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1. Introduction and review.

1.1. Motivation. This paper, together with a third paper to follow, is a con-
tinuation of a survey [4] of Lie groups, Lie algebras, and their applications. In
the previous paper, we were concerned primarily with the classification of Lie
algebras and, in particular, of semisimple Lie algebras. Much of the applied
literature makes use of representation theory, and in view of this we are writing
the present paper to carry the exposition further to the point of classifying the
finite-dimensional representations of semisimple Lie algebras. As in our first
paper, our primary intention is to introduce the concepts used in the current
applied literature in a form accessible to the nonspecialist. We have tried to
indicate some of the many directions in which research has been carried out,
but our purpose is not a comprehensive survey of all known applications. Much
major research has had to be left out to keep the discussion within manageable
dimensions. On the other hand, we have attempted to provide in some instances
enough details that our paper could be directly useful. The reader will realize
that in order to pursue any particular application seriously, one must go beyond
the material presented here. Our bibliography will serve as a guide for collateral
reading and amplification of points presented summarily here. So much has been
written that a complete bibliography is out of the question. We apologize to
those authors whose work we have left out.
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1 Department of Mathematics, Drexel Institute of Technology, Philadelphia, Pennsyl-
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Although the representation theory of Lie groups and Lie algebras has long
been a subject of intensive research activity in pure mathematics, a more wide-
spread appreciation of the thoroughly practical value of the subject has become
evident only rather recently. With this appreciation has come a brand new
assault on the subject by applied mathematicians, having as its aim the further
development of practical techniques, such as those for computing the Clebsch-
Gordan and Racah coefficients of the classical Lie groups [6], [9]. In this effort,
the use of automatic electronic digital computers has been essential. Concurrently,
and largely independently, extensive simplifications and generalizations of the
theory have been made by pure mathematicians [12], [13], [23], [24]. In view of
this rapid development of the subject on all levels, it has become evident that
there is a need to bridge the growing gap between pure and applied mathe-
maticians studying the subject and to accelerate the diffusion of these important
mathematical ideas to a more general public including applied mathematicians,
physical scientists and research engineers. This has provided the motivation for
writing these papers. We have tried to provide basic facts and a general orienta-
tion rather than an encyclopedic treatise.

In the Introduction of the present paper, we seek to orient the reader and to
recall some of the ideas presented in our first paper. Following this, the main
body of the paper is devoted to a discussion of the concepts of module and
representation, the various operations for combining them, and their classifica-
tion. In the third paper to follow, we give a detailed discussion of computational
methods, including the explicit construction of the irreducible representations,
and also deal with a few selected applications, chosen to illustrate the great
diversity of possible topics. In that part, we have not attempted to cover any
of these topics in depth, being content to provide a brief introduction to each
subject to orient the nonspecialist.

1.2. Prerequisites and review of the structure of Lie algebras. While we
generally assume familiarity with the material presented in the first paper, it
seems appropriate to give here a brief sketch of some of the more important
points, and especially to recall some of the main facts about the structure theory
of semisimple Lie algebras.

In the previous paper we began by discussing the functorial relationship be-
tween Lie groups and Lie algebras, showing how various results about Lie
groups could be translated into related results about their corresponding Lie
algebras, and vice versa. In particular, we discussed the fact that analytic Lie
group homomorphisms induce homomorphisms having corresponding kernels
of the corresponding Lie algebras. We also discussed the fact that there is a
unique simply connected Lie group for each Lie algebra, and that all other con-
nected Lie groups corresponding to a given Lie algebra are quotients of this
universal covering group modulo discrete normal subgroups. Having thus, in a
sense, reduced Lie group theory to the theory of Lie algebras, we then proceeded
to analyze the general structure of Lie algebras.

A Lie algebra L was defined to be a vector space in which there is defined a
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product rule (L X L — L) denoted by [z, ¥] which satisfies three axioms: linearity
in ¢ and y, anticommutativity: [z, y] = —[y, x], and the Jacobi identity: [[z, ¥], 2]
+ {ly, 2], ] + [[z, 2], y] = 0. The Jacobi identity plays for Lie algebras the same
role as the associative law plays for Lie groups, and the one law can be derived
from the other. A subalgebra S of a Lie algebra L is defined to be a subspace
which is closed under the bracket operation: [S, S] < S. An ideal S of a Lie
algebra L is a subalgebra which satisfies [L, 8] € S. A Lie algebra is Abelian if
[L, L] = 0. A simple Lie algebra was defined as a Lie algebra L whose only ideals
are the trivial ones 0 and L. A semisimple Lie algebra is anon-Abelian Lie algebra
which also has no Abelian ideals other than 0. There are four main series of
simple Lie algebras over the complex numbers corresponding to the unitary,
orthogonal and symplectic Lie groups. The simple Lie algebra A; corresponds to
the Lie group SU(I + 1), B; corresponds to SO(2l + 1), C; to Sp(l), and D,
to SO(21). The Levi decomposition theorem stated that any Lie algebra is the
direct sum, as vector spaces, of its radical (the unique maximal solvable ideal)
and a semisimple subalgebra, the latter in turn being a direct sum of its simple
ideals. Thus it became clear that the structure of simple Lie algebras, besides
being interesting in its own right, also plays a key role in the general theory of
Lie algebras, and that for semisimple Lie algebras (those with zero radical),
the structure of the simple ideals completely determines the structure of the
algebra.

We now review briefly the pertinent facts about the structure of semisimple
Lie algebras. Every semisimple Lie algebra L over the complex numbers has a
Cartan subalgebra H. This is a maximal Abelian subalgebra having the property
that, for every h in H, we have

(ad h)"x = [h, [h, -+~ [h, @] ---]] = O

only if z is also in H. While the Cartan subalgebra is not unique, they all have the
same dimension I, called the rank of the semisimple Lie algebra L. Given a
particular Cartan subalgebra H, a root o is defined to be a linear form on H
having the property that there exists e, in L such that [k, e.] = &(h) e, forall
I in H. Thus we see that «(h) is always an eigenvalue of the linear transforma-
tion ad h defined on L by (ad h)x = [h, z]. For a semisimple Lie algebra over the
complex numbers, the root space of «, consisting of all the vectors e, which satisfy
(ad h)es = a(h)e, for all b € H,is a one-dimensional space Ly for each nonzero
root a. The whole Lie algebra in this case is the direct sum of the Cartan'sub-
algebra and all the root spaces corresponding to the nonzero roots.’

The Killing form is a bilinear form defined on an arbitrary Lie algebra by
(z,y) = Tr(ad z) (ad y), where Tr denotes the trace and ad z the linear trans-
formation defined previously. The Killing form is nonsingular if and only if the
Lie algebra is semisimple. The Killing form of a semisimple Lie algebra L 1s always
nonsingular on any Cartan subalgebra, so it can be used to identify the Cartan
subalgebra H with its dual H* by letting every form « in H* corréspond to the
unique veetor h, in H such that a(h) = (hs, h) for all hin H. With this identifica-
tion, the bilinear form can equally well be regarded as being given on the dual
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space H* with (a, 8) = (ha, hg) for all «, 8 in H*. The extension of this bilinear
form turns out to be real and positive definite on the space Hz* generated over
the real numbers by the nonzero roots, thereby introducing an inner product,
and hence a Euclidean geometry in that space.

1.3. An important example, the rotation group. While discussing representa
tions in general, it seems appropriate to give a fairly thorough discussion of an
important example, the ordinary rotation group SO(3, R), in order to provide
a concrete framework which can be kept in mind during the more general dis-
cussion. In our first paper, it was shown that the Lie algebra so(3, R) of the rota-
tion group is isomorphic to ordinary real three-dimensional space with the usual
vector cross product as the Lie multiplication. Moreover, the simply connected
group associated with this Lie algebra was shown to be the special unitary group
SU(2). The rotation group SO(3, R) is isomorphic to SU(2) modulo the dis-
crete subgroup consisting of the identity and its negative, 4=7. The relationship
between the groups SO(3, R) and SU(2) can be made explicit in the following
manner. The rotations of SO(3, R) correspond in a one-to-one fashion with the
rotations of a sphere about its center. If the points of the sphere other than the
“north pole” are identified with the complex plane by the usual projection from
the ‘“north pole” onto a plane tangent to the sphere at the ‘“‘south pole,” each
rotation of the sphere induces a corresponding mapping of the plane onto it-
self—a complex function of a complex variable. The complex functions found in
this manner obviously form a group isomorphic to the rotation group under com-
position and they are easily seen to be linear fractional transformations of the
form

az + 3
vz + 0

with a6 — v8 # 0. Obviously f(#) is unchanged if all the coefficients «, 8, v, &
are multiplied by a common factor, so by introducing an appropriate factor we
can always make aé — yB8 = 1. Since only the square of a common factor enters
into the expression ad — B, however, its negative will serve equally well to
satisfy the condition a6 — ¥8 = 1. To each such f(z), therefore, there correspond
two matrices of coefficients,

a f

vy 6

and its negative, both with determinant 1. It is easily shown that the coraposition
of two linear fractional transformations is a linear fractional transformation,
and that the matrix of the composition is the product of the matrices of the
composed transformations. We thus have a homomorphism of the group,
SL(2, C), of all 2 X 2 matrices of determinant 1 onto the group of linear frac-
tional transformations of the complex plane, and the kernel of this homomorphism
consists of the identity matrix and its negative, -=I. Not every fractional linear
transformation, however, corresponds to a rotation of a sphere. A straightforward

f(z) =
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computation shows that a fractional linear transformation will correspond to a
rotation of the sphere if and only if its matrix is unitary; that is, it must have the

form
_ﬁ- & ’

where the bars denote complex conjugation. Since the 2 X 2 unitary matrices
with determinant 1 are precisely the subgroup SU(2) of SL(2, C), we have the
desired homomorphism of SU(2) onto SO(3, R) with kernel =+I. Writing
a = 11 + 922, 8 = Tz + 124, it is clear that the condition aa@ 4+ B8 = 1 is precisely
the condition that the vector z = (1, 22, 23, z4) lie on the unit sphere in 4-space.
Thus the group SU(2) is homeomorphic with that sphere (see [8]).

