanned by the root 
vectors, the total numbcr of nonzero roots is the dimension of L less that of H .  
L+ acd L- are ~lilpotent subalgebras and we can write 

L = H 0 L+ 0L-. 

Izacin positive root is a linear combination n ith ilonilegative integer coefficients 
of the simple roots and each negative root is such a combination with nonpositive 
integer coefficients. Thus L+ is generated by the simple raising operators and L- 
is generated by the siinple lon ering operators. 

Corresponding to this break-up of the Lic algebra L into H, LA and L-, we 
can also break up the universal enveloping algebra U(L) into three parts UO, u+, 
and i7-. Here UO is the Abelian subalgebra generated by the identity element and 
the C'arian subalgebra H, and bT+ and U- are generated by the identity element 
together ~ ~ i t h  L+ and L- respectively. We may call U+ and bT- the raising and 
lowering algebras of the Lie algcbra L. The whole enveloping algebra U(L) may 
be ~ ~ ~ r i t t e n  as the product of the three subalgebras u', u', and U-, taken in any 
order. The algebra U+ is generated by the identity and the simple raising oper- 
ators, while U- is generated by the identity and the simple lo~~er ing  operators. 
The whole algebra U(L) is generated by 1and the siinple raising and lowering 
operators. 

Let e ,  , i = 1, . . . , I ,  denote the simple raising operators in a semisimple Lie 
algebra E. If a nonzero vector x in a module &I is annihilated by all the simple 
raising operators, it is called an extreme vector: 

e z x  = 0,  i =  1, . . .  , I .  

The extreme vectors together ~ ~ i t h  the zero vector form a subspace, the extreme 
subspace, of the module. If a module is irreducible its extreme subspace is one- 
dimecsional. In  any module, ['-x is an irreducible submodule if x is an extreme 
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vector. Every module is the direct sum of the irreducible submodules U-x,, 
where (x,] is any basis for the extreme subspace. Thus a knowledge of the extreme 
subspace yields a reduction of the module to the sum of irreducible subrnodules. 
This gives a useful technique for obtaining Clebsch-Gordan coefficients. 

We saw previously that there was a one-to-one correspondence between 
representations of a Lie algebra L and representations of its universal enveloping 
algebra U(L). Using the fact that every irreducible module over a semisimple 
Lie algebra is generated by the action of U on an extreme vector, it becomes pos- 
sible to construct the modules themselves from U(L). The space U(L) can, of 
course, be regarded as a module over itself. A submodule in U(L) is then simply 
a left ideal. If A is a left ideal of U(L), the cosets U(L)jA form a module over 
U(L). Conversely, if x is an extreme vector in any irreducible module M ,  the 
members of U(L) which annihilate x form a left ideal of U(L),  which we shall 
again call A. Any vector y in the module 11l is given by y = ux for some u in 
U(L),  by the fact that the entire irreducible module is generated by x under the 
action of U. Taking the coset u + A, we have y = (u + A)%, since Ax = 0 by 
definition of A. We then have a homomorphism of U(L)/A onto the module ill, 
the homomorphism being obtained by making the coset u + A correspond to the 
module vector ux. This is in fact an isomorphism, since if ulx = unx, then 
(ul - uz)x = 0 and ul and uz belong to the same A-coset. Thus, every ir- 
reducible module is isonlorphic to U(L)/A for some left ideal A in U(L) . I t  is 
easy to see that U(L)/A is irreducible if and only if A is a maximal left ideal of 
U(L). Thus the problem of finding all the irreducible representations of U(L) 
(and consequently of L )  is precisely equivalent to that of finding all the maximal 
left ideals of U(L). 

The center C(L) of the universal enveloping algebra U(L) plays an important 
role in the computational aspects of representation theory. I t  is an Abelian sub- 
algebra which consists of those elements x in U(L) which commute with every 
element of the Lie algebra L. The second order Casimir operator is a simple 
example of an element of C(L),  and we may think of C(L) as consisting of the 
Casirnir operator and its various higher order generalizations. For any module M, 
we can define a linear form on C (L) by means of the trace : 

The linear form A E c(L)* characterizes the modules in the sense that if two 
modules M and M' have linear forms X and A' which are proportional, then the 
modules are isomorphic [19]. 

