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Foreword

E.N. Lorenz’s twelve pages note Deterministic nonperiodic flow, published in 1963
in the Journal of the Atmospheric Sciences [139], surely ranks among the most in-
fluential inputs from the experimental sciences in the history of 20th century Math-
ematics. While investigating the validity of linear regression models for weather
forecast, Lorenz hit upon the observation that typical trajectories, even in very
simple models, are unstable, or sensitive to small changes in the initial condi-
tions.

This observation had deep philosophical and practical implications. From a math-
ematician’s perspective, Lorenz’s paper set the challenge of describing and explain-
ing on rigorous grounds the sensitivity phenomenon, and its stability under small
modifications of the dynamical model.

By that time, starting in the early sixties, the mathematical theory of hyperbolic
dynamical systems was being developed by Steven Smale and his collaborators and
students in the West, and by the Moscow school (Anosov, Arnold, Sinai and cowork-
ers) in the Soviet Union. Hyperbolicity theory does provide a conceptual frame-
work for understanding stable sensitive behavior, and has rapidly become a main
paradigm in dynamical systems theory. However, the geometric models proposed
by Afraimovich, Bykov, Shil’nikov [2, 4] and Guckenheimer, Williams [98, 274]
suggested that the Lorenz system is actually not hyperbolic.

This state of perplexity lasted until the renewal of the theory of partial hyperbol-
icity in the mid nineties. A number of breakthroughs were obtained that led to a very
complete theory of stable (or robust) behavior for flows in three-dimensional spaces,
including both hyperbolic systems and Lorenz-type systems. It is this theory that the
authors present in this book. Their text provides a much needed coherent presenta-
tion of one of the fastest developing subjects in recent mathematical research. Theirs
was not an easy task: the material is very rich and widespread in a large number of
papers; it is also quite recent, so that assessing the relevance of different results may
be tricky.

A particularly successful compromise between all these aspects was achieved,
and I am sure this book will be a useful reference both for the expert working in
the field and the student looking for an introduction to the subject. I also expect it
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to play a significant role towards the extension of this theory to flows in arbitrary
dimensions, which is currently under way.

Enjoy your reading!

Rio de Janeiro Marcelo Viana



Preface

In this book we present the elements of a general theory for flows on three-
dimensional compact boundaryless manifolds, encompassing flows with equilibria
accumulated by regular orbits.

The main motivation for the development of this theory was the Lorenz system
of equations whose numerical solution suggested the existence of a robust chaotic
attractor with a singularity coexisting with regular orbits accumulating on it.

More than three decades passed before the existence of the Lorenz attractor was
rigorously established by Warwick Tucker with a computer-assisted proof in the
year 2000.

The difficulty in treating this kind of system is both conceptual and numerical. On
the one hand, the presence of the singularity accumulated by regular orbits prevents
this invariant set from being uniformly hyperbolic. On the other hand, solutions slow
down as they pass near the saddle equilibria and so numerical integration errors
accumulate without bound.

Trying to address this problem, a successful approach was developed by Afrai-
movich-Bykov-Shil’nikov and Guckenheimer-Williams independently, leading to
the construction of a geometrical model displaying the main features of the behavior
of the solutions of the Lorenz system of equations.

In the 1990’s a breakthrough was obtained by Carlos Morales, Enrique Pujals and
Maria José Pacifico following very original ideas developed by Ricardo Mañé dur-
ing the proof of the C1-stability conjecture, providing a characterization of robustly
transitive attractors for three-dimensional flows, of which the Lorenz attractor is an
example.

This characterization placed this class of attractors within the realm of a weak
form of hyperbolicity: they are partially hyperbolic invariant sets with volume ex-
panding central direction (or volume hyperbolic sets). Moreover robustly transitive
attractors without singularities were proved to be uniformly hyperbolic. Thus these
results extend the classical uniformly hyperbolic theory for flows with isolated sin-
gularities.

Once this was established it is natural to try and understand the dynamical conse-
quences of partial hyperbolicity with central volume expansion. It is well known that
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x Preface

uniform hyperbolicity has very precise implications for the dynamics, geometry and
statistics of the invariant set. It is important to ascertain which properties are implied
by this new weak form of hyperbolicity, known today as singular-hyperbolicity.

Significant advances at the topological and ergodic level where recently obtained
through the work of many authors which deserve a systematic presentation.

This is the main motivation for writing these notes. We hope to provide a global
perspective of this theory and make it easier for the reader to approach the growing
literature on this subject.

There have been several books and monographs on the subject of Dynamical
Systems. But there are many distinct aspects which together make this book unique.

First of all, this book treats mostly continuous time dynamical systems, instead
of its discrete counterpart which is exhaustively treated in some of the other texts.

Second, this book treats all the subjects from a mathematical perspective with
proofs of most of the results included. Some of the proofs are done in a different way
than those in the original papers because, once the theory is organized, it is possible
to simplify many of the original proofs. We also extend many of the results about
singular-hyperbolicity to higher dimensional flows, adding some new and natural
hypotheses on the flow. The proofs about such extensions are also included.

Third, this book is meant to be an advanced graduate textbook and not just a
reference book or monograph on the subject. This aspect is reflected in the way the
cover material is presented, with careful and complete proofs, and precise references
to any topic in the book.

Finally, there is not enough room (or time!) to cover all the topics in an advanced
graduate course. This means that the book is not exhaustive: the main topics still
constitute a very active area of research, but the book tries to treat the core concepts
thoroughly and others enough so the reader will be prepared to read further on the
subject and, we hope, also be prepared to contribute with new results on this theory.

It is a pleasure to thank our co-authors Carlos Morales and Enrique Pujals who
made definitive contributions and helped build the theory of singular-hyperbolicity.
We also thank Ivan Aguilar for providing the figures of his MSc. thesis at UFRJ,
and Serafin Bautista and Alfonso Artigue for having communicated to us some ar-
guments which we include in this text. We are indebted to several PhD. students
at IM-UFRJ who read previous versions of this text and pointed out to us several
places where the presentation should be improved, among them Laura Senos, Regis
Castijos and João Reis.

We extend our acknowledgment to Marcelo Viana who, besides being our co-
author, encouraged us to write this text.

We are thankful to DMP-FCUP, IM-UFRJ and IMPA for providing us with the
necessary time and conditions to write this text. We also profited from partial fi-
nancial support from CNPq, FAPERJ, PRONEX-Dynamical Systems (Brazil) and
CMUP-FCT (Portugal). Finally we thank the scientific committee of the XXVI
Brazilian Mathematical Colloquium for selecting our proposal for an earlier ver-
sion of this text.

Rio de Janeiro Vítor Araújo and Maria José Pacifico
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Chapter 1
Introduction

In this book we present the elements of a general theory for flows on three-
dimensional compact manifolds, encompassing flows with equilibria accumulated
by regular trajectories.

The main motivation for the development of this theory was the Lorenz system
of ordinary differential equations whose numerical solution suggested the existence
of a robust chaotic attractor with an equilibrium coexisting with regular trajectories
accumulating on it.

An attractor for us is the set of points whose forward trajectories remain inside
a bounded region of space forever and such that all nearby trajectories converge
to it. To avoid trivial cases, we also assume that an attractor is a closed set with
a dense trajectory but which does not coincide with this trajectory. This excludes
periodic trajectories from our definition – we regard these as trivial attractors when
they arise.

This kind of set plays a central role in the study of the long term behavior of sys-
tems of differential equations since attractors are the possible locus of convergence
of trajectories when time goes to infinity, at least on compact invariant regions – for
example, on three-dimensional compact manifolds. Hence to understand the possi-
ble types of asymptotic behavior it is necessary to understand the kinds of attractors
a given system of differential equations may have.

A relevant feature of attractors is their robustness, that is, they should persist
under small perturbations of the given system of equations. These are the kind of
sets one should observe when building mathematical models since there are intrinsic
errors in all observed data, so the models are usually at best just an approximation of
some relevant phenomenon one wishes to study. The features of our models one can
reasonably expect to observe in the real world are those which persist under small
errors.

Trivial attractors, like equilibria or closed trajectories or combinations of such,
are well understood: the asymptotic behavior of nearby trajectories is either an equi-
librium or a periodic trajectory, or a finite number of equilibria and trajectories con-
necting them. These are in fact typical in two-dimensional systems. These attractors
are not chaotic because trajectories starting on nearby points tend to remain nearby
in the future.
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2 1 Introduction

For three-dimensional systems the Lorenz example exhibited a new kind of fea-
ture: sensitiveness to initial conditions, or chaos. Small initial differences are am-
plified as time passes, causing two trajectories originally coming from practically
indistinguishable points to behave in a completely different manner after a short
while. Long term predictions based on such models are unfeasible since it is not
possible to both specify initial conditions with arbitrary accuracy and numerically
calculate with arbitrary precision.

Remarkably, the Lorenz system of equations is both chaotic and robust. More
than three decades passed before the existence of the Lorenz attractor was rigorously
established by Warwick Tucker in the year 2000.

The difficulty in treating this kind of systems is both conceptual and numeri-
cal. On the one hand, the presence of an equilibrium accumulated by regular orbits
prevents this invariant set to be uniformly hyperbolic. On the other hand, solutions
slow down as they pass near the saddle equilibria and so numerical integration errors
accumulate without bound.

Hyperbolicity means that at each point there are two complementary directions
to the flow direction, one uniformly contracted by the tangent map of the flow gen-
erated by the system of ordinary differential equations, and the other uniformly ex-
panded. The invariant foliations associated to these sets are relevant objects of study
which we do not deal with in this book. This kind of geometrical notion was intro-
duced in the 1960’s by Stephen Smale in a (very successful) attempt to characterize
structural stability of a system.

Stability has two main distinct meanings in the theory of dynamical systems. On
the one hand, when referring to trajectories, one says that a trajectory is stable if
nearby trajectories converge to it as time increases. On the other hand, it can refer to
a system as a whole: in this case it means that the global behavior is not affected if
the laws of evolution are slightly modified. A system is structurally stable if small
changes to it leave the whole orbit structure unchanged up to a global continuous
change of coordinates. It is a celebrated result that the hyperbolic systems are es-
sentially the structurally stable ones.

An equilibrium accumulated by regular orbits cannot belong to a hyperbolic set,
because the dimensions of the expanding and contracting directions have a discon-
tinuous jump at the equilibrium, since the flow direction vanishes at an equilibrium,
while the notion of hyperbolicity for smooth systems demands continuity of these
directions. Hence there was no mathematical theory able to understand robust ob-
jects like the attractor of the Lorenz system until recently.

Trying to address this problem, a very successful approach was developed by
Afraimovich-Bykov-Shil’nikov and Guckenheimer-Williams independently, lead-
ing to the construction of a geometrical model displaying the main features of the
behavior of the solutions of the Lorenz system of equations.

In the 1990’s a breakthrough was obtained by Morales, Pujals and Pacifico fol-
lowing very original ideas developed by Mañé during the proof of the C1-stability
conjecture, providing a characterization of robustly transitive attractors for three-
dimensional flows, of which the Lorenz attractor is an example.

This characterization placed this class of attractors within the realm of a weak
form of hyperbolicity: they are partially hyperbolic invariant sets with volume ex-
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panding central direction. Moreover robustly transitive attractors without equilibria
were proved to be hyperbolic. Thus these results extend the classical hyperbolic
theory for flows with isolated equilibria.

An invariant set for a three-dimensional flow is partially hyperbolic if there are
two complementary directions at each point. One of them, referred to as central di-
rection, is two-dimensional and necessarily contains the flow direction. The other
one is one-dimensional and contracted by the tangent map of the flow. Moreover
every possible contraction along the central direction is weaker than the contrac-
tion along the complementary one-dimensional direction. In this way the presence
of equilibria accumulated by regular trajectories is not an obstruction for partial
hyperbolicity.

Once this was established it is natural to try and understand the dynamical conse-
quences of partial hyperbolicity with central volume expansion. It is well known that
hyperbolicity has very precise implications for the dynamics, geometry and statis-
tics of the invariant set. It is important to ascertain which properties are implied by
this new weak form of hyperbolicity, known today as singular-hyperbolicity.

Significant advances at the topological and ergodic level where recently obtained
through the work of many authors which deserve a systematic presentation. Thus
we will focus on flows with equilibria accumulated by regular trajectories.

This is the main motivation for writing these notes. We hope to provide a global
perspective of this theory and make it easier for the reader to approach the growing
literature on this subject.

1.1 Organization of the Text

We start with an overview of the main results of uniformly hyperbolic dynamical
systems to be used throughout the rest of the text, both from the geometrical view-
point and the measure-theoretical or ergodic point of view, in Chap. 2. We also
mention some by now standard generic properties of flows in the C1 topology, such
as the Kupka-Smale vector fields (which are in fact Cr generic for every r ≥ 1),
Pugh’s Closing Lemma and Hayashi’s Connecting Lemma. We restrict ourselves to
the results which will actually be used in the course of the proofs of the main results
of the text.

In Chap. 3, we describe the construction of the most simple non-trivial exam-
ples of singular-hyperbolic sets: the singular horseshoe of Labarca-Pacifico, and the
geometric Lorenz attractor of Afraimovich-Bykov-Shil’nikov and Guckenheimer-
Williams.

In Chap. 4, we present the proof that every robustly transitive vector field X in
a 3-manifold is an Anosov vector field, i.e., a robustly transitive vector field X on
three-dimensional manifold is globally hyperbolic. This is a preliminary result for
the main characterization of robustly transitive sets, presented in Chap. 5, and many
arguments detailed here are explored in the rest of the book.

Next, in Chap. 5, we characterize robustly transitive sets with singularities as
partially hyperbolic attractors with volume expanding central direction, either for
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the original flow, or for the time reversed flow. This naturally leads to the notion of
singular-hyperbolic set: a compact partially hyperbolic invariant subset with volume
expanding central direction or, more concisely, a volume hyperbolic invariant set.
We present also an extension of this notion to higher dimensions, the notion of
sectionally expanding attractors.

In Chap. 6, we study some consequences of singular-hyperbolicity, showing that
a singular-hyperbolic attractor is a homoclinic class, and provide converse results
giving sufficient conditions for a singular-hyperbolic attractor to be robust.

We construct, in Chap. 7, a physical measure with non-zero Lyapunov exponents
and positive entropy for singular-hyperbolic attractors. This is another non-trivial
consequence of singular-hyperbolicity. Before this construction we dwell on expan-
siveness and chaotic behavior, showing that every singular-hyperbolic attractor is
robustly expansive and robustly chaotic and that, conversely, under mild conditions,
a robustly chaotic attractor must be singular-hyperbolic. The existence of a phys-
ical measure with non-zero Lyapunov exponents is also another aspect of chaotic
behavior.

Chapter 8 is dedicated to relations between singular-hyperbolicity and volume.
Here we show, using only the assumptions of singular-hyperbolicity, that singular-
hyperbolic attractors either have zero volume or else the flow is globally hyperbolic,
that is, an Anosov flow (without singularities). We present a similar result for sec-
tionally expanding attractors. Among incompressible flows on three-dimensional
manifolds, a similar result is obtained for invariant sets satisfying the weaker condi-
tion of dominated splitting for the linear Poincaré flow.

In Chap. 9 we attempt a description of the Omega-limit set for C1 generic
flows: either the limit set contains an infinite collection of sinks or sources; or is
a finite union of basic pieces, either uniformly hyperbolic transitive isolated sets,
or singular-hyperbolic attractors or repellers. Then we turn to conservative or in-
compressible flows on three-dimensional manifolds and present a recent proof of a
global dynamical dichotomy: C1 generically either the flow is Anosov or else the
Lyapunov exponents are zero Lebesgue almost everywhere.

In an attempt to provide a broader view of the dynamics of flows on three-
dimensional manifolds, we close the text briefly mentioning in Chap. 10 many other
related results: the contracting Lorenz attractor introduced by Rovella, singular cy-
cles exhibiting singular-hyperbolic and/or contracting Lorenz attractors in its un-
folding, other attractors resembling the Lorenz attractor, decay of correlations, large
deviations, quantitative recurrence results for singular-attractors, and other generic
results for conservative flows on three-dimensional manifolds. Among the brief pre-
sentation of results we state some conjectures that we feel are achievable goals in
the near future.



Chapter 2
Preliminary Definitions and Results

In this book we will consider a boundaryless compact finite dimensional manifold
M of dimensions 1 to 3 and study the dynamics of the flow associated to a given
smooth vector field X on M from the topological and measure-theoretic or ergodic
point of view.

We fix on M some Riemannian metric which induces a distance dist on M

and naturally defines an associated Riemannian volume form Leb which we call
Lebesgue measure or simply volume, and always take Leb to be normalized:
Leb(M) = 1. For any subset A of M we denote by A the (topological) closure
of A.

We always assume that a Cr vector field X on M is given, r ≥ 1, and consider
the associated global flow (Xt)t∈R (since X is defined on the whole of M , which
is compact, X is bounded and Xt is defined for every t ∈ R). Recall that the flow
(Xt )t∈R is a family of Cr diffeomorphisms satisfying the following properties:

1. X0 = Id : M → M is the identity map of M ;
2. Xt+s = Xt ◦ Xs for all t, s ∈ R,

and it is generated by the vector field X if

3. d
dt

Xt (q)
∣
∣
t=t0

= X(Xt0(q)) for all q ∈ M and t0 ∈ R.

Note that reciprocally a given Cr+1 flow (Xt )t∈R determines a unique vector Cr

field X whose associated flow is precisely (Xt )t∈R.
In what follows we denote by Xr (M) the vector space of all Cr vector fields on

M endowed with the Cr topology and by F r (M) the space of all flows on M also
with the Cr topology. Many times we usually denote the flow (Xt)t∈R by simply Xt .
For details on these topologies the reader is advised to consult standard references
on Differential Equations [111] and/or Dynamical Systems [190].

Given X ∈ Xr (M) and q ∈ M , an orbit segment {Xt(q);a ≤ t ≤ b} is denoted
by X[a,b](q). We denote by DXt the derivative of Xt with respect to the ambient
variable q and when convenient we set DqXt = DXt(q). Analogously, DX is the
derivative of the vector field X with respect to the ambient variable q , and when
convenient we write DqX for the derivative DX at q , also denoted by DX(q).
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6 2 Preliminary Definitions and Results

2.1 Fundamental Notions and Definitions

2.1.1 Critical Elements, Non-wandering Points, Stable
and Unstable Sets

An equilibrium or singularity for X is a point σ ∈ M such that Xt(σ ) = σ for all
t ∈ R, i.e. a fixed point of all the flow maps, which corresponds to a zero of the
associated vector field X: X(σ) = 0. We denote by S(X) the set of singularities
(zeroes) of the vector field X. Every point p ∈ M which is not a singularity, that is
p satisfies X(p) �= 0, is a regular point for X.

An orbit of X is a set O(q) = OX(q) = {Xt(q) : t ∈ R} for some q ∈ M . Hence
σ ∈ M is a singularity of X if, and only if, OX(σ) = {σ }. A periodic orbit of X is
an orbit O = OX(p) such that XT (p) = p for some minimal T > 0 (equivalently
OX(p) is compact and OX(p) �= {p}). We denote by Per(X) the set of all periodic
orbits of X.

A critical element of a given vector field X is either a singularity or a periodic
orbit. The set C(X) = S(X) ∪ Per(X) is the set of critical elements of X.

We say that p ∈ M is non-wandering for X if for every T > 0 and every neigh-
borhood U of p there is t > T such that Xt(U) ∩ U �= ∅. The set of non-wandering
points of X is denoted by Ω(X). If q ∈ M , we define ωX(q) as the set of accumula-
tion points of the positive orbit {Xt(q) : t ≥ 0} of q . We also define αX(q) = ω−X ,
where −X is the time reversed vector field X, corresponding to the set of accumu-
lation points of the negative orbit of q . It is immediate that ωX(q)∪ αX(q) ⊂ Ω(X)

for every q ∈ M .
A subset Λ of M is invariant for X (or X-invariant) if Xt(Λ) = Λ, ∀t ∈ R. We

note that ωX(q), αX(q) and Ω(X) are X-invariant. For every compact invariant set
Λ of X we define the stable set of Λ

Ws
X(Λ) = {q ∈ M : ωX(q) ⊂ Λ},

and also its unstable set

Wu
X(Λ) = {q ∈ M : αX(q) ⊂ Λ}.

2.1.2 Limit Sets, Transitivity, Attractors and Repellers

We say that a compact Xt -invariant set Λ is isolated (or maximal) if there ex-
ists a neighborhood U of Λ such that Λ = ∩t∈RXt(U) = ∩t∈RXt(U). A com-
pact invariant set Λ is transitive if Λ = ωX(q) for some q ∈ Λ, and attract-
ing if ΛX(U) = ∩t≥0X

t(U) equals Λ for some neighborhood U of Λ satisfying
Xt(U) ⊂ U , for all t > 0. In this case the neighborhood U is called an isolating
neighborhood of Λ. Note that ΛX(U) is in general different from ∩t∈RXt(U),
but for an attracting set the extra condition Xt(U) ⊂ U for all t > 0 ensures that
X−t (U) ⊃ U and so

Λ ⊃
⋂

t∈R

Xt(U) =
⋂

t≤0

Xt(U) ∩
⋂

t>0

Xt(U) ⊃ U ∩ Λ = Λ
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thus every attracting set is isolated. An attractor of X is a transitive attracting set
of X and a repeller is an attractor for −X. We say that Λ is a proper attractor or
repeller if ∅ �= Λ �= M .

The limit set L(X) is the closure of ∪x∈MαX(x)∪ωX(x). Clearly L(X) ⊂ Ω(X).
Using these notions we have the following simple and basic

Lemma 2.1 For any flow X the limit set L(X) can neither be a proper attractor
nor a proper repeller.

Proof Suppose L(X) is a proper attractor with isolating open neighborhood U (and
U �= M). Let z ∈ U . Then α(z) ∈ L(X) ⊂ U and so X−tn(z) ∈ U for a sequence
tn → +∞, that is z ∈ Xtn(U) for all n. But since Xtn−t (U) ⊂ U for 0 < t < tn
by definition of U , we have that z ∈ Xtn(U) ⊂ Xt(U) (recall that each Xt is an
invertible map) for all 0 < t < tn, and so z ∈ Xt(U) for all t > 0. We conclude that
z ∈ L(X). Thus L(X) ⊃ U and L(X) is simultaneously open and closed, hence it
cannot be a proper subset of the connected manifold M . The proper repeller case is
similar. �

The following relation between transitivity as we have defined it, and topological
transitivity is very useful and we include the proof here for completeness.

Lemma 2.2 For a homeomorphism h of a compact metric space Λ, h has a dense
forward orbit, that is

⋂

�≥1

{hn(x0) : n ≥ �} = Λ for some x0 ∈ Λ

if, and only if, Ω(h) = Λ and h admits a dense full orbit, i.e. for some z ∈ Λ

⋂

�≥1

{hn(z) : n ≥ �} = Λ =
⋂

�≥1

{hn(z) : n ≤ −�}.

In particular, a transitive compact invariant set Λ for a flow Xt admits a point w

whose full orbit is dense: ωX(w) = Λ = αX(w).

Proof If h has a dense forward orbit, we check first that every point of Λ is non-
wandering. Arguing by contradiction, assume there exists some non-empty open
subset U such that the family {hk(U) : k ∈ Z} is pairwise disjoint. For some n0 we
have hn0(x0) ∈ U , thus hn0+n(x0) ∈ hn(U) for each n ≥ 0 and so only the orbit
segment {x0, h(x0), . . . , h

n0−1(x0)} can belong to ∪i≥1h
−i (U). But this contradicts

the assumption that the forward orbit of x0 is dense. To obtain a dense full orbit, we
note that given a pair U,V of open sets in Λ we can always find n > m such that
hn(x0) ∈ U,hm(x0) ∈ V , so that hn−m(V )∩U �= ∅, and likewise exchanging U and
V . Hence if (Ui)i∈N is a countable basis for the topology of Λ, then we have that
both ∪j≥�h

j (Ui) and ∪j≤−�h
j (Ui) are open and dense for each i, � ≥ 1. Hence we

have that ∩i≥1 ∩�≥1 ∪j≥�h
j (Ui) is both non-empty (it is a countable intersection
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of open and dense subsets and Λ is a Baire space, see e.g. [126]) and formed by
points whose omega-limit is dense. Analogously ∩i≥1 ∩�≥1 ∪j≤−�h

j (Ui) is non-
empty and formed by points whose alpha-limit is dense. The point z is any point in
the (dense) intersection of these last two dense sets. The reciprocal is trivial. �

We state and prove here some simple but very useful results on attracting set
which are well known, see for instance Conley [73].

Lemma 2.3 Let Λ be an isolated set of X ∈ Xr (M), r ≥ 0. Then for every isolating
block U of Λ and every ε > 0 there is a neighborhood U of X in Xr (M) such that
ΛY (U) ⊂ B(Λ,ε) and Λ ⊂ B(ΛY (U), ε) for all Y ∈ U .

We recall that the Hausdorff distance between compact subsets K,L ∈ K of a
metric space is given by (see e.g. [85])

dH (K,L) = inf{r > 0 : K ⊂ B(L, r) and L ⊂ B(K, r)}.
So the previous lemma ensures that the map (X1(M),C1) → (K , dH ),Y �→
ΛY (U) is continuous.

Proof We have by assumption Λ = ΛX(U) = ∩t∈RXt(U) = ∩t∈RXt(U). Given
ε > 0 there is a big enough T > 0 such that

ΛT
X(U) :=

⋂

−T ≤t≤T

Xt (U) ⊂ B

(

Λ,
ε

4

)

.

Then using the continuous dependence of the flow with the vector field and the
compactness of U , there exists a neighborhood U of X in Xr (M) such that

ΛT
X(U) ⊂ B

(

ΛT
Y (U),

ε

4

)

and ΛT
Y (U) ⊂ B

(

ΛT
X(U),

ε

4

)

for each Y ∈ U . Hence we deduce that, on the one hand

ΛY (U) ⊂ ΛT
Y (U) ⊂ B

(

ΛT
X(U),

ε

4

)

⊂ B

(

Λ,
ε

4
+ ε

4

)

⊂ B(Λ,ε);

and, on the other hand

Λ ⊂ ΛT
X(U) ⊂ B

(

ΛT
Y (U),

ε

4

)

⊂ B

(

ΛY (U),
ε

4
+ 3

ε

4

)

= B(ΛY (U), ε);

because

ΛY (U) ⊂ B

(

Λ,2
ε

4

)

⊂ B

(

ΛT
X(U),2

ε

4

)

⊂ B

(

ΛT
Y (U),2

ε

4
+ ε

4

)

,

for all Y ∈ U . �
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We remark that if Xt(U) ⊂ U for all t > 0, since the flow Xt is a family of
diffeomorphism we deduce that Xt−s(U) ⊂ U for all s < t , or Xt(U) ⊂ Xs(U).
Thus the family (Xt(U))t>0 is a nested family of sets and so

ΛX(U) =
⋂

t>0

Xt(U) = lim
t→+∞Xt(U)

that is, given any neighborhood V of Λ there exists T = T (V ) such that Xt(U) ⊂ V

for all t > T .

Lemma 2.4 If Λ is an attracting set and a repelling set of X ∈ X1(M), then Λ = M .

Proof Suppose that Λ is an attracting set and a repelling set of X. Then there are
neighborhoods V1 and V2 of Λ satisfying Xt(V1) ⊂ V1, X−t (V2) ⊂ V2 for every
t ≥ 0,

Λ =
⋂

t≥0

Xt(V1) and Λ =
⋂

t≥0

X−t (V2).

Define U1 = int(V1) and U2 = int(V2). Clearly Xt(U1) ⊂ U1 and X−t (U2) ⊂ U2

for all t ≥ 0, since Xt is a diffeomorphism. As U2 is open and contains Λ, the first
equality implies that there is t2 > 0 such that Xt2(V1) ⊂ U2. As Xt2(U1) ⊂ Xt2(V1)

it follows that U1 ⊂ X−t2(U2) ⊂ U2 proving

U1 ⊂ U2.

Similarly, as U2 is open and contains Λ, the second equality implies that there is
t1 > 0 such that X−t1(V2) ⊂ U1. As X−t1(U2) ⊂ X−t1(V2) it follows that U2 ⊂
Xt1(U1) ⊂ U1 proving

U2 ⊂ U1.

Thus, U1 = U2. From this we obtain Xt(U1) = U1 for all t ≥ 0 proving Λ = U1.
As Λ is compact by assumption we conclude that Λ is open and closed. As M is
connected and Λ is not empty we obtain that Λ = M as desired. �

The lemma below gives a sufficient condition for an isolated set to be attracting.

Lemma 2.5 Let Λ be an isolated set of X ∈ X1(M). If there are an isolating block
U of Λ and an open set W containing Λ such that Xt(W) ⊂ U for every t ≥ 0, then
Λ is an attracting set of X.

Proof Let Λ and X be as in the statement. To prove that Λ is attracting we have to
find a neighborhood V of Λ such that Xt(V ) ⊂ V for all t > 0 and

Λ = ∩t≥0X
t(V ). (2.1)
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To construct V we let W be the open set in the statement of the lemma and define
V = ∪t>0X

t(W). Clearly V is a neighborhood of Λ satisfying Xt(V ) ⊂ V for each
t > 0.

We claim that V satisfies (2.1). Indeed, as Xt(W) ⊂ U for every t > 0 we have
that V ⊂ U and so ∩t∈IRXt (V ) ⊂ Λ because U is an isolating block of Λ. But
V ⊂ X−t (V ) for every t ≥ 0 since V is forward invariant. So V ⊂ ∩t≤0X

t(V ) and
from this we have

⋂

t≥0

Xt(V ) ⊂ V ∩
⋂

t>0

Xt(V )

=
⋂

t≤0

Xt(V ) ∩
⋂

t>0

Xt(V ) =
⋂

t∈R

Xt(V ).

Thus, ∩t≥0X
t(V ) ⊂ Λ. Now, as Λ ⊂ V and Λ is invariant, we have Λ ⊂ Xt(V ) for

every t ≥ 0. Then Λ ⊂ ∩t≥0X
t(V ), proving (2.1). �

2.1.3 Hyperbolic Critical Elements

A sink of X is a singularity of X which is also an attractor of X, it is a trivial attractor
of X. A source of X is a trivial repeller of X, i.e. a singularity which is a attractor
for −X.

A singularity σ is hyperbolic if the eigenvalues of DX(σ), the derivative of the
vector field at σ , have a real part different from zero. In particular sinks and sources
are hyperbolic singularities, where all the eigenvalues of the former have negative
real part and those of the latter have positive real part.

A periodic orbit OX(p) of X is hyperbolic if the eigenvalues of DXT (p) :
TpM → TpM , the derivative of the diffeomorphism XT , where T > 0 is the pe-
riod of p, are all different from 1. In Sect. 2.3 we will define hyperbolicity in a
geometric way.

When a critical element is hyperbolic, then its stable and unstable sets have the
structure of an embedded manifold (a consequence of the Stable Manifold Theorem,
see Sect. 2.3), and are called stable and unstable manifolds.

2.1.4 Topological Equivalence, Structural Stability

Given two vector fields X,Y ∈ Xr (M), r ≥ 1, we say that X and Y are topologically
equivalent if there exists a homeomorphism h : M → M taking orbits to orbits and
preserving the time orientation, that is

• h(OX(p)) = OY (h(p)) for all p ∈ M , and
• for all p ∈ M and ε > 0 there exists δ > 0 such that for t ∈ (0, δ) there is s ∈ (0, ε)

satisfying h(Xt (p)) = Y s(h(p)).
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The map h is then said a topological equivalence between X and Y . This is an
equivalence relation in Xr (M).

We say that X,Y ∈ Xr (M) are conjugate if there exists a topological equivalence
h between X and Y which preserves the time, i.e. Xt(h(p)) = h(Y t (p)) for all
p ∈ M and t ∈ R. This is also an equivalence relation on Xr (M).

In many respects the behavior of two topologically equivalent vector fields are
the same, as the following result shows.

Proposition 2.6 Let h be a topological equivalence between X,Y ∈ Xr (M). Then

1. p ∈ S(X) if, and only if, h(p) ∈ S(Y );
2. OX(p) is closed if, and only if, OY (h(p)) is closed;
3. h(ωX(p)) = ωY (h(p)) and h(αX(p)) = αY (h(p)).

We say that a vector field X ∈ Xr (M), r ≥ 1, is Cr -structurally stable if there
exists a neighborhood V of X in Xr (M) such that every Y ∈ V is topologically
equivalent to X.

Roughly speaking, a vector field is structurally stable if its qualitative features
are robust under small perturbations.

2.2 Low Dimensional Flow Versus Chaotic Behavior

2.2.1 One-Dimensional Flows

The only connected one-dimensional compact boundaryless manifold M is the cir-
cle S

1, which we represent by R/Z or by the unit interval I = [0,1] with its end-
points identified 0 ∼ 1.

Let X0 be one of the two unit vector fields on S
1, i.e., either X0 ≡ 1 or X0 ≡ −1.

Then every X ∈ Xr (S1) can be written in a unique way as X(p) = f (p) · X0(p) for
p ∈ S1, where f : S

1 → R is a Cr -function.
It is well known (see for example [136, 177]) that given any compact set K ⊂ S

1

and r ≥ 1 there exists f : S
1 → R of class Cr with f −1({0}) = K . Thus K is the set

of singularities of X = f ·X0. Since topological equivalence preserves singularities,
we see that there exist at least as many topological equivalence classes of vector
fields in S

1 as there are homeomorphism classes of compact subsets of S
1. Hence

the problem of classifying smooth vector fields on S
1 up to topological equivalence

is hopeless, and we need to restrict our attention to a subset of Xr (M) which is open
and dense, or residual or, at least, dense.

Here by a residual subset of the space Xr (M) we mean a set R which contains
a countable intersection of open and dense subsets of Xr (M): R ⊃ ∩n≥1Rn where
each Rn is an open and dense subset of Xr (M).

We say that a generic vector field in Xr (M) satisfies a property (P) if there is a
residual subset R of Xr (M) such that (P) holds for every X ∈ R.
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A singularity σ ∈ S(X) is non-degenerate if DX(σ) �= 0 or Df (σ) �= 0 where
X = f · X0. It can be a sink (Df (σ) < 0) or a source (Df (σ) > 0) and in either
case a non-degenerate singularity is isolated: there exists a neighborhood U of σ in
M such that σ is the only zero of f | U .

Let G ⊂ Xr (S1) be the subset consisting of vector fields whose singularities are
all non-degenerate. Since these are isolated there are only finitely many of them. It
is not difficult to show that G is open and dense, that the number of singularities
is even and that X,Y ∈ G are topologically conjugate if, and only if, the number
of singularities is the same (see e.g. [190, 258]). Moreover the elements of G are
precisely the structurally stable vector fields of S

1, that is generically a smooth
vector field on the circle is structurally stable.

2.2.2 Two-Dimensional Flows

Surfaces have a simple enough topology (albeit much more complex that the topol-
ogy of the circle) to enable one to characterize the non-wandering set of the flow
of a vector field. The most representative result in this respect is the Poincaré-
Bendixson’s Theorem on planar flows or flows on the two-dimensional sphere (es-
sentially the result depends on the Jordan Curve Theorem: any closed simple curve
splits the manifold in two connected components, see e.g. [99, 157, 177]).

Theorem 2.7 (Poincaré-Bendixson) Let X ∈ Xr (S2), r ≥ 1, be a smooth vector
field with a finite number of singularities. Let p ∈ S

2 be given. Then the omega-limit
set ωX(p) satisfies one of the following:

1. ωX(p) is a singularity;
2. ωX(p) is a periodic orbit;
3. ωX(p) consists of singularities σ1, . . . , σn and regular orbits γ ∈ ωX(p) such

that αX(γ ) = σi and ωX(γ ) = σj for some i, j = 1, . . . , n.

The proof of this basic result may be found e.g. in [111, 190]. This answers
essentially all the questions concerning the asymptotic dynamics of the solutions of
autonomous ordinary differential equations on the plane or on the sphere.

Observe that now hyperbolic singularities σ can be of three types: sink (DX(σ)

with two eigenvalues with negative real part), source (DX(σ) whose eigenvalues
have positive real part, see Fig. 2.1) or a saddle (DX(σ) with eigenvalues having
negative and positive real parts, see Fig. 2.3).

Fig. 2.1 A sink and a source
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Historically the characterization of structurally stable vector fields on compact
surfaces by Peixoto, based on previous work of Poincaré [206–208] and Andronov
and Pontryagin [14], was the origin of the notion of structural stability for Dynami-
cal Systems. In this setting structural stability is still synonymous with a hyperbolic
non-wandering set containing finitely many orbits. We now write S for any compact
connected two-manifold without boundary.

Theorem 2.8 (Peixoto) A Cr vector field on a compact surface S is structurally
stable if, and only if:

1. the number of critical elements is finite and each is hyperbolic;
2. there are no orbits connecting saddle points;
3. the non-wandering set consists of critical elements alone.

Moreover if S is orientable, then the set of structurally stable vector fields is open
and dense in Xr (S).

The proof of this celebrated result can be found in [194, 195] and for a more
detailed exposition of this results and sketch of the proof see [97]. The last part of
the statement uses a version of Pugh’s C1-Closing Lemma [212, 213], which is a
fundamental tool to be used repeatedly in many proofs in this book, see Sect. 2.5.6
for the statement of this result.

The extension of Peixoto’s characterization of structural stability for Cr flows,
r ≥ 1, on non-orientable surfaces is known as Peixoto’s Conjecture, and up until
now it has been proved for the projective plane P

2 [190], the Klein bottle K
2 [150]

and L
2, the torus with one cross-cap [101].

In an attempt to extend Peixoto’s result to higher dimensions, Steve Smale con-
sidered in [252] the following type of vector field which preserves the main features
of the structurally stable vector fields on surfaces.

We say that a vector field X ∈ Xr (M), r ≥ 1, is Morse-Smale (where now M is a
compact manifold of any dimension) if

1. the number of critical elements of X is finite and each one of them is hyperbolic;
2. every stable and unstable manifold of each critical element intersects transversely

the unstable or stable manifold of any other critical element;
3. the non-wandering set consists only of the critical elements of X: Ω(X) = C(X).

Hence structurally stable vector fields in two-dimensions are Morse-Smale and they
are open and dense on the set of all smooth vector fields of an orientable surface.

There exists a similar notion of Morse-Smale diffeomorphisms on any compact
manifold. Smale’s Horseshoe, presented in [252], showed that Morse-Smale dif-
feomorphisms are neither dense on the space of all diffeomorphisms, nor the only
structurally stable type of diffeomorphisms.

Moreover the singular horseshoe, which we present in Sect. 3.1, is a compact
invariant set for a flow similar to a Smale Horseshoe which is structurally stable but
non-hyperbolic, defined on manifolds with boundary.

It is well known that Morse-Smale vector fields are structurally stable in any di-
mension, see e.g. [190, 191]. However early hopes that they might form an open and
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dense subset of the space of all smooth vector fields or that they are the representa-
tives of structurally stable vectors fields were shattered in higher dimensions, as the
following section explains.

2.2.3 Three Dimensional Chaotic Attractors

In 1963 the meteorologist Lorenz published in the Journal of Atmospheric Sciences
[139] an example of a parametrized polynomial system of differential equations

ẋ = a(y − x), a = 10
ẏ = rx − y − xz, r = 28
ż = xy − bz, b = 8/3

(2.2)

as a very simplified model for thermal fluid convection, motivated by an attempt to
understand the foundations of weather forecast. Later W. Markus [257, Chap. 9] and
Lorenz [140] together with other experimental researches showed that the equations
of motions of a certain laboratory waterwheel are given by (2.2) with b = 1 (see
[257, Chap. 9] for the details of the derivation of the equations for this mechanical
system) but this restriction does not change the qualitative behavior. Hence equa-
tions (2.2) can be deduced directly as a model of a mechanical system, instead of
as an approximation to a partial differential equation. This waterwheel was built at
MIT (Massachusetts Institute of Technology) in the 1970s and helped to convince
the skeptical physicists and engineers of the reality of chaos in concrete systems.

Numerical simulations for an open neighborhood of the chosen parameters sug-
gested that almost all points in phase space tend to a stranger attractor, called the
Lorenz attractor; see Fig. 2.2. However Lorenz’s equations proved to be very resis-
tant to rigorous mathematical analysis, and also presented very serious difficulties
to rigorous numerical study.

A very successful approach was taken by Afraimovich, Bykov and Shil’nikov
[2–4], and Guckenheimer, Williams [98], independently: they constructed the so-
called geometric Lorenz models (see Sect. 3.3) for the behavior observed by Lorenz.
These models are flows in 3-dimensions for which one can rigorously prove the ex-
istence of an attractor that contains an equilibrium point of the flow, together with
regular solutions. The accumulation of regular orbits near a singularity prevents
such sets to be hyperbolic (see Sect. 2.3). Moreover, for almost every pair of nearby
initial conditions, the corresponding solutions move away from each other exponen-
tially fast as they converge to the attractor, that is, the attractor is sensitive to initial
conditions: this unpredictability is a characteristic of chaos. Most remarkably, this
attractor is robust: it can not be destroyed by any small perturbation of the original
flow.

Another approach was through rigorous numerical analysis. In this way, it could
be proved, by [105, 106, 158, 159], that the equations (2.2) exhibit a suspended
Smale Horseshoe. In particular, they have infinitely many closed solutions, that is,
the attractor contains infinitely many periodic orbits. However, proving the existence
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Fig. 2.2 Lorenz strange
attractor

of a strange attractor as in the geometric models is an even harder task, because
one cannot avoid the main numerical difficulty posed by Lorenz’s equations, which
arises from the very presence of an equilibrium point: solutions slow down as they
pass near the origin, which means unbounded return times and, thus, unbounded
integration errors.

As a matter-of-fact, proving that equations (2.2) support a strange attractor was
listed by Steve Smale in [253] as one of the several challenging problems for the
twenty-first century. In the year 2000 this was finally settled by Tucker who gave a
mathematical proof of the existence of the Lorenz attractor, see [260–262].

The algorithm developed by Tucker incorporates two kinds of ingredients: a nu-
merical integrator, based on the theory of interval arithmetic, used to compute good
approximations of trajectories of the flow far from the equilibrium point sitting at
the origin, together with quantitative results from normal form theory, that make
it possible to handle trajectories close to the origin. Moreover in this work it was
also proved that the Lorenz attractor is indeed robust: for an open set of parameters
(a, r, b) in (2.2) there is an invariant set containing a dense non-periodic orbit and a
equilibrium, which is the ω-limit set of the orbits of all nearby points. This shows
that the Lorenz attractor is singular-hyperbolic, as we show in Chap. 5.

The consequences of the sensitiveness to initial conditions on a (albeit simplified)
model of the atmosphere were far-reaching: assuming that the weather behaves ac-
cording to this model, then long-range weather forecasting is impossible. Indeed the
unavoidable errors in determining the present state of the weather system are mag-
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nified as time goes by casting off any reliability of the values obtained by numerical
integration within a small time period.

This observation was certainly not new. Since the development of the kinetic
theory of gases and thermodynamics in the end of the nineteenth century it was
known that gas environments, specifically the Earth atmosphere, are very complex
systems whose dynamics involves the interaction of a huge number of particles,
so it is not surprising that the evolution of such systems is hard to predict. What
bewildered mathematicians was the simplicity of the Lorenz system, the fact that
it arises naturally as a model of a physical phenomenon (convection) and that its
solutions exhibit sensitiveness with respect to the initial conditions. This suggests
that sensitiveness is the rule rather than the exception in the natural sciences.

For an historical account of the impact of the Lorenz paper [139] on Dynamical
Systems and an overview of the proof by Tucker see [267].

The robustness of this example provides an open set of flows which are not
Morse-Smale, nor hyperbolic, and also non-structurally stable, as we will see in
Sect. 3.3.

2.3 Hyperbolic Flows

In an attempt to identify what properties were common among stable systems,
Stephen Smale introduced in [252] the notion of Hyperbolic Dynamical System.
Remarkably it turned out that stable systems are essentially the hyperbolic ones,
plus certain transversality conditions. In the decades of 1960 and 1970 an elegant
and rather complete mathematical theory of hyperbolic systems was developed, cul-
minating with the proof of the Stability Conjecture, by Mañé in the 1990’s in the
setting of C1 diffeomorphisms, followed by Hayashi for C1 flows.

In what follows we present some results of this theory which will be used
throughout the text.

Let X ∈ Xr (M) be a flow on a compact manifold M . Denote by m(T ) =
inf‖v‖=1 ‖T (v)‖ the minimum norm of a linear operator T . A compact invariant
set Λ ⊂ M of X is hyperbolic if

1. admits a continuous DX-invariant tangent bundle decomposition TΛM = Es
Λ ⊕

EX
Λ ⊕ Eu

Λ, that is we can write the tangent space T xM as a direct sum Es
x ⊕

EX
x ⊕ Eu

x , where EX
x is the subspace in TxM generated by X(x), satisfying

• DXt(x) · Ei
x = Ei

Xt (x)
for all t ∈ R, x ∈ Λ and i = s,X,u;

2. there are constants λ,K > 0 such that

• Es
Λ is (K,λ)-contracting, i.e. for all x ∈ Λ and every t ≥ 0

‖DXt(x) | Es
x‖ ≤ K−1e−λt ,

• Eu
Λ is (K,λ)-expanding, i.e. for all x ∈ Λ and every t ≥ 0

m(DXt | Eu) ≥ Keλt .
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Fig. 2.3 A saddle singularity
σ for bi-dimensional flow

By the Invariant Manifold Theory [110] it follows that for every p ∈ Λ the sets

Wss
X (p) = {q ∈ M : dist(Xt (q),Xt (p)) −−−→

t→∞ 0}

and

Wuu
X (p) = {q ∈ M : dist(Xt (q),Xt (p)) −−−−→

t→−∞ 0}
are invariant Cr immersed manifolds tangent to Es

p and Eu
p respectively at p. Here

dist is the distance on M induced by some Riemannian norm.
If O = OX(p) ⊂ Λ is an orbit of X one has that

Ws
X(O) = ∪t∈RWss

X (Xt (p)) and Wu
X(O) = ∪t∈RWuu

X (Xt (p))

are invariant Cr -manifolds tangent to Es
p ⊕ EX

p and EX
p ⊕ Eu

p at p, respectively.
We shall denote Ws

X(p) = Ws
X(OX(p)) and Wu

X(p) = Wu
X(OX(p)) for the sake of

simplicity; see Fig. 2.4.
A singularity or a periodic orbit of X is hyperbolic if its orbit is a hyperbolic set

of X. Note that Wss
X (σ ) = Ws

X(σ) and Wuu
X (σ ) = Wu

X(σ) for every hyperbolic sin-
gularity σ of X. A sink and a source are both hyperbolic singularities. A hyperbolic
singularity which is neither a sink nor a source is called a saddle.

For every hyperbolic critical element, the dimension of its contracting direction
of the tangent bundle decomposition is the index of that element. Hence a sink has
maximal index, equal to the dimension of the ambient space, and a source has zero
index.

A hyperbolic set Λ of X is called basic if it is transitive and isolated, that is
Λ = ∩t∈RXt(U) for some neighborhood U of Λ. It follows from the Shadowing
Lemma [181] that every hyperbolic basic set of X either reduces to a singularity or
else has no singularities and it is the closure of its periodic orbits.

We say that X is Axiom A if the non-wandering set Ω(X) is both hyperbolic
and the closure of its periodic orbits and singularities. The Spectral Decomposi-
tion Theorem asserts that if X is Axiom A, then there is a disjoint decomposition
Ω(X) = Λ1 ∪ · · · ∪ Λk, where each Λi is a hyperbolic basic set of X, i = 1, . . . , k.

A cycle of a Axiom A vector field X is a sub-collection {Λi0, . . . ,Λik } of
{Λ1, . . . ,Λn} such that i0 = ik and Wu

X(Λij ) ∩ Ws
X(Λij+1) �= ∅, ∀0 ≤ j ≤ k − 1.
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Fig. 2.4 The flow near a
hyperbolic saddle periodic
orbit through p

2.3.1 Hyperbolic Sets and Singularities

The continuity of the DX-invariant splitting on the tangent space of a uniformly
hyperbolic set Λ is a consequence of the uniform expansion and contraction esti-
mates (see e.g. [190]). This means that if xn ∈ Λ is a sequence of points converg-
ing to x ∈ Λ, and we consider orthonormal basis {en

i }i=1,...,dimEs(xn) of Es(xn),
{f n

i }i=1,...,dimEu(xn) of Eu(xn) and X(xn) of EX(xn), then these vectors converge
to a basis of Es(x),Eu(x) and EX(x) respectively. In particular the dimension of
the subspaces in the hyperbolic splitting is constant if Λ is transitive.

This shows that a uniformly hyperbolic basic set Λ cannot contain singularities,
except if Λ is itself a singularity. Indeed, if σ ∈ Λ is a singularity then it is hyper-
bolic but the dimension of the central sub-bundle is zero since the flow is zero at σ .
Therefore the dimensions of either the stable or the unstable direction at σ and those
of a transitive regular orbit in Λ do not match.

In other words an invariant subset Λ containing a singularity accumulated by
regular orbits cannot be uniformly hyperbolic.

2.3.2 Examples of Hyperbolic Sets and Axiom A Flows

Any hyperbolic singularity or hyperbolic periodic orbit is a hyperbolic invariant set.
Also any finite collection of hyperbolic critical elements is a hyperbolic set. We
refer to these sets as trivial hyperbolic sets.

The first examples of a non-trivial (different from a singularity or a periodic
orbit) hyperbolic basic set (on the whole manifold) was the geodesic flow on any
Riemannian manifold with negative curvature, studied by Anosov [15], whose name
is attached to this type of systems today, and the Smale Horseshoe, presented in
[252] in the setting of diffeomorphisms.

We use a global construction of a (linear) Anosov diffeomorphism (hyperbolic
with dense orbit) on the 2-torus and then consider its suspension on the solid
(3-)torus to obtain an example of a transitive Axiom A flow.
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2.3.2.1 A Linear Anosov Diffeomorphism on the 2-Torus

Consider the linear transformation A : R
2 → R

2 with the following matrix in the
canonical base

(

1 1
2 1

)

.

Consider the 2-torus T
2 as the quotient R

2/Z
2 = [0,1]2/ ∼, where (x,0) ∼ (x,1)

and (y,0) ∼ (y,1) for all x, y ∈ [0,1], that is the square [0,1]2 whose parallel sides
are identified. We denote by π : R

2 → T
2 the quotient map or projection from R

2 to
T

2. Since A preserves Z
2, i.e. A(Z2) ⊂ Z

2, then there exists a well defined quotient
map FA : T

2 → T
2. This is a linear automorphism of T

2, see e.g. [147, 269].
The matrix A is hyperbolic: its eigenvalues are λ1, λ2 = 1 ± √

2 and the corre-
sponding eigenvectors v1, v2 = (±√

2/2,1), with irrational slope. Given any point
p ∈ T

2, if we take the projection Wi(p) of the line Li through p parallel to vi ,
Wi(p) = π(Li), then distances along Wi(p) are multiplied by λi under the action
of FA, for i = 1,2. These are the stable and unstable manifolds of p. Due to the
irrationality of the slope every such “line” is dense in the torus. Moreover there is a
transitive orbit and a dense set of periodic orbits for the map FA (see e.g. [78]). The
entire torus is then a uniformly hyperbolic set.

2.3.2.2 Definition of Suspension Semiflow over a Roof Function

Let (X,d) be a metric space with distance d and r : X → R be a strictly positive
function. The phase space Xr of the suspension flow is defined as

Xr = {(x, y) ∈ X × [0,+∞) : 0 ≤ y < r(x)}.

Let f : X → X be a map on X. The suspension semi-flow over f with roof r

is the following family of maps Xt
f : Xr → Xr for t ≥ 0: X0 is the identity and

for each x = x0 ∈ X denote by xn the nth iterate f n(x0) for n ≥ 0. Denote also
Snr(x0) = ∑n−1

j=0 r(xj ) for n ≥ 1. Then for each pair (x0, y0) ∈ Xr and t > 0 there
exists a unique n ≥ 1 such that Snr(x0) ≤ y0 + t < Sn+1r(x0) and we define (see
Fig. 2.5)

Xt
f (x0, y0) = (

xn, y0 + t − Snr(x0)
)

.

This construction is the basis of many examples and also of many techniques to pass
from a flow with a transverse section to a suspension flow and viceversa, enabling us
to transfer results which are easy to prove for suspension flows, due to their “almost
product structure”, to more general flows. In this text we will see several examples
of this.
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Fig. 2.5 The equivalence relation defining the suspension flow of f over the roof function r

Fig. 2.6 Suspension flow
over Anosov diffeomorphism
with constant roof

2.3.2.3 An Anosov Flow on a Three-Dimensional Manifold Though
the Suspension of an Anosov Diffeomorphism

Consider the suspended flow Xr over FA : T
2 → T

2 defined in Sect. 2.3.2.1 with
a constant roof function r ≡ 1. Then Xr is the 3-cube [0,1]3 with parallel sides
identified, that is, we obtain a flow on the 3-torus such that the first return map
Rz from any section T

2 × {z} to itself can be naturally identified with FA, see
Fig. 2.6.

This flow Xt
FA

is uniformly hyperbolic since the hyperbolic structure exhibited

by the map FA is naturally carried by the flow to T
3, e.g. it has a dense orbits and a

dense set of periodic orbits, each of which are the suspension of the corresponding
dense orbit and periodic orbits for FA. The invariant manifolds of a point (x, y, s)

are simply the translate of the corresponding invariant manifolds of (x, y) for FA:
Wk

Xr
(x, y, z) = Wk(x, y) × {z} for k = uu, ss and any z ∈ [0,1].

We will see in Sect. 10.2.3 that this Anosov flow is not topologically mixing. We
note that since the definition of suspension flow involves the identification of points
through the base map, the resulting three-dimensional manifold of the suspension
presented above is not the 3-torus.
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Fig. 2.7 The solenoid
attractor

2.3.2.4 The Solenoid Attractor

Consider now the solid 2-torus S
1 × D where D = {z ∈ C : |z| < 1} is the unit disk

in C, together with the map f : S
1 × D → S

1 × D given by

(θ, z) �→ (2θ,αz + βeiθ/2),

θ ∈ R/Z and α,β ∈ R with α + β < 1. This transformation maps S
1 × D strictly

inside itself, that is f (S1 × D) ⊂ S
1 × D. The maximal positively invariant set Λ =

∩n≥0f
n(S1 × D) is a uniformly hyperbolic basic set: the S

1 direction is uniformly
expanding and the D direction is uniformly contracting, see Fig. 2.7. This set is
transitive and has a dense subset of periodic orbits [78, 230].

2.3.2.5 Uniformly Hyperbolic Basic Set for a Flow

Consider the suspension of the solenoid map f of the previous subsection over the
constant roof function r ≡ 1 to get a flow with an attractor Λf = ∩t≥0 Xt

f ((S1 ×D)r )

which is a uniformly hyperbolic basic set for the flow Xf .
This is an example of an Axiom A attractor for a flow. As before Xt

f on Λ is not
topologically mixing.

2.4 Expansiveness and Sensitive Dependence on Initial
Conditions

The development of the theory of dynamical systems has shown that models in-
volving expressions as simple as quadratic polynomials (as the logistic family or
Hénon attractor), or autonomous ordinary differential equations with a hyperbolic
singularity of saddle-type accumulated by regular orbits, as the Lorenz flow, exhibit
sensitive dependence on initial conditions, a common feature of chaotic dynamics:
small initial differences are rapidly augmented as time passes, causing two trajec-
tories originally coming from practically indistinguishable points to behave in a
completely different manner after a short while. Long term predictions based on
such models are unfeasible since it is not possible to both specify initial conditions
with arbitrary accuracy and numerically calculate with arbitrary precision.
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Fig. 2.8 Sensitive
dependence on initial
conditions

Formally the definition of sensitivity is as follows for a flow Xt : a Xt -invariant
subset Λ is sensitive to initial conditions or has sensitive dependence on initial con-
ditions, or simply chaotic if, for every small enough r > 0 and x ∈ Λ, and for any
neighborhood U of x, there exists y ∈ U and t �= 0 such that Xt(y) and Xt(x) are
r-apart from each other: dist(Xt (y),Xt(x)) ≥ r . See Fig. 2.8.

2.4.1 Chaotic Systems

We distinguish between forward and backward sensitive dependence on initial con-
ditions. We say that an invariant subset Λ for a flow Xt is future chaotic with con-
stant r > 0 if, for every x ∈ Λ and each neighborhood U of x in the ambient man-
ifold, there exists y ∈ U and t > 0 such that dist(Xt (y),Xt (x)) ≥ r . Analogously
we say that Λ is past chaotic with constant r if Λ is future chaotic with constant
r for the flow generated by −X. If we have such sensitive dependence both for the
past and for the future, we say that Λ is chaotic. Note that in this language sensi-
tive dependence on initial conditions is weaker than chaotic, future chaotic or past
chaotic conditions.

An easy consequence of chaotic behavior is that it prevents the existence of
sources or sinks, either attracting or repelling singularities or periodic orbits, inside
the invariant set Λ. Indeed, if Λ is future chaotic (for some constant r > 0) then,
were it to contain some attracting periodic orbit or singularity, any point of such or-
bit (or singularity) would admit no point in a neighborhood whose orbit will move
away in the future. Likewise, reversing the time direction, a past chaotic invariant
set cannot contain repelling periodic orbits or singularities. As an almost reciprocal
we have the following.

Lemma 2.9 If Λ = ∩t∈RXt(U) is a isolated proper subset for X ∈ X1(M) with
isolating neighborhood U and Λ is not future chaotic (respective not past chaotic),
then Λ−

X(U) = ∩t>0X−t (U) (respective Λ+
X(U) = ∩t>0Xt(U)) has non-empty in-

terior.

Proof If Λ is not future chaotic, then for every r > 0 there exists some point x ∈
Λ and a neighborhood V of x such that dist(Xt(y),Xt (x)) < r for all t > 0 and
each y ∈ V . If we choose 0 < r < dist(M \ U,Λ) (we note that if Λ = U then
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Λ would be open and closed, and so, by connectedness of M , Λ would not be a
proper subset), then we deduce that Xt(y) ∈ U , that is, y ∈ X−t (U) for all t > 0,
hence V ⊂ Λ−

X(U). Analogously if Λ is not past chaotic, just by reversing the time
direction. �

In particular if an invariant and isolated set Λ with isolating neighborhood U is
given such that the volume of both Λ+

X(U) and Λ−
X(U) is zero, then Λ is chaotic.

Sensitive dependence on initial conditions is part of the definition of chaotic sys-
tem in the literature, see e.g. [78]. It is an interesting fact that sensitive dependence
is a consequence of another two common features of most systems considered to be
chaotic: existence of a dense orbit and existence of a dense subset of periodic orbits.
We present a short proof of this based on [32]. An extensive discussion of this and
related topics can be found in [94].

Proposition 2.10 A compact invariant subset Λ for a flow Xt with a dense subset
of periodic orbits and a dense (regular and non-periodic) orbit is chaotic.

This result provides sensitive dependence on initial conditions for singular-
hyperbolic attractors, and shows that this class of attractors are both past and future
chaotic, once we have shown that these attractors have a dense subset of periodic
orbits, in Chap. 6.

Proof Let Λ have a dense regular orbit and a dense subset of periodic orbits.

Claim There exists δ0 > 0 such that for each x ∈ Λ we can find p ∈ Per(X) ∩ Λ

such that dist(OX(p), x) > δ0/2.

Indeed there are at least two distinct periodic orbits OX(q1),OX(q2) in Λ and we
can set δ0 = dist(OX(q1),OX(q2)) > 0. Then we have

dist
(

OX(q1),OX(q2)
) ≤ dist

(

OX(q1), x
) + dist

(

x,OX(q2)
)

and so either dist(OX(q1), x) > δ0/2 or dist(x,OX(q2)) > δ0/2.
Now we show that X on Λ is future chaotic with constant r = δ0/8. Let x ∈ Λ

and a neighborhood U of x be given.
The denseness of periodic orbits in Λ ensures we can find p ∈ Per(X)Λ such

that p ∈ U ∩ B(x, r). Let τ > 0 be the period of OX(p). By the previous claim we
can also find a periodic orbit OX(q) ⊂ Per(X)∩Λ, which we can assume is distinct
from OX(p) and with smaller period, such that dist(OX(q), x) > 4r . We now define

V :=
τ

⋂

s=0

X−s
(

B(Xs(q), r)
)

.

Since OX(q) ⊂ V this set is a non-empty neighborhood of OX(q): we just have to
use the continuity of the flow Xt .
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Now using the assumption of the existence of a dense orbit, we can find s > 0
and y ∈ Λ such that Xs(y) ∈ V . We take now s0 := [s/τ + 1] the integer part of
s/τ + 1. By construction s0τ − s ≤ τ and

Xs0τ (y) = Xs0τ−s
(

Xs(y)
) ∈ Xs0τ−s(V ) ⊂ B

(

Xs0τ−s(q), r
)

The triangle inequality implies

dist
(

p,Xs0τ (y)
) = dist

(

Xs0τ (p),Xs0τ (y)
)

≥ dist
(

x,Xs0τ−s(q)
) − dist(x,p) − dist

(

Xs0τ (y),Xs0τ−s(q)
)

> 4r − r − r = 2r.

Again by the triangle inequality we get

dist
(

p,Xs0τ (x)
) + dist

(

Xs0τ (x),Xs0τ (y)
)

> 2r

and so either dist(p,Xs0τ (x)) > r or dist(Xs0τ (x),Xs0τ (y)) > r and in each case
we have found a point in the neighborhood U whose orbit is at a distance bigger
than r from the orbit of x. Since r = δ0/8 is fixed, s0τ > 0 and x and U � x are an
arbitrary point in Λ with some neighborhood of x, the proof that Λ is future chaotic
is complete.

Finally the assumption of existence of a dense subset of periodic orbits and of
a dense orbit are invariant under time reversal (see Lemma 2.2), so the same proof
can be repeated with negative time, showing that Λ is also past chaotic. The proof
is complete. �

2.4.2 Expansive Systems

A related concept is that of expansiveness, which roughly means that points whose
orbits are always close for all time must coincide. The concept of expansiveness for
homeomorphisms plays an important role in the study of transformations. Bowen
and Walters [63] gave a definition of expansiveness for flows which is now called
C-expansiveness [121]. The basic idea of their definition is that two points which are
not close in the orbit topology induced by R can be separated at the same time even
if one allows a continuous time lag—see below for the technical definitions. The
equilibria of C-expansive flows must be isolated [63, Proposition 1] which implies
that the Lorenz attractors and geometric Lorenz models are not C-expansive.

Keynes and Sears introduced [121] the idea of restriction of the time lag and gave
several definitions of expansiveness weaker than C-expansiveness. The notion of K-
expansiveness is defined allowing only the time lag given by an increasing surjective
homeomorphism of R. Komuro [124] showed that the Lorenz attractor (presented
in Sect. 2.2.3) and the geometric Lorenz models (to be presented in Sect. 3.3) are
not K-expansive. The reason for this is not that the restriction of the time lag is
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insufficient but that the topology induced by R is unsuited to measure the closeness
of two points in the same orbit.

Taking this fact into consideration, Komuro [124] gave a definition of expan-
siveness suitable for flows presenting equilibria accumulated by regular orbits. This
concept is enough to show that two points which do not lie on a same orbit can be
separated.

Let C(R,R) be the set of all continuous functions h : R → R and define

K0 = {h ∈ C(R,R) : h(0) = 0},
and

K = {h ∈ C
(

R,R
) : h(R) = R, h(0) = 0 and h(s) > h(t) for every s > t}.

A flow X is C-expansive (K-expansive respectively) on an invariant subset Λ ⊂
M if for every ε > 0 there exists δ > 0 such that if x, y ∈ Λ and for some h ∈ K0
(respectively h ∈ K ) we have

dist
(

Xt(x),Xh(t)(y)
) ≤ δ for all t ∈ R, (2.3)

then y ∈ X[−ε,ε](x) = {Xt(x) : −ε ≤ t ≤ ε}.
We say that the flow X is expansive on Λ if for every ε > 0 there is δ > 0 such

that for x, y ∈ Λ and some h ∈ K (note that now we do not demand that 0 be fixed
by h) satisfying (2.3), then we can find t0 ∈ R such that Xh(t0)(y) ∈ X[t0−ε,t0+ε](x).

Observe that expansiveness on M implies sensitive dependence on initial con-
ditions for any flow on a manifold with dimension at least 2. Indeed if ε, δ satisfy
the expansiveness condition above with h equal to the identity and we are given a
point x ∈ M and a neighborhood U of x, then taking y ∈ U \ X[−ε,ε](x) (which al-
ways exists since we assume that M is not one-dimensional) there exists t ∈ R such
that dist(Xt (y),Xt (x)) ≥ δ. The same argument applies whenever we have expan-
siveness on an X-invariant subset Λ of M containing a dense regular orbit of the
flow.

Clearly by definition we have

C-expansive =⇒ K-expansive =⇒ expansive.

When a flow has no fixed point then the notion of C-expansiveness is equivalent to
K-expansiveness [183, Theorem A]. In [63] Bowen and Walters proved the follow-
ing.

Lemma 2.11 If Xt is a C-expansive flow on M , then each fixed point of Xt is an
isolated point of M .

Hence, on a connected manifold, a C-expansive flow has no fixed points.

Proof Let us fix x ∈ M such that Xt(x) = x for all t ∈ R. Let ε > 0 be given
and δ > 0 be the corresponding number from the definition of C-expansiveness.
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If dist(x, y) < δ, then for h(t) ≡ 0 for each t ∈ R we get dist(Xt(x),Xt (y)) ≤ δ for
all t ∈ R. Hence y = Xt(x) = x. Thus x is an isolated point of M . �

In fact, K-expansiveness and C-expansiveness are equivalent in full generality.

Proposition 2.12 A flow is C-expansive on a manifold M if, and only if, it is K-
expansive.

Proof From Lemma 2.11, a C-expansive flow admits only finitely many isolated
fixed points on a compact space M . We assume now that Xt has non-isolated fixed
points in M , that is, there exists at least a singularity σ which is accumulated by
other points of M (this always holds on a connected manifold). Then X is not C-
expansive by Lemma 2.11. We now show that it is not K-expansive either, proving
the proposition.

Using the continuity of Xt we have that for all R > 0 and T > 0 there exists
x ∈ M \ {σ } such that dist(Xt(x), σ ) ≤ R whenever |t | < T .

Let ε, δ > 0 be given and let us set T = 3ε and R = δ/2. Define y = Xε(x) and

h(t) =

⎧

⎪⎨

⎪⎩

t + ε if t /∈ (−2ε, ε)

2t if 0 ≤ t < ε

t/2 if t ∈ (−2ε,0)

,

which is a monotonously increasing homeomorphism of R with h(0) = 0.
Next we verify that dist(Xt (y),Xh(t)(x)) ≤ δ/2 for all t ∈ R:

• if t /∈ (−2ε, ε) then Xh(t)(x) = Xt+ε(x) = Xt(y) and so we are done;
• if t ∈ (0, ε) then h(t) = 2t < T and so dist(Xh(t)(x), σ ) ≤ δ/2 which implies

dist(Xt (y),Xh(t)(x)) ≤ dist(Xt(y), σ ) + dist(Xh(t)(x), σ ). As Xt(y) = Xt+ε(x)

and for t < ε we have t + ε < 3ε = T we obtain dist(Xt(y), σ ) < δ/2. Hence
dist(Xt (y),Xh(t)(x)) < δ;

• if t ∈ (−2ε,0) then |h(t)| = |t/2| < 3ε and so dist(Xh(t)(x), σ ) ≤ δ/2.
We have now that

dist(Xt (y),Xh(t)(x)) ≤ dist(Xt (y), σ )+dist(Xh(t)(x), σ ) ≤ dist(Xt (y), σ )+ δ/2.

But t ∈ (−2ε,0) and t + ε ∈ (−ε, ε), hence |t + ε| < ε implying that

dist(Xt+ε(x), σ ) < δ/2.

Thus, as Xε(x) = y, we get dist(Xt (y), σ ) < δ/2 and replacing this in the in-
equality above we obtain dist(Xt (y),Xh(t)(x)) < δ.

All together we have proved dist(Xt (y),Xh(t)(x)) ≤ δ/2 for all t ∈ R. Now there
are two possibilities:

1. either Xt(x) �= y for all |t | < ε, and we are done, or
2. or there exists s ∈ R such that Xs(x) = y, and in this case x is a periodic orbit

with period τ ≤ s − ε < 2ε. Thus dist(Xt (x),Xh(t)(σ )) < δ.
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Either way we found a pair of points (x and y in case (1), x and σ in case (2))
which remain δ-close even when time is reparametrized through h in one of the
orbits, and both points are not connected through any X-orbit in a time less than ε.
In this construction we may take δ > 0 arbitrarily close to zero for a fixed ε > 0, so
we have shown that X is not K-expansive. �

We will prove in Sect. 7.2 that singular-hyperbolic attractors are expansive. In
particular, the Lorenz attractor and the geometric Lorenz examples are all expansive
and sensitive to initial conditions. Since these families of flows exhibit equilibria
accumulated by regular orbits, we see that expansiveness is compatible with the
existence of fixed points by the flow.

We observe that Peixoto’s characterization of structurally stable vector fields on
surfaces and its genericity implies that, for such vector field X on S, there is an
open and dense subset B of S such that the positive orbit Xt(p), t ≥ 0 of p ∈ B

converges to one of finitely many attracting equilibria. Therefore no sensitive de-
pendence on initial conditions arises for an open and dense subset of all vector
fields in orientable surfaces. The same lack of sensitiveness holds generically for all
non-orientable surfaces where Peixoto’s conjecture has been successfully proved.

This explains in part the great interest attached to the Lorenz attractor, as one of
the first examples of sensitive dependence on initial conditions.

2.5 Basic Tools

Here we state two basic classical results which enable us to understand in many
cases the local dynamics near many flow orbits. Then we state the powerful closing
and connecting lemmas which will be used in a fundamental way in several key
points in the following chapters.

2.5.1 The Tubular Flow Theorem

The following result shows that the local behavior of orbits near a regular point of
any flow is very simple.

Theorem 2.13 (Tubular flow) Let X ∈ Xr (M) and let p ∈ Mn be a regular point of
X where n ≥ 1 is the dimension of M . Let V = {(x1, . . . , xn) ∈ R

n : ‖xi‖ < 1} and
Y be the vector field on V given by Y = (1,0, . . . ,0). Then there is a Cr diffeomor-
phism h : U → V for some neighborhood U of p in M , which takes trajectories of
X to trajectories of Y , that is X | U is topologically equivalent to Y | V .

This shows that near a regular point p every smooth flow can be smoothly lin-
earized: under a change of coordinates orbits near p look like the orbits of a constant
flow, see Fig. 2.9.
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Fig. 2.9 Linearization of
orbits near a regular point of a
flow

2.5.2 Transverse Sections and the Poincaré Return Map

Now we describe a standard and extremely useful consequence of the tubular flow
theorem, which provides a converse to the construction of suspensions semiflows
(presented in Sect. 2.3.2).

Let X ∈ X1(M3) be a flow on a three-dimensional manifold and let S be an
embedded surface in M which is transverse to the vector field X at all points, i.e.
for every x ∈ S we have TxS + EX

x = TxM or equivalently X(x) �∈ TxS. We say in
what follows that such S is a cross-section to the flow Xt or to the vector field X.