A representation of a group is a homomorphism onto a group of linear trans-
formations of a vector space. The representations of SO(3, R) are identical with
those representations of SU(2) whose kernels contain the negative of the identity,
—1I. There are no proper ideals in the Lie algebra so(3, R) = su(2); such an
ideal would be a proper subspace of 3-space, a line or plane passing through the
origin in ordinary 3-dimensional space, such that the vector cross product of any
vector in the subspace by any vector whatever lies in the subspace. Recalling
that the cross product of two vectors is perpendicular to both (and is nonzero
unless the two vectors are collinear or at least one is zero), it is easily seen that no
line or plane can have this property. Since every closed normal subgroup of
SO(3, R) must have as its Lie algebra an ideal of so(3, R), we can conclude that
the only proper closed normal subgroups are those with trivial Lie algebras,
namely, discrete subgroups. If a discrete subgroup is normal in SO(3, R), how-
ever, and if ¢ is one of its elements, then every element of the form A™'gA must
also be in the discrete normal subgroup; that is, all the orthogonal similarity
transformations of the rotation g must also be in the subgroup. But this is equiva-
lent to saying that every rotation about any axis by an angle equal to that of the
rotation g about its axis must be in the normal subgroup. By multiplying ¢ by
the inverse of an equivalent rotation about an axis which has been shifted a
small amount, it is clear that we can obtain an element of the normal subgroup
not the identity, but as close to the identity as we wish. (Formally, take A to be
a very small rotation about an axis not that of g. Then gA™'¢ "4 is close to the
identity.) Thus no closed normal subgroup of SO(3, R) can be discrete either,
and we conclude that SO(3, R) has no proper closed normal subgroups.

Since every finite-dimensional representation of SO(3, R) is a homomorphism
into the Lie group GL(n, R) of all nonsingular linear transformations on a
real n-dimensional vector space, for some 7, its kernel must be a closed normal
subgroup of SO(3, R). By our previous remarks, the kernel must be all of
S0(3, R) or just the identity, and such a representation either maps all of
SO(3, R) onto the identity in GL(n, R) (the trivial representation) er it is an
isomorphism onto a subgroup of GL(n, R). Moreover, any normal subgroup of
SU(2) would have as its image under the homomorphism of SU(2) onto SO(3, R)
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a normal subgroup of SO(3, R), and thus the kernel {1} of the homomorphism
is the only proper closed normal subgroup of SU(2). Consequently, any finite-
dimensional representation of SU(2) which is not an isomorphism is induced by
a representation of SO(3, R).

Since the group SU(2) is homeomorphic with the unit sphere in 4-space, it is
clearly compact, and SO(3, R), being a continuous image of SU(2), is also
compact. Compact Lie groups enjoy certain properties which simplify their
representation theory substantially (see [23], [30]).

In general, when we speak of representations of a group, we admit the pos-
sibility that a representation may be a homomorphism of the given group to a
group of linear transformations of an infinite-dimensional space. The theory of
such infinite-dimensional representations is still a topic of active research in-
terest and will not be discussed in detail in this paper. A survey of work on
infinite-dimensional representations is given in [21], [22], [25]. It is usual, in
discussing infinite-dimensional representations, to impose restrictions on the
types of linear transformations which are allowed as representations. A specific
type of topological structure is frequently demanded of the infinite-dimensional
vector spaces, the most important case so far, for applications, being that in
which the space is required to be a Hilbert space, or a subspace of a Hilbert space.
The transformations considered are often required to behave suitably by being
continuous, by preserving a metric, or by being otherwise well-behaved.

We recall that a Hilbert space is a complex vector space in which an inner
product is defined and such that every Cauchy sequence of vectors in the space
converges to a vector in the space [35). If we have a representation of a compact
group by linear transformations on a Hilbert space, then the inner product on
the Hilbert space can always be redefined such that all the linear transformations
are unitary, i.e., they are isometries and leave the inner product invariant
(see [11, Chap. X1, §11] and [27, Chap. VI]). Thus only unitary representations,
i.e., representations by unitary linear transformations, need be considered when
one is dealing with compact groups. We say that a representation is decomposable
when the space on which the linear transformations act is a direct sum of sub-
spaces each of which is mapped into itself by all linear transformations in the
image of the representation, and we say such subspaces are invariant. When a
representation is decomposable, its linear transformations can be regarded as
acting on each of the invariant subspaces independently, and we say that the
representation is the direct sum of the representations obtained by restricting
its transformations to each of the invariant subspaces involved in the decom-
position. Every unitary representation of a compact group is a direct sum of
indecomposable unitary representations acting on mutually orthogonal sub-
spaces. Moreover, every indecomposable unitary representation of a compact
group is finite-dimensional. Thus for a compact group it is only necessary to
study the indecomposable unitary representations on finite-dimensional spaces
in order to obtain the complete theory of representations on Hilbert spaces.
Groups which are not compact may have nonunitary representations and
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infinite-dimensional indecomposable representations on Hilbert spaces. We shall
be primarily concerned in this paper, however, with the finite-dimensional
representations.

Returning to the case of the rotation group SO(3, R) and its universal cover-
ing group SU(2) we see that we need only consider the finite-dimensional unitary
representations of these groups. We shall return repeatedly to this example to
illustrate various points in our later diseussion.

1.4. Complexification of real simple Lie algebras. In [4] we classified all the
simple Lie algebras over the complex numbers, finding the four general sequences
of simple Lie algebras: 4;, B;, C; and D; and the exceptional simple Lie al-
gebras Gy, Fu, Es, E; and Es . (Of course, for I < 4, some of the general sequence
Lie algebras are not defined—they collapse into one another—so we have only
A1, Az, By, A5, By, C;.) Tt is apparent that real Lie algebras, such as our ex-
ample so(3, R), are quite important for many applications, but classifying the real
simple Lie algebras is only slightly more complicated than eclassifying the
complex ones. To see why this is the case, consider a real r-dimensional Lie
algebra with basis e, ex, - -+, e,. By linearity, the Lie product is defined when
the product of basis vectors is given:

r
les, ex] = 2 Che;,
=1

ie., it is determined by the structure constants C% . Since the definition of a
Lie algebra essentially amounts to imposing certain restrictions on the structure
constants (see [4, p. 16]), we can obviously extend L to a complex Lie algebra
having the same basis and the same structure constants. This complex Iie
algebra is called the complexification of L. Conversely, if we are given a complex
Lie algebra L, it can alwaysbe regarded asa real Lie algebra L”, since multiplica-
tion by reals is appropriately defined a fortiori. If this resulting real Lie algebra
L" can be written as the direct sum Lo @ 7L, for some real subalgebra Ly, then
Ly is called a real form of L, and obviously L is isomorphic to the complexifica-
tion of Lo. It can be shown that the simple real Lie algebras are either simple
complex Lie algebras being written as real Lie algebras or real forms of simple
complex Lie algebras (but not both).

The complication of the classification problem for simple real Lie algebras
arises from the fact that a given simple complex Lie algebra may have several
distinet real forms (or, putting it the other way, distinct simple real Lie algebras
may have isomorphic complexifications). For instance, the real Lie algebra of
the rotation group and that of the plane Lorentz group (the set of all linear
transformations on (z, y, t) leaving * 4 y* — ¢ invariant) have isomorphic
complexifications, namely A;, without being themselves isomorphic.

Of all the real forms of a given simple complex Lie algebra, there is precisely
one which is the real Lie algebra of a compact Lie group. We call this the compact
real form, and in general a real Lie algebra which is the Lie algebra of some com-
pact group is called compact. A less intuitive, but sometimes more useful charac-
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terization of compact semisimple Lie algebras arises from the fact that a real
semisimple Lie algebra is compact if and only if its Killing form is negative defi-
nite. All of the noncompact real forms of a simple complex Lie algebra can be
obtained from the compact one [16], [17], [20], [33].

Given a simple complex Lie algebra L, recall that we can find a basis of the
form hy, he, -+, b1, €q, €—a, €s, €5, - -+, where the {h;} form a basis for a
Cartan subalgebra, [ is the:rank of L, and the e’s are root-vectors, i.e.,

[, €] = a(h)ea,
[h) e—ﬂ] = _a(h)e—a)

for each % in the Cartan subalgebla and « ranges over all positive roots (cf.
[4, §3. 3]) We may normalize the e’s so that (e, €-.) = 2. The vectors 7h;,
tha, -+, the, i(ea + €_a), 1(esg + €p), -+, (éx — €a), (€5 — €_5), -+ then
form a baSIS for the compact real form L, of the simple complex Lle algebra
L. (These vectors are, of course, only one of many bases for the compact real
form. This choice makes it particularly easy to compute that the Killing form is
negative definite over the real space generated by them.)

It must be understood that if we take a complex Lie algebra, L, with basis e;
and choose to regard it as a real Lie algebra, L”, with basis {e; , 7e;}, the imaginary
unit ¢ loses its intrinsic meaning except as it is involved in defining the Lie
products of basis elements,

[eJ ) /I’ek] [eJ ) ek]

[te; , tex] = —le;, ex.
If we are to find a real form of L, we must introduce some operation J correspond-
ing to the desired multiplication by 7 and write the direct sum L* = Ly @ JL.
All that is required of J is that it be a linear operator on L” having its square the
negative of the identity, J' ® = —I, and that [z, Jy] = J[z, y]. The fact that there
can be several real forms results from the fact that there can be several distinet
suitable operators J and corresponding Lq’s such that L = L, @ JLo . If we have
a real form Lo, and the corresponding operator J, we can define a Lie algebra
“conjugation” S, an automorphism on L*, by S(z + Jy) = z — Jy. Clearly,
§* = I, and moreover, S is the identity when restricted to Lo, but its negative
when restricted to the complement JLo. Thus Ly is the eigenspace of the linear
operator S corresponding to the eigenvalue 1, and JL is that corresponding to
the eigenvalue —1.

Suppose we start with the compact real form L of a simple complex Lie algebra
L, and we find an automorphism Sp of Lo satisfying S’ = I. Let us denote the
eigenspace of S, corresponding to the eigenvalue +1 by Lo" and that correspond-
ing to —1 by Li so Ly = Le" @ L. Let e;, ---, e be a basis for L," and
€ri1, €rv2, € 2 basis for Ly~. Since L* = Lo + Lo, we can extend Sy to
an automorphism of the real Lie algebra L® by defining

S(Lo) = So(Lo),
S(iLo) = —iSo(Lo).
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Defining L, = L," @ 4L, we find that the vectors of L, are left fixed by S and
those of ¢L, = iL," @ L¢ are carried to their negatives. Since L* = L, @ iL,,
S is an operator of order two on L¥ (i.e., 8 = I) and S(az) = aS(z) for any
complex a. A straightforward computation (using the fact that S is an automor-
phism of Ly, o0 So([z, ¥]) = [Se(z), Se(y)] for z, y in L,) shows that S([x, y])

= [S(x), S(y)] in L*. Since L, is the set of vectors left fixed by S, we see that
if z, y are in L, , then so is [z, y], for

Sfz, y] = [Sz, Syl = [z, y],

so Ly is a subalgebra of L” and hence a real form of L. Since every real form of L
induces a conjugation operation which has the properties we required of S,
on Lo, every real form of L can be obtained in this manner from some automor-
phism Sy on L.