For irreducible representations each element of C(L) is represented by a 
multiple of the identity. Recently much work has been done in order to find the 
exact relation between these "higher order Casimir operators" and the more con- 
ventional classification of modules by means of their highest weight. 

2.4. Theory of weights and the Weyl group. A useful tool for the classification 
of modules is the concept of weight. VCTeights play the same role in the classifica- 
tion of modules over semisimple Lie algebras that the roots played in the classifica- 
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tion of the semisimple Lie algebras theniselves. The concept of root is in fact 
just the special case of the concept of weight obtained when we specialize to the 
adjoint representation of the algebra. The study of weights also has a practical 
value for obtaining a qualitative interpretation of what a given module contains. 
The set of all the weights of a module is called the weight diagram. The symmetry 
properties of the weight diagrams are described by the Weyl group. 

Although the concept of n eight is most useful in connection with the semisimple 
Lie algebras, it can be introduced in a more general setting, and we therefore 
consider a module N over an arbitrary Lie algebra L. A linear form p E L* is 
called a weight of AI if there exists a nonzero vector v in M such that xu = p(x)u. 
The vector v is thus an eigenvector for all elements of L simultaneously, with 
p(x) being the eigenvalue corresponding to the operator x acting in M. The weight 
p may thus be considered as this collection of eigenvalues. To obtain direct sum 
decompositions, it is useful to generalize slightly the concept of a simultaneous 
eigenvector. A nonzero vector v in ll.l is called a weight vector, or generalized 
silnultaneous eigenvector, if there exists an integer p such that (x - p(x) I)"v = 0 
for all x in L. The set of all weight vectors, together with zero, is a submodule 
MLCof the module M called the weight module corresponding to the weight p. 

In the weight submodule ML' each element x in L is represented by an operator 
which differs from a multiple of the unit matrix by a nilpotent operator. Sophus 
Lie proved two theorems about the existence and completeness of weight vectors. 
Lie's first theorem says that any module over a solvable (and a fortiori any nil-
potent or Abelian) Lie algebra has a weight p. Lie's second theorem (also called 
the Lie-Zassenhaus theorem) asserts that for a nilpotent Lie algebra, the weight 
vectors are also complete, that is, we can find a basis for any module consisting of 
weight vectors. In other words, a module over a nilpotent Lie algebra is the direct 
sum of its weight submodules. For a semisimple Lie algebra L, we consider its 
Cartan subalgebra H. Since thc Cartan subalgebra is Abelian, both of Lie's 
theorems will apply. Any module M over a semisimple Lie algebra L can then be 
written as the direct sum of its weight submodules with respect to H: 

M = @ 1 V H " .  
P 

We may regard L itself as a module over H via the adjoint representation, ob- 
taining the decomposition of L as a direct sum of its root spaces La". The Cartan 
subalgebra H itself is just the root space corresponding to a = 0. 

A useful property of weights and roots is their additivity with respect to tensor 
products. If Ma" and Nap are weight modules over a nilpotent Lie algebra H, 
then the tensor product MHir  NHv is a weight module with weight p + v. To 
make this result plausible, we momentarily disregard the complications arising 
from the generalized eigenvalue problem, considering just the case p = 1.There 
exist vectors u and w in &faCand NHYrespectively, such that hv = p ( h ) v  and 
hu: = v (h) w for all h in H. Then 

h(u @ w) = (hu) O 20 + u O (hw) 

= (p(h) + v(h))(u O 1 ~ ) .  
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This shows that p + v is at  least one of the weights of the tensor product, but i t  
does not prove that it is the only one. However, the proof that it is the only 
weight does not require any new ideas, but just more tedious algebra, and we 
omit it. 

In general, if we have an arbitrary module M ,  and another one N ,  then the 
collection of weights for the tensor product M @ N can be obtained as the col- 
lection of sums of a weight of All and a weight of N. That is, the weight diagram 
of a tensor product of two modules can be obtained from the weight diagrams of 
the t\r-o individual modules by a process of vector addition. 