Let S0 and S1 be a pair of cross-sections to X and x0 ∈ S0 be a regular point of X

and suppose that there exists T > 0 such that x1 = XT (x0) ∈ S1. Applying the Tubu-
lar Flow Theorem 2.13 to a finite open covering of the compact arc γ = X[0,T ](x0)

we obtain a tubular flow in a neighborhood of γ . This shows that there exists a
smooth map R from a neighborhood V0 of x0 in S0 to a neighborhood V1 of x1 in
S1, with the same degree of smoothness of the flow, such that R(x) = XT (x)(x) for
all x ∈ V0 with R(x0) = x1 and T : V0 → R also smooth with T (x0)=T . Moreover
R is a bijection and thus a diffeomorphism.

We can reapply the Tubular Flow Theorem and extend the domain of definition
of R to its maximal domain relative to S0 and S1 and to the connection time T .
Notice that x1 need not be the first entry to S1, that is T might be bigger than
inf{t > 0 : Xt(x0) ∈ S1}.

Note that if x0 is a periodic orbit of X then taking S1 = S0 we see that x0 is a
fixed point of R and the local behavior of the flow near x0 can be studied through the
map R acting on a space with less dimension than M . This is an important example
where we can reduce the study of a flow to a lower dimensional transformation. The
power and applicability of this method should be clear after Chaps. 3 and 7.

2.5.3 The Hartman-Grobman Theorem on Local Linearization

The following result due to Hartman and Grobman [96, 104] shows that a flow of a
vector field X is locally equivalent to its linear part at a hyperbolic singularity. Since
linear hyperbolic flows can be completely classified by topological equivalence, this
result enables us to classify the local behavior of the flow of any smooth vector field
near a hyperbolic singularity. See [192] for generalizations and more references on
this subject.
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Theorem 2.14 (Hartman-Grobman) Let X ∈ Xr (M) and let p ∈ M be a hyperbolic
singularity of X. Let Y = DX0 : TpM → TpM be the linear vector field on TpM

given by the linear transformation DX0. Then there exists a neighborhood U of p

in M , a neighborhood V of 0 in TpM and a homeomorphism h : U → V which
takes trajectories of X to trajectories of Y , that is X | U is topologically equivalent
to Y | V .

2.5.4 The (Strong) Inclination Lemma (or λ-Lemma)

These are basic results of dynamics near a hyperbolic singularity which are ex-
tremely useful to obtain intersections between stable and unstable manifolds through
simple geometric arguments.

2.5.4.1 The Inclination Lemma

Let σ ∈ M be a hyperbolic singularity of X ∈ Xr (M) for some r ≥ 1, with its lo-
cal stable and unstable manifolds Ws

loc(σ ),Wu
loc(σ ). Fix an embedded disk B in

Wu
loc(σ ) which is a neighborhood of σ in Wu

loc(σ ), and a neighborhood V of this
disk in M . Then let D be a transverse disk to Ws

loc(σ ) at z with the same dimen-
sion as B , and write Dt for the connected component of Xt(D) ∩ V which contains
Xt(z), for t ≥ 0, see Fig. 2.10.

Lemma 2.15 (Inclination lemma [190]) Given ε > 0 there exists T > 0 such that
for all t > T the disk Dt is ε-close to B in the Cr -topology.

This means that the embeddings whose images are the disks B and Dt are close in
the Cr topology.

2.5.4.2 The Strong Inclination Lemma

In the same setting as above but imposing that the eigenvalues of DX(σ) closest
to the imaginary axis be real and simple it is possible to improve the convergence

Fig. 2.10 The inclination
lemma
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estimates. This condition on DX(σ) is satisfied in particular by all hyperbolic sin-
gularities with distinct real eigenvalues, and so also by the so-called Lorenz-like
singularities, see Definition 3.2. These are the only kind of singularities allowed on
singular-hyperbolic sets, see Chap. 5.

Lemma 2.16 (Strong inclination lemma [77]) There are c,λ,T > 0 such that for
all t > T the Cr distance between the embeddings of B and of Dt is bounded by
c · e−λt .

2.5.5 Homoclinic Classes, Transitiveness and Denseness
of Periodic Orbits

Given a hyperbolic periodic orbit p of saddle-type for a flow X ∈ X1 we can de-
fine its associated homoclinic class HX(p) by the closure of the set of transverse
intersections between the stable and unstable manifolds of p

HX(p) = Wu
X(p) � Ws

X(p).

Note that there are cases where Wu
X(p) coincides with Ws

X(p), a saddle-connection,
and then HX(p) = ∅. Observe that a nonempty homoclinic class is always an invari-
ant subset of the flow.

Otherwise we have the following important classical result from the early works
of Poincaré [205] (who showed that transverse homoclinic orbits are accumulation
points of other homoclinic orbits) and developed by Birkhoff [49] (transverse ho-
moclinic orbits are accumulation points of periodic orbits) and by Smale [251].

Theorem 2.17 (Birkhoff-Smale) Any non-empty homoclinic class has a dense orbit
and contains a dense set of periodic orbits.

See [193] for a general modern presentation of this result including motivation,
proofs and other non-trivial dynamical consequences.

The transitiveness part of this theorem is a consequence of the inclination lemma
and we present a short proof here.

Lemma 2.18 Every homoclinic class H of a flow X is topologically transitive.

Proof Let q, r ∈ H = closure[Ws
X(p) � Wu

X(p)] be distinct points and U,V two
disjoint neighborhoods of q, r in H , respectively. Let q1, r1 be points of intersection
between the stable and unstable manifolds of p in U and V , respectively. Then for
some future time t > 0 very large and some s > 0 close to the period of p we have
that Xt+s(q1) is on Ws(p) very close to p and X−t (r1) is on Wu(p) very close to
p also.

The invariance of the stable and unstable manifolds and the inclination lemma
imply that there exists a point w in the intersection between Wuu(Xt1(q1)) and
Wss(X−t2(r1)) for some t1, t2 > t . Hence X−t1(w) is inside U near q1 and Xt2(w)

is inside V near r1. Then Xt1+t2(U) ∩ V �= ∅. �
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Fig. 2.11 Closing a recurrent
orbit

2.5.6 The Closing Lemma

This celebrated result, proved by Charles Pugh [212, 213, 215], says that every
regular orbit which accumulates on itself can be closed by an arbitrarily small C1

perturbation of the vector field, as sketched in Fig. 2.11. The question whether a
vector field with a recurrent trajectory through a point p can be perturbed so that
the solution through p for the new vector field is closed, albeit trivial in class C0, is
a deep problem in class Cr for r ≥ 1, as first remarked by Peixoto [195].

In [212, 213] Pugh proved the C1 Closing Lemma for compact manifolds of
dimensions two and three and generalized the result for arbitrary dimensions and to
the case of closing a non-wandering trajectory, rather than a recurrent one. In [214]
he proved that for a weaker type of recurrent point, for which αX(p) ∩ ωX(p) �= ∅,
the C2 double-closing is not always possible on the 2-torus T

2. Later Pugh and
Robinson [215] established the Closing Lemma when M is non-compact, provided
the point q to be closed satisfies αX(q) ∩ ωX(q) �= ∅.

We remark that the Cr Closing Lemma, for r ≥ 1, in the case of M being the
2-torus and the vector field has no equilibria, was proved earlier by Peixoto [195]
and later by Gutierrez [102] for the “constant type” vector fields on the 2-torus
with finitely many equilibria. In [103] Gutierrez gave a counter-example to the C2

Closing Lemma for the punctured torus. A closely related and also extremely useful
result is the “Ergodic Closing Lemma” proved by Ricardo Mañé, see Sect. 2.5.8.

Theorem 2.19 (C1-closing lemma) Let X ∈ X1(M) be a C1-flow on a compact
boundaryless finite dimensional manifold M and p ∈ M be a non-wandering point
of X. Given a C1-neighborhood U of X and a neighborhood V of p, then there
exists Y ∈ U and q ∈ V such that q belongs to a periodic orbit of Y .

Observe that in the Closing Lemma above the point whose orbit is closed is
not necessarily the initial non-wandering point, but only a point arbitrarily close
to it. The same situation appears in the “Ergodic Closing Lemma” of Mañé, see
Sect. 2.5.8. Later this was improved in the Connecting Lemma by Hayashi, see the
next subsection. Moreover the Ergodic Closing Lemma does provides a bound for
the distance between the original and the periodic approximating orbit, which is not
given by the Closing Lemma.

2.5.7 The Connecting Lemma

The connecting lemma is motivated by the following situation often faced when
studying dynamical systems. Suppose the unstable manifold of a hyperbolic peri-
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Fig. 2.12 The connecting
lemma for C1 flows

odic orbit accumulates on the stable manifold of another hyperbolic periodic orbit.
We would like to find a vector field close to the given one such that the continuation
of the invariant manifolds of the periodic orbits above really intersect.

Observe that although very similar to the closing lemma, now we are demanding
that the orbits whose manifolds intersect are continuations of the original ones, so by
a change of coordinates we can assume they are the same! The closing lemma only
provides a point arbitrarily close to the initially given recurrent point. The Ergodic
Closing Lemma of Mañé and Wen, presented in Sect. 2.5.8, does provides a bound
on the distance between the original orbit and the approximating periodic orbit.

The result below is the flow version of [271, Theorem E, p. 5214] first proved by
Hayashi [108, 109] (see also [23]). This shows that if two distinct points p,q have
orbits which visit a given neighborhood of a point x and the points p,q are far way
from a piece of the negative orbit of x, then we can find a C1-close vector field such
that p,q are in the same orbit, see Fig. 2.12.

Theorem 2.20 (Connecting lemma (Hayashi)) Let X ∈ X1(M) and x /∈ S(X). For
any C1 neighborhood U of X there are ρ > 1, L > 0 and ε0 > 0 such that for every
0 < ε ≤ ε0 and any two points p,q ∈ M satisfying

1. p,q /∈ Bε(X
[−L,0](x));

2. O+
X (p) ∩ Bε/ρ(x) �= ∅;

3. O−
X (q) ∩ Bε/ρ(x) �= ∅,

there is Y ∈ U such that Y = X outside of Bε(X
[−L,0](x)) and such that q ∈

O+
Y (p).

There is an extension of this result [55] showing that it is possible to connect
pseudo-orbits in the C1 setting.

Theorem 2.20 above gives a solution to the problem of connecting stable and
unstable manifolds of periodic orbits. In fact this result can be stated in a slightly
different way, more adapted to our needs in Chap. 5.

Theorem 2.21 Let X ∈ X1(M) and σ ∈ S(X) be hyperbolic. Suppose that there are
p ∈ Wu

X(σ) \ {σ } and q ∈ M \ C(X) such that:

(H1) For all neighborhoods U , V of p, q (respectively) there is x ∈ U such that
Xt(x) ∈ V for some t ≥ 0.
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Then there are Y arbitrarily C1 close to X and T > 0 such that p ∈ Wu
Y (σ (Y )) and

YT (p) = q . If in addition q ∈ Ws
X(x) \ OX(x) for some x ∈ C(X) hyperbolic, then

Y can be chosen so that q ∈ Ws
Y (x(Y )) \ OY (x(Y )).

Moreover we can use it to connect orbits of two distinct points which accumulate
a third point, but with one of the points in the unstable manifold of a hyperbolic
singularity. This singularity persists under perturbation and the connecting orbits
will still be in its unstable manifold.

Theorem 2.22 Let X ∈ X1(M) and σ ∈ S(X) be hyperbolic. Suppose that there are
p ∈ Wu

X(σ) \ {σ } and q, x ∈ M \ C(X) such that:

(H2) For all neighborhoods U , V , W of p, q , x (respectively) there are xp ∈ U and
xq ∈ V such that Xtp(xp) ∈ W and Xtq (xq) ∈ W for some tp > 0, tq < 0.

Then there are Y arbitrarily C1 close to X and T > 0 such that p ∈ Wu
Y (σ (Y )) and

YT (p) = q .

2.5.8 The Ergodic Closing Lemma

In several proofs in this text we shall use the Ergodic Closing Lemma for flows in
a fundamental way. This result shows that any given invariant measure gives full
weight to the set of points whose orbits can be well approximated by periodic orbits
of C1 nearby flows. The main feature of this approximation result is that it provides a
bound for the distance between the original orbit and the approximating orbit. Such
amount of control is not allowed to by either the Closing Lemma or the Connecting
Lemma.

The Ergodic Closing Lemma was first proved by Mañé [145] for diffeomor-
phisms and for flows by Wen [270]. It has become an extremely useful tool in
dynamics, as the Closing and Connecting Lemmas.

We need the following definition. A point x ∈ M \ S(X) is δ-strongly closed if
for any C1 neighborhood U ⊂ X1(M) of X, there are Z ∈ U , z ∈ M and T > 0
such that ZT (z) = z, X = Z on M \ Bδ(X

[0,T ](x)) and dist(Zt (z),Xt (x)) < δ, for
all 0 ≤ t ≤ T .

Denote by Σ(X) the set of points of M which are δ-strongly closed for any δ

sufficiently small.

Theorem 2.23 (Ergodic closing lemma, flow version) Let μ be any X-invariant
Borel probability measure. Then μ(S(X) ∪ Σ(X)) = 1.

We remark that although much stronger that the Closing Lemma, since it pro-
vides a bound on the distance of the approximating periodic orbit to the original
orbit, the Ergodic Closing Lemma cannot be applied to every orbit, just to a full
probability subset for any invariant probability measure (a total probability set).
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2.5.9 A Perturbation Lemma for Flows

A very useful result of Franks [89, Lemma 1.1] shows that it is possible to modify a
diffeomorphism to achieve a desired derivative at a finite number of points, as long
as the modification is made in the C1 topology. Here we state a version for vector
fields of this result: under some mild conditions, any C2 perturbation of the deriva-
tive of the vector field along a compact orbit segment is realized by the derivative of
a C1 nearby vector field. Hence this result allows one to locally change the deriva-
tive of the flow along a compact trajectory, while the original result of Franks allows
only perturbations on a finite number of points of the orbit of a diffeomorphism.

The version we present here is an unpublished work by Pacifico and E. R. Pujals.
It is very useful and it was already used in several published works [79, 172], and
[173] but a proof was never provided.

To simplify notations we shall state it for flows defined on compact sets of R
n.

Using local charts it is straightforward to obtain the result for flows on compact
boundaryless n-manifolds. Let M be an open subset of R

n.

Theorem 2.24 Let us fix Y ∈ X2(M), p ∈ M and ε > 0. Given an orbit segment
Y [a,b](p), a neighborhood U of Y [a,b](p), and a C2 parametrized family of invert-
ible linear maps At : R

n −→ R
n, t ∈ [a, b] (i.e. the coefficients of the matrices At

with respect to a fixed basis are C2 functions of t ), such that for all s, t with t +s ≤ b

we have

1. A0 = Id : R
n → R

n and At(Y (Y s(p))) = Y(Y t+s(p)),
2. ‖∂sAt+sA

−1
t |s=0 − DY(Y t (p))‖ < ε,

then there is Z ∈ X1(M) such that ‖Y − Z‖1 ≤ ε and Z coincides with Y in M \U .
Moreover Zs(p) = Y s(p) for every a ≤ s ≤ b and DZ t(p) = At for every t ∈
[a, b].

A proof of this result is presented in Appendix B.
Assume that there is such Z as in Theorem 2.24. On one hand At must preserve

the direction of the vector field along the orbit segment Y [a,b](p) for all t ∈ [a, b]
by item 1 above. On the other hand since

∂sAt+sA
−1
t |s=0 = ∂

∂s
DZ t+s(p)

(

DZt(p)
)−1∣∣

s=0 = ∂

∂s
DZ t+s(p)DZ−t (Z t (p))

∣
∣
s=0

= ∂

∂s
DZs(Zt (p))

∣
∣
s=0 = DZ(Zt (p))

we see that item 2 above ensures that Z is C1 near Y along the orbit segment
Y [a,b](p).

We observe that although we start with a C2 vector field we obtain at the end a
C1 vector field nearby the original one. If we increase the class of differentiability
of the initial vector field Y and of At with respect to the parameter t , then we obtain
Z of higher order of differentiability. But even in this setting we can only control
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the distance between Y and the final vector field in the C1 topology, by results of
Pujals and Sambarino in [218] which we now explain.

There is an example of a homoclinic class H (recall Sect. 2.5.4 for the definition
of homoclinic class) of a C2 diffeomorphism f on a compact surface with a unique
fixed point which is a saddle-node, i.e. one of its eigenvalues is equal to one, corre-
sponding to an indifferent direction, and the other is smaller than one in modulus,
corresponding to a contracting direction. Hence there are periodic orbits xn with
arbitrarily large period pn whose normalized Lyapunov exponent λ

1/pn
n tends to 1

when n → +∞, where λn is an eigenvalue of Df pn(xn).
Therefore if it were possible to have a C2 perturbation lemma analogous to The-

orem 2.24, then we would obtain a C2 diffeomorphisms arbitrarily close to f in the
C2 topology exhibiting a non-hyperbolic periodic orbit.

However in [218] Pujals and Sambarino show that for homoclinic classes H of
C2 diffeomorphisms, if k is the maximum period of non-hyperbolic periodic orbits
in H , then every periodic point with period 2k must be hyperbolic for every C2 close
diffeomorphisms (a kind of C2 rigidity result). This shows that a straightforward
extension of Theorem 2.24 for C2 diffeomorphisms is impossible.

2.5.10 Generic Vector Fields and Lyapunov Stability

Recall that a compact set L ⊂ M is called Lyapunov stable for X ∈ X1(M) if for
every neighborhood U of L there is a neighborhood V ⊂ U of L such that Xt(V ) ⊂
U , for all t ≥ 0. Every attractor is a transitive Lyapunov stable set but not conversely.

The following lemmas summarize some classical properties of Lyapunov stable
sets, see Chap. V in [46] for proofs.

Lemma 2.25 Let Λ be a Lyapunov stable set of X. Then,

1. If xn ∈ M and tn ≥ 0 satisfy xn → x ∈ Λ and Xtn(xn) → y, then y ∈ Λ; and
conversely, that is, this property is equivalent to Lyapunov stability;

2. Wu
X(Λ) ⊂ Λ;

3. if Γ is a transitive invariant set of X and Γ ∩ Λ �= ∅, then Γ ⊂ Λ.

We remark that the last item ensures that if a Lyapunov stable set is transitive,
then it is maximally transitive: it cannot be properly contained in another transitive
invariant set.

Proof The first item follows easily from the definition of Lyapunov stability. For the
second item take z such that X−t (z) approaches Λ when t → +∞. Then for any
given neighborhood U we can find V as in the definition of Lyapunov stability and
T > 0 such that X−t (z) ∈ V for all t > T . Thus z ∈ Xt(V ) ⊂ U . Since U was an
arbitrary neighborhood of Λ and Λ is closed, we get z ∈ Λ.

Finally let Γ be a transitive invariant subset such that Γ ∩ Λ �= ∅ and let U ,V
be neighborhoods of Λ according to the definition of Lyapunov stability. Then V ∩
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Γ �= ∅. Thus there exists in V ∩ Γ a point w whose positive orbit is dense in Γ .
Hence Γ = ωX(w) ⊂ U . Since U was an arbitrary neighborhood of Λ, we deduce
Γ ⊂ Λ. �

The following provides a necessary and sufficient conditions for a Lyapunov sta-
ble set to be an attractor.

Lemma 2.26 A Lyapunov stable set Λ of a vector field X is an attracting set of X

if, and only if, there exists a neighborhood U of Λ such that ωX(x) ⊂ Λ, for all
x ∈ U .

Proof We assume that such a neighborhood U exists and show that Λ must be an
attracting set. In fact, we prove that Λ = ∩t>0Xt(V ) for some neighborhood V of
Λ without using that Λ is Lyapunov stable.

Fix ε > 0 and write Bε for the ε-neighborhood Λ. Let V be an open neighbor-
hood of Λ such that its closure V is contained in U . We show that for every big
enough t > 0 we have Xt(V ) ⊂ Bε .

Arguing by contradiction, assume that for some sequence tn > 0 with tn → +∞
there exists xn ∈ V such that Xtn(xn) �∈ Bε . Hence we can find x ∈ V and a subse-
quence nk such that xnk

→ x when k → +∞ and since M \ Bε is closed and com-
pact, we have Xti (xnk

) −−−−→
k→+∞ Xti (x) �∈ Bε for all i. This implies that ω(x) �∈ Λ,

which contradicts the assumption on the neighborhood U . Therefore no such se-
quences exist and we have Xt(V ) ⊂ Bε for all big enough t > 0. Since ε > 0 was
arbitrarily chosen, this proves that

⋂

t>0

Xt(V ) ⊂
⋂

ε>0

Bε = Λ = Λ.

Now assume that Λ is Lyapunov stable and that there exists a neighborhood U

of Λ such that Λ = ∩t>0X
t(U). Take another neighborhood V ⊂ U of Λ such that

Xt(V ) ⊂ U for all t ≥ 0. Then for all s ≥ t ≥ 0 we have

Xs(V ) = Xs−t
(

Xt(V )
) ⊂ Xs−t (U)

so in fact Xs(V ) ⊂ ∩s
t=0X

t(U) for all s > 0. This implies that every accumulation
point of the positive orbit of each point of V lies in ∩t≥0X

t(U) = Λ. �

Let us collect some properties for generic vector fields X ∈ X1(M) for future
reference.

L1. X is Kupka-Smale, i.e. every periodic orbit and singularity of X is hyperbolic
and the corresponding invariant manifolds intersect transversely.

Among conservative or incompressible vector fields X1
μ(M) with respect to

a volume form μ induced by the Riemannian metric on M , there exists also a
residual subset of vector fields such that every singularity and periodic orbit is
of saddle-type or elliptic, and the corresponding invariant manifolds intersect
transversely.
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For the proof of this classic result see [190]. In particular, S(X) is a finite
set.

L2. Ω(X) = Per(X) ∪ S(X), as a consequence of the Closing Lemma, see [212]
and Sect. 2.5.6.

L3. Wu
X(σ) is Lyapunov stable for X for each σ ∈ S(X) with one-dimensional un-

stable manifold.
L4. Ws

X(σ) is Lyapunov stable for −X, for every σ ∈ S(X) with one-dimensional
stable manifold.

L5. If σ ∈ S(X) and dim(Wu
X(σ )) = 1 then ωX(q) is Lyapunov stable for X, for

every q ∈ Wu
X(σ) \ {σ }.

L6. If σ ∈ S(X) and dim(Ws
X(σ )) = 1 then αX(q) is Lyapunov stable for −X, for

all q ∈ Ws
X(σ) \ {σ }.

The proofs of items L3 to L6 following [66] are presented in Appendix A.

2.6 The Linear Poincaré Flow

The following notion can be defined for a flow on any finite dimensional Rieman-
nian manifold. If x is a regular point of X (i.e. X(x) �= 0), denote by

Nx = {v ∈ TxM : v · X(x) = 0}
the orthogonal complement of X(x) in TxM . Denote by Ox : TxM → Nx the or-
thogonal projection of TxM onto Nx . For every t ∈ R define

P t
x : Nx → NXt(x) by P t

x = OXt(x) ◦ DXt(x).

It is easy to see that P = {P t
x : t ∈ R,X(x) �= 0} satisfies the cocycle relation

P s+t
x = P t

Xs(x) ◦ P s
x for every t, s ∈ R.

The family P is called the Linear Poincaré Flow of X.

2.6.1 Hyperbolic Splitting for the Linear Poincaré Flow

Let a non trivial (i.e., containing a regular orbit) compact subset Λ invariant un-
der the flow of X ∈ X1(M) be given, where M is a finite dimensional Riemannian
manifold. Assume that Λ is hyperbolic and transitive, as defined in Sect. 2.3. Then
the normal space Nx is defined for all x ∈ Λ, since Λ does not contain singulari-
ties. Hence the Linear Poincaré Flow is defined everywhere on the family of normal
spaces NΛ = {Nx}x∈Λ. Compactness and absence of singularities enable us to ob-
tain the following characterization of transitive hyperbolic subsets for flows.
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Theorem 2.27 Let Λ be a transitive compact invariant subset for X ∈ X1(M). Then
Λ is (uniformly) hyperbolic if, and only if, the Linear Poincaré Flow is everywhere
defined over Λ and PΛ admits a (uniformly) hyperbolic splitting of NΛ.

Proof If Λ is a transitive compact invariant hyperbolic set for X, then the cor-
responding DXt -invariant tangent bundle decomposition TΛM = Es ⊕ EX ⊕ Eu

projects into a normal bundle decomposition NΛ = Ns ⊕ Nu through the orthogo-
nal projection as: Ns

x = Ox(Es
x) and Nu

x = Ox(E
u
x ) for all x ∈ Λ. Since Λ does not

contain singularities, this is well defined and the splitting of the normal bundle is
hyperbolic since the orthogonal projection does not increase norms:

• for v ∈ Es
x we have that ‖P tv‖ = ‖OXt(x)DXt

x · v‖ ≤ ‖DXt
x · v‖ is uniformly

contracted for t > 0;
• for u ∈ Eu

x we have that ‖P −t u‖ = ‖OX−t (x)DX−t
x ·u‖ ≤ ‖DX−t

x ·u‖ is also uni-
formly contracted for t > 0. Hence for some K,λ > 0 we get ‖u‖ = ‖P−tP tu‖ ≤
Ke−λt‖P tu‖ and so ‖P tu‖ ≥ Keλt‖u‖ as needed for hyperbolicity of P t .

For the converse, assume that there exists a P t -invariant hyperbolic decomposi-
tion NΛ = Ns ⊕ Nu of the normal bundle over Λ. In particular, this ensures that Λ

has no singularities.
Set Ecu = EX ⊕Nu over Λ. Each vector v ∈ Ecu

x can be written as v = αX(x)+
u for u ∈ Nu

x and α ∈ R. This is clearly a DXt -invariant bundle since DXt
x · v =

DXt
x · u + α · X(Xt(x)) and OXt(x)DXt

x · u ∈ Nu
Xt (x)

, thus this vector belongs to

Nu
Xt (x)

⊕ EX
Xt(x)

, for all x ∈ Λ and t ∈ R.
The uniform expansion of vectors along the Nu

x direction under P t ensures that,
for some K,λ > 0 not depending on x ∈ Λ and t > 0

‖DXt
x · v‖ ≥ ‖OxDXt

x · u‖ ≥ Keλt‖u‖, (2.4)

where v ∈ Ecu
x decomposes as explained above and

‖DXt
x · αX(x)‖ = |α| · ‖X(Xt(x))‖ ≤ |α| · max

x∈Λ
‖X(x)‖.

Hence for all big enough s ∈ R we have for some C > 0

m(DXs | Ecu
x ) > Ceλs‖DXs | EX

x ‖, x ∈ Λ. (2.5)

Consider now the space L = L ([x]Λ,Ecu
Λ ) of families of maps

{

�x : Nu
x → EX

x is linear for all x ∈ Λ and ‖(�x)‖ := sup
x∈Λ

‖�x‖ < ∞
}

.

The norm of each linear map is well defined since the spaces have finite dimen-
sion and are endowed with the induced norm from the Riemannian structure of the
manifold. This is a Banach space since Λ is compact.

Now we show that the action of DXs on L given by the graph transform is a
contraction for s as in (2.5). Indeed the image of an element (�x) ∈ L is

D s
(

(�x)
) = {

(OXs(x) + DXs
x | EX

x ◦ �x) ◦ (OXs(x) ◦ DXs
x)

−1 : x ∈ Λ
}
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and ‖D s((�x))‖ ≤ supx∈Λ[‖DXs | EX
x ‖/m(DXs | Ecu

x )] ≤ e−λs/C < 1. We have
then a fixed element � for D s . This corresponds to a sub-bundle Eu given at each
x ∈ Λ by the graph of �x which is DXs -invariant for this particular value of s.

Now we show that � not only does not depend on s but also that it is D t -invariant
for all t . Indeed, it is easy to see that the actions commute

D sD r = D (s+r) = D rD s s, r ∈ R

even for negative s, r since the flow is complete, and for all big enough s, r > 0
both D r and D s are contractions. Thus the fixed point is the same: D sD r (�) =
D rD s(�) = D r (�) hence D r (�) = �. Therefore given any t ∈ R we can find s, r >

0 very big with s − r = t and obtain

D t (�) = D (s−r)(�) = D sD −r (�) = D s(�) = �.

Finally note that the same argument as in (2.4) shows that the sub-bundle Eu is
uniformly expanded by DXt .

Analogously we obtain the contracting direction Es reasoning with Ecs = Ns ⊕
EX and the action D−s for some big enough s > 0. �

2.6.2 Dominated Splitting for the Linear Poincaré Flow

We say that an invariant subset Λ without singularities (not necessarily compact)
has a (C,λ)-dominated splitting for the Linear Poincaré Flow if Nx = Ncs

x ⊕ Ncu
x

is a P t -invariant splitting defined for all x ∈ Λ and there are constants λ,C > 0
such that for all t > 0

‖P t | Ncs
x ‖ ≤ Ce−λt · m(P t | Ncu

x ), (2.6)

where m(·) denotes the minimum norm of a linear map L on a normed space, that
is m(L) := min{‖Lv‖ : ‖v‖ = 1}. We observe that clearly a hyperbolic splitting is a
dominated splitting. We show in Sect. 2.6.3 that for an invariant subset, without sin-
gularities on its closure, with respect to a volume preserving flow on a 3-manifold,
hyperbolicity is equivalent to the existence of a dominated splitting for the Linear
Poincaré Flow.

We can also define a (C,λ)-dominated splitting for the flow on an invariant set
Λ: it is a splitting Ecs ⊕ Ecu of the tangent bundle TΛM over Λ, invariant under
DXt and satisfying

‖DXt | Ecs
x ‖ ≤ Ce−λt · m(DXt | Ecu

x ). (2.7)

We remark that the same proof of Theorem 2.27 shows that a dominated splitting
Ecs ⊕Ecu for the flow over Λ induces a dominated splitting for the Linear Poincaré
Flow P t over Λ setting Ncs

x := Ox · Ecs
x and Ncu

x := Ox · Ecu
x for x ∈ Λ.

A dominated splitting must be a continuous splitting in the Whitney sense, as
follows.
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Lemma 2.28 Let a sequence of points xk ∈ Λ and a orthonormal basis Bk =
(vk,1, . . . , vk,l) of Ncs at xk be given. If xn → x ∈ Λ and Bk → (v1, . . . , vl) as
k → ∞, then (v1, . . . , vl) is also a basis for Ncs

x . The analogous statement is also
true for the sub-bundle Ncu. In particular the dimensions of the sub-bundles of a
dominated decomposition are continuous functions of the base point.

We remark that a dominated splitting induces a kind of hyperbolic dynamics on
the projective bundle of dimNcu-planes orthogonal to the flow direction. Indeed in
this bundle every element converges to Ncu under the action of the Linear Poincaré
Flow. This is because domination means that the component on the direction of Ncs

of any vector orthogonal to the flow direction on TΛM vanishes when compared to
the component along the Ncu direction. Analogously P −t acts on dimNcs -planes
orthogonal to the flow direction in such a way that they converge to Ncs . This be-
havior ensures that a dominated splitting for the linear Poincaré flow with given
bundle dimensions is unique. It is easy to see that there can be distinct dominated
splittings for the Linear Poincaré Flow on invariant sets in dimensions bigger than 3,
just consider a hyperbolic periodic orbit OX(p) with period τ whose “period map”
Xτ | TpM has 4 distinct eigenvalues λ < 1 < σ1 < σ2, where dim(M) = 4.

Proof of Lemma 2.28 In the setting of the statement, assume by contradiction that
there exists some vector v in the span of (v1, . . . , vl) which is not in Ex . Since
(v1, . . . , vl) is still orthonormal, this means that some element, say v1, of this lin-
early independent family is not in Ex . Hence we may consider the projections
v1 = πsv1 + πuv1 = v1,s + v1,u of v1 on Ncs

x ⊕ Ncu
x and of its iterates under P t :

vt
1,s + vt

1,u = vt
1, t > 0 and we know that vt

1 �= 0.

The domination implies now that αt := ‖vt
1,u‖/‖vt

1,s‖ ≥ Keλt for some constant
K > 0 depending only on C and ‖v1,u‖/‖v1,s‖. Fix s > 0 big enough so that αs > 1.
The continuity of DXs

x as a function of x ensures that

βs
k := ‖πuP

svk,1‖
‖πsP svk,1‖ −−−→

k→∞ αs > 1

but the invariance of the splitting under P t implies that P svk,1 ∈ Ecs
xk

for all k ≥ 1,
thus βs

k = 0. This contradiction shows that all vi are in Ncs
x , i = 1, . . . , l, so

dim(Ncs
x ) ≥ lim sup

k→∞
dim(Ncs

xk
). (2.8)

Clearly the same argument is true for Ncu. Therefore we can write

lim sup
k→∞

dim(Ncs
xk

) = dim(M) − 1 − lim inf
n→∞ dim(Ncu

xk
)

≤ dim(Ncs
x ) = dim(M) − 1 − dim(Ncu

x )

≤ dim(M) − 1 − lim sup
k→∞

dim(Ncu
xk

)
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that is

lim sup
k→∞

dim(Ncu
xk

) ≤ dim(Ncu
x ) ≤ lim inf

n→∞ dim(Ncu
xk

).

Hence the dimensions of Ncu
x and Ncs

x are in fact continuous functions of the base
point. In particular the family (v1, . . . , vl) is a base for Ncs

x . �

We also have that a dominated splitting is robust in the following sense.

Lemma 2.29 Given a connected invariant subset Λ with a (C,λ)-dominated split-
ting for the linear Poincaré flow with respect to a vector field X, then there exists
a neighborhood U of Λ and δ > 0 such that the set ΛY (U)∗ := ∩t∈RY t (U \ S(Y ))

has a (C′, λ′)-dominated splitting for the linear Poincaré flow with respect to any
vector field Y ∈ U which is δ-C1-close to X, where C ′, λ′ are positive constants
depending only on δ,U and (C,λ), and satisfy (C′, λ′) → (C,λ) as δ → 0 and
U → Λ.

We present a proof of this lemma in Appendix C. This means that perturbing the
original flow X to Y around an invariant dominated set, we can get (2.6) for every
regular orbit of Y which remains nearby Λ with domination constants C′, λ′ close
to the original ones for Λ.

Assume that a C1 flow X admits a compact attracting set with isolating neigh-
borhood U , that is Λ = ΛX(U) = ∩t∈RXt(U) and Xt(U) ⊂ U for every t > 0.
Hence there exists a C1-neighborhood U of X such that if Y ∈ U , x ∈ Per(Y ) and
OY (x) ∩ U �= ∅, then

OY (x) ⊂ ΛY (U). (2.9)

Given Y ∈ U define Λ∗
Y (U) = ΛY (U) \ S(Y ). In what follows P t stands for the

linear Poincaré flow of X over Λ∗
X(U).

Definition 2.30 We say that a singularity σ of a flow Xt is (generalized) Lorenz-
like if there are two real eigenvalues λ < 0 < μ of DX(σ) such that every other
eigenvalue is contained in the union of the sets

λ−(σ ) = {z ∈ C : z �= λ is an eigenvalue of DX(σ) with �(z) < 0}, and

μ+(σ ) = {z ∈ C : z �= μ is an eigenvalue of DX(σ) with �(z) > 0};
and satisfy sup{�(z) : z ∈ λ−(σ )} < λ < 0 < −λ < μ ≤ inf{�(z) : z ∈ μ+(σ )} and
also λ−(σ ) �= ∅.

We remark that for a vector field in a three-dimensional manifold such singular-
ities have only real eigenvalues λ2 ≤ λ3 ≤ λ1 such that λ2 < λ3 < 0 < −λ3 < λ1.
We will see that these singularities are the only ones allowed on robustly transitive
sets in three-dimensional manifolds.
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Remark 2.31 Metzger and Morales in [156] present a more general definition of
generalized Lorenz-like equilibrium. However, we can be more specific and show
that equilibria, properly accumulated by regular orbits in attracting sets for higher
dimensional flows, must satisfy this more restrictive structure, see Lemma 5.22 and
Remark 5.26.

Definition 2.32 We say that a vector field X ∈ X1(M) is homogeneous on a set
U ⊂ M if there exists a C1 open set U in X1(M) containing X such that

• for all X ∈ U there are no sinks nor sources in U , and
• every critical element of X in ΛX(U) is hyperbolic.

In addition, if the dimension of M is greater than three, we impose also the condition

• the index of the continuation on U of every critical element does not change (i.e.
there are no bifurcations of critical elements).

Using (2.9) and the same arguments as in [79, Theorem 3.2] (see also [270, The-
orem 3.8] and [132]) we obtain

Theorem 2.33 (Homogeneous flows and dominated splitting) Let X ∈ X1(M) be a
homogeneous vector field in an open subset U of M and let ΛY (U) be connected
and a subset of Ω(Y) for all Y ∈ X1(M) in a C1 neighborhood of X. Then there
exists an invariant, continuous and dominated splitting NΛ∗

X(U) = Ncs,X ⊕ Ncu,X

for the Linear Poincaré Flow P t on Λ∗
X(U). Moreover

1. for all hyperbolic sets Γ ⊂ Λ∗
X(U) with splitting Es,X ⊕ EX ⊕ Eu,X

Es,X
x ⊂ Ncs,X

x ⊕ EX
x and Eu,X

x ⊂ Ncu,X
x ⊕ EX

x , for every x ∈ Γ.

2. If Yn → X in X1(M) and xn → x in M , with xn ∈ Λ∗
Yn

(U), x ∈ Λ∗
X(U), then

N
cs,Yn
xn

−−−→
n→∞ N

cs,X
x and N

cu,Yn
xn

−−−→
n→∞ N

cu,X
x .

3. If σ ∈ S(X)∩ΛX(U) is a (generalized) Lorenz-like singularity and x ∈ Ws(σ)\
{σ }, then on Nx one invariant and dominated splitting for the Linear Poincaré
Flow is given by Ncs

x = Nx ∩ TxWs(x) and Ncu
x = Nx ∩ TxWu(x).

We present a proof of all items above, plus a sketch of the argument proving the
existence of the dominated splitting on regular orbits.

The proof of existence is detailed in Sect. 4.2 of Chap. 4.

Proof Given a hyperbolic compact invariant subset Γ inside ΛX(U)∗, the projec-
tions of the contracting Es and expanding Eu subbundles of T Γ on the normal
subbundle NΓ over Γ must coincide with Ncs and Ncu, respectively. Indeed, these
projections are P t -invariant and form a dominated decomposition of NΓ (recall the
proof of Theorem 2.27), so the equality follows from the uniqueness of such domi-
nated decomposition after the dimensions have been fixed.
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We observe that if the dominated splitting for the Linear Poincaré Flow is con-
structed for ΛY (U)∗ for all Y sufficiently C1-close to X, then the continuity state-
ments in item 2 follow from the same argument in the proof of Lemma 2.28.

The uniqueness statement of item 3 is a consequence of uniqueness of dominated
splittings when the dimensions of the sub-bundles are fixed, since along orbits of a
point x ∈ U converging to σ the linearization of the flow of X near σ defines a dom-
inated splitting with the dimensions of Nx ∩Wu(x) and Nx ∩Ws(x) uniquely. In the
three-dimensional case the sub-bundles Ncs and Ncu are both one-dimensional, and
thus there exists a unique invariant and dominated splitting for the Linear Poincaré
Flow.

To construct such splitting we use the Closing Lemma of Pugh, Theorem 2.19,
since we are assuming that ΛY (U) ⊂ Ω(Y). For every orbit of x ∈ ΛY (U) we find
a periodic orbit OZ(p) ⊂ U for a C1 nearby flow Z which is close to a long piece of
the orbit of x. The homogeneity condition on the vector field X ensures that this is
a hyperbolic periodic orbit and that the dimensions of the strong-stable and strong-
unstable manifolds of p do not depend either on the periodic orbit O(p) inside U

or on the vector field Z. The connectedness assumption on ΛY (U) enables us to
show that it is enough to carry this argument over to periodic orbits whose periods
are bounded from below away from zero, since the complement in ΛY (U) of the
periodic orbits with small period is dense in ΛY (U).

The hyperbolicity ensures that the splitting Es ⊕ EZ ⊕ Eu along OZ(p) induces
a dominated splitting Ns ⊕ Nu on NO(p) invariant under P t

Z . If we can show that
this is a (C,λ)-dominated splitting with (C,λ) not depending either on the periodic
orbit or on the flow, then we would be able to define a dominated splitting for the
flow along the Y orbit of x as the limit of the sub-bundles Ns

pn
, Nu

pn
over the periodic

orbits OZn(pn) of flows Zt
n converging to Y t .

The uniform (C,λ)-dominated splitting for Z along its periodic orbits inside U

is provided by the arguments of Linear Systems of Matrixes in [145] and in [79].
The basic idea is to show that if there exist periodic orbits with a (C,λ) dominated
splitting either with λ very close to 1 or C very big, then it is possible to find a C1

flow Z0 close to Z exhibiting a periodic orbit with a different index from the other
periodic orbits in U , contradicting the homogeneous condition on X. �

2.6.3 Incompressible Flows, Hyperbolicity and Dominated
Splitting

In the particular case of incompressible or volume preserving flows on three-
dimensional manifolds, we show that in the absence of singularities, a dominated
splitting of the linear Poincaré Flow is equivalent to hyperbolicity.

A C1 flow X in an n-manifold M endowed with a Riemannian metric is incom-
pressible or conservative if the volume form ω = Leb is invariant under DXt , that
is (DXt)∗ω = ω. This means that for any given basis v1, . . . , vn of TxM we have
that ω(DXt

x · v1, . . . ,DXt
x · vn) = ω(v1, . . . , vn) for all x ∈ M and t ∈ R.
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Proposition 2.34 Let X ∈ X1
ω(M3) have an invariant set Λ �= ∅ (not necessarily

compact) such that its closure Λ has no singularities of X and admits a dominated
splitting for the Linear Poincaré Flow. Then Λ is an hyperbolic set.

Before the proof we need the following definition, which will be used throughout
the rest of the book: given two subspaces A ⊂ TxM and B ⊂ TxM such that A∩B =
{0}, the angle �(A,B) or ∠(A,B) between A and B is defined as

∠(A,B) = inf{�(v,w) : v ∈ A \ {0},w ∈ B \ {0}},
where �(v, w) = arccos

〈 v
‖v‖ , w

‖w‖
〉

is well defined for non-zero vectors in a given
tangent space by the Riemannian inner product.

Proof On a 3-manifold the domination of the Linear Poincaré Flow can only occur
if the dimension of the sub-bundles in the splitting of the normal bundle is constant
an equal to 1. Since there are no singularities on Λ the dominated splitting extends
to the closure. Then there exists K > 1 and β > 0 such that for all x ∈ Λ the flow
size is bounded above and below and the angles between the two sub-bundles of the
dominated splitting are bounded away from zero, as follows

K−1 ≤ ‖X(x)‖ ≤ K and θt := �(Nu
Xt (x),N

s
Xt (x)) ≥ β.

Since the flow is incompressible we must have

∣
∣det(DP t

x)
∣
∣ · ‖X(Xt(x))‖

‖X(x)‖ = 1 and we set x(t) = ‖X(Xt(x))‖
‖X(x)‖ .

We can write this in a convenient way

sin(θ0) = ‖P t
x | Nu

x ‖ · ‖P t
x | Ns

x‖ · sin(θt ) · x(t)

and so we can relate with the domination as follows

‖P t
x | Ns

x‖2 = sin(θ0)

x(t) sin(θt )
· ‖P t

x | Ns
x‖

‖P t
x | Nu

x ‖ ≤ K2C

sin(β)
e−λt .

Hence Ns is uniformly contracted by the Linear Poincaré Flow. We proceed anal-
ogously for the unstable direction and obtain that the dominated splitting is in fact
hyperbolic. Then by Theorem 2.27 we have that Λ is hyperbolic.

The reciprocal is easier: by Theorem 2.27 the Linear Poincaré Flow over Λ is
hyperbolic and hyperbolic splittings are always dominated. �

2.7 Ergodic Theory

The ergodic theory of uniformly hyperbolic systems was initiated by Sinai’s Theory
of Gibbs States for Anosov flows [16, 250] and was extended to Axiom A flows
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and diffeomorphisms by Bowen and Ruelle [60, 62]. The special measures studied
by these authors are commonly referred to by their combined name Sinai-Ruelle-
Bowen or just SRB in the literature since.

Recall that an invariant probability measure μ for a flow X ∈ Xr (M) is a proba-
bility measure such that μ((Xt )−1A) = μ(A) for all measurable subsets A and any
t > 0 or, equivalently,

∫

ϕ ◦Xtdμ = ∫

ϕ dμ for all continuous functions ϕ : M → R

and any t > 0.
A simple and useful property of invariant probability measures is given by the

Recurrence Theorem of Poincaré: the set of points x such that x ∈ ωX(x), that is,
the set of recurrent points, has full μ measure on the ambient space.

Recall also that an invariant measure μ is ergodic if any X-invariant subset have
either measure 0 or 1 with respect to μ. Equivalently, any X-invariant function
ϕ ∈ L1(μ), i.e., ϕ ◦ Xt = ϕ almost everywhere for all t > 0 is constant almost ev-
erywhere with respect to μ. The cornerstone of Ergodic Theory is the following
celebrated result of George David Birkhoff (see [48] or for a recent presentation
[269]).

Theorem 2.35 (Ergodic theorem) Let f : M → M be a measurable transforma-
tion, μ an f -invariant probability measure and ϕ : M → R a bounded measurable
function. Then the time average ϕ̃(x) = lim 1

n

∑n−1
j=0 ϕ(f n(x)) exists for μ-almost

every point x ∈ M . Moreover ϕ̃ is f -invariant and
∫

ϕ̃ dμ = ∫

ϕ dμ. In addition, if
μ is ergodic, then ϕ̃ = ∫

ϕ dμ almost everywhere with respect to μ.

For a flow Xt just replace in the statement of Theorem 2.35 above the discrete
time average with limT →+∞ 1

T

∫ T

0 ϕ(Xt (z)) dt and f -invariance by X-invariance.
For invertible transformations or flows forward and backward (i.e. with T → −∞)
time averages are equal μ-almost everywhere.

Every invariant probability measure μ is a generalized convex linear combination
of ergodic measures in the following sense: for μ-a.e. x there exists an ergodic
measure μx satisfying for every continuous function ϕ

∫

ϕ dμx = lim
T →±∞

1

T

∫ T

0
ϕ
(

Xt(z)
)

dt

and for every bounded measurable function ψ we have

∫

ψ dμ =
∫ (∫

ψ dμx

)

dμ(x).

2.7.1 Physical or SRB Measures

The chaotic nature of hyperbolic phenomena prevents accurate long term predic-
tions for many models of physical, biological or economic origin. Inspired by an
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analogous situation of unpredictability faced in the field of Statistical Mechan-
ics/Thermodynamics—although due to the large number of particles involved,
whereas dynamical systems exhibit unpredictability even for models expressed
with few variables and simple mathematical formulas, e.g. the Lorenz flow in
Sect. 2.2.3—researchers focused on the statistics of the data provided by the time
averages of some observable (a continuous function on the manifold) of the sys-
tem. Time averages are guaranteed to exist for a positive volume subset of initial
states (also called an observable subset) on the mathematical model if the transfor-
mation, or the flow associated to the ordinary differential equation, admits a smooth
invariant measure (a density) or a physical measure.

Indeed, if μ0 is an ergodic invariant measure for the transformation T0, then the
Ergodic Theorem ensures that for every μ-integrable function ϕ : M → R and for
μ-almost every point x in the manifold M the time average

ϕ̃(x) = lim
n→+∞n−1

n−1∑

j=0

ϕ(T
j

0 (x))

exists and equals the space average
∫

ϕ dμ0. A physical measure μ is an invariant
probability measure for which it is required that time averages of every continuous
function ϕ exist for a positive Lebesgue measure (volume) subset of the space and
be equal to the space average μ(ϕ).

We note that if μ is a density, that is, is absolutely continuous with respect to the
volume measure, then the Ergodic Theorem ensures that μ is physical. However not
every physical measure is absolutely continuous. To see why in a simple example
we just have to consider a singularity p of a vector field which is an attracting fixed
point (a sink), then the Dirac mass δp concentrated on p is a physical probability
measure, since every orbit in the basin of attraction of p will have asymptotic time
averages for any continuous observable ϕ given by ϕ(p) = δp(ϕ) = ∫

ϕ dδp .
Physical measures need not to be unique or even exist in general, but when they

do exist it is desirable that the set of points whose asymptotic time averages are
described by physical measures (such set is called the basin of the physical mea-
sures) be of full Lebesgue measure—only an exceptional set of points with zero
volume would not have a well defined asymptotic behavior. This is yet far from
being proved for most dynamical systems, in spite of much recent progress in this
direction.

There are robust examples of systems admitting several physical measures whose
basins together are of full Lebesgue measure, where robust means that there are
whole open sets of maps of a manifold in the C2 topology exhibiting these fea-
tures. For typical parametrized families of one-dimensional unimodal maps (maps
of the circle or of the interval with a unique critical point) it is known that the above
scenario holds true for Lebesgue almost every parameter [143]. It is known that
there are systems admitting no physical measure [118], but the only known cases
are not robust, i.e. there are systems arbitrarily close which admit physical mea-
sures.
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2.7.1.1 Physical Probability Measures for a Flow

Given an invariant probability measure μ for a flow Xt , let B(μ) be the (ergodic)
basin of μ, i.e., the set of points z ∈ M satisfying for all continuous functions ϕ :
M → R

lim
T →+∞

1

T

∫ T

0
ϕ
(

Xt(z)
)

dt =
∫

ϕ dμ.

We say that μ is a physical (or SRB) measure for X if B(μ) has positive Lebesgue
measure: Leb(B(μ)) > 0.

The notion of SRB measure captures the intuitive idea that the natural measure
for a dynamical system should be one which gives probabilistic information on the
asymptotic behavior of trajectories starting from a “big” set of initial states. Here
the notion of “big” can arguably be taken to mean “positive volume”. In this sense
an SRB measure provides information on the behavior of trajectories starting from
a set of initial states which is in principle “physically observable” in practice, say
when modeling some physical experiment. That is why the name physical measure
is also attached to them

This kind of measures was first constructed for C2 Anosov flows by Anosov and
Sinai [16] and later for every Axiom A attractor for C2 flows and for C2 diffeomor-
phisms by Bowen and Ruelle [60, 62]. Moreover if the attractor is transitive (i.e.
a basic piece in the spectral decomposition of an Axiom A flow), then there is a
unique such measure supported in the attractor whose basin covers a full neighbor-
hood of the attractor except for a volume zero subset. In addition, in the setting of
diffeomorphisms these measures are ergodic and mixing (see Sect. 10.2.3 for the
definition of mixing for an ergodic probability measure).

The existence of physical measures shows that uniformly hyperbolic attractors
have well defined asymptotic behavior in a probabilistic sense for Lebesgue almost
all points in a neighborhood.

2.7.2 Gibbs Measures Versus SRB Measures

The concept of SRB measure is closely related to the concept of Gibbs mea-
sure introduced in the setting of uniformly hyperbolic flows and transformation by
Sinai [16, 250] and by Bowen and Ruelle [60, 62]. To explain these notions we need
to recall the definition and basic properties of Lyapunov exponents for flows.

2.7.2.1 Multiplicative Ergodic Theorem for a Smooth Flow

We recall that for a given flow X the Lyapunov exponent of x in the direction of
v ∈ TxM \ {0} is the number

L(x, v) = lim inf
t→+∞

1

t
log

∥
∥DXt(x)v

∥
∥. (2.10)
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Given an invariant ergodic probability measure μ for the flow Xt , the multiplicative
ergodic theorem of Oseledets [185, 269] ensures that μ almost every x there exists
a DXt -invariant splitting (for all t > 0) TxM = E1 ⊕ · · · ⊕ Ek and numbers λ1 <

· · · < λk such that for all i = 1, . . . , k and vi ∈ Ei \ {0}

λi = lim
t→+∞

1

t
log

∥
∥DXt(x)vi

∥
∥. (2.11)

Moreover the angles between these invariant subspaces decrease along orbits of the
flow at most subexponentially, so that the rates of growth expressed by the exponents
dominate the possibly small angles along most orbits. More precisely, we have that
for any I ⊂ {1, . . . , k} and μ-almost every point

lim
t→±∞

1

t
log sin�

(
⊕

i∈I

Ei
Xt (x),

⊕

j /∈I

E
j

Xt (x)

)

= 0.

These facts imply the following regularity condition:

lim
t→±∞

1

t
log

∣
∣
∣
∣
det

(

DXt |
⊕

i∈I

Ei
x

)∣
∣
∣
∣
=

∑

i∈I

λi(x)dimEi
x

for μ-almost every point and, in particular

lim
t→±∞

1

t
log |detDXt(x)| =

k
∑

i=1

λi(x)dimEi
x.

We note that since M is compact and X is smooth, then we have that the invariant di-
rection given by EX

z (:= {αX(z) : α ∈ R}) cannot have positive Lyapunov exponent,
since for all t > 0 and z ∈ M

1

t
log

∥
∥DXt(z) · X(z)

∥
∥ = 1

t
log

∥
∥X

(

Xt(z)
)∥
∥ ≤ 1

t
log‖X‖0, (2.12)

where ‖X‖0 = sup{‖X(z)‖ : z ∈ M} is a constant. Analogously this direction cannot
have positive exponent for negative values of time, thus the Lyapunov exponent
along the flow direction must be zero.

Consequently the flow direction is never tangent to a direction along which all
Lyapunov exponents are non-zero. In particular, EX is never tangent either to a
strong-stable or strong-unstable direction.

Additionally, the subexponential control of the angles between Oseledets sub-
spaces ensures that, along regular orbits of a flow, Lyapunov exponents off the di-
rection of the flow coincide with the Lyapunov exponents of the Linear Poincaré
Flow (see Sect. 2.6). Indeed, since ‖P t

Xv‖ = ‖(OXt (x) ◦ DXt(x))v‖ for all vectors
v in the normal direction Nx to EX

x at TxM , the normal projections Ẽi
x := Ox(E

i
x)

of the Oseledets subspaces on the normal direction to the flow have the same ex-
ponential growth rates, because the norm of the projection OXt (x) depends on the
angles between X(Xt(x)) and the other Oseledets subspaces, which decreases at
most subexponentially along μ-almost every orbit.
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2.7.2.2 Non-uniform Hyperbolicity

In the uniformly hyperbolic setting, it is well known that physical measures for
hyperbolic attractors admit a disintegration into conditional measures along the un-
stable manifolds of almost every point which are absolutely continuous with respect
to the induced Lebesgue measure on these sub-manifolds, see [60, 62, 201, 266].
We explain the meaning of this technical notion in what follows.

Assume that an ergodic invariant probability measure μ for the flow X has a pos-
itive Lyapunov exponent. In this setting the existence of unstable manifolds through
μ-almost every point x and tangent at x to Eu

x := ⊕

λi>0 Ei(x) is guaranteed by
the non-uniform hyperbolic theory of Pesin [197]: the strong-unstable manifolds
Wuu(x) are the “integral manifolds” in the direction of the (measurable) sub-bundle
Eu, tangent to Eu

x at almost every x. The sets Wuu
loc(x) are embedded sub-manifolds

in a neighborhood of x which, in general, depend only measurably (including its
size) on the base point x. Let Wu

loc(x) be the unstable manifold through x whenever
the strong-unstable manifold Wuu

loc(x) is defined (see Sect. 2.3). These manifolds are
tangent at x to the center-unstable direction EX

x ⊕ Eu
x .

Analogously we have the strong-stable manifold tangent at almost every x to
Es

x := ⊕

λi<0 Ei(x) and the center-stable manifold.

Hyperbolic Blocks and Bounded Distortion Along Invariant Manifolds The
measurable dependence of the invariant manifolds on the base point means that for
each κ ∈ N we can find a compact hyperbolic block (or Pesin set)H (κ) and positive
numbers τx,Cx satisfying

• dist(Xt (y),Xt (x)) ≤ Cxe−tτx · dist(y, x) for all t > 0 and y ∈ Wss
loc(x), and anal-

ogously for y ∈ Wuu
loc(x) exchanging the sign of t ;

• Cx ≤ κ and τx ≥ κ−1 for every x ∈ H (κ);
• H (κ) ⊂ H (κ + 1) for all k ≥ 1 and μ(H (κ)) → 1 as κ → +∞;
• the C1 strong-stable and strong-unstable disks Wss

loc(x) and Wuu
loc(x) vary continu-

ously with x ∈ H (κ) (in particular the sizes of these disks and the angle between
them are uniformly bounded from zero for x in H (κ)).

Now we have the following bounded distortion property. Here the Hölder condi-
tion on the derivative of Xt is crucial.

Theorem 2.36 ([34, Theorems 11.1 & 11.2]) Fix κ ∈ N such that μ(H (κ)) > 0.
Then the function

hs(x, y) :=
∏

i≥0

|detDf | Es
f i(x)

|
|detDf | Es

f i(y)
|

is Hölder-continuous for every x ∈ H (κ) and y ∈ Wss
loc(x), where f := X1 is the

time-1 map of the flow Xt and Es is the direction c corresponding to negative Lya-
punov exponents.
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An analogous statement is true for a function hu on the unstable disks in H (κ)

exchanging Es with the direction Eu corresponding to positive Lyapunov exponents
and reversing the sign of i in the product hs above.

We remark that, because H (κ) is compact, we can find 0 < hκ < ∞ such that
max{hu,hs} ≤ hκ on H (κ).

2.7.2.3 Absolutely Continuous Disintegration

Here the Hölder control on the derivatives is also crucial. Assume that n = dim(M)

and l = dim(F ).
Given x ∈ M let S be a co-dimension one submanifold of M everywhere trans-

verse to the vector field X and x ∈ S, which we call a cross-section of the flow at x.
Let ξ0 be the connected component of Wu(x)∩S containing x. Then ξ0 is a smooth
submanifold of S and we take a parametrization ψ : [−ε, ε]l ×[−ε, ε]n−l−1 → S of
a compact neighborhood S0 of x in S, for some ε > 0, such that

• ψ(0,0) = x and ψ((−ε, ε)l × {0n−l−1}) ⊂ ξ0;
• ξ1 = ψ({0l} × (−ε, ε)n−l−1) is transverse to ξ0 at x: ξ0 � ξ1 = {x}.
Consider the family Π(S0) of connected components ζ of Wu(z) ∩ S0 which cross
S0. We say that a submanifold ζ crosses S0 if it can be written as the graph of a map
ξ0 → ξ1.

Given δ > 0 we let Πδ(x) = {X(δ,δ)(ζ ) : ζ ∈ Π(S0)} be a family of co-dimension
one submanifolds inside unstable leaves in a neighborhood of x crossing S0, see
Fig. 2.13. The volume form Leb induces a volume form Lebγ on each γ ∈ Πδ(x)

naturally. Moreover, since γ ∈ Πδ(x) is a measurable family of submanifolds (S0

is compact and each curve is tangent to a measurable sub-bundle Ecu), it forms
a measurable partition of Π̂δ(x) = ∪{γ : γ ∈ Πδ(x)}. We say that Πδ(x) is a δ-
adapted foliated neighborhood of x.

Hence (see [231]) μ | Π̂δ(x) can be disintegrated along the partition Πδ(x) into
a family of conditional measures {μγ }γ∈Πδ(x) such that

μ | Π̂δ(x) =
∫

μγ dμ̂(γ ),

Fig. 2.13 Disintegration
along centre-unstable leaves
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where μ̂ is a measure on Πδ(x) defined by

μ̂(A) = μ(∪γ∈Aγ ) for all Borel sets A ⊂ Πδ(x).

In this setting we say that μ has an absolutely continuous disintegration along the
center-unstable direction or a Gibbs state if for μ-almost every x ∈ M , each δ-
adapted foliated neighborhood Πδ(x) of x induces a disintegration {μγ }γ∈Πδ(x)

of μ | Π̂δ(x), for all small enough δ > 0, such that μγ � Lebγ for μ̂-almost all
γ ∈ Πδ(x). In this setting we also say that μ is a Gibbs measure for the flow X.

Note that completely dual properties and definitions can be stated for the strong-
stable Wss(x) and stable leaves Ws(x) of μ-almost every point x for a system with
an invariant probability measure μ having a negative Lyapunov exponent.

2.7.2.4 Absolute Continuity of Foliations

In the same setting above, assume that x has a unstable leaf Wu(x) and let D1,D2

be embedded disks in M transverse to Wu(x) at x1, x2, that is Txi
Di ⊕ Txi

Wu(x) =
Txi

M , i = 1,2. Then the strong-unstable leaves through the points of D1 which
cross D2 define a map h between a subset of D1 to D2: h(y1) = y2 = Wuu(y1)∩D2,
called the holonomy map of the strong-unstable foliation between the transverse
disks D1,D2. The holonomy is injective if D1,D2 are close enough due to unique-
ness of the strong-unstable leaves through μ-a.e. point.

We say that h is absolutely continuous if there is a measurable map Jh : D1 →
[0,+∞], called the Jacobian of h, such that

Leb2
(

h(A)
) =

∫

A

Jh d Leb1 for all Borel sets A ⊂ D1,

and Jh is integrable with respect to Leb1 on D1, where Lebi denotes the Lebesgue
measure induced on Di by the Riemannian metric, i = 1,2.

The foliation {Wuu(x)} is absolutely continuous (Hölder continuous) if every
holonomy map is absolutely continuous (or Jh is Hölder continuous, respectively).

Since the pioneering work of Anosov and Sinai [15, 16] it became clear that for
C2 transformations or flows (in fact it is enough to have transformations or flows
which are C1 with α-Hölder derivative for some 0 < α < 1) the strong-unstable fo-
liation is absolutely continuous and Hölder continuous. See also [147]. When the
leaves are of co-dimension one, then the Jacobian Jh of the holonomy map h coin-
cides with the derivative h′ since h is a map between curves in M . In this case the
holonomy map can be seen as a C1+α transformation between subsets of the real
line.

Going back to the case of the unstable foliation for a flow, see Fig. 2.14, we have
that for any pair of disks γ1, γ2 inside S0 transverse to Wu(x) ∩ S0 at distinct points
y1, y2, the holonomy H between γ1 and γ2 along the leaves Wu(z)∩S0 crossing S0

is also Hölder continuous if the flow is C2.
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Fig. 2.14 The holonomy
maps

Indeed note that this holonomy map H can be obtained as a composition of the
holonomy map h between two disks D1,D2 transverse to the strong-unstable leaves
which cross S0, and the “projection along the flow” sending w ∈ X(−δ,δ)(S0) to a
point Xt(w) ∈ S0 uniquely defined, with t ∈ (−δ, δ). The disks are defined simply
as Di = X(−ε,ε)(γi) for 0 < ε < δ and satisfy Di ∩ S0 = γi , i = 1,2. Since the
holonomy h is Hölder continuous and the projection along the flow has the same
differentiability class of the flow (due to the Tubular Flow Theorem 2.13), we see
that the holonomy H is also Hölder continuous.

A very important consequence of absolute continuity is the following.

Lemma 2.37 Assume that for some given submanifold W of M one knows that
through LebW -almost every point x ∈ W (LebW is the induced volume form on
W by the volume form Leb of M) there passes a strong-stable manifold Wss(x)

transverse to W . Then the union of the points of all these strong-stable manifolds
has positive volume in M .

Proof In a neighborhood of one of its points W can be written as R
k ×{0n−k} and by

the transversely assumption on Wss(x) these submanifolds can be written as graphs
R

n−k → R
k on a neighborhood of 0n−k which depends measurably on x ∈ R

k . This
change of coordinates through some local chart of M affects the derivatives of maps
and holonomies at most by multiplication by bounded smooth functions.

The measurability ensures that given ε > 0 we can find δ,α > 0 small enough
such that there exists G ⊂ R

k satisfying:

1. for every x ∈ G:
a. Wss(x) is the graph of a map γx : Bδ(0n−k) → R

k defined on a δ-ball around
the origin;

b. the slope of the tangent space to Wss(x) at every point is smaller than α

(meaning that ‖Dγx(w)‖ ≤ α for all w);
2. LebW(G) > 1 − ε.

Then the submanifold Wt = R
k ×{t} for t ∈ R

n−k near 0n−k is transverse to Wss(x)

for all x ∈ G. Thus the holonomy map ht from a subset of Wt to W = W0 contains
G in its image, which has positive volume in W0. By absolute continuity of ht , the
intersection Wt ∩ ∪xW

s(x) has positive volume in Wt . Hence Leb(∪xW
s(x)) =

∫

LebWt (Wt ∩ ∪xWs(x)) d Lebn−k(t) > 0, and this concludes the proof. �
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2.7.2.5 Hyperbolic Measures, Gibbs Property and Construction of Physical
Measures

These technical notions have crucial applications in the construction of physical
measures for a dynamical system. Indeed, if the measure μ is ergodic and hyper-
bolic, meaning that all Lyapunov exponents are non-zero except the one correspond-
ing to the flow direction, and also a Gibbs measure, then transverse to a center-
unstable manifold Wu(z) there exist strong-stable manifolds through μγ -almost
every point and also through Lebγ -almost all points w ∈ Wu(z). Along strong-
stable manifolds forward time averages of continuous functions are constant and
along center-unstable manifolds backward time averages of continuous functions
are constant. Moreover forward and backward time averages are equal μ-almost
everywhere and through disintegration and ergodic decomposition, we deduce that
μ-almost every z has a strong-unstable manifold Wuu(z) where Leb-a.e. point has
the same forward and backward time averages.

We are in the setting of Lemma 2.37 thus the absolute continuity of the strong-
stable foliation implies that the family of all the strong-stable manifolds through
Wu(z) covers a positive Lebesgue measure subset of M if the flow is of class C2.
By the previous observations this set is inside the (ergodic) basin of μ. Hence a
hyperbolic ergodic invariant probability measure for a C2 flow which is a Gibbs
measure is also a physical measure.

2.8 Stability Conjectures

The search for a characterization of stable systems, from Smale’s seminal work in
the sixties [252], led to several conjectures some of which are still open.

The famous stability conjecture, by Palis and Smale [191], states that a vector
field X is structurally stable if, and only if, the non-wandering set is hyperbolic,
coincides with the closure of the set of critical elements, there are no cycles be-
tween the stable and unstable manifolds of the critical elements and the intersection
between the stable and unstable manifolds of points at the non-wandering set is
transverse. In short terms, this conjecture states that a system is structurally stable
if, and only if, its non-wandering set is uniformly hyperbolic, the periodic orbits are
dense and it satisfies the strong transversality condition.

This conjecture was proved in the setting of C1 diffeomorphisms by the com-
bined work of several people along the years. First Robbin [222] showed that if
a diffeomorphisms f is C2, Ω(f ) is Axiom A and satisfies the strong transver-
sality condition, then f is C1-structurally stable. Then Wellington de Melo [76]
obtained the same result for C1 diffeomorphisms on surfaces and finally Robin-
son [226] showed that for C1 diffeomorphisms on any compact manifold the strong
transversality condition plus Axiom A is sufficient for C1 structural stability. The
proof of this conjecture, in the C1 topology, was completed by Mañé [144, 145,
148] (see also Liao [133] for a proof for surface diffeomorphisms) who showed that
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C1-structural stability implies that the non-wandering set is uniformly hyperbolic
and satisfies the strong transversality condition.

For flows the proof that uniform hyperbolicity together with strong transversality
is sufficient for C1 structural stability was given by Robinson [224, 225]. Finally,
that these conditions are also necessary for structural stability was proved much later
by Hayashi [108] using the Connecting Lemma.

Developments in the last decades led Palis to conjecture [189] that the set of
dynamical systems exhibiting finitely many attractors is dense in the set of all dy-
namical systems (in a suitable topology) and, moreover, each attractor supports a
physical/SRB measure and the union of the (ergodic) basin of all physical measures
covers Lebesgue almost every point of the ambient manifold. This conjecture admits
a version for parametrized families where denseness is to be taken in the set of pa-
rameters corresponding to finitely many attractors whose basins cover the ambient
manifold Lebesgue almost everywhere.

In the context of three-dimensional flows, one has to consider another homo-
clinic phenomenon involving singularities of the vector field: the situation in which
the stable and unstable manifolds of a singularity have intersections other than the
singularity itself. In this case, it is said that the vector field has a singular cycle.

In the setting of C1 surface diffeomorphisms this conjecture was proved true by
E. Pujals and M. Sambarino [217]. In the setting of real analytic families of uni-
modal maps of the interval or the circle, this was obtained by M. Lyubich [143]. In
higher dimensions this conjecture is still wide open in spite of much recent progress,
see e.g [56] and references therein.



Chapter 3
Singular Cycles and Robust Singular Attractors

A cycle Γ for a flow Xt is a finite sequence {σi,0 ≤ i ≤ n} ⊂ C(X) of hyperbolic
critical elements of Xt , with σ0 = σn, such that Wu(σj ) ∩ Ws(σj+1) �= ∅ for 0 ≤
j < n, that is the unstable manifold of one element intersects the stable manifold of
the next element. A cycle is singular if at least one of its critical elements is a fixed
point of Xt .

Cycles play an important role in the bifurcation theory of Dynamical Systems.
A singular cycle is one of the mechanisms to go from a Morse-Smale flow (whose
non-wandering set is a finite collection of hyperbolic critical elements) to a hyper-
bolic flow (whose non-wandering set is a finite collection of basic sets) through a
one parameter family of flows.

In this chapter we shall describe three types of singular cycles, that will be used in
the sequel. Nowadays the first one, presented in Sect. 3.1, is denominated singular-
horseshoe. It was introduced by Labarca and Pacifico in [128] as a model for stable
non hyperbolic flows in the context of boundary manifolds. We show that this set
satisfies some properties which, in Chap. 5, will be defined as singular-hyperbolicity.
This generalization of (uniform) hyperbolicity will characterize a much broader
class of invariant sets for flows.

The second cycle is a homoclinic connection associated to a hyperbolic singu-
larity of saddle-type. There are several possibilities for these cycles which are used
in the proofs presented in the following chapters. We provide a brief description of
the dynamics of perturbations of these cycles here. One of them is an inclination
flip cycle. This was studied by many authors, see e.g. [69, 115] among others. The
study of this type of cycle is crucial for the proof, in Chap. 5, that a robust tran-
sitive set with singularities for a 3-flow is either an attractor or a repeller, together
with the Shil’nikov bifurcation, first considered in [243]. These are presented in
Sect. 3.2.

Finally the third one is the Lorenz geometrical model, introduced by Gucken-
heimer and Williams [98] and presented in Sect. 3.3. This is a model for a robust
attractor with singularities for a 3-flow, as we will see in Chap. 5.

V. Araújo, M.J. Pacifico, Three-Dimensional Flows, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 53,
DOI 10.1007/978-3-642-11414-4_3, © Springer-Verlag Berlin Heidelberg 2010
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3.1 Singular Horseshoe

We start in Sect. 3.1.1 with the description of a map defined on a rectangle into itself
which resembles the Smale horseshoe map [252]. For this reason this type of map
is nowadays denominated singular horseshoe.

Afterward, in Sect. 3.1.2, we exhibit a singular cycle presenting a singular horse-
shoe map as a first return map. Then, in Sect. 3.1.3, we show in several stages that
the singular horseshoe is a transitive partially hyperbolic set with volume expanding
central direction.

3.1.1 A Singular Horseshoe Map

Given δ > 0 small enough, λ < 1/2 and μ > 1, let Q = [−1,0] × [0,1 + δ] and
define

Rδ = Q \ ((μ−1(1 + δ),1/2 − δ) × (1/2,1)
)

.

Let F : Rδ → Q, (x, y) �→ (g(x, y), f (y)) be a smooth map satisfying:

(a) |∂xg(x, y)| < 1/2 for all (x, y) ∈ Rδ and

g(x, y) = λ · x for 0 ≤ y ≤ μ−1(1 + 2δ).