Because of the correspondence demonstrated here, we shall deal in general
only with complex Lie algebras in the rest of this paper. It can be assumed that
a complex Lie algebra is meant in any further general discussion unless a specific
exception is made.

1.6. Complexification of the Lie algebra of the ordinary rotation group. The
process of complexification may be illuminated by consideration of the real Lie
algebra su(2) of the rotation group, the three-dimensional space with the usual
vector cross product. We can take as basis elements e;, e;, e; with the Lie
product defined by [e;, es] = e3, [e2, 5] = e, [es, 1] = e;. The complexification
of su(2) then has the same basis and same Lie produets over the complex num-
bers. In angular momentum theory it is conventional not to use the elements
e, e, e, but to replace them with an obviously equivalent set j; = ey, j2 = 7e.,
js = te;. Any one of these vectors forms a basis for a Cartan subalgebra. It is
conventional to choose b = j; = 7e; as the basis of a Cartan subalgebra. The roots
are zero and the linear forms =+« on the Cartan subalgebra, with -« defined by

a(M) = N and —a(M) = —X for all complex numbers A. The corresponding
root vectors are e, = j+ = j1 + @ and e_o = j- = j1 — .. We have
(b, €a] = €a,
[h, e_a] = —e_a,
[ea, e_a] = 2h.

The Lie algebra has three complex dimensions, and h, e, and e_, form a basis.
This complex Lie algebra is, of course, the simple Lie algebra A4, .

The compact real form of A4, is the original Lie algebra su(2), since the groups
SU(2) and SO(3, R) are compact. According to the formula of the preceding
section, we should have {th = —e;, i(ex + €-a) = —2€1, (€a — €_a) = —2e}
as a basis for su(2), which it obviously is.

Suppose we had an automorphism S, of su(2) satisfying the condition S, = I.
From this condition it follows that Sp can have only £1 as eigenvalues. If all its
eigenvalues were +1, then S; would be the identity, and the real form generated
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by it would just be su(2) again. The condition that S, be a Lie algebra automor-
phism is

So(lz, y1) = [Se(x), So(y)]

for all # and y in the Lie algebra. If all the eigenvalues of S, were —1, then Sy
would be —I, and we would have

[So(er), So(e2)] = [—e1, —e] = e,
while
So(ler, e]) = So(es) = —es

so that Sy, would not be an automorphism. Thus any nontrivial automorphism
must have at least one eigenvalue +1 and one eigenvalue —1. Letting x and y
be corresponding eigenvectors, we have

[Sox, Soy] = [x; —y] = —[x; y];

so if Sy is to be an automorphism we must have
SO([x; y]) = —[x’ y];

and [z, y] is also an eigenvector corresponding to the eigenvalue —1. Since the
Lie product we are dealing with is just the familiar vector cross product, we
know that [z, y] is a nonzero vector orthogonal to both 2 and y. The vectors y
and [z, y] together form an orthogonal basis for the eigenspace corresponding to
the eigenvalue —1 and, moreover,

So(ly, [z, 1) = [Swy, Solz, yl]
= [_y, _[x’ y]] = [y, [x; y]];

so [y, [z, ]] is an eigenvector of S, corresponding to the eigenvalue 1. Since this
eigenspace can only be one-dimensional, [y, [z, ¥]] is a multiple of z. But we know
that [y, [z, ¥]] is perpendicular to y and [z, y], so 2 must be also. Thus z, y and
[x, y] are a mutually orthogonal set of vectors. If  and y are taken as unit vectors,
then [z, y] will also be one. Now we know that in the formulation of the vector
cross product algebra the vectors e, e, e; can be chosen as three orthogonal
unit vectors such that [, ;] = e, different choices of these vectors leading to
isomorphie Lie algebras. We can, therefore, assume ¢, = «, & = y, &3 = [z, y),
without loss of generality. Thus there is, up to isomorphism, only one noncompact
real form of A4,, the complexification of the compact real algebra L, = su(2),
corresponding to

1 0 0
So= 0 ‘—'1 0 .
0 0 —1

Since L," is spanned by e;, and Lo~ is spanned by e; and e;, a basis for the non-
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compact real form Ly = Ly" @ L, is given by the vectors e, 7e; and ie; . The
Lie produects of these basic elements are of course given by

ler, tes] = des,
[tes, tes] = —ey,
[’L'eg 5 61] = i@z .

The real Lie algebra so obtained is the real Lie algebra of several Lie groups,
including the three-dimensional Lorentz group SO(2, 1; R) leaving invariant
the form z* 4+ 4* — £ in (2, y, t) space, the real unimodular group SL(2, R),
the real symplectic group Sp(1, R), and the pseudounitary group SU(1, 1).
All of these Lie groups are locally isomorphic since their Lie algebras are iso-
morphic. The representations of these noncompact groups have been studied
extensively [2], [5], [31].

If the complex Lie algebra A; with three complex dimensions is regarded as a
real Lie algebra A," with six real dimensions, a basis being given by e, e,
e;, 1€ = Ji, tes = Jp, i = J3, we obtain the real Lie algebra corresponding to
several more well-known Lie groups, including the ordinary Lorentz group
S0(3, 1; R) leaving invariant the form 2* + 3* 4 2* — £ in (2, y, 2, t) space, the
complex unimodular group SL(2, C), and the complex orthogonal group
SO(3, C), all of these Lie groups being locally isomorphic. The complexification
of A,"is A; ® A, . Note also that SO(3, R) X SO(3, R) and SO(4, R) have real
Lie algebras isomorphic to su(2) @ su(2), whose complexification also yields
A, ® A;. In other words, both A4;" and su(2) ® su(2) are real forms of the
semisimple complex Lie algebra 4, @ A,;.

2. Modules and representations. One of the main tools in applications of
Lie group theory is the concept of a representation. Often in applications it is
sufficient to treat this conecept in a fairly loose manner; one speaks of vectors,
tensors, pseudoscalars, spinors and the like as being geometrical objects such as
directed arrows, ellipsoids, and the like [34]. Representations of the rotation
group crop up throughout physics in the form of spherical harmonics and
Legendre functions, multipole expansions, etc. The actual representation con-
cépt is often held in the background. For our purposes, however, such an intuitive
conception is not sufficiently precise, because we want to discuss some of the
deeper results, and also because we want our discussion to apply to all Lie
algebras, riot just the rotation group.

To be precise, a representation of a Lie algebra L consists of a vector space V
and a homomorphism f from L into the Lie algebra E(V) of all linear trans-
formations on V. (The notation E(V) derives from the use of the term ‘endo-
morphism” to denote a linear transformation from a vector space V back into V
itself.) If a, b are in E(V), their Lie product [a, b] in E(V) is defined as ab — ba.
The term “representation’ strictly refers to the pair (V, f), although colloquially
it is often used to refer just to the homomorphism f: L — E(V') alone. We also
note that the requirement that f be a homomorphism means that if « is in L,
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then f(x) is a linear transformation on V, and f(x) depends on z linearly:
flam + cxe) = af(x1) + cf(az) for all 21, 2, in L and complex numbers ¢
and ¢, . Also we have

(o, 2o]) = f(x)f(x2) — f(22)f (21).

Before proceeding, let us give two simple examples of representations of Lie
algebras. In our first example we consider the simple complex Lie algebra A,
obtained by complexifying the real Lie algebra of the ordinary three-dimensional
rotation group SO(3, R). A basis for A, is given by j1, 2, Js as explained earlier.
These elements generate the rotations about the z, y, z axes, respectively. Let
V be a two-dimensional vector space over the complex numbers, which we shall
call the spinor space. Let a basis for V be selected. Then the Pauli matrices

01 0 —<¢ 1 0
o] = y gy = ) g3 =
1 0 ) 0 0 -1

define linear transformations in the spinor space V. If we let f: A; — E(V') denote
the linear mapping which takes j, into 10, ,a = 1, 2, 3, then (V, f) is a representa-
tion of the Lie algebra A;. It is called the spinor representation, or the spin
half representation [29].

For our second example, we consider an arbitrary Lie algebra L, and we recall
that for any element z in L, the adjoint operator ad 2 in E(L) is defined by
(ad )y = [z, y] for all ¥ in L. The mapping ad:L — E(L) which takes z inte
ad z is a homomorphism from L to E(L). The pair (L, ad) is then a representa-
tion of the Lie algebra L. It is called the adjoint representation of the Lie al-
gebra.

2.1. Modules over Lie algebras. In some respects the concept of a representa-
tion is unnecessarily complicated; the object being represented (e.g., a group or
algebra) is first mapped by a homomorphism into a similar object composed of
linear transformations, acting in turn on a vector space. There is no loss of
generality, of course, if we regard the elements of the original object as affecting
the linear transformations on the vector space directly, disregarding the inter-
mediate homomorphism. When we take this viewpoint and the object being
represented is a group, we speak of the vector space as a module over the group.
When we are dealing with an algebra, we refer to the vector space as a module
over the algebra. The study of modules over an algebra is equivalent to the
study of the representations. The only difference is a point of emphasis. In
talking about modules we emphasize the vector spaces involved, whereas in
talking about representations, we emphasize the homomorphisms. Generally
speaking, the module formulation is the easier to work with.

Let us now give a precise definition. We deal here and in the sequel with finite-
dimensional Lie algebras over the complex numbers, although obviously some
of our basic definitions can be formulated more generally. A module over a Lie
algebra L is a vector space M with a product rule L X M — M such that if v
is a vector in M and z is an element of the Lie algebra, then xv in M satisfies the
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following laws:

(v + v2) = xv1 + v,

(21 + @)

(azx)v

I

7w + xow,

z(aw) = axv,

I

[z, zolv = @1(xw) — z2(2w0),

where « is any complex number.

If M is a module over a Lie algebra L, then for any z in L, let f(z) in E(M)
be the linear transformation which maps » in M into zv. Then (M, f) is a repre-
sentation of the Lie algebra L. Conversely, given a representation (M, f) we can
make the vector space M into a module by defining the product zv of = in L and
v in M to be f(x)v. Thus the concepts of module and representation are equiva-
lent.