Suppose now that we have a semisimple Lie algebra L, with its Cartan sub- 
algebra H. Let M be a module over L, and hence also a module over H. The 
action of L on M can be formally identified with the tensor product L @ A l . In 
particular, the action of a root space LHa on a weight submodule MH" is given by 
LH"MHP c 1 ~ ~ " " .This "shifting rule" says that if a root vector e, acts on a 
weight vector v with weight p, then eav is a weight vector corresponding to the 
shifted weight p + a .  Acting on a weight submodule MEp repeatedly with e, and 
e-, me get weight submodules corresponding to a whole ladder of weights p + za, 
where z = 0, f1,f2 ,  . . . .The direct sum of the corresponding weight modules, 
which n-e may call a weight-ladder module, can be regarded as a module over 
the Lie algebra H $- LEU+ Since me are dealing with finite-dimensional 
modules, a11 but finitely many of the weight modules corresponding to the infinite 
weight-ladder are trivial, and me really only need to consider a finite set p - pa, 
. .  , P + qa. 

Both weights and roots are vectors in I-I*,the dual space of the Cartan sub- 
algebra, and in fact it can be shown that the weights are all real linear combina- 
tions of the roots, and thus lie in HR*, the real vector space of such linear com- 
binations. A positive definite inner product is induced on llR* by the Killing form 
(cf. [4, pp. 26-27]), thereby making i t  a Euclidean space, the inner product of two 
vectors a and /3 being denoted by (a,  0). The weight diagram of any module, as 
well as the root diagram of the Lie algebra, may thus be regarded as a set of 
points in a Euclidean space of 1 dimensions, 1 being the rank of the Lie algebra. 
Since the Euclidean space HE * was given an order induced by ordering some arbi- 
trary basis, the weights are also ordered, and since any given finite-dimensional 
module has only finitely many weights, there must be some weight which is higher 
than all the others. This weight is called the highest weight of the module. If v 
is a weight vector for the highest weight A, then for any raising operator e, with 
a > 0, e, u would be a weight vector for the higher weight h + a if it were not 
zero. Thus it follows that a x-eight vector for a highest x-eight is an extreme 
vector. For an irreducible module, there is only one linearly independent weight 
vector for the highest weight. In  general, the multiplicity of a x-eight p is the 
dimension of the corresponding weight submodule: n, = dim DlH". Thus the 
highest weight of an irreducible module has multiplicity one. Two irreducible 
modules over a semisimple Lie algebra are isomorphic if and only if their highest 
weights are equal. Thus the problem of classifying the irreducible modules is that 
of finding all possible highest weights. 
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To study the structure of a given irreducible module with highest \\-eight A ,  
we must find some way to calculate its weight diagram. The weight diagram has 
certain symmetry properties which we now study. If p is any weight, and a any 
root, then the ladder of weights p + x a  for - p  5 x 6 +q also belongs to the 
weight diagram. It can be shown that 2(p, a ) / ( a ,  a )  is an integer and 

is a weight in the ladder. This transformation may be interpreted geometrically 
as a reflection w, in the plane perpendicular to the root a in HR*. The weight p 

and the reflected weight w,p have the same multiplicity. These reflections are 
called Weyl reflections, and the group generated by them is called the Wey! group. 
Note that w: = 1, and w, = w-, (cf. [4, p. 281). The weight diagrams are in- 
variant under the Weyl group, the multiplicities of weights are invariant, and the 
Killing form is invariant. If w is any element of the Weyl group W ,  then 
(wa, wp) = (a ,  13).The root diagram is not only invariant under the Weyl group, 
but also under inversion a -+ -a, and thus in general may have a higher degree 
of symmetry than some of the other weight diagrams. 

Let al , . . , az denote the simple roots of a semisimple Lie algebra L, that is, 
those positive roots which are not the sum of two positive roots. The correspond- 
ing Weyl reflections wi = we< are called simple Weyl reflections. The simple Weyl 
reflections are a set of generators for the whole Weyl group W. 