(b) f : I \ (J ∪ K) → I where I = [0,1], J = (μ−1(1 + 2δ),1/2 − δ) and K =
(1/2,1) satisfying
(i) f (y) = μ · y for 0 ≤ y ≤ μ−1(1 + 2δ),

(ii) f ′(y) � μ for y ∈ [1/2 − δ,1/2] ∪ [1,1 + δ].
(c) F(x,1) = F(x,1/2) = (α,0) for −1 ≤ x ≤ 0 with a fixed −1 < α < λ.
(d) The following sets

γ−1 = F({−1} × (1,1 + δ]), γ0 = F({0} × (1,1 + δ]),
β0 = F({0} × [1/2 − δ,1/2)), β−1 = F({−1} × [1/2 − δ,1/2))

are disjoint C1 curves, except for the point (α,0) where all are tangent. These
curves are contained in (−1,−λ)×[0,1+δ] and are transverse to the horizontal
lines. Moreover, if d(A,B) denotes the distance between the sets A and B , and
L = {−1} × [0,1 + δ] then

d(γ−1,L) < d(γ0,L) < d(β0,L) < d(β−1,L).

Figure 3.1 displays the main features of the map F .
Observe that, by construction, the horizontal lines {x} × [0,1 + δ], for x ∈

[−1,0], are invariants by F . They are also uniformly contracted by a factor 0 <

c0 < 1/2. This guaranties that Q has a uniformly contracted (strong-)stable folia-
tion invariant by F that we denote by F ss(Q).
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Fig. 3.1
A singular-horseshoe map

Fig. 3.2 A Smale horseshoe
map

Define the following rectangles

A0 = [−1,0] × [1,1 + δ], A1 = [−1,0] × [1/2 − δ,1/2],
A2 = [−1,0] × [0,μ−1(1 + 2δ)].

Note that

Rδ =
i=1
⋃

i=0

Ai and define ΩF =
⋂

n∈Z

Fn(Rδ).

It is clear that F −1(ΩF ) = ΩF .

3.1.1.1 Singular Symbolic Dynamics

We now associate a symbolic dynamics to the restriction F | ΩF . For this, consider
a map F̃ : Rδ → Q such that F̃ has the same properties described for F , except that
F̃ ([−1,1]× {1}) and F̃ ([−1,1]× {1/2}) are disjoint intervals I and J contained in
the interior of [−1, λ] × {0} as in Fig. 3.2. Define Ω = ∩n∈ZF̃ n(Rδ).

Clearly F̃ is a Smale horseshoe map. Roughly speaking, F is obtained from F̃

pinching the intervals I and J into a unique point in such a way that the resulting
boundary lines γ̃−1, γ̃0, β̃0, and β̃−1 are tangent at this point.
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Let Σ3 be the set of doubly infinite sequences of symbols in {0,1,2} endowed
with the topology given by the distance

d(x, y) =
∑

i∈Z

|xi − yi |
3|i|

and σ : Σ3 → Σ3 be the left shift map σ(x)i = xi+1.
It is well known (see e.g. [252] but also the textbooks of e.g. Devaney [78] or

Robinson [230]) that there exists a homeomorphism H̃ : Ω → Σ3 which conjugates
F̃ and σ , i.e. H̃ ◦ F̃ = σ ◦ H̃ . The image H̃ (x) of x ∈ Ω is the sequence (H̃ (x)i) ∈
Σ3 defined by

H̃ (x)i = j ∈ {0,1,2} ⇐⇒ F̃ i(x) ∈ Aj , i ∈ Z. (3.1)

Recall that the set of periodic orbits for σ is dense in Σ3 and that there exists a
dense orbit.

We now describe the sequences associated, in a similar way, to points ΩF .
Observe that the tangency point (α,0) is the unique point of ΩF outside of

[−λ,0] × [0,1 + δ] which remains forever in the bottom boundary of Q. This line
corresponds to the local stable manifold of the fixed point (0,0) of F .

• Since [−1,0] × {0} = ∩n≤0F̃
n(A2) we have z ∈ [−1,0] × {0} ∩ Ω if, and only

if, θi(z) = 2 for all i ≥ 0, i.e. H̃ (z) = (. . . , x−1,2,2,2, . . . ).

The points belonging to this line which are outside of [−λ,0] × [0,1 + δ] are the
points of the local stable manifold of (0,0) which are different from (0,0), i.e. their
corresponding codes differ from the constant sequence xi ≡ 2 at some coordinate
with negative index. Defining Σ3∗ the subset of Σ3 of those sequences (xi)i∈Z with
x0 ∈ {0,1} and xi = 2 for all i ≥ 1, then

Ws

F̃

(

H̃ (0,0)
) \ H̃

([−λ,0] × [0,1 + δ])=
⋃

k≥1

σkΣ3∗ = Σ̃3∗ .

Note that σ−1Σ̃3∗ ⊆ Σ̃3∗ . Defining an equivalence relation on Σ3 by θ ∼ θ̃ if and
only if θ, θ̃ ∈ Σ̃3∗ , then this relation is preserved by the shift.

Let Σ̃3 be the corresponding quotient space and σ̃ the associated quotient shift
map. This map can be seen as the original full shift map on three symbols after
identifying the sequences on Σ̃3∗ , which correspond to the points which are taken to
(α,0) by F .

By the above considerations and the dynamics of F we get

Lemma 3.1 There exists a homeomorphism HF : ΩF → Σ̃3 which conjugates F |
ΩF and HF , that is HF ◦ (F | ΩF ) = σ̃ ◦ HF .

The homeomorphism HF is defined just as in (3.1) replacing F̃ by F .
Observe that the set of periodic orbits for σ̃ is the same set of periodic orbits

for σ . Note also that the dense orbit for σ is not contained in Σ̃3∗ . Therefore the set
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of periodic orbits for σ̃ is dense in Σ̃3 and this space contains a dense orbit. The
existence of the conjugation above ensures that ΩF has a dense subset of periodic
orbits and a dense orbit for the dynamics of F .

3.1.2 A Singular Cycle with a Singular Horseshoe First Return
Map

We start by recalling the definition of a special type of singularity of a vector field
X in a 3-manifold.

Definition 3.2 We say that a singularity σ of a 3-flow Xt is Lorenz-like if the
eigenvalues λi , 1 ≤ i ≤ 3 are real and satisfy

λ2 < λ3 < 0 < −λ3 < λ1. (3.2)

Next we shall exhibit a singular cycle C having a Lorenz-like singularity p and
a hyperbolic saddle-type closed orbit σ , connected through a branch of the unstable
manifold associated to p: this branch is contained in the stable manifold associated
to σ . Moreover there are two orbits of transverse intersection between Ws(p) and
Wu(σ). The cycle will be constructed in such away that it is contained in the max-
imal invariant set Λ(X) of a vector field X in a neighborhood U of C , and the first
return map associated to C is a singular horseshoe map, see Fig. 3.3.

We start with a vector field X0 ∈ Xr (D3) on the 3-disk D
3 in R

3. This vector
field has one repeller singularity r1 at the north pole. Outside a neighborhood of r1,
X0 has four singularities which we denote by p,p1,p2, r2, plus a hyperbolic closed
orbit σ . These satisfy the following:

1. p is a Lorenz-like singularity.
2. (p,σ ) is a saddle connection with a branch γ u(p) of Wu(p) \ {p} whose ω-

limit set is σ . By the Hartman-Grobman Theorem there exists a neighborhood
p ∈ N ⊂ R such that the restriction of X0 to N is equivalent to the linear vector
field L(x1, x2, x3) = (λ2x1, λ1x2, λ3x3).

Fig. 3.3 A singular cycle



60 3 Robust Singular Attractors

Fig. 3.4 The vector field X0

Fig. 3.5 Producing a unique
tangency

3. p1 is an attractor and is also the ω-limit set of the other branch of Wu(p) \ {p}.
4. p2 is an attractor and is the ω-limit of Wu(σ) \ {σ }.
5. r2 is a repeller contained in the interior of the 2-disk D

2 bounded by σ in S
2.

6. We assume that
a. p1,p, γ u(p), σ and D

2 are contained in the boundary ∂(D3) = S
2 of the 3-

disk;
b. the eigenvalues of DX0(r2) corresponding to eigenvectors in T S

2 are com-
plex conjugates. Therefore the part of Wu(r2) \ {r2} in S

2 is a spiral whose
ω-limit set is σ ;

c. the strong unstable manifold Wuu(r2) \ {r2} is contained in the interior of D
3

and its ω-limit set is the attractor p2.
7. The α-limit set of Ws(p) \ {p} is the repeller r1 and Ws(p) separates the two

attractors.

Figure 3.4 shows the essential features of the vector field X0 outside a neigh-
borhood of r1. Observe that X0 constructed in this way is a Morse-Smale vector
field.

Now we can modify the vector field X0 away from its critical elements, in par-
ticular away from the neighborhood N of p, in order to produce a unique tangency
between Ws(p) and Wu(σ), see Figs. 3.5 and 3.6.

By another slight perturbation of the above vector field we get a vector field X

such that Wu(σ) is transverse to Ws(p) at two orbits, see Fig. 3.7.

3.1.2.1 The First Return Map Associated to C is a Singular Horseshoe Map

Now we study the first return map associated to C and show that it is a singular
horseshoe map.
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Fig. 3.6 One point of
tangency

Fig. 3.7 The final vector
field

Fig. 3.8 The cross-section
Cs at p

Let S be a cross-section to X at q ∈ σ . Reparametrizing X, if necessary, we can
assume that the period of σ is equal to one and that S is invariant by X1: there exists
a small neighborhood U ⊂ S of q such that X1(S ∩ U) ⊂ S.

Since there are two orbits of transverse intersection of Wu(σ) with Ws(p) and
the branch γ u(p) has σ as ω-limit set, there exists a first return map F defined on
subsets of S, taking points of S back to S under the action of the flow. The goal now
is to describe F .

From now we assume mild non-resonant conditions on the eigenvalues of p to
ensure that there are C1 linearizing coordinates (x1, x2, x3) in a neighborhood U0

containing p.
Let Ds(p) ⊂ U0 and Du(p) ⊂ U0 be fundamental domains for the action of the

flow inside Ws(p) and Wu(p) respectively. That is Ds(p) is a circle in Ws(p)\ {p}
containing p in its interior and transverse to X, and Du(p) is a pair of points, one
in each branch of Wu(p) \ {p}.

Let Cs(p) ⊂ U0 be a cross-section to X, as in Fig. 3.8, with several components:
Cs = Cs(p) = C+(p) ∪ Ds(p) ∪ C−(p). We assume that C−(p) is contained in
the stable manifold of the attractor p1. We also assume that the plane {x1 = 0} is a
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center-unstable manifold for p and we denote it by Wcu(p). Let Cu(p) be a cross
section to X formed by a 2-disk through the point of γ (p) ∩ Du(p).

Observe that if γ is a C1 curve transverse to Ds(p) and γ ∩ Wss(p) = ∅, then

Cu(p) ∩
(
⋃

t≥0

Xt(γ )

)

is a C1 curve tangent to Wcu(p) ∩ Cu(p) at Du(p) ∩ γ u(p).
Let Ds(p2) ⊂ D

3 be a fundamental domain for the dynamics on Ws(p2), i.e. the
boundary of a 3-ball containing p2. Let V ⊂ S be a small neighborhood of q ∈ σ ,
where we have C1 linearizing coordinates (x, y) for the Poincaré first return map F

associated to σ . The eigenvalues of DF(q) are λ,μ both bigger than 1.
Let Q = [−1,1] × [0,1] be a rectangle contained in the interior of V . Assume

that

[−1,1] ×
{

1

2
,1

}

⊂ Ws(p) and [−1,1] × {0} ⊂ S
2.

There are only two orbits of transverse intersection between Wu(σ) and Ws(p),
and the points in {1} × (1/2,1) will fall in the stable set of p1, by construction of
the vector field X. Since Ws(p1) is open we can assume that [−1,1] × (1/2,1) ⊂
Ws(p1) (taking V small enough) and also

X1([−1,1] × (1/2,1)
)⊂ C−(p)

through a reparametrization of time if necessary. Assume further that there exists
δ > 0 such that (1 + 2δ)μ−1 < 1/2 − δ and

(a) for A0 = [−1,1] × (1,1 + δ] we have X1(A0) ⊂ C+(p);
(b) for A1 = [−1,1] × [1/2 − δ,1] we have X1(A1) ⊂ C+(p);
(c) X2([−1,1] × [1 + δ,1 + 2δ]) ⊂ Ds(p2);
(d) X2([−1,1] × [1/2 − 2δ,1/2 − δ]) ⊂ Ds(p2);
(e) for A2 = [−1,1] × [0, (1 + 2δ)μ−1] we have

X1(A2) = [−λ,0] × [0,1 + 2δ] ⊂ Q.

Now define

H1(X) =
⋃

t≥0

Xt(X1(A0)) ∩ Cu(p), H2(X) =
⋃

t≥0

Xt(X1(A1)) ∩ Cu(p).

Clearly Hi(X) are cones tangent to Wcu(p) ∩ Cu(p) at Du(p) for i = 1,2, see
Figs. 3.9 and 3.10.

Let α be the first intersection point between Wu(p) and Q. We can assume
that τi(X) = X1(Hi(X)) is contained in Q and that these sets are cones tangent
to Wcu(p) ∩ Q at α, for i = 1,2.
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Fig. 3.9 The first return map
to Q

Fig. 3.10 The first return
map at Du(p)

Clearly we can also assume that

X3([−1,1] × {1 + δ})⊂ τ1(X) and X3
(

[−1,1] ×
{

1

2
− δ

})

⊂ τ2(X).

If necessary, we modify the vector field X in order to have (see Fig. 3.11):

(a) horizontal lines {y = constant} going to horizontal lines in τi(X);
(b) writing πy for the projection on the y-axis in V

πy

(

X3([−1,1] × {1 + δ})
)

= {1 + 2δ} and

πy

(

X3
(

[−1,1] ×
{

1

2
− δ

}))

= {1 + 2δ};

(c) for Ds
σ = [−1, λ] × [0,1 + δ] we have τi(X) ⊂ intDs

σ for i = 1,2.

Now we describe the first return map F .

• If we take a point (x, y) with 1 + δ < y ≤ 1 + 2δ, then (x, y) is contained in the
stable manifold of the attractor p2 and F is not defined at these points.

• For either a point (x,1) ∈ Q or (x,1/2) ∈ Q we define F(x,1) = α = F(x,1/2).
• For points (x, y) ∈ Q with 0 ≤ y ≤ μ−1(1 + 2δ) we define F(x, y) = (λx,μy).
• For points (x, y) such that either 1 < y ≤ 1 + δ or 1/2 − δ ≤ y < 1/2, we de-

fine F(x, y) as the first intersection of the positive orbit through (x, y) with the
rectangle Qδ = [−1,1] × [0,1 + 2δ].
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Fig. 3.11 The singular
horseshoe return map

• For points (x, y) with 1/2 < y < 1 the first return F is not defined, since these
points are in the stable manifold of the attractor p1.

• F is also not defined for points (x, y) with μ−1(1 + 2δ) < y < 1/2 − δ. Indeed,
these points are such that the projection on the y-axis of their first return to S is
larger than 1 + 2δ. So these points return once to S and then they are taken to the
attractor p2.

Then the first return map F has the expression:

F(x, y) =
⎧

⎨

⎩

(λx,μy) if 0 ≤ y ≤ μ−1(1 + 2δ)

(g1(x, y), f1(y)) if 1 ≤ y ≤ 1 + δ

(g2(x, y), f2(y)) if 1/2 − δ ≤ y ≤ 1/2

with

• gi(x, y) is some smooth function with |∂xgi | < c < 1
2 , and

• fi is a smooth function satisfying f ′
i (y) > μ and 0 ≤ fi(y) ≤ 1+2δ, for i = 1,2.

We assume that the image F({0} × [0,1 + δ]) is transverse to the horizontal lines
in Qδ.

The non-trivial dynamics of F is concentrated in the square Qδ .
Let ΩF = ∩n≥0Fn(Qδ). Observe that the non-wandering set Ω(X) is the dis-

joint union of the critical elements {r1, r2,p1,p2} and Λ, where Λ is the closure
of the saturation by the flow Xt of the non-wandering set of the first return map F

described above, i.e., Λ = ∪t≥0Xt(ΩF ).
The set Λ is the maximal invariant set containing the singular cycle C in the

neighborhood U chosen at the beginning of the construction. This invariant set is
the so-called singular horseshoe.

Remark 3.3 On the boundary of the manifold D
3, which is preserved by the flow,

we have a Morse-Smale system. Hence any vector field Y close to X preserving the
boundary will have the same features as X on the boundary.

Moreover the features of X depend on the transverse intersection of certain in-
variant manifolds of the hyperbolic critical elements, all of which lie on the bound-
ary of the ambient manifold. Hence every vector field close to X preserving the
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boundary will exhibit the same critical elements and the same transversality rela-
tions between them, and so the singular-horseshoe is robust among the vector fields
which preserve the boundary of D

3.

3.1.3 The Singular Horseshoe Is a Partially Hyperbolic Set
with Volume Expanding Central Direction

We start by constructing local stable and unstable manifolds through points of ΩF

with respect to F . The stable and unstable foliation of the singular horseshoe Λ is
than obtained as the saturation by the flow of these manifolds. Then we explain how
to obtain the strong-stable foliation. Having these foliations we can define a splitting
of the tangent space at Λ which will behave much like a hyperbolic splitting.

3.1.3.1 Stable Manifold for Points in ΩF

Let F : Qδ → Q be the singular horseshoe map defined in the previous subsection.
It is easy to see that any horizontal line crossing Q is uniformly contracted by a

factor of c ∈ (0,1/2) by the definition of F . Then, given any pair of points x, y of
ΩF in the same horizontal line, one has

dist
(

Fk(x),F k(y)
)≤ ck −−−−→

k→+∞ 0.

Hence these curves are the local stable manifolds through points of ΩF with respect
to F . Saturating these curves by the flow we obtain the foliation of stable manifolds
F s through the points of the singular horseshoe.

For the particular case of the saddle singularity p and the periodic orbits σ the
stable leaves are given by the stable manifolds of these hyperbolic critical points.

3.1.3.2 Unstable Manifolds for Points of ΩF

Define R0 = Q ∩ F(A0), R1 = Q ∩ F(A1) and R2 = Q ∩ F(A2). Then R0 and
R1 are, except for their vertices, disjoint cones. R2 is a rectangle, crossing Q from
bottom to top.

For each i, j ∈ {0,1,2}, let Rij = Ri ∩ F(Rj ). Then F(Rj ) = ∪2
i=0Rij . Since

F(x, y) = (g(x, y), f (y)) with |gx(x, y)| < c < 1/2, we have that the horizontal
lines are contracted by a factor of c when iterated by F . Thus, except for R22 (which
is a rectangle strictly contained in R2), Rij is a cone strictly contained in Ri .

Inductively, given any sequence of n-symbols x1, x2, . . . , xn with xi ∈ {0,1,2}
and n ≥ 2, define Rix1x2···xn = Ri ∩ F(Rx1···xn) for i = 0,1,2. Then

F(Rx1···xn) =
2
⋃

i=0

Rix1···xn .
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Fig. 3.12 The unstable
curves of ΩF tangent at (α,0)

Note that

• If all the xi are equal to 2, then

R2, R2 ∩ F(R2), . . . , R2 ∩ F(R2) ∩ · · · ∩ Fn(R2)

is a strictly decreasing sequence of rectangles converging, in the C1 topology, to
the vertical line {0} × [0,1 + δ].

• If there is any xi0 ∈ {0,1}, then the sequence

Rx0 , Rx0 ∩ F(Rx1), . . . , Rx0 ∩ F(Rx1) ∩ F 2(Rx2) ∩ · · · ∩ Fn(Rxn)

is a strictly decreasing sequence of C1-cones. Hence this sequence converges to
a C1 curve, denoted by γ (x0, x1, . . .), which crosses Q from top to bottom, that
is, γ intersects each horizontal line of Q in a unique point, see Fig. 3.12.

Note that every point x ∈ ΩF \ {(α,0)} has a corresponding code HF (x) in Σ̃3

whose coordinates with positive index define a unique regular curve γ = γ (x1,

x2, . . . ) as above. This curve γ is the same for every y ∈ ΩF having a code HF (y)

with the same coordinates as HF (x) at positive indices. Such points y form the un-
stable manifold of x with respect to F , since d(σ−kHF (x), σ−kHF (y)) −−−−→

k→+∞ 0.

Indeed, from the description of the map F , it is clear that γ is expanded by all
iterates of F whenever its image is defined. Or, reversing time, by the construction
of γ , the pre-image of any pair of points y, z ∈ γ by Fk is well defined for all k ≥ 1
and, moreover, for any pair y−k, z−k of such pre-images under the same sequence
of inverse branches of F , we have

dist
(

y−k, z−k

)≤ ck −−−−→
k→+∞ 0.

Saturating these curves by the flow we obtain the central-unstable foliation F u

through the points of Λ.
The point (α,0) has already a well defined unstable manifold: the vertical line

crossing Q through (α,0), corresponding to the intersection of the unstable mani-
fold of the orbit of Wu(p) connecting the saddle singularity p to the periodic orbit
σ , see Fig. 3.9.

In addition, the saddle singularity p and the periodic orbit σ also have a well
defined unstable foliation compatible with the leaves defined above.
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3.1.3.3 Strong-Stable Foliation for the Singular-Horseshoe

The previous observations show that every periodic orbit of F on ΩF is hyperbolic
of saddle-type. Since F is the Poincaré first return map to Q of the flow X, we
deduce that every periodic orbit of X in Λ is hyperbolic of saddle-type. Moreover
the density of periodic orbits for F | ΩF implies that the family of periodic orbits of
X in Λ is dense in Λ.

In addition the stable foliation of the periodic orbits coincides with the stable
foliation defined above for all points, including the singularity p and the periodic
orbit σ . Hence the strong-stable leaves F̃ ss defined on the periodic orbits extend (by
continuity and coherence) to a strong-stable foliation F ss defined throughout Λ.
Notice that at the singularity p the strong-stable foliation coincides with its strong-
stable manifold corresponding to the weakest contracting eigenvalue.

3.1.3.4 Partial Hyperbolicity

The flow invariance of the stable F s , strong-stable F ss and unstable F u foliations
through points of Λ and the smoothness of their leaves enables us to define the
following DX invariant sub-bundles: for every point z ∈ Λ

Ez = TzF
ss(z) and Fz = TzF

u(z)

satisfy DXt · Ez = EXt (z) and DXt · Fz = FXt (z), for all t ∈ R.
Now we show that the flow X contracts E uniformly, and contracts more strongly

than any contraction along F . Then we conclude by showing that X expands volume
along F .

Let V be a neighborhood of p where linearizing coordinates are defined. Assume
without loss of generality that X1(Q) ⊂ V . In V the solutions of the linear flow can
be given explicitly as in (3.3).

Write J c
t (z) for the absolute value of the determinant of the linear map DXt |

Fz : Fz → FXt(z) where z is any point of Λ and t ∈ R.
For points z in X1(Q) and for s > 0 such that Xt(z) remains in V for 0 ≤ t ≤ s

we have

• ‖DXt | Ez‖ = eλ2t ;
• ‖DXt | Ez‖ = e(λ2−λ3)t · m(DXt | Fz);
• |detDXt | Fz| = e(λ1+λ3)t ,

where m(·) denotes the minimum norm of the linear map. Note that because λ1 +
λ3 > 0 the flow in V expands volume along the F direction. Moreover since λ2 < λ3
the flow contracts along the E direction more strongly than it expands along the F

direction, by the second item above. We say that F dominates E, see Chap. 5 for
more on dominated splitting. Observe that the above properties are also valid for the
singularity p and the periodic orbit σ .

In what follows we extend these properties for the action of X on points of Λ for
all times.
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Notice that the flow takes a finite amount of time, bounded from above and from
below, to take points in Q to X1(Q), and from Du(p) to Q (these times are constant
and equal to 1 in our construction).

Hence if we are given a point z ∈ Λ \ {p,σ }, then its negative orbit X−t (z) for
t > 0 will have consecutive and alternate hits on Du(p) and Q, at times t1 < s1 <

t2 < s2 < · · · < tn < sn < · · · respectively, with t0 = s0 = 0 and rn = |tn+1 − sn|
bounded from below by T0 independently of n ≥ 1.

Let B > 0 be a upper bound on ‖DX−t (z)‖ from 0 to T1 and for all z ∈ Λ. Then
from the volume expansion on V we have for tn < t ≤ sn

|detDX−t | Fz| ≤ exp

(

B · n − (λ1 + λ3) ·
(

t −
n−1
∑

i=1

ri

))

= exp

(

t · (λ1 + λ3) ·
(

Bn

t(λ1 + λ3)
− 1 +

∑n−1
i=1 ri

t

))

.

Since t > T0n and
∑n−1

i=1 ri < t we see that there exists K > 0 such that |detDX−t |
Fz| ≤ K−1 · e(λ1+λ3)t , which is equivalent to volume expansion.

The uniform contraction along E and the domination of F over E are obtained
by similar arguments, see also Sect. 3.3.3.

3.2 Bifurcations of Saddle-Connections

A homoclinic orbit associated to a singularity σ of X ∈ X1(M) is a regular orbit
O(q) satisfying limt→+∞ Xt(q) = σ and limt→−∞ Xt(q) = σ . Here we focus on
the dynamics close to O(q) for small perturbations of the flow.

3.2.1 Saddle-Connection with Real Eigenvalues

Consider the following one-parameter system of ordinary differential equations
in R

3:
⎧

⎨

⎩

ẋ = λ1x + f1(x, y, z;μ)

ẏ = λ2y + f2(x, y, z;μ)

ż = λ3z + f3(x, y, z;μ)

(x, y, z,μ) ∈ R
4

where fi are C2 functions which vanish together with Dfi at the origin of R
4. So

σ = (0,0,0) is a singularity. We assume that the eigenvalues λi , i = 1,2,3, of σ are
real and λ2 ≤ λ3 < 0 < λ1.

Note that any other case of a hyperbolic saddle singularity with only real eigen-
values for a three-dimensional flow can be reduced to the present case by consider-
ing the time reversed flow.
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Fig. 3.13 Breaking the
saddle-connection

The hyperbolicity of σ ensures the existence of C1 stable Ws(σ) and unstable
manifolds Wu(σ). The manifold Ws(σ) is tangent at σ to the eigenspace {0} × R

2

associated to the eigenvalues λ2, λ3, and Wu(σ) is tangent at σ to the eigenspace
{(0,0)} × R associated to λ1.

In this setting a homoclinic orbit associated to σ is any orbit Γ = OX(q) of a
point q ∈ Ws(σ) ∩ Wu(σ) \ {σ }. We assume that there exists such a homoclinic
orbit. Moreover we make the supposition that the saddle-connection breaks as in
Fig. 3.13.

Using linearizing coordinates and an analysis of the return maps to convenient
cross-sections near σ one can prove the following.

Theorem 3.4 For μ �= 0 small enough a periodic orbit bifurcates from Γ . This
periodic orbit is

1. a sink for λ1 < −λ3 ≤ −λ2;
2. a saddle for λ1 < −(λ2 + λ3), −λ2 < λ1 and/or −λ3 < λ1;
3. a source for −(λ2 + λ3) < λ1.

A proof of this result can be found in [272, pp. 207–219].
Observe that if σ is Lorenz-like (recall Definition 3.2), then only item 2 above

is possible. That is, a Lorenz-like saddle equilibrium is the only possibility, among
hyperbolic saddle equilibria in three-dimensional flows, which generates saddle pe-
riodic orbits after the unfolding of an associated saddle-connection with real eigen-
values, all the other possibilities generate either attracting or repelling periodic or-
bits (periodic sinks or sources) after the unfolding. It is natural that these are the
only allowed singularities for robustly transitive attractors, see Sect. 5.

3.2.2 Inclination Flip and Orbit Flip

Here we consider degenerate homoclinic orbits. We assume that σ satisfies some
generic conditions: the eigenvalues λi, i = 1,2,3, of σ are real and distinct and
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Fig. 3.14 a Inclination-flip. b Orbit-flip

satisfy λ2 < λ3 < 0 < −λ3 < λ1, that is, σ is a Lorenz-like singularity, as in Defini-
tion 3.2.

The condition λ2 < λ3 < 0 ensures that there is an invariant C1 manifold
Wss(σ ), the strong-stable manifold, tangent at σ to the eigendirection of the eigen-
value λ2. There are also invariant manifolds Wcu(σ ) containing σ , called center-
unstable manifolds, tangent at σ to the eigendirection generated by the eigenvectors
associated to λ3, λ1. There are several of these center-unstable manifolds but all of
them are tangent along Wu(σ) at σ (the reader should consult Hirsch, Pugh and
Shub [110] for a proof of these facts).

Let Γ be a homoclinic orbit associated to σ . The following conditions are
generic, that is, both are true for a residual subset of flows in X1(M) exhibiting
a homoclinic orbit associated to a Lorenz-like singularity:

(G1) Wcu(σ ) intersects Ws(σ) transversely along Γ , i.e.,

Γ = Wcu(σ ) � Ws(σ); and

(G2) Γ ∩ Wss(σ ) = ∅.

We are going to study what happens when such generic conditions fail.

Definition 3.5 Let X ∈ Xr (M), r ≥ 1, be a smooth vector field and let Γ be a
homoclinic orbit associated to a Lorenz-like singularity σ ∈ S(X). We say that Γ is
of inclination-flip type if (G1) fails and of orbit-flip type if (G2) fails; see Fig. 3.14.
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Generically inclination-flip homoclinic orbits are not orbit-flip and conversely.
Every Cr vector field (r ≥ 1) exhibiting orbit-flip homoclinic orbits can be Cr

approximated by a smooth vector field exhibiting an inclination-flip homoclinic or-
bits, as stated in the following

Theorem 3.6 Let X be a C1 vector field in M exhibiting an orbit-flip homoclinic
orbit associated to a singularity σ of X. Suppose that σ has real eigenvalues λ2 <

λ3 < 0 < λ1 satisfying −λ3 < λ1. Then X can be C1 approximated by C1 vector
fields exhibiting an inclination-flip homoclinic orbit.

The proof of this theorem can be found in [167] and follows from standard
perturbation techniques (see e.g. [190]). Observe that a vector field exhibiting a
inclination-flip type homoclinic orbit cannot have a dominated splitting for the lin-
ear Poincaré flow. Indeed, the definition of inclination-flip implies the existence of
a tangency between the strong-stable and center-unstable manifolds along a regular
orbit of the flow.

As a consequence, by Theorem 3.6, for vector fields having every critical element
hyperbolic and no sinks or sources inside an isolating neighborhood U in a robust
way, there cannot be either orbit-flip or inclination-flip type homoclinic orbits be-
cause of Theorem 2.33, since this would contradict the existence of a dominated
splitting for the linear Poincaré flow.

3.2.3 Saddle-Focus Connection and Shil’nikov Bifurcations

Consider the following one-parameter system of ordinary differential equations
in R

3:
⎧

⎨

⎩

ẋ = −ρx + ωy + f1(x, y, z;μ)

ẏ = ωx − ρy + f2(x, y, z;μ)

ż = λz + f3(x, y, z;μ)

(x, y, z,μ) ∈ R
4

where λ,ω,ρ > 0 and fi are C2 functions which vanish together with Dfi at the
origin of R

4. Then σ = (0,0,0) is a saddle-focus with eigenvalues λ and −ρ ± ωi.
These families exhibit very interesting dynamics when there exists a homoclinic

orbit Γ associated to σ , see Fig. 3.15.

Fig. 3.15 Saddle-focus
connection
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Again by the use of linearizing coordinates and an analysis of the return maps to
convenient cross-sections near σ one can prove the following.

Theorem 3.7 For μ �= 0 small enough, we can find near Γ :

1. an attracting periodic orbit (a periodic sink), for ρ > λ;
2. infinitely many generic unfoldings of homoclinic tangencies when μ → 0, induc-

ing in particular the appearance of attracting or repelling periodic orbits near
Γ , for ρ < λ.

The setting of the second item above is known as Shil’nikov bifurcation. The
proof of these results can be found in Shil’nikov’s work [243] and also in [25, 219,
259, 272].

3.2.3.1 The Shil’nikov Bifurcation for Incompressible Vector Fields

The same configuration as above of a saddle-focus connection for a conservative
vector field was also studied by Biragov and Shil’nikov in [47]. In this case the
eigenvalues satisfy λ = 2ρ.

Theorem 3.8 For an incompressible family of C7 vector fields Xμ exhibiting a
saddle-focus connection as above and for μ �= 0 small enough, we can find near Γ

periodic orbits whose eigenvalues are all zero, that is, elliptic closed trajectories of
the vector field Xμ.

This result implies, in particular, that invariant sets for incompressible flows,
having a dominated splitting for the Linear Poincaré Flow, cannot accumulate sin-
gularities having a saddle-focus connection. This will be used in Chap. 8.

3.2.3.2 Higher Dimensional Saddle-Focus Connections

For higher dimensional saddle-focus connections there are works of Shil’nikov
[244–246] and Fowler and Sparrow [88] which describe the local behavior near
the saddle-connection for small perturbations of the vector field. The situation is es-
sentially reduced to either the previous situations or a four-dimensional model case,
as we now explain.

The understanding of the behavior of the solutions near the saddle-focus con-
necting orbit O , for nearby vector fields, is obtained by studying the return map to
a small neighborhood U of the saddle singularity σ . This return map is highly non-
linear since the distortion due to the passage near a hyperbolic saddle is very big.

To be able to analyze the return map, we use the fact that the time it takes a
solution to go out and return to U near the saddle connecting orbit O is essentially
constant, compared with the much larger time during which points stay close to
the hyperbolic saddle. The effect near the saddle is well understood by classical
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linearization results (like the Grobman-Hartman Theorem). We therefore take U

very small so that we consider only trajectories which spend a long time in U .
From this procedure it follows that, in the passage through U , points in the

transversal directions to the connecting orbit O having the largest eigenvalues in
absolute value, will exit from U sufficiently far from O that they will not return to
U either in the future (for positive eigenvalues) or in the past (for negative eigen-
values). So only those points along the weakest eigenvalues (those with smaller
absolute value) will stay close enough to O in order to return to U many times. This
implies that the Poincaré return map on a cross-section in U can be well approx-
imated taking in consideration only those eigendirections of O whose eigenvalues
have real parts closest to 0. These ideas were used by Neimark and Shil’nikov [179,
245] to study near-homoclinic behavior in higher-dimensions, see also Afraimovich
and Hsu [5]. This general argument is usually referred to as “central manifold ar-
gument”. A standard reference for the existence and properties of central manifolds
are the lecture notes of Hirsch, Pugh and Shub [110].

Consequently, the only essentially different cases are the following. The stable
eigenvalue λ with the smallest negative real part and the unstable eigenvalue μ with
the smallest positive real part are

A: both real, i.e., λ < 0 < μ. This does not correspond to a saddle-focus connec-
tion, but to a saddle-connection with real eigenvalues, and so the results of
Sect. 3.2.1 apply to the eigenspace corresponding to the two eigenvalues plus
one of the other least stable eigenvalues.

B: one real and the other a complex pair. This case can be seen as a saddle-focus
connection in the three-dimensional eigenspace associated to the two eigenval-
ues. In particular, homogeneous vector fields do not have this type of saddle-
connection.

C: both are complex pairs (the so-called double-focus structure). This case is dif-
ferent and more difficult to analyze, but Fowler and Sparrow [88] have proved,
in particular, the following.

Theorem 3.9 Vector fields arbitrarily near a double-focus connection O have pe-
riodic orbits close to O with different indices, and periodic orbits undergoing a
saddle-node or a period-doubling bifurcation.

Hence homogeneous vector fields, that is, vector fields X whose periodic orbits
do not change index under C1 perturbations Y in a small neighborhood of X, do not
have such double-focus connections.

3.3 Lorenz Attractor and Geometric Models

Here we present a study of the Lorenz system of equations (2.2) and then explain
the construction of the geometric Lorenz models, which initially where intended
to mimic the behavior of the solutions of the system (2.2), but actually give an
accurate description of this flow. Recall the relation between the Lorenz flow and
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the associated geometrical model, with sensitive dependence on initial conditions
and its historical impact, briefly touched upon in Sect. 2.2.3.

3.3.1 Properties of the Lorenz System of Equations

Here we list analytical properties directly obtained from the Lorenz equations,
which can be found with much more detail in the books of Sparrow [95] and
Guckenheimer-Holmes [97].

Let X : R
3 → R

3 be the flow defined by the equations (2.2).

1. Singularities of X. The origin σ0 = (0,0,0) is a singularity of the field X which
does not depend on the parameters of X. The others are

σ1 = (−√

b(r − 1),−√

b(r − 1), r − 1) and

σ2 = (
√

b(r − 1),
√

b(r − 1), r − 1).

2. Symmetry of X. The map (x, y, z) �→ (−x,−y, z) preserves the Lorenz system
of equations, that is, if (x(t), y(t), z(t)) is a solution of the system of equations,
then (−x(t),−y(t), z(t)) will also be a solution.

3. Divergence of X. We have

DX(x,y, z) =
⎛

⎝

∂x(ẋ) ∂y(ẋ) ∂z(ẋ)

∂x(ẏ) ∂y(ẏ) ∂z(ẏ)

∂x(ż) ∂y(ż) ∂z(ż)

⎞

⎠=
⎛

⎝

−a a 0
r − z −1 −x

y x −b

⎞

⎠

and hence

divX(x,y, z) = ∇ · X = trace
(

DX(x,y, z)
)= −(a + 1 + b) < 0.

This shows the strongly dissipative character of this flow and implies that
the flow contracts volume: if V0 is the initial volume of a subset B of R

3

we have by Liouville’s Formula that the volume V (t) of the image Xt(B) is

V (t) = V0e
−(a+b+1)t . For the parameters in (2.2) we have V (t) = V0e

− 41
3 t .

In particular any maximally positively invariant subset under Xt has zero vol-
ume: Leb(∩t>0X

t(U)) = 0 for any open subset U of R
3.

4. Eigenvalues of the singularities. For the parameters in (2.2) the singularities are,
besides σ0,

σ1 = (−6
√

2,−6
√

2,27) and σ2 = (6
√

2,6
√

2,27).

For DX(σ0) we have the eigenvalues

λ1 = −11/2 + √
1201/2 ≈ 11.83;

λ2 = −11/2 − √
1201/2 ≈ −22.83;

λ3 = −8/3 ≈ −2.67.
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Fig. 3.16 Local stable and
unstable manifolds near
σ0, σ1 and σ2, and the
ellipsoid E

Note that −λ2 > λ1 > −λ3 > 0 which corresponds to a Lorenz-like singularity
(Definition 3.2).

For σ1 the characteristic polynomial of DX(σ1) is of odd degree p(x) = x3 +
41
3 x2 + 304

3 x +1440 and its derivative p′(x) = 3x2 + 82
4 x + 304

3 is strictly positive
for all x ∈ R, and hence there exists a single real root λ of p. Since p(0) >

0 > p(−15) the root is negative and simple numerical calculations show that
λ ≈ −13.85457791. Factoring p we get

p(x) = (x − λ)(x2 − 0.187911244x + 103.9367643)

= (x − λ)(x − z)(x − z)

and thus z ≈ 0.093955622 + 10.19450522i.
For σ2 the eigenvalues are the same by the symmetry of X.

Using this we obtain the following Fig. 3.16 of the local invariant manifolds and
thus the local dynamics near the singularities.

5. The trapping ellipsoid. There exists an ellipsoid E into which every positive orbit
of the flow enters eventually. Moreover E is transverse to the flow X. Therefore
the open region V bounded by E is a trapping region for X, that is, Xt(V ) ⊂ V

for all t > 0.
This is obtained by finding an appropriate Lyapunov function. We follow

Sparrow [254, Appendix C] (see also the original work of Lorenz [139]). Con-
sider

L(x, y, z) = rx2 + ay2 + a(z − 2r)2.

Then along solutions of the system (2.2) we have

dL

dt
= −2a(rx2 + y2 + bz2 − 2brz).
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Fig. 3.17 The trapping
bi-torus

Let D be the domain where dL/dt ≥ 0 and let M be the maximum of L in D.
Now define V to be the set of points such that L ≤ M + ε for some ε > 0
small. Since D ⊂ V , for x outside V we have dL/dt = ∇L · X < −δ < 0 where
δ = δ(ε) > 0 and X is the vector field defined by the equations (2.2). Then after a
finite time the solution of the Lorenz system through x will enter the set V . More-
over for the values (a, r, b) = (10,28,8/3) it is routine to check that ∇L points
to the exterior of V over ∂V = E and so all trajectories through E move towards
the interior of V . Once in V any trajectory will remain there forever in the future.

Since V is compact the maximal positively invariant set A = ∩t>0Xt(V ) is an
attracting set where trajectories of the flow accumulate when t grows without limit.

In fact numerical simulations show that there exists a subset B homeomorphic to
a bi-torus such that every positive trajectory crosses B transversely and never leaves
it. Hence the open set U bounded by B (see Fig. 3.17) is a better candidate for the
trapping region of the set with interesting limit dynamics for X, since σ1 and σ2 are
isolated points in the ω-limit set of X. Hence Λ = ∩t>0Xt(U) is also an attracting
set and the origin is the only singularity contained in U .

3.3.1.1 The Evolution of a Regular Orbit Inside the Attracting Basin

Lorenz observed numerically what today is known as sensitive dependence on initial
conditions, see Sect. 2.4. Due to this the actual path of any given orbit is impossible
to calculate for all large values of integration time.

The “butterfly” which appears on computer screens can be explained heuristically
through the analytical properties already determined and by some numerical results.
In fact the set of points whose orbits will draw the butterfly is the complement R

3 \N

of the union N = Ws(σ0) ∪ Ws(σ1) ∪ Ws(σ2) of the stable manifolds of the three
singularities. Note that N is a bi-dimensional immersed surface in R

2 and so has
zero volume.

Figure 3.18 provides a very general view of how the orbit of a generic point in the
trapping region U evolves in time. The trajectory starts spiraling around one of the
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Fig. 3.18 The evolution of a
generic orbit inside U

Fig. 3.19 Another view of
the Lorenz attractor

singularities, σ2 say, and suddenly “jumps” to the other singularity and then starts
spiraling around σ2. This process repeats endlessly. The number of turns around
each singularity is essentially random. The ω-limit of a generic orbit is the following
“butterfly” in Fig. 3.19.

3.3.2 The Geometric Model

The work of Lorenz on the famous flow was published in 1963 [139] but more than
10 years passed before new works on the subject appeared. Williams [273] wrote
(in 1977):

. . . Several years ago Jim Yorke figured out some things about the Lorenz equation and got
other mathematicians interested. He gave some talks on the subject, including one here at
Berkeley. Ruelle, Lanford and Guckenheimer became interested and did some work on these
equations. Unfortunately, except for the preprint of Ruelle, Guckhenheimer’s paper, is the
only thing these four people ever wrote on the subject as far as I know.

Lorenz had already conjectured the existence of a strange attractor according to the
available numerical simulations. The rigorous proof of this fact took many years
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due to the presence of a singularity accumulated by regular orbits of the flow, which
prevents this set from being uniformly hyperbolic—see e.g. Sect. 2.3.

An important breakthrough in the understanding of the dynamics of the solutions
of the Lorenz system of equations was achieved through the introduction of geomet-
ric models independently by Afraimovich, Bykov, Shil’nikov [2–4] in 1977 and by
Guckenheimer, Williams [98] in 1979. These models were based on the properties
suggested by the numerical simulations. In fact they were able to show the existence
of a strange attractor for the geometric model.

This model inspired many others. Today there are different extensions and there
are singular attractors which are not of the “Lorenz type”: neither conjugated nor
equivalent to the Lorenz geometrical model, see e.g. [173].

As explained in Sect. 2.2.3, in 1998 a positive answer to the existence of a strange
attractor in the original Lorenz system of equations was given by Tucker [260] in
his PhD thesis, through the theory of normal forms together with rigorous numerical
algorithms.

3.3.2.1 Construction of the Geometric Model

To present the detailed construction of the geometric Lorenz model we first analyze
the dynamics in a neighborhood of the singularity at the origin, and then we imi-
tate the effect of the pair of saddle singularities in the original Lorenz flow, as in
Fig. 3.16.

Near the Singularity By the Hartman-Grobman Theorem or by the results of
Sternberg [256], in a neighborhood of the origin the Lorenz equations are equivalent
to the linear system (ẋ, ẏ, ż) = (λ1x,λ2y,λ3z) through conjugation, thus

Xt(x0, y0, z0) = (x0e
λ1t , y0e

λ2t , z0e
λ3t ), (3.3)

where λ1 ≈ 11.83, λ2 ≈ −22.83, λ3 = −8/3 and (x0, y0, z0) ∈ R
3 is an arbitrary

initial point near (0,0,0).
Consider S = {(x, y,1) : |x| ≤ 1/2, |y| ≤ 1/2} and

S− = {

(x, y,1) ∈ S : x < 0
}

, S+ = {

(x, y,1) ∈ S : x > 0
}

and

S∗ = S− ∪ S+ = S \ Γ, where Γ = {

(x, y,1) ∈ S : x = 0
}

.

Assume that S a transverse section to the flow so that every trajectory eventu-
ally crosses S in the direction of the negative z axis as in Fig. 3.20. Consider
also Σ = {(x, y, z) : |x| = 1} = Σ− ∪ Σ+ with Σ± = {(x, y, z) : x = ±1}. For
each (x0, y0,1) ∈ S∗ the time τ such that Xτ(x0, y0,1) ∈ Σ is given by τ(x0) =
− 1

λ1
log |x0|, which depends on x0 ∈ S∗ only and is such that τ(x0) → +∞ when

x0 → 0. This is one of the reasons many standard numerical algorithms were un-
suited to tackle the Lorenz system of equations. Hence we get (where sgn(x) =
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Fig. 3.20 Behavior near the
origin

x/|x| for x �= 0 as usual)

Xτ (x0, y0,1) = (

sgn(x0), y0e
λ2τ(x0), eλ3τ(x0)

)= (

sgn(x0), y0|x0|−
λ2
λ1 , |x0|−

λ3
λ1
)

.

Since 0 < −λ3 < λ1 < −λ2, we have 0 < α = −λ3
λ1

< 1 < β = −λ2
λ1

. Let L : S∗ →
Σ be given by

L(x, y,1) = (

sgn(x), y|x|β, |x|α). (3.4)

It is easy to see that L(S±) has the shape of a triangle without the vertex (±1,0,0).
In fact (±1,0,0) are cusp points of the boundary of each of these sets.

From now on we denote by Σ± the closure of L(S±). Clearly each line segment
S∗ ∩ {x = x0} is taken to another line segment Σ ∩{z = z0} as sketched in Fig. 3.20.

The Effect of the Saddles To imitate the random turns of a regular orbit around
the origin and obtain a butterfly shape for our flow, as in the original Lorenz flow
(see Figs. 3.19 and 2.2), we proceed as follows.

The sets Σ± should return to the cross-section S through a flow described by a
suitable composition of a rotation R±, an expansion E±θ and a translation T±. The
rotation is roughly around Ws(σ1) and Ws(σ2). We are assuming that the “trian-
gles” L(S±) are compressed in the y-direction and stretched on the other transverse
direction. This is related to the eigenvalues of σ1, σ2 of the original Lorenz flow as
explained below. We assume that this return map takes line segments Σ ∩ {z = z0}
into line segments S ∩ {x = x1}, as sketched in Fig. 3.21.

We recall that the equilibrium at the origin is hyperbolic and so its stable Ws(0)

and unstable Wu(0) manifolds are well defined (see Chap. 2). We also note that
Wu(0) has dimension one, and hence Wu(0) \ {0} has two connected components
Wu,±(p), and Wu(0) = Wu,+(0) ∪ {0} ∪ Wu,−(0).

The rotation R± has axis parallel to the y-direction, which is orthogonal to the x-
direction (the x-direction is parallel to the local branches Wu,±(p)). More precisely,
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Fig. 3.21 R takes Σ± to S

if (x, y, z) ∈ Σ±, then

R±(x, y, z) =
⎛

⎝

0 0 ±1
0 1 0

±1 0 0

⎞

⎠ .

The expansion occurs only along the x-direction, and so Eθ is given by

E±θ (x, y, z) =
⎛

⎝

θ 0 0
0 1 0
0 0 1

⎞

⎠

with θ2−α < 1 and θα21−α > 1. The first condition ensures that the image of the
resulting map is contained in S. The second condition makes a certain one dimen-
sional induced map to be piecewise expanding. This point will be discussed below.

The translations T± : R
3 → R

3 are chosen such that the unstable direction start-
ing from the origin is sent to the boundary of S and the images of both Σ± are
disjoint. These transformations R±,E±θ , T± take line segments Σ± ∩ {z = z0} into
line segments S ∩ {x = x1} as shown in Fig. 3.21, and so does the composition
T± ◦ E±θ ◦ R±.

This composition of linear maps describes a vector field in a region outside
[−1,1]3, in the sense that one can use the above linear maps to define a vector
field X such that the time one map of the associated flow realizes T± ◦ E±θ ◦ R± as
a map Σ± → S. Since the explicit choice of the vector field is not important for our
purposes, we will not construct such vector field. We observe that the flow on the
attractor we are constructing will pass through the region between Σ± and S in a



3.3 Lorenz Attractor and Geometric Models 81

Fig. 3.22 The return map
image P (S∗)

relatively small time with respect the linearized region. The linearized regions will
then dominate all estimates of expansion/contraction.

The above construction enables us to describe, for t ∈ R
+, the orbit Xt(x) of each

point x ∈ S: the orbit will start following the linear field until Σ̃± and then it will
follow X coming back to S and so on. Let us denote by W = {Xt(x), x ∈ Σ, t ∈ R

+}
the set where this flow acts. The geometric Lorenz flow is then the couple (W,Xt ).

A consequence of all this is that every x ∈ S has a positive orbit disjoint from
Wss(σ ). Since every point x ∈ W \ {σ } has a positive orbit that will eventually
cross S by construction, we see that

Wss(σ ) ∩ Λ = {σ }. (3.5)

The Poincaré first return map P : S∗ → S can be defined as

P(x, y) =
{

T+ ◦ E+θ ◦ R+ ◦ L(x, y,1) for x > 0
T− ◦ E−θ ◦ R− ◦ L(x, y,1) for x < 0

.

The above combined effects imply that the foliation of S given by the lines S ∩{x =
x0} is invariant under the return map, meaning that, for any given leaf γ of this
foliation, its image P(γ ) is contained in a leaf of the same foliation. Hence P must
have the form P(x, y) = (f (x), g(x, y)) for some functions f : I \ {0} → I and
g : (I \ {0}) × I → I , where I = [−1/2,1/2].

Taking into account the definition of L from the linearized region we see that

f (x) =
{

f1(x
α), if x < 0

f0(x
α), if x > 0

; with fi = (−1)iθ · x + bi, i = 0,1;

and

g(x, y) =
{

g1(x
α, y · xβ), if x < 0

g0(x
α, y · xβ), if x > 0

,

where g1|I− × I → I and g0|I+ × I → I are suitable affine maps, with I− =
[−1/2,0), I+ = (0,1/2].
Properties of the One-Dimensional Map f Now we specify the properties of
the one-dimensional map f that follow from the previous construction:
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(f1) the symmetry of the Lorenz equations implies f (−x) = −f (x);
(f2) f is discontinuous at x = 0 with lateral limits f (0−) = + 1

2 and f (0+) = − 1
2 ,

since P is not defined at Γ because Γ ⊂ Ws(0,0,0);
(f3) f is differentiable on I \ {0} and f ′(x) >

√
2;

(f4) the lateral limits of f ′ at x = 0 are f ′(0−) = +∞ and f ′(0+) = −∞.

On the other hand g : S∗ → I is defined in such a way that it contracts the second
coordinate: g′

y(w) ≤ μ < 1 for all w ∈ S∗. This is suggested by the eigenvalues λ2 ≈
−22.83 of σ0 and λ ≈ −13.8545 of the saddles σ1, σ2 (see Sect. 3.3.1). Moreover
the rate of contraction of g on the second coordinate should be much higher than
the expansion rate of f . Figure 3.22 sketches P(S∗). In addition the expansion rate
is big enough to obtain a strong mixing property for f (it is locally eventually onto,
see Sect. 3.3.5).

Expression for the Derivative DP We recall that P = T± ◦ E±θ ◦ R± ◦ L. From
the definition of each of the maps in the composition above we see that: given q =
(x, y) ∈ S∗ with x > 0

DL(x,y,1) =
(

βyxβ−1 xβ

αxα−1 0

)

.

Restricting the rotation and the other linear maps to Σ± and composing the resulting
matrices we get

DP(x, y) =
(

θαx(α−1) 0
βyx(β−α) xβ

)

. (3.6)

The expression for DP at q = (x, y) with x < 0 is similar.

Properties of the Map g We note that by its definition the map g is piecewise C2.
The above expression (3.6) provides the following bounds on its partial derivatives:

1. For all (x, y) ∈ S∗ with x > 0, we have ∂yg(x, y) = xβ . As β > 1, |x| ≤ 1/2,
there is 0 < λ < 1 such that

|∂yg| < λ. (3.7)

The same bound also holds for x < 0.
2. For (x, y) ∈ S∗ with x �= 0, we have ∂xg(x, y) = βxβ−α . As β − α > 0 and

|x| ≤ 1/2, we get |∂xg| < ∞.

We note that from the first item above there follows the uniform contraction of the
foliation given by the lines S ∩ {x = constant}. The foliation is contracting in the
following sense: there exists a constant C > 0 such that, for any given leaf γ of the
foliation and for y1, y2 ∈ γ , then

dist
(

P n(y1),P
n(y2)

)≤ Cλn dist(y1, y2) when n → ∞.
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Fig. 3.23 Projection on I

through the stable leaves and
a sketch of the image of one
leaf under the return map

Fig. 3.24 The Lorenz map f

Thus the study of the 3-flow can be reduced to the study of a bi-dimensional
map and, moreover, the dynamics of this map can be further reduced to a one-
dimensional map, since the invariant contracting foliation enables us to identify two
points on the same leaf, since their orbits remain forever on the same leaf and the
distance of their images tends to zero under iteration. See Fig. 3.23 for a sketch of
this identification.

The quotient map obtained through this identification will be called the Lorenz
map. Figure 3.24 shows the graph of this one-dimensional transformation.

3.3.3 The Geometric Lorenz Attractor Is a Partially Hyperbolic Set
with Volume Expanding Central Direction

Observe that the time t (w) it takes a point w ∈ Σ to go to S, that is, Xt(w)(w) ∈ S

and Xt(w) ∈ R
3 \ (S ∪ Σ) for 0 < t < t(w), is bounded by some constant inde-

pendently of the point: t (w) ≤ t0. This ensures that the behavior of the flow on
the maximal positively invariant subset of the trapping region is prescribed by the
behavior from the cross-section S to the cross-sections Σ+,Σ−, as we now explain.
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Figure 3.20 makes it clear that the linear flow (3.3) preserves lines in the direction
of the y-axis when taking points from S to Σ . Moreover it is not difficult to check
that its derivative DXt also preserves planes orthogonal to the y-axis.

In addition, by the choice of the flow from Σ to S and as Fig. 3.21 suggests,
horizontal lines at Σ , i.e., parallel to the y-axis, are taken to lines parallel to same
axis in S, that is, the flow preserves lines parallel to the y-axis from Σ to S. Since
the flow from Σ to S performs rotation and a translation, we can assume that its
derivative also preserves planes orthogonal to the y-axis.

From this we deduce that the following splitting of R
3: E = {0} × R × {(0} and

F = R×{0}×R, is preserved by the flows, that is, DXt
w ·E = E and DXt

w ·F = F

for all t and every point w in an orbit inside the trapping ellipsoid.
Moreover we can check that for w on the linearized part of the flow, from S to Σ ,

we have for t > 0 such that X[0,t](w) is contained in the domain of the linearized
coordinates:

• ‖DXt
w | E‖ = eλ2t ;

• ‖DXt
w | E‖ = e(λ2−λ3)t · m(

DXt | F),

where m(DXt | F) is the minimum norm of the linear map. Since λ2 < 0 we see
that E is uniformly contracting, this being a stable direction. But λ2 − λ3 < 0 and
so the contraction along the direction of F is weaker than the contraction along E.
This kind of splitting E ⊕ F of R

3 is called a partially hyperbolic splitting.
Observe also that since λ1 + λ3 > 0 we have |detDXt | F | = e(λ1+λ3)t and so

the flow expands volume along the F direction.
We will see in Chap. 5 that these properties characterize compact invariant sets

which are robustly transitive.
However we have only checked these properties in the linearized region. But if

the orbit of a point w passes outside the linear region k times from Σ to S lasting
s1 + · · · + sk from time 0 to time t , then t > s1 + · · · + sk and for some constant
b > 0 bounding the derivatives of DXt from 0 to t0, we have

‖DXt
w | E‖ ≤ ebk+λ2(t−s1−···−sk) = exp

{

λ2t

(

1 − bk

λ2t
− s1 + · · · + sk

t

)}

,

and so the last expression in brackets is bounded. We see that E is (K,λ2)-
contracting for some K > 0.

An entirely analogous reasoning shows that the direction E dominates F uni-
formly for all t and that DXt expands volume along F also uniformly.

Thus the maximal positively invariant set in the trapping ellipsoid is partially
hyperbolic and the flow expands volume along a bi-dimensional invariant direction.

3.3.4 Existence and Robustness of Invariant Stable Foliation

Now we prove, partially following the work of [98], that the geometric Lorenz at-
tractor constructed in the previous subsection is robust, that is, it persists for all
nearby vector fields.
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More precisely: there exists a neighborhood U in R
3 containing the attracting set

Λ such that, for all vector fields Y which are C1-close to X, the maximal invariant
subset ΛY = ∩t≥0Y

t (U) in U is still a transitive Y -invariant set.
This is a striking property of these flows since the Lorenz flow exhibits sensi-

tive dependence on initial conditions. The robustness will be a consequence of the
persistence of the invariant contracting foliation on the cross-section S to the flow.

Numerically this is expected since, in spite of the huge integration errors involved
and the various integration algorithms used, the solutions obtained always have a
shape similar to the one in Fig. 3.19, independently of the initial point chosen to
start the integration.

We start by obtaining the persistence of the stable foliation for points in the at-
tractor, then explain why these attractors, although robust, are not structurally stable
in Sect. 3.3.5.3.

We note that C1-robustly transitive attractors in 3-manifolds were completely
described from the geometrical point of view in [174] and the proof of this result is
presented in Chap. 5.

3.3.4.1 Geometric Idea of the Proof

Theorem 3.10 (Persistence of contracting foliation) Let X be the vector field ob-
tained in the construction of the geometric Lorenz model and FX the invariant con-
tracting foliation of the cross-section S. Then any vector field Y which is sufficiently
C1-close to X admits an invariant contracting foliation FY on the cross-section S.

We note that FY is a continuous foliation with C1 leaves. It can be shown that
the holonomies along the leaves are in fact Hölder-C1 (see Sect. 2.7.2.4). Moreover,
if we have a strong dissipative condition on the equilibrium σ , that is, if β > α +
k for some k ∈ Z

+ (see the definitions of α,β as functions of the eigenvalues of
σ in (3.4)), it can be shown that FY is then a Ck smooth foliation, and so the
holonomies along its leaves are Ck maps. See Remark 3.15 at the end of the proof
of Theorem 3.10. In particular, for strongly dissipative Lorenz attractors with β >

α + k the one-dimensional quotient map is Ck smooth away from the singularity.
We first present a geometric idea of the proof and then proceed to the details in

the following Sect. 3.3.4.2.
Observe first that the cross-section S remains transverse to any flow C1-close to

X and that the singularities σ0, σ1, σ2 persist with eigenvalues satisfying the same
relations as before since they are hyperbolic. In addition, since Wu

X(σ0) intersects S

transversely, then just by the C1 continuous variation of compact parts of the unsta-
ble manifolds of a hyperbolic singularity we have that Wu

Y (σ0(Y )) still intersects S

transversely for all Y close to X in the C1 norm.
Without loss we can assume, after a C1 change of coordinates, that the Lorenz-

like singularity σ0(Y ) remains at the origin and that the eigenvectors of DY(σ0(Y ))

have the directions of the coordinate axis as before, with the plane x = 0 containing
the stable manifold of σ0(Y ).
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Fig. 3.25 The field η
φ
Y

Fig. 3.26 The field F and
the parallel condition

Thus for a neighborhood U of X in the C1 topology and for each Y ∈ U we
can define the Poincaré first return map PY : S∗ → S as PY = RY ◦ LY where LY :
S∗ → Σ is such that LY (x, y) = (y|x|β, |x|α) with α = −λ3(Y )

λ1(Y )
and β = −λ2(Y )

λ1(Y )
(note that β − α > 1).

On the other hand RY : Σ → S is a C1 diffeomorphism which can be expressed
by the composition RY = JY ◦R0, where JY is a C1 perturbation of the identity and
R0 is the diffeomorphism associated to X0.

Now let A be the space of continuous maps φ : U × S → [−1,+1]. For each
Y ∈ U and φ ∈ A we define φY : S → [−1,1] by φY (q) = φ(Y, q) for all q ∈ S. We
associate to φY a vector field η

φ
Y : S → [−1,1] × {1} given by η

φ
Y (q) = (φY (q),1)

which we view as a vector on TqS = R
2; see Fig. 3.25. Integrating the field η

φ
Y we

get a family of curves which induces a foliation on S; see Fig. 3.26. We must show
that there exists φ ∈ A such that η

φ
Y induces an invariant foliation under PY . Before

explaining the proof of this fact we state a necessary and sufficient condition for the
invariance of this foliation.

Let F be a continuous vector field defined on S and P the map defined above.
Integrating F we get a foliation of S. Let q ∈ S∗ have image P(q) and consider
the vectors F(q) and F(P (q)). Observe that the foliation induced by F is invariant
under P if

DP(q)
(

F(q)
)

and F
(

P(q)
)

are parallel, or

F(q) and
[

DP(q)
]−1

F
(

P(q)
)

are parallel.
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On the other hand if we consider the slope of vectors with respect to the vertical
direction (0,1), two vectors are parallel if, and only if, their slope is the same. For
(a, b) ∈ R

2 we set slope (a, b) = a/b, and hence to check that the foliation defined
by F is invariant under P amounts to showing that

slope
(

F(q)
)= slope

([

DP(q)
]−1

F
(

P(q)
))

.

Translating this for η
φ
Y we obtain the condition

φY (q) = slope
(

η
φ
Y (q)

)= slope
([

DPY (q)
]−1

η
φ
Y

(

PY (q)
))

.

The last term above depends on φ,Y and q and, if we define T : A → A as

T (φY )(q) = slope
([

DPY (q)
]−1

η
φ
Y

(

PY (q)
))

,

then the condition of invariance becomes T (φY )(q) = φY (q), that is, T (φ) = φ.
Hence the element φ ∈ A for which η

φ
Y induces an invariant foliation on S is a fixed

point of T . Thus we are left to prove that the operator T has a fixed point.
For this, we first show that T is well defined and then that T is a contraction in

an appropriate space, which concludes the proof of Theorem 3.10.

3.3.4.2 Proof of Existence of Invariant Stable Foliation

The Poincaré map PY associated to Y ∈ U can be written

PY (q) = (

fY (q), gY (q)
)

for q ∈ S∗. We rewrite T as a function of f and g. First we calculate

(

DPY (q)
)−1 = 1

Δ

⎛

⎝

∂ygY (q) −∂yfY (q)

−∂xgY (q) ∂xfY (q)

⎞

⎠ with Δ = detDPY (q).

Then it is not difficult to see that the slope of

(

DPY (q)
)−1

η
φ
Y

(

PY (q)
)= 1

Δ

⎛

⎝

∂ygY (q) −∂yfY (q)

−∂xgY (q) ∂xfY (q)

⎞

⎠

⎛

⎝

φY

(

PY (q)
)

1

⎞

⎠

is

slope
((

DPY (q)
)−1

η
φ
Y

(

PY (q)
))= [φY (PY (q))]∂ygY (q) − ∂yfY (q)

−[φY (PY (q))]∂xgY (q) + ∂xfY (q)
.

Writing P̂ (Y, q) = (Y,PY (q))we get

T (φY )(q) = (φ ◦ P̂ )∂yg − ∂yf

∂xf − (φ ◦ P̂ )∂xg
(Y, q).
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Lemma 3.11 Let a0 ∈ (0,1/5) and let Y be a vector field C1-close to X. If PY (q) =
P(Y,q) = (f (Y, q), g(Y, q)), then there are positive constants ki , i = 1,2,3, such
that for all q ∈ S∗

1.
∣
∣ ∂xg(Y,q)
∂xf (Y,q)

∣
∣≤ a0; |∂yg(Y,q)|

|∂xf (Y,q)| ≤ k1|x|(β−α+1), and
|∂yf (Y,q)|
|∂xf (Y,q)| ≤ k2|x|(β−α+1);

2. ‖DqP (Y,q)‖ ≤ k3|x|(α−1), and |detDqP (Y,q)| ≤ a0|x|(β+α−1);

3. supS∗
{ |∂yg|

|∂xf | ,
|∂yf |
|∂xf | ,

|∂xg|
|∂xf | , |detDP |}< a0.

Proof We provide the calculations for x > 0, the other case being analogous. Since
PY = RY ◦ LY we have DPY (q) = DRY (LY (q))DLY (q) and

DLY (x, y) =
(

βyxβ−1 xβ

αxα−1 0

)

.

Recall that RY = JY ◦ R0 and so we have that DRY (LY (x, y)) can be written as
DJY (R0(LY (x, y))) ·DR0(LY (x, y)). Since JY is close to the identity we may write
JY (x, y) = (x + ε1, y + ε2) with (ε1, ε2) = ε(X,y, z) small in the C1-norm. Thus
we have

DJY =
(

1 + ∂xε1 ∂yε1
∂xε1 1 + ∂yε2

)

and DR0 =
(

0 M

σ 0

)

and so

DRY =
(

σ · ∂yε1 M + M · ∂xε1
σ + σ · ∂yε2 M · ∂xε1

)

=
(

ε1 M + ε2
σ + ε3 ε4

)

.

Finally we multiply the last pair of matrices to get

DPY (x, y) =
(

ε1βyxβ−1 + Mαxα−1 + ε2αxα−1 ε1x
β

σβyxβ−1 + ε3βyxβ−1 + ε4αxα−1 σxβ + ε3x
β

)

=
(

∂xf ∂yf

∂xg ∂yg

)

.

We may now assume without loss in what follows that ε = εi since εi → 0 when
Y → X. Hence

(

∂xf ∂yf

∂xg ∂yg

)

=
([

εβyx(β−α) + (M + ε)α
]

x(α−1) εxβ

[

(σ + ε)βyx(β−α) + εα
]

x(α−1) (σ + ε)xβ

)

.

Now we may find the stated bounds as follows.

1. When ε → 0 we have both

σ + ε

εβyx(β−α) + (M + ε)α
→ σ

Mα
and

ε

εβyx(β−α) + (M + ε)α
→ 0,
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and hence these quotients are bounded: there are k1 and k2 so that |∂yg|
|∂xf | ≤

k1|x|(β−α+1) and |∂yf |
|∂xf | ≤ k2|x|(β−α+1).

On the other hand, again when ε → 0 we get

|∂xg|
|∂xf | = (σ + ε)βyxβ−α + εα

εβyxβ−α + (M + ε)α
→ σβyxβ−α

Mα
≤ σβ

2 · 2β−αMα

were the bound above follows because β − α > 0. Since 0 < σ < 1 and M > 1
where chosen arbitrarily in the construction, we may assume that, σ is very small
and M big enough so that |∂xg|

|∂xf | ≤ a0.
2. It is clear that since 0 < α < 1 < β and

(

∂xf ∂yf

∂xg ∂yg

)

−−→
ε→0

(

Mαx(α−1) 0
σβyx(α−1) σxβ

)

,

the norm of the matrix is dominated by the value of |x|α−1 for x ≈ 0, and thus
there exists k3 such that ‖DqP (Y,q)‖ ≤ k3|x|α−1. On the other hand

|detDqP (Y,q)| = |∂xf ∂yg − ∂yf ∂xg| ≤ |∂xf ||∂yg| + |∂yf ||∂xg|
≤ r1|x|β+α−1 + r2|x|β+α−1 ≤ K|x|β+α−1

where the existence of r1, r2 > 0 as above is a consequence of both |∂xf | ·
|∂yg| −−→

ε→0
Mασx(β+α−1) and |∂yf | · |∂xg| −−→

ε→0
0 and also of β + α > 1. Note

that we may assume K ≤ a0 by setting Mσ small (that is, we assume that the
volume is contracted).

3. Finally for the quotients of the entries of DPY note that we can again use the
bounds already obtained and then get smaller than a0 by taking σ close to 0 and
M big enough.

The proof is complete. �

Proposition 3.12 Let T be defined as before depending on f and g. Then

1. T (A ) ⊂ A , that is, T : A → A is well defined;
2. T : A → A is a contraction.

Proof First we show that T (φ) is continuous for φ ∈ A , and |T (φ)| ≤ 1, which
would prove the first item of the statement. According to the definition of T we
have

|T (φ)(Y, q)| = |(φ ◦ P̂ )∂yg − ∂yf |
|∂xf − (φ ◦ P̂ )∂xg| (Y, q) = |(φ ◦ P̂ )

∂yg

∂xf
− ∂yf

∂xf
|

|1 − (φ ◦ P̂ )
∂xg
∂xf

| (Y, q)

≤ | ∂yg

∂xf
| + | ∂yf

∂xf
|

1 − | ∂xg
∂xf

| (Y, q) ≤ k1|x|β−α+1 + k2|x|β−α+1

1 − a0
≤ K|x|β−α+1.
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Thus |T (φ)(Y, q)| → 0 if |x| → 0, which shows that T (φ) is continuous at 0. Then
T (φ) is continuous since the expression is continuous away from x = 0. Moreover

|T (φ)(Y, q)| ≤ | ∂yg

∂xf
| + | ∂yf

∂xf
|

1 − | ∂xg
∂xf

| (Y, q) ≤ 2a0

1 − a0
< 1,

by Lemma 3.11(3) and because a0 ∈ (0,1/5) implies 2a0
1−a0

< 1/2.
Now the contraction is easy, since for φ1, φ2 ∈ A and for fixed (Y, q) ∈ U × S

|T (φ1) − T (φ2)| = |detDP(q)| · |φ1 ◦ P̂ − φ2 ◦ P̂ |
|∂xf − (φ1 ◦ P̂ )∂xg| · |∂xf − (φ2 ◦ P̂ )∂xg|

≤ a0

(1 − a0)2
|φ1 − φ2|

and again a0
(1−a0)

2 < 1/2, as long as U is taken small enough around X so that
Lemma 3.11 remains valid. �

We have shown that there exists a unique fixed point for T on A as we wanted
and so we have an invariant foliation on S.

3.3.4.3 Differentiability of the Foliation

Now we prove that the fixed point φ(Y, q) depends on Y,q continuously on the C1

topology. We do this by showing that DφY depends continuously on (Y, q) and that
the operator T is also a contraction on the C1 norm.

Again using the definition of T at a point (Y, q) we obtain the following expres-
sion

DT (φ) = D
[

(φ ◦ P̂ )∂yg − ∂yf
]

∂xf − (φ ◦ P̂ )∂xg
− (φ ◦ P̂ )∂yg − ∂yf

(

∂xf − (φ ◦ P̂ )∂xg
)2

· D[

∂xf − (φ ◦ P̂ )∂xg
]

= V1(φ) + T (φ)V2(φ) + N(φ)Dφ
(

P̂ (X,q)
)

,

where we have used

V1(φ) = φ ◦ P̂

∂xf − (φ ◦ P̂ )∂xg
· D∂yg − 1

∂xf − (φ ◦ P̂ )∂xg
D∂yf ;

V2(φ) = φ ◦ P̂

∂xf − (φ ◦ P̂ )∂xg
· D∂xf − 1

∂xf − (φ ◦ P̂ )∂xg
D∂xg;

N(φ) = detDP(X,q)
(

∂xf − (φ ◦ P̂ )∂xg
)2

.
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Now define the space A1 of continuous maps A : U × S → L (X × R
2,R) such

that

sup
(X,q)

|A(X,q)| < 1 and A
(

X, (0, y)
)= 0 for all y ∈

[

−1

2
,

1

2

]

.