A homomorphism % of one module M over a Lie algebra L into another module -
N over L is a linear transformation h:M — N which preserves the multiplica-
tion by elements of L, that is, h(zv) = zh(v). If the homomorphism # is one-to-
one and onto, and hence is invertible, then we call it an isomorphism, and in this
case we also say that the two modules M and N are isomorphic. If f is the repre-
sentation of L associated with the module M and if f' is the representation of L
associated with the isomorphic module N, then we have hf(z) = f'(x)h, and h
being invertible, we may write this as f'(z) = hf(z)h™". Thus the linear trans-
formations f(z) and f'(x) are related by a similarity transformation which is
independent of z. Such representations, corresponding to isomorphic modules,
are called equivalent.

If a basisoy, - - - , ¥, is selected in the vector space M, then the linear transforma-
tions f(x) correspond to matrices ((fij(z))), defined by

n

f(@); = 2 0ifii(2).

The mapping which assigns the matrix ((fi;(z))) to z is called a matrix represen-
tation of the Lie algebra L. If a different basis is selected for M, of course, the
matrices of the matrix representation will all be subjected to a common similarity
transformation. Thus again, matrix representations related by a common
similarity transformation are considered to be equivalent or isomorphic. It
seems clear that equivalent representations or isomorphic modules will not
differ in any important respect. It is easy to show that if // and N are isomorphic
modules, then there exists a choice of bases for both of these modules such that
the representation matrices obtained will be the same matrices for both modules.

If a module M over a Lie algebra L has a subspace S which remains invariant
under the action of L, symbolically LS C S, then S itself can be regarded as a
module over L, and we call it a submodule of the module M. That is, a subspace
S of a module M is a submodule if zv isin S for all z in L and all » in S. A module
which has no submodules other than zero and itself is called an irreducible
module. The corresponding representation is then also called irreducible.
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Since a module M is a fortiori an Abelian group, and a submodule N is a
normal subgroup, we can form the quotient group M /N whose elements are
cosets of the form » + N, with v in M. Since N is a vector space, multiplication
by complex numbers is well-defined on M /N, and hence M /N is a vector space;
similarly, since N is a module, multiplication by elements of L is well-defined on
M/N, and hence M /N may be considered a module over the Lie algebra. It is
easily shown that if / is a homomorphism of a module 3/ onto a module N, then
the kernel K of the homomorphism is a submodule of M, and the quotient meod-
ule M /K 1is isomorphic with the image N of the homomorphism.

Representations and modules can be defined for Lie groups as well as for Lie
algebras. If G is a Lie group, then an analytic representation of Gis a pair (M, f),
where M is a vector space (module), and f now is an analytic homomorphism of
G into the Lie group GL(M) of all automorphisms in M, that is, invertible
linear transformations of M onto itself. If n is the dimension of M, then GL(M)
is isomorphic to the Lie group GL(n, C) of nonsingular n X n matrices over C.
We see therefore that a representation of a Lie group is equivalent to a matrix
representation, a homomorphism D of the Lie group G into the matrix group
GL(n,C). Then D(g) is an n X m matrix representing the element g in G. The
notation D(g) arises from the German ‘Darstellung” for ‘“‘representation.”

Equivalence of group representations is defined just as before, two matrix
representations being equivalent or isomorphic if they are related by a common
similarity transformation.

2.2. Module operations. There are several useful ways of combining modules
to obtain new ones. The most immediate of these is the direct sum. The direct sum
can actually be defined in two very slightly different ways which are essentially
equivalent; these are called the internal and external direct sums. Given two
modules M, and M. over a Lie algebra L, their external direct sum as vector
spaces is the vector space consisting of ordered pairs (v1, v2), where v, is in M,
and v, in M., with addition and multiplication by complex numbers defined
componentwise. If multiplication by elements of the Lie algebra L is also defined
componentwise,

z(v, ) = (a1, 202),

we again have a module over L called the external direct sum of M; and M.,
denoted by M; @ M.. When a module M has two submodules M; and M,
such that every element in M has a unique expression as a sum of an element
of M, and an element of M, , then we say that M is the internal direct sum of its
submodules M, and M, . In this case it is also true that M is isomorphic to the
external direct sum of M, and M, . More generally, the sum of two subspaces of
a vector space is the set of all linear combinations of vectors in both of the
subspaces. In other words, the sum of two subspaces is the linear subspace
generated by their union. The sum of two subspaces is a direct sum when the
intersection of the two subspaces consists of the zero vector. Note that the in-
ternal direct sum can only be defined when both vector spaces are subspaces of
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some common vector space and have zero intersection, whereas the external
direct sum can be defined for an arbitrary pair of vector spaces. We shall use the
saine notation @ for both internal and external direct sums; the distinction
between the two can usually be understood from context.

" If a module M is the direct sum of two nonzero submodules, we say that M
is decomposable, and the corresponding representation is also said to be de-
composable. Obviously an irreducible module cannot be decomposable, but the
converse need not be true. Every finite-dimensional module which is decom-
posable is a direct sum of indecomposable modules.

A module having the property either of being itself irreducible or of being
the direct sum of irreducible submodules is called completely reducible. An
obvious necessary and sufficient condition for a finite-dimensional module to be
completely reducible is that every submodule should be a direct summand, that
is, for every submodule N, there is another submodule N’ such that M = N @ N'.

Every finite-dimensional module over a semisimple Lie algebra is completely
reducible. Thus the irreducible modules of a semisimple Lie algebra form the
building blocks out of which any other module over the Lie algebra can be con-
structed, and our attention can therefore be directed in this case to a study of the
irreducible modules. This is not true however for a general Lie algebra. For
general Lie algebras it suffices to consider the indecomposable modules, but these
need not be irreducible.

A second important way of combining modules is by means of the tensor
product. There are several ways to define the tensor product. The best way is
to give a universal definition, defining the tensor product by means of its prop-
erties. Another way, which assures us of the existence of the object being de-
fined, is to give a constructive definition, which is what we shall do.

In order to define the tensor product of modules over a Lie algebra, we first
recall the definition of the tensor product of two vector spaces. Given two
vector spaces V; and V,, we shall write an ordered pair having its first element
v1 in Vy and its second v. in Vs, as v ® v.. The set of all such ordered pairs can
be regarded as the basis of an infinite-dimensional vector space consisting of all
their finite formal linear combinations. A typical vector in this space has the
form Z?:l ai(vis ® 0y;).

Now consider the set of all vectors in this space of the form

(wg +0) ®ve—w ® v — vy ® vy,
0 ® (U +v2) — 01 @ U — 1 ® v,
a(t ® 1) — (av1) @ vy

or
a(nn ® v) — 0 ® (avs).

These vectors span a subspace. Taking the factor space, the cosets of the original
space with respect to this subspace, we obtain a vector space which we call
Vi ® V.. It is customary to write elements of the space Vi ® V, in terms of
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coset representatives:
n
D v ® vy,
7=1
and to keep in mind that one must consider
av; @ vy = 1 @ ave
for any complex number «, and that

(ur + 1) ® v =u ®vs+ 11 ® v

and
Ul@(u2+v2> =0 ® U + 11 ® v,

It is easily shown that the coset representative

Z V1 ® Va;

i==1
can always be chosen so that the vectors v;; are linearly independent in V7 and
the vectors vy, are linearly independent in V. If the v;; are not independent, then
one of these vectors, say vy, is a linear combination of the others:

n
n = Z 15 .
=2
Then,

n n
2 Vs ® Vg = Z i ® (Vs + apa),
1= i—2

and we can proceed in this manner until we obtain a coset representative having
its terms vy, linearly independent. A similar argument can then be applied to the
vectors vy; without destroying the independence of the vectors v;;. From this it is
apparent that if {#;,} is a basis in V; and {vz;} a basis in Vs, then the cosets of
{v1:; ® ve;} form a basis in Vi ® V.. Thus the dimension of the tensor product
V1 ® Vs is the product of the dimensions of ¥; and V,, and a coset representatlve
can always be written as :

Z ol @ Vg5
743

The array of coefficients a; is uniquely determined by the element of Vi ® V,
being represented, and it changes appropriately when the bases in V; and V, are
changed. Similarly, any array of coefficients which is made to change appropri-
ately when the bases of V; and V, are varied determines a unique element of
Vi ® V.. This accounts for the ‘“folk” definition of a tensor as an array of
quantities which varies appropriately when coordinate systems are changed.
‘Frequently one has in mind the case V; = V, = V, and one calls an element of
V ® V a eontravariant tensor of rank two.

The construction of the tensor product given above is not the only one poss1ble
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Another rather clever way to construct the tensor product Vy ® V, is to define
it to be the dual space of the linear space of all bilinear forms on the Cartesian
produet Vi X V. This alternative definition can be shown to be equivalent to the
one given above when the vector spaces involved are finite-dimensional, as we
assume here.

There is a natural identification between the elements of (V: ® V;) ® V; and
those of Vi ® (V. ® V;). Making this identification, we can define iteratively
the tensor product of any number of vector spaces.

A useful property of the tensor product arises from the fact that any linear
transformation on its factors V; and V; generates a linear mapping of the product
Vi ® V. In particular, if fi: Vy — V,' and f,: Vo — V' are linear mappings, then
fi® f:V1 ® Vo— Vi’ ® V, can be defined as the following linear transforma-
tion:

(fi ® fo) {g v @ vzi)} = g.ﬁ(vu‘) ® fo(v2i).

Also, a bilinear mapping (function of two vector variables, linear in both) on
V1 and V., generates a linear mapping on the tensor product. A bilinear mapping
B:Vy X Vo — W generates a linear mapping g*:V; ® V; — W by

g* {Z:; v ® vzi} = Z;; B(w1s, v2:).

Notice that the operations on the tensor product V; ® V, are defined in terms of
coset representatives, so that they must be shown to be well-defined, dependent
only on the coset, not on the particular representation of the coset chosen. The
selection of the generators determining the subspace with respect to which the
cosets are defined, however, was made precisely with this end in view; the rela-
tions imposed on two representatives by being in the same coset are precisely
those needed for the mappings to be well-defined.

Some special cases of such mappings should be mentioned. We use complex
spaces for illustration. The real number field R could equally well appear in place
of the complex number field C in the following paragraphs. If Vi (or V2) is just
the complex number field and V, (or V) is a complex vector space, then

f(ai 02) = oy

is a bilinear mapping and hence defines a linear mapping of C ® V, to V,. This
mapping is clearly an isomorphism and it is generally used to identify C ® V,
with V5, . If V; is the dual space of V., the space of all complex-valued linear func-
tions on V3, then the function

f(n, 1) = ()

is a bilinear complex-valued function on V, and V2, and consequently defines a
linear mapping of V; ® V. to C. In this latter case one generally refers to the
elements of V1 ® V; as mixed tensors of rank two, and one refers to the induced
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linear mapping from V; ® V, to C as contraction of the tensor. Similar remarks
can be made, obviously, with the roles of V; and V. interchanged.