We now study the set of vectors in HR* which can be highest weights for ir- 
reducible modules. If MI and iMz are irreducible modules with extreme vectors 
xl and xz corresponding to the highest weights X1 and Xz , respectively, then 
xl O x2 is an extreme vector in lMl O M2 and U-(xl O x2) is an irreducible 
module having XI + Xz as its highest weight. Thus the set of highest weights is 
closed under the addition. The submodule U-(xl O xz), sometimes denoted as 
MI M2, is called the Cartan composition of the modules M1 and Mz . It is the 
irreducible submodule of the tensor product which has the highest weight. 

We call a highest weight basic if it is not a sum of two other highest weights. 
For a semisimple Lie algebra of rank 1, there are exactly 1 basic weights. The 
basic weights X1 , ,X Z  can be indexed in such a way that they correspond to 
the 1 simple roots, the relation between them being 

where 6ij is the Kronecker delta, zero if i # j, one if i = j. Note that under simple 
Weyl reflections we have wiXj = X j  if i # j, while wiXi = X i  - a;. Thus each basic 
weight is invariant under all but one of the simple Weyl reflections. 

Every highest weight X is a linear combination of basic weights with non- 
negative integral coefficients, 

where the coefficients ni = 2(X, a i ) / ( a i ,  a,) are called the components of the 
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highest weight. Of course, any weight whatever, not just a highest weight, can be 
written in a similar m-ay if we allow the components to be any integers, positive, 
zero or negative. In  particular, the components of the root's aj are given by the 
Cartan matrix Aij = 2(a i ,  a j ) / ( a i ,  a i)  and we may write aj = C XiAG (cf. 
[4, P. 271). 

We can conversely use the Cartan composition process to construct an ir- 
reducible module corresponding to the highest weight X = niXi, given a set 
of basic modules M I  , , M I  . Let xi in Mi be a weight vector corresponding to 
the basic highest weight X i .  Take the tensor product 

where x, appears ni times. The Cartan composition U-x will then be an ir- 
reducible module having X as its highest weight. Thus the process of Cartan 
composition reduces the problem of constructing the irreducible representations of 
a semisimple Lie algebra to that of constructing 1 basic irreduciblerepresentations. 

Dynkin introduced a very convenient way of denoting any particular ir-
reducible module over a semisimple Lie algebra [13], [32]. One simply writes over 
the ith vertex of the Dynkin diagram, which corresponds to the ith simple root, 
the nonnegative integer ni giving the ith component of the highest weight with 
respect to a basis consisting of the basic weights. In Fig. 1this is illustrated for a 
particular representation of the Lie algebra BQ, the complexification of the Lie 
algebra of SO('/,R ) .This particular module is 8-dimensional, and can be used to 
define the exceptional Lie algebra G2 (see [3]). 

There are many different ways of denoting modules. In addition to the Dynkin 
diagram method, another common notation for modules is to write { N], where N 
is the dimension of the module. In  some cases, there are several nonisomorphic 
irreducible modules with the same dimension. In  this case these may be dis- 
tinguished by adding primes, asterisks, etc. The dual of the module { N ] would 
be denoted by { N * ] in general. The main advantage of this notation is that it is 
concise, while the Dynkin diagram notation has the advantage of supplying more 
pertinent information which is useful for computations. We shall use both nota- 
tions in the sequel. 

The Dynkin diagram allows one to compute the angles between the simple 
roots and their relative lengths (cf. [4, p. 281). The absolute lengths of the roots 
may be obtained from an observation of Brown [7] which says that the sum of the 
squares of the lengths of all of the roots of a semisimple Lie algebra is equal to the 
rank I .  From this information one can then draw the root diagram, which is a set 
of points in a Euclidean space of 1 dimensions. From the formulas given above, one 
can construct geometrically or algebraically the basic weights. The only further 

F I G .  1. D y n k i n  diagram for the 8-dimensional spinor module of B3 , which can  be used to 
define the exceptional L ie  algebra Gp 



188 J. G. BELINFANTE, B. KOLMAN AND H. -4. SMITH 

information we need for practical calculation then is an algorithm for computing 
the complete weight diagram of a module, given its highest weight. 