Consider the operator T̃ : A × A1 → A × A1 such that for φ ∈ C1 we have
T̃ (φ,Dφ) = (T (φ),DT (φ)), defined as T̃ (φ,A) = (T φ,S(φ,A)) where S(φ,A)

is given by

S(φ,A)(Y, q) = [

V1(φ) − T (φ)V2(φ) + N(φ)(A ◦ P̂ ) · DP̂
]

(Y, q).

Here V1(φ),V2(φ) and N(φ) were defined previously during the calculation of
DT (φ).

Again we need to show that T̃ is well defined and a contraction.

Lemma 3.13 Take Y C1-close to X such that the estimates of Lemma 3.11 are
valid. If PY (q) = P(Y,q) = (f (Y, q), g(Y, q)) then there are positive constants
ki = 4, . . . ,8 such that for all q ∈ S∗

1. |D∂yg|
|∂xf | ≤ k4|x|β−α,

|D∂xg|
|∂xf | ≤ k5|x|−1;

2. |D∂yf |
|∂xf | ≤ k6|x|β−α,

|D∂xf |
|∂xf | ≤ k7|x|−1;

3. |detDqP |
|∂xf |2 |DP̂ | ≤ k8|x|β, |N(φ)| · |DP̂ | < 1/2;

4. supS∗
{ |D∂yg|

|∂xf | ,
|D∂yf |
|∂xf |

}

< a0.

Proof Using Lemma 3.11, since ∂xf −−→
ε→0

Mαxα−1 we see there are K1,K2 satis-

fying

K1|x|α−1 ≤ |∂xf | ≤ K2|x|α−1. (3.8)

On the other hand, taking derivatives we see that

∂X(∂yg) = xβ∂Xε + (σ + ε)xβ log(β)∂Xβ

∂x(∂yg) = ∂xεx
β + (σ + ε)βxβ−1

∂y(∂yg) = ∂εxβ.

Then |D∂yg| ≤ K3|x|β−1 and by (3.8) we see there exists k4 such that |D∂yg|
|∂xf | ≤

k4|x|β−α . Analogously we may estimate the derivatives ∂X(∂xg), ∂2
x , ∂y(∂xg) ob-

taining

|∂X(∂xg)| ≤ K|x|α−1, |∂2
xg| ≤ K|x|α−2, |∂y(∂xg)| ≤ K|x|β−1

and thus |D∂xg| ≤ K|x|α−2. Then by (3.8) we get k5 so that |D∂xg|
|∂xf | ≤ k5|x|−1. This

proves the first item of the statement.
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Again analogously we obtain |D∂yf | ≤ K|x|β−1 and by (3.8) also |D∂yf |
|∂xf | ≤

k6|x|β−α for a constant k6.
From the explicit expression of ∂xf we get |∂X(∂xf )| ≤ K|x|α−1 and also

∂x(∂xf ) = βyxβ−1∂xε + εβ(β − 1)yxβ−2 + αxα−1∂xε + α(M + ε)(α − 1)xα−2

implying that |∂x(∂xf )| ≤ K|x|α−2. We also have

∂y(∂xf ) = βyxβ−1∂yε + εβxβ−1 + αxα−1∂yε

which implies that ∂y(∂xf ) ≤ K|x|β−1, and so |D∂xf | ≤ K|x|α−2 showing the
existence of k7 such that |D∂xf |

∂xf
≤ k7|x|−1, and proving the second item of the state-

ment.
Now recall the definition of N(φ) and use Lemma 3.11 to deduce that

|N(φ)||DP̂ | = |detDqP |
(∂xf − (φ ◦ P̂ )∂xg)2

|DP̂ |

≤ a0|x|β+α−1

|∂xf |2(1 − ∂xg
∂xf

)2
|DP̂ | ≤ a0

(1 − a0)2
|x|β ≤ a0

2β(1 − a0)2

which concludes the proof of the third item since β > 1. �

Now using the estimates of Lemmas 3.11 and 3.13 we can prove the following.

Proposition 3.14 The map S : A × A1 → A1 is well defined, continuous and
S(φ, ·) : A1 → A1 is a contraction whose contraction rate is independent of φ.

Note that this shows that for every derivable φ ∈ A there exits A ∈ A1 such that
S(φ,A) = A.

Proof We can estimate

|V1(φ)| ≤ |φ ◦ P̂ |
|∂xf − (φ ◦ P̂ )∂xg| · |D∂yg| + 1

|∂xf − (φ ◦ P̂ )∂xg| |D∂yf |

≤
(

|∂xf |−1

1 − | ∂xg
∂xf

|

)

· |D∂yg| +
(

|∂xf |−1

1 − | ∂xg
∂xf

|

)

· |D∂yf |

≤ 1

|1 − a0| ·
(

|∂xf |−1|D∂yg| + |∂xf |−1|D∂yf |
)

≤ K|x|β−α

and

|T (φ)V2(φ)| ≤ K|x|β−α+1 1

1 − a0

{ |D∂xg|
|∂xf | + |D∂xf |

|∂xf |
}
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≤ K|x|β−α+1|x|−1 ≤ K|x|β−α

and also

|N(φ)| · |(A ◦ P̂ ) · DP̂ | ≤ 1

(1 − a0)2 |detDqP | · |A| · |DP̂ | · |∂xf |−2 ≤ K|x|β .

Therefore we arrive at

|S(φ,A)| ≤ |V1(φ)| + |T (φ)| · |V2(φ)| + |N(φ)| · |(A ◦ P̂ )DP̂ | ≤ K|x|β−α.

Since β − α > 0 we see that S is continuous at x = 0. Moreover

|V1(φ)| < a0

1 − a0
and |T (φ)V2(φ)| < a2

0

(1 − a0)2

and for a0 ∈ (0,1/5) we get
a2

0
(1−a0)

2 < 1/2, and so |S(φ,A)| ≤ 1 and thus S is well
defined.

Finally taking A1,A2 ∈ A1 and fixing φ ∈ A we get

S(φ,A1) − S(φ,A2) = N(φ) · [A1 ◦ P̂ − A2 ◦ P̂
] · DP̂

and hence

|S(φ,A1) − S(φ,A2)| ≤ |N(φ)| · |A1 − A2| · |DP̂ | < 1

2
|A1 − A2|

and we conclude that S(φ, ·) is a contraction as stated. �

Remark 3.15 If we know that β > α+γ for some γ ≥ 1, it can be shown (following
the above techniques adapted from [110]) that S is not only continuous but differen-
tiable, and so the contracting foliation FY is in fact smooth, i.e., it can be linearized
by C1 charts. In fact, if γ ≥ k for some k ∈ Z

+, then FY is a Ck foliation.

This shows that T̂ has a fixed point (φ0,A0) where φ0 is a fixed point of T .
Clearly (φ0,A0) is a global attractor inside A × A1. In particular, by taking φ of
class C1 we obtain

T̂ n(φ,Dφ) = (

T n(φ),D(T n(φ))
)−−−−→

n→+∞ (φ0,Dφ0).

Then A0 = Dφ0 and hence φ0 is continuously differentiable.

3.3.5 Robustness of the Geometric Lorenz Attractors

Here we conclude the proof that the geometric Lorenz attractor is a robustly transi-
tive attractor and show that it is not structurally stable. Here we drop condition (f1)
on the symmetry of the one-dimensional map f .
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3.3.5.1 Robust Properties of the One-Dimensional Map f

We start by showing that the properties of the one-dimensional map f are robust for
small C1 perturbations of X.

Indeed, note that since the stable foliation is robust, we can define the one-
dimensional map fY as the quotient map of the corresponding Poincaré map PY

over the leaves of the foliation FY , for all flows Y close to X in the C1 topology.
Moreover since the leaves of FY are C1 close to those of F it follows that fY

is C1 close to f and thus there exists c ∈ [−1/2,1/2] which play for fY the same
role of 0, so that properties (f2)–(f4) from Sect. 3.3.2.1 are still valid for fY on a
subinterval [−b, b] for some 0 < b < 1/2 close to 1/2.

This implies that every fY is locally eventually onto for all Y close to X, that is,
for any interval J ⊂ (−b, b) there exists an iterate n ≥ 1 such that f n

Y (J ) = (−b, b).

Lemma 3.16 Let f : [−1/2,1/2] \ {0} → [−1/2,1/2] be given satisfying the prop-
erties (f2)–(f4) in Sect. 3.3.2.1. Then f is locally eventually onto: for any open inter-
val J not containing 0 there exists n such that f n | J is a diffeomorphism between
J and one of the intervals (−1/2,0) or (0,1/2) (and the next iterate covers the
interval (f (−1/2), f (1/2))).

This implies in particular that the maps fY are (robustly) transitive and periodic
points are dense. Moreover this also implies that the pre-orbit set ∪n≥0f

−n{x} is
dense for every x �= 0.

Proof Let J0 ⊂ (−1/2,1/2) be an open interval with 0 �∈ J0 and let η = inf |f ′| >√
2.
Since 0 �∈ J0 then f (J0) is such that �(f (J0)) ≥ η�(J0), where �(·) denotes

length, and f (J0) is connected.

1. If 0 �∈ f (J0), set J1 = f 2(J0) and then �(J1) ≥ η2�(J0).
2. If 0 ∈ f (J0), then f 2(J0) = I− ∪ I+, where I+ is the biggest connected com-

ponent. Thus

�(I+) ≥ �
(

f 2(J0))

2
≥ η2

2
�(J0).

Now replace J0 by I+ in case (2) or by J1 in case (1). Since min{η,η2/2} > 1 we
obtain after finitely many steps one of the intervals (−1/2,0) or (0,1/2). One more
iterate then covers the interval (f (−1/2), f (1/2)).

This concludes the proof. �

3.3.5.2 Transitivity and Denseness of Periodic Orbits

We deduce these features from a stronger property: we show that the geometric
Lorenz attractor is a homoclinic class (see Sect. 2.5.4).
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Proposition 3.17 There exists a periodic orbit OX(p) in the geometric Lorenz at-
tractor Λ such that Λ = HX(p) = Ws

X(p) � Wu
X(p).

We prove this in Sect. 3.3.6. Observe that every periodic orbit O(p) in Λ must
be hyperbolic since

• the uniformly contracting foliation obtained in Sect. 3.3.4 provides a uniformly
contracting direction and a stable manifold for O(p): if F (p) is the leaf of F
through p = O(p) ∩ S, then

Ws
(

O(p)
)=

⋃

t≥0

X−t
(

F (p)
);

• the expansion of the one-dimensional projection map f (property (f3) from
Sect. 3.3.2.1) ensures that there exists a forward DP -invariant expanding cone
field around the horizontal direction, which in turn ensures the existence of a
DP -invariant expanding direction at p.

Following the Birkhoff-Smale Theorem 2.17, Proposition 3.17 implies that the
geometric Lorenz attractor Λ has a dense orbit and a dense subset of periodic orbits.

Since the arguments we use to prove Proposition 3.17 depend only on the prop-
erties of f and these properties are robust, we conclude that the geometric Lorenz
attractors are robustly transitive.

3.3.5.3 The Geometric Lorenz Models are not Structurally Stable

The dynamics of two nearby geometric Lorenz models are in general not topologi-
cally equivalent. In fact Guckenheimer and Williams [98, 274] show that the conju-
gacy classes are completely described by two parameters: the kneading sequences
of the two singular values

f (0+) = lim
x→0+ f (x) and f (0−) = lim

x→0− f (x)

with respect to the singular point 0—a pair of one-dimensional Lorenz-like maps
are conjugate if, and only if, they have the same pair of kneading sequences and,
moreover, the corresponding flows are topologically equivalent if, and only if, the
one-dimensional maps are conjugated (recall that we have dropped condition (f1)).

The kneading sequence of x+ = f (0+) with respect to 0 is a sequence defined
by

an =
{

0 if f n(x+) < 0
1 otherwise

; for n ≥ 0,

and analogously we define the kneading sequence (bn)n≥0 for x−.
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It is easy to see that if two nearby geometric Lorenz flows are topologically conju-
gated (see Sect. 2 for definitions and basic properties) then the kneading sequences
must be equal, since the equivalence relation preserves the orbit structure and in
particular preserves also the first return iterates to the cross-section S.

Now given a geometric Lorenz flow X with corresponding kneading sequences
(an)n≥0 and (bn)n≥0, we can through a small perturbation find a C1 close vector
field Y whose corresponding one-dimensional map has kneading sequences (a′

n)n≥0
and (b′

n)n≥0 distinct from the pair (an)n≥0 and (bn)n≥0.
Indeed, if one of the orbits of x± is dense in (−1,1), then one of its iterates

is arbitrarily close to 0. Thus a small perturbation of the map will flip one of the
elements of the kneading sequence from 0 to 1 or vice versa. Otherwise there exists
ε > 0 such that the orbits of x± do not enter (−ε, ε). As we have already proved,
the one-dimensional map f is locally eventually onto and in particular topologically
transitive. Hence there exists a point 0 < y < δ � ε with 0 < f (y) − x+ < δ whose
orbit is dense. Let n > 0 be the smallest integer such that |f n(y)| < δ. Consider f̃ a
small perturbation of f such that

• f̃ satisfies all the properties (f2) through (f4);
• f̃ | [−1,1] \ (0, δ) ≡ f ;
• f̃ (0+) = y.

Then f̃ k(f̃ (0+)) = f k(y) for k = 0, . . . , n and so f̃ n(y) ∈ (−δ, δ). Now we can
perturb f̃ so that f̃ n(y) changes sign and this would change one of the kneading
sequences of f̃ . Since δ can be taken arbitrarily small, then we obtain a very small
perturbation of f whose kneading sequences are distinct. Since we can build a geo-
metric Lorenz flow from f̃ and from any of its small perturbations, we have shown
that we can always find a nearby geometric Lorenz flow Y not topologically conju-
gated to the given X.

3.3.6 The Geometric Lorenz Attractor Is a Homoclinic Class

Here we prove Proposition 3.17 following Bautista [35].
Observe first that the geometric Lorenz attractor Λ must contain a hyperbolic

periodic orbit. Indeed since the associated Lorenz transformation f is locally even-
tually onto, the periodic orbits of f are dense. Let x0, . . . , xk be a periodic orbit
of f . Then the leaves �0, . . . , �k of F in S which project onto these points form
a invariant set under the map P . Since P preserves the leaves of the foliation F
and is a contraction along F , then Pk must send each �i into itself with a uniform
contraction rate. Hence there exists a point pi which is fixed by Pk on each leaf �i ,
i.e., p0, . . . , pk is a periodic orbit of P .

The definition of P shows that the orbit of p0 by the flow X is periodic and
OX(p0) ∩ S = {p0, . . . , pk}.

As already observed every periodic orbit in Λ must be hyperbolic of saddle-type:
the expanding and contracting directions can be easily read from the discussion
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in Sect. 3.3.3. Hence the unstable manifold of p is a disk transverse to S which
intersects S in a one-dimensional manifold. The connected component of Wu(p)∩S

which contains p is then a small line transverse to the foliation F .
Now observe that since Λ is an attracting set, that is, Λ = ∩t>0Xt(U), where U is

the trapping ellipsoid, then the unstable manifold Wu(p) of the orbit of p = p0 must
be contained in Λ. Indeed if z ∈ Wuu(p) then dist(X−t (z),X−t (p)) −−−−→

t→+∞ 0 and

hence X−t (z) ∈ U for big t > 0, and thus z ∈ Xt(U). This shows that Wuu(p) ⊂ Λ

and since Λ is X-invariant we also get Wu(p) ⊂ Λ.
The definition of homoclinic class and the fact that Λ is closed imply that

HX(p) ⊂ Λ. For the converse we need a stronger fact.

Lemma 3.18 If Λ is the geometric Lorenz attractor and p ∈ Λ is the point of some
periodic orbit, then Λ = Wu(p).

Proof Let w ∈ Λ \ {σ } be given. Then there exists t ≥ 0 such that y = Xt(w) ∈ S.
Let � = F (y) be the corresponding leaf of F through y. Then � is not the leaf
S \ S∗. Therefore it projects to a point x ∈ (−1/2,0) ∪ (0,1/2). Since the pre-orbit
set of every point is dense (because f is locally eventually onto), by definition of f

this implies that Λ ∩ S = Λ ∩ ∪n≥0P −n�.

Hence we have P −n�∩Wu(p) �= ∅ for some n ≥ 0. But this means that Ws(y)∩
Wu(p) �= ∅ and so w,y ∈ Wu(p). Thus Λ \ {σ } ⊂ Wu(p). �

Finally to prove that Λ ⊂ HX(p) it is enough to show that Wu(p) ⊂ HX(p).
Every point w ∈ Wu(p) admits t < 0 such that q = Xt(w) ∈ S. Take a small neigh-
borhood J of q in Wu(p) ∩ S, which is a small line transverse to F .

Let l be the leaf of F containing p and let I be the interval inside (−1/2,1/2)

corresponding to J by the projection S → S/F = (−1/2,1/2). Recall that l ⊂
Ws(p) ∩ S. Write x for the point corresponding to p under this projection.

Again by Lemma 3.16 there exists n ≥ 0 such that f −n{x} ∩ I �= ∅. This means
that J � P −n(l) �= ∅, and hence in J there exists a point of the homoclinic class of
p. Since J can be taken arbitrarily small near q , we conclude that q ∈ HX(p). This
concludes the proof that Λ = HX(p).





Chapter 4
Robustness on the Whole Ambient Space

Here we prove that every robustly transitive vector field X in a 3-manifold is an
Anosov vector field, i.e., a robustly transitive vector field X is globally hyperbolic.
This was first obtained by Doering in [79] and this result is a precursor of the more
general results on robustly transitive sets of Chap. 5. In fact we prove an extended
version for homogeneous vector fields in compact manifolds of any finite dimen-
sion.

The reader should recall Definition 2.32 of homogeneous flow from Sect. 2.6.2.
We say that a vector field X is robustly transitive if there exists a neighborhood U of
X in X1(M) such that, for all Y ∈ U , the associated flow Y t is transitive, i.e., there
exits a point x ∈ M whose past and future orbits are dense: O−

Y (x) = M = O+(x).

Theorem 4.1 Let X ∈ X1(M) be a robustly transitive homogeneous flow on a n-
manifold M . Then X is Anosov.

We follow Doering from [79] and Vivier from [268]. We use mainly Theo-
rem 2.33 to obtain a dominated splitting for the Linear Poincaré Flow on regular
orbits, and a simple growth estimate near linearized saddle equilibria to show that
equilibria cannot be in the interior of the non-wandering set of X.

Theorem 4.2 Let X ∈ X1(M) be a homogeneous flow on an open subset U of M

and assume that

ΛX(U) :=
⋂

t∈R

Xt(U)

is both connected and a subset of Ω(X). Then

1. there exists a dominated splitting for the Linear Poincaré Flow on ΛX(U)∗ :=
ΛX(U) \ S(X);

2. there are no hyperbolic linearizable equilibria in the interior of ΛX(U).

In particular, if U = M , then there are no equilibria in M .

V. Araújo, M.J. Pacifico, Three-Dimensional Flows, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 53,
DOI 10.1007/978-3-642-11414-4_4, © Springer-Verlag Berlin Heidelberg 2010
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We stress that the connectedness and non-wandering conditions on ΛX(U) are
easy consequences if ΛX(U) is transitive.

Here we say that a equilibrium σ of a C1 vector field X is linearizable if the
local dynamics of the flow Xt near σ is conjugated to the dynamics of DXt(σ ) on
a neighborhood of 0 ∈ TσM by a C1 change of coordinates. According to Stern-
berg [256] this is true depending on certain non-resonance relations between the
eigenvalues of DX(σ) which amount to conditions satisfied by a dense subset of
the family X1(M) of all C1 vector fields on M .

Having established this, we deduce that, for a robustly transitive vector field in a
3-manifold, every C1 close vector field Y has no equilibria in M and has a globally
defined Linear Poincaré Flow with a dominated splitting. Indeed, we just observe
that a robustly transitive vector field in the whole of M is necessarily homogeneous,
if M is a 3-manifold.

In dimension 3 this is enough to deduce that X is globally hyperbolic: we apply
the Ergodic Closing Lemma (Theorem 2.23) for this.

Theorem 4.3 Let X ∈ X1(M) be a robustly transitive flow on a 3-manifold M . Then
X is Anosov.

Vivier in [268] shows that robustly transitive flows on the whole n-dimensional
compact boundaryless manifold M must have a dominated splitting for the Linear
Poincaré Flow and have no singularities. This is proved showing that, in the ab-
sence of dominated splitting for the Linear Poincaré Flow, we can find arbitrarily
close vector fields having periodic sinks or sources, contradicting the robust transi-
tivity assumption. However, robust transitivity is not enough to deduce global hy-
perbolicity in dimensions higher than three, since domination of the Linear Poincaré
Flow is compatible with certain bifurcations of periodic orbits and, thus, with non-
hyperbolicity. Using the stronger condition of homogeneity together with transitiv-
ity enables us to use the same three-dimensional arguments to deduce global hyper-
bolicity.

The dominated splitting for the Linear Poincaré Flow of a homogeneous vector
field in some subset U of M , whose maximal invariant subset is connected and non-
wandering, is given by Theorem 2.33, whose proof we present in Sect. 4.2. This
proves the first conclusion of Theorem 4.2. Assuming this we deduce the second
conclusion in what follows.

4.1 No Equilibria Surrounded by Regular Orbits
with Dominated Splitting

Now we explain why the existence of dominated splitting for the Linear Poincaré
Flow implies the absence of equilibria in the interior of ΛX(U).

Let us assume then that the Linear Poincaré Flow of X on ΛX(U)∗ admits a
dominated splitting, that is, there are constants K,λ > 0 such that the normal bundle
Nx decomposes over x ∈ ΛX(U)∗ into Ncs

x ⊕ Ncu
x satisfying

‖P t | Ncs
x ‖ ≤ Ke−λtm(P t | Ncu

x ), for all t > 0.
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Arguing by contradiction, we assume also that there exists an equilibrium σ in the
interior of ΛX(U)∗ which is hyperbolic of saddle-type and the local dynamics of X

near σ is smoothly linearizable of class C1.
These conditions are valid on a dense subset of all C1 vector fields (see e.g.

[256]) so that, if the flow is homogeneous on the whole M and we prove that no
such equilibria can exist in the interior of M then, for any other type of equilibria σ

for a robustly transitive vector field, we obtain some equilibria σY of an arbitrarily
C1 close vector field Y in the previous conditions. Hence it is enough to argue with
hyperbolic linearizable equilibria σ in the interior of M to prove Theorem 4.3.

Now we consider the vector subspace E of Tσ M spanned by the eigenspace
Ess corresponding to the most contracting eigenvalue and by the eigenspace Euu

corresponding to the most expanding eigenvalue of A := DX(σ), and we show that
in this subspace the domination condition on the splitting of the Linear Poincaré
Flow leads to a contradiction. We write As := DX(σ) | Ess and Au := DX(σ) |
Euu in what follows.

The assumption that σ belongs to the interior of the ΛX(U) ensures that we can
find regular points of ΛX(U) arbitrarily close to σ and so, by the linearization of
the dynamics of X on a neighborhood W of σ and choosing a convenient linear
rescaling of coordinates in E and a convenient inner product in E, we can assume
that:

• E = Ess × Euu with e1, . . . , es an orthonormal base of Ess and f1, . . . , fu an
orthonormal base of Euu which together form an orthonormal base of E;

• the vector field is given by q ∈ W �→ A(q) ∈ E and the corresponding flow is
Xt(q) = eAtq so that DXt(q) is the linear map AeAt : E → E;

• there are λ,σ > 0 and K > 1 so that for q ∈ W and for all t ∈ R such that eAtq ∈
W we have
– K−1e−λt‖v‖ ≤ ‖eAt v‖ = ‖eAs t v‖ ≤ Ke−λt‖v‖, for v ∈ TqE parallel to Ess ;

and
– K−1eσ t‖w‖ ≤ ‖eAt w‖ = ‖eAut w‖ ≤ Keσt‖w‖, for w ∈ TqE parallel to Euu;

• every point in the set e1 × (B \ {0}), where B = B(0, δ) is a small ball around the
origin 0 in Euu, corresponds to some regular point in ΛX(U).

We note that e1 × B is a disk transversal to the flow and also that the dominated
splitting (Ncs

q ⊕Ncu
q )∩E of E induced by the splitting of the Linear Poincaré Flow

for q ∈ Ess \ {0} is given by Nss
q = Ess ∩ Nq and Ncu

q = Euu. Indeed, this splitting
is clearly dominated and by the uniqueness property discussed in Sect. 2.6.2 it must
be the P t invariant and dominated splitting of Nq .

We let u ∈ B \ {0} be fixed with ‖u‖ = e−σT for a big T > 0, and we define an
initial point q := (e1, u) ∈ e1 × (B \{0}) and consider its forward orbit qt := eAtq =
(eAs t e1, e

Autu) for t ≥ 0 until the time t0 > 0 such that ‖eAut0 u‖ = 1. We note that
by the assumptions above on the linearized flow we have

1 ≤ Keσt0‖u‖ = Keσ(t0−T ), thus t0 ≥ T − logK

σ
= T

(

1 − logK

σT

)

. (4.1)

In this setting, τ(t) := ‖Aue
Autu‖‖Ase

Ast e1‖−1 is the slope of the vector field at qt ,
that is, the tangent of the angle θt between A(qt ) and the subspace Ess , see Fig. 4.1.
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Fig. 4.1 The orbit of q under
the linear flow, the vector
field at different points of this
orbit and the relative position
with the image of the vector
w given by the angle θ

We take w ∈ Euu with ‖w‖ = 1. The image w under the derivative of the flow map
is given by D(eAt )(q)w = Aue

Aut w, for t ∈ R, and so

‖P tw‖ = ‖Aue
Autw‖ cos θt = ‖Aue

Autw‖(1 + τ(t)2)−1/2.

Now we estimate τ(t) by

K−2‖u‖e(λ+σ)t = K−1eσ t‖u‖
Ke−λt

≤ ‖Aue
Autu‖

‖AseAst e1‖ ≤ Keσt‖u‖
K−1e−λt

= K2‖u‖e(λ+σ)t

and then estimate the growth of w using these bounds, as follows:

Keσt

√

1 + K4‖u‖2e2(λ+σ)t
≤ ‖P tw‖ ≤ Keσt

√

1 + K−4‖u‖2e2(λ+σ)t
. (4.2)

On the one hand, we note that for t ≤ t∗ := σ
λ+σ

T we have ‖u‖e(λ+σ)t ≤ 1 and so

‖P tw‖ ≥ Keσt

√
1 + K4

, 0 ≤ t ≤ t∗. (4.3)

On the other hand, applying the previous bound (4.2) with t > t∗ we get

‖P t−t∗(P t∗w)‖ = ‖Aue
Au(t−t∗)(P t∗w)‖
√

1 + τ(t)2
≤ Keσ(t−t∗)‖P tw‖

√

1 + K−4‖u‖2e2(λ+σ)t∗e2(λ+σ)(t−t∗)

and since ‖u‖2e2(λ+σ)t∗ = 1 we obtain

‖P t−t∗(P t∗w)‖ ≤ Ke−λ(t−t∗)‖P tw‖√
K−4 + e−2(λ+σ)(t−t∗)

≤ e−λ(t−t∗)

K3
‖P tw‖, t > t∗. (4.4)

Hence from (4.3) P tw grows at a rate σ for 0 < t < t∗, and then from (4.4) we
see that the Linear Poincaré Flow shrinks P t∗ w at a rate λ for t∗ < t < t0. More-
over (4.1) shows that t0 � t∗ if T is big enough, that is, we can make t∗ and t0 − t∗
arbitrarily big by letting T grow.
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This contradicts the domination of the splitting Ncs ⊕ Ncu of the normal bun-
dle on M \ S(X) because, as explained in Sect. 2.6.2, vectors in the normal bun-
dle in this setting will converge to the direction of the dominating bundle, Ncu.
Hence their growth rate will tend to be at least the minimal growth rate along Ncu.
We have shown that, on the contrary, the growth rate of a certain vector changes
from the maximal growth rate of vectors along an orbit of the flow to the minimum
growth rate along the same orbit, and the pieces of orbit with this behavior can be
made arbitrarily long. This concludes the proof of item 2 and the last statement of
Theorem 4.2.

4.2 Homogeneous Flows and Dominated Splitting

Here we prove the following central result in this book.

Theorem 4.4 Let X ∈ X1(M) be a homogeneous vector field in an open subset U

of M and let us assume that ΛX(U)∗ ⊂ Ω(X) and that ΛX(U)∗ is connected. Then
there exists an invariant, continuous and dominated splitting NΛ∗

X(U) = Ncs ⊕ Ncu

for the Linear Poincaré Flow P t on Λ∗
X(U).

In the particular case of a homogeneous vector field in the whole M we get

Corollary 4.5 Let a homogeneous vector field X ∈ X1(M) on M be given such
that M \ S(X) ⊂ Ω(X) and M \ S(X) is connected. Then there exists an invariant,
continuous and dominated splitting NΛ∗

X(U) = Ncs ⊕ Ncu for the Linear Poincaré
Flow P t on M \ S(X).

These results follow from Pugh’s Closing Lemma together with two estimates
on the eigenvalues and splittings of periodic orbits with high period for all C1 flows
close to X and from Theorems 4.7 and 4.8, presented in Sect. 4.2.1. Some of the
ideas can be traced back to several works of Pliss, for example [203, 204], and also
of Liao [133, 134].

We explain how these theorems imply Theorem 4.4 in Sect. 4.2.2 and prove
Theorems 4.7 and 4.8 in Sects. 4.2.3 and 4.2.4.

4.2.1 Dominated Splitting over the Periodic Orbits

Let ΛY (U) be an isolated set of a homogeneous C1 vector field in U . Since every
p ∈ Per(Y ) ∩ ΛY (U) is hyperbolic of saddle type, we have that the tangent bundle
of M over p can be written as

TpM = Es
p ⊕ EY

p ⊕ Eu
p,
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where Es
p is the eigenspace associated to the contracting eigenvalues of DY tp (p),

Eu
p is the eigenspace associated to the expanding eigenvalues of DY tp (p), and we

write tp for the (minimal) period of p. We recall from Sect. 2.6.1 that Es
p ⊂ Ns

p ⊕
EY

p and Eu
p ⊂ Nu

p ⊕ EY
p , where Ns ⊕ Nu is any dominated splitting for the linear

Poincaré Flow over regular orbits.
To obtain a splitting for the Linear Poincaré Flow we start with a splitting for the

tangent bundle over periodic orbits of every nearby flow to X inside U . Let U be a
C1 neighborhood of X where all Y ∈ U are homogeneous vector fields.

Definition 4.6 Given Y ∈ U define for any p ∈ Per(Y ) ∩ ΛY (U) the subspaces

Ecs,Y
p := Es,Y

p ⊕ EY
p and Ecu,Y

p := EY
p ⊕ Eu

p.

which give a pair of subbundles over Per(Y ) ∩ ΛY (U).

From these definitions we will show that N
cs,Y
p := OY (E

cs,Y
p ) and N

cu,Y
p :=

OY (E
cu,Y
p ) is a splitting of Np at every p ∈ Per(Y ) ∩ ΛY (U) and that the splitting

is dominated.
The following result establishes, first, that the periodic points are uniformly hy-

perbolic, i.e., the periodic points are of saddle-type and the Lyapunov exponents are
uniformly bounded away from zero. Secondly, the angle between the stable and the
unstable eigenspaces at periodic points are uniformly bounded away from zero.

Theorem 4.7 There are a neighborhood V ⊂ U of X and constants 0 < λ < 1 and
c > 0, such that, for every Y ∈ V , if p ∈ Per(Y ) ∩ ΛY (U) and tp is the period of p

then

1. (a) ‖DY tp | Es
p‖ < λtp (uniform contraction on the period)

(b) ‖DY−tp | Eu
p‖ < λtp (uniform expansion on the period).

2. ∠(N
cs,Y
p ,N

cu,Y
p ) > c (angle uniformly bounded away from zero).

The proof of this result, presented in Sect. 4.2.3, is an argument of perturbation:
if the conclusions fail, then we can, by an arbitrarily small C1 perturbation of the
flow, obtain a hyperbolic periodic orbit for the nearby flow which is either a sink or
a source, in the three-dimensional case, or with a different index (dimension of the
unstable subspace) from the original one if the dimension of M is higher than three.
In any case, we contradict the homogeneity assumption.

Before stating the next theorem, we observe that from Theorem 4.7 we have nat-
urally defined over the set of periodic orbits of Y ∈ V , whose period is big enough,
an invariant splitting Np = Ncs

p ⊕ Ncu
p for the Linear Poincaré Flow.

We also note that Theorem 4.7 already ensures that the angle between Ncs and
Ncu is uniformly bounded away from zero. Moreover, we also obtain (see Sect. 2.6)

‖P tp | Ncs
p ‖ ≤ λtp and ‖P tp | Ncu

p ‖ ≥ λ−tp
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so that we have dominated splitting at multiples of the period of the periodic orbits
for the Linear Poincaré Flow (P t )t∈R associated to Y .

This result is to be combined with the following main theorem, first obtained
by Mañé for diffeomorphisms [145] and by Liao [134] for flows, which provides
dominated splitting of the Linear Poincaré Flow over the periodic orbits of flows
whose critical elements are robustly hyperbolic.

Theorem 4.8 Let X ∈ X1(M) be such that on a neighborhood U of X in the C1

topology every critical element of Y ∈ U inside U is hyperbolic (this is known as
a star flow). Then there is a C1 neighborhood V of X and numbers λ,T > 0 such
that, for all Y ∈ V , each p ∈ Per(Y ) ∩ ΛY (U) with tp > T and every t ≥ T , we
have

‖P t | Ncs
p ‖ ≤ e−λtm(P t | Ecu

p ).

The proof of this result, presented in Sect. 4.2.4, is again by contradiction via
perturbation. If the conclusion is not true, then after a small C1 perturbation we
can find a hyperbolic periodic orbit whose Linear Poincaré Flow has a splitting
into stable and unstable subspaces with an arbitrary small angle, contradicting the
previous Theorem 4.7.

4.2.2 Dominated Splitting over Regular Orbits from the Periodic
Ones

Here we explain how Theorem 4.4 follows from Theorems 4.7 and 4.8.
We induce a dominated splitting over the normal bundle of ΛX(U)∗ using the

dominated splitting over the normal bundle to the orbits of {p ∈ Per(Y ) ∩ ΛY (U) :
tp ≥ T0} for flows Y ∈ V near X, provided by Theorem 4.8.

On the one hand, since ΛY (U) is an attracting set for every Y close to X in X1,
we can assume without loss of generality that, for all Y ∈ V and x ∈ Per(Y ) with
OY (x) ∩ U �= ∅, we have

OY (x) ⊂ ΛY (U). (4.5)

On the other hand, since Λ = ΛX(U) is assumed to be connected, we get that

Λ(T0) := Λ \ {p ∈ Per(X) ∩ U : tp < T0} is dense in Λ. (4.6)

Indeed, the family of hyperbolic periodic orbits with period bounded from above in
U forms a set of isolated simple curves in U . Arguing by contradiction, if Λ(T0) is
not dense in Λ, then A := Λ \ Λ(T0) �= ∅ is a nonempty open invariant subset of Λ

in the relative topology and A ⊂ Λ(T0). Thus A contains some periodic orbit, which
is then a connected simple curve γ in the interior of Λ, that is, γ is a closed and open
subset in Λ, contradicting the assumption that Λ is connected. This proves (4.6).
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From property (4.6), to induce an invariant splitting over ΛX(U) it is enough to
do so over Λ(T0) (the reader can consult [144] and references therein for another
instance of this argument). For this we proceed as follows.

Given X ∈ V , let K(X) ⊂ Λ(T0) be such that Xt(x) /∈ K(X) for all x ∈ K(X) if
t �= 0. In other words, K(X) is a set of representatives of the quotient Λ(T0)/ ∼ by
the equivalence relation x ∼ y ⇐⇒ x ∈ OX(y). Since we are also assuming that
ΛX(U) ⊂ Ω(X), then we can use the Closing Lemma (Theorem 2.19): for any x ∈
K(X) and x �∈ S(X) there exist Yn → X in X1 and yn → x such that yn ∈ Per(Yn).
We can assume that Yn ∈ V for all n. In particular, inclusion (4.5) holds for all
Y = Yn, that is, OYn(yn) ⊂ ΛYn(U).

Moreover, since the periods of the periodic points in K(X) are larger than T0, we
can also assume that the periods of yn are tyn

> T0 for all n. Thus the λ-dominated
splitting Ncs,Yn ⊕Ncu,Yn over {p ∈ Per(Yn)∩ΛYn(U)∗ : tp > T0}, provided by The-
orem 4.8, is well defined.

Let us take a converging subsequence N
cs,Ynk

ynk
⊕ N

cu,Ynk

ynk
= Nynk

and define

Ncs,X
x = lim

k→∞Ncs,Ynk

ynk
, Ncu,X

x = lim
k→∞Ncu,Ynk

ynk
.

Since Ncs,Yn ⊕ Ncu,Yn = N is a splitting at yn with angle bounded away from zero
uniformly for all n, then this property is also true for the limit N

cs,X
x ⊕ N

cu,X
x .

Moreover dim(N
cs,X
x ) = s and dim(N

cu,X
x ) = u for all x ∈ K(X) with s +u+1 = n

by the homogeneity assumption on the neighborhood V .
Define the following eigenspaces along Xt(x) for t ∈ R:

N
cs,X
Xt (x)

:= P t
X(Ncs,X

x ) and N
cu,X
Xt (x)

:= P t
X(Ncu,X

x ).

Since for every n the splitting over {p ∈ Per(Yn) ∩ ΛYn(U)∗ : tp > T0}, is λ-
dominated, it follows that the splitting defined above along X-orbits of points in
K(X) is also λ-dominated. Moreover we also have that N

cs,X
Xt (x)

is s-dimensional

and N
cu,X
Xt (x)

is u-dimensional, for all t ∈ R. This provides the desired extension of a
dominated splitting to ΛX(U)∗.

This concludes the proof of Theorem 4.4, assuming Theorems 4.7 and 4.8.

4.2.3 Bounded Angles on the Splitting over Hyperbolic Periodic
Orbits

Here we prove Theorem 4.7. We divide the proof into two parts.

Item 1 of Theorem 4.7 We suppose, by contradiction, that given δ > 0 small, there
is Y ∈ X∞(M) arbitrarily C1 close to X, and a periodic orbit y of Y with pe-
riod ty , such that ‖DY ty | Es

y‖ ≥ (1 − δ)ty .
Let At be the one-parameter family of linear maps

At = (1 − 2δ)−t · DY t(y), 0 ≤ t ≤ ty .
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By construction At preserves the flow direction and the eigenspaces of DY ty .
Moreover

‖∂hAt+hA
−1
t |h=0 − DY(Y t (y))‖ < − log(1 − δ).

Since we can take δ as close to 0 as needed, the inequality above together with
Y ∈ C∞ imply that At satisfies Frank’s Lemma 2.24. Hence there exists Z ∈ X1,
which is C1 near Y , such that y is a periodic point of Z with period ty , and
DZt(Zt (y)) = At for 0 ≤ t ≤ ty . By definition of At we get ‖DZty | Es

y‖ > 1,
implying that y is a periodic orbit for Z with a different index (dimension of
the stable manifold) from the index for Y , which contradicts the homogeneous
assumption on X. This proves subitem (1a).
A similar argument proves subitem (1b) are we are done with the first item of
Theorem 4.7.

Item 2 of Theorem 4.7 Again, by contradiction, we assume that for every θ > 0
small there exist Y ∈ X∞, which is C1 close to X, and p ∈ Per(Y )∩ΛY (U) such
that ∠(Ncs

p ,Ncu
p ) < θ and tp > 1/θ . The proof follows Mañé [145, Lemma II.9].

Consider the splitting (Ncs
p )⊥ ⊕ Ncs

p of Np and the (orthogonal) splitting EX
p ⊕

(Ncs
p )⊥ ⊕Ncs

p of TpM . The transformation DY tp(p) on TpM has a matrix which
can be written with respect to this splitting as

⎡

⎣

1 � �

0 A 0
0 P B

⎤

⎦

where A : (Ncs
p )⊥ → (Ncs

p )⊥, P : Ncs
p → (Ncs

p )⊥ and B : Ncs
p → Ncs

p are linear
maps with

‖A−1‖ ≤ λtp and ‖B‖ ≤ λtp

according to the first item of the theorem, already proved.
Let Ncs

p be given by {v + T v : v ∈ (Ncs
p )⊥} for a linear map T : (Ncs

p )⊥ → Ncs
p

in the coordinates provided by the chosen splitting. The invariance ensures that
there exists u ∈ (Ncs

p )⊥ such that

[

A 0
P B

]

·
[

v

T v

]

= Av
︸︷︷︸

(Ncs
p )⊥

+Pv + BT v
︸ ︷︷ ︸

Ncs
p

= u + T u

and so we get T A = P + BT or T = PA−1 + BT A−1. Hence by the first item

‖T ‖ ≤ ‖PA−1‖ + λ2tp‖T ‖ and ‖T ‖ ≤ 2‖PA−1‖
by letting tp be so big that λ2tp ≤ 1/2. Then the following can be made arbitrarily
small:

1

2
‖PA−1‖ ≤ ‖T ‖−1 = o(θ) −−→

θ→0
0.
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Let us assume that there exist a map C : (Ncs
p )⊥ → Ncs

p with small norm so that
the product

[

A 0
P B

]

·
[

I C

0 I

]

=
[

A AC

P PC + B

]

=: M

has some eigenvalue with norm 1, where I is the identity map of the corre-
sponding subspace of the decomposition. We consider a non-negative C2 real
function δ : [0, tp] → [0,1] such that δ(0) = 0, δ(tp) = 1 and |δ′(t)| < θ for
0 ≤ t ≤ tp (we can take δ(t) = t/tp so that δ′ = 1/tp < θ ). We now define the
one-parameter family of linear maps

At :=
⎡

⎣

1 0 0
0 I δ(t)C

0 0 I

⎤

⎦ , 0 ≤ t ≤ tp,

and set Ct := At · DY t(p) for 0 ≤ t ≤ tp. By construction, the transformation Ct

preserves the flow direction along the Y -orbit of p. The choice of δ(t) implies
that At is a small perturbation of the identity map It : TY t (p)M → TY t (p)M for
0 ≤ t ≤ tp and so Ct is in the setting of Frank’s Lemma 2.24.
Hence we can find a vector field Z which is C1 near Y , and a periodic point
p ∈ Per(Z) ∩ ΛZ(U) such that DZt(p) = Ct = At · DY t(p), for 0 ≤ t ≤ tp .
Moreover DZtp = Atp · DY tp (p) = M . Thus, taking θ small enough, we get a
C1 vector field Z near to Y exhibiting a periodic orbit through p which is not
hyperbolic.
This contradicts the homogeneity condition on X and concludes the proof, under
the assumption that we can find C with very small norm such that M has some
eigenvalue with norm 1.

Now we explain how to find C. We need a vector (x, y) ∈ Np so that

M

[

x

y

]

=
[

x

y

]

or

{

Ax + ACy = x

Px + (PC + B)y = y
.

But this is the same as

{

x = (I − A)−1ACy = (A−1 − I )−1Cy = −(I − A−1)−1Cy

−P(I − A−1)−1Cy + PCy = (I − B)y

and so y = (I −B)−1P(I − (I −A−1)−1)Cy. Since I − (I −A−1)−1 = −A−1(I −
A−1)−1 we deduce

−(I − B)−1PA−1(I − A−1)−1Cy = y.
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We can take v such that1 ‖PA−1v‖ = 1 and ‖v‖ = ‖PA−1‖−1. We can now define
y = −(I − B)−1PA−1v.

The fact that ‖B‖ can be made arbitrarily small ensures that we can assume
without loss of generality that ‖I − B‖ ≤ 2 and so

‖y‖ = ‖(I − B)−1PA−1v‖ ≥ ‖(I − B)−1‖−1‖PA−1v‖ = ‖(I − B)−1‖−1.

Thus ‖y‖−1 ≤ ‖I − B‖ ≤ 2.
We can now choose w such that (I − A−1)−1w = v. Again, since ‖A−1‖ is very

small, we can assume that ‖(I − A−1)−1‖ ≥ 1/2 and so ‖w‖ ≤ 2‖v‖.
Now we choose C such that Cy = w and ‖C‖ = ‖w‖/‖y‖.
This implies that ‖C‖ ≤ 2‖v‖/‖y‖ ≤ 4‖v‖ = 4‖PA−1‖ = o(θ) which can be

made arbitrarily small by taking θ small and tp big. For this transformation C the
vector y provides a fixed vector for the transformation M , that is, M has an eigen-
value 1, as we wanted to prove.

This concludes the proof of Theorem 4.7.

4.2.4 Dominated Splitting for the Linear Poincaré Flow
Along Regular Orbits

Here we prove Theorem 4.8 following Mañé [145, Lemma II.3]. For this it is enough
to show that there exist a C1 neighborhood V of X and T0 > 0 such that, for every
vector field Y ∈ V , if p ∈ Per(Y ) ∩ ΛY (U) and tp > T0 then

‖P T0 | Ncs
p ‖ · ‖P −T0 | Ncu

YT0 (p)
‖ ≤ 1

2
. (4.7)

We prove (4.7) arguing by contradiction. If (4.7) is not true then, for any given T0 >

0, we can find Y ∈ X1 arbitrarily C1 close to X and a point y ∈ Per(Y ) ∩ ΛY (U)

with ty > T0 satisfying

‖P T0 | Ncs
y ‖ · ‖P −T0 | Ncu

YT0 (y)
‖ >

1

2
. (4.8)

Under this assumption, we have

‖PT0 | Ncs
y ‖ >

1

2
‖P −T0 | Ncu

YT0 (y)
‖−1 = 1

2
‖(P T0 | Ncu

y )−1‖−1 = 1

2
m(PT0 | Ncu

y )

1For an invertible linear map L and each w with ‖w‖ = 1 we have ‖LL−1w‖ = 1; and if
‖L−1w‖ > ‖L‖−1 for all ‖w‖ = 1, then 1 = ‖L−1Lw‖ > ‖L‖−1‖Lw‖ = 1 for some w with
‖w‖ = 1. Since ‖L−1‖ ≥ ‖L‖−1 we see that there exists w with ‖w‖ = 1 and ‖L−1w‖ = ‖L‖−1

and we just have to take v = L−1w and L = PA−1.
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and the compactness of the unit ball in finite dimensional vector spaces ensures the
existence of w0 ∈ Ncs

y , v0 ∈ Ncu
y such that

‖PT0(y) · w0‖ >
1

2
‖P T0(y) · v0‖. (4.9)

We define now a linear map L : Ncu
y → Ncs

y such that Lv0 = ε1w0 and ‖L‖ = ε1
for a small ε1 > 0 to be determined in what follows. Next we set

L̂ := (1 + ε1)
ty P ty (y) · L · (P ty | Ncu

y

)−1
,

so that L̂ is the transformation whose graph is the image of the graph of L by P ty

after stretching, that is, L̂ represents the “graph transform” of L:

Graph(L̂) = (1 + ε1)
tyP ty (y) · Graph(L).

Starting with ‖L‖ small just means that the graph of L is a small perturbation of
Ncu

y . Then L̂ is the result of flowing along the periodic orbit through y by the action
of the Linear Poincaré Flow.

Now we choose ε0 small and a big enough T0 so that, for α = α(Ncs
y ,Ncu

y ) > c

(from Theorem 4.7),

ε1 := α

1 + α
ε0, ε1(1 + ε1)

T0 ≥ 4 + 2/c and [(1 + ε1)λ]T0 ≤ ε1.

From Theorem 4.7 we deduce

‖L̂‖ ≤ (1 + ε1)
ty λ2ty‖L‖ = [(1 + ε1)

2λ2]ty ‖L‖ ≤ ε1‖L‖

where we have used that ty � T0 and [(1 + ε1)
2λ2]ty ≤ [(1 + ε1)λ]T0 ≤ ε1. Since

λ is uniform for all periodic orbits in a C1 neighborhood of X, we can take T0
big enough and ε1 close enough to zero to achieve this. This shows that the angle
between the graph of L and Ncu

y is contracted after a full turn around the orbit, as it
should be since Ncu

y dominates Ncs
y , see Sect. 2.6.2.

Now we build up a perturbation of the flow along the orbit through y so that the
perturbed flow is arbitrarily C1 close to Y , with a periodic orbit through y having
a hyperbolic splitting for its Linear Poincaré Flow with an arbitrarily small angle
between the contracting and expanding subspace. This provides the contradiction
we need to conclude the argument.

To build the perturbation we need the following linear algebra result.

Lemma 4.9 Let us assume that R
n = E ⊕ F with E,F non-trivial subspaces and

let us write α(E,F ) := ‖H‖−1 for the linear operator H : E⊥ → E such that F =
Graph(H) = {u + Hu : u ∈ E⊥}. Then

1. ‖v − u‖ ≥ α(E,F )
1+α(E,F )

‖v‖, u ∈ E,v ∈ F ;

2. ‖T ‖ ≤ 1+α(E,F )
α(E,F )

(‖T | E‖ + ‖T | F‖), for any linear transformation T of R
n;
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3. Given a linear transformation A : F → E and G = Graph(A), there are linear
maps Ti : R

n → R
n satisfying

a. ‖Ti‖ ≤ 1+α(E,F )
α(E,F )

‖A‖ and Ti | E ≡ 0 for i = 1,2;
b. (T1 + I ) · G = F and (T2 + I ) · F = G.

Proof

1. We can write v ∈ F as w + Hw for some w ∈ E⊥, and so for u ∈ E we get

‖v −u‖ = ‖w + (Hw −u)‖≥‖w‖ and ‖v‖≤‖w‖+‖Hw‖≤ (1+‖H‖)‖w‖.

Hence ‖v − u‖ ≥ ‖w‖ ≥ ‖v‖
1+‖H‖ ≥ α(E,F )

1+α(E,F )
‖v‖.

2. For each u ∈ R
n we can write u = v + w with v ∈ E and w ∈ F⊥, and

‖T u‖ = ‖T (v + w)‖ = ‖T (v + Hv
︸ ︷︷ ︸

F

) + T (w − Hv
︸ ︷︷ ︸

E

)‖

≤ ‖T | F‖(1 + ‖H‖)‖v‖ + ‖T | E‖(‖w‖ + ‖H‖‖v‖)
≤ ‖T | F‖(1 + ‖H‖)‖u‖ + ‖T | E‖(1 + ‖H‖)‖u‖

since ‖v‖,‖w‖ ≤ ‖u‖. This proves this item because ‖H‖ = α(E,F )−1.
3. Let π : R

n → F be the projection parallel to E, and T1 := −A · π , T2 = A · π .
Clearly Ti | E ≡ 0 and Ti | F = ±A. Then item (a) follows from item 2. For
v ∈ F we have

(I + T1)(v + Av) = v + Av − A · πv − A · π · Av = v and

(I + T2)v = v + A · πv = v + Av,

which completes the proof of (b). �

Now we define for each 0 ≤ ξ ≤ 1 the subspaces

Gξ = Graph(ξL) = {u + ξLu : u ∈ Ncu
y }

Ĝξ = Graph(ξL̂) = {u + ξL̂u : u ∈ Ncu
y },

and use Lemma 4.9 to find the maps
{

Tξ | Ncs
y ≡ 0

(I + Tξ ) · Ncu
y = Gξ

and

{

Sξ | Ncs
y ≡ 0

(I + Sξ ) · Ĝξ = Ncu
y

,

which satisfy (with α = α(Ncs
y ,Ncu

y ))

‖Tξ‖ ≤ 1 + α

α
‖ξL‖ ≤ 1 + α

α
ε1 = ε0 and

‖Sξ‖ ≤ 1 + α

α
‖ξL̂‖ ≤ 1 + α

α
ε1 = ε0.



112 4 Robustness on the Whole Ambient Space

For 0 ≤ t ≤ ty and ty big enough we consider also the projection πcs
t : NYt (y) →

Ncs
Y t (y)

parallel to Ncu
Y t (y)

and define the function

ε1(t) := [(1 + ε1)
t − 1](1 − δ(t)),

where δ : [0, ty] → [0,1] is a smooth function so that

{

δ ≡ 0 for 0 ≤ t ≤ [ty ] − 2

δ ≡ 1 for [ty ] − 1/2 ≤ t ≤ ty
and |δ′(t)| ≤ 1 for all 0 ≤ t ≤ ty .

Now we are ready to define the perturbation of the flow: for each fixed ξ ∈ [0,1]
consider the family of maps At : Ny → NYt (y) (which can be extended to maps
At : TyM → TY t (y)M preserving the flow direction) as follows:

At := (I + δ(t)Sξ ) · (I + ε1(t)π
cs
t ) · P t (y) · (I + Tξ ).

It is easy to see that for 0 < t < ty and small s the map At+sA
−1
t equals

(I + δ(t + s)Sξ ) · (I + ε1(t + s)πcs
t ) ·P s(Y t (y)) · (I + ε1(t)π

cs
t ))−1 · (I + δ(t)Sξ )

−1.

Hence, by the previous choices of the maps Tξ , Sξ and the functions δ(t), ε1(t),
taking ε0 (and so also ε1) small enough, a straightforward calculation shows that
∂s(At+sA

−1
t ) |s=0 equals P t

Y (Y t (y)) + L0 for some linear map L0 whose norm
‖L0‖ = o(ε0) tends to zero as ε0 → 0.

Applying Frank’s Lemma for vector fields we obtain a vector field Z arbitrarily
C1 close to Y with a periodic orbit through y with the same period and such that
DZ t(y) = (It ,At ) : EX

y ⊕ Ny → EX
Z t(y)

⊕ NZt (y) for 0 ≤ t ≤ ty , where It is the

derivative of Y t along the flow direction at Y t (p) = Zt(p).
Now we check the resulting change in the angles between the stable and unstable

direction for the Linear Poincaré Flow. First we show that the stable manifold is
unchanged: by the choice of At we obtain for each 0 ≤ ξ ≤ 1

‖P ty
Z | Ncs,Y

y ‖ ≤ ‖(I + Sξ )(I + ε1(ty)π
cs
0 )P

ty
Y (I + Tξ )‖

≤ (1 + ε1)
ty ‖P ty

Y | Ncs,Y
y ‖ ≤ [(1 + ε1)λ]ty < 1.

This shows that N
cs,Y
y ⊆ N

cs,Z
y and it is enough to conclude that N

cs,Y
y = N

cs,Z
y

since, by assumption, we have Y,Z ∈ V so that the orbit of y with respect to Z is
hyperbolic with the same index with respect to Y .

Now we show that the unstable manifold for the transformation P
ty
Z is also un-

changed. Indeed, by definition of the perturbation we have ε1(ty) = 0 and

v ∈ Ncu,Y
y −−−→

I+Tξ

v1 ∈ Gξ −−→
P

T0
Y

v2 ∈ Ĝξ −−−→
I+Sξ

P
ty

Z (y) · v ∈ Ncu,Y
y
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so that P
ty

Z · Ncu,Y
y ⊂ N

cu,Y
y . The fact that N

cu,Y
y and N

cs,Y
y form a splitting of Ny

ensures that we have in fact equality. Moreover the norm of P
−ty
Z | N

cu,Y
y depends

continuously on ξ and is strictly smaller than 1 for ξ = 0 (since in this case P
ty
Z =

P
ty
Y ). Also the homogeneous assumption on V ensures that this norm is never close

to 1 for all ξ ∈ (0,1]. Therefore P
−ty
Z | N

cu,Y
y is a contraction for each 0 ≤ ξ ≤ 1

and so N
cu,Z
y = N

cu,Y
y .

Finally we estimate ∠(N
cs,Z

ZT0 (y)
,N

cu,Z

ZT0 (y)
) in terms of β := α(N

cs,Z

ZT0 (y)
,N

cu,Z

ZT0 (y)
).

For this we take ξ = 1 and the vectors w0 ∈ Ncs
y and v0 ∈ Ncu

y fixed earlier in (4.9),
and note that

w1 := P
T0

Z (y) · w0 ∈ N
cs,Z

ZT0 (y)
and v1 := P

T0
Z (y) · v0 ∈ N

cu,Z

ZT0 (y)
.

Since δ(T0) = 0 (we just take ty � T0) we have

w1 = (1 + ε1)
T0P T0(y) · w0 and

v1 = P T0(y) · v0 + ε1(1 + ε1)
T0PT0(y) · w0.

We use Lemma 4.9 and the choice of v0,w0 in (4.9) to bound

‖P T0(y) · v0‖ = ‖v1 − ε1w1‖ ≥ β

1 + β
‖v1‖

≥ β

1 + β

∣
∣
∣‖ε1(1 + ε1)

T0P T0(y) · w0‖ − ‖P T0(y) · v0‖
∣
∣
∣

≥ β

1 + β

∣
∣
∣
ε1

2
(1 + ε1)

T0 − 1
∣
∣
∣‖PT0(y) · v0‖

which means that

1 + β

β
≥

∣
∣
∣
ε1

2
(1 + ε1)

T0 − 1
∣
∣
∣ ⇐⇒ β ≤ 2

ε1(1 + ε1)T0 − 4
< c

by the choice of T0 and ε1 made earlier.
This contradicts Theorem 4.7 and this contradiction proves Theorem 4.8.

4.3 Uniform Hyperbolicity for the Linear Poincaré Flow

Here we complete the proof of Theorem 4.1. We state the assumptions and the con-
clusion in the following theorem.

Theorem 4.10 Let a vector field X ∈ X1(M) be given with an attracting set ΛX(U)

on some isolating neighborhood U ⊂ M satisfying

• ΛX(U) ⊂ Ω(X) and
• for every vector field Y in a C1 neighborhood V of X the critical elements of Y

within U do not change index, i.e., X is homogeneous in U .
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Then there exists a hyperbolic splitting for the Linear Poincaré Flow of X over every
compact invariant subset Γ of ΛX(U)∗ = ΛX(U) \ S(X).

From Theorem 2.27 the existence of a hyperbolic splitting for the Linear Poincaré
Flow over a compact invariant set without singularities is equivalent to hyperbolicity
of this invariant subset.

In the above setting, we note in particular that, if there are no singularities in U,

then ΛX(U) has a globally defined Linear Poincaré Flow with a hyperbolic split-
ting, that is, ΛX(U) is hyperbolic.

The proof is adapted from the work [145] of Mañé adapted to the flow setting.
The main idea is to show that, if the splitting of the Linear Poincaré Flow provided
by Theorem 4.4 is not hyperbolic, then we can see the lack of hyperbolicity on some
periodic orbit for a C1 nearby flow, which contradicts Theorems 4.7 and 4.8. This
“transfer of non-hyperbolicity” is provided by the Ergodic Closing Lemma for flows
(Theorem 2.23), which enables us to approximate a full measure subset of points by
periodic orbits for nearby flows.

In Sect. 4.3.1 we first state an abstract result that captures the conditions we use
in our setting. Then in Sect. 4.3.2 we then apply this abstract result twice, for each
subbundle of the dominated decomposition of the Linear Poincaré Flow, to complete
the proof.

4.3.1 Subadditive Functions of the Orbits of a Flow
and Exponential Growth

Let U be an open subset of M such that Xt(U) ⊂ U for all t > 0 and ΛY (U) the
corresponding attracting set for Y ∈ V , where V is a C1 neighborhood of X ∈
X1(M). We say that a family of functions φY : R × ΛY (U) → R is subadditive if

φY (t + s, x) ≤ φY (s,Xt (x)) + φY (t, x), for all t, s ∈ R, x ∈ Λ and Y ∈ V .

Theorem 4.11 Let φY be a family of continuous subadditive functions on the sub-
sets ΛY for Y ∈ V such that for all x ∈ ΛY and every Y ∈ V

• φY (0, x) = 0;
• DY (x) = lim suph→0(φY (h, x)/h) < ∞ depends continuously on x;
• ΛX(U) ∩ S(X) is discrete;
• D(σ) < 0 for each σ ∈ ΛX(U) ∩ S(X).

Moreover φY (s, y) depends continuously on (s, y,Y ) as follows: if Yn
C1−−−→

n→∞ X,

yn ∈ ΛYn
(U), sn ∈ R are such that yn −−−→

n→∞ x ∈ ΛX(U) and sn −−−→
n→∞ t ∈ R, then

φYn(sn, yn) −−−→
n→∞ φX(t, x).
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Let us assume that

1. there exists T0 > 0 and a > 0 such that, for each Y ∈ V and for every periodic
point for Y whose minimal period is bigger than T0, that is, p ∈ {y ∈ Per(Y ) ∩
ΛY (U) : ty ≥ T0}, we have

φY (tp,p) ≤ −atp,

where tp is the period of p; and
2. φY (tp,p) < 0 for all p ∈ Per(Y ) ∩ ΛX(U).

Then for every compact invariant subset Γ of ΛX(U)

φX(t, x) ≤ −at for all t > 0, every x ∈ Γ and all X ∈ V .

We need some technical observations about subadditive functions before we
prove this result.

4.3.1.1 Differentiability of Subadditive Functions

Lemma 4.12 Let φX : R × M → R be a subadditive function for the flow X ∈
X1(M) satisfying

• φ(0, x) = 0;
• D(x) := lim suph→0(φ(h, x)/h) < ∞.

Then ∂hφ(h, x) |h=0= D(x) = limh→0 φ(h, x)/h.

Proof Let us define ωδ(x) := sup0≤η≤δ(φ(η, x)/η) for all x ∈ M . Then we see that
D(x) = limδ→0 ωδ(x). We fix x ∈ M and ε > 0 and consider 0 < h < ε and δn =
2−nε, for some big n ∈ N, and obtain

D(x) − ε ≤ φ(h, x)

h
= φ(2nδn, x)

h
≤ 1

h

2n−1
∑

j=0

φ(δn,X
jδn(x))

≤ 1

h

2n−1
∑

j=0

δnωδn(X
jδn(x)).

In this way we are dividing the interval [0, h] into dyadic subintervals with length
δn, evaluating the function ωδn at these points and making a Riemann sum. We note
that, fixing a point τ of the dyadic subdivision of level n, we have ωδn

(Xτ (x)) −−−→
n→∞

D(Xτ (x)). Therefore

1

h

2n−1
∑

j=0

δnωδn(X
jδn(x)) −−−→

n→∞
1

h

∫ h

0
D(Xt(x)) dt.
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Hence we get

D(x) − ε ≤ lim inf
h→0+

φ(h, x)

h
≤ lim sup

h→0+
φ(h, x)

h

≤ lim sup
h→0+

1

h

∫ h

0
D(Xt(x)) dt = D(x).

Since ε > 0 was arbitrarily chosen and φ(0, x) = 0, we have

D(x) = lim
h→0+

φ(h, x)

h
.

For −ε < h < 0 we can write

D(x) + ε ≥ φ(h, x)

h
= φ(2nδn, x)

h
≥ 1

h

2n−1
∑

j=0

φ(δn,X
jδn(x))

≥ 1

h

2n−1
∑

j=0

δnωδn(X
jδn(x)),

and the same argument with the reverse inequalities shows that

D(x) = lim
h→0−

φ(h, x)

h
= ∂hφ(h, x) |h=0 .

The proof is complete. �

We remark that for all x ∈ M and T > 0 we have on the one hand

∂

∂t
φ(t, x)

∣
∣
∣
∣
t=T

= lim
h→0+

φ(T + h,x) − φ(T , x)

h

≤ lim
h→0+

φ(T , x) + φ(h,XT (x)) − φ(T , x)

h
= ∂

∂h
φ(h,XT (x))

∣
∣
∣
∣
h=0

.

On the other hand

∂

∂t
φ(t, x)

∣
∣
∣
∣
t=T

= lim
h→0−

φ(T + h,x) − φ(T , x)

h

≥ lim
h→0−

φ(T , x) + φ(h,XT (x)) − φ(T , x)

h
= ∂

∂h
φ(h,XT (x))

∣
∣
∣
∣
h=0

.

Therefore we deduce the following useful bound

φ(T , x) =
∫ T

0

∂

∂t
φ(t, x)

∣
∣
∣
∣
t=s

ds =
∫ T

0

∂

∂h
φ(h,Xs(x))

∣
∣
∣
∣
h=0

ds. (4.10)
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4.3.1.2 Subadditivity and Exponential Bounds

Here we obtain sufficient conditions for linear bounds on a subadditive function.
Then we present a proof of Theorem 4.11.

Lemma 4.13 Let φ = φX : R×Γ → R be a continuous subadditive function, where
Γ ⊂ ΛX(U) is a compact invariant set.

If lim inft→∞ φ(t, x) = −∞ for all x ∈ Γ , then there exists T0 > 0 such that
φ(T0, x) < − log 2 for every x ∈ Γ .

Proof For each x ∈ Γ there exists tx such that φ(tx, x) < − log 3. Hence for each
x ∈ Γ there is a neighborhood B(x) such that for all y ∈ B(x) we have φ(tx, y) <

− log 2. Since Γ is compact, there are B(xi), i = 1, . . . , n, such that Γ ⊂ B(x1) ∪
· · · ∪ B(xn).

Let K0 = sup{exp(φ(t, y)), y ∈ B(xi),0 ≤ t ≤ txi
, i = 1, . . . , n}, let j0 be such

that 2−j0 ·K0 < 1/2 and fix T0 > j0 ·sup{txi
, i = 1, . . . , n}. We claim that T0 satisfies

the statement of the lemma.
Indeed, given y ∈ Γ we have y ∈ B(xi1) for some 1 ≤ i1 ≤ n. Let ti1 , . . . , tik , tik+1

satisfy

• X
ti1+···+tij (y) ∈ B(xij+1), 1 ≤ j ≤ k, and

• ti1 + · · · + tik ≤ T0 ≤ ti1 + · · · + tik+1 .

Observe that k ≥ j0. Then for �j = ti1 + · · · + tij , j = 1, . . . , k + 1, we have

φ(T0, y) ≤ φ(T0 − �k,X
�k (y)) +

k
∑

j=1

φ(tij ,X
�j−1(y))

< logK0 − j0 log 2 = log(2−j0K0) < − log 2,

and the proof is complete. �

Lemma 4.14 Let φ = φX : R×Γ → R be a continuous subadditive function, where
Γ ⊂ ΛX(U) is a compact invariant set.

If there exists T0 > 0 such that φ(T0, x) < − log 2 for all x ∈ Γ , then there are
c ∈ R and 0 < λ < 1 such that φ(T , x) < c + T logλ for all x ∈ Γ and T > 0.

Proof Let K1 = sup{exp(φ(t, x)),0 ≤ t ≤ T0, x ∈ Γ }. Choose 0 < λ < 1 such that
1/2 < λT0 and c ∈ R such that logK1 < c + r logλ for all 0 ≤ r ≤ T0. Then for any
x ∈ Γ and all T > 0 we have T = nT0 + r with n = [T/T0] = max{k ∈ Z : k ≤
T/T0} and 0 ≤ r = T − nT0 < T0. Consequently

φ(T , x) ≤ φ(r,XnT0(x)) +
n−1
∑

j=0

φ(T0,X
jT0(x))

< logK1 − n log 2 < c + r logλ + nT0 logλ < c + T logλ,

concluding the proof. �



118 4 Robustness on the Whole Ambient Space

4.3.1.3 Uniform Linear Bound on All Orbits

Now we are ready to prove Theorem 4.11. Let Γ ⊂ ΛX(U) be a compact invariant
set. From Lemmas 4.13 and 4.14 it is enough to show that lim inft→+∞ φ(t, x) =
−∞ for each x ∈ Γ .

We argue by contradiction and assume that there exists x ∈ Γ such that

lim inf
t→+∞ φ(t, x) = L ∈ R.

Then there exists sn −−−→
n→∞ ∞ such that

lim
n→∞

1

sn
φ(sn, x) ≥ 0. (4.11)

Let C0(Γ ) be the set of real continuous functions defined on Γ with the topology
of uniform convergence, and define the sequence of continuous operators

Ψn : C0(Γ ) → R, ϕ ∈ C0(Γ ) �→ 1

sn

∫ sn

0
ϕ(Xs(x)) ds.

Since in the C0 norm this sequence is bounded, ‖Ψn‖ ≤ 1, and the unit ball of the
dual C0(Γ )∗ is weak∗-compact (see any standard reference on Functional Analysis
e.g. [234]), there exists a subsequence of Ψn, which we still denote by Ψn, converg-
ing to a continuous map Ψ ∈ C0(Γ )∗ in the weak∗ topology. Let M = M (Γ ) be
the space of measures with support on Γ . By the Riesz Representation Theorem
(see e.g. [233]) there exists a probability measure μ ∈ M such that

∫

Γ

ϕ dμ = lim
n→+∞

1

sn

∫ sn

0
ϕ(Xs(x)) ds = Ψ (ϕ), (4.12)

for every continuous function ϕ : Γ → R. Note that such μ is invariant under the
flow since for all t ∈ R

Ψ (ϕ ◦ Xt) = lim
n→+∞

1

sn

∫ sn

0
ϕ(Xs+t (x)) ds

= lim
n→+∞

sn + t

sn
· 1

sn + t

(∫ sn+t

0
ϕ(Xs(x)) ds −

∫ t

0
ϕ(Xs(x)) ds

)

= Ψ (ϕ).

Now we use the fact that D(x) = ∂hφ(h, x) |h=0 is continuous by assumption. This
together with (4.10) ensures that

∫ T

0
D(Xs(x)) ds = φ(T , x), for all T > 0, (4.13)

and so, by (4.11) and (4.12),
∫

Γ

D dμ ≥ 0. (4.14)
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The Ergodic Theorem now implies that

∫

Γ

D dμ =
∫

Γ

lim
T →∞

1

T

∫ T

0
D(Xs(x)) ds dμ(x). (4.15)

Let Σ(X) be the set of strongly closed points see Sect. 2.5.8. Since μ is X-invariant
and supp(μ) ⊂ Γ , the Ergodic Closing Lemma (Theorem 2.23) ensures that μ(Γ ∩
(S(X) ∪ Σ(X))) = 1.

We claim that μ(Γ ∩ Σ(X)) > 0. For otherwise μ(Γ ∩ S(X)) = 1 and, since
S(X) is X-invariant and discrete, we would get that μ is a finite convex linear com-
bination of point masses in S(X): μ = ∑

σ∈S(X) aiδσ . But by assumption

∫

Γ

D dμ =
∫

S(X)

D dμ =
∑

σ∈S(X)

aiD(σ) < 0

contradicting (4.14). This contradiction proves the claim.
The Ergodic Decomposition Theorem (see Sect. 2.7) enables us to assume with-

out loss of generality that μ is ergodic. Hence μ(Γ ∩ Σ(X)) = 1. Therefore
by (4.14) and (4.15) there exists y ∈ Γ ∩ Σ(X) such that

lim
T →∞

1

T

∫ T

0
D(Xs(y)) ds ≥ 0. (4.16)

Since y ∈ Σ(X), there are δn −−−−→
n→+∞ 0, Yn ∈ V , and pn ∈ Per(Yn) ∩ ΛYn(U) with

period tn such that

‖Yn − X‖ < δn and sup
0≤s≤tn

dist(Y s
n (pn),X

s(y)) < δn.