In general, if we have an iterated tensor product V; ® --- ® V,, where each
V. is either a given vector space V, or else its dual V*, one calls elements of the
iterated tensor product tensors of rank p, contravariant as many times as V
appears in the product and covariant as many times as its dual V* appears. A
contraction can be defined on any appearance of the vector space V and its dual
V*inVi® --- ® V,, and this is described as contracting on various upper and
lower indices. The indices appear here because of the custom of choosing a basis
e, -, e (say) in V and the corresponding dual basis ', - - - , ¢” in the dual space
V™, where ¢® is the linear function on V such that e’(e;) = 3;° (zero for i > j and
one for ¢ = j). Every member of the tensor product space is then determined by
an array of coeﬂiclents with p indices. When the basis in V is changed, say to
€1, " ,& , where &; Z, P}/ €, the correspondmg dual basis changes auto-
matically toé', - - - ,&", given by &' = D_; Q;'¢’, where the matrix Q is the inverse
of the matrix P. The array of coefficients determlmng a fixed element of the tensor
product space varies according to an obvious formula, that is, contravariantly on
those indices corresponding to the space V and covariantly with respect to the
indices corresponding to the dual space V*. It is a custom in this case to write the
covariant indices as subseripts and the contravariant indices as superscripts. A
member of V ® V ® V¥, for instance, would be written

Z a,ﬁje,- ® e ® é'.
1,5k
If we substitute for the e-bases in terms of the new é-bases, we obtain
Z akiféi X & X ék,
1,5,k
where
Z QleJ P, 0‘
0k
In this sense the upper indices require transformations contrary to the basis
e; (hence, the term “contravariant’), while the lower indices require transforma-
tions akin to that of the basis e; (hence, “covariant’’). For this same tensor,
contraction on the first and third indices, and using the standard identification
of C ® V with V, yields

% 5]
j=1{ =1
in V. Thus contraction in this notation corresponds to setting an upper index of
the coefficient array equal to a lower index and summing on it.

While on the subject of tensor products, we should mention that two elements
of different iterated tensor products can always be tensored together to get a
member of a larger iterated tensor product by defining, for instance,

(Z_%@w)@ (Zw,'@:vj) =Zui®vi®’wj®$j-
1 7 %,
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This leads to the idea of the (contravariant) tensor algebra on a vector space V,
which is simply the infinite weak external direct sum

TV)y=CeoVeoVeoeVe:--,
where
V"=Ve®V®---®V (n copies).

Again, C denotes the complex numbers. The infinite direct sum is weak in the
sense that we consider only finite linear combinations of the elements of the spaces
C, V, V? ---. No actual infinite summations are involved, so no convergence
questions arise. As a direct sum of vector spaces, the contravariant tensor algebra
is obviously a vector space. With the tensoring together operation ® as multipli-
cation, the tensor algebra T'(V) is an associative algebra.

Having discussed at some length the tensor product for vector spaces, we are
now ready to discuss tensor products for modules. Let M, and M, be modules
over a Lie group G. We can make the tensor product space 1/; ® M, a module
over the group G by defining

g [; My ® my;| = Z;: (gm:;) ® (gmy:).

We can pass from modules over Lie groups to modules over Lie algebras by
differentiation, or vice versa by exponentiation. Choosing the latter method, if
is an element of a Lie algebra L, then ¢ = ¢” = 1 + tx + - - - is an element of a
Lie group. For sufficiently small real numbers ¢, we could ignore higher order
terms. Then, inserting this expansion for g in the above definition of its action on
the tensor product space, and comparing powers of ¢, we arrive at the formula

o[22 mu @ ma] = 20 [ ® ma: + mu; ® wmy).

2

If M, and M, are modules over a Lie algebra L, this formula is used to define a
multiplication which makes the tensor product M; ® M, a module over L. It
can be verified directly that the axioms for a module are satisfied without refer-
ence to Lie groups. We only started with Lie groups for the purpose of motivat-
ing the definition.

Congider the tensor product of two modules over a Lie algebra. If the Lie
algebra is semisimple, then the original two modules are completely reducible,
and so can be written as a direct sum of irreducible modules. The tensor product
is then just the direct sum of all the tensor products of these irreducible modules.
To reduce the tensor product of arbitrary modules over a semisimple Lie algebra,
therefore, it is sufficient to study the reductions of tensor products of irreducible
modules as direct sums of irreducible modules. This expansion of a tensor product
of irreducible modules as a direct sum of irreducible submodules is frequently
called a Clebsch-Gordan series (although this name applies more specifically to
the case of the rotation group) and it is quite important in applications.

Given any module M over a Lie algebra L, the dual space M ¥, consisting of
all linear complex-valued functions on M, can be made into'a module over L by
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defining the action of any z in L on any f in M™ to be given by (xf)(m)
= —f(z m) for all m in M. Stralghtforward computation verifies that M ™ satis-
fies the axioms of a module. If a basis {e;} is chosen in 1/, and the corresponding
dual basis {e'] is chosen in M ™, then the representation matrices in the dual
module are the negative transposes of the representation matrices in the original
module. The action of 2 on the basis elements e; can be written as
re, = Z,D (2)e;. Then, using ze'(e;) = —e'(xe,), a simple computation shows
that xe" Z, —D; (z)}€’. Thus here D/(z) is the matrix representatlve as-
sociated w 1th the module M, and the negative transpose—D;'(x) gives the cor-
responding matrix representation associated with the dual module M *.

For Lie algebras of type B;, C, and also for the Lie algebras A, and G, , Fy, E7,
Es, each module is isomorphic with its own dual. Most modules over D;-type
algebras also are self-dual [26]. The dual operation thus plays no particularly
important role for these Lie algebras. In fact, the main application for the con-
cept of dual module in the theory of semisimple Lie algebras occurs for the Lie
algebras of type 4, with [ = 2.

Yet another way of building new modules from given ones can be obtained by
antisymmetrizing the tensor product. Starting with the tensor algebra T'(}7) of
a module 3/, which is an associative algebra under the ® operation, consider the
two-sided ideal A generated by all elements of the form m ® m. The quotient
algebra T(M)/A forms a new associative algebra E(J) called the Grassmann
algebra or the exterior algebra of M. It has become the custom to denote the
multiplication operation induced by ® in E(M) by the symbol A. Thus my /A me
means the coset (m; ® me) + A. It is clear that m A m = 0 (that is, the coset
0 + A) since m ® m is in A by definition. Since (my + ma) A (m1 + ms) = 0,
writing it out and using m; /\ mi = ms /A me = 0 yields

my N\ me = —me /\ My .

We see that the multiplication in the exterior algebra is antisymmetric as in a
Lie algebra. Unlike a Lie algebra, however, the multiplication is also associative.
The exterior algebra can be broken up into pieces each having a given degree by
considering the direct summands of the tensor algebra T'(M ), the tensor products
of M with itself. Let T"(M) denote the tensor product of M with itself » times,
the tensors of rank r. Since T'(M) is the direct sum of the various T"(M ), we can
look individually at the portion A" of the ideal A lying in each 77(M) and form
the vector space N\ (M) = T'(M)/A". The exterior algebra is then the direct
sum of these spaces /A" (M ). Now A’ is simply the subspace generated by those
members of T"(3 ) having a repeated factor m ® m appearing somewhere in
their composition, being of the form ¢ ® m ® m ® b, where a, b denote tensors
whose ranks sum to r — 2. It is clear that 77(M ) is a module over the Lie algebra
L. A computation of the effect of multiplying an element such asa ® m ® m ® b
by an element z of the Lie algebra shows that A" is invariant under L; hence it is a
submodule of T"(M). The quotient space A" (M) = T"(M)/A" is therefore also
a module. The construction of these “antisymmetric tensor modules” A" (M)
from a basic module M is a standard method for generating modules and will be
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dealt with later in connection with our discussion of elementary representations.
The action of an element x in L on the cosets in A" (M) is induced by the action
of ¢ in T"(M ), namely,

e (mAmAN - Am) = (@m) Ama /N -+ A\ me
+ m N\ (xmg) N\ -+- A m,
+ oo
+m A ma N\ -0 N (zm,).

It is of interest also to note that for modules M of dimension n, the tensor algebra
T(M) is infinite-dimensional, each 7" (M) having dimension »", but the exterior
algebra E(M) is of finite dimension equal to 2", each A" (M) having dimension
™) = n!l/ri(n — r)! for 0 < r £ n and zero for » > n. This is readily seen by
choosing a basis e, €:, -+ , €, in M. The products e;1 A ej2 A - -+ A ¢, with
strictly increasing indices j; < 7 < --- < j» then form a basis for A" (M), since
a change in ordering of a product changes at most its sign.

2.3. The universal enveloping algebra. Intuitively, the universal enveloping
associative algebra U(L) of a Lie algebra L is obtained by forming all possible
formal products and sums of elements of the Lie algebra and an identity element,
where we identify the commutator [z, y] for z and y in L with the expression
Ty — yz.

More formally, we can construct the universal enveloping algebra U as follows.
Since the Lie algebra L is a vector space, it is possible to construct its (contravari-
ant) tensor algebra T(L) = C® L O L*® -+ ,where "= L®L® - - ® L
(n factors), as in the preceding section. In this associative algebra T'(L), we con-
sider the two-sided ideal K generated by the set of elements of the form

[,y —(z2®y —y ® ),

where z, y are elements of L. The ideal K thus contains the differences between
Lie algebra products and the corresponding commutators in the associative
tensor algebra. If we consider the associative quotient algebra U(L) = T(L)/K,
then Lie algebra products will not be distinguishable from commutators since
they belong to the same coset. The associative algebra U(L) = T(L)/K is called
the universal enveloping algebra of L. As with any associative algebra, we can
also make U(L) a Lie algebra using the commutator operation as the Lie prod-
uct. If we do this, we can consider L to be injected homomorphically into U (L),
considered as a Lie algebra. (The injection is induced by regarding L as a direct
summand of T(L), for the ideal K in T'(L) has been constructed so that for z, y
inLwehavelz,y] + K =2 ® y — y ® z + K, so the coset of [z, y] is identical
with that of the commutator Lie product in T'(L).)