2.5. Characters. The characters of group representations are useful as a 
general tool for such basic computations as finding the Clebsch-Gordan series. 
If we have a representation f of a group G by linear operators acting on a finite- 
dimensional vector space (module) M , then the character x: G -+ C of the repre- 
sentation is a complex-valued function defined on the group by taking traces: 

d im M 

~ ( y )= T r ~ f ( g )= C fii(g)
i=l 

for all g in G. Since the trace of the linear transformation f (g) ,i.e., the sum of its 
diagonal matrix elements fii(g), is equal to the sum of its eigenvalues, counting 
multiple roots of the characteristic equation, the trace does not depend on the 
choice of basis in M with respect to which the matrix elements are computed. 
The character x of a representation thus is invariant under changes of basis in the 
module M. I t  is clear that isomorphic modules (equivalent representations) have 
the same character, since the trace is invariant under similarity transformations. 

If the Lie group corresponding to a semisimple Lie algebra is compact and 
connected, then every element of the group is conjugate to an element of the 
"maximal torus" subgroup corresponding to a given Cartan subalgebra of the 
Lie algebra [15]. Elements gl and g2 are said to be conjugate, we recall, if there 
exists some element s in the group for which g2 = sg1s-'. I t  is clear that the charac- 
ter takes the same value at  conjugate elements of the group. Thus the character 
is determined by its values on such a maximal torus subgroup. Conversely, given 
a semisimple Lie algebra, we can start with its compact real form, and by ex- 
ponentiation arrive at  a compact, connected Lie group. Accordingly, for a semi- 
simple Lie algebra, we may define a character x for a module M to be the function 
defined on a Cartan subalgebra by taking traces of exponentials: 

Here TrM denotes the trace as an operator on the particular module iVI being 
considered. (The exponential function can be defined by its Taylor series, which 
is convergent here because we can regard h as being a linear transformation in a 
finite-dimensional vector space 144.) 

We note here some of the elementary properties of characters. If we set h = 0, 
we get the trace of the unit operator in the module M, which is equal to the di- 
mension of the module 

x(0)  = dim M. 

The character x of the direct sum M = M1 O M2 of two modules M1 and iMSis 
the sum of their respective characters xl and xz: 

This may be proved by choosing a basis in the direct sum which is the union of 
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bases in the sun~nlands. The character x of the tensor product M = MI O M z of 
two modules is similarly seen to be the product of the characters of the two 
modules : 

One way toaprove this is by direct computstion, substituting 

into 
h"

exp h = C - ,  
n=O n!  

and interchanging orders of summation. Another way is to note that if hx = Ax 
and hy = py, then h(x O y )  = (A + p)(x @ y), and hence eh(x O y) 
= eX+'(x @ y), while ehx = eXx and ehy = e"y. One then uses the fact that the 
trace is equal to the sum of the eigenvalues. 

The representation matrices in the dual of a given module are obtained from 
those in the original module by taking the negative transpose. Since the trace is 
unaffected by the operation of taking tranposes, we see that 

Finally, we note that since any module M is the direct sum of its weight sub- 
modules MEp, the trace is given by 

PX(h) = T r ,  exp h = TrMHpexp h. 

Sincehx = p(h)x for a11 x in lMHP and all h in H ,  we have eh = e""' 1in A4HP, and 
since the trace of the unit operator gives the dinlension n, = din1 iMaP, we have 

where A is the weight diagram of the module M. This formula shows that a 
knowledge of the character of a module is equivalent to knowing its weight 
diagram and the multiplicity of each weight. This formula may be used in two 
ways. If we know how to compute the multiplicities of the weights by means of 
some algorithm, then we can use this formula to calculate the characters, and 
from this me can obtain the Clebsch-Gordan series. Alternatively, if we have some 
formula for computing the characters, then we can use the above formula to 
calculate the weight diagrams and multiplicities of the irreducible modules. A 
further discussion of such computational methods mill be given in the third paper, 
where me discuss Freudenthal's algorithm and Weyl's character formula. For 
rank two simple Lie algebras some of these calculations have been carried out by 
Behrends, Dreitlein, Fronsdal and Lee [3]. 