We must have tn −−−→
n→∞ ∞. For otherwise y would be periodic for X and, if ty is its

period, then (4.13) together with (4.16) imply that

1

ty
φX(ty, y) ≥ 0

contradicting the negative bound assumption on periodic orbits of item 2 of Theo-
rem 4.11. We have arrived at a contradiction and so tn grows without bound.

Let γ < 0 be arbitrarily small. By (4.16) again, there exists Tγ such that for
t ≥ Tγ we have

1

t

∫ t

0
D(Xs(y))ds = 1

t
φ(t, y) ≥ γ. (4.17)

Since tn −−−→
n→∞ ∞, we can assume that tn > Tγ for every n. The continuity of the

family φY together with (4.17) implies that for n big enough

1

tn
φ(tn,pn) ≥ γ or φ(tn,pn) ≥ γ tn.
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Taking n sufficiently large and γ < 0 sufficiently small, this last inequality contra-
dicts the assumption stated as item 1 in Theorem 4.11.

This contradiction shows that our assumption (4.11) cannot be true and this com-
pletes the proof of Theorem 4.11.

4.3.1.4 Uniform Hyperbolic Splitting for the Linear Poincaré Flow

Here we present the proof of Theorem 4.10. The assumptions imply, by Theo-
rem 4.4, that there exists a dominated splitting for the Linear Poincaré Flow over
ΛY (U)∗, for every vector field Y in some C1 neighborhood V of X. Here U is a
trapping region for ΛX(U). We can define the family of subadditive functions

φY (t, y) := log‖P t
Y | Ncs,Y

y ‖, t ∈ R, y ∈ ΛY (U)∗, Y ∈ V .

We note that this family of functions satisfies all the conditions in the statement of
Theorem 4.11 restricted to non-equilibrium points. Indeed, the Chain Rule together
with the elementary properties of the norm shows that φ is subadditive; it is obvious
that φY (0, y) = 0 for all y ∈ ΛY (U)∗; the boundedness of the derivative follows
from the boundedness of Y on a bounded subset of a manifold; there are no equilib-
ria to consider in this setting and the dominated splitting implies the continuity of
the family {φY }Y∈V see Theorem 2.33. Theorem 4.7 provides the main assumption
on the behavior of φY on periodic orbits in ΛY (U)∗ for Y ∈ V .

Hence, given a compact invariant subset Γ of ΛX(U)∗, from Theorem 4.11 we
have that there exists c ∈ R and λ0 ∈ (0,1) such that

φY (t, x) ≤ c + t logλ for all x ∈ Γ, t ∈ R, Y ∈ V

which implies that ‖P t
X | Ncs,X

x ‖ ≤ Kλt
0 = Ke−λt for every x ∈ Γ and t ∈ R, where

K = ec > 0 and λ < 0 is given by e−λ = λ0. Thus Ncs,X is a uniformly contracted
subbundle of the normal bundle over Γ .

Analogously, we show that Ncu,X is a uniformly expanded subbundle of the nor-
mal bundle for X, by reasoning with the family of subadditive functions

ψY (t, y) = log‖(P t
Y | Ncu,Y

y )−1‖, Y ∈ V , y ∈ Γ, t ∈ R.

Altogether this shows that X ∈ V has a hyperbolic splitting for the Linear Poincaré
Flow over Γ . The proof of Theorem 4.10 is complete.

4.3.2 Uniform Hyperbolicity for the Linear Poincaré Flow
on the Whole Manifold

Here we prove Theorem 4.1 using Theorem 4.10.
Let V be a C1 neighborhood of X ∈ X1(M) such that every critical element of

Y ∈ V is hyperbolic with the same index (dimension of the stable manifold) and
there exists w such that the closure of {Y t (w) : t ≥ 0} is dense.
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From Theorem 4.2, already proved, with U = M we see that there are no equilib-
ria for Y ∈ V , and there exists a dominated splitting Ncs,Y ⊕ Ncu,Y for the Linear
Poincaré Flow P t

Y of Y defined on the whole M . From Theorem 4.10 applied with
U = M , we deduce that M admits a hyperbolic splitting for the Linear Poincaré
Flow with respect to the vector field X. Thus, by Theorem 2.27, M is a hyperbolic
set for X, i.e., X is an Anosov flow.

This completes the proof of Theorem 4.1.





Chapter 5
Robust Transitivity and Singular-Hyperbolicity

In the theory of differentiable dynamics for flows, i.e., in the study of the asymptotic
behavior of orbits {Xt(x)}t∈R for X ∈ Xr (M), r ≥ 1, a fundamental problem is to
understand how the behavior of the tangent map DX controls or determines the
dynamics of the flow Xt . Since the 1970s there is a complete description of the
dynamics of a system under the assumption that the tangent map has a hyperbolic
structure.

The spectral decomposition theorem, presented in Sect. 2.3 and first proved in
[252], provides a description of the non-wandering set of a structural stable system
as a finite number of disjoint compact maximal invariant and transitive sets, each of
these pieces being well understood from both the deterministic and from statistical
viewpoints. Moreover such a decomposition persists under small C1 perturbations.
This naturally leads to the study of isolated transitive sets that remain transitive for
all nearby systems (robustness).

The Lorenz equations (2.2) provide an example of a robust attractor containing an
equilibrium point at the origin and periodic points accumulating on it. This is a non-
uniformly hyperbolic attractor which cannot be destroyed by any small perturbation
of the parameters. See Sect. 2.2.3 for more on this.

The existence of robust non-hyperbolic attractors for flows was first proved rig-
orously through the study of geometric models for Lorenz attractors, see Sect. 3.3.
In particular, they exhibit in a robust way an attracting transitive set with an equilib-
rium (singularity) whose eigenvalues λi,1 ≤ i ≤ 3, are real and satisfy λ2 < λ3 <

0 < −λ3 < λ1. In the definition of geometrical models, another key requirement
was the existence of an invariant foliation whose leaves are forward contracted by
the flow. These features enable us to extract very complete topological, dynamical
and ergodic information about these geometrical Lorenz models, as explained in
Sect. 3.3. We prove now that these features are present for any robustly transitive
set.

Hence the main properties of the Lorenz attractor and geometric Lorenz models
are consequences of their robust transitivity. Building on this characterization, in
Chap. 7 we elaborate on the ergodic properties of singular-hyperbolic attractors.

V. Araújo, M.J. Pacifico, Three-Dimensional Flows, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 53,
DOI 10.1007/978-3-642-11414-4_5, © Springer-Verlag Berlin Heidelberg 2010
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5.1 Definitions and Statement of Results

Definition 5.1 An isolated set Λ of a C1 vector field X is robustly transitive if it
has an open neighborhood U such that

ΛY (U) =
⋂

t∈R

Y t(U)

is both transitive and non-trivial (i.e., it is neither a singularity nor a periodic orbit)
for any vector field Y C1-close to X.

First we recall the following simpler result for global transitive flows on 3-
manifolds which was first proved by Doering in [79] and whose proof is presented
in Chap. 4.

Theorem 5.2 Assume that Λ = M is a robustly transitive set (on a three dimen-
sional manifold). Then the flow is Anosov. In particular the flow has no singularities.

In general, when Λ is a proper subset of M and contains singularities, we have
the following characterization.

Theorem 5.3 A robustly transitive set containing singularities of a flow on a closed
3-manifold is either a proper attractor or a proper repeller.

We present now some examples which help to make the meaning of Theorem 5.3
more precise.

Example 5.4 We recall that an example of an isolated and invariant compact subset
of a three-dimensional vector field, robustly transitive but not an attractor nor a
repeller, is the suspension of a horseshoe for a surface diffeomorphism. In this case
the set has no singularities. This is the case of all transitive hyperbolic isolated
subsets for three-dimensional closed manifolds.

Example 5.5 Theorem 5.3 is false for dimensions bigger than three. Indeed consider
the vector field Y : (z,w) ∈ S

3 × S
1 �→ (X(z),N(w)) in S

3 × S
1, where

• X is the vector field given by the Lorenz equations (2.2) or the vector field ob-
tained after the construction of any geometric Lorenz attractor (see Sect. 3.3.2)
suitably embedded in S

3, for example with a hyperbolic unstable equilibrium at
infinity;

• N is the “North-South” vector field on the circle S
1 = {(x, y) : x2 +y2 = 1} given

by −k ·∇(π | S
1) where π is the projection on the second coordinate and k > 0 is

big enough so that the expansion rate ek at the “North” (0,1) and the contraction
rate e−k at the “South” (0,−1) dominate every eventual expansion or contraction
along the directions of T S

3 × {0}.
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Then ΛY = ∩t>0Y
t (U × V ), which is the maximal invariant subset of U × V with

respect to Y , equals ΛX × {(0,1)} and is transitive, where

• U is an isolating neighborhood of the (geometric) Lorenz attractor for the X-flow;
• V is a small neighborhood of (0,1) in S

1; and
• ΛX is the (geometric) Lorenz attractor.

Notice that S
3 × {(0,1)} is an invariant and normally hyperbolic compact submani-

fold of S
3 ×S

1, see [110]. It follows that, for all vector fields Z C1-close to Y , there
exists an “analytic continuation” M̃ of the submanifold S

3 × {(0,1)} such that

• M̃ is a Zt -invariant, compact and normally hyperbolic submanifold of S
3 × S

1;
in particular the length of any smooth curve transverse to M̃ inside U × V is
exponentially expanded by Zt , t > 0.

• M̃ is C1-close to S
3 × {(0,1)} as embeddings in S

3 × S
1.

Hence there exists a diffeomorphism φ : M̃ → S
3, close to the identity, and the re-

striction of the vector field Z to M̃ can be seen as a vector field C1-close to X under
a global change of coordinates extending φ. Therefore the maximal invariant subset
of U ×V for Z is ∩t>0Z

t(φ−1(U ×V )) ⊂ M̃ , which is transitive by the robustness
of the (geometric) Lorenz attractor. In this way we get a robustly transitive set ΛY

which is neither an attractor nor a repeller.

Example 5.6 In the setting of boundary-preserving vector fields, on 3-manifolds
with boundary, the singular-horseshoe provides another counter-example (see Re-
mark 3.3) since it is robustly transitive in the space of vector fields preserving the
boundary, but it is not an attractor nor a repeller.

Example 5.7 The converse to Theorem 5.3 is also not true: proper attractors (or
repellers) with singularities are not necessarily robustly transitive, even if their pe-
riodic points and singularities are hyperbolic in a robust way. For examples, see e.g.
Morales and Pujals [171], where we can find the following construction which we
detail here.

In the construction of the geometric Lorenz attractor presented in Sect. 3.3, re-
place the one-dimensional map of Fig. 3.24 with the map represented on the left
hand side of Fig. 5.1. The fixed point p of this map represents a saddle-type hy-
perbolic periodic orbit in the maximal invariant subset of a neighborhood of the
attractor.

However, by an arbitrarily small perturbation of the one-dimensional map, we
can construct a C1-close vector field with a geometric Lorenz attractor whose one-
dimensional quotient map is represented on the right hand side of Fig. 5.1. The hy-
perbolic periodic orbit persists, and the new orbit corresponding to p′ still belongs to
the maximal invariant set of the same neighborhood, but does not belong to the new
attractor corresponding to the maximal invariant subset inside the interval [−1/2, b]
in Fig. 5.1. Hence the original attractor is transitive but not robustly transitive.

This last example prompts for a search for sufficient conditions ensuring robust-
ness of a singular-hyperbolic attractor. We shall say more about this in Chap. 6.
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Fig. 5.1 A non-robustly transitive Lorenz transformation

Theorem 5.3 is obtained from a general result on n-manifolds, n ≥ 3, which
shows that the next conditions are sufficient for an isolated set to be an attracting set:

1. all its periodic points and singularities are hyperbolic, and
2. it robustly contains the unstable manifold either of a periodic point or of an equi-

librium point.

Before giving the proofs let us describe a global consequence of Theorem 5.3
which improves Theorem 5.2 (or Theorem 4.3).

Theorem 5.8 A C1 vector field on a 3-manifold having a robustly transitive non-
wandering set is Anosov.

Proof Let X be a C1 vector field satisfying the conditions of the statement above,
that is: Ω(X) is (an isolated set and) robustly transitive.

If Ω(X) has singularities, then Ω(X) is either a proper attractor or a proper
repeller of X by Theorem 5.3, which is impossible by Lemma 2.1 from Sect. 2. Then
Ω(X) is a robustly transitive set without singularities. By [79, 270] we conclude
that Ω(X) is hyperbolic and so X is Axiom A with a unique basic set in its spectral
decomposition. Since Axiom A vector fields always exhibit at least one attractor
and Ω(X) is the unique basic set of X, it follows that Ω(X) is an attractor. By
Lemma 2.1 again this implies that Ω(X) is the whole manifold.

Hence we are in the setting of Theorem 5.2 and we conclude that X is Anosov as
desired. �

Remark 5.9 As observed after the proof of Lemma 2.1 in Sect. 2, the same argument
shows that Theorem 5.8 remains true if one exchanges non-wandering set by limit
set in its statement.

5.1.1 Equilibria of Robust Attractors Are Lorenz-Like

We say that an isolated set Λ ⊂ M is robustly singular for X ∈ X1(M) if there is
a neighborhood U of Λ in M and a C1-neighborhood U of X in X1(M) such that
ΛY (U) contains a singularity for all Y ∈ U .
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Theorem 5.10 Let Λ be a robustly singular transitive set of X ∈ X1(M). Then, for
either Y = X or Y = −X, every σ ∈ S(Y )∩Λ is Lorenz-like and satisfies Wss

Y (σ )∩
Λ = {σ }.

As a consequence, considering robust attractors, that is, attractors which persist
for all C1-nearby vector fields and remain transitive, we get

Theorem 5.11 Every singularity of a robust attractor on a closed 3-manifold is
Lorenz-like.

5.1.2 Robust Attractors Are Singular-Hyperbolic

A compact invariant set Λ of X is partially hyperbolic if there are a continuous
invariant tangent bundle decomposition TΛM = Es

Λ ⊕ Ec
Λ and constants λ,K > 0

such that

• Ec
Λ (K,λ)-dominates Es

Λ, i.e., for all x ∈ Λ and for all t ≥ 0

‖DXt(x) | Es
x‖ ≤ e−λt

K
· m(DXt(x) | Ec

x); (5.1)

• Es
Λ is (K,λ)-contracting (see Sect. 2.3).

We shall say that TΛM = Es
Λ ⊕Ec

Λ is a (K,λ)-splitting for short. For x ∈ Λ and t ∈
R we let J c

t (x) be the absolute value of the determinant of the linear map DXt(x) |
Ec

x : Ec
x → Ec

Xt (x)
. We say that the sub-bundle Ec

Λ of the partial hyperbolic set Λ is
volume expanding if

J c
t (x) = ∣

∣det(DXt | Ec
x)

∣
∣ ≥ Keλt ,

for every x ∈ Λ and t ≥ 0 (in this case we say that Ec
Λ is (K,λ)-volume expanding

to indicate the dependence on (K,λ)).
It is known, see Theorem 2.27, that a non-singular partially hyperbolic set for

a three-dimensional flow, with volume expanding central direction, is uniformly
hyperbolic.

Definition 5.12 A partially hyperbolic set is singular-hyperbolic if its singularities
are hyperbolic and it has volume expanding central direction.

A singular-hyperbolic attractor is a singular-hyperbolic set which is an attrac-
tor as well: an example is the (geometric) Lorenz attractor presented in Sect. 3.3.
A singular-hyperbolic repeller of X is a singular-hyperbolic attractor of −X. An
example of a singular-hyperbolic set which is neither an attractor nor a repeller is
the singular horseshoe presented in Sect. 3.1.

We note that we can also say, in a 3-manifold, that an invariant subset is singular-
hyperbolic if it is volume hyperbolic: that is, it admits a DXt -invariant dominated
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splitting Ecs
Λ ⊕Ecu

Λ such that the volume element in Ecs
Λ is uniformly contracted and

the volume element in Ecu
Λ is uniformly expanded. Since one of these subbundles is

one-dimensional, we recover the above notion of singular-hyperbolicity, either for
X or for −X.

The following result characterizes robust attractors for three-dimensional flows.

Theorem 5.13 Robust attractors of C1 flows containing singularities are singular-
hyperbolic sets for X.

We remark that robust attractors cannot be C1 approximated by vector fields
presenting either attracting or repelling periodic points. This implies that, on 3-
manifolds, any periodic point lying in a robust attractor is hyperbolic of saddle-type.
Thus, as in Theorem 4.10 (see also Liao [135, Theorem A]), we conclude that ro-
bust attractors without singularities on closed 3-manifolds are hyperbolic. We can
also use Theorem 2.27 and show that a singular-hyperbolic set without singularities
admits a hyperbolic splitting for the Linear Poincaré Flow: this is done in Proposi-
tion 6.2 in Chap. 6. Therefore we obtain a dichotomy as follows.

Theorem 5.14 Let Λ be a robust attractor of X ∈ X1(M). Then Λ is either hyper-
bolic or singular-hyperbolic.

5.1.3 Brief Sketch of the Proofs

To prove Theorem 5.3 we first obtain a sufficient condition for a transitive isolated
set with hyperbolic critical elements of a C1 vector field on an n-manifold, n ≥ 3,
to be an attractor (Theorem 5.17). We use this to prove that a robustly transitive
set whose critical elements are hyperbolic is an attractor if it contains a singularity
whose unstable manifold has dimension one (Theorem 5.18). This implies that C1

robustly transitive sets with singularities on closed 3-manifolds are either proper
attractors or proper repellers (Theorem 5.3).

The characterization of singularities in a robust transitive set (Theorem 5.10) is
obtained by contradiction. Using the Connecting Lemma (see Sect. 2.5.7), we can
produce special types of cycles (inclination-flip or Shil’nikov, see Chap. 3) associ-
ated to a singularity leading to nearby vector fields which exhibit attracting or re-
pelling periodic points. This contradicts the robustness of the transitivity condition.

Theorem 5.13 is proved in Sect. 5.4. We start by proposing an invariant splitting
over the periodic points lying in Λ and prove uniform estimates on angles between
stable, unstable, and central unstable bundles for periodic points. Roughly speaking,
if such angles are not uniformly bounded away from zero, we construct a new vector
field near the original one exhibiting either a sink or a repeller, yielding a contradic-
tion. Such a perturbation is obtained using the extension for flows of a perturbation
lemma of Franks, given by Theorem 2.24. This allows us to prove that the splitting
proposed for the periodic points is partially hyperbolic with volume expanding cen-
tral direction. We then extend this splitting to the closure of the periodic points. We
show that the splitting proposed for the periodic points is compatible with the local
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partial hyperbolic splitting at the singularities (Proposition 5.41) using the fact that
the Linear Poincaré Flow has a dominated splitting outside the singularities ([270,
Theorem 3.8] stated as Theorem 2.33 in Sect. 2.6); and that the non-wandering set
outside a neighborhood of the singularities is hyperbolic (Lemma 5.44). We next
extend this splitting to all of Λ, obtaining Theorem 5.13.

5.2 Higher Dimensional Analogues

An example of a higher-dimensional invariant robust attractor with multidimen-
sional expanding directions was given by Bonatti, Pumariño and Viana in [58],
which we present below.

5.2.1 Singular-Attractor with Arbitrary Number of Expanding
Directions

Consider a “solenoid” constructed over a uniformly expanding map f : T
k → T

k of
the k-dimensional torus, for some k ≥ 2. That is, let D be the unit disk on R

2 and
consider a smooth embedding F : T

k × D → T
k × D of N = T

k × D into itself,
which preserves and contracts the foliation

Fs = {{z} × D : z ∈ T
k
}

,

and moreover the natural projection π : N → T
k on the first factor conjugates F to

f : π ◦ F = f ◦ π .
Now consider the linear flow over M = N × [0,1]/ ∼ given by the vector field

X = (0,1) on T N × R where we make the identification (x,0) ∼ (x,1) for all
x ∈ N . Modify the flow on a cylinder U × D × [0,1] around the orbit of a point
p = (z,0) ∈ N , where U is a neighborhood of z in T

k , in such a way as to cre-
ate a hyperbolic singularity σ of saddle-type with k-expanding and 3 contracting
eigenvalues, as depicted in Fig. 5.2.

This modified flow defines a transition map L from Σ0 = T
k × {0} to Σ1 =

T
k × {1} which through the identification given by (w,1) ∼F (F (w),0) defines the

return map to the global cross-section Σ0 of a flow Y on the space MF = M/ ∼F .
In [58] it is shown that, if the expanding rate of f is sufficiently big, then the set

Λ =
⋃

T >0

⋂

t>T

Yt (Σ0)

is a robust partially hyperbolic attractor with singularities.

Fig. 5.2 A sketch of the
construction of a robust
singular-attractor in higher
dimensions
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5.2.2 The Notion of Sectionally Expanding Sets

Metzger and Morales in [156] introduced the notion of sectionally expanding set in
a manifold of arbitrary finite dimension. This notion encompasses that of singular-
hyperbolic sets in 3-manifolds as a particular case.

We say that a compact invariant set Λ for a flow, generated by a vector field
X ∈ X1(M) on a compact finite dimensional manifold M , is sectionally expanding
if it is partially hyperbolic and the central direction expands uniformly the area
along any two-dimensional subspace. More precisely, the tangent bundle over Λ

admits a DXt -invariant and dominated splitting TΛM = Es ⊕ Ec, such that there
are C,λ > 0 satisfying for every x ∈ Λ and t > 0

• Es is uniformly contracted: ‖DXt | Es
x‖ ≤ Ce−λt ;

• Ec is sectionally expanded: for every bidimensional subspace Fx contained in Ec
x

we have |det(DXt | Fx)| ≥ Ceλt .

Similarly to the notion of singular-hyperbolicity, robust attractors in higher di-
mensional manifolds need not be sectionally expanding, as the example of Turaev
and Shil’nikov is [263] shows.

5.2.3 Homogeneous Flows and Sectionally Expanding Attractors

However, strengthening the robust transitivity assumption with homogeneity (the
definition of homogeneous flow on a neighborhood is Definition 2.32 in Sect. 2.6).
enables us to essentially apply the same arguments of the proof of Theorem 5.13.

Theorem 5.15 Let ΛX(U) be a homogeneous robust attractor for a vector field
X ∈ X1(Mn) with n ≥ 3 and index i < n − 1 (the dimension of the stable manifold
of periodic orbits in U for all nearby vector fields). Then any equilibrium in Λ is
generalized Lorenz-like, with index i + 1, and Λ is a sectionally expanding set.

A proof of this result can be seen as an adaptation of the proof of Theorem 5.13,
explained in several remarks during the rest of this chapter, following the proof
of the three-dimensional case. For a partial result in this direction we mention Li,
Gan and Wen, who have shown in [132] that robustly transitive singular sets for
homogeneous vector fields, with index i, having all hyperbolic singularities with
index i, are partially hyperbolic sets with contracting bundle with dimension i.

For a proof of Theorem 5.15 the reader can consult Metzger and Morales in
[156], which refers to [132] for some technical higher-dimensional arguments.

5.3 Attractors and Isolated Sets for C1 Flows

Here we prove Theorems 5.3 and 5.10. We start by focusing on isolated sets, ob-
taining the following sufficient conditions for an isolated set of a C1 flow on an
n-manifold, n ≥ 3, to be an attractor:
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• all its periodic points and singularities are hyperbolic, and
• it contains, in a robust way, the unstable manifold of some critical element.

Using this we prove that isolated sets Λ satisfying the following conditions are
attractors:

• the critical elements C(X) ∩ Λ are hyperbolic;
• Λ contains a singularity with one-dimensional unstable manifold, and
• Λ is

– either robustly non-trivial and transitive (robustly transitive),
– or Λ = C(X) ∩ Λ is robustly the closure of its periodic points (C1 robustly

periodic).

In particular robustly transitive sets with singularities on closed 3-manifolds are
either proper attractors or proper repellers, proving Theorem 5.3. Then we charac-
terize the singularities on robustly transitive sets on 3-manifolds, obtaining Theo-
rem 5.10.

Elementary topological dynamics ensures that an attractor containing a hyper-
bolic critical element contains the unstable manifold of this critical element. The
converse, although false in general, is true for a residual subset of C1 vector fields,
as shown in [67]. We derive a sufficient condition for the converse to hold inspired
by the following property of uniformly hyperbolic attractors (see e.g. [193]): if Λ

is a uniformly hyperbolic attractor of a vector field X, then there is an isolating
block U of Λ and x0 ∈ C(X)∩Λ such that Wu

Y (x0(Y )) ⊂ U for every Y close to X,
where x0(Y ) is the hyperbolic continuation of x0 for Y . This property motivates the
following definition.

Definition 5.16 Let Λ be an isolated set of X ∈ Xr (M), r ≥ 1. We say that Λ

robustly contains the unstable manifold of a critical element if there are x0 ∈ C(X)∩
Λ hyperbolic, an isolating block U of Λ and a neighborhood U of X in Xr (M) such
that Wu

Y (x0(Y )) ⊂ U , for all Y ∈ U .

With this definition in mind we are able to prove

Theorem 5.17 Let Λ be a transitive isolated set of X ∈ X1(M) where M is a com-
pact n-manifold, n ≥ 3, and suppose that every x ∈ C(X) ∩ Λ is hyperbolic. If Λ

robustly contains the unstable manifold of a critical element, then Λ is an attractor.

Now we derive an application of Theorem 5.17.
The geometric Lorenz attractor is a robustly transitive (periodic) set, and it is an

attractor satisfying (see Sect. 3.3)

• all its periodic points are hyperbolic, and
• it contains a singularity whose unstable manifold has dimension one.

We say that an isolated set ΛX(U) is C1 robustly periodic if for all vector fields
Y in a C1-neighborhood of X the periodic orbits of ΛY (U) are dense; see Defini-
tion 6.4.
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The result below shows that such conditions are enough for a robustly transitive
(periodic) set to be an attractor.

Theorem 5.18 Let Λ be either a robustly transitive or a transitive C1 robustly peri-
odic set of X ∈ X1(M), where M is an n-dimensional compact manifold, n ≥ 3. If

1. every x ∈ C(X) ∩ Λ is hyperbolic and
2. Λ has a singularity whose unstable manifold is one-dimensional,

then Λ is an attractor of X.

Theorem 5.18 follows from Theorem 5.17 showing that Λ robustly contains the
unstable manifold of the singularity provided by condition 2 above.

5.3.1 Proof of Sufficient Conditions to Obtain Attractors

The proof of Theorem 5.17 is based on the following lemma.

Lemma 5.19 Let Λ be a transitive isolated set of X ∈ X1(M) such that every x ∈
C(X) ∩ Λ is hyperbolic. Suppose that the following condition holds:

(H3) There are x0 ∈ C(X) ∩ Λ, an isolating block U of Λ and a neighborhood U
of X in X1(M) such that

Wu
Y (x0(Y )) ⊂ U, ∀Y ∈ U .

Then Wu
X(x) ⊂ Λ for every x ∈ C(X) ∩ Λ.

Proof Let x0, U and U as in (H3). By assumption OX(x0) is hyperbolic. If OX(x0)

is attracting then Λ = OX(x0) since Λ is transitive and we are done. We can then
assume that OX(x0) is not attracting. Thus, Wu

X(x0) \ OX(x0) �= ∅.
By contradiction, suppose that there is x ∈ C(X) ∩ Λ such that Wu

X(x) is not
contained in Λ. Then Wu

X(x) is not contained in U . As M \ U is open there is a
cross-section Σ ⊂ M \ U of X such that Wu

X(x) ∩ Σ �= ∅ is transverse. Shrinking
U if necessary we can assume that Wu

Z(x(Z)) ∩ Σ �= ∅ is transverse for every
Z ∈ U .

Now Wu
X(x0) ⊂ Λ by (H3) applied to Y = X. Choose p ∈ Wu

X(x0) \ OX(x0).
As Λ is transitive and p,x ∈ Λ, there is q ∈ Ws

X(x) \ OX(x) such that p,q sat-
isfy (H1) in Theorem 2.21 (the Connecting Lemma). Indeed, the dense orbit of Λ

accumulates both p and x. Then, by Theorem 2.21, there are Z ∈ U and T > 0
such that p ∈ Wu

Z(x(Z)), q ∈ Ws
Z(x(Z)) and ZT (p) = q . In other words, OZ(q)

is a saddle connection between x0(Z) and x(Z). On the other hand, as Z ∈ U ,
we have that Wu

Z(x(Z)) ∩ Σ �= ∅ is transverse. It follows from the λ-Lemma (see
Sect. 2.5.4 of Chap. 1) that Zt(Σ) accumulates on q as t → ∞. This allows us to
break the saddle-connection OZ(q) in the standard way in order to find Z′ ∈ U such
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that Wu
Z′(x0(Z

′)) ∩ Σ �= ∅ (see e.g. [190] or the proof of Theorem 3.6 in [167]). In
particular, Wu

Z′(x0(Z
′)) is not contained in U . This contradicts (H3) and the lemma

follows. �

Proof of Theorem 5.17 Let Λ and X be as in the statement of Theorem 5.17. It
follows that there are x0 ∈ C(X) ∩ Λ, U and U such that (H3) holds.

Next we prove that Λ satisfies the hypothesis of Lemma 2.5, that is, there is an
open set W containing Λ such that Xt(W) ⊂ U for every t ≥ 0.

Indeed, suppose that such a W does not exist. Then there are sequences xn →
x ∈ Λ and tn > 0 such that Xtn(xn) ∈ M \ U . By compactness we can assume that
Xtn(xn) → q for some q ∈ M \ U .

Fix an open set V ⊂ V ⊂ U containing Λ. As q ∈ M \ U ,

M \ U ⊂ M \ int(U), and M \ int(U) ⊂ M \ V

we have q /∈ V . By Lemma 2.3 there is a neighborhood U0 ⊂ U of X such that

ΛY (U) ⊂ V, for all Y ∈ U0. (5.2)

Then condition (H3), the invariance of Wu
Y (x0(Y )) and the relation (5.2) imply that

Wu
Y (x0(Y )) ⊂ V ⊂ V , for every Y ∈ U0. (5.3)

Now we have two cases:

1. either x /∈ C(X);
2. or x ∈ C(X).

In Case 1 we obtain a contradiction as follows. Let OX(z) be the dense orbit
of Λ, i.e., Λ = ωX(z). Fix p ∈ Wu

X(x0) \ OX(x0). Then p ∈ Λ by (H3) applied to
Y = X. As x ∈ Λ we can choose sequences zn ∈ OX(z) and t ′n > 0 such that

zn → p and Xt ′n(zn) → x.

It follows that p,q, x satisfy (H2) of Theorem 2.22 for Y = X. Then from The-
orem 2.22 there is Z ∈ U0 such that q ∈ Wu

Z(x0(Z)). As q /∈ V we have that
Wu

Z(x0(Z)) is not contained in U . And this is a contradiction by (5.3) since Z ∈ U0.
In Case 2 we use (H3) to obtain a contradiction as follows. By assumption

OX(x) is a hyperbolic closed orbit. Clearly OX(x) is neither attracting nor re-
pelling. In particular Wu

X(x) \ OX(x) �= ∅. But xn /∈ Ws
X(x) since xn → x and

Xtn(xn) /∈ U . Then, using linearizing coordinates given by the Grobman-Hartman
Theorem around OX(x) (see Sect. 2.5.3), we can find x ′

n in the positive orbit of xn

such that x′
n → r ∈ Wu

X(x) \ OX(x). Note that r /∈ C(X) and that there are t ′n > 0
such that Xt ′n(x′

n) → q .
Since (H3) holds, by Lemma 5.19 we have Wu

X(x) ⊂ Λ. This implies that r ∈ Λ.
Then we have Case 1 replacing x by r , tn by t ′n and xn by x′

n. As Case 1 results in a
contradiction, we conclude that Case 2 also results in a contradiction.

Hence Λ satisfies the hypothesis of Lemma 2.5, and Theorem 5.17 follows. �
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Proof of Theorem 5.18 Let Λ be either a robust transitive set or a transitive C1

robust periodic set of X ∈ X1(M) satisfying the following conditions:

1. Every critical element of X in Λ is hyperbolic.
2. Λ contains a singularity σ with dim(Wu

X(σ )) = 1.

On the one hand, if Λ is robustly transitive, we can by Definition 5.1 fix a neigh-
borhood U of X and an isolating block U of Λ such that ΛY (U) is a non-trivial
transitive set of Y , for every Y ∈ U . Clearly we can assume that the continuation
σ(Y ) is well defined for all Y ∈ U . Since transitive sets are connected sets, we
have:

(C) ΛY (U) is connected for each Y ∈ U .

On the other hand, if Λ is C1 robustly periodic, we can fix by Definition 6.4 a
neighborhood U of X and an isolating block U of Λ such that for each Y ∈ U we
have ΛY (U) = Per(Y ) ∩ ΛY (U). Assuming that σ(Y ) is well defined for Y ∈ U
we have

(C’) σ(Y ) ∈ Per(Y ) ∩ ΛY (U), for every Y ∈ U .

Claim The set Λ robustly contains the unstable manifold of a critical element.

By Definition 5.16, if U is the neighborhood of X described in either Property
(C) or (C’), then it suffices to prove Wu

Y (σ (Y )) ⊂ U for all Y ∈ U .
Arguing by contradiction, suppose that there exists Y ∈ U such that Wu

Y (σ (Y ))

is not contained in U .
From Condition 2 above it follows that Wu

X(σ) \ {σ } has two branches which we
denote by w+ and w− respectively. Fix q+ ∈ w+ and q− ∈ w−. Denote by q±(Y )

the continuation of q± for Y close to X. We can assume that the q±(Y ) are well
defined for all Y ∈ U .

As q±(Y ) ∈ Wu
Y (σ (Y )), the negative orbit of q±(Y ) converges to σ(Y ) ∈

int(U) ⊂ U . If the positive orbit of q±(Y ) is in U , then Wu
Y (σ (Y )) ⊂ U , which

is a contradiction. Consequently the positive orbit of either q+(Y ) or q−(Y ) leaves
U . It follows that there is t > 0 such that either Y t (q+(Y )) or Y t (q−(Y )) /∈ U . As-
sume the first case. The other case is analogous. As M \ U is open, the continuous
dependence of the unstable manifolds implies that there is a neighborhood U ′ ⊂ U
of Y such that

Zt(q+(Z)) /∈ U, for every Z ∈ U ′. (5.4)

Now we split the proof of the claim into two cases.

Case I: Λ is robustly transitive.
In this case ΛY (U) is a non-trivial transitive set of Y . Fix z ∈ ΛY (U) such that
ωY (z) = ΛY (U). As σ(Y ) ∈ ΛY (U) it follows that either q+(Y ) or q−(Y ) ∈
ωY (z). As Y ∈ U ′, the relation (5.4) implies that q−(Y ) ∈ ωY (z). Thus, there is
a sequence zn ∈ OY (z) converging to q−(Y ). Similarly there is a sequence tn > 0
such that Y tn(zn) → q for some q ∈ Ws

Y (σ (Y ) \ {σ(Y )}. Define p = q−(Y ).
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It follows that p, q , Y satisfy (H1) in Theorem 2.21, and so there is Z ∈ U ′
such that q−(Z) ∈ Ws

Z(σ (Z)). This gives a homoclinic connection associated
to σ(Z). Breaking this connection as in the proof of Lemma 5.19, we can find
Z′ ∈ U ′ close to Z and t ′ > 0 such that

Z′t ′(q−(Z′)) /∈ U. (5.5)

Now, (5.4) and (5.5) together with the Grobman-Harman Theorem 2.14 imply
that the set {σ(Z′)} is isolated in ΛZ(U). But ΛZ′(U) is connected by Property
(C) since Z′ ∈ U ′ ⊂ U . Then ΛZ′(U) = {σ(Z′)}, a contradiction since ΛZ′(U)

is non-trivial. This proves the claim in this case.
Case II: Λ is C1 robustly periodic.

The proof is similar to the previous one. In this case ΛY (U) is the closure of
its periodic orbits and dim(Wu

Y (σ (Y )) = 1. As the periodic points of ΛY (U) do
accumulate either q+(Y ) or q−(Y ), relation (5.4) implies that there is a sequence
pn ∈ Per(Y ) ∩ ΛY (U) such that pn → q−(Y ). Clearly there is another sequence
p′

n ∈ OY (pn) now converging to some q ∈ Ws
Y (σ (Y ) \ {σ(Y )}. Set p = q−(Y ).

Again p,q,Y satisfy (H1) in Theorem 2.21, and so there is Z ∈ U ′ such that
q−(Z) ∈ Ws

Z(σ (Z)). As before we have a homoclinic connection associated to
σ(Z). Breaking this connection we can find Z′ ∈ U ′ close to Z and t ′ > 0 such
that

Z′t ′(q−(Z′)) /∈ U.

Again this relation together with the Grobman-Harman Theorem 2.14 and the
relation (5.4) would imply that every periodic point of Z′ passing close to σ(Z′)
is not contained in ΛZ′(U). But this contradicts Property (C’) since Z′ ∈ U ′ ⊂
U . This completes the proof of the claim in this case.

It follows that Λ is an attractor by condition (1) above, Theorem 5.17 and by the
claim. This completes the proof of Theorem 5.18. �

5.3.2 Robust Singular Transitivity Implies Attractors or Repellers

In this section M is a closed 3-manifold and Λ is a robustly transitive set of X ∈
X1(M).

According to Definition 5.1 we can fix an isolating block U of Λ and a neigh-
borhood UU of X such that ΛY (U) = ∩t∈RY t (U) is a non-trivial transitive set of
Y , for every Y ∈ UU . Robustness of transitivity implies that X ∈ UU cannot be C1-
approximated by vector fields exhibiting either sinks or sources in U . And since
dim(M) = 3 this easily implies the following.

Lemma 5.20 Let X ∈ UU . Then X has neither sinks nor sources in U , and any
p ∈ Per(X) ∩ ΛX(U) is hyperbolic.
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The following result shows that singularities in this setting are Lorenz-like, either
for the given flow X or for the reversed flow −X. We need the following definition.

Definition 5.21 A hyperbolic singularity σ belonging to a non-trivial compact in-
variant set Λ for a C1 flow Xt is properly accumulated by regular orbits in Λ if
there exists a sequence (γn)n∈N of distinct regular orbits contained in Λ such that

• α(γn) �= {σ } and ω(γn) �= {σ } for all n ∈ N;
• for every neighborhood V of σ there are points pn, qn ∈ V ∩γn such that qn = Xtn

for some tn > 0 and n ∈ N, and X[0,tn](pn) is not contained in V .

Observe that a hyperbolic singularity σ properly accumulated by regular orbits
will have points in Λ∩Ws(σ)\{σ } and in Λ∩Wu(σ)\{σ } accumulated by distinct
regular orbits of Λ.

For the next result the reader should recall Definition 2.32 of a homogeneous
vector field from Chap. 2.

Lemma 5.22 Let Y ∈ X1(M) be a homogeneous vector field in U on a 3-manifold
and σ ∈ S(Y ) ∩ ΛY (U) be properly accumulated by regular orbits in Λ = ΛY (U).
Then

1. the eigenvalues of σ are real;
2. if λ2 ≤ λ3 ≤ λ1 are the eigenvalues of σ , then λ2 < 0 < λ1;
3. for λi as above we have

(a) λ3(σ ) < 0 =⇒ −λ3(σ ) < λ1(σ );
(b) λ3(σ ) > 0 =⇒ −λ3(σ ) > λ2(σ ).

Note that if Λ(U) = ΛX(U) is robustly transitive, then the homogeneity con-
dition is satisfied for all Y C1-close to X; this is just Lemma 5.20. In addition if
ΛY (U) is transitive, then every equilibrium of ΛY (U) is properly accumulated by
regular orbits. Thus Y ∈ UU satisfies the condition of the lemma.

Remark 5.23 For an example of a singular-hyperbolic isolated set of a flow X with
non-Lorenz-like singularities, consider the maximal invariant set L inside the el-
lipsoid E of the flow described in Fig. 3.16. Note that the singularities σ1, σ2 with
complex eigenvalues inside the ellipsoid belong to L together with orbits inside
their unstable manifolds connecting them with the Lorenz attractor. Hence σ1, σ2
are accumulated by regular orbits of L but are not properly accumulated since there
are no orbits γn in L approaching σi with α(γn) �= {σi} for i = 1,2.

Remark 5.24 The example give in Fig. 9.1, in Chap. 9, provides an example of a
singular-hyperbolic attractor Λ, obtained through a modification of the construction
of the geometric Lorenz attractor, with a singularity properly accumulated by reg-
ular orbits which is not hyperbolic. This is explained in Remark 9.10. The vector
field in this example is non-homogeneous and is not Kupka-Smale. We note that
this does not contradict item 3 of Lemma 5.22, since this item does not specify what
happens when λ3(σ ) = 0.
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Remark 5.25 Assume that we are given a nonempty compact invariant isolated set
Λ = ΛX(U) under a flow on a 3-manifold, which is partially hyperbolic with vol-
ume expanding central direction. Since partial hyperbolicity is a robust property,
then for every close flow Y we have that ΛY (U) is also partially hyperbolic. This
implies that there are no sources in ΛY (U). The uniform volume expansion along
the central direction of TΛM for X implies that there are no sinks in ΛY (U), for
otherwise we would get volume contraction along the central direction for points
and flows arbitrary close to Λ and X. This is a contradiction since dominated split-
tings depend continuously on the base point and on the dynamics, thus taking limits
we obtain a point in Λ with central direction whose volume is contracted by the X

flow.
Hence in this setting the flow is homogeneous in U and we conclude that ev-

ery hyperbolic singularity properly accumulated by regular orbits of a singular-
hyperbolic isolated set of a flow X is either Lorenz-like for X, or Lorenz-like for
−X. Note that we need to assume hyperbolicity of the singularity by Remark 5.24.

Proof of Lemma 5.22 Let us prove the first item by contradiction. Suppose that there
are Y ∈ UU and σ ∈ S(Y ) ∩ ΛY (U) with a complex eigenvalue ω. We can assume
that σ is hyperbolic by Lemma 5.20 (or, in a higher dimensional setting, by the
homogeneity assumption on U ). As dim(M) = 3 the remaining eigenvalue λ of σ is
real. We have either Re(ω) < 0 < λ or λ < 0 < Re(ω). Reversing the flow direction
if necessary we can assume that we are in the first case. We can further assume, by
a small perturbation keeping the vector field inside UU , that Y is C∞ and

λ �= −Re(ω). (5.6)

According to a form of the Connecting Lemma stated in Theorem 2.21, we can
assume that there is a homoclinic loop Γ ⊂ ΛY (U) associated to σ . Then Γ is a
Shil’nikov bifurcation, see Sect. 3.2, and thus there is a vector field Z arbitrarily C1

close to Y exhibiting a sink or a source in ΛZ(U). This contradicts Lemma 5.20 and
concludes the proof of the first item.

Thus we can arrange the eigenvalues λ1, λ2, λ3 of σ in such a way that λ2 ≤
λ3 ≤ λ1. By Lemma 5.20 we have that λ2 < 0 and λ1 > 0. This proves the second
item in the statement.

To prove the third item we can apply Theorem 3.4 from Sect. 3.2. This shows
that if item (a) fails, there is Z arbitrarily C1 close to Y exhibiting a sink in ΛZ(U);
or if item (b) fails, we can find a source in ΛZ(U). Either case is a contradiction as
before, concluding the proof of the lemma. �

Remark 5.26 The same proof above extends to homogeneous attracting sets in
higher dimensions, since we can always argue with the least contracting/expanding
eigenvalues of σ through a reduction to the corresponding central manifold, see the
discussion in Sect. 3.2.3. We argue in a slightly different way from Metzger and
Morales in [156]. We first recall that in a homogeneous vector field equilibria must
be hyperbolic by definition. Keeping the notations introduced in Definition 2.30 of
generalized Lorenz-like singularity properly accumulated by regular orbits in Λ, we
can show that:
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1. the contracting and expanding eigenvalues with smallest real part are real and
λ < 0 < μ.

Indeed, on the one hand, if both the contracting eigenvalue with smallest real
part and the expanding eigenvalue with smallest real part are complex, then we
can, after a small perturbation of X using that σ is properly accumulated by reg-
ular orbits in Λ, obtain a double-focus connection for σ such that the eigenvalues
with smallest real part are simple (they are not multiple zeroes of the character-
istic polynomial of DX(σ)). Moreover, since regular orbits accumulating on σ

must do so along the central direction given by the sum of the eigenspaces of
these weak eigenvalues, we can obtain such a double-focus saddle-connection
along a central manifold corresponding to the weakest eigenvalues. This type
of connection bifurcates in a way that new periodic orbits appear with different
indexes, which contradicts the homogeneous assumption on X, see Sect. 3.2.3.

On the other hand, if one of these eigenvalues ω is complex and the other λ is
real, we can argue as in the three-dimensional proof of Lemma 5.22 since their
real parts have opposite signs, restricting the dynamics to the central manifold
corresponding to λ,ω.

Hence both such eigenvalues are real, as claimed.
2. a. either λ−(σ ) �= ∅ =⇒ −λ < μ;

b. or λ−(σ ) = ∅ =⇒ λ < −μ.
Indeed, if λ−(σ ) �= ∅, then we can obtain a saddle-connection associated to

σ by a perturbation through the Connecting Lemma, using the fact that σ is
properly accumulated by regular orbits, connecting the one-dimensional unstable
manifold with the one-dimensional central-stable (weak-stable) manifold. The
bifurcation of this saddle-connection provides periodic orbits with different in-
dices for nearby flows if λ+μ ≤ 0, by the same arguments proving Theorem 3.4.

For the other case, just note that if λ−(σ ) = ∅, then μ+(σ ) �= ∅ and we find
ourselves in the same setting as above after reversing time.

Summing up: given an attracting set Λ of a homogeneous vector field in a finite
dimensional manifold, then every equilibrium σ properly accumulated by regu-
lar orbits within Λ is generalized Lorenz-like either for X or for −X. See also
Lemma 5.32 in a 3-dimensional setting.

The following fact is extremely useful.

Lemma 5.27 There is no Y ∈ UU exhibiting two hyperbolic singularities in ΛY (U)

with different unstable manifold dimensions.

Proof Suppose by contradiction that there is Y ∈ UU exhibiting two hyperbolic
singularities with different unstable manifold dimensions in ΛY (U). Note that Λ′ =
ΛY (U) is a robust transitive set of Y and −Y respectively. Since Kupka-Smale
vector fields are generic (by the results in Sect. 2.5.10) we can assume that all the
critical elements of Y in Λ′ are hyperbolic.

As dim(M) = 3 and Y has two hyperbolic singularities with different unstable
manifold dimensions, it follows that both Y and −Y have a singularity in Λ′ whose
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unstable manifold has dimension one. Then, by Theorem 5.18 applied to Y and −Y

respectively, Λ′ is a proper attractor and a proper repeller of Y . In particular, Λ′
is an attracting set and a repelling set of Y . It would follow from Lemma 2.4 that
Λ′ = M . But this is a contradiction since Λ′ is proper. �

From this we can derive the following.

Corollary 5.28 If Y ∈ UU , then every critical element of Y in ΛY (U) is hyperbolic.

Proof By Lemma 5.20 every periodic point of Y in ΛY (U) is hyperbolic, for all
Y ∈ U . It remains to prove that every σ ∈ S(Y ) ∩ ΛY (U) is hyperbolic, for all
Y ∈ UU . By Lemma 5.22 the eigenvalues λ1, λ2, λ3 of σ are real and satisfy λ2 <

0 < λ1. Then, to prove that σ is hyperbolic, we only have to prove that λ3 �= 0.
If λ3 = 0, then σ is a generic saddle-node singularity (after a small perturbation
if necessary). Unfolding this saddle-node we obtain Y ′ ∈ UU close to Y having
two hyperbolic singularities with different unstable manifold dimensions in ΛY ′(U).
This contradicts Lemma 5.27 and the proof follows. �

Finally we can start proving the main theorems.

Proof of Theorem 5.3 Let Λ be a robustly transitive set with singularities of
X ∈ X 1(M) with dim(M) = 3. By Corollary 5.28 applied to Y = X we have that
every critical element of X in Λ is hyperbolic. So Λ satisfies condition (1) of The-
orem 5.18. As dim(M) = 3 and Λ is non-trivial, if Λ has a singularity, then this
singularity has unstable manifold dimension equal to one, for either X or −X. So
Λ also satisfies condition (2) of Theorem 5.18, for either X or −X. Applying Theo-
rem 5.18 we have that Λ is an attractor (in the first case) or a repeller (in the second
case).

We shall prove that Λ is proper in the first case. The proof is similar in the second
case. If Λ = M then we would have U = M . From this it would follow that Ω(X) =
M and, moreover, that X cannot be C1 approximated by vector fields exhibiting
attracting or repelling critical elements. It would follow from Theorem 4.3 that X is
Anosov. But this is a contradiction since Λ (and so X) has a singularity and Anosov
vector fields do not. This finishes the proof of Theorem 5.3. �

Now we prove Theorem 5.10. We start with the following corollary.

Corollary 5.29 If Y ∈ UU then, for either Z = Y or Z = −Y , every singularity of
Z in ΛZ(U) is Lorenz-like.

Proof Apply Lemmas 5.22, 5.27 and Corollary 5.28. We deduce that any singular-
ity, for Y = Z or Y = −Z, has real eigenvalues satisfying λ2 ≤ λ3 < 0 < −λ3 < λ1.
To conclude that λ2 < λ3 for such σ we argue by contradiction. If λ2 = λ3, then
by an arbitrarily small perturbation of Y , we obtain a vector field Y1 for which the
continuation σ1 of σ has eigenvalues λ and −ρ ± iω with λ > 0, ρ > 0 and |ω| ar-
bitrarily small. But we can ensure that Y1 ∈ UU , and thus the transitivity of ΛY1(U)
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enables us to use the Connecting Lemma to get another C1-close vector field Y2 hav-
ing a saddle-connection for the continuation σ2 of σ1 in the setting of the Shilnikov
bifurcation (see Sect. 3.2). In this way we obtain either a sink or a source for a vector
field X ∈ UU , a contradiction. �

Now we use the existence of dominated splitting for the Linear Poincaré Flow
with respect to X ∈ UU ; see Sect. 2.6 for the relevant results and definitions.

Given X ∈ UU define Λ∗
X(U) = ΛX(U) \ S(X). According to Theorem 5.3 we

can assume that ΛX(U) is a proper and isolated attractor of X. Using Lemma 5.20
and the fact that Λ∗

X(U) ⊂ Ω(X), we see that we are in the setting of Theorem 2.33.
Then we conclude that the Linear Poincaré Flow P t on Λ∗

X(U) admits a partially
hyperbolic splitting: NΛ∗

X(U) = Ns,X ⊕ Nu,X .
The following consequence of this is used in a crucial way for the proof of ex-

pansiveness in Chap. 7.

Lemma 5.30 Let Λ be a compact isolated and transitive invariant set for X, with
isolating neighborhood U such that every C1-close vector field admits a dominated
splitting for the corresponding Linear Poincaré Flow on U away from singularities.
Fix σ ∈ S(X) ∩ Λ and write λ2 < λ3 < λ1 for its eigenvalues.

1. If λ2 < λ3 < 0, then σ is Lorenz-like for X and Wss
X (σ ) ∩ Λ = {σ }.

2. If 0 < λ3 < λ1, then σ is Lorenz-like for −X and Wuu
X (σ ) ∩ Λ = {σ }.

Remark 5.31 If we are given a singular-hyperbolic isolated set Λ for a flow X with
isolating neighborhood U then, by Remark 5.25, the singularities of Λ, which are
properly accumulated by regular orbits in Λ, are Lorenz-like for either X or −X.
Moreover the Linear Poincaré Flow on Λ∗ = Λ\S(X) admits a partially hyperbolic
splitting naturally. Indeed the Linear Poincaré Flow is dominated by Theorem 2.33
(since singular-hyperbolicity prevents sinks and sources for nearby flows on U and
guarantees hyperbolicity of all critical elements in U ) and its central-stable bundle
is uniformly contracted by the same argument as in the proof of Proposition 6.2.

In addition, for all close enough vector fields Y the corresponding locally maxi-
mal invariant subset ΛY (U) is also partially hyperbolic with volume expanding cen-
tral direction, and so the domination property of the splitting for the Linear Poincaré
Flow of X on Λ is robust.

Hence we have the same properties used in the proof of Lemma 5.30. We con-
clude that every singularity properly accumulated by regular orbits in a singular-
hyperbolic isolated set satisfies either item 1 or item 2 of Lemma 5.30 above.

We can improve and eliminate the possible Lorenz-like singularities for −X if
we assume from the beginning that Λ is an attractor. This lemma will be very useful
in the next chapters.

Lemma 5.32 Let X ∈ X1(M), with M a 3-manifold, and let Λ be an attractor for
X such that the Linear Poincaré Flow over Λ∗ admits a dominated splitting. Then
the only possible singularities of X in Λ are Lorenz-like for X.
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Proof We recall that the dominated splitting for the Linear Poincaré Flow extends
to periodic orbits on a small neighborhood U of Λ and for every vector field Y suffi-
ciently C1-close to X. Now we argue by contradiction: we know from Lemma 5.30
that if σ ∈ Λ∩S(X) then σ is a Lorenz-like singularity, either for X or for −X, and
we assume it is Lorenz-like for −X and derive a contradiction.

The bidimensional unstable manifold Wu
X(σ) is inside Λ because Λ is an attract-

ing set. The transitivity of Λ ensures that there exists some point p of Λ \ {σ } in
Ws

X(σ), because regular orbits accumulating on σ must accumulate also arbitrarily
near Ws

X(σ) by the linearization of the flow near σ . Considering a point q of Λ\{σ }
in Wuu

X (σ ) (the strong-unstable manifold of σ ), then there are regular orbits in Λ

passing arbitrarily close to p and then to q , since Wuu(σ ) ⊂ Λ and Λ is transi-
tive. The Connecting Lemma ensures that we can find an arbitrarily close C1 vector
field Y admitting a regular orbit in a neighborhood U of Λ connecting Ws

Y (σY ) and
Wuu

Y (σY ). This saddle-connection can be transformed into an inclination-flip type
saddle-connection as in the proof of Lemma 5.30, by an arbitrarily small C1 pertur-
bation of Y . This would contradict the robustness of dominated decomposition of
the Linear Poincaré Flow. �

Proof of Lemma 5.30 To prove the first item we assume that λ2 < λ3 < 0. Then
σ is Lorenz-like for X by Corollary 5.29. Assume by contradiction that Wss

X (σ ) ∩
Λ �= {σ }.

Since Λ is transitive, by Theorem 2.21 there is Z ∈ UU exhibiting a homoclinic
connection Γ ⊂ Wu

Z(σ(Z)) ∩ Wss
Z (σ (Z)). This saddle-connection is an orbit-flip

type connection, see Sect. 3.2.2. Using Theorem 3.6 we can approximate Z by Y ∈
UU with a homoclinic connection

Γ ′ ⊂ Wu
Y (σ (Y )) ∩ (Ws

Y (σ (Y )) \ Wss
Y (σ (Y ))).

Hence there exists a center-unstable manifold Wcu
Y (σ (Y )) containing Γ ′ and tangent

to Ws
Y (σ (Y )) along Γ ′. This saddle-connection is an inclination-flip type connec-

tion.
The existence of inclination-flip connections contradicts the existence of the

dominated splitting for the Linear Poincaré Flow from Theorem 2.33, as a direct
consequence of Theorem 3.6 in Sect. 3.2.2. This contradiction proves the first item.

The proof of the second item follows from the above argument applied to −X. �

Proof of Theorem 5.10 Let Λ be a robust transitive set of X ∈ X1(M) with
dim(M) = 3. By Corollary 5.29, if σ ∈ σX(Λ), then σ is Lorenz-like for either
X or −X. If σ is Lorenz-like for X we have Wss

X (σ ) ∩ Λ = {σ } by Lemma 5.30-
(1) applied to Y = X. If σ is Lorenz-like for −X we have that Wuu

X (σ ) ∩ Λ = {σ }
by Lemma 5.30-(2) again applied to Y = X. As Wss−X(σ) = Wuu

X (σ ) the proof is
complete. �

Remark 5.33 In higher dimensions, given a homogeneous attracting set Λ =
ΛX(U), the possible equilibria belonging to Λ are generalized Lorenz-like (recall
Definition 2.30) either for X or for −X, by Remark 5.26.
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In this setting, a periodic orbit contained in U has index (dimension of the stable
manifold) equal to a fixed integer s(X), the index of the vector field in a neighbor-
hood of Λ for all C1 close vector fields.

The index s(σ ) of a generalized Lorenz-like equilibrium, i.e., the dimension of
the stable eigenspace of σ , properly accumulated by regular orbits in an attracting
set Λ with respect to a homogeneous vector field, is one higher than the index s(X)

of the homogeneous vector field. Indeed, a generalized Lorenz-like equilibrium
properly accumulated by regular orbits in Λ can be turned into a saddle-connection
in the setting of Theorem 3.4 along a central manifold, by a small perturbation us-
ing the Connecting Lemma. The unfolding of this connection induces the creation of
periodic orbits with index s(σ )− 1, so that, to respect the homogeneous assumption
on X inside U , we must have s(σ ) − 1 = s(X).

A similar result for robustly transitive attractors in homogeneous vector fields is
given by [132, Corollary B].

If Λ also admits a dominated splitting with the dimension of the dominated bun-
dle equal to the index of the vector field (which is a C1 robust property), then we can
argue as in the proof of Lemma 5.30. Here the strong-stable manifold of a general-
ized Lorenz-like singularity σ is the invariant manifold tangent at σ to the directions
corresponding to the eigenvalues in λ−(σ ).

Indeed, if σ is generalized Lorenz-like, properly accumulated by regular orbits
in Λ and Wss(σ ) ∩ Λ �= {σ }, then we can use the Connecting Lemma to obtain
an orbit-flip type saddle-connection along the central manifold corresponding to
the weakest contracting and expanding eigenvalues. A small perturbation provides
an inclination-flip type saddle-connection, contradicting the robust domination as-
sumption. The same argument holds for a generalized Lorenz-like singularity after
time reversal. Therefore Lemma 5.30 extends to the setting of homogeneous attract-
ing sets.

Again, Li, Gan and Wen gave a similar result for robustly transitive singular sets
of a homogeneous vector field in [132, Lemma 4.3].

In addition, Lemma 5.32 also extends to this setting with the same argument:
given a homogeneous attractor Λ with dominated splitting, then all its equilibria
must be generalized Lorenz-like. Otherwise the same type of perturbation arguments
builds an inclination-flip type saddle-connection contradicting the domination.

In particular, every equilibria in a sectionally expanding attractor is generalized
Lorenz-like. All these results were obtained by Metzger and Morales in [156].

5.4 Attractors and Singular-Hyperbolicity

Here we present a proof of Theorem 5.13.
Let Λ be a robust attractor of X ∈ X1(M) with dim(M) = 3, U an isolating block

of Λ, and UU a neighborhood of X such that ΛY (U) = ∩t∈RY t (U) is transitive for
all Y ∈ UU . By definition Λ = ΛX(U).

As we have already proved (in Lemma 5.20 and Corollary 5.28), for all Y ∈ UU ,
all the singularities of ΛY (U) are Lorenz-like and all the critical elements in ΛY (U)

are hyperbolic of saddle type.
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For future reference we state precisely the technical conditions for the arguments
that follow.

Theorem 5.34 Let Λ = ΛX(U) be a compact proper isolated invariant subset of
X ∈ X1(M) such that

1. one of the following conditions holds

• either Λ contains a dense regular orbit;
• or Λ is connected and contains a dense subset of periodic orbits;

2. for every vector field C1-close to X, all critical elements in U are hyperbolic of
saddle-type (i.e., there are no sinks or sources nearby);

3. for all C1-close vector fields every equilibrium in U is Lorenz-like.

Then Λ is singular-hyperbolic.

The strategy to prove Theorem 5.13 is the following: given X ∈ UU we show
that there exists a neighborhood V of X, c > 0, 0 < λ < 1 and T0 > 0 such that, for
all Y ∈ V , the set

{y ∈ Per(Y ) ∩ U : (minimal period of y)≥ T0}
has a continuous invariant (c, λ)-dominated splitting Es ⊕ Ecu, with the dimension
of Es equal to 1.

Using the Closing Lemma of Pugh (Theorem 2.19) and the absence of sinks
and sources, we obtain a dominated splitting for the Linear Poincaré Flow with
uniform bounds for all C1 close maximal invariant subsets, and this induces a dom-
inated splitting over ΛX(U). The natural difficulty is to obtain the splitting around
the singularities. The singularities are Lorenz-like and, consequently, they carry the
local hyperbolic bundle Êss associated to the strongest contracting eigenvalue of
DX(σ), and the central bundle Êcu associated to the remaining eigenvalues of
DX(σ). These bundles induce a local partial hyperbolic splitting Êss ⊕ Êcu around
the singularities.

The main step now is to prove that the splitting proposed for the periodic points
is compatible with the local partial hyperbolic splitting at the singularities. Proposi-
tion 5.41 expresses this fact. Finally we prove that Es is contracting and that the cen-
tral direction Ecu is volume expanding, using the Ergodic Closing Lemma through
Theorem 4.11 (on subadditive functions along orbits of a flow), concluding the proof
of Theorem 5.34 and of Theorem 5.13.

We point out that the splitting for the Linear Poincaré Flow P t obtained in Theo-
rem 2.33 is not necessarily invariant under DXt . When Λ∗

X(U) = ΛX(U) \ S(X) is
closed, this splitting induces a hyperbolic splitting for X; see Theorem 2.27. How-
ever; the arguments used there do not apply here since Λ∗

X(U) is not closed. We also
note that a hyperbolic splitting for X over Λ∗

X(U) cannot be automatically extended
to a hyperbolic one over Λ∗

X(U): the presence of a singularity is a natural obstruc-
tion for this. On the other hand, Theorem 5.34 shows that this can be circumvented
to get a partially hyperbolic structure for X over the whole of ΛX(U).
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Let us present now each step of the proof. We keep in mind the original set-
ting of a robustly transitive attractor for clarity, but the only properties used in the
arguments are those stated in Theorem 5.34.

Remark 5.35 It is not difficult to see that these steps can be performed for vector
fields X in compact manifolds of any dimension, since a homogeneous attractor
ΛX(U) such that every equilibrium close to Λ for all C1 nearby vector fields is
generalized Lorenz-like. We comment on some of the adapted arguments along the
several steps of the proof in a number of remarks in what follows.

5.4.1 Uniformly Dominated Splitting over the Periodic Orbits

Let ΛY (U) be a robust attractor of Y ∈ UU , where U and UU are as in the previous
section, that is: for every Y ∈ UU every critical element inside U is hyperbolic of
saddle-type. Moreover the equilibria are all Lorenz-like.

Since every p ∈ PerY (ΛY (U)) is hyperbolic of saddle type, we have that the
tangent bundle of M over p can be written as

TpM = Es
p ⊕ EY

p ⊕ Eu
p,

where Es
p is the eigenspace associated to the contracting eigenvalue of DYtp (p),

Eu
p is the eigenspace associated to the expanding eigenvalue of DY tp (p), and we

write tp for the (minimal) period of p.
Note that Es

p ⊂ Ns
p ⊕ EY

p and Eu
p ⊂ Nu

p ⊕ EY
p , where Ns ⊕ Nu is the splitting

for the Linear Poincaré Flow over regular orbits.
Observe that, if we consider the previous splitting over all Per(Y ) ∩ ΛY (U), the

presence of a singularity in Per(Y ) ∩ ΛY (U) is an obstruction for the extension
of the stable and unstable bundles Es and Eu to Per(Y ∩ ΛY (U). Indeed, near a
singularity, the angle between either Eu and EX , or Es and EX, goes to zero. To
bypass this difficulty, we introduce the following notion.

Definition 5.36 Given Y ∈ UU define for any p ∈ Per(Y ) ∩ ΛY (U) the splitting

TpM = Es,Y
p ⊕ Ecu,Y

p , where Ecu,Y
p := EY

p ⊕ Eu
p.

Moreover we define a splitting over Per(Y ) ∩ ΛY (U) by

TPer(Y )∩ΛY (U)M =
⋃

p∈Per(Y )∩ΛY (U)

(Es,Y
p ⊕ Ecu,Y

p ).

In addition, we define the subspace E
cs,Y
p := E

s,Y
p ⊕ EY

p of the tangent space at
p ∈ Per(Y ) ∩ ΛY (U) which gives another bundle over Per(Y ) ∩ ΛY (U).
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When no confusion arises we drop the Y -dependence on the notation just de-
fined. To simplify notation we denote the restriction of DY t(p) to E

s,Y
p (re-

spectively E
cu,Y
p ) simply by DY t | Es

p (respectively DY t | Ecu
p ) for t ∈ R and

p ∈ Per(Y ) ∩ ΛY (U).
We now prove that the splitting over Per(Y )∩ΛY (U) given by Definition 5.36 is

a DY t -invariant and uniformly dominated splitting along periodic points with large
period.

Theorem 5.37 Given X ∈ UU , there are a neighborhood V ⊂ UU and constants
0 < λ < 1, c > 0, and T0 > 0 such that, for every Y ∈ V , if p ∈ Per(Y ) ∩ ΛY (U),
tp > T0 and T > 0, then

‖DYT | Es
p‖ · ‖DY−T | Ecu

YT (p)
‖ < c · λT .

This result is similar to Theorem 4.8 but, since the angle between Es
p and Np can

be very close to a right angle, we cannot use estimates for the Linear Poincaré Flow
directly to obtain this result.

Theorem 5.37 will be proved in Sect. 5.4.3.3, with the help of Theorems 5.38
and 5.39 below, corresponding to Theorem 4.7, proved in Chap. 4.

Theorem 5.38 establishes, first, that the periodic points are uniformly hyperbolic,
i.e., the periodic points are of saddle-type and the Lyapunov exponents are uniformly
bounded away from zero. Secondly, the angle between the stable and the unstable
eigenspaces at periodic points are uniformly bounded away from zero.

Theorem 5.38 Given X ∈ UU , there are a neighborhood V ⊂ UU of X and con-
stants 0 < λ < 1 and c > 0, such that for every Y ∈ V , if p ∈ Per(Y ) ∩ ΛY (U) and
tp is the period of p then

a) (a1) ‖DY tp | Es
p‖ < λtp (uniform contraction on the period)

(a2) ‖DY−tp | Eu
p‖ < λtp (uniform expansion on the period).

b) ∠(Op(Es
p),Op(Eu

p)) > c (angle uniformly bounded away from zero between
center-stable and center-unstable directions).

This result is exactly the same as Theorem 4.7, proved in Chap. 4.
Theorem 5.39 is a strong version of Theorem 5.38-b). It establishes that, at pe-

riodic points, the angle between the stable and the central unstable bundles is uni-
formly bounded away from zero.

Theorem 5.39 Given X ∈ UU there are a neighborhood V ⊂ UU of X and a posi-
tive constant C such that for every Y ∈ V and p ∈ Per(Y ) ∩ ΛY (U) we have angles
uniformly bounded away from zero: ∠(Es

p,Ecu
p ) > C.

This result is proved in Sect. 5.4.3.4.
We shall prove that, if Theorem 5.37 fails, then we can create a periodic point

for a nearby flow with the angle between the stable and the central unstable bun-
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dles arbitrarily small. This yields a contradiction to Theorem 5.39. In proving the
existence of such a periodic point for a nearby flow we use Theorem 5.38.

Assuming Theorem 5.37, we establish in the following section the extension of
the splitting given in Definition 5.36 to all of ΛX(U). Afterward, with the help of
Theorem 5.38, we show that Es is uniformly contracting and that Ecu is volume
expanding.

In the proof that Es is uniformly contracted (respectively Ecu is volume expand-
ing) we show that the opposite assumption leads to the creation of periodic points
for flows near to the original one with contraction (respectively expansion) along
the stable (respectively unstable) bundle arbitrarily small, contradicting the first part
of Theorem 5.38.

All of these facts together imply Theorem 5.13.

5.4.2 Dominated Splitting over a Robust Attractor

Here we induce a dominated splitting over ΛX(U) using the dominated splitting
over {p ∈ Per(Y ) ∩ ΛY (U) : tp ≥ T0} for flows near X, given by Definition 5.36.
The method is the same as in the proof of Theorem 4.4.

On the one hand, since ΛY (U) is an attracting set for every Y close to X in X1,
we can assume without loss of generality, that for all Y ∈ V and x ∈ Per(Y ) with
OY (x) ∩ U �= ∅, we have OY (x) ⊂ ΛY (U).

On the other hand, since Λ = ΛX(U) is assumed to be connected (this property
is also a consequence of the existence of a dense forward orbit in Λ), we get

Λ(T0) := Λ \ {p ∈ Per(X) ∩ U : tp < T0} is dense in Λ.

From this, to induce an invariant splitting over ΛX(U) it is enough to do it over
Λ(T0), as in Sect. 4.2.2.

Let us take a converging subsequence E
s,Ynk

ynk
⊕ E

cu,Y nk

ynk
and define

Es,X
x = lim

k→∞Es,Y nk

ynk
, Ecu,X

x = lim
k→∞Ecu,Y nk

ynk
.

Since Es,Yn ⊕ Ecu,Yn is a (c, λ)-dominated splitting for all n, then this property is
also true for the limit E

s,X
x ⊕ E

cu,X
x . Moreover dim(E

s,X
x ) = 1 and dim(E

cu,X
x ) = 2

for all x ∈ ΛX(U).
Define the following eigenspaces along Xt(x) for t ∈ R

E
s,X
Xt (x)

:= DXt(Es,X
x ) and E

cu,X
Xt(x)

:= DXt(Ecu,X
x ).

Since for every n the splitting over {p ∈ Per(Yn) ∩ ΛYn(U) : tp ≥ T0} is (c, λ)-
dominated, it follows that the splitting defined above along X-orbits of points in
K(X) is also (c, λ)-dominated. Moreover we also have that E

s,X
Xt (x)

is unidimen-

sional and E
cu,X
Xt (x)

is bidimensional, for all t ∈ R. This provides the desired extension
of a dominated splitting to ΛX(U).
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We denote by Es ⊕Ecu the splitting over ΛX(U) obtained in this way. Since this
splitting is uniformly dominated we deduce that Es ⊕Ecu depends continuously on
the points of ΛX(U) and also on the vector field X; see Sect. 2.6 and also [110].

When necessary we denote by Es,Y ⊕ Ecu,Y the above splitting for Y near X.

Remark 5.40 If σ ∈ S(X) ∩ ΛX(U) then Es
σ is the eigenspace Ess

σ associated
to the strongest contracting eigenvalue of DX(σ), and Ecu

σ is the bidimensional
eigenspace associated to the remaining eigenvalues of DX(σ). This follows from
the uniqueness of dominated splittings; see Sect. 2.6 and also [79, 148].

5.4.3 Robust Attractors Are Singular-Hyperbolic

Next we prove that the splitting Es ⊕ Ecu over ΛX(U) is partially hyperbolic with
volume expanding central-unstable direction. For this we use Theorem 4.11.

5.4.3.1 Es Is Uniformly Contracting

Consider the family of subadditive functions

φY (t, x) := log‖DY t | Es,Y
x ‖, Y ∈ V , x ∈ ΛY (U), t ∈ R.

This family of functions satisfies the conditions of Theorem 4.11, assuming Theo-
rems 5.37, 5.37 and 5.39, and using the fact that the equilibria are Lorenz-like, and
thus isolated.

Therefore there exist c ∈ R and λ0 ∈ (0,1) such that φX(t, x) ≤ c + t logλ0 for
all X ∈ V , x ∈ ΛX(U), t ≥ 0. This means that ‖DXt | Es

x‖ ≤ Ke−λt with K = ec

and e−λ = λ0.

5.4.3.2 Ecu Is Uniformly Volume Expanding

Analogously, we consider the family of subadditive functions

ψY (t, x) := log‖det(DY−t | Ecu,Y
x )‖, Y ∈ V , x ∈ ΛY (U), t ∈ R.