The associative algebra U (L) plays a unique role with respect to this property.
Suppose that A is an arbitrary associative algebra, and A is also given the com-
mutator Lie algebra structure. Any homomorphism of L into A, considered as a
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Lie algebra, has a unique extension to an associative algebra homomorphism of
U(L) into 4, i.e., if ¢ is the canonical homomorphism of L into U(L) and 6 is
the homomorphism of L into A, then there is a unique associative algebra
homomorphism ¢ such that ¢¢(l) = 6({) for all l in L.

Now a representation of a Lie algebra is a homomorphism into the associative
algebra of linear transformations on the module with Lie multiplication of the
linear transformations being the commutator operator. Thus every representa-
tion of a Lie algebra L can be extended to a representation of its associative
universal enveloping algebra U(L). We define a module over an associative
algebra A in much the same way we defined a module over a Lie algebra except
that the requirement that [z, yJm = x(ym) — y(axm) for all z and y in the Lie
algebra and m in the module is replaced by (zy)m = z(ym) for all z, y in the
associative algebra and m in the module. Thus we see that every module over L
can also be regarded as a module over its enveloping algebra U(L). The associ-
ative algebra U(L) acts on the module M by letting

(B ® 22 ® -+ ® Xyp)M = Ly -+ T

for all m, x;in L, and m in M, and extending the definition to all of U(L). It is
easily checked that this definition is independent of the choice of a represent-
ative from a K-coset of T(L) and so actually defines an action of U(L) =
T(L)/K on M.

The enveloping algebra U(L) has a structure which may be described as
follows. Let {z:} be a basis for L. The “monomials” of the form

Ty, @2y ® - ® T4, n=20123---

where we take the ‘“trivial monomial” 1 for the case n = 0, yield a basis for
T(L) and hence their cosets span U(L). Results of Poincaré, Birkhoff and Witt
show that if we only take monomials having their indices ¢; in ascending order
(allowing repetition), then the cosets of these monomials (again, including 1)
form a basis for U(L). The universal enveloping algebra bears much the same
sort of “functorial” relationship to the Lie algebra that the Lie algebra itself
bears to a Lie group, i.e., homomorphisms of one Lie algebra into another induce
a corresponding homomorphism of their universal enveloping algebras, and more-
over, the ideal generated in the universal enveloping algebra by the kernel of the
Lie algebra homomorphism is the kernel of the induced homomorphism on the
universal enveloping algebras. More generally, Lie subalgebras and Lie algebra
ideals yield corresponding associative subalgebras and ideals in the universal
enveloping algebra.

It can be shown that U (L) has no nonzero zero divisors and that, for finite-
dimensional L, there cannot be an infinite sequence of ideals (or one-sided ideals)
in U(L) each properly contained in the next. Every ideal of U is finitely gener-
ated. From this, one could conclude that U has right and left quotient division
rings (Goldie-Ore theorem, cf. [24, p. 165]).

The universal enveloping algebra plays an important role in constructing ir-
reducible modules over semisimple Lie algebras. For the case of a semisimple Lie
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algebra we can make some further remarks about the structure of the enveloping
algebra based on the decomposition of the Lie algebra in terms of its root spaces.
Let L be a semisimple Lie algebra, and let H be a Cartan subalgebra of L. A
choice of an arbitrary ordered basis for the real space Hyz*, generated by the
roots, induces an ordering on that space. The ordering is produced by calling a
vector in Hz* positive when its first nonzero component with respect to the basis
is positive and saying one vector is greater than another when their difference is
positive (see [4, p. 26]). A simple root is a positive root which is not the sum of
two others, and these simple roots form a basis for the dual of the Cartan sub-
algebra. The root vectors of the simple roots are called simple raising operators.
The negative of a simple root is always a root, and a convenient multiple of the
root vector of the negative of a simple root is called a lowering operator (see
[4, p. 27]). We shall denote by L* the subspace of the Lie algebra L spanned by
the root vectors of positive roots and by L~ that spanned by the root vectors of
negative roots. A simple computation using Jacobi’s identity shows thatif e, and es
are root vectors corresponding to roots a and B, then [e., eg] is a root vector
corresponding to a + B if & + B is a root, and [e. , ¢s] is zero otherwise. Since L is
the direct sum of H and the one-dimensional subalgebras spanned by the root
vectors, the total number of nonzero roots is the dimension of L less that of H.
L* and L™ are nilpotent subalgebras and we can write

L=HoeL o L.

Each positive root is a linear combination with nonnegative integer coefficients
of the simple roots and each negative root is such a combination with nonpositive
integer coefficients. Thus L* is generated by the simple raising operators and L~
is generated by the simple lowering operators.

Corresponding to this break-up of the Lie algebra L into H, L* and L™, we
can also break up the universal enveloping algebra U (L) into three parts U°, U,
and U™. Here U° is the Abelian subalgebra generated by the identity element and
the Cartan subalgebra H, and U" and U™ are generated by the identity element
together with L* and L~ respectively. We may call U and U~ the raising and
lowering algebras of the Lie algebra L. The whole enveloping algebra U (L) may
be written as the product of the three subalgebras U’, U, and U™, taken in any
order. The algebra U™ is generated by the identity and the simple raising oper-
ators, while U™ is generated by the identity and the simple lowering operators.
The whole algebra U(L) is generated by 1 and the simple raising and lowering
operators.

Lete;,7 = 1,---,1 denote the simple raising operators in a semisimple Lie
algebra L. If a nonzero vector  in a module J is annihilated by all the simple
raising operators, it is called an extreme vector:

ex =0, =1 1L

The extreme vectors together with the zero vector form a subspace, the extreme
subspace, of the module. If a module is irreducible its extreme subspace is one-
dimensional. In any module, U™z is an irreducible submodule if z is an extreme
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vector. Every module is the direct sum of the irreducible submodules U z;,
where {z,} is any basis for the extreme subspace. Thus a knowledge of the extreme
subspace yields a reduction of the module to the sum of irreducible submodules.
This gives a useful technique for obtaining Clebsch-Gordan coefficients.

We saw previously that there was a one-to-one correspondence between
representations of a Lie algebra L and representations of its universal enveloping
algebra U(L). Using the fact that every irreducible module over a semisimple
Lie algebra is generated by the action of U on an extreme vector, it becomes pos-
sible to construct the modules themselves from U(L). The space U(L) can, of
course, be regarded as a module over itself. A submodule in U (L) is then simply
a left ideal. If A is a left ideal of U(L), the cosets U(L)/A form a module over
U(L). Conversely, if z is an extreme vector in any irreducible module M, the
members of U(L) which annihilate x form a left ideal of U (L), which we shall
again call 4. Any vector ¥ in the module A is given by ¥ = wuz for some u in
U(L), by the fact that the entire irreducible module is generated by x under the
action of U. Taking the coset v + A, we havey = (u + A4)z, since Az = 0 by
definition of A. We then have a homomorphism of U(L)/A onto the module 7,
the homomorphism being obtained by making the coset w + A correspond to the
module vector wx. This is in fact an isomorphism, since if wx = wu.x, then
(ur — u)z = 0 and u; and u, belong to the same A-coset. Thus, every ir-
reducible module is isomorphic to U(L)/A for some left ideal A in U(L). It is
easy to see that U(L)/A is irreducible if and only if A is a maximal left ideal of
U(L). Thus the problem of finding all the irreducible representations of U(L)
(and consequently of L) is precisely equivalent to that of finding all the maximal
left ideals of U(L).

The center C'(L) of the universal enveloping algebra U(L) plays an important
role in the computational aspects of representation theory. It is an Abelian sub-
algebra which consists of those elements z in U(L) which commute with every
element of the Lie algebra L. The second order Casimir operator is a simple
example of an element of C(L), and we may think of C(L) as consisting of the
Casimir operator and its various higher order generalizations. For any module M/,
we can define a linear form on C(L) by means of the trace:

ANz) = Trye.

The linear form A € C(L)™ characterizes the modules in the sense that if two
modules M and M’ have linear forms A and A" which are proportional, then the
modules are isomorphie [19].

For irreducible representations each element of C(L) is represented by a
multiple of the identity. Recently much work has been done in order to find the
exact relation between these ‘“higher order Casimir operators” and the more con-
ventional classification of modules by means of their highest weight.

2.4. Theory of weights and the Weyl group. A useful tool for the classification
of modules is the concept of weight. Weights play the same role in the classifica-
tion of modules over semisimple Lie algebras that the roots played in the classifica-
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tion of the semisimple Lie algebras themselves. The concept of root is in fact
just the special case of the concept of weight obtained when we specialize to the
adjoint representation of the algebra. The study of weights also has a practical
value for obtaining a qualitative interpretation of what a given module contains.
The set of all the weights of a module is called the weight diagram. The symmetry
properties of the weight diagrams are deseribed by the Weyl group.

Although the concept of weight is most useful in connection with the semisimple
Lie algebras, it can be introduced in a more general setting, and we therefore
consider a module M over an arbitrary Lie algebra L. A linear form p € L* is
called a weight of M if there exists a nonzero vector » in M such that zv = p(x)v.
The vector v is thus an eigenvector for all elements of L simultaneously, with
u(x) being the eigenvalue corresponding to the operator x acting in M. The weight
p may thus be considered as this collection of eigenvalues. To obtain direct sum
decompositions, it is useful to generalize slightly the concept of a simultaneous
eigenvector. A nonzero vector v in M is called a weight vector, or generalized
simultaneous eigenvector, if there exists an integer p such that (x — u(2)I)" = 0
for all z in L. The set of all weight vectors, together with zero, is a submodule
M .* of the module M called the weight module corresponding to the weight u.
In the weight submodule M ,* each element x in L is represented by an operator
which differs from a multiple of the unit matrix by a nilpotent operator. Sophus
Lie proved two theorems about the existence and completeness of weight vectors.
Lie’s first theorem says that any module over a solvable (and a fortiori any nil-
potent or Abelian) Lie algebra has a weight u. Lie’s second theorem (also called
the Lie-Zassenhaus theorem) asserts that for a nilpotent Lie algebra, the weight
vectors are also complete, that is, we can find a basis for any module consisting of
weight vectors. In other words, a module over a nilpotent Lie algebra is the direct
sum of its weight submodules. For a semisimple Lie algebra L, we consider its
Cartan subalgebra H. Since the Cartan subalgebra is Abelian, both of Lie’s
theorems will apply. Any module M over a semisimple Lie algebra L can then be
written as the direct sum of its weight submodules with respect to H:

M= @MH“.
M

We may regard L itself as a module over H via the adjoint representation, ob-
taining the decomposition of L as a direct sum of its root spaces Ly". The Cartan
subalgebra H itself is just the root space corresponding to a = 0.