2.6. Application to irreducible representations of A1 .We now apply some of 
the preceding ideas to compute the irreducible representations of A1 , the corn- 
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plexification of the real Lie algebra of the ordinary rotation group SO(3, R ) .  
Sin~ilsrformulas also apply to representatioris of A1 @ A1 which is the complexifi- 
catior, of the real Lie algebra of the usv.01 homogeneous Lorentz group 
SO(3,  1;L'). 

The Lie algebra A1 has the structure discussed above in $1.4, with basis 
h = ,11, ei, = 111 7 1 2  = , sati~fying 

~ C Z ]  = eu ,  [h,e-,] = -e-, , [e, , e-,] = 2h. 

i? Cartan subalgebra N has basis 11. The roots are 0, &a,  TT-liere a (h )  = 1. 
Since the sum of the squares of the lengths of the roots is equal to the rank, 

~vhich is one, n e have ( a ,  a )  = 9.There is one basic 11-eight X in the one-dimen- 
sional space HEU. I t  must be some n~ultiple of a satisfying 2(X, a ) / (&,  a )  = 1. 
Consequently, X = a/2. 

By means of a Weyl reflection, the basic weight X goes over into its negative 
-A. Thus the basic module has a .i\ eight diagram consisting of at  ieast these two 
neights. Let x be a neight vector corresponding to X, so that 

Thc I zi;;i:lg and. lo ering zig9bras C' and I;- consist, respectively, of all poly- 
nomit:lh in e,  and e-, . Since :is an extreme vector, n e have 

;il:,cc. P,e..,n: = [e, , c-,jx + e-,e,x = 2Jzz + 0 = 2, it follo~r-s that 

is ilanzero. I t  is clearly a weight vector corresponding to the shifted ~veight 
-A  = ;4 -a. r e  also have 

because if it nem not zero, then n e  ~vould obtain a weight 1011-er than -A ,  
a;ld hence by bieyl reflection a weight higher than X. Hence U-x is spanned 
just by the t a o  vectors x and y. The basic module over 81 is therefore a two- 
din~ensior~alrnoduie spanned by z and y with 

It is called the spin half representation [29]. 
Every irreducible module over -41 is generated by U- (i.e., repeated applica- 

tions of e-,) acting on a tensor product x O x O . . . O x. Each irreducible 
module is lhereforc characterized by a single integer, n, the rank of the tensor 
x 8 x @ . . . @ x (i.e., the number of repetitions of 2) .  The tensor x @ x 
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O . O z is the highest weight of the module and since 

h(x O x 8 . . .  Q x) = (hx) 8 x @ @ x + x @ (hx) @ z @ . . .  x 

+ + x @ @ @ hx 

n= - ( x O x O  O x ) ,
2 

the highest weight for the module is n/2 = j. The number j = n/2 is called the 
spin in the quantum mechanical theory of angular momentum. The entire 
module structure can readily be calculated. For example, in the case n = 2 
(spin one), we easily compute 

For symmetry, it is convenient to take as basis for the module 

Nore generally, for the module M j  of spin j (highest weight j = n/2), we 
can compute a basis of 2 j  + 1 vectors urn,  m = -j, -j + 1, . . , + j ,  with 

u j  = x x O .. . O x (n = 2 j  factors), 

u-j = y 0 y 0 . . .  0 y 

and 

hum = mu,, 

eaum= d ( j  - m ) ( j  + nz + 1)%+1, 

e-,urn = d ( j  + m ) ( j  - m + l)um-I. 