This family of functions satisfies the conditions of Theorem 4.11, assuming Theo-
rems 5.37, 5.37 and 5.39, and using the fact that the equilibria are Lorenz-like, and
thus isolated and their central-unstable subbundle expands area.

Again there exist c ∈ R and λ0 ∈ (0,1) such that ψX(t, x) ≤ c + t logλ0 for
all X ∈ V , x ∈ ΛX(U), t ≥ 0. This means that ‖det(DX−t | Ecu

x ‖ ≤ Ke−λt with
K = ec and e−λ = λ0, as needed.
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5.4.3.3 Uniform Dominated Splitting on Periodic Orbits

Let us assume Theorems 5.38 and 5.39 and show how we obtain Theorem 5.37. The
central idea of the proof is to show that, if Theorem 5.37 fails, then we can obtain a
flow near X exhibiting a periodic point with an arbitrarily small angle between the
central stable and the central-unstable bundles of the Linear Poincaré Flow, leading
to a contradiction to Theorem 5.39.

For this we reduce the problem to the proof of Theorem 4.8 in Sect. 4.2.4, as
follows.

As in the proof of Lemma 4.14, to obtain Theorem 5.37 it is enough to show that
there exist a neighborhood V ⊂ UU of X and T0 > 0 such that, for every vector
field Y ∈ V , if p ∈ PerT0

Y (ΛY (U)) then

‖DYT0 | Es
p‖ · ‖DY−T0 | Ecu

YT0 (p)
‖ ≤ 1

2
. (5.7)

We prove (5.7) arguing by contradiction. If (5.7) fails then given X ∈ UU and T0 >

0, we can find Y ∈ UU arbitrarily close to X, y ∈ Per(Y )∩ ΛY (U) with ty ≥ T0 and
w0 ∈ Es

y and v0 ∈ Ecu
y satisfying (see Sect. 4.2.4 for a similar argument)

‖DY T0(y) · w0‖ >
1

2
‖DYT0(y) · v0‖ ≥ 1

2
‖P T0

Y · v0‖. (5.8)

If we show that the angle between Es

XT0 (y)
and NXT0 (y) is bounded above by a

function of ∠(Es,Ecu), then we find η > 0 so that

‖P T0
Y | Es

y‖ ≥ η‖DYT0 | Es
y‖

since the orthogonal projection on N restricted to Es is close to the identity, and
thus

‖P T0
Y (y) · w0‖ > η

1

2
‖P T0

Y · v0‖. (5.9)

From (5.9) we can argue just as in Sect. 4.2.4 to obtain a perturbation of Y , as close
as we want to Y , with arbitrarily small angles between Ncs

XT0 (y)
and Ncu

XT0 (y)
. This

contradicts Theorem 5.39 and proves Theorem 5.37.
Now we find the upper bound for the angle between the stable and the nor-

mal direction to the flow. Let L : (Ecu

XT0 (y)
)⊥ → Ecu

XT0 (y)
be a linear map such that

Es

XT0 (y)
= Graph(L). Then α(Es,Ecu) = ‖L‖−1 ≥ c. Moreover, if θ = ∠(Es,N),

then

cos θ = ‖OXT0 (y)(w + Lw)‖
‖w + Lw‖ = ‖w + OXT0 (y)Lw‖

‖w + OXT0 (y)Lw + (Lw − OXT0 (y)Lw)‖ .

We note that Lw − OXT0 (y)Lw = π(Lw), where π : TXT0 (y) → EX

XT0 (y)
is the or-

thogonal projection onto the flow direction, and that the vectors w,OXT0 (y)Lw and
π(Lw) are mutually orthogonal. Thus
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cos θ =
(

1 + ‖π(Lw)‖2

‖w‖2 + ‖OXT0 (y)Lw‖2

)−1/2

≥ 1
√

1 + ‖L‖2
≥ 1√

1 + c−2
.

Hence the angle θ is uniformly bounded from above, which is what we wanted to
prove.

This completes the proof of Theorem 5.37 using Theorems 5.38 and 5.39.

5.4.3.4 Uniformly Bounded Angles Between Stable and Unstable Directions
at Periodic Orbits

Here we prove Theorem 5.39, used in the proofs of the results in the previous sec-
tion.

Proof of Theorem 5.39 Arguing by contradiction, we show that, if Theorem 5.39
fails, then we can create periodic points with arbitrarily small angle between the
stable and unstable direction, leading to a contradiction to the second part of Theo-
rem 5.38, already proved.

Theorem 5.39 is a consequence of Propositions 5.41 and 5.42 below. The first
one establishes that, for periodic points close to a singularity, the stable direction re-
mains close to the strong-stable direction of the singularity, and the central-unstable
direction is close to the central-unstable direction of the singularity. This result gives
the compatibility between the splitting proposed for the periodic points in Defini-
tion 5.36 and the local partially hyperbolic splitting at the singularities.

Proposition 5.41 Given X ∈ UU , ε > 0 and σ ∈ S(X) ∩ ΛX(U), there exist
a neighborhood V ⊂ UU of X and δ > 0 such that for all Y ∈ V and p ∈
PerY (ΛY (U)) satisfying dist(p,σY ) < δ we have

(a) ∠(E
s,Y
p , Êss,Y

σY
) < ε, and

(b) ∠(E
cu,Y
p , Êcu,Y

σY
) < ε.

The second statement says that, far from singularities, the angle between the stable
direction and the central unstable direction of any periodic point, inside the maximal
invariant set, is uniformly bounded away from zero.

Proposition 5.42 Given X ∈ UU and δ > 0, there are a neighborhood V ⊂ U of X

and a positive constant C = C(δ) such that if Y ∈ V and p ∈ PerY (ΛY (U)) satisfies
dist(p,S(Y ) ∩ ΛY (U)) > δ then

∠
(

Es,Y
p ,Ecu,Y

p

)

> C.

Theorem 5.39 follows from these propositions since

• away from equilibria, the uniform domination between the stable and center-
unstable directions at periodic orbits is a consequence of the uniform growth rates
provided by Theorem 5.38 together with the angle estimate of Proposition 5.42;
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• for orbits passing close to equilibria, Proposition 5.41 ensures that the stable and
center-unstable directions are essentially the same as the strong-stable and center-
unstable direction at the singularity. The angle between these is bounded away
from zero since each equilibrium is Lorenz-like, by Theorem 5.10, and the set
S(X) ∩ ΛY (U) is finite because each singularity is hyperbolic. This, together
with the uniform growth rates provided by Theorem 5.38, ensures the uniform
domination between the stable and center-unstable directions.

The proof of Theorem 5.39 is complete depending only on Propositions 5.41
and 5.42. �

Remark 5.43 This same reasoning above is also valid to prove that a homogeneous
attractor with generalized Lorenz-like singularities admits a dominated splitting.

We present the proofs in the three-dimensional case but for higher dimensions
case the adaptations are straightforward.

5.4.4 Flow-Boxes Near Equilibria

Since the equilibria σ in our setting are all Lorenz-like, the unstable manifold
Wu(σ) is one-dimensional, and there is a one-dimensional strong-stable manifold
Wss(σ ) contained in the two-dimensional stable manifold Ws(σ). Using the lin-
earization given by the Hartman-Grobman Theorem 2.14 or, in the absence of res-
onances, the smooth linearization results provided by Sternberg [256], orbits of the
flow in a small neighborhood U0 of the equilibrium are solutions of the linear sys-
tem (3.3), modulo a continuous change of coordinates.

Then for some δ > 0 we may choose cross-sections contained in U0

• Σo,± at points y± in different components of Wu
loc(σ ) \ {σ };

• Σi,± at points x± in different components of Ws
loc(σ ) \ Wss

loc(σ )

and Poincaré first hitting time maps R± : Σi,± \ �± → Σo,− ∪ Σo,+, where �± =
Σi,± ∩ Ws

loc(σ ), satisfying (see Fig. 5.3)

1. every orbit in the attractor passing through a small neighborhood of the equilib-
rium σ intersects some of the incoming cross-sections Σi,±;

2. R± maps each connected component of Σi,± \ �± diffeomorphically inside a
different outgoing cross-section Σo,±, preserving the corresponding stable foli-
ations.

These cross-sections may be chosen to be planar relative to some linearizing
system of coordinates near σ , e.g., for a small δ > 0

Σi,± = {(x1, x2,±1) : |x1| ≤ δ, |x2| ≤ δ} and

Σo,± = {(±1, x2, x3) : |x2| ≤ δ, |x3| ≤ δ},
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Fig. 5.3 Cross-sections near
a Lorenz-like equilibrium

where the x1-axis corresponds to the unstable manifold near σ , the x2-axis to the
strong-stable manifold and the x3-axis to the weak-stable manifold of the equilib-
rium which, in turn; is at the origin, see Fig. 5.3.

The equilibrium is hyperbolic for the vector field X. Hence for every C1 nearby
vector field Y there exists a unique Lorenz-like equilibrium σY in U0. Moreover the
submanifolds Σi,± and Σo,± remain transverse to Y . So all local properties of these
cross-sections are robust under small C1 perturbations of the flow.

5.4.5 Uniformly Bounded Angle Between Stable
and Center-Unstable Directions on Periodic Orbits

Let us recall some facts and notation before starting the proof of Propositions 5.41
and 5.42.

Given a singularity σ of X ∈ UU , we know that σ is hyperbolic. So for Y close
to X there exists a unique continuation of σ , which we write σY . Since every singu-
larity of X in ΛX(U) is hyperbolic, we conclude that the singularities of Y near to
X are the continuations of the singularities of X. Hence we can assume that, for any
Y close to X, the singularities of Y in ΛY (U) coincide with those of X in ΛX(U).

According to Theorem 5.10, for all Y ∈ UU the eigenvalues λi = λi(Y ), i =
1,2,3 of DY(σY ) are real and satisfy λ2 < λ3 < 0 < −λ3 < λ1. We write Êss,Y

σY
for

the eigenspace associated to the strongest contracting eigenvalue λ2 and Êcu,Y
σY

for
the bidimensional eigenspace associated to {λ3, λ1}. Without loss of generality we
can assume that, for Y close to X, the eigenvalues of DY(σY ) are the same as the
ones of DX(σ).

Since M is a Riemannian manifold, for any x ∈ M and every neighborhood U

of x there exists a normal neighborhood V ⊂ U of x, i.e., for any pair of points in
V there is a unique geodesic contained in V connecting them. Thus using parallel
transport in V we can define angles between any pair of tangent vectors at points of
V . We will use this in what follows to compare angles of tangent vectors at nearby
points. Alternatively, we can simply take a local coordinate system at x and compare
angles in those coordinates: the distortion will be bounded near x.

We reduce the proof of Propositions 5.41 and 5.42 to the following results.
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The first one is the next lemma (which is Theorem 4.10, already proved) estab-
lishing that any compact invariant set Γ ⊂ ΛX(U) containing no singularities is
uniformly hyperbolic.

Lemma 5.44 Let X ∈ UU and Γ ⊂ ΛX(U) be a compact invariant set without
singularities. Then Γ is uniformly hyperbolic.

Given X ∈ UU and δ > 0 we define

Cδ =
⋃

σ∈S(X)∩ΛX(U)

Bδ(σ ),

the δ-neighborhood around the singularities of X in Λ. Write Uδ = U \ Cδ for the
closure of the complement of Cδ in U and define

ΩX(Uδ) = {x ∈ Ω(X) : OX(x) ⊂ Uδ}.
We use the following application of Lemma 5.44.

Corollary 5.45 For any δ > 0, ΩX(Uδ) is hyperbolic.

Recall that, given a regular point x ∈ M , we define NY
x as the orthogonal com-

plement of EY
x in TxM , ΛY (U)∗ = ΛY (U) \ S(Y ), and

NΛY (U)∗ = {

Ns,Y
x ⊕ Nu,Y

x

}

x∈ΛY (U)∗

denotes the splitting for the Linear Poincaré Flow P Y
t of Y ; see Theorem 2.33 in

Sect. 2.6. For x ∈ Λ∗
Y (U) we define the bundles E

cs,Y
x = N

s,Y
x ⊕ EY

x and E
cu,Y
x =

N
u,Y
x ⊕ EY

x .
Recall also that for Y near X and p ∈ PerY (ΛY (U)) we denote by E

s,Y
p ⊕ E

cu,Y
p

the splitting induced by the hyperbolic splitting along the periodic orbit as in Defini-
tion 5.36. In this case, we have E

cu,Y
p = N

u,Y
p ⊕EY

p and E
s,Y
p ⊂ E

cs,Y
p = N

s,Y
p ⊕EY

p .
Using the property that a uniformly hyperbolic set has a unique locally defined

continuation for flows close to the initial one, we obtain that, for every point whose
orbit does not go away from Γ for any nearby flow, any tangent vector in Ecs close
to the flow direction remains close to the flow direction under the action of the flow.

Lemma 5.46 Let X ∈ UU and Γ be a compact invariant set without singularities.
Then there are neighborhoods V of X, V of Γ and γ > 0 such that for any ε > 0
there exists T = T (ε) > 0 satisfying: if Y ∈ V , y ∈ V ∩ ΛY (U) with Y s(y) ∈ V

for 0 ≤ s ≤ t and some t ≥ T , and also v ∈ N
s,Y
y ⊕ EY

y with ∠(v,Y (y)) < γ , then
∠(DY t (y) · v,Y (Y t (y))) < ε.

The next result provides angle estimates for orbits passing near to a singularity.
For a point y in ΛY (U) and vectors v with angle bounded away from zero with the
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strong-stable bundle at the singularity, after passing near the singularity, DY t(v)

lands in the direction of the central unstable bundle at Y t (y).
Given σY ∈ S(Y ) ∩ ΛY (U), Ws

loc(σY ) (Wu
loc(σY ) respectively) stands for the

local stable (unstable) manifold at σY . We set Ŵ s
loc(σY ) = Ws

loc(σY ) \ {σY } and

Ŵ u
loc(σY ) = Wu

loc(σY )\{σY }. Since σY is Lorenz-like, there is a unique bundle Êss,Y

in T Ws
loc(σY ) which is strongly contracted by the derivative of the flow. For each

y ∈ Ws
loc(σY ), Ê

ss,Y
y is the fiber of Êss,Y at y.

In the following we use the notation from Sect. 5.4.4 for cross-sections near a
δ-neighborhood of the singularities.

Definition 5.47 If y ∈ Bδ(σY ) we write y∗ for the point in Ŵ s
loc(σY ) satisfying

dist(y, Ŵ s
loc(σY )) = dist(y, y∗).

Now we can state the result precisely.

Lemma 5.48 Let X ∈ UU , σ ∈ S(X) ∩ ΛX(U) and δ > 0. There exists a neighbor-
hood V of X such that given γ > 0 and ε > 0 there exists r = r(ε, γ ) > 0 such that,
for Y ∈ V , y ∈ Bδ(σ ) ∩ ΛY (U) satisfying dist(y, Ŵ s

loc(σY )) < r and for v ∈ TyM

with ∠(v, Ê
ss,Y
y∗ ) > γ , then ∠(DY sy (y)(v),E

cu,Y

Y sy (y)
) < ε, where sy is the smallest

positive time such that Y sy (y) ∈ Σo,±.

Given δ′ ∈ (0, δ) we define a neighborhood of the local stable manifold of σ in
Σi,± by

Σ
i,±
δ,δ′ = {x ∈ Σi,± : dist(x, Ŵ s

loc(σ ) ∩ Σi,±) ≤ δ′}. (5.10)

Finally, next result provides estimates for the angles after passing near a singularity:
if a vector v in the central direction has angle bounded away from zero with the flow
direction then, after passing near σ , DXt(v) becomes closer to the direction of the
flow.

Lemma 5.49 Let X ∈ UU , σ ∈ S(X)∩ΛX(U) and δ > 0. There is a neighborhood
V of X such that, given ε > 0, κ > 0, δ > 0 and cross-sections Σi,±, Σo,± as
above, there exists δ′ > 0 satisfying: for all Y ∈ V , p ∈ Σ

i,±
δ,δ′ and v ∈ N

u,Y
p ⊕EY

p , if
∠(v,Y (p)) > κ , then ∠(DY sp (p) · v,Y (Y sp (p))) < ε, where sp is the first positive
time such that Y sp (p) ∈ Σo,±.

We postpone the proof of Lemmas 5.46, 5.48 and 5.49 to the end of this section,
and continue with the proof of Propositions 5.41 and 5.42 assuming these results.

Since we have only a finite number of singularities, we can assume that the esti-
mates given by the previous lemmas are simultaneously valid for all singularities of
Y in ΛY (U) and for all Y ∈ V .

Proof of Proposition 5.41(a) We argue by contradiction. Using the property that
hyperbolic singularities depend continuously on the vector field, we have that, if
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item (a) of Proposition 5.41 fails, then there are a singularity σ of X, γ > 0, a
sequence of vector fields Yn converging to X and a sequence of periodic points
pn ∈ PerYn

(ΛYn
(U)) with pn → σ such that

∠
(

Es,Yn
pn

, Êss,Yn
σYn

)

> γ. (5.11)

We prove, using (5.11), that after a first passage through a neighborhood of a sin-
gularity, the stable direction and the flow direction become closer. This property
persists up to the next return to that neighborhood. After a second passage through
it, we show that the stable direction and the flow direction are close, and that the
unstable direction and the flow direction are also close. This implies that the sta-
ble and the unstable direction are close to each other, leading to a contradiction to
Theorem 5.38(b).

Fix a neighborhood Bδ(σ ) and cross-sections Σo,±,Σi,± contained in Bδ(σ ) as
in Sect. 5.4.4. Since pn → σ , we have that for all sufficiently large n there exists the
smallest tn > 0 such that qn = Y

tn
n (pn) ∈ Σo,±.

Note that there exists q ∈ Ŵu
loc(σ ) ∩ ΛX(U) such that qn → q .

Lemma 5.50 The bound (5.11) implies that ∠(E
s,Yn
qn

, Yn(qn)) −−−−→
n→+∞ 0.

Proof We prove first that, as a consequence of (5.11), the stable direction at qn is
close to the central-unstable direction at qn. Using some properties of the splitting
given by the Poincaré flow, we deduce that the stable direction at qn is necessarily
close to the flow direction at qn, and from this we deduce the statement of the claim.

By (5.11) and since pn → σ , by Lemma 5.48 we get

∠
(

Es,Yn
qn

,Nu,Yn
qn

⊕ EYn
qn

) −−−−→
n→+∞ 0. (5.12)

Now we deduce from (5.12) that E
s,Yn
qn

is leaning in the direction of the flow. Indeed,
since qn → q ∈ Λ∗

X(U), Theorem 2.33 for the Linear Poincaré Flow ensures that

∠(N
s,Yn
qn

,N
u,Yn
qn

) > 9
10 · ∠(N

s,X
q ,N

u,X
q ) for every n big enough. Because N

s(u)
qn

is
orthogonal to Yn(qn), we deduce that

∠(Ns,Yn
qn

⊕ EYn

qn
,Nu,Yn

qn
⊕ EYn

qn

) = ∠
(

Ns,Yn
qn

,Nu,Yn
qn

)

.

Hence ∠(N
s,Yn
qn

⊕ EYn

qn
,N

u,Yn
qn

⊕ EYn

qn
) is uniformly bounded away from zero. Since

E
s,Yn
qn

⊂ N
s,Yn
qn

⊕ EYn

qn
and Yn(qn) = (N

s,Yn
qn

⊕ EYn

qn
) ∩ (N

u,Yn
qn

⊕ EYn

qn
), by (5.12) we

obtain

∠
(

Es,Yn
qn

, Yn(qn)
) −−−→

n→∞ 0. (5.13)

This completes the proof of the lemma. �

Now we apply Lemma 5.49. For this, let δ be as above, κ = c with c given by
Theorem 5.38(b) and ε < c/2. Let δ′ be given by Lemma 5.49.
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Fix δ∗ < max{δ, δ′} and consider Uδ∗ = U \ Cδ∗ . Since the singularities of Y ∈
V are continuations of the singularities of X, we can assume that Uδ∗ ∩ S(Y ) ∩
ΛY (U) = ∅ for all Y ∈ V .

Since σ is an accumulation point of {OYn(qn)}n≥1 we have that, for n large
enough, there is a first positive time sn such that q̃n = Y

sn
n (qn) belongs to Cδ∗ . We

can take sn in such a way that q̃n ∈ Σ
i,±
δ,δ′ (defined in (5.10)).

We assume, without loss of generality, that every q̃n belongs to the same cross-
section Σ

i,±
δ,δ′ associated to the same singularity of Yn and of X. Note that from the

choice of δ∗ we have Y s
n(qn) ∈ Uδ∗ for all 0 ≤ s ≤ sn.

Next we prove that (5.13) is also true replacing qn by q̃n, that is,

∠
(

E
s,Yn

q̃n
, Yn(q̃n)

) −−−−→
n→+∞ 0. (5.14)

Indeed, if there exists S > 0 such that sn < S for infinitely many n, then (5.13)
immediately implies (5.14).

Otherwise, let q be such that Y
sn/2
n (qn) −−−−→

sn→∞ q . Then OX(q) ⊂ Uδ∗ which im-

plies that ωX(q) ⊂ ΩX(Uδ∗). By Corollary 5.45 we know that ΩX(Uδ∗) is uniformly
hyperbolic. Let V be a neighborhood of ΩX(Uδ∗) given by Lemma 5.46. Now we
establish that the time spent by the Yn-orbit segment {Y t

n(qn),0 ≤ t ≤ sn} outside V

is uniformly bounded.

Lemma 5.51 There exists S > 0 such that for all n there are 0 ≤ s1
n < s2

n ≤ sn with
s1
n < S and sn − s2

n < S satisfying Y s
n(qn) ∈ V for all s1

n ≤ s ≤ s2
n .

Proof It is enough to prove that there exists S ′ such that, given qn and 0 < s′
n < sn

with Y
s′
n

n (qn) /∈ V , then either s′
n < S′ or sn − s ′

n < S ′.
If this were not the case, there would exist s ′

n such that Y
s′
n

n (qn) /∈ V and both

sn − s′
n → +∞ and s′

n → +∞. Then we can take a sequence Y
s′
n

n (qn) → q ′ with
q ′ /∈ V . This implies that OX(q ′) ⊂ Uδ∗ . So ωX(q ′) ⊂ ΩX(Uδ∗) and hence ωX(q ′) ⊂
V . Thus for large n we would get Y

s′
n

n (qn) ∈ V , contradicting the assumption. This
finishes the proof. �

Returning to the proof of (5.14), recall that ∠(E
s,Yn
qn

, Yn(qn)) is arbitrarily small
for n large enough, by relation (5.13). Now Lemma 5.46, together with Lemma 5.51,
implies (5.14), since we know that the time spent by Y s

n(qn) in V for s ∈ [0, sn] is
arbitrarily big.

Now since q̃n ∈ Σ
i,±
δ,δ′ there is a first time rn > 0 such that q̂n = Y

rn
n (q̃n) ∈ Σo,±,

by the choice of the cross-sections near the singularities. We prove that also
∠(E

s,Yn

q̂n
, Yn(q̂n)) −−−→

n→∞ 0.

If there exists S > 0 such that 0 < rn < S for infinitely many n, then taking a
subsequence we obtain the desired conclusion. Otherwise, taking a subsequence if
necessary, we have q̃n → Ŵ s

loc(σ )∩Σ
i,±
δ,δ′ and there exists q̂ ∈ Ŵu

loc(σ )∩Σo,± such
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that q̂n → q . Observe that there exists d > 0 satisfying: for any y ∈ Ŵ s
loc(σ ) ∩ Σ

i,±
δ,δ′

we have ∠(X(y), Êss
y ) > d . So provided n is large enough we obtain

∠
(

Yn(q̃n), Ê
ss,Yn

q̃n

)

> d. (5.15)

Combining (5.14) and (5.15) we obtain ∠(E
s,Yn

q̃n
, Ê

ss,Yn

q̃n
) > d for n large. Arguing

as in the proof of Lemma 5.51, replacing qn by q̃n for n ≥ 0, we obtain

lim
n→∞∠

(

E
s,Yn

˜̃qn

, Yn(̃q̃n)
) = 0. (5.16)

Moreover from (5.14) Theorem 5.38(b) ensures that

∠
(

E
u,Yn

q̃n
, Yn(q̃n)

)

> c for n big enough. (5.17)

Since E
u,Yn

q̃n
⊂ N

u,Yn

q̃n
⊕ E

Yn

q̃n
from (5.17), Lemma 5.49 implies that

∠
(

DYrn
n (E

u,Yn

q̃n
), Yn(q̂n)

)

< ε < c/2 (5.18)

by the choice of ε.
Finally (5.16) and (5.18) combined with E

u,Yn

q̂n
= DY

rn
n (E

u,Yn

q̃n
) give

∠
(

E
u,Yn

q̂n
,E

s,Yn

q̂n

)

< c/2 for n big enough.

This contradicts Theorem 5.38(b). This contradiction completes the proof of Propo-
sition 5.41(a). �

Proof of Proposition 5.41(b) We show that given Y near to X and a periodic point
p of Y close to σY , then E

cu,Y
p is close to Êcu,Y

σY
. We split the argument into the

following claims.
Given δ, δ′ > 0 we consider the cross-sections Σi,± and Σ

i,±
δ,δ′ as in Sect. 5.4.4

and definition (5.10).

Lemma 5.52 Let X ∈ UU , σ ∈ S(X) ∩ ΛX(U) and δ > 0. There are a neigh-
borhood V of X such that, given γ > 0 and ε > 0, there exists r = r(ε, γ ) > 0
such that, if y ∈ Σi,± and Ly ⊂ TyM is a plane with ∠(Ly, Ê

ss
y ) > γ , then

∠(DY sy (y) · Ly, Ê
cu
σY

) < ε, where sy is such that Y sy (y) ∈ Br(σY ) and Y s(y) ∈
Bδ(σY ) for all 0 ≤ s ≤ sy .

The proof of this claim is analogous to the proof of Lemma 5.48, which is pre-
sented at the end of this section.

Given y ∈ Σ
i,±
δ,δ′ let y∗ be as in Definition 5.47.

Lemma 5.53 Let X ∈ UU , σ ∈ S(X) ∩ ΛX(U) and δ > 0. There are a neighbor-
hood V of X, γ > 0 and δ′ > 0 such that for all Y ∈ V and all y ∈ ΛY (U) ∩ Σ

i,±
δ,δ′

we have ∠(E
cu,Y
y , Ê

ss,Y
y∗ ) > γ .
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Assuming the lemmas, let us complete the proof of the proposition.
Observe that for p close to σY there is sp > 0 such that p̃ = Y−sp (p) ∈

Σ
i,±
δ,δ′ , where δ and δ′ are as in Lemma 5.53. Let p̃∗ be as in Definition 5.47.

By Lemma 5.53 we have ∠(E
cu,Y
p̃

, Ê
ss,Y
p̃∗ ) > γ . Hence, by Lemma 5.52, we get

∠(DY t (p̃)(E
cu,Y
p̃

), Êcu,Y
σY

) arbitrarily small, provided that p is close enough to σY ,
concluding the proof of Proposition 5.41(b). �

Proof of Lemma 5.53 First we consider points q ∈ Σ
i,±
δ,δ′ ∩ ΛX(U) ∩ Ŵ s

loc(σ ).

In this case, observe that ∠(E
cu,X
q , Êss

q ) ≥ ∠(E
cu,X
q , TqWs

loc(σ )). By item 3 of

Theorem 2.33 we have N
s,X
q = TqWs

loc(σ ) ∩ Nq and since X(q) ∈ TqWs
loc(σ ) we

have TqWs
loc(σ ) = N

s,X
q ⊕ EX

q . We conclude that

∠
(

Ecu,X
q , TqWs

loc(σ )
) = ∠

(

Ecu,X
q ,Ns,X

q ⊕ EX
q

) = ∠
(

Nu,X
q ,Ns,X

q

)

. (5.19)

Since Σ
i,±
δ,δ′ is compact and does not contain singularities by construction, Theo-

rem 2.33 ensures that there is γ = γ (δ, δ′) such that ∠(N
u,X
q ,N

s,X
q ) > γ for all

q ∈ Σ
i,±
δ,δ′ . Replacing this inequality in (5.19) we conclude the proof of the lemma in

this case.
For p close enough to σY , we have dist(p̃,Σ

i,±
δ,δ′ ∩Ŵ s

loc(σY )) arbitrarily small. Us-

ing the continuous dependence of the splitting Ns,X ⊕ Nu,X with the flow together
with Theorem 2.33, we find that the estimate (5.19) above still holds replacing q by
p̃ and X by Y , concluding the proof. �

Proof of Proposition 5.42 Assume, by contradiction, that there exists a sequence of
periodic points pn /∈ Cδ for flows Yn → X such that

∠
(

Ecu,Yn
pn

,Es,Yn
pn

) −−−−→
n→+∞ 0. (5.20)

We claim that ∪nOYn
(pn) ∩ S(X) ∩ ΛX(U) �= ∅. Indeed, if this were not the case,

we would get δ∗ > 0 such that ∪nOYn(pn) ⊂ ΩX(Uδ∗). By Corollary 5.45 the set
ΩX(Uδ∗) is hyperbolic and so there are neighborhoods V and V of ΩX(Uδ∗) and
Y , respectively, and c > 0 satisfying ∠(E

s,Y
p ,E

cu,Y
p ) > c for all p ∈ PerY (ΛY (U))

such that OY (p) ⊂ V . Since Yn −−−−→
n→+∞ X we have OYn(pn) ⊂ V for n suffi-

ciently large. We conclude that ∠(E
s,Yn
pn

,E
cu,Yn
pn

) > c, leading to a contradiction.
Thus ∪nOYn(pn) ∩ S(X) ∩ ΛX(U) �= ∅ as claimed.

Fix δ > 0 and take cross-sections Σi,± and Σo,± as in Sect. 5.4.4.
Since ∪nOYn(pn)∩S(X)∩ΛX(U) �= ∅, there exists a positive sn such that p̃n =

Y
sn
n (pn) ∈ Σi,± for each n.

Now take κ = c with c given by Theorem 5.38(b), ε < c/2 and δ′ as in
Lemma 5.49. Fix δ∗ < min{δ, δ′} and consider Uδ∗ = U \ Cδ∗ . By Corollary 5.45
the subset ΩX(Uδ∗) is hyperbolic.
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From the choice of δ∗, we obtain that Y s
n(pn) ∈ Uδ∗ for any 0 ≤ s ≤ sn. We

assume, without loss of generality, that every p̃n is in a neighborhood of the same
singularity σ . Reasoning as in the proof of Proposition 5.41(a) we prove that (5.20)
implies that

∠
(

E
s,Yn

p̃n
, Yn(p̃n)

) −−−−→
n→+∞ 0. (5.21)

Once (5.21) is settled, the proof follows analogously to that of the previous propo-
sition. �

We finally present the proofs Lemmas 5.46, 5.48 and 5.49.

Proof of Lemma 5.46 Since Γ is hyperbolic, there are 0 < λΓ < 1 and c > 0 such
that N

s,X
Γ = E

s,X
Γ ⊕ EX with ‖DXt | Es,X‖ < c · λt

Γ , and c−1 < ‖X | Γ ‖ < c.
Changing the metric in a neighborhood of Γ , we can assume without loss of gener-
ality that E

s,X
x is orthogonal to EX

x and ‖X(x)‖ = 1 for all x ∈ Γ . In other words, in
the new metric E

s,X
Γ coincides with the stable bundle N

s,X
Γ of the Linear Poincaré

Flow restricted to Γ .
For each x ∈ Γ , let n

s,X
x ∈ N

s,X
x be a unit vector and consider the orthogonal ba-

sis Bx = {X(x),n
s,X
x } of EX

x ⊕ N
s,X
x . In this basis the matrix of DXt(x) restricted

to EX
x ⊕ N

s,X
x is

DXt | (EX
x ⊕ Ns,X

x

) =
[

1 0
0 n

s,X
x,t

]

,

where ‖ns,X
x,t ‖ < c · λt

Γ .

Fix t0 > 0 such that ‖ns,X
x,t0

‖ < 1/2 for all x ∈ Γ . There exists c′ > 0 such that

‖ns,X
x,t0

‖ > c′ for all x ∈ Γ by continuity of the flow and compactness of Γ . Taking
a neighborhood V of Γ and a neighborhood V ⊂ UU of X, both sufficiently small,
and a change of metric varying continuously with the flow, we can make ‖Y(y)‖ = 1
for all Y ∈ V and all y ∈ ΛY (U). Thus the matrix of DYt0(y) restricted to EY

y ⊕
N

s,Y
y with respect to the basis By = {Y(y), n

s,Y
y } is

DY t0 | (EY
y ⊕ Ns,Y

y

) =
[

1 δY
y

0 n
s,Y
y,t0

]

,

where δY
y < δ0 and δ0 is small for Y sufficiently close to X. Moreover ‖ns,Y

y,t0
‖ < 1/2.

Hence

DYn·t0 | (EY
y ⊕ Ns,Y

y

) =
[

1 δY
y,n

0 n
s,Y
y,n·t0

]

,

with δY
y,n � 2δ0. Let ε > 0 and n0 be such that 2−n < ε for all n ≥ n0. Given

v ∈ EY
y ⊕ N

s,Y
y we can write v = (1, γ ′

0) in the basis By . Then for any positive
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integer m we get

∠
(

DYn0·m(y) · v, (1,0)
) ≤ γ ′

0 · ns,Y
y,n0·m

1 − δY
y,n0

· ns,Y
y,n0·m

<
(1/2)n0·m

1 − 2δ0
.

For t > n0 we write t = m · n0 + s with 0 ≤ s ≤ n0 and then

∠
(

DY t(y) · v,Y (Y t (y)
)

< K · ε
for some positive constant K , concluding the proof of Lemma 5.46. �

Proof of Lemma 5.48 We prove the lemma by introducing linearizing coordinates
in a normal neighborhood V of σ . For this we assume that there is a neighborhood
V of σ where all Y sufficiently near to X are linearizable. This is no restriction
since we can always get rid of resonances between the eigenvalues by small C∞
perturbations of the flow. Fix δ > 0 small so that Bδ(σ ) ⊂ V . Assume also that
σY = σ and the eigenvalues of DY(σY ) are the same as the ones of DX(σ). Let
λ2 < λ3 < 0 < −λ3 < λ1 be the eigenvalues of DX(σ). So, in local coordinates
x̄, ȳ, z̄, we have that Y | V can be written as

Y(x̄, w̄, z̄) =
⎧

⎨

⎩

˙̄x = λ1x̄˙̄y = λ2ȳ˙̄z = λ3z̄.

(5.22)

Note that in this case for y ∈ Ws
loc(σ )

Ws
loc(σ ) = V ∩ ({0} × R

2), Wu
loc(σ ) = V ∩ (

R × {(0,0)},
Wcu

loc(σ ) = V ∩ (

R × {0} × R
)

, Êss,Y
y = V ∩ ({0} × R × {0}).

For y ∈ Wu
loc(σ ) we have Ê

cu,Y
y = R × {0} × R and Σo,± ∩ Wu

loc(σ ) = {(±1,0,0)}.
For y ∈ V and for v = (v1, v2, v3), if t > 0 is such that Y s(y) ∈ V for all 0≤ s ≤ t ,

then

DY t(y) · v = (eλ1t v1, e
λ2t v2, e

λ3v3). (5.23)

Given two vectors v and w we denote the slope between v and w by slope(v,w).
Let r > 0 and let y ∈ Bδ(σ ) be such that dist(y, Ŵ s

loc(σ )) < r . Let v =
(v1, v2, v3) ∈ TyM and let t > 0 be such that Y s(y) ∈ V for all 0 ≤ s ≤ t . Then

slope
(

DY t(y) · v, Êcu,X
σ

) = |eλ2t · v2|
√

(eλ1t · v1)2 + (eλ3t · v3)2
.

On the other hand, assuming that ∠(Êss,X
σ , v) = ∠((0,1,0), v) > γ we find that

there exists 0 < γ̂ < 1 such that 0 ≤ |v2| < γ̂ . Hence v2
1 +v2

3 > 1− γ̂ 2. This implies
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that either v1 >
√

(1 − γ̂ 2)/2, or v3 >
√

(1 − γ̂ 2)/2. Thus

slope
(

DY t(y) · v, Êcu,X
σ

) ≤ |eλ2t · v2|
|eλi t · vi | ≤ γ̂

√

(1 − γ̂ 2)/2)
· e(λ2−λi)t , (5.24)

where i ∈ {1,3} is chosen so that vi satisfies v2
i >

√

(1 − γ 2)/2. As both λ2 − λ3
and λ2 −λ1 are strictly negative, there exists T = T (ε, γ ) > 0 such the bound given
by (5.24) is smaller than ε for all t > T .

Now taking r sufficiently small, for y ∈ (Bδ(σ ) \ Ŵ s
loc(σ )), we can ensure that if

Y t (y) ∈ Σo,±, then t > T . These last two facts combined complete the proof. �

Proof of Lemma 5.49 For the proof of this lemma we use local linearizable coordi-
nates in a neighborhood of σ as in the proof of Lemma 5.48.

Let δ > 0 be small enough so that Bδ(σ ) ⊂ V and consider Σi,±,Σo,± as in
Sect. 5.4.4. Take δ′ > 0 and consider Σ

i,±
δ,δ′ as in (5.10). Let p ∈ Σ

i,±
δ,δ′ ∩ ΛY (U) and

v ∈ N
u,Y
p ⊕ EY

p with ∠(v,Y (p)) > κ > 0. Write v = a · (1,0,0) + b · (0,1,0) + c ·
(0,0,1) with a2 + b2 + c2 = 1.

Claim There are R > 0 and δ′ such that, if p and v are as above, then |a| > R.

Proof By the continuity of the flow direction and the normal bundle splitting far
from singularities, it suffices to verify the claim for p ∈ Ws

loc(σ ) \ {σ }. In this case

E
cs,Y
p = {0}×R

2. Thus all we need to prove is that ∠(v,E
cs,Y
p ) > κ for some κ > 0.

For this, observe that since dist(p,σ ) > δ, by Theorem 2.33 there is k′ = k′(δ)
such that ∠(N

s,Y
p ,N

u,Y
p ) > k′. Since ∠(E

cu,Y
p ,E

cs,Y
p ) = ∠(N

s,Y
p ,N

u,Y
p ), we con-

clude that

∠
(

Ecu,Y
p ,Ecs,Y

p

)

> k′. (5.25)

On the other hand, v ∈ EY
p ⊕ N

u,Y
p = E

cu,Y
p and ∠(v,Y (p)) = ∠(v,E

cs,Y
p ∩

E
cu,Y
p ) > κ by hypothesis. This fact combined with (5.25) give the proof of the

claim. �

Returning to the proof of Lemma 5.49, let tp > 0 be such that Y tp (p) ∈ Σu
δ . Next

we prove that for δ′ small we have

1. ∠
(

Y(Y tp (p)), (1,0,0)
)

is small, and
2. ∠

(

DY tp (p)(v), (1,0,0)
)

is small.

Observe that, if δ′ → 0, then tp → ∞ and Y tp (p) converges to a point in Ŵu
loc(σ ),

where the flow direction is (1,0,0). Hence the continuity of the flow direction im-
plies the first item above.

To prove the second item, recall (5.23). Then by the previous claim
∣
∣
∣
∣

b · eλ2·tp
a · eλ1·tp

∣
∣
∣
∣
< e(λ2−λ1)·tp · |b|

R
.
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Similarly, we have
∣
∣ c·eλ3 ·tp
a·eλ1 ·tp

∣
∣ < e(λ3−λ1)·tp · |c|/R. Since tp → ∞ as δ′ → 0, R > 0

and both λ2 − λ1 and λ3 − λ1 are negative numbers, we deduce that the bounds
on both inequalities above tend to 0 when δ′ → 0, concluding the proof of
Lemma 5.49. �





Chapter 6
Singular-Hyperbolicity and Robustness

Under the assumption of singular-hyperbolicity one can show that at each point
there exists a strong stable manifold; more precisely, the attractor is a subset of
a lamination by strong stable manifolds. It is also possible to show the existence
of local central manifolds tangent to the central unstable direction, see [110] and
Sect. 6.1. Although these central manifolds do not behave as unstable manifolds, in
the sense that their points are not necessarily asymptotic in the past, the fact that
the flow expands volume along the central unstable direction implies rather strong
properties.

We list some of these properties that give us a nice description of the dynamics
of robustly transitive sets with singularities and, in particular, for robust attractors,
or of singular-hyperbolic attracting sets with a dense subset of periodic orbits.

The first two properties do not depend on the fact that the set is either robustly
transitive or an attractor, but only on the fact that the set is partially hyperbolic and
that the flow expands volume in the central-unstable direction.

Lemma 6.1 For a non-trivial (different from a finite set of singularities) partially
hyperbolic set Λ with hyperbolic singularities of saddle type of a C1 flow X, the
flow direction is contained in the central bundle.

Proposition 6.2 Let Λ be a singular-hyperbolic compact set of Xt ∈ X1(M). Then
any invariant compact set Γ ⊂ Λ without singularities is a uniformly hyperbolic
set.

It is clear that a singular-hyperbolic attractor has only finitely many equilibria,
since these are hyperbolic equilibria (thus isolated) contained in a compact set.
Morales in [165] shows that there are smooth vector fields exhibiting singular-
hyperbolic attractors with any given (finite) number of (Lorenz-like) equilibria in
compact 3-manifolds. Moreover, in [164], Morales also obtains an example of a
singular-hyperbolic attracting set without singularities.

For singular hyperbolic attracting sets having only one singularity we can obtain
a partial converse to the results in Chap. 5.

V. Araújo, M.J. Pacifico, Three-Dimensional Flows, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 53,
DOI 10.1007/978-3-642-11414-4_6, © Springer-Verlag Berlin Heidelberg 2010
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We start by stating a corollary of the arguments used to prove Theorems 5.10
and 5.11 (see Remarks 5.25 and 5.31 in Chap. 5). Observe that we assume partial
hyperbolicity with volume expanding central direction but do not assume transitivity
in the following statement.

Theorem 6.3 Let Λ be a nonempty compact invariant isolated set for a three-
dimensional flow Xt ∈ X1. Assume that Λ is partially hyperbolic with volume ex-
panding central direction. If σ is a singularity properly accumulated by regular
orbits in Λ, then

• either σ is Lorenz-like for X and Wss
X (σ ) ∩ Λ = {σ };

• or σ is Lorenz-like for −X and Wuu
X (σ ) ∩ Λ = {σ }.

The conditions on the orbits accumulating the singularity allow us to use the
Connecting Lemma to produce a saddle connection for a nearby C1 flow which will
contradict the existence of dominated splitting if the singularity is not Lorenz-like.

Definition 6.4 Let Λ be an isolated set of Xt ∈ Xr (M). We say that Λ is Cr robustly
periodic if there are an isolating block U of Λ and a neighborhood U of X in
Xr (M) such that ΛY (U) = Per(Y ) ∩ ΛY (U) for all Y ∈ U .

Examples of C1 robustly periodic sets are the hyperbolic attractors and the geo-
metric Lorenz attractor (see Sects. 2.3 and 3.3). These examples are also C1 robustly
transitive. On the other hand, the singular horseshoe (from Sect. 3.1) and the exam-
ple by Morales and Pujals in [171] are neither C1 robust transitive nor C1 robustly
periodic. These examples motivate the question whether all C1 robust transitive sets
for vector fields are C1 robustly periodic. Arroyo and Pujals have recently obtained
a positive answer to this question in [27]:

Theorem 6.5 Every singular-hyperbolic attractor has a dense subset of periodic
orbits.

Combining this with Theorem 5.13 and Proposition 6.2 one deduces the follow-
ing.

Corollary 6.6 Every C1 robustly transitive set of a three-dimensional manifold is
C1 robustly periodic.

Moreover Theorem 6.5 together with Proposition 2.10 implies that singular-
hyperbolic attractors are chaotic (as defined in Sect. 2.4) and, in particular, have
sensitive dependence on initial conditions.

Corollary 6.7 Every singular-hyperbolic attractor is chaotic.

The existence of a periodic orbit for singular-hyperbolic attracting sets was first
obtained by Bautista-Morales in [37]. However it is possible to construct a singular-
hyperbolic isolated set with a transitive orbit but without periodic orbits, see [162].
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All known singular-hyperbolic attractors are homoclinic classes. It has been con-
jectured by Morales in [164] that every singular-hyperbolic attractor is in fact a
homoclinic class, which, from the Birkhoff-Smale Theorem 2.17, would imply The-
orem 6.5.

Using the constructions of adapted cross-sections and of global Poincaré maps,
explained in Sect. 6.1 and first presented in [21], we give a proof of this property
(and of Theorem 6.5 as corollary through the Birkhoff-Smale Theorem) for singular-
hyperbolic attractors. We observe that this property was proved for the geometric
Lorenz attractors in Chap. 3.

Theorem 6.8 Every singular-hyperbolic attractor for a C1 flow Xt is a homoclinic
class, that is, there exists a periodic orbit OX(p) of X in Λ such that Λ = HX(p).

In general, singular-hyperbolic attractors with only one singularity may not be
Cr robustly transitive as already observed by Morales-Pujals in [171] and explained
in Example 5.7 in Chap. 5.

Nevertheless, on compact 3-manifolds, Cr robustly periodic sets are Cr robustly
transitive among singular-hyperbolic attractors with only one singularity.

Theorem 6.9 A Cr robustly periodic singular-hyperbolic attractor, with only one
singularity, on a compact 3-manifold is Cr robust.

This result, first proved in [169], gives explicit sufficient conditions for robust-
ness of attractors depending on the perturbed flow. One should aim to obtain suffi-
cient conditions depending only on the unperturbed flow. This is still an open ques-
tion.

We prove Theorem 6.8 in Sect. 6.2 (and Theorem 6.5 is a corollary of this as
already observed). We present a proof of Theorem 6.9 following [169] in Sect. 6.3.

The next two results show that important features of hyperbolic attractors and of
the geometric Lorenz attractor are present for singular-hyperbolic attractors, and so
also for robust attractors with singularities.

Proposition 6.10 A singular-hyperbolic attractor Λ of X ∈ X1(M) has positive
Lyapunov exponent uniformly bounded away from zero at every orbit.

The following generic property in the space X1(M) can also be deduced from
Theorems 5.3 and 5.10.

Proposition 6.11 For X in a residual subset (a set containing an intersection of an
enumerable family of open dense subsets) of X1(M), each robust transitive set with
singularities is the closure of the stable or unstable manifold of one of its hyperbolic
periodic points.

Now we present proofs of the propositions stated above using the results from
Chap. 5.
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Proof of Lemma 6.1 It is enough to show that the flow direction X(x) at x ∈
Λ \ S(X) is not contained in the uniformly contracting direction of the dominated
splitting Es ⊕ Ec and that the angle between EX and Es is bounded away from
zero.

Indeed, the one-dimensional sub-bundle EX generated by the flow direction at
regular points x ∈ Λ is DXt -invariant. If EX is not contained in Es and the angle
between the two is bounded away from zero, then at each x ∈ Λ \ S(X) the sub-
bundle EX is contained in the graph of a linear map �x : Ec

x → Es
x whose norm is

bounded from above uniformly on x ∈ Λ \ S(X). The domination condition on the
splitting now implies that the ratio

‖�x(u)‖
‖u‖ = ‖DXt

x · (DX−t
x · �x(u)

)‖
‖DXt

x · (DX−t
x · u)‖ = ‖DXt

x · �X−t (x)(v)‖
‖DXt

x · v‖
for any given u ∈ Ec

x \ {0}, goes to zero exponentially fast with t going to +∞,
where v = DX−t

x ·u is such that v+�X−t (x)(v) = DX−t
x ·X(x) = X(X−t (x)) by the

invariance of EX . This means that in fact �x(u) = 0 for all u ∈ Ec
x and so EX ⊂ Ec.

If we assume by contradiction that EX
x ∈ Es

x , then we get for all t > 0

‖X(x)‖ = ‖DXtDX−tX(x)‖ ≤ Ke−λt‖DX−tX(x)‖

and so we obtain ‖DX−tX(x)‖ ≥ K̂eλt which grows exponentially fast with t .
Moreover since both EX and Es are DXt -invariant, we see that X(z) ∈ Es

z for
all z in the alpha-limit set αX(x) of the orbit of x. Therefore ‖X(Xt(z))‖ =
‖DXtX(z)‖ → 0 as t → +∞ and so there exists σ ∈ S(X) ∩ αX(x) such that
z ∈ Ws(σ).

If αX(x) = {σ }, then X(X−t (x)) = DX−tX(x) should grow exponentially fast,
because X(x) ∈ Es

x , and also tend to zero, because X−t (x) → σ ∈ S(X). This con-
tradiction shows that αX(x) \ {σ } �= ∅. In addition, since σ is hyperbolic of saddle
type and accumulated by the backward orbit of the regular point x, then there must
be a point z ∈ αX(x)∩Wu(σ)\{σ } by the linearization of the flow near σ . We again
deduce a contradiction because X(X−t (z)) should grow exponentially fast and tend
to zero. This concludes the proof that EX �⊂ Es .

Near the singularities of Λ, the flow direction is clearly away from the uniformly
contracting direction at the singularities. The continuity of a dominated splitting
ensures that this holds on a neighborhood U of the singularities in Λ. Away from
the singularities the set Λ \ U is compact, and so the continuity of the splittings
Es ⊕ Ec and the bundle EX and the fact that EX �∈ Es ensure that there exists a
positive lower bound for the angle between Es and EX on Λ \ U . This is enough to
conclude the statement of the lemma. �

Proof of Proposition 6.2 The argument relies on the fact that the intersection of the
dominated splitting Es ⊕ Ecu with the normal bundle NΓ over Γ induces a hyper-
bolic splitting for the Linear Poincaré Flow defined over Γ (recall the definition of
the Linear Poincaré Flow in Sect. 2.6). Thus by Theorem 2.27 we conclude that Γ

is uniformly hyperbolic, finishing the proof.
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From the fact that Γ does not contain singularities, there exists K > 0 such that
1/K < ‖X(x)‖ < K for every x ∈ Γ . Consider the following splitting on the normal
bundle NΓ : define Nu

x = Ecu
x ∩ Nx and Ns

x = Ecs
x ∩ Nx for x ∈ Γ , where Ecs

x =
EX

x ⊕ Es
x .

Now we show that this splitting is hyperbolic for the Linear Poincaré Flow Pt

over Γ . Note that for any t ∈ R the Jacobian of DXt along the sub-bundle Ecu
x can

be given by

sin∠
(

DXt(x) · nu
x,X(Xt(x))

) · ‖DXt(x) · nu
x‖ · ‖X(Xt(x))‖

‖X(x)‖ ,

where nu
x ∈ Nu

x is any choice of a unit vector. The last expression is the same as

∥
∥OXt(x)

(

DXt(x) · nu
x

)∥
∥ · ‖X(Xt(x))‖

‖X(x)‖ ,

where OXt(x) denotes the orthogonal projection from TXt (x)M onto NXt(x); recall
Sect. 2.6. Thus

∣
∣det(DXt | Ecu

x )
∣
∣ = ∥

∥OXt(x)(DXt(x) · nu
x)

∥
∥ · ‖X(Xt(x))‖

‖X(x)‖ . (6.1)

Since the central direction is (c, λ)-volume expanding, we know that the value of
the expression in (6.1) is bigger than c · eλt . Hence we get

∥
∥OXt(x)(DXt(x) · nu

x)
∥
∥ >

c

K2 · eλt for all t ≥ 0.

This proves that Nu is uniformly expanded by P t .
To see that Ns is uniformly contracted by the Linear Poincaré Flow, first note

that the splitting Es ⊕ Ecu is partially hyperbolic along Γ . Thus there exists A > 0
such that ∠(Es

x,X(x)) ≥ A for every x ∈ Γ . Hence we can find a0 such that, for
all x ∈ Γ and v ∈ Ns

x with ‖v‖ = 1, there exists w ∈ Es
x with ‖w‖ = 1 such that

v = aw + b · X(x)
‖X(x)‖ with |a| < a0. Therefore we have

∥
∥OXt(x)(DXt(x) · v)

∥
∥ =

∥
∥
∥
∥
OXt(x)

(

DXt(x) ·
(

aw + b · X(x)

‖X(x)‖
))

∥
∥
∥
∥
∥

= ∥
∥OXt(x)(DXt(x) · (aw))

∥
∥

≤ ∥
∥DXt(x) · (aw)

∥
∥ ≤ a0 · K · e−λt

for some K,λ > 0 (recall that Es is (K,λ) contracting). Thus Ns is uniformly
contracted by Pt . Proposition 6.2 is proved. �

Proof of Proposition 6.10 Let Λ be as in the statement of Proposition 6.10. Given
x ∈ Λ, if x is a singularity then the result follows from the fact that x is Lorenz-like
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for X. Now assume that X(x) �= 0 and take v ∈ Ecu
x with ‖v‖ = 1 and orthogonal to

X(x). We have for some c,λ > 0

c · eλt ≤ ∣
∣det(DXt | Ecu

x )
∣
∣ ≤ ∥

∥DXt(x) · v∥
∥ · ‖DXt(x) · X(x)‖

‖X(x)‖

= ∥
∥DXt(x) · v∥

∥ · ‖X(Xt(x))‖
‖X(x)‖

and then for t > 0 we get

1

t
log

∥
∥DXt(x) · v∥

∥ ≥ λ + 1

t
log c − 1

t
log

‖X(Xt(x))‖
‖X(x)‖ .

Since ‖X(Xt(x))‖ is uniformly bounded for all t > 0 by compactness of Λ, we see
that lim supt→+∞ t−1 log‖DXt(x) · v‖ > 0. �

Proof of Proposition 6.11 Let Λ = ΛX(U) be a robustly transitive set with singu-
larities for X ∈ X1(M) with isolating neighborhood U . By Theorems 5.3 and 5.13
we can assume that Λ is a partially hyperbolic attractor for X. On the other hand,
since the Kupka-Smale property is generic, we deduce that, for a generic subset G
in a C1 neighborhood V of X, Λ = ΛY (U) has a hyperbolic periodic orbit p for all
Y ∈ G .

As Λ is an attractor, the unstable manifold Wu(p) of any periodic point p of Λ

is contained in Λ. In particular its closure Wu(p) is contained in Λ. We show that
Λ is contained in Wu(p).

Let q ∈ Λ be such that Λ = ωY (q) (recall that an attractor is transitive by defi-
nition). Let V be a small neighborhood of p. On the one hand, by transitivity, we
can assume without loss of generality that q ∈ V . On the other hand, since Λ is
partially hyperbolic, projecting q into Wu(p) through the stable manifold of q , we
can assume that q is actually contained in Wu(p). Indeed, being in the same stable
manifold, q and its projection have the same ω-limit sets.

Finally observe that ωY (q) ⊂ Wu(p) because Wu(p) is invariant by the flow.
Thus Λ = ωY (q) ⊂ Wu(p) finishing the proof. �

6.1 Cross-Sections and Poincaré Maps

For future reference we give here a few properties of Poincaré maps, that is, contin-
uous maps R : Σ → Σ ′ of the form R(x) = Xt(x)(x) between cross-sections Σ and
Σ ′ of the flow near a singular-hyperbolic set. We always assume that the Poincaré
time t (·) is large enough as explained in what follows.

These properties will be often used in the following chapters to obtain many
dynamical and ergodic consequences of singular-hyperbolicity. In particular they
will be used in Sect. 6.3.1 to prove Theorem 6.36.
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We assume that Λ is a compact invariant subset for a flow X ∈ X1(M) such that

• either Λ is a singular-hyperbolic attractor,
• or Λ is a singular-hyperbolic attracting set with a dense subset of periodic orbits.

In both cases it has already been proved that every singularity in Λ is Lorenz-like.
Indeed since in both cases every singularity is properly accumulated by regular
orbits in Λ and attracting sets contain the unstable manifold of every hyperbolic
critical element, the only possible type of singularity allowed by Theorem 6.3 is a
Lorenz-like singularity.

We start by observing that cross-sections have co-dimension one foliations which
are dynamically defined: the leaves Ws(x,Σ) = Ws

loc(x) ∩ Σ correspond to the in-
tersections with the stable manifolds of the flow. We shall prove that these leaves are
uniformly contracted and, assuming the cross-section is adapted, that the foliation
is invariant:

R(Ws(x,Σ)) ⊂ Ws(R(x),Σ ′) for all x ∈ Σ.

Moreover, we will show that R is uniformly expanding in the transverse direction.
Then we analyze the flow close to singularities, again by means of cross-sections.

6.1.1 Stable Foliations on Cross-Sections

We recall classical facts about partially hyperbolic systems, especially the existence
of strong-stable and center-unstable foliations. The standard reference is [110].

We have that Λ is a singular-hyperbolic isolated set of X ∈ X1(M) with invariant
splitting TΛM = Es ⊕ Ecu with dimEcu = 2. Let Ẽs ⊕ Ẽcu be a continuous exten-
sion of this splitting to a small neighborhood U0 of Λ. For convenience we take
U0 to be forward invariant. Then Ẽs may be chosen invariant under the derivative:
just consider at each point the direction formed by those vectors which are strongly
contracted by DXt for positive t . In general Ẽcu is not invariant. However we can
consider a cone field around it on U0

Ccu
a (x) = {v = vs + vcu : vs ∈ Ẽs

x and vcu ∈ Ẽcu
x with ‖vs‖ ≤ a · ‖vcu‖}

which is forward invariant for a > 0:

DXt(Ccu
a (x)) ⊂ Ccu

a (Xt (x)) for all large t > 0. (6.2)

Moreover we may take a > 0 arbitrarily small, reducing U0 if necessary. For nota-
tional simplicity we write Es and Ecu for Ẽs and Ẽcu in all that follows.

The next result says that there are locally strong-stable and center-unstable man-
ifolds, defined at every regular point x ∈ U0 and which are embedded disks tangent
to Es(x) and Ecu(x), respectively. The strong-stable manifolds are locally invariant.
Given any x ∈ U0 define the strong-stable manifold Wss(x) and the stable-manifold
Ws(x) as in Sect. 2.3.
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Given ε > 0, denote Iε = (−ε, ε) and let E 1(I1,M) be the set of C1 embedding
maps f : I1 → M endowed with the C1 topology.

Proposition 6.12 (Stable and center-unstable manifolds) There are continuous
maps φss : U0 → E 1(I1,M) and φcu : U0 → E 1(I1 × I1,M) such that, given
any 0 < ε < 1 and x ∈ U0, if we denote Wss

ε (x) = φss(x)(Iε) and Wcu
ε (x) =

φcu(x)(Iε × Iε), then

(a) TxW
ss
ε (x) = Es(x);

(b) TxW
cu
ε (x) = Ecu(x);

(c) Wss
ε (x) is a neighborhood of x inside Wss(x);

(d) if y ∈ Wss(x) then there is T ≥ 0 such that XT (y) ∈ Wss
ε (XT (x)) (local invari-

ance);
(e) d(Xt (x),Xt(y)) ≤ K · e−λt · d(x, y) for all t > 0 and all y ∈ Wss

ε (x).

The constants K,λ > 0 are taken as in the definition of (K,λ)-splitting at the
beginning of Chap. 5, and the distance d(x, y) is the intrinsic distance between two
points on the manifold Wss

ε (x), given by the length of the shortest smooth curve
contained in Wss

ε (x) connecting x to y.
Denoting Ecs

x = Es
x ⊕ EX

x , where EX
x is the direction of the flow at x, it follows

that

TxW
ss(x) = Es

x and TxW
s(x) = Ecs

x .

We fix ε once and for all. Then we call Wss
ε (x) the local strong-stable manifold and

Wcu
ε (x) the local center-unstable manifold of x.
Now let Σ be a cross-section to the flow, that is, a C2 embedded compact disk

transverse to X: at every point z ∈ Σ we have TzΣ ⊕ EX
z = TzM (recall that EX

z

is the one-dimensional subspace {s · X(z) : s ∈ R}). For every x ∈ Σ we define
Ws(x,Σ) to be the connected component of Ws(x) ∩ Σ that contains x. This de-
fines a foliation F s

Σ of Σ into co-dimension 1 sub-manifolds of class C1.

Remark 6.13 Given any cross-section Σ and a point x in its interior, we may always
find a smaller cross-section also with x in its interior and which is the image of the
square [0,1] × [0,1] by a C2 diffeomorphism h that sends horizontal lines inside
leaves of F s

Σ . In what follows we always assume that cross-sections are of this
kind; see Fig. 6.1. We denote by int(Σ) the image of (0,1)× (0,1) under the above-
mentioned diffeomorphism, which we call the interior of Σ .

We also assume that each cross-section Σ is contained in U0, so that every x ∈ Σ

is such that ω(x) ⊂ Λ.

Remark 6.14 In general, we can not choose the cross-section such that Ws(x,Σ) ⊂
Wss

ε (x). The reason is that we want cross-sections to be C2. Cross-sections of class
C1 are enough for the proof of expansiveness in Sect. 7.2.1 but C2 is needed for the
construction of the physical measure in Sect. 7.3.3 and for the absolute continuity
results in Sect. 7.3.10. See Sect. 2.7.2 for the technical definitions.
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Fig. 6.1 The sections Σ , Σ(γ ), the manifolds Ws(x),Wss(x), Ws(x,Σ) and the projection RΣ ,
on the right. On the left, the square [0,1]2 is identified with Σ through the map h, where F s

Σ

becomes the horizontal foliation and γ is a transverse curve, and solid lines with arrows indicate
the flow direction

On the one hand x �→ Wss
ε (x) is usually not differentiable if we assume that X is

only of class C1; see e.g. [193]. On the other hand, assuming that the cross-section is
small with respect to ε, and choosing any curve γ ⊂ Σ crossing transversely every
leaf of F s

Σ , we may consider a Poincaré map

RΣ : Σ → Σ(γ ) =
⋃

z∈γ

Wss
ε (z)

with Poincaré time close to zero; see Fig. 6.1. This is a homeomorphism onto its im-
age, close to the identity, such that RΣ(Ws(x,Σ)) ⊂ Wss

ε (RΣ(x)). So, identifying
the points of Σ with their images under this homeomorphism, we may pretend that
indeed Ws(x,Σ) ⊂ Wss

ε (x). We shall often do this in the sequel, to avoid cumber-
some technicalities.

6.1.2 Hyperbolicity of Poincaré Maps

Let Σ be a small cross-section to X and let R : Σ → Σ ′ be a Poincaré map
R(y) = Xt(y)(y) to another cross-section Σ ′ (possibly Σ = Σ ′). Note that R need
not correspond to the first time that the orbits of Σ encounter Σ ′.

The splitting Es ⊕ Ecu over U0 induces a continuous splitting Es
Σ ⊕ Ecu

Σ of the
tangent bundle T Σ to Σ (and analogously for Σ ′), defined by

Es
Σ(y) = Ecs

y ∩ TyΣ and Ecu
Σ (y) = Ecu

y ∩ TyΣ. (6.3)

We now show that if the Poincaré time t (x) is sufficiently large then (6.3) defines a
hyperbolic splitting for the transformation R on the cross-sections, at least restricted
to Λ, in the following sense.
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Proposition 6.15 Let R : Σ → Σ ′ be a Poincaré map as before with Poincaré
time t (·). Then DRx(Es

Σ(x)) = Es
Σ ′(R(x)) at every x ∈ Σ and DRx(E

cu
Σ (x)) =

Ecu
Σ ′(R(x)) at every x ∈ Λ ∩ Σ .
Moreover for every given 0 < λ < 1 there exists T1 = T1(Σ,Σ ′, λ) > 0 such that,

if t (·) > T1 at every point, then

‖DR | Es
Σ(x)‖ < λ and ‖DR | Ecu

Σ (x)‖ > 1/λ at every x ∈ Σ .

Remark 6.16 In what follows we use K as a generic notation for large constants
depending only on a lower bound for the angles between the cross-sections and the
flow direction, and on upper and lower bounds for the norm of the vector field on
the cross-sections. The conditions on T1 in the proof of the proposition depend only
on these bounds as well. In all our applications, all these angles and norms will be
uniformly bounded from zero and infinity, and so both K and T1 may be chosen
uniformly.

Proof The differential of the Poincaré map at any point x ∈ Σ is given by

DR(x) = PR(x) ◦ DXt(x) | TxΣ,

where PR(x) is the projection onto TR(x)Σ
′ along the direction of X(R(x)). Note

that Es
Σ(x) is tangent to Σ ∩ Ws(x) ⊃ Ws(x,Σ). Since the stable manifold Ws(x)

is invariant, we have invariance of the stable bundle:

DR(x)
(

Es
Σ(x)

) = Es
Σ ′

(

R(x)
)

.

Moreover for all x ∈ Λ we have

DXt(x)
(

Ecu
Σ (x)

) ⊂ DXt(x)
(

Ecu
x

) = Ecu
R(x).

As PR(x) is the projection along the vector field, it sends Ecu
R(x) to Ecu

Σ ′(R(x)).
This proves that the center-unstable bundle is invariant restricted to Λ, that is,
DR(x)(Ecu

Σ (x)) = Ecu
Σ ′(R(x)).

Next we prove the expansion and contraction statements. We start by noting that
‖PR(x)‖ ≤ K . Then we consider the basis { X(x)

‖X(x)‖ , eu
x } of Ecu

x , where eu
x is a unit

vector in the direction of Ecu
Σ (x). Since the flow direction is invariant, the matrix of

DXt | Ecu
x relative to this basis is upper triangular:

DXt(x) | Ecu
x =

[ ‖X(R(x))‖
‖X(x)‖ 

0 a

]

.

Moreover

1

K
· det

(

DXt(x) | Ecu
x

) ≤ ‖X(R(x))‖
‖X(x)‖ a ≤ K · det

(

DXt(x) | Ecu
x

)

.
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Then

‖DR(x) eu
x‖ = ∥

∥PR(x)

(

DXt(x)(x) · eu
x

)∥
∥ = ‖a · eu

R(x)‖ = |a|
≥ K−3

∣
∣det

(

DXt(x) | Ecu
x

)∣
∣ ≥ K−3λ−t (x) ≥ K−3 λ−t1 .

Taking t1 large enough we ensure that the latter expression is larger than 1/λ.
To prove that ‖DR | Es

Σ(x)‖ < λ, let us consider unit vectors es
x ∈ Es

x and ês
x ∈

Es
Σ(x), and write

es
x = ax · ês

x + bx · X(x)

‖X(x)‖ .

Since ∠(Es
x,X(x)) ≥ ∠(Es

x,Ecu
x ) and the latter is uniformly bounded from zero,

we have |ax | ≥ κ for some κ > 0 which depends only on the flow. Then

‖DR(x) es
x‖ = ∥

∥PR(x) ◦ (

DXt(x)(x) · ês
x

)∥
∥

= 1

|ax |
∥
∥
∥
∥
PR(x) ◦

(

DXt(x)(x)

(

ês
x − bx

X(x)

‖X(x)‖
))∥

∥
∥
∥

= 1

|ax |
∥
∥PR(x) ◦ (

DXt(x)(x) · ês
x

)∥
∥ ≤ K

κ
λt(x) ≤ K

κ
λt1 .

(6.4)

Once more it suffices to take t1 large to ensure that the right hand side is less
than λ. �

Given a cross-section Σ , a positive number ρ, and a point x ∈ Σ , we define the
unstable cone of width ρ at x by

Cu
ρ(x) = {v = vs + vu : vs ∈ Es

Σ(x), vu ∈ Ecu
Σ (x) and ‖vs‖ ≤ ρ‖vu‖} (6.5)

(we omit the dependence on the cross-section in our notations).
Let ρ > 0 be any small constant. In the following consequence of Proposi-

tion 6.15 we assume the neighborhood U0 has been chosen sufficiently small, de-
pending on ρ and on a bound on the angles between the flow and the cross-sections.

Corollary 6.17 For any R : Σ → Σ ′ as in Proposition 6.15, with t (·) > T1, and
any x ∈ Σ , we have DR(x)(Cu

ρ(x)) ⊂ Cu
ρ/2(R(x)) and

‖DRx(v)‖ ≥ 5

6
λ−1 · ‖v‖ for all v ∈ Cu

ρ(x).

Proof Proposition 6.15 immediately implies that DRx(Cu
ρ(x)) is contained in the

cone of width ρ/4 around DR(x)(Ecu
Σ (x)) relative to the splitting

TR(x)Σ
′ = Es

Σ ′(R(x)) ⊕ DR(x)
(

Ecu
Σ (x)

)

.

(We recall that Es
Σ is always mapped to Es

Σ ′ .) The same is true for Ecu
Σ and Ecu

Σ ′ ,
restricted to Λ. So the previous observation already gives the conclusion of the first
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part of the corollary in the special case of points in the attractor. Moreover to prove
the general case we only have to show that DR(x)(Ecu

Σ (x)) belongs to a cone of
width less than ρ/4 around Ecu

Σ ′(R(x)). This is easily done with the aid of the flow
invariant cone field Ccu

a in (6.2), as follows. On the one hand,

DXt(x)
(

Ecu
Σ (x)

) ⊂ DXt(x)
(

Ecu
x

) ⊂ DXt(x)
(

Ccu
a (x)

) ⊂ Ccu
a

(

R(x)
)

.

We note that DR(x)(Ecu
Σ (x)) = PR(x) ◦ DXt(x)(Ecu

Σ (x)). On the other hand, since
PR(x) maps Ecu

R(x) to Ecu
Σ ′(R(x)) and the norms of both PR(x) and its inverse are

bounded by some constant K (see Remark 6.16), we conclude that DR(x)(Ecu
Σ (x))

is contained in a cone of width b around Ecu
Σ ′(R(x)), where b = b(a,K) can be

made arbitrarily small by reducing a. We keep K bounded, by assuming that the
angles between the cross-sections and the flow are bounded from zero and then,
reducing U0 if necessary, we can make a small so that b < ρ/4. This concludes the
proof since the expansion estimate is a trivial consequence of Proposition 6.15. �

As usual a curve is the image of a compact interval [a, b] by a C1 map. We
use �(γ ) to denote its length. By a cu-curve in Σ we mean a curve contained in
the cross-section Σ and whose tangent direction is contained in the unstable cone
Tzγ ⊂ Cu

ρ(z) for all z ∈ γ .
The previous lemma ensures that the image of a cu-curve by Poincaré maps

between cross-sections is another cu-curve. The next lemma says that the length of
cu-curves linking the stable leaves of nearby points x, y must be bounded by the
distance between x and y.

Lemma 6.18 Let us assume that ρ has been fixed, sufficiently small. Then there
exists a constant κ such that, for any pair of points x, y ∈ Σ , and any cu-curve γ

joining x to some point of Ws(y,Σ), we have �(γ ) ≤ κ · d(x, y).

Here d is the intrinsic distance in the C2 surface Σ , that is, the length of the
shortest smooth curve inside Σ connecting two given points in Σ .

Proof We consider coordinates on Σ for which x corresponds to the origin, Ecu
Σ (x)

corresponds to the vertical axis, and Es
Σ(x) corresponds to the horizontal axis;

through these coordinates we identify Σ with a subset of its tangent space at x,
endowed with the Euclidean metric. In general this identification is not an isometry,
but the distortion is uniformly bounded, which is taken care of by the constants C1
to C4 in what follows.

The hypothesis that γ is a cu-curve implies that its velocity vector γ̇ (s) is con-
tained in the cone of width C1 · ρ centered at γ (s) for all values of the parameter
s. In the coordinates described above this means that we may write γ (s) = (ξ(s), s)

for some C1 function ξ : [0, s0] → [0,+∞) with ξ(0) = 0, ξ(s) > 0 for all s > 0
and |ξ̇ | ≤ C1ρ.