A useful property of weights and roots is their additivity with respect to tensor
products. If M 5" and N are weight modules over a nilpotent Lie algebra H,
then the tensor product M ,* ® Ny’ is a weight module with weight u + ». To
make this result plausible, we momentarily disregard the complications arising
from the generalized eigenvalue problem, considering just the case p = 1. There
exist vectors v and w in M z* and Ny’ respectively, such that hv = p(h)v and
hw = v(h)w for all » in H. Then

h(v @ w) = (W) ® w+v ® (hw)
(m(h) +v(A)) (v ® w).
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This shows that u + » is at least one of the weights of the tensor product, but it
does not, prove that it is the only one. However, the proof that it is the only
weight does not require any new ideas, but just more tedious algebra, and we
omit it.

In general, if we have an arbitrary module M, and another one N, then the
collection of weights for the tensor product M ® N can be obtained as the col-
lection of sums of a weight of M and a weight of N. That is, the weight diagram
of a tensor product of two modules can be obtained from the weight diagrams of
the two individual modules by a process of vector addition.

Suppose now that we have a semisimple Lie algebra L, with its Cartan sub-
algebra H. Let M be a module over L, and hence also a module over H. The
action of L on M can be formally identified with the tensor product L ® M. In
particular, the action of a root space Ly on a weight submodule M * is given by
Ly*M " © Mg+ This “shifting rule” says that if a root vector e, acts on a
weight vector » with weight x, then e is a weight vector corresponding to the
shifted weight 4 + «. Acting on a weight submodule M 5" repeatedly with e, and
e_o we get weight submodules corresponding to a whole ladder of weights u + 2«,
wherez = 0, = 1, &= 2, - - - . The direct sum of the corresponding weight modules,
which we may call a weight-ladder module, can be regarded as a module over
the Lie algebra H + Ly* 4+ Lg *. Since we are dealing with finite-dimensional
modules, all but finitely many of the weight modules corresponding to the infinite
weight-ladder are trivial, and we really only need to consider a finite set p — pa,
coou+ ga.

Both weights and roots are vectors in H*, the dual space of the Cartan sub-
algebra, and in fact it can be shown that the weights are all real linear combina-
tions of the roots, and thus lie in Hz*, the real vector space of such linear com-
binations. A positive definite inner product is induced on Hz* by the Killing form
(cf. [4, pp. 26-27]), thereby making it a Euclidean space, the inner product of two
vectors « and 3 being denoted by («, 8). The weight diagram of any module, as
well as the root diagram of the Lie algebra, may thus be regarded as a set of
points in a Euclidean space of I dimensions, ! being the rank of the Lie algebra.
Since the Euclidean space Hr* was given an order induced by ordering some arbi-
trary basis, the weights are also ordered, and since any given finite-dimensional
module has only finitely many weights, there must be some weight which is higher
than all the others. This weight is called the highest weight of the module. If »
is a weight vector for the highest weight A, then for any raising operator e, with
a > 0, e, v would be a weight vector for the higher weight \ -+ « if it were not
zero. Thus it follows that a weight vector for a highest weight is an extreme
vector. For an irreducible module, there is only one linearly independent weight
vector for the highest weight. In general, the multiplicity of a weight u is the
dimension of the corresponding weight submodule: n, = dim My"*. Thus the
highest weight of an irreducible module has multiplicity one. Two irreducible
modules over a semisimple Lie algebra are isomorphic if and only if their highest
weights are equal. Thus the problem of classifying the irreducible modules is that
of finding all possible highest weights.
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To study the structure of a given irreducible module with highest weight A,
we must find some way to calculate its weight diagram. The weight diagram has
certain symmetry properties which we now study. If u is any weight, and « any
root, then the ladder of weights u + za for —p £ 2z £ ¢ also belongs to the
weight diagram. It can be shown that 2(u, a)/(«, @) is an integer and

_ 2(y, a) N

(o, @)

is a weight in the ladder. This transformation may be interpreted geometrically
as a reflection w, in the plane perpendicular to the root o in Hz*. The weight u
and the reflected weight w.u have the same multiplicity. These reflections are
called Weyl reflections, and the group generated by them is called the Weyl group.
Note that wa = 1, and we = w_, (cf. [4, p. 28]). The weight diagrams are in-
variant under the Weyl group, the multiplicities of weights are invariant, and the
Killing form is invariant. If w is any element of the Weyl group W, then
(wa, wB) = (a, 8). The root diagram is not only invariant under the Weyl group,
but also under inversion & — —a, and thus in general may have a higher degree
of symmetry than some of the other weight diagrams.

Let oy, - - -, a; denote the simple roots of a semisimple Lie algebra L, that is,
those positive roots which are not the sum of two positive roots. The correspond-
ing Weyl reflections w; = w,, are called simple Weyl reflections. The simple Weyl
reflections are a set of generators for the whole Weyl group W.

We now study the set of vectors in Hz* which can be highest weights for ir-
reducible modules. If M; and M, are irreducible modules with extreme vectors
xy and z, corresponding to the highest weights A; and \., respectively, then
2y ® 22 is an extreme vector in M; ® M, and U™ (21 ® w2) is an irreducible
module having A\; + A, as its highest weight. Thus the set of highest weights is
closed under the addition. The submodule U™ (2; ® x,), sometimes denoted as
M:® M., is called the Cartan composition of the modules M and M, . It is the
irreducible submodule of the tensor product which has the highest weight.

We call a highest weight basic if it is not a sum of two other highest weights.
For a semisimple Lie algebra of rank I, there are exactly [ basic weights. The
basic weights \; , - -+, A\; can be indexed in such a way that they correspond to
the I simple roots, the relation between them being

2(>\1 s O )
(aj, @)
where §;; is the Kronecker delta, zero if ¢ £ j, one if 7 = j. Note that under simple
Weyl reflections we have w\; = \;if ¢ £ j, while wi\; = N\; — a;. Thus each basic
weight is invariant under all but one of the simple Weyl reflections.

Every highest weight \ is a linear combination of basic weights with non-
negative integral coefficients,

AN=1mN A g,

where the coefficients n; = 2(\, a;)/(as, a;) are called the components of the

= dij,
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highest weight. Of course, any weight whatever, not just a highest weight, can be
written in a similar way if we allow the components to be any integers, positive,
zero or negative. In particular, the components of the roots a; are given by the
Cartan matrix A;; = 2(as, a;)/(as, a;) and we may write a; = 2, Nd; (cf.
[4, p. 27]).

We can conversely use the Cartan composition process to construct an ir-
reducible module corresponding to the highest weight A = 2 n;, given a set
of basic modules M, --- , M. Let x; in M ; be a weight vector corresponding to
the basic highest weight ;. Take the tensor product

T=0Q @ ®T® - Q2T ® - @y,

where x; appears n; times. The Cartan composition Uz will then be an ir-
reducible module having M\ as its highest weight. Thus the process of Cartan
composition reduces the problem of constructing the irreducible representations of
a semisimple Lie algebra to that of constructing [ basic irreducible representations.

Dynkin introduced a very convenient way of denoting any particular ir-
reducible module over a semisimple Lie algebra [13], [32]. One simply writes over
the ¢th vertex of the Dynkin diagram, which corresponds to the 7th simple root,
the nonnegative integer n; giving the 7th component of the highest weight with
respect to a basis consisting of the basic weights. In Fig. 1 this is illustrated for a
particular representation of the Lie algebra B;, the complexification of the Lie
algebra of SO(7, R). This particular module is 8-dimensional, and can be used to
define the exceptional Lie algebra G (see [3]).

There are many different ways of denoting modules. In addition to the Dynkin
diagram method, another common notation for modules is to write { N}, where N
is the dimension of the module. In some cases, there are several nonisomorphic
irreducible modules with the same dimension. In this case these may be dis-
tinguished by adding primes, asterisks, etc. The dual of the module { N} would
be denoted by {N*} in general. The main advantage of this notation is that it is
concise, while the Dynkin diagram notation has the advantage of supplying more
pertinent information which is useful for computations. We shall use both nota-
tions in the sequel.

The Dynkin diagram allows one to compute the angles between the simple
roots and their relative lengths (cf. {4, p. 28]). The absolute lengths of the roots
may be obtained from an observation of Brown [7] which says that the sum of the
squares of the lengths of all of the roots of a semisimple Lie algebra is equal to the
rank /. From this information one can then draw the root diagram, which is a set
of points in a Euclidean space of [ dimensions. From the formulas given above, one
can construct geometrically or algebraically the basic weights. The only further

| 0 0
@ < O

Fic. 1. Dynkin diagram for the 8-dimensional spinor module of Bs , which can be used to
define the exceptional Lie algebra G
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information we need for practical calculation then is an algorithm for computing
the complete weight diagram of a module, given its highest weight.

2.6. Characters. The characters of group representations are useful as a
general tool for such basic computations as finding the Clebsch-Gordan series.
If we have a representation f of a group G by linear operators acting on a finite-
dimensional vector space (module) M, then the character x:G — C of the repre-
sentation is a complex-valued function defined on the group by taking traces:

dim M

x(g) = Try f(g) = ; fi(g)

for all g in G. Since the trace of the linear transformation f(g), i.e., the sum of its
diagonal matrix elements f;:(g), is equal to the sum of its eigenvalues, counting
multiple roots of the characteristic equation, the trace does not depend on the
choice of basis in M with respect to which the matrix elements are computed.
The character x of a representation thus is invariant under changes of basis in the
module M. It is clear that isomorphic modules (equivalent representations) have
the same character, since the trace is invariant under similarity transformations.

If the Lie group corresponding to a semisimple Lie algebra is compact and
connected, then every element of the group is conjugate to an element of the
“maximal torus” subgroup corresponding to a given Cartan subalgebra of the
Lie algebra [15]. Elements ¢g; and g¢» are said to be conjugate, we recall, if there
exists some element s in the group for which g, = sg1s™. It is clear that the charac-
ter takes the same value at conjugate elements of the group. Thus the character
is determined by its values on such a maximal torus subgroup. Conversely, given
a semisimple Lie algebra, we can start with its compact real form, and by ex-
ponentiation arrive at a compact, connected Lie group. Accordingly, for a semi-
simple Lie algebra, we may define a character x for a module M to be the function
defined on a Cartan subalgebra by taking traces of exponentials:

x(h) = Tru (exp h).