These formulas play a basic role in the theories of the representations of the 
ordinary rotation group and of the homogeneous Lorentz group (see [14], 

2.7. Application to irreducible representations of Az .The simple Lie algebra 
Az is the complexification of the real Lie algebra of the special unitary group 
S U ( 3 ) . This particular group has recently been studied extensively in applica- 
tions dealing with the strongly interacting elementary particles. As a consequence 
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there now exist excellent review articles devoted just to the study of the repre- 
sentations of this algebra alone [lo]. We recall from our earlier study (cf. [4, 
p. 321) that the root diagram of the Lie algebra A2 has six nonzero roots of equal 
length, forming the six vertices of a regular hexagon, together with the zero 
root located at the center of the hexagon, having multiplicity two (cf. Fig. 2). 
Since the sum of the squares of the lengths of all the roots is equaltotherank, 
which is two, i t  is clear that each nonzero root has length l/&. The inner 
product on the Cartan subalgebra, i.e., the Killing form, can now be computed 
in terms of the simple roots al and az, since we know that the angle between 
them is 120". We thus find 

The equations defining the basic weights X1 and X2 can be solved either alge- 
braically or geometrically. For example, the equations say that X1 is perpendicular 
to a s ,  and its projection onto a1 is half the length of a1 (cf. Fig. 2).  

Since every representation can be obtained from the two basic representa- 
tions, we naturally study these. The representation which corresponds to the 
basic weight Xz is just the dual of the one corresponding to X I .  I n  the applied 
literature dealing with the elementary particles, these are known as the quark 
and antiquark representations. (The word "quark" was coined by M. Gell-

- a  a 
I 2 

FIG.2. Basic weights of the simple Lie algebra A2 shown superimposed on the root diagram 
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FIG.  3. Weight diagrams of the two basic modules of A, 

Mann, who took the word from a poem appearing in James Joyce's famous ~rorlr 
Finnegan's Walce [18] .) 

Let us consider now the basic module with highest weight XI.By means of 
the Weyl group it is easy to show that the complete weight diagram of this 
module is an equilateral triangle, consisting of three weights p1, 12 and p J ,  

as shown in Fig. 3. Let us use the canonical basis for A2 (given in [4, p. 2 7 ] ) ,  
consisting of the simple raising operators el = e,, , e2 = e,, , the simple Ion eririg 
operators fl and f2 proportional to e-,, and e-,, , respectively, and their com- 
mutators e12 = [el, e2] and f12 = Ifi, f2], and elements hl and h2 proportional to 
ha, and h,, , respectively. For the basic module MI we choose a basis XI , x, , .ca 
consisting of weight vectors corresponding to the weights p1, p2 , p3, respectively. 
Having chosen the extreme vector xl , it is clearly possible to define x2 and x3by 
the equations 

This serves to fix the relative normalization of the three basis vectors for the 
module. I t  is now possible to use the commutation relations of the Lie algebra 
Az (cf. [4, p. 311) to work out explicitly the matrices for the representation. 
We also need to note here that X,(h,) = a,, and h,x, = pcl,(h,)x,. Note that 
p1 = XI, p2 = X2 - X1 and ps = - A 2 .  AS a sample calculation, we note that 

Since the shifting rule LHaMf C MEiP'" allows us to conclude from inspection 
of the weight diagram that elxl = elx3 = 0, it follows that the matrix correspond- 
ing to el is a matrix whose only nonzero entry is its entry in the first row and 
second column. A complete calculation, which we leave to the reader to verify, 



leads to the follo7.1-ing matrix representation in the basic module 311over A ?  : 

0 1 0  0 0 0 0 0 13 

:O o o o o o o o o 
l j l o o !  . [ o  0 0 0 + -10 00 00 0 0  1 0  O]! 

For the dual module M z  E MI*, the weight diagram is the triangle obtained 
froin the weight diagram of the original module M1 by inversion in the origin. 
Thus if pl , p2 and p3 are the weights for the quarli module, then -p1, -pz and 
-p3 are the weights for the antiquark module. The representation matrices in 
the dual module can be obtained as the negative transposes of the representa-
tion matrices calculated above, provided we use the corresponding dual basis 
zlX, xt*, x3*in the dual module MI*. 

The representation matrices in an arbitrary irreducible representation of A2 
can be obtained by a similar calculation to the one performed above. A general 
formula can also be derived, making use of the second and third order Casimir 
operators for Az (see [I]). 
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