On the other hand, stable leaves are close to being horizontal, that is, fixing some
stable leaf through y ∈ Σ we may write it as a graph (u, η(u)) for a C1 function
η : (−u0, u0) → R with η(0) = d > 0 and |η̇| ≤ C2ρ (see Fig. 6.2).
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Fig. 6.2 The stable
manifolds on the
cross-section and the
cu-curve γ connecting them

Observe now that h = η ◦ ξ satisfies |h′| ≤ δ = C1C2ρ
2 and h(0) = d . Thus

|h(s) − d| ≤ δ · s and hence h(s∗) = 0 for some 0 < s∗ < d/(1 − δ) < d(1 + δ). But
this means that

{

u = ξ(s))

s = η(ξ(s)) = η(u)
or γ (s) = (ξ(s), s) = (u, η(u)),

that is, we have an intersection between γ and the stable leaf at a distance from x

along γ bounded by d(1 + δ)
√

1 + (C1ρ)2 < d(1 + C3ρ), where C3 is a constant
depending on C1 and C2 only.

Finally y has coordinates (η(u1), u1) for some |u1| < u0 and since u0 < ρ we
obtain η(u1) ≥ d − δu1 > d − δρ. Hence in Euclidean coordinates ‖x − y‖ > d −
δρ = d(1 − δρ/d) and then d(x, y) > C4d for some C4 > 0 depending on all the
previous constants (remember that d < ρ also) including the distortion due to the
change of metric. It follows that the length of γ is bounded by κ · d(x, y) where we
write κ = (1 + δ)

√

1 + (C1ρ)2/C4. �

In what follows we take T1 in Proposition 6.15 for λ = 1/3. From Sect. 7.3.3
onwards we will need to decrease λ once by taking a bigger T1.

6.1.3 Adapted Cross-Sections

Now we exhibit stable manifolds for Poincaré transformations R : Σ → Σ ′. The
natural candidates are the intersections Ws(x,Σ) = Ws

ε (x) ∩ Σ which we intro-
duced previously. These intersections are tangent to the corresponding sub-bundle
Es

Σ and so, by Proposition 6.15, they are contracted by the transformation. For our
purposes it is also important that the stable foliation be invariant:

R(Ws(x,Σ)) ⊂ Ws(R(x),Σ ′) for every x ∈ Σ. (6.6)

In order to have this we restrict our class of cross-sections whose center-unstable
boundary is disjoint from Λ. Recall (Remark 6.13) that we are considering cross-
sections Σ that are diffeomorphic to the square [0,1] × [0,1], with the horizontal
lines [0,1] × {η} being mapped to stable sets Ws(y,Σ). The stable boundary ∂sΣ
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Fig. 6.3 An adapted
cross-section for Λ

is the image of [0,1] × {0,1}. The center-unstable boundary ∂cuΣ is the image of
{0,1} × [0,1]. The cross-section is δ-adapted if

d(Λ ∩ Σ,∂cuΣ) > δ,

where d is the intrinsic distance in Σ ; see Fig. 6.3. We define a horizontal strip of Σ

as the image h([0,1]× I ) for any compact subinterval I , where h : [0,1]× [0,1] →
Σ is the coordinate system on Σ as in Remark 6.13. Notice that every horizontal
strip is a δ-adapted cross-section.

In order to prove that adapted cross-sections do exist, we need the following
result.

Lemma 6.19 Let Λ be either a transitive singular-hyperbolic Lyapunov stable set,
or a connected singular-hyperbolic attracting set admitting a dense subset of peri-
odic orbits. Then every point x ∈ Λ is in the closure of Wss(x) \ Λ.

Note that a singular-hyperbolic attractor satisfies the first condition of the state-
ment of Lemma 6.19. We need the following simple result.

Lemma 6.20 Let X ∈ X1(M) and let Λ be a compact invariant partially hyperbolic
subset containing a strong-stable disk γ , that is γ is a neighborhood of some point
of Wss(x) ∩ Λ with the relative topology of Wss(x), for some x ∈ Λ. Then L =
αX(γ ) = {α(z) : z ∈ γ } contains all stable disks through its points.

Proof The partial hyperbolic assumption on Λ ensures that every one of its points
has a strong-stable manifold. Moreover Wss(z) ⊂ Λ for every z ∈ α(γ ), since any
compact part of the strong-stable manifold of z is accumulated by backward iterates
of any small neighborhood of x ∈ γ inside Wss(x). Here we are using the fact that
the contraction along the strong-stable manifold, which becomes an expansion for
negative time, is uniform. �

Proof of Lemma 6.19 The proof is by contradiction. Let us suppose that there exists
x ∈ Λ such that x is in the interior of Wss(x) ∩ Λ. By Lemma 6.20 the set α(x)

contains all stable manifolds through its points.
It follows that α(x) does not contain any singularity: indeed, Theorems 5.10

or 6.3 prove that the strong-stable manifold of each singularity meets Λ only at the
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singularity (observe that every singularity of Λ is properly accumulated by regular
orbits in Λ).

Therefore by Proposition 6.2 the invariant set α(x) ⊂ Λ is hyperbolic. It also
follows from the previous remarks that the set

H = ∪{Wss(y) : y ∈ α(x) ∩ Λ}
is contained in Λ. Also by the same argument as before, this set contains the strong-
stable manifolds of all its points. Hence H does not contain any singularity, that is,
H is uniformly hyperbolic.

We claim that Wu(H), the closure of the union of the unstable manifolds of the
points of H , is an open set (it is clearly a closed set).

First we show that Wu(H) is open. Note that H contains the whole stable man-
ifold Ws(z) of every z ∈ H : this is because H is invariant and contains the strong-
stable manifold of z. Note that the union of the strong-unstable manifolds through
the points of Ws(z) contains a neighborhood of z. This proves that Wu(H) is a
neighborhood of H . Thus the backward orbit of any point in Wu(H) must enter the
interior of Wu(H). Since the interior is an invariant set, this proves that Wu(H) is
open, as claimed.

Now observe that, because Wu(H) is open and invariant, the strong-stable man-
ifold of any z ∈ Wu(H) is contained in Wu(H), which is contained in Λ since we
are assuming that Λ is either Lyapunov stable or attracting. Therefore taking limits
we see that Wss(w) ⊂ Wu(H) for all w ∈ Wu(H). This implies that Wu(H) does
not contain singularities and is hyperbolic. Finally the unstable manifolds of points
in Wu(H) are well defined by hyperbolicity and are contained in Wu(H), just by
taking limits of points in Wu(H). Hence Wu(H) contains its stable and unstable
manifolds, and so it is an open set inside Λ.

Since Λ is also a connected set (which is always the case if Λ is transitive) we
obtain Λ = Wu(H). This means that any singularity σ ∈ Λ must be in Wu(H), a
contradiction. The proof of the lemma is complete. �

Corollary 6.21 For any x ∈ Λ there exist points x+ /∈ Λ and x− /∈ Λ in distinct
connected components of Wss(x) \ {x}.

Proof Otherwise there would exist a whole segment of the strong-stable manifold
entirely contained in Λ. Considering any point in the interior of this segment, we
would get a contradiction to Lemma 6.19. �

Lemma 6.22 Let x ∈ Λ be a regular point, that is, such that X(x) �= 0. Then there
exist δ > 0 and a δ-adapted cross-section Σ at x.

Proof Fix ε > 0 as in the stable manifold theorem. Any cross-section Σ0 at x suf-
ficiently small with respect to ε > 0 is foliated by the intersections Ws

ε (x) ∩ Σ0.
By Corollary 6.21, we may find points x+ /∈ Λ and x− /∈ Λ in each of the con-
nected components of Ws

ε (x) ∩ Σ0. Since Λ is closed, there are neighborhoods V ±
of x± disjoint from Λ. Let γ ⊂ Σ0 be some small curve through x, transverse to
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Fig. 6.4 The construction of
a δ-adapted cross-section for
a regular x ∈ Λ

Ws
ε (x)∩Σ0. Then we may find a continuous family of segments inside Ws

ε (y)∩Σ0,
for y ∈ γ with endpoints contained in V ±. The union Σ of these segments is a δ-
adapted cross-section, for some δ > 0; see Fig. 6.4. �

We are going to show that, if the cross-sections are adapted, then we have the
invariance property (6.6). Given Σ,Σ ′ ∈ Ξ we set Σ(Σ ′) = {x ∈ Σ : R(x) ∈ Σ ′},
the domain of the return map from Σ to Σ ′.

Lemma 6.23 Given δ > 0 and δ-adapted cross-sections Σ and Σ ′, there exists
T2 = T2(Σ,Σ ′) > 0 such that, if R : Σ(Σ ′) → Σ ′ defined by R(z) = Rt(z)(z) is a
Poincaré map with time t (·) > T2, then

1. R(Ws(x,Σ)) ⊂ Ws(R(x),Σ ′) for every x ∈ Σ(Σ ′), and also
2. d(R(y),R(z)) ≤ 1

2 d(y, z) for every y, z ∈ Ws(x,Σ) and x ∈ Σ(Σ ′).

Proof This is a simple consequence of the relation (6.4) from the proof of Propo-
sition 6.15: the tangent direction to each Ws(x,Σ) is contracted at an exponential
rate ‖DR(x) es

x‖ ≤ Ce−λt (x). Choosing T2 sufficiently large we ensure that

Ce−λT2 · sup{�(Ws(x,Σ)) : x ∈ Σ} < δ.

In view of the definition of δ-adapted cross-section this gives part (1) of the lemma.
Part (2) is entirely analogous: it suffices that Ce−λT2 < 1/2. �

Remark 6.24 Clearly we may choose T2 > T1. Remark 6.16 applies to T2 as well.

The following is a technical consequence of the uniform contraction and the way
cross-sections were chosen near real stable leaves.

Lemma 6.25 Let Σ be a δ-adapted cross-section. Then given any r > 0 there
exists ρ such that dist(Xs(y),Xs(z)) < r if d(y, z) < ρ for all s > 0, every y,
z ∈ Ws(x,Σ), and every x ∈ Σ .

Proof Let y and z be as in the statement. As in Remark 6.14, we may find
z′ = Xτ (z) in the intersection of the orbit of z with the strong-stable manifold of
y satisfying
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1

K
≤ dist(y, z′)

d(y, z)
≤ K and |τ | ≤ K · d(y, z).

Then, given any s > 0,

dist(Xs(y),Xs(z)) ≤ dist(Xs(y),Xs(z′)) + dist(Xs(z′),Xs(z))

≤ C · e−λs · dist(y, z′) + dist(Xs+τ (z),Xs(z))

≤ KC · eγ s · d(y, z) + K|τ | ≤ (KC + K2) · d(y, z).

Taking ρ < r/(KC + K2) we get the statement of the lemma. �

A very useful consequence of the hyperbolicity of Poincaré maps is the following
criterion for the existence of a periodic orbit.

Lemma 6.26 Let x ∈ Λ be a regular point and suppose that there exist another
regular point z ∈ Wss(x) and a sequence tn → +∞ satisfying Xtn(z) → x when
n → ∞. Then x belongs to a periodic orbit.

Proof Take an adapted cross-section Σ through x. The conditions on z imply that
there exists a Poincaré return map R defined on some substrip Σ(Σ) containing
W = Ws(x,Σ), and that this line W is forward invariant R(W) ⊂ W . The con-
tracting property given by Lemma 6.23 ensures there exists a periodic point p for
R. Therefore p belongs to a periodic orbit for the flow and to the line W . Hence
z ∈ Ws(p) and so ω(z) = O(p). Thus x = p since there can be only one intersec-
tion O(p) with Σ on the same stable manifold. �

From Proposition 6.2 any compact invariant subset H of a singular-hyperbolic
set Λ is uniformly hyperbolic, and of saddle-type. Using adapted cross-sections we
can say a bit more.

Lemma 6.27 Let Λ be a singular-hyperbolic set. Suppose that one of the following
conditions holds

1. Λ is Lyapunov stable and transitive, and H is a compact proper invariant subset
of Λ;

2. Λ is an attracting set with a dense subset of periodic orbits, H is the set of
accumulation points of a branch of the unstable manifold of some singularity σ

of Λ, and H does not contain σ .

Then either H ⊂ S(X) or, for any adapted cross-section Σ through some regular
point of H , the intersection H ∩ Σ is totally disconnected.

Note that the compact invariant set H is covered by a finite number of tubular
flow-boxes or flow-boxes near singularities UΣi

= X(−ε,ε)(Σi), for ε > 0 small and
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i = 1, . . . , k. From Lemma 6.27 we conclude that each UΣi
∩ H has topological

dimension one. Hence H in each case of the statement above is a one-dimensional
set. For the definition and main properties of topological dimensions see e.g. [117].

Proof We follow the arguments in Morales [161]. If H is not contained in the set
of singularities, fix a regular point x ∈ H ∩Σ . From Lemma 6.19 together with Re-
mark 6.14 we have that the connected component C of H ∩ Σ containing x cannot
contain intervals inside Ws(x,Σ). Then either C = {x} or C contains some point y

in Σ \ Ws(x,Σ). We show that the latter cannot happen in each case according to
the assumption in the statement.

Observe first that since Σ is adapted there are no points of H ∩Σ near the center-
unstable boundary ∂cuΣ . Hence there must be some point h0 ∈ H in the interior of
the substrip Σ ′ of Σ formed by the points of Σ between the two horizontal lines
Ws(x,Σ) and Ws(y,Σ). For otherwise y ∈ C would be disconnected from x.

1. If Λ is transitive, then there exists w ∈ Σ ′ close to h0 with ω(w) = Λ. Arguing
as above, there must exist a point ζ ∈ H ∩ Ws(w,Σ), for otherwise y and x

would be in different connected components of H ∩ Σ \ Ws(w,Σ). Then Λ =
ω(w) = ω(ζ ) ⊂ H . This is not possible because H is a proper subset of Λ.

2. Let H = ω(z) for some z ∈ Wu(σ) \ {σ } and some singularity σ , as in item 2
of the statement, and suppose that H is not a singularity. Let Σ be some-cross
section through some regular point h of H . Since Per(X) is dense in Λ, we
can find a sequence pn of points in periodic orbits such that pn −−−−→

n→+∞ σ . By

assumption we can find a point w in the positive orbit of z such that w ∈ Σ close
to h.

Observe that, since Wu(σ) is one-dimensional, we can assume without loss
of generality that z ∈ Σo,±

σ for some outgoing cross-section near σ . Then there
are points p′

n ∈ O(pn) satisfying p′
n −−−−→

n→+∞ z. So we can also find points p̃n ∈
O(pn) such that p̃n −−−−→

n→+∞ w.

As before, there exists a point ζn ∈ H ∩ Ws(p̃n,Σ). Hence we can find a
sequence ζ ′

n in the positive orbit of ζn, and thus in H , arbitrarily close to p′
n.

Hence we can also find a sequence ζ̃n ∈ H tending to σ . But then σ ∈ H , which
is a contradiction.

We conclude that either H ⊂ S(X) (and H is a singularity different from σ in the
scenario of item 2), or the connected component of H ∩ Σ containing x is formed
by x itself. �

6.1.4 Global Poincaré Return Map

Here we construct a global Poincaré map for the flow near the singular-hyperbolic
attractor Λ. We then use the hyperbolicity properties of this map to reduce the dy-
namics to a one-dimensional piecewise expanding map through a quotient map over
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the stable leaves. This in turn enables us to use the rich known features of such low
dimensional maps to deduce many properties of singular-hyperbolic attractors.

6.1.4.1 Cross-Sections and Invariant Foliations

We observe first that by Lemma 6.22 we can take a δ-adapted cross-section at each
non-singular point x ∈ Λ. We know also that near each singularity σk there is a
flow-box Uσk

as in Sect. 5.4.4; see Fig. 5.3
Using a tubular neighborhood construction near any given δ-adapted cross-

section Σ , we linearize the flow in an open set UΣ = X(−ε,ε)(int(Σ)) for a small
ε > 0, containing the interior of the cross-section. This provides an open cover of
the compact set Λ by flow-boxes near the singularities and tubular neighborhoods
around regular points.

We let {UΣi
,Uσk

: i = 1, . . . , l; k = 1, . . . , s} be a finite cover of Λ, where s ≥ 1
is the number of singularities in Λ, and we set T3 > 0 to be an upper bound for the
time it takes any point z ∈ UΣi

to leave this tubular neighborhood under the flow,
for any i = 1, . . . , l. We assume without loss that T2 > T3.

To define the Poincaré map R, for any point z in one of the cross-sections in

Ξ = {Σj ,Σ
i,±
σk

,Σo,±
σk

: j = 1, . . . , l; k = 1, . . . , s},

we consider ẑ = XT2(z) and wait for the next time t (z) when the orbit of ẑ hits
again one of the cross-sections. Then we define R(z) = XT2+t (z)(z) and say that
τ(z) = T2 + t (z) is the Poincaré time of z. If the point z never returns to one of
the cross-sections, then the map R is not defined at z (e.g. at the lines �± in the
flow-boxes near a singularity). Moreover by Lemma 6.23, if R is defined for x ∈ Σ

on some Σ ∈ Ξ , then R is defined for every point in Ws(x,Σ). Hence the domain
of R | Σ consists of strips of Σ . The smoothness of (t, x) �→ Xt(x) ensures that the
strips

Σ(Σ ′) = {x ∈ Σ : R(x) ∈ Σ ′} (6.7)

have non-empty interior in Σ for every Σ,Σ ′ ∈ Ξ . When R maps to an outgoing
strip near a singularity σk , there might be a boundary of the strip corresponding to
the line �±

k of points which fall in the stable manifold of σk .

Remark 6.28 Consider the Poincaré map given by the first return map R0 : Ξ → Ξ

defined simply as R0(z) = XT (z)(z), where

T (z) = inf{t > 0 : Xt(z) ∈ Ξ}
is the time the X-orbit of z ∈ Ξ takes to arrive again at Ξ . This map R0 is not
defined on those points z which do not return and, moreover, R0 might not satisfy the
lemmas of Sect. 6.1.2, since we do not know whether the flow from z to R0(z) has
enough time to gain expansion. However the stable manifolds are still well defined.
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By the definitions of R0 and of R we see that R is induced by R0, i.e., if R is defined
for z ∈ Ξ , then there exists an integer r(x) such that

R(z) = R
r(z)
0 (z).

We note that, since the number of cross-sections in Ξ is finite and the time t2 is a
constant, the function r : Ξ → N is bounded: there exists r0 ∈ N such that r(x) ≤ r0
for all x ∈ Ξ .

6.1.4.2 Finite Number of Strips

We show that fixing a cross-section Σ ∈ Ξ the family of all possible strips as in (6.7)
covers Σ except for finitely many stable leaves Ws(xi,Σ), i = 1, . . . ,m = m(Σ).
Moreover we also show that each strip given by (6.7) has finitely many connected
components. Thus the number of strips in each cross-section is finite.

We first recall that each Σ ∈ Ξ is contained in the forward invariant open neigh-
borhood U0 which is an isolating neighborhood for Λ; see Sect. 6.1.1. So x ∈ Σ is
such that ω(x) ⊂ Λ. Note that R is locally smooth for all points x ∈ int(Σ) such that
R(x) ∈ int(Ξ) by the Tubular Flow Theorem and the smoothness of the flow, where
int(Ξ) is the union of the interiors of each cross-section of Ξ . Let ∂sΞ denote the
union of all the leaves forming the stable boundary of every cross-section in Ξ .

Lemma 6.29 The set of discontinuities of R in Ξ \ ∂sΞ is contained in the set of
points x ∈ Ξ \ ∂sΞ such that:

1. either R(x) is defined and belongs to ∂sΞ ;
2. or there is some time 0 < t ≤ T2 such that Xt(x) ∈ Ws

loc(σ ) for some singularity
σ of Λ.

Moreover this set is contained in a finite number of stable leaves of the cross-
sections Σ ∈ Ξ .

Proof We divide the proof into several steps.

Step 1 Cases (1) and (2) in the statement of the lemma correspond to all possible
discontinuities of R in Ξ \ ∂sΞ .

Let x be a point in Σ \∂sΣ for some Σ ∈ Ξ , not satisfying any of the conditions
in items (1) and (2). Then R(x) is defined and R(x) belongs to the interior of some
cross-section Σ ′. By the smoothness of the flow and by the flow-box theorem we
have that R is smooth in a neighborhood of x in Σ . Hence any discontinuity point
for R must be in one the situations (1) or (2).

Step 2 Points satisfying item (2) are contained in finitely many stable leaves in each
Σ ∈ Ξ .

Indeed if we set W = X[−T2,0](∪σWs
loc(σ )), where the union above is taken over

all singularities σ of Λ, then W is a compact sub-manifold of M with boundary,
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tangent to the center-stable sub-bundle Es ⊕ EX. This means that W is transverse
to any cross-section of Ξ .

Hence the intersection of W with any Σ ∈ Ξ is a one-dimensional sub-manifold
of Σ . Thus the number of connected components of the intersection is finite in each
Σ . This means that there are finitely many points x1, . . . , xk ∈ Σ such that

W ∩ Σ ⊂ Ws(x1,Σ) ∪ · · · ∪ Ws(xk,Σ).

Step 3 Points satisfying item (1) are contained in a finite number of stable leaves of
each Σ ∈ Ξ .

We argue by contradiction. Assume that the set of points D of Σ sent by R into
stable boundary points of some cross-section of Ξ is such that

L = {Ws(x,Σ) : x ∈ D}
has infinitely many lines. Note that D in fact equals L by Lemma 6.23. Then there
exists an accumulation line Ws(x0,Σ). Since the number of cross-sections in Ξ is
finite we may assume that Ws(x0,Σ) is accumulated by distinct Ws(xi,Σ) with
xi ∈ D satisfying R(xi) ∈ Ws(z,Σ ′) ⊂ ∂sΣ ′ for a fixed Σ ′ ∈ Ξ , i ≥ 1. We may
assume that xi tends to x0 when i → ∞, that x0 is in the interior of Ws(x0,Σ) and
that the xi are all distinct—in particular the points xi do not belong to any periodic
orbit of the flow since we can choose the xi anywhere in the stable set Ws(xi,Σ).

As a preliminary result we show that R(xi) = Xsi (xi) is such that si is a bounded
sequence in the real line. For otherwise si → ∞ and this means, by definition of R,
that the orbit of XT2(xi) is very close to the local stable manifold of some singularity
σ of Λ and that R(xi) belongs to the outgoing cross-section near this singularity:
R(xi) ∈ Σo,±

σ . Hence it must be that Xsi (xi) tends to the stable manifold of σ when
i → ∞ and that R(xi) tends to the stable boundary of Σo,±

σ . Since no point in any
cross-section in Ξ is sent by R into this boundary line, we get a contradiction.

Now the smoothness of the flow and the fact that Ws(z,Σ ′) is closed imply that
R(x0) ∈ Ws(z,Σ ′) also since we have the following

R(x0) = lim
i→∞R(xi) = lim

i→∞Xsi (xi) = Xs0(x0) and lim
i→∞ si = s0.

Moreover R(Ws(x0,Σ)) ⊂ Ws(z,Σ ′) and R(x0) is in the interior of the image
R(Ws(x0,Σ)), and then R(xi) ∈ R(Ws(x0,Σ)) for all i big enough. This means
that there exists a sequence yi ∈ Ws(x0,Σ) and a sequence of real numbers τi such
that Xτi (yi) = R(yi) = R(xi) for all sufficiently big integers i. By construction we
have xi �= yi and both belong to the same orbit. Since xi, yi are in the same cross-
section we get xi = Xαi (yi) with |αi | ≥ T3 for all big i.

However we also have τi → s0 because R(yi) = R(xi) → R(x0), yi ∈ Ws(x0,Σ)

and R | Ws(x0,Σ) is smooth. Thus |si −τi | → 0. But |si −τi | = |αi | ≥ T3 > 0. This
is a contradiction.

This proves that D is contained in finitely many stable leaves.
Combining the three steps above we conclude the proof of the lemma. �
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Let Γ be the finite set of stable leaves of Ξ provided by Lemma 6.29 together
with ∂sΞ . Then the complement Ξ \ Γ of this set is formed by finitely many open
strips where R is smooth. Each of these strips is then a connected component of the
sets Σ(Σ ′) for Σ,Σ ′ ∈ Ξ .

6.1.5 The One-Dimensional Piecewise Expanding Map

We choose a C2 cu-curve γΣ transverse to F s
Σ in each Σ ∈ Ξ . Then the projection

pΣ along leaves of F s
Σ onto γΣ is a C1 map, since the stable leaves Ws(x,Σ) are

defined through every point of Σ ∈ Ξ and each depends C1 smoothly on the base
point, by the Stable Manifold Theorem. We set

I =
⋃

Σ,Σ ′∈Ξ

int
(

Σ(Σ ′)
) ∩ γΣ

and observe that, by the properties of Σ(Σ ′) obtained earlier at the beginning of the
previous Sect. 6.1.4.1, the set I is diffeomorphic to a finite union of non-degenerate
open intervals I1, . . . , Im by a C2 diffeomorphism, and pΣ | p−1

Σ (I) becomes a C1

submersion. Note that since Ξ is finite we can choose γΣ so that pΣ has bounded
derivative: there exists β0 > 1 such that

1

β0
≤ ∣

∣DpΣ | γ ∣
∣ ≤ β0 for every cu-curve γ inside any Σ ∈ Ξ.

According to Lemma 6.23, Proposition 6.15 and Corollary 6.17, the Poincaré map
R : Ξ → Ξ takes stable leaves of F s

Σ inside stable leaves of the same foliation and
is hyperbolic. In addition a cu-curve γ ⊂ Σ is taken by R into a cu-curve R(γ ) in
the image cross-section. Hence the map

f : I → I given by I � z �→ pΣ ′
(

R
(

Ws(z,Σ) ∩ Σ(Σ ′)
))

for Σ,Σ ′ ∈ Ξ is C1 for points in the interior of Ii , i = 1, . . . ,m, and we have

∣
∣Df | = ∣

∣D
(

pΣ ′ ◦ R ◦ γΣ

)∣
∣ ≥ 1

β0
· σ. (6.8)

Thus choosing t1 (and consequently t2) big enough so that σ/β0 > 2 in Proposi-
tion 6.15, we deduce that f is piecewise expanding with finitely many branches.

6.1.6 Denseness of Periodic Orbits and the One-Dimensional Map

We fix in every Σ ∈ Ξ a cu-curve γΣ which is transversal to every stable leaf of
Σ and take the projection pΣ : Σ → γΣ by x ∈ Σ �→ Ws(x,Σ) ∩ γΣ and the
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associated one-dimensional piecewise expanding map f : ∪j Ij → I := ∪j Ij , as
defined in Sect. 6.1.5. It is important to recall that each Ij is taken to be an open
interval. As usual in one-dimensional dynamics, we denote in what follows |J | for
the length or Lebesgue measure of an interval J ⊂ I .

The following is the first step towards the proof that a singular-hyperbolic attrac-
tor is a homoclinic class.

Lemma 6.30 Let f : ∪j Ij → I be a piecewise C1 expanding map with finitely
many branches I1, . . . , Il such that each Ij is a non-empty open interval, |Df |
Ij | ≥ σ > 2 and I \ (∪j Ij ) is finite.

Then for each small δ > 0 there exists n = n(δ) such that, for every non-empty
open interval J ⊂ ∪j Ij with |J | ≥ δ, we can find 0 ≤ k ≤ n, a sub-interval Ĵ of J

and 1 ≤ j ≤ l satisfying

f k | Ĵ : Ĵ → Ij is a diffeomorphism.

In addition, f has finitely many periodic orbits O(p1), . . . ,O(pk) contained in
∪j Ij , and every non-empty open interval J admits an open sub-interval Ĵ , a pe-
riodic point pj and an iterate n such that f n | Ĵ is a diffeomorphism onto a neigh-
borhood of pj .

Proof We start by setting J0 = J , which is contained in some Ij by assumption,
and define a sequence Jk of intervals by induction, as follows.

For each k ≥ 1, assuming that Jk is defined and strictly contained in some el-
ement of the family I1, . . . , Il , we consider f (Jk). If the interval f (Jk) contains
some of the intervals I1, . . . , Il , we are done. Otherwise f (Jk) is an interval not
containing any I1, . . . , Il .

Let Jk+1 be the largest connected component of

f (Jk) ∩ (∪j Ij ) = f (Jk) \ (∪j ∂Ij )

(we recall that each Ij is taken to be an open interval). Then there exists a sub-
interval J̃k of Jk such that f | J̃k : J̃k → Jk+1 is a diffeomorphism. Moreover by
assumption we have |Jk+1| ≥ σ · |Jk |/2, with σ > 2.

Therefore there must be some integer k such that Jk covers some element of the
family I1, . . . , Ik and the process stops, for otherwise the length of Jk ⊂ I would
grow without bound. Moreover the number of steps k satisfies (σ/2)k · |J | ≤ |I |,
and thus k is bounded from above depending only on |J |.

Now assuming that Jk ⊃ Ij for some k ≥ 1 and j ∈ {1, . . . , l}, consider the dif-
feomorphism g we obtain by composing the maps in the previous induction process

J̃0 → J̃1 → ·· · → J̃k ⊃ Ij .

Then g−1(Ij ) is the required interval Ĵ ⊂ J̃0 ⊂ J and g = f k as in the statement.
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This is enough to deduce that every such map f has a periodic orbit, since the
number of smoothness domains I1, . . . , Il is finite. Indeed, the map g is a diffeo-
morphism between a sub-interval J̃0 of J0, contained in some interval Ii , and some
interval J̃k covering an interval Ij . We write this relation as i → j .

We can now start with J0 = Ij and iterate. We obtain a map from the finite set
{1, . . . , l} to itself which must have a loop: there exists a sequence

i1 → i2 → ·· · → ik = ij

with 1 ≤ j < k and i1, i2, . . . , ik ∈ {1, . . . , l}. This means that there exists a sub-
interval J̃ of Ij which is sent diffeomorphically by some power g of f into an
interval Ĵ covering Ij , that is, g : J̃ ⊂ Ij → Ĵ ⊃ Ij , so that there is a fixed point for
g, which is a periodic point p of f .

Now we note that starting with any given Ii1 as above implies that the periodic
point p has some pre-image q in Ii1 . Moreover the iterates q,f (q), . . . , f m(q) = p

all belong to ∪j Ij by construction. Since the starting interval Ii1 is arbitrary, the
proof is complete. �

Since I is a Baire space we obtain the second step towards the proof that a
singular-hyperbolic attractor is a homoclinic class.

Proposition 6.31 In the same setting of Lemma 6.30 there exists a periodic point
p ∈ L and a neighborhood W of p satisfying:

• for each interval J ⊂ W there are � ∈ N and a sub-interval J0 ⊂ J such that

f � | J0 : J0 → W is a diffeomorphism.

In addition, W contains a dense subset of periodic orbits of f .

Proof Let Li = ∪n∈Zf n(pi) \ (∪n≥0f
−n(∪j ∂Ij )) for each periodic orbit given by

Lemma 6.30. The closure of these sets are f -invariant sets by construction and
satisfy

L1 ∪ · · · ∪ Lk = I

by Lemma 6.30 again. Since I is a Baire space, one of these sets, L = L1 say, must
have non-empty interior. Moreover, by the construction of L, given a point x ∈ L

and a neighborhood V0 of x, there exists y ∈ L ∩ V0 and n ∈ N with f n(y) = p1,
and a neighborhood V1 ⊂ V0 of y such that f n | V1 is a diffeomorphism onto a
neighborhood of p1. Then we can assume that p1 belongs to the interior of L.

This shows that every non-empty open interval J satisfying J ∩ L �= ∅ admits
n ∈ N such that f n(J ) is a neighborhood of p1. Thus, given 0 < δ < min{|Ii |, i =
1, . . . , l} we may find n0 ∈ N such that 1/n0 < δ/2 and partition the interval I into
n0 equally sized sub-intervals Jk := [k/n0, (k + 1)/n0], k = 0, . . . , n0 − 1. For each
such interval Jk intersecting L there exists nk such that f nk (Jk) contains a non-
empty open interval Wk which contains p1. Let W be the intersection of all these
finitely many intervals, which is also an interval containing p1.
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Now any interval J ⊂ W ⊂ L admits a sub-interval Ĵ and n ∈ N such that f n | Ĵ
is a diffeomorphism from Ĵ to some Ii . By the choice of δ there exists some Jk ⊂ Ii

and by construction Ii ⊂ L. Hence there exist j ∈ N and a sub-interval J̃ of Jk such
that f j | Jk is a diffeomorphism between J̃ and W . Therefore composing the maps
above we get � = n + j and a sub-interval J0 of J as in the statement of the lemma.

Observe now that W contains a dense subset of periodic orbits of f , since each
sub-interval W0 of W ⊂ L admits a smaller sub-interval W1 ⊂ W0 and an iterate
k such that f k | W1 : W1 → W ⊃ W1 is a diffeomorphism, so that there exists a
periodic point in W1 ⊂ W0. The proof is complete. �

6.1.7 Crossing Strips and the One-Dimensional Map

The family C (Ξ) of connected components of the sub-strips {Σ(Σ
′
) : Σ

′ ∈ Ξ},
for any given Σ ∈ Ξ , is the set of maximal connected sub-strips of Σ where R is
smooth; see Sect. 6.1.4.

Definition 6.32 Given strips S1 = [0,1] × J1 ⊂ Σ1 and S2 = [0,1] × J2 ⊂ Σ2, for
some Σ1,Σ2 ∈ Ξ , where J1, J2 are compact sub-intervals of [0,1], we say that
Rk(S1) crosses S2 for some k ≥ 1, if there exists a sub-strip S = [0,1] × J of S1
such that

pΣ2

(

Rk(S)
) ⊇ pΣ2(S2) and Rk(S) is diffeomorphic to S.

Given two strips S1, S2 we write S1
k−→ S2 if Rk(S1) crosses S2.

The usefulness of the previous results on the dynamics of the one-dimensional
map is given by the following simple criterion for two given strips to cross.

Lemma 6.33 If there exists an interval J ⊂ I and an integer n such that f n | J

is a diffeomorphism between J and its image f n(J ), then the strip S = [0,1] × J

crosses the strip Ŝ = [0,1] × f n(J ).

Proof Indeed since f ◦ p = p ◦ R by the definition of f though the projection p,
we have

f n
(

p(S)
) = p

(

Rn(S)
) = f n(J )

and thus Rn(S) projects on p(Ŝ). Hence S
n−→ Ŝ. �

Moreover this has the following important consequence for cu-curves.

Lemma 6.34 In the same setting as Lemma 6.33, if γ is a cu-curve which crosses S,
that is, p | (γ ∩ S) is a diffeomorphism between γ and J , then Rn(γ ) also crosses
Ŝ. In particular, Rn(γ ) � Ws(x,Σ) �= ∅ for all x ∈ Ŝ, where Σ ∈ Ξ is such that
S ⊂ Σ .
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Proof Since f n | J is a diffeomorphism with its image and J is precisely the image
of p | γ , the smooth conjugation between R and f ensures that p ◦ Rn | γ is also
a diffeomorphism with f n(J ). Therefore for each x = (t, y) ∈ Ŝ the intersection
between Rn(γ ) and Ws(x,Σ) is given by Rn ◦(p◦Rn | γ )−1(y). The transversality
of the intersection is clear from the fact that cu-curves are sent to cu-curves by the
Poincaré map R. �

6.2 Singular-Hyperbolic Attractors are Homoclinic Classes

Now we assume that Λ is a singular-hyperbolic attractor for a C1 flow Xt . Recall
that given a hyperbolic periodic orbit p for X the associated homoclinic class H(p)

is given by the closure of the set of transversal intersections of the stable and unsta-
ble manifolds of the orbit of p; see Chap. 2.

We consider the global Poincaré return map R for a C1 flow Xt associated to
a singular-hyperbolic attractor Λ. Let f be the one-dimensional map obtained in
Sect. 6.1.5.

The main step in the argument is the following.

Proposition 6.35 There exists a strip S0 such that every sub-strip S of S0 eventually

crosses S0, that is, there exists k ∈ N satisfying S
k−→ S0.

We prove this result arguing with the one-dimensional map f associated with Ξ

and X through the projection p.

Proof Consider the strip S0 := p−1(W) in the adapted cross-section Σi correspond-
ing to the interval Ij which contains W , where W is the interval whose existence
is assured by Proposition 6.31. Then, given any sub-strip S of S0 and considering
J = π(S), we know from Proposition 6.31 that there exists a sub-interval J0 of J

such that f n | J0 : J0 → W is a diffeomorphism.
Lemma 6.33 ensures that the strip S′ = p−1(J0) eventually crosses S0, as

claimed. �

It is well known that every Lyapunov stable set contains the unstable manifold
of its periodic orbits. Hence, given any point P of a periodic orbit O(P ) of X in
a singular-hyperbolic attractor Λ, we have Wu(P ) ⊂ Λ and also H(P ) ⊂ Λ (we
recall that each periodic orbit inside a singular-hyperbolic attractor is hyperbolic).

In addition, for the local unstable manifold Wu
ε (P ) for P ∈ Σ , with some Σ ∈ Ξ ,

there exists a strip S contained in some connected component of C (Ξ) such that
S ∩ Wu

ε (P ) is a neighborhood of p inside Wu
ε (P ) ∩ Σ . That is, pΣ(Wu

ε (P ) ∩ Σ)

contains a neighborhood of pΣ(P ).
Let w be a point of a transitive orbit inside Λ. Then there exists t > 0 such

that Xt(w) ∈ S, and so there exists y ∈ Wu
ε (P ) ∩ Ws(Xt(w),Σ). This implies that

ωX(y) = ωX(w) = Λ and so Wu(P ) ⊃ Λ.
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Next we show that there exists a periodic orbit O(P ) in Λ such that Wu(P ) =
H(P ). Since Wu(P ) = Λ this proves that Λ is a homoclinic class.

We observe that from Lemma 6.30 and Proposition 6.31 we can find a periodic
stable leaf Ws(y,Σ) for some Σ ∈ Ξ . The uniform contraction of stable leaves on
Ξ ensures that there exists a unique periodic point P of R on this leaf, which corre-
sponds to a periodic orbit of X in Λ. This shows that every C1 singular-hyperbolic
attractor admits some periodic orbit.

Let S0 be the strip contained in some connected component of C (Ξ), such that
S0 ∩ Wu

ε (P ) is a neighborhood of P inside Wu
ε (P ) ∩ Σ , given by Proposition 6.35.

We consider D a small connected bounded disk inside Wu(P ). Then we have that
X−t (D) converges uniformly to O(P ) when t → +∞ by the definition of unsta-
ble manifold of a hyperbolic periodic orbit. Therefore there exists t0 > 0 such that
X−t0(D) ∩ S0 contains a cu-curve γ . In particular γ is not tangent to the center-
stable direction at any point.

According to Proposition 6.35, by the choice of S0, the strip S = p−1(p(γ )) ad-
mits n ≥ 1 such that S

n−→ S0. This implies that γn = f n(γ0) eventually crosses
S0. But γ0 ⊂ γ is a piece of Wu(P ) which is invariant under the flow. Hence
γn ⊂ Wu(P ) is a cu-curve which crosses S0. Lemma 6.34 implies that γn �
Ws(P,Σ) �=∅.

Again the invariance of the center-stable and center-unstable manifolds imply
that γ � Ws(P ) �= ∅ first, and then also that D � Ws(P ) �= ∅. Since D is an arbi-
trary small disk inside Wu(P ), this shows that a dense subset of Wu(P ) consists of
homoclinic points. This is enough to conclude that Wu(p) ⊂ H(p). This completes
the proof that a singular-hyperbolic attractor is a homoclinic class.

6.3 Sufficient Conditions for Singular-Hyperbolic Attractors
to Be Robust

Here we present a proof of Theorem 6.9. This is based on the following result whose
proof we postpone to Sect. 6.3.1.

Theorem 6.36 Let Λ be a singular-hyperbolic attracting set of X ∈ Xr for some
r ≥ 1. Suppose that Λ is connected and contains a dense subset of periodic orbits.
Moreover assume that Λ contains only one singularity and is not transitive.

Then for every neighborhood U of Λ there exists a flow Y close to X in the Cr

topology such that ΛY (U) �⊂ Ω(Y).

Let Λ be a singular-hyperbolic attractor of a Cr flow X on a compact 3-manifold
M . Assume that Λ is Cr robustly periodic and has a unique singularity σ .

Denote by U a neighborhood of Λ such that ΛY (U)∩ Per(Y ) is dense in ΛY (U)

for every flow Y which is Cr close to X. Clearly ΛY (U) is a singular-hyperbolic set
of Y for all Y close to X.

Because Λ has a unique singularity, which is Lorenz-like, then ΛY (U) has a
unique singularity as well. Indeed, by Theorem 6.3, every singularity of ΛY (U)
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must be either singular-hyperbolic for Y or for −Y . In both cases the singularities
are hyperbolic and bifurcations are not allowed for any Y close to X. Hence if ΛY

had more than one singularity there would exist at least two distinct singularities in
the original set Λ, by the property of analytic continuation of any hyperbolic critical
element.

Recalling that Λ is an attractor by assumption, and thus transitive in particular,
we see that Λ is connected, and so we can assume that the neighborhood U above
is connected. Then ΛY (U) is connected as well.

Summarizing: ΛY (U) is a connected singular-hyperbolic attracting set of Y con-
taining only one singularity.

Were Λ not Cr robust, there would exist Y close to X such that ΛY (U) is not
transitive. In this case ΛY (U) would satisfy all the conditions of Theorem 6.36.
Hence there would exist Z close to Y satisfying ΛZ(U) �⊂ Ω(Z). But we are assum-
ing that ΛZ(U) ∩ C(Z) is dense in ΛZ(U) and C(Z) is always contained in Ω(Z).

This contradiction completes the proof of Theorem 6.9, assuming Theorem 6.36.

6.3.1 Denseness of Periodic Orbits and Transitivity with a Unique
Singularity

Here we start the proof of Theorem 6.36 We present the proof as a sequence of
several simpler results which will be proved in the sequel.

Let X ∈ Xr and let Λ be a singular-hyperbolic set of X satisfying the conditions
in the statement of Theorem 6.36: thus Λ contains a unique singularity σ , it has a
dense subset of periodic orbits and it is a singular hyperbolic non-connected attract-
ing set. The singularity is Lorenz-like by Theorem 6.3. Then Wss(σ ) divides Ws(σ)

into two connected components, which we denote by Ws,+ and Ws,−.
Note that Λ �= {σ }, for otherwise we would get an attracting set consisting of a

singularity with an expanding eigenvalue, which is impossible. Therefore the set of
periodic orbits in Λ is non-empty.

A crucial result in this setting is that the unstable manifold of every periodic orbit
in Λ crosses the stable manifold of the singularity transversely. We present a proof
in Sect. 6.3.2 following the arguments in [168].

Theorem 6.37 Let Λ be either a singular-hyperbolic attractor, or a connected
singular-hyperbolic attracting set with a dense subset of periodic orbits. Then for
every p ∈ Per(X)∩Λ there exists a singularity σ of Λ such that Wu(p) and Ws(σ)

intersect transversely.

The intersections provided by this results together with the uniqueness assump-
tion on S(X) enables us to use the two connected components Ws,+ and Ws,− of
Ws(σ) to relate two distinct periodic orbits of Λ or to deduce non-trivial conse-
quences if Λ is not transitive or a disconnected set.
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We do this by considering the following invariant subsets of Λ:

P ± = {p ∈ Per(X) ∩ Λ : Wu
X(p) � Ws,±(σ ) �= ∅} and H± = P ±.

The rest of this section is devoted to proving the following result, which we then
use to prove Theorem 6.36.

Theorem 6.38 Let Λ be a connected singular-hyperbolic attracting set of a flow
X ∈ Xr , r ≥ 1, on a closed three-manifold M . Suppose that Λ contains a dense
subset of periodic orbits and a unique singularity. Moreover assume that Λ is not
transitive. Then H+ and H− are homoclinic classes of X.

From Theorem 6.37 and the assumption that S(X) ∩ Λ is a singleton together
with denseness of periodic orbits in Λ, we easily deduce that P ± cover the whole
attractor.

Lemma 6.39 Let Λ be a connected singular-hyperbolic attracting set with dense
periodic orbits and only one singularity σ . Then Λ = H+ ∪ H−.

In this setting we can state Theorem 6.38 in the following useful way: a singular
hyperbolic attracting set having dense periodic orbits with only one singularity is
either transitive or the union of two homoclinic classes.

Since each element O ∈ Per(X) ∩ Λ is hyperbolic of saddle-type, then Wu(O) \
{O} has two connected components. For O ∈ P ± one of these components intersects
Ws,±(σ ). We write that component Wu,±(O).

Now we show that both H+ and H− are transitive sets.

Lemma 6.40 Let Λ be a singular-hyperbolic attracting set with dense periodic
orbits and only one singularity σ . Then H+ and H− are transitive. Moreover H± ⊂
Wu,±(q) = Wu,±(q) � Ws,±(σ ) for all q ∈ P±.

Proof Let p,q be two points in distinct orbits inside H+ (the argument for H− is
analogous). Then their unstable manifolds intersect transversely on the same side of
the stable manifold of the unique singularity. Hence through the local behavior of the
flow near a singularity, flowing to an incoming cross-section Σ = Σi,+, we obtain
two small curves γ ⊂ Wu(p) ∩ Σ and ζ ⊂ Wu(q) ∩ Σ crossing �+ transversely.
See Fig. 5.3.

Fix neighborhoods U of p and V of q . Since periodic orbits are dense in Λ and
γ ⊂ Λ (because Λ is an attracting set), then we can find a periodic orbit r so close
to p that

• Ws(r,Σ) intersects both γ and ζ transversely;
• the orbit of r intersects U .

Hence taking z ∈ ζ � Ws(r,Σ) ⊂ Wu(q) ∩ Ws(r) we see that the positive orbit of
z visits U infinitely many times, and the negative orbit of z converges to O(q), and
thus visits V infinitely many times. This means that there exists some t > 0 such
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that Xt(V ∩Λ)∩ (U ∩Λ) �= ∅. Since U and V where arbitrarily chosen, this proves
transitivity.

Recall the convention Wu,+(q) for the branch of Wu(q) \ O(q) which intersects
Ws,+(σ ). The above argument also shows that the Wu,+(q) is arbitrarily near p,
that is, P + ⊂ Wu,+(q) for every q ∈ P +, and thus H+ ⊂ Wu,+(q).

Since Λ is attracting we have Wu,+(q) ⊂ Λ. Therefore given any y ∈ Wu,+(q)

there is a sequence pn ∈ Per(X) ∩ Λ such that pn −−−−→
n→+∞ y. By Theorem 6.37

together with the inclination lemma, we deduce that Ws(σ) crosses Wu,+(q) very
near y. This shows that Ws(σ) ∩ Wu,+(q) ⊃ Wu,+(q).

Analogously with − instead of +. Note that the intersections above are always
transverse. The lemma is proved. �

From this we deduce the following condition for transitivity.

Lemma 6.41 In the same setting as the previous lemma, suppose that there exists a
sequence {pn}n≥1 ⊂ P − converging to some point in Ws,+(σ ) (or similarly inter-
changing + with −). Then Λ is transitive.

Proof Fix p ∈ P+ and let pn ∈ P − be as in the statement. From the construction
of flow-boxes near singularities in Sect. 5.4.4 we can fix an adapted cross-section
Σ = Σi,+ through Ws,+(σ ) and an open arc J ⊂ Σ ∩Wu(p) intersecting Ws,+(σ )

transversely.
Again by the behavior of the flow near singularities we can assume that pn ∈

Σ for every n. By the choice of adapted cross-sections, we know that the local
stable manifolds Ws(pn,Σ) of pn inside Σ intersect J transversely, for every big
enough n.

The inclination lemma 2.15 applied to the positive orbit of J ⊂ Wu
X(p) together

with the assumption pn ∈ P − imply that Wu(p) ∩ Ws,−(σ ) �= ∅. Hence p ∈ P−.
This shows that H+ ⊂ H−. Thus Λ = H− by Lemma 6.39, and from

Lemma 6.40 we conclude that Λ is transitive. �

Proposition 6.42 In the same setting as above, if there is z ∈ Wu(σ)\ {σ } such that
σ ∈ ω(z), then Λ is transitive.

Proof Let z be as in the statement. By the local dynamics in flow-boxes near σ we
can assume that there are points zn ∈ Σi,+ in the positive orbit of z such that zn →
z0 ∈ �, where � = Ws,+(σ )∩Σ . (The argument for the − case above is analogous.)

If Per(X) ∩ P − = ∅, then we would have Per(X) ∩ Λ ⊂ P + by Theorem 6.37.
In this case Λ would be transitive by Lemma 6.40. Hence we can assume that there
exists q ∈ P −.

This allows us to choose a sequence of points wn ∈ Wu(q) in the same side as z

is, such that wn −−−−→
n→+∞ w ∈ Ws,−(σ ). Since Λ is attracting, it contains the unstable

manifolds of its points and so w ∈ Λ. Thus we can find a sequence pn ∈ Per(X)∩Λ

tending to w, whose orbit passes very close to z. Consequently there are p′
n ∈ O(pn)

converging to z0.
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We have found a sequence of periodic orbits accumulating simultaneously on
Ws,+(σ ) and on Ws,−(σ ). Arguing by contradiction, suppose that Λ is not tran-
sitive. Then Lemma 6.41 would imply that p′

n �∈ P+ and p′
n �∈ P− for all n large

enough. This contradicts Theorem 6.37 and concludes the proof. �

We assume that Λ is not transitive and use the previous results to disconnect Λ.

Lemma 6.43 If Λ is not transitive, then for all q ∈ P ± we have

H± = Wu,±(q) � Ws,±(σ ) = Wu,±(q).

Proof Fix q ∈ P + (for P − the argument is the same). From Lemma 6.40 it is
enough to show that every point y ∈ Wu,+(q) is an accumulation point of elements
of P+. This implies that y is accumulated by points in Wu,+(q) ∩ Ws,+(σ ) by the
inclination lemma and, in addition, also ensures that y ∈ H+.

By denseness of periodic orbits there exists a sequence pn ∈ Per(X) ∩ Λ such
that pn −−−−→

n→+∞ y. Then pn ∈ P + for all n big enough, for otherwise we would

get y ∈ H− and thus H+ ⊂ Wu,+(q) = O(y) ⊂ H−, since H− is invariant. Hence
Λ = H+. This contradicts the assumption that Λ is not transitive. �

Theorem 6.44 If Λ is not transitive, then for all a ∈ Wu(σ) \ {σ } there exists a
periodic orbit O ⊂ Λ such that a ∈ Ws(O), that is, ω(a) = O .

Note that by Theorem 6.37 the periodic orbits given by Theorem 6.44 are homo-
clinically related to σ .

Proof Fix a ∈ Wu(σ) \ {σ } and assume that ω(a) is not a periodic orbit.
Since Λ is not transitive and periodic orbits are dense by assumption, we have

P + �= P − and both are non-empty. Take p ∈ P + and q ∈ P−.
Using the flow we can assume that a belongs to some outgoing cross-section Σ =

Σo,± of a flow-box near σ . Since the unstable manifolds of p and q cross Ws(σ)

on sides opposite to Wss(σ ), both their intersections with Ws(σ) contain a curve
having σ as an accumulation point and tangent to the eigendirection corresponding
to the weak contracting eigenvalue of σ ; see Fig. 6.5. Using the flow-box near σ we
can find a curve I = Ia contained in Σ through a such that I \ {a} is formed by two
arcs I+ ⊂ Wu(p) and I− ⊂ Wu(q); see Fig. 6.5. Observe that the tangent space of
I is contained in Ec ∩ T Σ by construction.

Fig. 6.5 The stable manifold
of σ , the unstable manifolds
of p,q and the points in Σ0
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Proposition 6.42 ensures that σ /∈ ω(a) since Λ is not transitive. Therefore from
Proposition 6.2 we see that H = ω(a) is a uniformly hyperbolic saddle-type set.
Moreover I ⊂ Λ because Λ is a closed attracting set.

Consider an adapted cross-section Σ0 through some point of H . Then by item
2 of Lemma 6.27 and shrinking Σ0 if necessary, we can assume that the stable
boundary ∂sΣ0 of Σ0 does not touch H . Moreover since Σ0 \ H is open we can in
addition assume that d(Σ0 ∩ H,∂sΣ) > δ for some δ > 0, just as in the definition
of δ-adapted cross-section, but now in the center-unstable direction.

Using a tubular flow construction we can linearize X in an open tube-like set
UΣ0 = X(−ε,ε)(int(Σ0)) for a small ε > 0. We can cover H by a finite number
Ξ = {UΣ0 , . . . ,UΣl

} of this type of open tubular flow-boxes, since H ∩ S(X) = ∅,
H is compact and H satisfies item 2 of Lemma 6.27.

Consider the Poincaré map R : Ξ ∩H → Ξ defined by z ∈ Ξ ∩H �→ XT2+t (z)(z)

where T2 is defined in Sect. 6.1 and τ(z) is the first return time of XT2(z) to Ξ . The
map is defined on entire strips of Ξ by the construction of adapted cross-sections.

Fix now h0 ∈ H and let zn be points in the positive orbit of z such that

d
(

zn,R
n(h0)

) −−−−→
n→+∞ 0.

Note that hn = Rn(h0) always belongs to the interior of Ξ and the same is true of
zn. Observe that there exists a corresponding sequence of images In of I such that
zn ∈ In ⊂ Ξ . Since I is transverse to the flow direction, we have that zn belongs to
the interior of In. In addition, the expansion of R in the central-unstable direction
and the fact that zn is δ-away from the boundary of Ξ ensures that there is an arc Jn

with length bounded away from zero such that zn ∈ Jn ⊂ In.
Let h be a limit point of hn. Hence Jn converges in the C1 topology to an in-

terval in Wu(h) (recall that h ∈ H and H is uniformly hyperbolic). Since Ξ has
finitely many components, we can assume that hn,Jn and h all belong to the same
component Σ0 of Ξ .

Notice that we cannot have zn ∈ Ws(h,Σ0) for infinitely many n, for otherwise
by Lemma 6.26 we conclude that h is periodic and z ∈ Ws(h), and thus H = ω(z) =
O(h) contradicting the assumption. Hence zn /∈ Ws(h,Σ0) for all big enough n.

Therefore the intersection of Jn \ {zn} with Ws(zn+1,Ξ) is non-empty for big
enough n. If wn belongs to this intersection, then it is either in the image of I+ or
in the image of I− inside Jn. We write J ±

n for the corresponding components.
Now we use the fact that periodic orbits are dense. Assume that wn ∈ J+

n and
take pn ∈ Per(X) ∩ Σ0 close to a point in J−

n near zn+1; see the rightmost rectangle
in Fig. 6.5. Then we ensure that

Ws(pn) � J+
n �= ∅ �= J−

n+1 � Ws(pn)

which implies that

Ws(pn) � Wu(p) �= ∅ �= Wu(q) � Ws(pn).

By the choice of pn we know that O(pn) goes very close to Ws,−(σ ). We can find a
sequence of such orbits converging to a point in Ws,−(σ ). Since Λ is not transitive,
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Fig. 6.6 Definition of Wu,+
and Wu,−

by Lemma 6.41 we must have pn ∈ P −. But then p must be in P − by the inclination
lemma 2.15. Since p was an arbitrary point in P +, we conclude that P + ⊂ P − and
so Λ = H− is transitive, a contradiction.

Otherwise we have wn ∈ J−
n and by the same arguments we deduce that q ∈ P +,

implying that Λ = H+ is transitive as before.
Hence ω(z) must be a periodic orbit, as claimed. �

The orbit O provided by Theorem 6.44 is hyperbolic of saddle-type (because
it carries a dominated splitting with volume expanding central direction). Hence
there are two connected components Wu,± of the unstable manifold of O such that
Wu,+ ∪Wu,− = Wu(O)\O . The labels ± on each component are chosen according
to whether the corresponding component is accumulated by the unstable manifold
of a periodic point in P + or P −, as in the proof of Theorem 6.44; see Fig. 6.6. The
above convention does not depend on p ∈ P+, q ∈ P − nor on I+, I− (this is easily
proved using the Inclination Lemma).

The next results show that the choice of signs for the branches of Wu(O) co-
incides with the previous convention for the unstable manifolds of periodic orbits
in Λ.

Lemma 6.45 We have Wu,+ ∩ Ws,−(σ ) = ∅ and Wu,+ ∩ Ws,+(σ ) �= ∅, and the
similar facts interchanging + and −. In particular O ∈ P + ∩ P −.

Proof Arguing by contradiction, note that if Wu,+∩Ws,−(σ ) �= ∅, then because this
intersection is transverse and every p ∈ P+ has an unstable manifold accumulating
on Wu,+, we deduce that p ∈ P −, and again P + ⊂ P −. Thus Λ = H− is transitive,
a contradiction. Similarly exchanging + with − in the above argument.

For the other part, if Wu,+ ∩ Ws,+(σ ) = ∅, then Wu(O) ∩ Ws(σ) = ∅ since
Λ ∩ Wss(σ ) = {σ } by Theorem 5.10, contradicting Theorem 6.37. �

Lemma 6.46 Assume that Ws(p) � Wu,+ �= ∅ for some p ∈ Per(X) ∩ Λ. Then
Ws(p) ∩ Wu,+ = Wu,+. Similarly replacing + by −.

Proof Choose a neighborhood U of x ∈ Wu,+. By Lemma 6.43 we have in particu-
lar Ws,+(σ ) ∩ Wu,+ = Wu,+. Then we can find a point y ∈ Ws,+(σ ) ∩ Wu,+ ∩ U .
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Let γ be a curve through y inside U ∩ Wu,+ transverse to Ws,+(σ ). Then the posi-
tive orbit of γ contains open arcs which converge in the C1 topology to any compact
neighborhood of O inside Wu,+, by the inclination lemma. Hence the positive orbit
of γ intersects Ws(p) by the assumption on p. Therefore there exists a point of
Ws(p) in U , proving that Wu,+ ⊂ Ws(p) ∩ Wu,+. �

Now we are ready to consider homoclinic classes inside Λ (see Sect. 2.5.4 for
the definition and basic properties).

Lemma 6.47 For p ∈ P± such that Ws(p) � Wu,± �= ∅, the homoclinic class
H(p) equals Wu,±.

Observe that, since periodic orbits are dense we can choose p ∈ Per(X)∩Λ very
close to Wu,+ to obtain the condition on p in Lemma 6.47. Then by Lemma 6.43
we see that H+ = Wu,± = H(p) is a homoclinic class. This completes the proof of
Theorem 6.38.

Proof of Lemma 6.47 Fix z ∈ P +, y ∈ Wu,± and a neighborhood U of y. By
definition there exists an arc I ⊂ Wu(p) whose forward orbit crosses Ws,+(σ ).
Lemma 6.46 ensures that we can find a disk D transverse to Wu,± inside Ws(p)∩U .

The inclination lemma implies that the positive orbit of a sub-arc J ⊂ I accu-
mulates Wu,+. Then there exists t > 0 such that Xt(J ) � D �= ∅. This means that
H(p) ∩ U �= ∅. Since U was arbitrarily chosen and H(p) is closed by definition,
we find that y ∈ H(p). Hence Wu,+ ⊂ H(p) and Wu,± ⊂ H(p).

For the opposite inclusion note that by the assumption Ws(p) � Wu,± �= ∅ and
the inclination lemma, we have Wu,± ⊃ Wu(p) ⊃ H(p). �

Proof of Theorem 6.36 First, by Lemma 6.47, we must have Wu,± ∩ Ws,−(σ ) = ∅.
For otherwise we can find a sequence pn ∈ P+ converging to a point in Ws,−(σ ).
By Lemma 6.41 this implies that Λ is transitive, a contradiction.

Therefore there exists a neighborhood B of Wu,± disjoint from Ws,−(σ ). Let
J = [a, b] be a fundamental neighborhood of Wss(p0) for some p0 ∈ O , where O
is the periodic orbit given by Theorem 6.44. That is, J is an arc with b = Xt(a)

for some t > 0 such that Xs(a) �∈ Wss(p0) for all 0 < s < t . Take V ⊂ B a small
neighborhood of J such that every point of V belongs to a stable manifold of a
point in V ∩ Wu,±. The forward orbits of points in V never leave B , since Wu,± is
invariant.

We are going to describe a perturbation of the flow X close to the point a ∈
Wu(σ) \ {σ } (which defines the orbit O = ω(a)). Consider the following cross-
sections of X (recall the definition of flow-box near a singularity in Sect. 5.4.4):

• Σo,+ containing a in its interior and Σ ′ = X1(Σo,+).
• Σ0 intersecting O in a single point in the center-unstable boundary.
• Σ− a substrip of Σi,− which is a one-sided neighborhood of �− not touching B

on the same side of a.
• Σ+ a substrip of Σi,+ which is a one-sided neighborhood of �+ also on the same

side of a.



6.3 Sufficient Conditions for Robustness 197

Fig. 6.7 The unperturbed
flow X

Fig. 6.8 The perturbed
flow Y

Observe that the positive orbit of any point in Σ+ ∪ Σ− by X will cross Σo,+.
Define W = X[0,1](Σo,+). The support of the perturbation from X to Y sketched
in Figs. 6.7 and 6.8 is contained in W . This perturbation is standard, see e.g. [190],
amounting to “push a′ upwards so that its image under the flow of Y lands in ΣO

above the stable manifold of O”.
Recall that Λ = ΛX(U) = ∩t>0X

t(U). Since Λ is not transitive there exists q ∈
P− and so there is an interval K0 in Σ− ∩ Wu(q) crossing Σ− as in Fig. 6.8.

Denote by q ′,Wu(q ′), σ ′,K ′
0 the continuation of these objects for the perturbed

flow Y . The Y -flow carries K ′
0 to an interval K ′

1 as in Fig. 6.8.
Note that K ′

0 ⊂ ΛY (U) since ΛY (U) is an attracting set, q ′ ∈ ΛY (U) and K ′
0 ⊂

Wu(q ′).
We claim that K ′

0 �⊂ Ω(Y).
Arguing by contradiction, assume that K ′

0 ⊂ Ω(Y) and choose x ∈ int(K ′
0).

On the one hand, the flow of Y carries points nearby x to V as sketched in
Fig. 6.8, close to the line K ′

2. By assumption on K ′
0, x is non-wandering for Y . In

particular there exists x′ ∈ K ′
0 close to x such that the positive Y -orbit of x ′ returns

to Σ−.
On the other hand, by construction, the positive orbit of every point in V by the

flow of X does not intersect Σ−.
Since Y = X outside W we conclude that the positive orbit of x′ by Y intersects

Σ+ by the definition of Wu,+. The positive orbit of such an intersection passes
through the flow-box W and arrives at V again. Then we conclude that the positive
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Y -orbit of x ′ never returns to Σ−. This contradiction proves that K ′
0 �⊂ Ω(Y), as

claimed.
This implies that ΛY (U) �⊂ Ω(Y) and finishes the proof of Theorem 6.36. �

6.3.2 Unstable Manifolds of Periodic Orbits Inside
Singular-Hyperbolic Attractors

Here we present a proof of Theorem 6.37 following the proof presented in [166].
Let Λ be either a singular-hyperbolic attractor, or a connected singular-

hyperbolic attracting set having a dense subset of periodic orbits.
We start by showing that the closure of the unstable manifold of any periodic

orbit in Λ must contain some singularity of the flow.

Lemma 6.48 Let Λ be a connected singular-hyperbolic attracting set containing
either a dense subset of periodic orbits, or a dense regular orbit. Fix a periodic
point p0 ∈ Per(X)∩Λ (necessarily hyperbolic of saddle-type). Let J = [a, b] be an
arc on a connected component of Wuu(p0)\ {p0} with a �= b. Then H = ∪t>0Xt(J )

contains some singularity of Λ.

Proof Observe that H = Wu
0 (p0) ⊂ Λ by construction, where Wu

0 (p0) is the con-
nected component of Wu(p0) \ O(p0) containing J . In addition H contains the
unstable manifolds through any of its points, since every point in H is accumulated
by forward iterates of the arc J .

Consider the set Wss(H) = ∪{Wss(y) : y ∈ H }. Note that Wu(y) ⊂ H for y ∈ H

and the family {Wss(z)}y∈Wu(y) covers an open neighborhood of y, and so Wss(H)

is a neighborhood of H in M .
Let x be a point in Wss(H). Then by forward iteration this point is sent close to

H . This shows that x is in the interior of Wss(H) and hence Wss(H) is open in M .
Thus Hs = Wss(H) ∩ Λ is an open neighborhood of H in Λ. If Λ is transitive, we
can take z ∈ Hs such that ω(z) = Λ and, since ω(z) = ω(x) for some x ∈ Hs , we
conclude that Λ ⊂ H and so H ∩ S(X) �= ∅.

If Λ is not transitive, we claim that either Hs ∩ S(X) �= ∅, or the closure of Hs

is an open subset of Λ (besides being clearly a closed set).
First note that, if σ ∈ Hs ∩ S(X), then σ ∈ Wss(y) for some y ∈ H implying

that σ ∈ H . For otherwise we would get y ∈ Wss(σ ) ∩ Λ \ {σ }, a contradiction to
Theorem 6.3.

Suppose that Hs ∩ S(X) = ∅. From Proposition 6.2 we know that Hs is a uni-
formly hyperbolic compact subset of Λ. Then every w ∈ Hs has a well defined
strong-unstable manifold. Moreover Wuu

ε (w) ⊂ Λ ∩ Hs for some ε > 0, because Λ

is attracting and Hs is open. We conclude that Hs contains the unstable manifold of
all its points. Hence taking limits we obtain that the closure Hs also contains every
unstable manifold. Analogously we see that Hs contains the strong-stable manifold
Wss(z)∩Λ relative to Λ for all z ∈ Hs . The union of the unstable manifolds through
all points in the strong-stable manifolds provides a neighborhood of Hs in Λ.
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Since Λ is connected we obtain Hs = Λ. Hence there exists some singularity
σ of Λ in the closure of the stable manifolds of H inside Λ. Let hn be points in
Hs converging to σ . Hence the orbits of hn contain points h′

n very close to Wu(p0)

by definition of Hs . Using the assumption of dense periodic orbits, consider a pe-
riodic orbit pn very close to hn. Then the orbit of pn will be close to Wu

0 (p0) and
so Ws(pn) � Wu

0 (p0) �= ∅ (to see this, consider an adapted cross-section Σ through
h′

n, a small tubular flow-box through Σ and recall that stable manifolds cross Σ hor-
izontally). The inclination lemma now ensures that Wu

0 (p0) = H contains pn. Thus
H is arbitrarily close to σ . Therefore the closed set H contains some singularity of
S(X) ∩ Λ. �

Fix p0 and σ ∈ S(X) ∩ H as in the statement of Lemma 6.48. We can assume
that J is a fundamental domain for Wu(p0), that is, b = XT (a) with T > 0 the first
return time of the orbit of a to Wuu(p0), i.e., Xt(a) /∈ Wuu(p0) for all 0 < t < T .

Fix ingoing adapted cross-sections Σ̂i,±
σ of every σ ∈ S(X) ∩ Λ and horizontal

substrips Σi,±
σ around �±

σ of small width so that O(p0) does not touch Σi,±
σ . We

assume that Σ̂i,±
σ \ Σi,±

σ have nonempty interiors.
Consider also a cross-section Σp containing p0. We can then take J = [a, b] so

close to p0 that J ⊂ int(Σp) and X−t (J ) never intersects Σi,±
σ for all t > 0 and

every σ ∈ S(X) ∩ Λ.
Since S(X) ∩ Wu(p0) �= ∅ there exists a Poincaré map R from a subset D of

Σp to int(∪σ Σi,±
σ ) given by the first return time τ(x) of x ∈ D. Without loss of

generality assume that R(b) ∈ int(Σi,+
σ ) for some singularity σ fixed from now on.

We drop the σ from the notation of the cross-sections in what follows.
Note that R(a) must equal R(b). Using this with some tubular flow-boxes to-

gether with the fact that Σi,+ is an adapted cross-section, we show that the image of
J under R must cross Σi,+ from one stable boundary to the other, thus intersecting
�+. Since �+ = Σi,+ ∩ Ws

loc(σ ), this argument proves Theorem 6.37.
Observe that, because both J and R(a) = R(b) belong to the interior of the re-

spective cross-sections to X, then there exists a tubular flow-box, given by Theo-
rem 2.13, and open neighborhoods V ⊂ Σp of b and W ⊂ Σi,+ of R(b), such that
V ⊂ D, that is R | V : V → W is well defined and a diffeomorphism. Moreover,
since J is transverse to the stable foliation in Σp , then the image R(V ∩ J ) is also
transverse to the stable foliation of Σi,+. In addition, since Λ is attracting, we see
that J and R(J ∩V ) are contained in Λ. Because Σi,+ is adapted, the image of J is
δ-away the center-unstable boundary. Identifying the arc [a, b] with some interval
[a, b] ⊂ R we define (see Fig. 6.9)

q = sup{s ∈ [a, b] : R([a, s]) ⊂ int(Σi,+)}.
By the existence of the pair V,W we have q > a. Moreover given s ∈ (a, q) and
covering the compact arcs [a, s] and R([a, s]) by a finite number of open tubular
flow-boxes U1, . . . ,Uk we easily see that R([a, s]) is connected. Indeed, R([a, s])
is the union of a sequence R([si , si+1]) of arcs inside Ui ∩ int(Σi,+), where a =
s0 < s1 < · · · < sk = s and R | Ui ∩ int(Σp) : Ui ∩ int(Σp) → Ui ∩ int(Σi,+) is a
diffeomorphism, i = 1, . . . , k.
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Fig. 6.9 The arc J and
cross-sections Σp,Σ

i,+
0

Note that, by the choice of Σi,+ strictly inside Σ̂i,+, if q belongs to the domain
D of R, then there exists a tubular flow-box U0 taking q to R(q), so that R(q)

is well defined. Hence R(q) = lims↗q R(s) is not on the center-unstable bound-
ary ∂cuΣi,+ by construction. Moreover using the tubular flow-box U0 we see that
R(q) ∈ ∂sΣi,+. For otherwise, in case R(q) ∈ int(Σi,+), we would be able to ex-
tend the definition of R along J through the flow-box U0.

Now apply the same arguments to

r = inf{s ∈ [a, b] : R([s, b]) ⊂ int(Σi,+)}.
We obtain R(a) = R(b) and R(q),R(r) ∈ ∂sΣi,+ if r belongs to the domain of D.
We obtain in this way γ = R([a, q] ∪ [r, b]), a connected smooth arc joining two
points in the stable boundary.

If R(q),R(r) belong to the same stable-manifold on ∂sΣi,+, then by smoothness
and connectedness there must be a tangency between γ and the stable foliation on
Σi,+. This is a contradiction.

Hence R(q),R(r) are on different stable leaves on the boundary of Σi,+, and
thus γ crosses �+ transversely. This means that Wu(p0) � Ws(σ) �= ∅. The proof
of Theorem 6.37 now rests on the claim that both q and r belong to the domain
of R. To prove this claim we need the following result, whose proof we postpone.

Lemma 6.49 Let Σ̃ be a cross-section of X containing a compact cu-curve ζ ,
which is the image of a regular parametrization ζ : [0,1] → Σ̃ , and assume that ζ

is contained in Λ. Let Σ be another cross-section of X. Suppose that ζ falls off Σ ,
that is

• the positive orbit of ζ(t) visits int(Σ) for all t ∈ [0,1);
• and the ω-limit of ζ(1) is disjoint from Σ .

Then ζ(1) belongs either to the stable manifold of some periodic orbit p in Λ, or to
the stable manifold of some singularity.