Here Try denotes the trace as an operator on the particular module M being
considered. (The exponential function can be defined by its Taylor series, which
is convergent here because we can regard h as being a linear transformation in a
finite-dimensional vector space 1.)

We note here some of the elementary properties of characters. If we set h = 0,
we get the trace of the unit operator in the module M, which is equal to the di-
mension of the module

x(0) = dim M.

The character x of the direct sum M = M; @ M, of two modules M; and M, is
the sum of their respective characters x; and xs :

x(h) = xi(h) + xa(h).

This may be proved by choosing a basis in the direet sum which is the union of
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bases in the summands. The character x of the tensor product M = M; ® M, of
two modules is similarly seen to be the produet of the characters of the two
modules:

x(k) = xa(h) - x2(h).

One way torprove this is by direct computation, substituting

n

Pe®y) =2 —

Y iy () @ ()

into
h
exp h = Z

n=o 1!

and interchanging orders of summation. Another way is to note that if hx = Az
and hy = py, then A(z ® y) = (A + w)(z ® y), and hence ¢'(z ® ¥)
= "™z ® y), while ¢’z = ¢’z and e"y = €"y. One then uses the fact that the
trace is equal to the sum of the eigenvalues.

The representation matrices in the dual of a given module are obtained from
those in the original module by taking the negative transpose. Since the trace is
unaffected by the operation of taking tranposes, we see that

XM'(h) = XM( _h)-

Finally, we note that since any module M is the direct sum of its weight sub-
modules M z*, the trace is given by

x(h) = Tryexph = 2 Tryyu exp h.
m

Since hz = u(h)zforallzin M 4* and all h in H, we have ¢ = ¢*®1 in M z*, and
since the trace of the unit operator gives the dimension 7, = dim M g, we have

X ( h) Z nﬂe#(h)

where A is the weight diagram of the module 4/. This formula shows that a
knowledge of the character of a module is equivalent to knowing its weight
diagram and the multiplicity of each weight. This formula may be used in two
ways. If we know how to compute the multiplicities of the weights by means of
some algorithm, then we can use this formula to calculate the characters, and
from this we can obtain the Clebsch-Gordan series. Alternatively, if we have some
formula for computing the characters, then we can use the above formula to
calculate the weight diagrams and multiplicities of the irreducible modules. A
further discussion of such computational methods will be given in the third paper,
where we discuss Freudenthal’s algorithm and Weyl’s character formula. For
rank two simple Lie algebras some of these calculations have been carried out by
Behrends, Dreitlein, Fronsdal and Lee [3].

2.6. Application to irreducible representations of 4; . We now apply some of
the preceding ideas to compute the irreducible representations of A4,, the com-
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plexification of the real Lie algebra of the ordinary rotation group SO(3, R).
Similar formulas also apply to representations of A; @ A; which is the complexifi-
cation of the real Lie algebra of the usual homogeneous Lorentz group
8O3, 1; B).

The Lie algebra A; has the structure discussed above in §1.4, with basis
h = 7J3, €ra = J1 &= 1o = Jx, satisfying

h, edl = €, [hy o)l = —e_a, [a,e_s = 2h.

A Cartan subalgebra H has basis k. The roots are 0, &—«, where a(h) = 1.

Since the sum of the squares of the lengths of the roots is equal to the rank,
which is one, we have (@, @) = 1. There is one basic weight X in the one-dimen-
sional space Hz" . It must be some multiple of a satisfying 2(\, a)/(e, @) = 1.
Consequently, A = a/2.

By means of a Weyl reflection, the basic weight A goes over into its negative
—2. Thus the basic module has a weight diagram consisting of at least these two
weights. Let « be a weight vector corresponding to \, so that

— 1
hx—§$.

The raising and lowering algebras U™ and U™ consist, respectively, of all poly-
nomials in e, and e_, . Since z is an extreme vector, we have

e = Q.
SINEC €ala® = [€a , €_a)® + e_uar = 2hx + 0 = z, it follows that
Y = e_o&

is nonzero. It is clearly a weight vector corresponding to the shifted weight
—X = A —a. We also have

e_oy = 0,

because if it were not zero, then we would obtain a weight lower than —A,
and hence by Weyl reflection a weight higher than \. Hence Uz is spanned
just by the two vectors  and y. The basic module over A, is therefore a two-
dimensional module spanned by z and y with

hx = %x: h’y = —"%y7
e = e_oy = 0,
ok =17, €Y = .

It is called the spin half representation [29].

Every irreducible module over A; is generated by U~ (i.e., repeated applica-
tions of e_,) acting on a tensor product x ® z ® --- ® xz. Each irreducible
module is therefore characterized by a single integer, n, the rank of the tensor
T® 2 ® -+ ® z (i.e., the number of repetitions of z). The tensor z ® =«
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® -+ ® z is the highest weight of the module and since
Me®ze® - ®2) =) @z® -z +20 () ® 2 ® - ®=x
+...+x®x®... ®hx

=g(x®x®~'®x),

the highest weight for the module is n/2 = j. The number 7 = n/2 is called the
spin in the quantum mechanical theory of angular momentum. The entire
module structure can readily be calculated. For example, in the case n = 2
(spin one), we easily compute

Mz ®z) =2®2z elr®zx)=0,
tx(z®2) =@y +y0®uz,
e(2®@Yy+y®z) =2 ®Y,

Me®y+y®a) =0,
L(z®y+y®cz) =22 ® 2,
y®Y) =2@y+y®z, (y®y) = —y®y,
e-(y ® y) = 0.
For symmetry, it is convenient to take as basis for the module
wm=2z0® g, uo=715(x®y+y®x), U =Y ® .

More generally, for the module 3; of spin 7 (highest weight j = n/2), we
can compute a basis of 2§ + 1 veectors 4, ,m = —j, —j + 1, ---, + j, with
Uy =r®2xz® -+ ®2x (n= 2jfactors),

U, =Y RY® - ®Y
and
hby = My,

Cattm = V(5 — m)(j + m + 1ums,

eattn = N/ (j + m)(j — m + 1tn—.

These formulas play a basic role in the theories of the representations of the
ordinary rotation group and of the homogeneous Lorentz group (see [14],
[28]).

2.7. Application to irreducible representations of A, . The simple Lie algebra
A, is the complexification of the real Lie algebra of the special unitary group
SU(3). This particular group has recently been studied extensively in applica-
tions dealing with the strongly interacting elementary particles. As a consequence
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there now exist excellent review articles devoted just to the study of the repre-
sentations of this algebra alone [10]. We recall from our earlier study (cf. [4,
p. 32]) that the root diagram of the Lie algebra A, has six nonzero roots of equal
length, forming the six vertices of a regular hexagon, together with the zero
root located at the center of the hexagon, having multiplicity two (cf. Fig. 2).
Since the sum of the squares of the lengths of all the roots is equalto therank,
which is two, it is clear that each nonzero root has length 1/4/3. The inner
product on the Cartan subalgebra, i.e., the Killing form, can now be computed
in terms of the simple roots e; and ay, since we know that the angle between
them is 120°. We thus find

(al ) al) = (a2 3 a2) = %';
(o1, @) = —%.
The equations defining the basic weights A\, and A\ can be solved either alge-
braically or geometrically. For example, the equations say that \; is perpendicular
to az, and its projection onto o is half the length of oy (cf. Fig. 2).

Since every representation can be obtained from the two basic representa-
tions, we naturally study these. The representation which corresponds to the
basic weight A, is just the dual of the one corresponding to A;. In the applied
literature dealing with the elementary particles, these are known as the quark
and antiquark representations. (The word ‘“quark’” was coined by M. Gell-

F1a. 2. Basic weights of the simple Lie algebra A, shown superimposed on the root diagram
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Ky ' -F3= )\2

Fra. 3. Weight diagrams of the two basic modules of A,

Mann, who took the word from a poem appearing in James Joyee’s famous work
Finnegan’s Wake [18].)

Let us consider now the basic module with highest weight N\;. By means of
the Weyl group it is easy to show that the complete weight diagram of this
module is an equilateral triangle, consisting of three weights w1, me and us,
as shown in Fig. 3. Let us use the canonical basis for 4, (given in [4, p. 27]),
consisting of the simple raising operators e; = e,, , & = €., , the simple lowering
operators fi and f, proportional to e_., and e_,,, respectively, and their com-
mutators e = [e1, ] and fi» = [f1, fo], and elements h; and he proportional to
ha, and A, , respectively. For the basic module M, we choose a basis z;, @, a3
consisting of weight vectors corresponding to the weights w1 , us, us , respectively.
Having chosen the extreme vector z; , it is clearly possible to define z; and x; by
the equations

Ty = flxl,
T3 = f2$2 .

This serves to fix the relative normalization of the three basis vectors for the
module. It is now possible to use the commutation relations of the Lie algebra
A, (cf. [4, p. 31]) to work out explicitly the matrices for the representation.
We also need to note here that N\;(h;) = &; and hax; = w;(hs)z;. Note that
m = M, m2 = A — N and g3 = —\;. As a sample calculation, we note that

ar = ethny = [er, filty + fiem
=21+ 0 = M(l)2y = 21.

Since the shifting rule Lz*M z* © M z*** allows us to conclude from inspection
of the weight diagram that e,r; = ewxs = 0, it follows that the matrix correspond-
ing to e is a matrix whose only nonzero entry is its entry in the first row and
second column. A complete calculation, which we leave to the reader to verify,
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leads to the following matrix representation in the basic module 4/, over A, :

For

010 0 00 0 0 1
ee—10 0 0], e2—|0 0 1|, e2—|0 0 O],
10 0 0 (0 0 0] (0 0 0
0 0 0] 0 0 O] 0 0 0
fi—={1 0 0, =0 0 0|, fu—| 0 0 O},
0 0 0] (0 1 0] | -1 0 0
1 0 0 00 O
hm—|0 —1 0], he—{0 1 0
0 00 00 —1

the dual module M, ~ M;*, the weight diagram is the triangle obtained

from the weight diagram of the original module M; by inversion in the origin.
Thus if p1, e and us are the weights for the quark module, then —p;, —pz and
—us are the weights for the antiquark module. The representation matrices in
the dual module can be obtained as the negative transposes of the representa-
tion matrices calculated above, provided we use the corresponding dual basis
a1*, ¥, 5" in the dual module M;*.

The representation matrices in an arbitrary irreducible representation of A,
can be obtained by a similar calculation to the one performed above. A general
formula can also be derived, making use of the second and third order Casimir
operators for 4, (see [1]).
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