Observe that [a, q] (and [r, b]) fall off Σi,+, if q (and r) does not belong to D.
Then ω(q) (and ω(r)) is either a periodic orbit in Λ, or a singularity. In the first
case the arc J ⊃ [a, q] is transverse at q to the stable manifold of a periodic orbit p.
The inclination lemma ensures that there exists a fundamental domain L of Wuu(p)

accumulated by iterates of the open arc (a, q); see Fig. 6.10. Hence the flow takes
every point of L through Σi,+. As before the image of L by the corresponding first



6.3 Sufficient Conditions for Robustness 201

Fig. 6.10 How I

accumulates Du(x∗)

return map must be a cu-curve C in Σi,+. Moreover since the endpoints of L are
on the same orbit of the flow, C must be a closed cu-curve. This is impossible.

This contradiction shows that either q (and r) does not fall off Σi,+, so that q

(and r) is in the domain of R, or q is in the stable manifold of some singularity. In the
former case, we are done. In the latter case, since the stable manifold is transverse
to Wuu(p0) by the assumption of singular-hyperbolicity, we obtain the statement of
the theorem as well.

Now to finish the proof of Theorem 6.37 we prove the remaining lemma.

Proof of Lemma 6.49 Define H = ω(ζ(1)) and suppose that H is not a singularity.
By an argument similar to the proof of Lemma 6.27 we find that H has totally
disconnected intersection with any cross-section.

Indeed, consider an adapted cross-section Σx of X through x ∈ H and consider
the connected component C of H ∩Σx containing x. As in the proof of Lemma 6.27,
we have C ∩ Ws(x,Σx) = {x}.

If there exists y ∈ C \ Ws(x,Σx) consider the horizontal strip S of Σx between
the stable leaves Ws(x,Σx) and Ws(y,Σx). Then there exists a point w of H ∩
int(S), for otherwise Ws(w,Σx) would disconnect y from x. From this we find ξ in
the positive orbit of ζ(1) inside int(S) and close to w. But ζ is a cu-curve. Hence,
considering the tubular flow on a neighborhood around the piece of orbit from ζ(1)

to ξ , we find in the image of ζ under the tubular flow a cu-curve ζ ′, a connected
image of a neighborhood of ζ(1) in ζ , with ξ as a boundary point. (Here we use the
hyperbolicity of the Poincaré maps between cross-sections assuming that the time
from ζ(1) to ξ is big enough.)

So we have a positive iterate of a point ζ(s) in int(S) for some s ∈ [0,1). Now
we use the density of periodic orbits to find a point of a periodic orbit p′ very close
to ζ(s) in int(S). Then the orbit of p′ crosses int(Σ) by the assumption on the curve
ζ . Again there exists h ∈ H ∩ Ws(p′, S). This means that the orbit of h will cross
int(Σ). Since h ∈ ω(ζ(1)), then the orbit of ζ(1) must cross int(Σ) also. We have
reached a contradiction.

We conclude that Σx ∩ H is totally disconnected.
Hence we can cover the set H with a finite number of flow-boxes around the sin-

gularities contained in H together with finitely many tubular neighborhoods through
adapted cross-sections, i.e., sets of the form X(−ε,ε)(Σx). Let Ξ be the collection of
adapted cross-sections used in this cover, some of them ingoing or outgoing cross-
sections around singularities.
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Since Σx ∩ H is totally disconnected (if the intersection is non-empty), then H

is contained in the interior of these flow-boxes. Thus Σx ∩ H is not only δ-away
from the center-unstable boundary of Σ , but δ-away from the stable boundary of Σ

as well, for some uniform δ > 0 valid for every cross-section of Ξ .
The definition of H ensures that ζ t (1) = Xt(ζ(1)) is, for big enough t > 0, con-

tained in a small closed neighborhood W around H , which can be taken disjoint
from the reference section Σ .

Let tn → +∞ be such that ζn(1) = ζ tn(1) ∈ int(Ξ) for all n ≥ 1. Since Ξ is
a finite collection of sections, we can assume without loss of generality that ζn(1)

always belongs to the same section S ∈ Ξ .
Observe that the positive orbit of ζ(s), with s < 1 and close to 1, enters W by

continuity of the flow, but does not stay in W , since it must cross int(Σ). Then the
first return of ζ(s) to S, which we write ζn(s), is well defined for s < 1 and close
to 1.

For infinitely many values of n there exists some sn ∈ [0,1) such that ζn([sn,1])
is contained in S, the orbit segment from ζ(s) to ζn(s) is disjoint from Σ for all sn ≤
s ≤ 1, and ζn(sn) is in the boundary of S. For otherwise we would get ζn([0,1]) ⊂
int(S) ⊂ W and so ζ(s) would never reach Σ .

This means that the cu-curve γn = ζn([sn,1]) has length at least δ inside S and

• either the end point ζn(1) of γn has a subsequence contained in the same sta-
ble manifold inside S, which by Lemma 6.26 implies that ζn(1) is in the stable
manifold of a periodic orbit, and thus H is a periodic orbit;

• or γn has an accumulation curve inside S in the C1 topology (using the Arzelá-
Ascoli Theorem, since γn have bounded derivative by definition of cu-curve and
length bounded away from aero, and S is compact), so that we can find a point
ζn(s) in the stable manifold of ζm(1), for m,n very big. This is impossible be-
cause the positive orbit of ζn(s) would stay forever close to the orbit of ζm(1),
inside W , and would never reach Σ .

We conclude that H is a periodic orbit if it is not a singularity. The proof of
Lemma 6.49 is complete. �



Chapter 7
Expansiveness and Physical Measure

Here we obtain further consequences of singular-hyperbolicity. A singular-hyper-
bolic attractor is chaotic in two senses: it is robustly expansive and so has sensitive
dependence on initial conditions; and it supports a unique physical measure with
non-zero Lyapunov exponent.

7.1 Statements of the Results and Overview of the Arguments

Theorem 7.1 Let Λ be a singular-hyperbolic attractor of X ∈ X1(M). Then Λ is
expansive.

The proof of Theorem 7.1 is the content of Sect. 7.2 based on the arguments
in [21].

The reasoning is based on analyzing Poincaré return maps of the flow to a conve-
nient (δ-adapted) cross-section. We use the family of adapted cross-sections and cor-
responding Poincaré maps R, whose Poincaré time t (·) is large enough, obtained as-
suming that the attractor Λ is singular-hyperbolic in Sect. 6.1. These cross-sections
have co-dimension 1 foliations, which are dynamically defined, whose leaves are
uniformly contracted and invariant under the Poincaré maps. In addition R is uni-
formly expanding in the transverse direction and this also holds near the singulari-
ties.

From here we argue by contradiction: if the flow is not expansive on Λ, then we
can find a pair of orbits hitting the cross-sections infinitely often on pairs of points
uniformly close. We derive a contradiction by showing that the uniform expansion
in the transverse direction to the stable foliation must take the pairs of points apart,
unless one orbit is on the stable manifold of the other.

This argument only depends on the existence of, firstly, finitely many Lorenz-
like singularities on a compact partially hyperbolic invariant attracting subset Λ=
ΛX(U), with volume expanding central direction and, secondly, a family of adapted
cross-sections with Poincaré maps between them, whose derivative is hyperbolic. It
is straightforward that, if these conditions are satisfied for a flowXt ofX ∈ X1(M3),

V. Araújo, M.J. Pacifico, Three-Dimensional Flows, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 53,
DOI 10.1007/978-3-642-11414-4_7, © Springer-Verlag Berlin Heidelberg 2010
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then the same conditions hold for all C1 nearby flows Y t and for the maximal in-
variant subset ΛY (U) with the same family of cross-sections which are also adapted
to ΛY (U) (as long as Y is C1-close enough to X). We recall that the notation
ΛY (U) denotes ∩t>0Y

t (U) for some trapping region U . To obtain the adapted
cross-sections to start with, however, we need to assume that we have a singular-
hyperbolic attractor, that is, we need to assume transitivity.

Corollary 7.2 A singular-hyperbolic attractor Λ =ΛX(U) is robustly expansive,
that is, there exists a neighborhood U ofX in X1(M) such thatΛY (U) is expansive
for each Y ∈ U , where U is an isolating neighborhood of Λ.

Indeed, since transversality, partial hyperbolicity and volume expanding central
direction are robust properties, and also the hyperbolicity of the Poincaré maps de-
pends on the central volume expansion, all we need to do is to check that a given
δ-adapted cross-section Σ to X is also adapted to Y ∈ X1 for every Y sufficiently
C1 close to X. But ΛX(U) and ΛY (U) are close in the Hausdorff distance if X and
Y are close in the C0 distance, by Lemma 2.3. Thus, if Σ is δ-adapted we can find
a C1-neighborhood U of X in X1 such that Σ is (δ/10)-adapted to every flow Y t

generated by a vector field in U .

7.1.1 Robust Sensitiveness

We already know that expansiveness implies sensitive dependence on initial condi-
tions or, in other words, that the flow is chaotic. An argument with the same flavor
as the proof of expansiveness provides the following.

Theorem 7.3 Every singular-hyperbolic isolated set Λ = ∩t∈RX
t(U) is robustly

chaotic, i.e., there exists a neighborhood U of X in X1(M) such that ∩t∈RY t (U) is
chaotic for each Y ∈ U , where U is an isolating neighborhood of Λ.

We present the proof of this result after the proof of expansiveness, in Sect. 7.2.8.
It is natural to consider the converse: are all robustly chaotic isolated sets

singular-hyperbolic? Straightforward adaptations of the arguments of Chap. 5 en-
able us to prove the converse for attractors under a mild condition on the singulari-
ties of the vector field.

Theorem 7.4 Let Λ be an attractor for X ∈ X1(M3) such that every singularity in
its trapping region is hyperbolic with no resonances. Then Λ is singular-hyperbolic
if, and only if, Λ is robustly chaotic.

This means that if we can show that arbitrarily close orbits, in an isolating neigh-
borhood of an attractor, are driven apart, for the future as well as for the past, by the
evolution of the system, and this behavior persists for all C1 nearby vector fields,
then the attractor is singular-hyperbolic.
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The condition on the singularities amounts to restricting the possible three-
dimensional vector fields in the above statement to an open a dense subset of all
C1 vector fields. Indeed, the hyperbolic and no-resonance condition on a singularity
σ means that:

• either λ �= �(ω) if the eigenvalues of DX(σ) are λ ∈ R and ω,ω ∈ C;
• or σ has only real eigenvalues with different norms.

As we will see, these conditions precisely allow us to deduce the same conclu-
sions of Lemma 5.22, so that the only possible singularities in the setting of Theo-
rem 7.4 are Lorenz-like singularities.

We can also deduce the same conclusion of Theorem 7.4 for an isolated set, not
necessarily transitive, if we assume that its singularities are Lorenz-like, as follows.

Theorem 7.5 Let Λ be a compact isolated invariant proper subset of M with re-
spect to a C1 vector fieldX whose singularities are Lorenz-like. ThenΛ is singular-
hyperbolic if, and only if, Λ is robustly chaotic.

The conditions on the singularities in both Theorems 7.4 and 7.5 are in principle
easy to check numerically for any given system.

We remark that the invariant set in the above statements may have no singulari-
ties. This is the case of a hyperbolic set of saddle-type for X. We also note that the
singular-horseshoe is in the setting of Theorem 7.5.

One interpretation of these results is that, among three-dimensional flows, ro-
bustly chaotic behavior is always associated either to (uniform) hyperbolicity (if
there are no singularities properly accumulated by regular orbits in the invariant set)
or to singular-hyperbolicity. Since both these types of invariant sets are by now well
known, this may have relevant consequences for the study of all sorts of mathemat-
ical models involving flows in three-dimensional manifolds.

In recent ongoing PhD thesis work of Laura Senos, at Universidade Federal do
Rio de Janeiro, a generalized version of this result is obtained, removing the non-
resonance conditions and the assumptions of future and past expansiveness (future
and past chaotic), showing that any robustly expansive attractor for a 3-flow is nec-
essarily a singular-hyperbolic attractor.

Proof of Theorems 7.4 and 7.5 As mentioned in Sect. 2.4 a chaotic system, in our
terminology, cannot have either attracting or repelling critical elements. Hence, a
robustly chaotic attractorΛ for a vector fieldX has no attracting or repelling critical
elements in a neighborhood for all vector fields Y which are C1 close to X. Now
Theorem 2.33 implies that the Linear Poincaré Flow over Λ∗

Y (U)=ΛY (U) \ S(Y )
admits a dominated splitting, for each vector field Y close enough to X in the C1

topology. As in the proofs in Chap. 5, we can now classify the possible singularities
appearing in the attractor Λ.

Since each singularity σ ∈ Λ is assumed to be hyperbolic, then DX(σ) can-
not admit complex eigenvalues, for otherwise we can use the transitive orbit and
the Connecting Lemma to produce a saddle-focus connection as in the proof of
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Lemma 5.22. The non-resonance condition ensures that this saddle-focus connec-
tion would imply the existence of an attracting or repelling periodic orbit for an ar-
bitrarily C1 close vector field. Having only real eigenvalues, σ must be Lorenz-like,
either for X or for −X. For otherwise we would produce a saddle-connection, again
by the Connecting Lemma through the existence of a dense orbit in Λ, exhibiting
an inclination-flip type of connecting orbit for an arbitrarily C1 close vector field.
This contradicts the domination of the splitting for the Linear Poincaré Flow. Fi-
nally σ cannot be a Lorenz-like singularity for −X inside an attractor in our setting,
according to Lemma 5.32.

At this point we have all the assumptions of Theorem 7.5: every singularity σ in
Λ is Lorenz-like for the vector field X, there are no attracting or repelling critical
elements for every C1 close vector field Y . Hence, since an attractor is in particular
isolated, we can apply Theorem 5.34 and conclude that Λ is singular-hyperbolic.

This concludes the proof that robustly chaotic isolated sets with Lorenz-like sin-
gularities, or robustly chaotic attractors under open and dense conditions on the sin-
gularities, are singular-hyperbolic. This is a part of the statement of Theorems 7.4
and 7.5. The other part of the statements follows from Theorem 7.3. �

7.1.2 Existence and Uniqueness of a Physical Measure

It was proved by Colmenarez in [72] that, if Λ is a singular-hyperbolic attractor of
a C2 flow X with a dense set of periodic orbits, then the central direction Ecu

Λ̃
can

be continuously decomposed into Eu ⊕ EX along each orbit of Λ̃, where the Eu

direction is non-uniformly hyperbolic, that is, has a positive Lyapunov exponent,
and Λ̃=Λ \ ∪σ∈S(X)∩ΛWu(σ). In [71], again under the assumption of a dense set
of periodic orbits, Colmenarez showed that every C2 singular-hyperbolic attractor
supports a physical probability measure—see Sect. 2.7.1 of Chap. 1 for the relevant
definitions.

However, in another recent work, Arroyo and Pujals [27] show that every
singular-hyperbolic attractor has a dense set of periodic orbits. Indeed, as shown
in Chap. 6, every singular-hyperbolic attractor is a homoclinic class. So the dense-
ness assumption is no restriction.

Here we give an independent proof of the existence of physical measures which
does not use denseness of periodic orbits, and this enables us to obtain the hyper-
bolicity of the physical measure and, also, to show that it is a Gibbs state. We follow
the proof presented in [21].

Theorem 7.6 Let Λ be a singular-hyperbolic attractor of a flow X ∈ X2(M) on a
three-dimensional manifold. Then Λ supports a unique physical probability mea-
sure μ which is ergodic, hyperbolic and whose ergodic basin covers a full Lebesgue
measure subset of the topological basin of attraction, i.e., B(μ)=Ws(Λ) Lebesgue
mod 0. Moreover the support of μ is the whole attractor Λ.
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Here we need to assume that (Xt )t∈R is a flow of class C2 since for the construc-
tion of physical measures a bounded distortion property for one-dimensional maps
is needed. These maps are naturally obtained as quotient maps over the set of stable
leaves, which form a C1+α foliation of a finite number of cross-sections associated
to the flow if the flow is C2; see Sect. 2.7.2. This will be detailed in Sect. 7.3.

We recall from Sect. 2.7 of Chap. 1 that hyperbolicity of a measure means non-
uniform hyperbolicity: the tangent bundle over Λ splits into a sum TzM = Esz ⊕
EXz ⊕Fz of three one-dimensional invariant subspaces defined for μ-a.e. z ∈Λ and
depending measurably on the base point z, where μ is the physical measure in the
statement of Theorem 7.6, EXz is the flow direction (with zero Lyapunov exponent)
and Fz is the direction with positive Lyapunov exponent.

Theorem 7.6 is another statement of sensitiveness, this time applying to the whole
essentially open set B(Λ). Indeed, since non-zero Lyapunov exponents express the
idea that the orbits of infinitesimally close-by points tend to move apart from each
other, this theorem means that most orbits in the basin of attraction separate under
forward iteration. See Kifer [122], and Metzger [153], and references therein, for
previous results about invariant measures and stochastic stability of the geometric
Lorenz models.

In the uniformly hyperbolic setting, it is well known that physical measures for
hyperbolic attractors admit a disintegration into conditional measures along the un-
stable manifolds of almost every point which are absolutely continuous with respect
to the induced Lebesgue measure on these sub-manifolds; see [60, 62, 201, 266].

Here the existence of unstable manifolds is guaranteed by the hyperbolicity of
the physical measure: the strong-unstable manifoldsWuu(z) are the “integral mani-
folds” in the direction of the one-dimensional sub-bundle F , tangent to Fz at almost
every z ∈Λ. The tools developed to prove Theorem 7.6 enable us to prove that the
physical measure obtained there has absolutely continuous disintegration along the
center-unstable direction; see Sect. 2.7 of Chap. 1 for the definition of conditional
measures and the notion of adapted foliated neighborhoods of a point.

Theorem 7.7 Let Λ be a singular-hyperbolic attractor for a C2 three-dimen-
sional flow. Then the physical measure μ supported in Λ has a disintegration
into absolutely continuous conditional measures μγ along center-unstable surfaces

γ ∈Πδ(x) such that
dμγ
dmγ

is uniformly bounded from above, for all δ-adapted foli-

ated neighborhoods Πδ(x) and every δ > 0. Moreover supp(μ)=Λ.

Remark 7.8 The proof that supp(μ) = Λ which we present depends on the abso-
lutely continuous disintegration property of the physical measure μ and the transi-
tivity of X on Λ. However, most singular-hyperbolic attractors are topologically
mixing in the C1 topology [166] and the Lorenz geometric models are always
topologically mixing [142], so we should expect a more general argument prov-
ing supp(μ) = Λ without the need to obtain first that μ is a cu-Gibbs measure or
SRB-measure.
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Remark 7.9 It follows from the proof that the densities of the conditional measures
μγ are bounded from below away from zero onΛ\B , where B is any neighborhood
of the singularities σ(X |Λ). In particular the densities tend to zero as we get closer
to the singularities of Λ.

The absolute continuity property along the center-unstable sub-bundle given by
Theorem 7.7 ensures that

hμ(X
1)=

∫

log
∣
∣det(DX1 |Ecu)∣∣dμ,

by the characterization of probability measures satisfying the Entropy Formula, ob-
tained in [129]. The above integral is the sum of the positive Lyapunov exponents
along the sub-bundle Ecu by Oseledets’ Theorem [147, 269]. Since in the direc-
tion Ecu there is only one positive Lyapunov exponent along the one-dimensional
direction Fz, for μ-a.e. z, the ergodicity of μ then shows that the following is true.

Corollary 7.10 If Λ is a singular-hyperbolic attractor for a C2 three-dimensional
flow Xt , then the physical measure μ supported in Λ satisfies the Entropy Formula

hμ(X
1)=

∫

log‖DX1 | Fz‖dμ(z).

Again by the characterization of measures satisfying the Entropy Formula we
deduce that μ has absolutely continuous disintegration along the strong-unstable
direction, along which the Lyapunov exponent is positive, and thus μ is a u-
Gibbs state [201]. This also shows that μ is an equilibrium state for the potential
− log‖DX1 | Fz‖ with respect to the diffeomorphism X1. We note that the entropy
hμ(X

1) of X1 is the entropy of the flow Xt with respect to the measure μ [269].
Hence we are able to extend most of the basic results on the ergodic theory of

hyperbolic attractors to the setting of singular-hyperbolic attractors.

7.2 Expansiveness

For the proof of Theorem 7.1 we need the construction of cross-sections and
Poincaré return maps, which is the subject of Sect. 6.1. We use the construction
and notations defined there in what follows.

7.2.1 Proof of Expansiveness

Here we prove Theorem 7.1. The proof is by contradiction: let us suppose that there
exist ε > 0, a sequence δn → 0, a sequence of functions hn ∈ K (see Sect. 2.4 of
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Chap. 1 for the definition of expansiveness), and sequences of points xn, yn ∈ Λ
such that

d
(

Xt(xn),X
hn(t)(yn)

) ≤ δn for all t ∈ R, (7.1)

but

Xhn(t)(yn) /∈X[t−ε,t+ε](xn) for all t ∈ R. (7.2)

The main step in the proof is a reduction to a forward expansiveness statement
about Poincaré maps which we state in Theorem 7.11 below.

We are going to use the following observation: there exists some regular (i.e.
non-equilibrium) point z ∈Λ which is accumulated by the sequence of ω-limit sets
ω(xn). To see that this is so, we start by observing that accumulation points do exist,
since Λ is compact. Moreover, if the ω-limit sets accumulate on a singularity then
they also accumulate on at least one of the corresponding unstable branches which,
of course, consist of regular points. We fix such a z once and for all. Replacing our
sequences by subsequences, if necessary, we may suppose that for every n there
exists zn ∈ ω(xn) such that zn → z.

Let Σ be a δ-adapted cross-section at z, for some small δ. Reducing δ (but keep-
ing the same cross-section) we may ensure that z is in the interior of the subset

Σδ = {y ∈Σ : d(y, ∂Σ) > δ}.
By definition, xn returns infinitely often to the neighborhood of zn which, in its turn,
is close to z. Thus, dropping a finite number of terms in our sequences if necessary,
we see that the orbit of xn intersects Σδ infinitely many times. Let tn be the time
corresponding to the nth intersection.

Replacing xn, yn, t , and hn by x(n) = Xtn(xn), y(n) = Xhn(tn)(yn), t ′ = t − tn,
and h′

n(t
′)= hn(t ′ + tn)− hn(tn), we may suppose that x(n) ∈Σδ , while preserving

both relations (7.1) and (7.2). Moreover there exists a sequence τn,j , j ≥ 0 with
τn,0 = 0 such that

x(n)(j)=Xτn,j (x(n)) ∈Σδ and τn,j − τn,j−1 >max{t1, t2} (7.3)

for all j ≥ 1, where t1 is given by Proposition 6.15 and t2 is given by Lemma 6.23.

Theorem 7.11 Given ε0 > 0 there exists δ0 > 0 such that, if x ∈ Σδ and y ∈ Λ
satisfy

(a) there exist τj such that

xj =Xτj (x) ∈Σδ and τj − τj−1 >max{t1, t2} for all j ≥ 1;
(b) dist(Xt (x),Xh(t)(y)) < δ0, for all t > 0 and some h ∈ K ,

then there exists j ≥ 1 such that Xh(τj )(y) ∈Wss
ε0
(X[τj−ε0,τj+ε0](x)).

We postpone the proof of Theorem 7.11 until the next section and explain first
why it implies Theorem 7.1. We are going to use the following observation.
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Fig. 7.1 Distances near a
point in the stable-manifold

Lemma 7.12 There exist ρ > 0 small and c > 0, depending only on the flow, such
that, if z1, z2, z3 are points in Λ satisfying z3 ∈X[−ρ,ρ](z2) and z2 ∈Wss

ρ (z1), with
z1 away from any equilibria of X, then

dist(z1, z3)≥ c · max{dist(z1, z2),dist(z2, z3)}.

Proof This is a direct consequence of the fact that the angle between Ess and
the flow direction is bounded from zero which, in its turn, follows from the fact
that the latter is contained in the center-unstable sub-bundle Ecu. Indeed consider
the C1 surface X[−ρ,ρ](Wss

ρ (z1)) for small enough ρ > 0. The Riemannian metric
here is uniformly close to the Euclidean one and we may choose coordinates on
[−ρ,ρ]2 putting z1 at the origin, sendingWss

ρ (z1) to the segment [−ρ,ρ]× {0} and
X[−ρ,ρ](z1) to {0} × [−ρ,ρ]; see Fig. 7.1. Then the angle α between X[−ρ,ρ](z2)

and the horizontal is bounded from below away from zero and the existence of c
follows by standard arguments using the Euclidean metric. �

We fix ε0 = ε as in (7.2) and then consider δ0 as given by Theorem 7.11. Next,
we fix n such that δn < δ0 and δn < (c+ supz∈Λ ‖X(z)‖)ρ, and apply Theorem 7.11
to x = x(n), y = y(n) and h = hn. Hypothesis (a) in the theorem corresponds to
(7.3) and, with these choices, hypothesis (b) follows from (7.1). Therefore we
obtain Xh(s)(y) ∈ Wss

ε (X
[s−ε,s+ε](x)). In other words, there exists |τ | ≤ ε such

that Xh(s)(y) ∈Wss
ε (X

s+τ (x)). Hypothesis (7.2) implies that Xh(s)(y) �=Xs+τ (x).
Hence, since strong-stable manifolds are expanded under backward iteration, there
exists a maximum θ > 0 such that

Xh(s)−t (y) ∈Wss
ρ (X

s+τ−t (x)) and Xh(s+τ−t)(y) ∈X[−ρ,ρ](Xh(s)−t (y))

for all 0 ≤ t ≤ θ ; see Fig. 7.2. Moreover s = τj for some j ≥ 1 so that x is close to
cross-section of the flow which we can assume is uniformly bounded away from the
equilibria, and then we can assume that ‖X(Xt(x))‖ ≥ c for 0 ≤ t ≤ θ . Since θ is
maximum

either dist
(

Xh(s)−t (y),Xs+τ−t (x)
) ≥ ρ

or dist
(

Xh(s+τ−t)(y),Xh(s)−t (y)
) ≥ cρ for t = θ.
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Fig. 7.2 Relative positions of
the strong-stable manifolds
and orbits

Using Lemma 7.12, we conclude that dist(Xs+τ−t (x),Xh(s+τ−t)(y)) ≥ cρ > δn
which contradicts (7.1). This contradiction reduces the proof of Theorem 7.1 to
that of Theorem 7.11.

7.2.2 Infinitely Many Coupled Returns

We start by outlining the proof of Theorem 7.11. There are three steps.

• The first one, which we carry out in the present section, is to show that to each
return xj of the orbit of x to Σ there corresponds a nearby return yj of the orbit
of y to Σ . The precise statement is in Lemma 7.13 below.

• The second, and most crucial step, is to show that there exists a smooth Poincaré
map, with large return time, defined on the whole strip ofΣ in between the stable
manifolds of xj and yj . This is done in Sects. 7.2.3 to 7.2.6.

• The last step, Sect. 7.2.7, is to show that these Poincaré maps are uniformly hy-
perbolic, in particular, they expand cu-curves uniformly (recall the definition of
cu-curve in Sect. 6.1.2).

The theorem is then easily deduced: to prove that Xh(s)(y) is in the orbit of
Wss
ε (x) it suffices to show that yj ∈Ws(xj ,Σ), by Remark 6.14. The latter must

be true, for otherwise, by hyperbolicity of the Poincaré maps, the stable manifolds
of xj and yj would move apart as j → ∞, and this would contradict condition (b)
of Theorem 7.11. See Sect. 7.2.7 for more details.

Lemma 7.13 There exists K > 0 such that, in the setting of Theorem 7.11, there
exists a sequence (υj )j≥0 such that

1. yj =Xυj (y) is in Σ for all j ≥ 0.
2. |υj − h(τj )|<K · δ0 and d(xj , yj ) < K · δ0.

Proof By assumption d(xj ,Xh(τj )(y)) < K · δ0 for all j ≥ 0. In particular y ′
j =

Xh(τj )(y) is close to Σ . Using a flow-box in a neighborhood of Σ we obtain
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Xεj (y′
j ) ∈ Σ for some εj ∈ (−K · δ0,K · δ0). The constant K depends only on

the vector field X and the cross-section Σ (more precisely, on the angle between Σ
and the flow direction). Taking υj = h(τj )+ εj we get the first two claims in the
lemma. The third one follows from the triangle inequality; it may be necessary to
replace K by a larger constant, still depending on X and Σ only. �

7.2.3 Semi-global Poincaré Map

Since we took the cross-section Σ to be adapted, we may use Lemma 6.23 to con-
clude that there exist Poincaré maps Rj with Rj (xj )= xj+1 and Rj(yj )= yj+1 and
sendingWs

ε (xj ,Σ) andWs
ε (yj ,Σ) inside the linesWs

ε (xj+1,Σ) andWs
ε (yj+1,Σ),

respectively. The goal of this section is to prove that Rj extends to a smooth
Poincaré map on the whole strip Σj of Σ bounded by the stable manifolds of xj
and yj .

We first outline the proof. For each j we choose a curve γj transverse to the
stable foliation of Σ , connecting xj to yj and such that γj is disjoint from the
orbit segments [xj , xj+1] and [yj , yj+1]. Using Lemma 6.23 in the same way as
in the last paragraph, we see that it suffices to prove that Rj extends smoothly
to γj . For this purpose we consider a tube-like domain Tj consisting of local
stable manifolds through an immersed surface Sj whose boundary is formed by
γj and γj+1 and the orbit segments [xj , xj+1] and [yj , yj+1]; see Fig. 7.3. We
will prove that the orbit of any point in γj must leave the tube through γj+1

in finite time. We begin by showing that the tube contains no singularities. This
uses hypothesis (b) together with the local dynamics near Lorenz-like singulari-
ties. Next, using hypothesis (b) together with a Poincaré-Bendixson argument on
Sj , we conclude that the forward orbit of any point in Tj must leave the tube.
Another argument, using hyperbolicity properties of the Poincaré map, shows that
orbits through γj must leave Tj through γj+1. In the sequel we detail these argu-
ments.

Fig. 7.3 A tube-like domain
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Fig. 7.4 Entering the
flow-box of a singularity

7.2.4 A Tube-Like Domain Without Singularities

Since we took γj and γj+1 disjoint from the orbit segments [xj , xj+1] and
[yj , yj+1], the union of these four curves is an embedded circle. We recall that
the two orbit segments are close to each other: by hypothesis (b)

d(Xt (x),Xh(t)(y)) < δ0 for all t ∈ [tj , tj+1].
Assuming that δ0 is smaller than the radius of injectiveness of the exponential
map of the ambient manifold (i.e., expx : TxM →M is locally invertible in a δ0-
neighborhood of x in M for any x ∈ M), there exists a unique geodesic linking
each Xt(x) to Xh(t)(y), and it varies continuously (even smoothly) with t . Using
these geodesics we easily see that the union of [yj , yj+1] with γj and γj+1 is ho-
motopic to a curve inside the orbit of x, with endpoints xj and xj+1, and so it is also
homotopic to the segment [xj , xj+1]. This means that the previously mentioned
embedded circle is homotopic to zero. It follows that there is a smooth immersion
φ : [0,1] × [0,1] →M such that

• φ({0} × [0,1])= γj and φ({1} × [0,1])= γj+1;

• φ([0,1] × {0})= [yj , yj+1] and φ([0,1] × {1})= [xj , xj+1].
Moreover Sj = φ([0,1] × [0,1]) may be chosen such that (see Fig. 7.4)

• all the points of Sj are at distance less than δ1 from the orbit segment [xj , xj+1],
for some uniform constant δ1 > δ0 which can be taken arbitrarily close to zero,
reducing δ0 if necessary;

• the intersection of Sj with an incoming cross-section of any singularity
(Sect. 7.3.3.1) is transverse to the corresponding stable foliation.

Then we define Tj to be the union of the local stable manifolds through the points
of that disk.

Proposition 7.14 The domain Tj contains no singularities of the flow.
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Proof By construction, every point of Tj is at distance ≤ ε from Sj and, conse-
quently, at distance ≤ ε + δ1 from [xj , xj+1]. So, taking ε and δ0 much smaller
than the sizes of the cross-sections associated to the singularities (Sect. 7.3.3.1), we
immediately get the conclusion of the proposition in the case when [xj , xj+1] is
disjoint from the incoming cross-sections of all singularities. In the general case we
must analyze the intersections of the tube with the flow-boxes at the singularities.
The key observation is in the following statement whose proof we postpone.

Lemma 7.15 Suppose that [xj , xj+1] intersects an incoming cross-section Σik of
some singularity σk at some point x̂ with d(x̂, ∂Σik) > δ. Then [yj , yj+1] intersects
Σik at some point ŷ with d(x̂, ŷ) < K · δ0 and, moreover, x̂ and ŷ are in the same
connected component of Σik \Ws

loc(σk).

Let us recall by construction that the intersection of Sj with the incoming cross-
section Σik is transverse to the corresponding stable foliation; see Fig. 7.4. By the
previous lemma this intersection is entirely contained in one of the connected com-
ponents of Σik \Ws

loc(σk). Since Tj consists of local stable manifolds through the
points of Sj , its intersection withΣik is contained in the region bounded by the stable
manifolds Ws(x̂,Σik) and Ws(ŷ,Σik), and so it is entirely contained in a connected
component ofΣik \Ws

loc(σk). In other words, the crossing of the tube Tj through the
flow-box is disjoint from Ws

loc(σk); in particular, it does not contain the singularity.
Repeating this argument for every intersection of the tube with a neighborhood of
some singularity, we get the conclusion of the proposition. �

Proof of Lemma 7.15 The first part of the lemma is proved in exactly the same way
as Lemma 7.13. We have

x̂ =Xr0(x) and ŷ =Xs0(y)
with |s0 − h(r0)| < Kδ0. The proof of the second part is by contradiction and re-
lies, fundamentally, on the local description of the dynamics near the singularity.
Associated to x̂ and ŷ we have the points x̃ = Xr1(x) and ỹ = Xs1(y), where the
two orbits leave the flow-box associated to the singularity. If x̂ and ŷ are in opposite
sides of the local stable manifold of σk , then x̃ and ỹ belong to different outgoing
cross-sections of σk . Our goal is to find some t ∈ R such that

dist
(

Xt(x),Xh(t)(y)
)

> δ0,

thus contradicting hypothesis (b).
We assume by contradiction that x̂, ŷ are in different connected components of

Σ
i,±
k \�±. There are two cases to consider. We suppose first that h(r1) > s1 and note

that s1 � s0 ≈ h(r0), so that s1 > h(r0). It follows that there exists t ∈ (r0, r1) such
that h(t)= s1 since h is non-decreasing and continuous. Then Xt(x) is on one side
of the flow-box of σk , whereas Xh(t)(y) belongs to the outgoing cross-section at the
other side of the flow-box. Thus dist(Xt (x),Xh(t)(y)) has the order of magnitude
of the diameter of the flow-box, which we may assume to be much larger than δ0.
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Now we suppose that s1 ≥ h(r1) and observe that h(r1) > h(r0), since h is in-
creasing. We recall also thatXh(r0)(y) is close to ŷ, near the incoming cross-section,
so that the whole orbit segment from Xh(r0)(y) to Xs1(y) is contained in (a small
neighborhood of) the flow-box, to one side of the local stable manifold of σj . The
previous observation means that this orbit segment contains Xh(r1)(y). However,
Xr1(x) belongs to the outgoing cross-section at the opposite side of the flow-box,
and so dist(Xr1(x),Xh(r1)(y)) has the order of magnitude of the diameter of the
flow-box, which is much larger than δ0. �

7.2.5 Every Orbit Leaves the Tube

Our goal in this subsection is to show that the forward orbit of every point z ∈ Tj
leaves the tube in finite time. The proof is based on a Poincaré-Bendixson argument
applied to the flow induced by Xt on the disk Sj .

We begin by defining this induced flow. For the time being, we make the follow-
ing simplifying assumption:

(H) Sj = φ([0,1] × [0,1]) is an embedded disk and the stable manifolds Ws
ε (ξ)

through the points ξ ∈ Sj are pairwise disjoint.

This condition provides a well-defined continuous projection π : Tj → Sj by as-
signing to each point z ∈ Tj the unique ξ ∈ Sj whose local stable manifold con-
tains z. The (not necessarily complete) flow Y t induced by Xt on Sj is given by
Y t (ξ)= π(Xt (ξ)) for the largest interval of values of t for which this is defined. It
is clear, just by continuity, that given any subset E of Sj at a positive distance from
∂Sj , there exists ε > 0 such that Y t (ξ) is defined for all ξ ∈ E and t ∈ [0, ε]. In
fact this remains true even if E approaches the curve γj (since Σ is a cross-section
for Xt , the flow at γj points inward Sj ) or the Xt -orbit segments [xj , xj+1] and
[yj , yj+1] on the boundary of Sj (because they are also Y t -orbit segments). Thus
we only have to worry about the distance to the remaining boundary segment:

(�) given any subset E of Sj at positive distance from γj+1, there exists ε > 0 such
that Y t (ξ) is defined for all ξ ∈E and t ∈ [0, ε].

We observe also that for points ξ close to γj+1 the flow Y t(ξ) must intersect γj+1,
after which it is no longer defined.

Now we explain how to remove condition (H). In this case, the induced flow is
naturally defined on [0,1] × [0,1] rather than Sj , as we now explain. Recall that
φ : [0,1] × [0,1] →M is an immersion. So given any w ∈ [0,1] × [0,1] there exist
neighborhoods U of w and V of φ(w) such that φ : U → V is a diffeomorphism.
Moreover, just by continuity of the stable foliation, choosing V sufficiently small
we may ensure that each stable manifold Ws

ε (ξ), ξ ∈ V , intersects V only at the
point ξ . This means that we have a well-defined projection π from ∪ξ∈VWs

ε (ξ) to
V associating to each point z in the domain the unique element of V whose stable
manifold contains z. Then we may define Y t (w) for small t by

Y t (w)= φ−1(π(Xt (φ(w))).
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As before, we extend Y t to a maximal domain. This defines a (partial) flow on the
square [0,1] × [0,1] such that both [0,1] × {i}, i ∈ {0,1} are trajectories.

Remark 7.16 An equilibrium ζ for the flow Y t corresponds to an equilibrium of X
in the local strong-stable manifold of ζ in M by the definition of Y t through the
projection π .

Notice also that forward trajectories of points in {0} × [0,1] enter the square.
Hence, the only way trajectories may exit is through {1} × [0,1]. So we have the
following reformulation of property (�):

(�) given any subset E of [0,1] × [0,1] at positive distance from {1} × [0,1], there
exists ε > 0 such that Y t (w) is defined for all w ∈E and t ∈ [0, ε].

Moreover for pointsw close to {1}×[0,1] the flow Y t (ξ)must intersect {1}×[0,1],
after which it is no longer defined.

Proposition 7.17 Given any point z ∈ Tj there exists t > 0 such that Xt(z) /∈ Tj .

Proof The proof is by contradiction. First, we assume condition (H). Suppose there
exists z ∈ Tj whose forward orbit remains in the tube for all times. Let z0 = π(z).
Then Y t (z0) is defined for all t > 0, and so it makes sense to speak of the ω-limit
set ω(z0). The orbit Y t(z0) can not accumulate on γj+1 for otherwise it would leave
Sj . Therefore ω(z0) is a compact subset of Sj at positive distance from γj+1. Using
property (U) we can find a uniform constant ε > 0 such that Y t (w) is defined for
every t ∈ [0, ε] and every w ∈ ω(z0). Since ω(z0) is an invariant set, we can extend
Y t to a complete flow on it.

In particular we may fix w0 ∈ ω(z0) and w ∈ ω(w0), and apply the arguments
in the proof of the Poincaré-Bendixson Theorem. On the one hand, if we consider
a cross-section S to the flow at w, the forward orbits of z0 and w0 must intersects
it on monotone sequences; on the other hand, every intersection of the orbit of w0
with S is accumulated by points in the orbit of z0. This implies that w is in the orbit
of w0 and, in fact, that the later is periodic.

We consider the diskD ⊂ Sj bounded by the orbit ofw0. The flow Y t is complete
restricted to D and so we may apply the Poincaré-Bendixson theorem (see [190])
once more, and conclude that Y t has some singularity ζ inside D. This implies by
Remark 7.16 that Xt has a singularity in the local stable manifold of ζ , which con-
tradicts Proposition 7.14. This contradiction completes the proof of the proposition,
under assumption (H). The general case is treated in the same way, just dealing with
the flow induced on [0,1] × [0,1] instead of on Sj . �

7.2.6 The Poincaré Map Is Well-Defined on Σj

We have shown that for the induced flow Y t on Sj (or, more generally, on [0,1] ×
[0,1]) every orbit must eventually cross γj+1 (respectively, {1} × [0,1]). Hence
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Fig. 7.5 Exiting the tube at
Σj+1 flowing from Σj

there exists a continuous Poincaré map

r : γj → γj+1, r(ξ)= Y θ(ξ)(ξ).
By compactness the Poincaré time θ(·) is bounded. We are going to deduce that
every forward Xt -orbit eventually leaves the tube Tj through Σj+1, which proves
that Rj is defined on the whole strip of Σj between the manifolds Ws(xj ,Σj ) and
Ws(yj ,Σj ), as claimed in Sect. 7.2.2.

To this end, let γ be a central-unstable curve in Σδ connecting the stable man-
ifolds Ws(xj ,Σ) and Ws(yj ,Σ). Observe that γ is inside Tj . For each z ∈ γ , let
t (z) be the smallest positive time for which Xt(z)(z) is on the boundary of Tj .

The crucial observation is that, in view of the construction of Y t , each Xt(z)(z)
belongs to the (global) stable manifold of Y t(z)(π(z)). We observe also that for
{ξ} = γ ∩Ws(xj ,Σ) we have Y t (ξ)=Xt(ξ) and so t (ξ)= θ(ξ).

Now we take z ∈ γ close to ξ . Just by continuity, the Xt -trajectory of ξ and z re-
main close, and by the forward contraction along stable manifolds, the Xt -trajectory
of ξ remains close to the segment [xj , xj+1]. Moreover the orbit of z cannot leave
the tube through the union of the local strong stable manifolds passing through
[xj , xj+1], for otherwise it would contradict the definition of Y t . Hence the trajec-
tory of z must leave the tube through Σj+1. In other words Xt(z)(z) is a point of
Σj+1, close to ξ̃ =Xt(ξ)(ξ).

Let γ̂ ⊂ γj be the largest connected subset which contains xj such that
Xt(z)(z) ∈Σj+1 for all z ∈ γ̂ . We want to prove that γ̂ = γ since this implies that
Rj extends to the whole γ and so, using Lemma 6.23, to the whole Σj .

The proof is by contradiction. We assume γ̂ is not the whole of γ , and let x̂ be
the endpoint different from ξ . Then by definition of F s

Σ and of Y t (from Sect. 7.2.5)
x̃ =Xt(x̂)(x̂) is on the center-unstable boundary ∂cuΣj+1 of the cross-sectionΣj+1,
between the stable manifolds Ws(xj+1,Σj+1) and Ws(yj+1,Σj+1); see Fig. 7.5.
By the choice of γ and by Corollary 6.17, γ̃ = {Xt(z)(z) : z ∈ γ̂ } is a cu-curve.

On the one hand, by Lemma 6.18, the distance between x̃ and ξ̃ =Xt(ξ)(ξ) dom-
inates the distance between their stable manifolds and �(γ̃ ):

�(γ̃ )≤ κ · d(ξ̃ , x̃)≤ κ · d(Ws(xj+1,Σ),W
s(x̃,Σ)

)

.

We note that �(γ̃ ) is larger than δ, since ξ̃ is in Λ and the section Σj+1 is adapted.
On the other hand, the distance between the two stable manifolds is smaller than the
distance between the stable manifold of xj+1 and the stable manifold of yj+1, and
this is smaller than K · δ0. Since δ0 is much smaller than δ, this is a contradiction.
This proves the claim that Xt(z)(z) ∈Σ for all z ∈ γ .
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Fig. 7.6 Expansion within
the tube

7.2.7 Expansiveness of the Poincaré Map

We have shown that there exists a well defined Poincaré return map Rj on the whole
strip between the stable manifolds of xj and yj inside Σ . By Proposition 6.15 and
Corollary 6.17 we know that the map Rj is hyperbolic where defined and, more-
over, that the length of each cu-curve is expanded by a factor of 3 by Rj (since
we chose λ= 1/3 in Sect. 6.1.2). Hence the distance between the stable manifolds
Rj (W

s(xj ,Σ)) and Rj (Ws(yj ,Σ)) is increased by a factor strictly larger than one;
see Fig. 7.6. This contradicts item (2) of Lemma 7.13 since this distance will eventu-
ally become larger than K · δ0. Thus yj must be in the stable manifold Ws(xj ,Σ).
Since the strong-stable manifold is locally flow-invariant and Xh(τj )(y) is in the
orbit of yj =Xυj (y), then Xh(τj )(y) ∈Ws(xj )=Ws(Xτj (x)); see Lemma 7.13.

According to Lemma 7.13 we have |υj − h(τj )|<K · δ0 and, by Remark 6.14,
there exists a small ε1 > 0 such that

RΣ(yj )=Xt(yj ) ∈Wss
ε (xj ) with | t |< ε1.

Therefore the piece of the orbit Oy = X[υj−K·δ0−ε1,υj+K·δ0+ε1](y) must contain
Xh(τj )(y). We note that this holds for all sufficiently small values of δ0 > 0 fixed
from the beginning.

Let ε0>0 be given and let us consider the piece of the orbit Ox :=X[τj−ε0,τj+ε0](x)
and the piece of the orbit of x whose strong-stable manifolds intersect Oy , i.e.,

Oxy = {

Xs(x) : ∃τ ∈ [υj −K ·δ0 −ε1, υj +K ·δ0 +ε1] s. t. Xτ(y) ∈Wss
ε

(

Xs(x)
)}

.

Since yj ∈Ws(xj ) we conclude that Oxy is a neighborhood of xj =Xτj (x) which
can be made as small as we want by taking δ0 and ε1 small enough. In particular this
ensures that Oxy ⊂ Ox and so Xh(τj )(y) ∈Wss

ε (X
[τj−ε0,τj+ε0](x)). This finishes the

proof of Theorem 7.11.

7.2.8 Singular-Hyperbolicity and Chaotic Behavior

Now we can present a proof that singular-hyperbolicity implies chaotic behavior for
the past and the future.
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Proof of Theorem 7.3 The assumption of singular-hyperbolicity on an isolated
proper subset Λ with isolating neighborhood U ensures that the maximal invariant
subsets ∩t∈RY t (U) for all C1 nearby flows Y are also singular-hyperbolic. There-
fore to deduce robust chaotic behavior in this setting it is enough to show that a
proper isolated invariant compact singular-hyperbolic subset is chaotic.

Let Λ be a singular-hyperbolic isolated proper subset for a C1 flow. Then there
exists a strong-stable manifold Wss(x) through each of its points x. We claim that
this implies that Λ is past chaotic. Indeed, assume by contradiction that we can find
y ∈Wss(x) such that y �= x and dist(X−t (y),X−t (x)) < ε for every t > 0, for some
small ε > 0. Then, because Wss(x) is uniformly contracted by the flow in positive
time, there exists λ > 0 such that

dist(y, x)≤ Const · e−λt dist
(

X−t (y),X−t (x)
) ≤ Const · εe−λt

for all t > 0, a contradiction since y �= x. Hence for any given small ε > 0 we can
always find a point y arbitrarily close to x (it is enough to choose y is the strong-
stable manifold of x) such that its past orbit separates from the orbit of x.

To obtain future chaotic behavior, we argue by contradiction: we assume that Λ
is not future chaotic. Then for every ε > 0 we can find a point x ∈Λ and an open
neighborhood V of x such that the future orbit of each y ∈ V is ε-close to the future
orbit of x, that is, dist(Xt (y),Xt (x))≤ ε for all t > 0.

First, x is not a singularity, because all the possible singularities inside a singular-
hyperbolic set are hyperbolic saddles and so each singularity has a unstable mani-
fold. Likewise, x cannot be in the stable manifold of a singularity. Therefore ω(x)
contains some regular point z. Let Σ be a transversal section to the flow Xt at z.

Hence there are infinitely many times tn → +∞ such that xn := Xtn(x) ∈ Σ
and xn → z when n→ +∞. Taking Σ sufficiently small looking only to very large
times, the assumption on V ensures that each y ∈ V admits also an infinite sequence
tn(y)−−−−→

n→+∞ +∞ satisfying

yn :=Xtn(y)(y) ∈Σ and dist(yn, xn)≤ 10ε.

We can assume that y ∈ V does not belong toWs(x), sinceWs(x) is a C1 immersed
sub-manifold ofM . Hence we consider the connected components γn :=Ws(xn,Σ)

and ξn :=Ws(yn,Σ) ofWs(x)∩Σ andWs(y)∩Σ , respectively. We recall that we
can assume that every y in a small neighborhood of Λ admits an invariant stable
manifold because we can extend the invariant stable cone fields from Λ to a small
neighborhood of Λ. We can also extend the invariant center-unstable cone fields
from Λ to this same neighborhood, so that we can also define the notion of cu-
curve in Σ in this setting.

The assumption on V ensures that there exists a cu-curve ζn in Σ connecting γn
to ξn, becauseXtn(V )∩Σ is an open neighborhood of xn containing yn. But we can
assume without loss of generality that tn+1 − tn > max{t1, t2}, forgetting some re-
turns toΣ in between if necessary and relabeling the times tn. Thus Proposition 6.15
applies and the Poincaré return maps associated to the returns toΣ considered above
are hyperbolic.
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The same argument as in the proof of expansiveness, in Sect. 7.2, guarantees that
there exists a flow-box connecting {xn, yn} to {xn+1, yn+1} and sending ζn into a
cu-curve R(ζn) connecting γn+1 and ξn+1, for every n≥ 1.

The hyperbolicity of the Poincaré return maps ensures that the length of R(ζn)
grows by a factor greater than one. Therefore, since yn, xn are uniformly close, this
implies that the length of ζ1 and the distance between γ1 and ξ1 must be zero. This
contradicts the choice of y �=Ws(x).

This contradiction shows that Λ is future chaotic, and concludes the proof. �

7.3 Singular-Hyperbolic Attractors Are Non-uniformly
Hyperbolic

Here we start the proof of Theorem 7.6.

7.3.1 The Starting Point

We show in Sect. 7.3.3 that, choosing a global Poincaré section Ξ (with several
connected components) for X on Λ, we can reduce the transformation R to the
quotient over the stable leaves. We can do this using Lemma 6.23 with the exception
of finitely many leaves Γ , corresponding to the points whose orbit falls into the local
stable manifold of some singularity or are sent into the stable boundary ∂sΣ of some
Σ ∈Ξ by R, where the return time function τ is discontinuous.

As explained in Sect. 6.1.4 the global Poincaré map R :Ξ →Ξ induces in this
way a map f : F \ Γ → F on the leaf space, diffeomorphic to a finite union of
open intervals I , which is piecewise expanding and admits finitely many υ1, . . . , υl
ergodic absolutely continuous (with respect to Lebesgue measure on I ) invariant
probability measures whose basins cover Lebesgue almost all points of I . In what
follows we will simply say “absolutely continuous invariant measures” and use the
shorthand acim’s when referring to this kind of measures.

Moreover the Radon-Nikodym derivatives (densities) dυk
dλ

are bounded from
above and the support of each υk contains nonempty open intervals, and so the
basin B(υk) contains nonempty open intervals Lebesgue modulo zero, k = 1, . . . , l.

7.3.1.1 Description of the Construction

Later we unwind the reductions made in Sect. 7.3.3 and obtain a physical measure
for the original flow at the end of the proof.

We divide the construction of the physical measure forΛ into the following steps.

1. The compact metric space Ξ is endowed with a partition F and map R : Ξ \
Γ →Ξ , where Γ is a finite set of elements of F (see Sect. 6.1.4.1). The map R
preserves the partition F and contracts its elements by Lemma 6.23. We have a
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finite family υ1, . . . , υl of absolutely continuous invariant probability measures
for the induced quotient map f : F \ Γ → F .

We show in Sect. 6.1.5 that each υi defines a R-invariant ergodic probability
measure ηi . In Sect. 7.3.5 we show that the basin B(ηi) is a union of strips of Ξ ,
and ηi are therefore physical measures for R. Moreover these basins cover Ξ :

λ2(Ξ \ (B(η1)∪ · · · ∪B(ηl))
) = 0,

where λ2 is the area measure on Ξ .
2. We then pass from R-invariant physical measures η1, . . . , ηl to invariant prob-

ability measures ν1, . . . , νl for the suspension semiflow over R with roof func-
tion τ . In the process we keep the ergodicity (Sect. 7.3.7) and the basin property
(Sect. 7.3.7) of the measures: the whole space Ξ × [0,+∞)/∼ where the semi-
flow is defined equals the union of the ergodic basins of the νi Lebesgue modulo
zero.

3. Finally in Sect. 7.3.8 we convert each physical measure νi for the semiflow into
a physical measure μi for the original flow. We use the fact that the semiflow
is semi-conjugated to Xt on a neighborhood of Λ by a local diffeomorphism.
Uniqueness of the physical measure μ is then deduced in Sect. 7.3.8.1 through
the existence of a dense regular orbit in Λ (recall that our definition of attractor
demands transitivity) and by the observation that the basin of μ contains open
sets Lebesgue modulo zero. In Sect. 7.3.9 we show that μ is (non-uniformly)
hyperbolic.

The details are expounded in the following sections.

7.3.2 The Hölder Property of the Projection

Recall the construction of the Global Poincaré Map R near a singular-hyperbolic
attractor Λ for a C1 flow in Chap. 6 and the one-dimensional reduction. Assuming
that X is of class C2 then the projections along stable leaves on cross-sections are
Hölder-C1. Hence the one-dimensional map f we obtain through reduction to the
quotient leaf space has the property that 1/|Df | is Hölder continuous. This is es-
sential to construct an absolutely continuous invariant probability measure for f , as
we now explain.

We assume now that the flow (Xt )t∈R isC2. Under this condition it is well known
[147, 193] that the stable leaf Ws(x,Σ) is a C2 embedded disk for every x ∈Σ ∈
Ξ and these leaves define a C1 foliation F s

Σ of each Σ ∈ Ξ with a Hölder-C1

holonomy (since the leaves are one-dimensional).
From Sect. 2.7.2 we know that in this setting the holonomy (projection) along

transverse curves to F s
Σ are C1+α for some 0 < α < 1 which depends on X only,

since they can be seen as maps between subsets of the real line.
Recall also Remark 6.14: the projections we are dealing with consist really of

the composition of two projections: the first along the strong-stable leaves and the
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second along the flow to Σ . Since the flow is assumed to be C2, the end result is a
holonomy map in Σ which is Hölder-C1.

This shows that the map f obtained here is in fact a C1 piecewise expanding
map such that 1/|f ′| is Hölder restricted to each Ij . Indeed

• for Ij corresponding to a flow-box between cross-sections of the flow away from
singularities, Df | Ij is α-Hölder for some 0< α < 1, and so for all x, y ∈ Ij we
have

1

|f ′(x)| − 1

|f ′(y)| ≤ |f ′(x)− f ′(y)|
|f ′(x)f ′(y)| ≤ C

(3/2)2
· |x − y|α;

• otherwise, f | Ij corresponds to the flow near a singularity. Hence 1/|Df | on
such Ij is α-Hölder continuous according to Remark 7.18 on the estimation of
Poincaré times near singularities.

7.3.2.1 Existence and Finiteness of Acim’s

It is well known [112, 266, 275] that C1 piecewise expanding maps f of the interval
such that 1/|Df | has bounded variation have finitely many absolutely continuous
invariant probability measures whose basins cover Lebesgue almost all points of I .

Using an extension of the notion of bounded variation (defined below) it was
shown in [120] that the results of existence and finiteness of absolutely continuous
ergodic invariant measures can be extended to C1 piecewise expanding maps f such
that g = 1/|f ′| is α-Hölder for some α ∈ (0,1). These functions are of universally
bounded variation, i.e.,

sup
a=a0<a1<···<an=b

(
n

∑

j=1

∣
∣g(ai)− g(ai−1)

∣
∣1/α

)α

<∞,

where the supremum is taken over all finite partitions of the interval I = [a, b].
Moreover from [120, Theorem 3.2] the densities ϕ of the absolutely continuous
invariant probability measures for f satisfy the following: there exists constants
A,C > 0 such that

∫

osc(ϕ, ε, x) dx ≤ C · εα for all 0< ε ≤A,

where osc(ϕ, ε, x) = ess supy,z∈B(x,ε) |ϕ(y)− ϕ(z)| and the essential supremum is
taken with respect to Lebesgue measure. From this we can find a sequence εn → 0
such that osc(ϕ, εn, ·) −−−→

n→∞ 0 (with respect to Lebesgue measure). This implies

that supp(ϕ) contains non-empty open intervals.
Indeed, for a given small δ > 0 let ρ > 0 be so small and n so big that W =

{ϕ > ρ} and V = {osc(ϕ, εn, ·) > ρ/2} satisfy λ(I \W) < δ and λ(V ) < δ. Then
λ(W ∩ I \ V ) > 1 − 2δ > 0. Let x be a Lebesgue density point of W ∩ I \ V .
Then there exists a positive Lebesgue measure subset of B(x, εn) where ϕ > ρ. By



7.3 Non-uniform Hyperbolicity 223

definition of osc(ϕ, εn, x) this implies that ϕ(y) > ρ/2 > 0 for Lebesgue almost
every y ∈ B(x, εn), and thus B(x, εn)⊂ supp(ϕ).

In addition from [120, Theorem 3.3] there are finitely many ergodic absolutely
continuous invariant probability measures υ1, . . . , υl of f and every absolutely con-
tinuous invariant probability measure υ decomposes into a convex linear combina-
tion υ = ∑l

i=1 aiυi . From [120, Theorem 3.2] considering any subinterval J ⊂ I
and the normalized Lebesgue measure λJ = (λ | J )/λ(J ) on J , every weak∗ ac-
cumulation point of n−1 ∑n−1

j=0 f
j∗ (λJ ) is an absolutely continuous invariant prob-

ability measure υ for f (since the indicator function of J is of generalized 1/α-
bounded variation). Hence the basin of the υ1, . . . , υl cover I Lebesgue modulo
zero: λ(I \ (B(υ1)∪ · · · ∪B(υl))= 0.

Note that from [120, Lemma 1.4] we also know that the density ϕ of any abso-
lutely continuous f -invariant probability measure is bounded from above.

7.3.3 Integrability of the Global Return Time

Here we study the integrability of the Poincaré time τ with respect to the Lebesgue
area measure on the adapted cross-sections Ξ associated to the flow-boxes which
cover Λ.

7.3.3.1 Poincaré Times Near Singularities

Recall that, since singularities are Lorenz-like, the unstable manifold Wu(σk) is
one-dimensional, and there is a one-dimensional strong-stable manifold Wss(σk)

contained in the two-dimensional stable manifoldWs(σk). Most important for what
follows, the attractor intersects the strong-stable manifold at the singularity only, by
Theorem 5.10.

Hence for some δ > 0 we may take δ-adapted cross-sections containing Σo,±
and Σi,±, in U0, as in Sect. 5.4.4. Reducing the cross-sections if necessary, i.e.,
taking δ > 0 small enough, we ensure that the Poincaré times are larger than T2, so
that the same conclusions as in the previous subsections apply here. Indeed using
linearizing coordinates it is easy to see that for points z = (x1, x2,±1) ∈Σi,± the
time τ± taken by the flow starting at z to reach one ofΣo,± depends on x1 only and
is given by

τ±(x1)= − logx1

λ1
.

We then fix these cross-sections once and for all and define for small ε > 0 the
flow-box

Uσk =
⋃

x∈Σi,±\�±
X(−ε,τ±(x)+ε)(x)∪ (−δ, δ)× (−δ, δ)× (−1,1)
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which is an open neighborhood of σk with σk the unique zero of X | Uσk . We note
that the function τ± : Σi,± → R is integrable with respect to the Lebesgue (area)
measure over Σi,±: we say that the exit time function in a flow-box near each sin-
gularity is Lebesgue integrable.

More precisely, we can determine the expression of the Poincaré maps between
ingoing and outgoing cross-sections easily though linearized coordinates

Σi,+ ∩ {x1 > 0} →Σ0,+, (x1, x2,1) �→
(

1, x2 · x−λ2/λ1
1 , x

−λ3/λ1
1

)

. (7.4)

This shows that the map obtained by identifying points with the same x2 coordinate,
i.e., points in the same stable leaf, is simply x1 �→ x

β

1 where β = −λ3/λ1 ∈ (0,1).
For the other possible combinations of ingoing and outgoing cross-sections the
Poincaré maps have a similar expression. This will be useful to construct physical
measures for the flow in Chap. 7.

Remark 7.18 Note that for the map f (x)= xβ we have 1/Df (x)= x1−β/β which
is Hölder continuous.

7.3.3.2 The Global Poincaré Return Time

We claim that the Poincaré time τ is integrable with respect to the Lebesgue area
measure on Ξ . Indeed, given z ∈ Ξ , the point ẑ = Xt2(z) is either inside a flow-
box Uσk of a singularity σk , or not. In the former case, the time ẑ takes to reach
an outgoing cross-section Σo,±σk is bounded by the exit time function τ±

σk
of the

corresponding flow-box, which is integrable. In the latter case, ẑ takes a time of at
most 2T3 to reach another cross-section, by definition of T3. Thus the Poincaré time
on Ξ is bounded by t2 + 2T3 plus a sum of finitely many integrable functions, one
for each flow-box near a singularity, by finiteness of the number of singularities, of
the number of cross-sections in Ξ and of the number of strips at each cross-section.
This proves the claim.

Remark 7.19 Given z ∈Σ ∈Ξ we write τk(z)= τ(Rk−1(z))+· · ·+ τ(z) for k ≥ 1
and so τ = τ 1. Then Rk(Ws(z,Σ))⊂Σ ′ for some Σ ′ ∈Ξ , since

Rk
(

Ws(z,Σ)
) ⊂Xτk(z)(Ws(z,Σ)

) ⊂Xτk(z)(U),
and the length �(Rk(Ws(z,Σ))) is uniformly contracted as τ k(z)−−−−→

k→+∞ +∞ Also

d
(

Rk
(

Ws(z,Σ)
)

, ∂cuΣ ′)> δ/2

for all big enough k, by the definitions of U and of δ-adapted cross-section. (The
distance d(A,B) between two sets A,B is inf{d(a, b) : a ∈ A,b ∈ B}.) We may
assume that this property holds for all stable leaves Ws(z,Σ), all z ∈ Σ and ev-
ery Σ ∈ Ξ for all k ≥ k0, for some fixed large k0 ∈ N, by the uniform contraction
property of R in the stable direction.
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Remark 7.20 By Lemma 6.23 the Poincaré time τ is constant on stable leaves
Ws(x,Σ) for all x ∈ Σ ∈ Ξ . Thus there exists a return time function τI on I
such that τ = τI ◦ p, where p : Ξ → γΞ is the joining of all pΣ , Σ ∈ Ξ and
γΞ = {γΣ : Σ ∈ Ξ}. The integrability of τ with respect to λ2 (see Sect. 6.1.4.1)
implies the λ-integrability of τI naturally since (pΣ)∗λ2 � λ and τI ◦ p = τ .

7.3.4 Suspending Invariant Measures

Here we show how to construct an invariant measure for a transformation from
an invariant measure for the quotient map obtained from a partition of the space.
We show also that, if the measure is ergodic on the quotient, then we also obtain
ergodicity on the starting space.

In Sect. 7.3.5 we apply these results to the global Poincaré map R of a singular-
hyperbolic attractor and its corresponding one-dimensional quotient map f . We use
the properties of the one-dimensional map given in Sect. 6.1.4 to build physical
measures for f first.

Later we extend the transformation to a semi-flow through a suspension con-
struction and show that each invariant and ergodic measure for the transformation
corresponds to a unique measure for the semi-flow with the same properties.

In Sect. 7.3.7 we again apply these results to the transformation R to obtain
physical measures for the suspension semiflow over R with roof function τ .

7.3.4.1 Reduction to the Quotient Map

Let Ξ be a compact metric space, Γ ⊂Ξ and let F : (Ξ \Γ )→Ξ be a measurable
map. We assume that there exists a partition F ofΞ into measurable subsets, having
Γ as an element, which is

• invariant: the image of any ξ ∈ F distinct from Γ is contained in some element
η of F ;

• contracting: the diameter of Fn(ξ) goes to zero when n→ ∞, uniformly over all
the ξ ∈ F for which Fn(ξ) is defined.

We denote p :Ξ → F the canonical projection, i.e., p assigns to each point x ∈Ξ
the atom ξ ∈ F that contains it. By definition, A⊂ F is measurable if and only if
p−1(A) is a measurable subset of Ξ and likewise A is open if, and only if, p−1(A)

is open in Ξ . The invariance condition means that there is a uniquely defined map

f : (F \ {Γ })→ F such that f ◦ p = p ◦ F.
Clearly, f is measurable with respect to the measurable structure we introduced
in F . We assume from now on that the leaves are sufficiently regular so that Ξ/F
is a metric space with the topology induced by p.
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Let μf be any probability measure on F invariant under the transformation f .
For any bounded function ψ : Ξ → R, let ψ− : F → R and ψ+ : F → R be de-
fined by

ψ−(ξ)= inf
x∈ξ ψ(x) and ψ+(ξ)= sup

x∈ξ
ψ(x).

Lemma 7.21 Given any continuous function ψ :Ξ → R, both limits

lim
n

∫

(ψ ◦ Fn)− dμf and lim
n

∫

(ψ ◦ Fn)+ dμf (7.5)

exist, and they coincide.

Proof Let ψ be fixed as in the statement. Given ε > 0, let δ > 0 be such that
|ψ(x1)− ψ(x2)| ≤ ε for all x1, x2 with d(x1, x2) ≤ δ. Since the partition F is as-
sumed to be contracting, there exists n0 ≥ 0 such that diam(F n(ξ)) ≤ δ for every
ξ ∈ F and any n≥ n0. Let n+ k ≥ n≥ n0. By definition,

(ψ ◦ Fn+k)−(ξ)− (ψ ◦ Fn)−(f k(ξ))= inf
(

ψ | Fn+k(ξ)) − inf
(

ψ | Fn(f k(ξ))).

Observe that Fn+k(ξ) ⊂ Fn(f k(ξ)). So the difference on the right-hand side is
bounded by

sup
(

ψ | Fn(f k(ξ))) − inf
(

ψ | Fn(f k(ξ))) ≤ ε.
Therefore

∣
∣
∣
∣

∫

(ψ ◦ Fn+k)− dμf −
∫

(ψ ◦ Fn)− ◦ f k dμf
∣
∣
∣
∣
≤ ε.

Moreover, one may replace the second integral by
∫

(ψ ◦ Fn)− dμf , because μf is
f -invariant.

At this point we have shown that {∫ (ψ ◦Fn)− dμf }n≥1 is a Cauchy sequence in
R. In particular, it converges. The same argument proves that {∫ (ψ ◦Fn)+ dμf }n≥1
is also convergent. Moreover, keeping the previous notations,

0 ≤ (ψ ◦ Fn)+(ξ)− (ψ ◦ Fn)−(ξ)= sup
(

ψ | Fn(ξ)) − inf
(

ψ | Fn(ξ)) ≤ ε
for every n≥ n0. So the two sequences in (7.5) must have the same limit. The lemma
is proved. �

Corollary 7.22 There exists a unique probability measure μF on Ξ such that
∫

ψ dμF = lim
∫

(ψ ◦ Fn)− dμf = lim
∫

(ψ ◦ Fn)+ dμf

for every continuous function ψ :Ξ → R. Besides, μF is invariant under F . More-
over the correspondence μf �→ μF is injective.
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Proof Let μ̂(ψ) denote the value of the two limits. Using the expression for μ̂(ψ)
in terms of (ψ ◦ Fn)− we immediately obtain

μ̂(ψ1 +ψ2)≥ μ̂(ψ1)+ μ̂(ψ2).

Analogously, the expression of μ̂(ψ) in terms of (ψ ◦ Fn)+ gives the opposite in-
equality. The function μ̂(·) is therefore additive. Moreover, μ̂(cψ)= cμ̂(ψ) for ev-
ery c ∈ R and every continuous function ψ . Therefore μ̂(·) is a linear real operator
in the space of continuous functions ψ :Ξ → R.

Clearly, μ̂(1) = 1 and the operator μ̂ is non-negative: μ̂(ψ) ≥ 0 if ψ ≥ 0.
By the Riesz-Markov theorem, there exists a unique measure μF on Ξ such that
μ̂(ψ)= ∫

ψ dμF for every continuous ψ . To conclude that μF is invariant under F
it suffices to note that

μ̂(ψ ◦ F)= lim
n

∫

(ψ ◦ Fn+1)− dμf = μ̂(ψ)

for every ψ .
To prove that the map μf �→ μF is injective, let μF = μ′

F be obtained from
μf and μ′

f respectively. For any continuous function ϕ : F → R we have that
ψ = ϕ ◦ p :Ξ → R is continuous. But

μf
(

(ψ ◦Fn)±
) = μf

(

(ϕ ◦p ◦Fn)±
) = μf

(

(ϕ ◦f n ◦p)±
) = μf (ϕ ◦f n)= μf (ϕ)

for all n≥ 1 by the f -invariance of μf . Hence by definition

μf (ϕ)= μF (ψ)= μ′
F (ψ)= μ′

f (ϕ)

and so μf = μ′
f . This finishes the proof of the corollary. �

Remark 7.23 We note that
∫

ψ dμF = limn
∫

(ψ ◦ Fn)# dμf for every continuous
ψ :Ξ → R and any choice of a sequence (ψ ◦ Fn)# : F → R with

inf(ψ | Fn(ξ))≤ (ψ ◦ Fn)#(ξ)≤ sup(ψ | Fn(ξ)).
Moreover we can define

∫

ψ dμF for any measurable ψ :Ξ → R such that

lim
n→+∞

(

sup(ψ | Fn(ξ))− inf(ψ | Fn(ξ))) = 0

uniformly in n ∈ N and in ξ ∈ F . This will be useful in what follows.

Lemma 7.24 Let ψ :Ξ → R be a continuous function and ξ ∈ F be such that

lim
n

1

n

n−1
∑

j=0

(ψ ◦ Fk)±(f j (ξ))=
∫

(ψ ◦ Fk)± dμf

for every k ≥ 1. Then limn 1
n

∑n−1
j=0ψ(F

j (x))= ∫

ψ dμF for every x ∈ p−1(ξ).
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Proof Let us fix ψ and ξ as in the statement. Then by definition of (ψ ◦ Fk)± and
by the properties of F we have

(ψ ◦ Fk)−
(

f j (ξ)
) ≤ (ψ ◦ Fk)(F j (x)) ≤ (ψ ◦ Fk)+

(

f j (ξ)
)

for all x ∈ ξ and j, k ≥ 1. Given ε > 0, by Corollary 7.22 there exists k0 ∈ N such
that

μF (ψ)− ε

2
≤ μf

(

(ψ ◦ Fk)−
) = μf

(

(ψ ◦ Fk)+
) ≤ μF (ψ)+ ε

2
for all k ≥ k0 and there exists n0 ∈ N such that

∣
∣
∣
∣
∣

1

n

n−1
∑

j=0

(ψ ◦ Fk)±
(

f j (ξ)
) −μf

(

(ψ ◦ Fk)±
)

∣
∣
∣
∣
∣
<
ε

2

for all n≥ n0 = n0(k). Hence we have

μF (ψ)− ε ≤ 1

n

n−1
∑

j=0

(ψ ◦ Fk)(F j (x))≤ μF (ψ)+ ε,

for all n ≥ n0(k). Since n can be made arbitrarily big and ε > 0 can be taken arbi-
trarily small we have concluded the proof of the lemma. �

Corollary 7.25 If μf is f -ergodic, then μF is ergodic for F .

Proof Since Ξ/F is a metric space with the topology induced by p, C0(F ,R) is
dense in L1(F ,R) for the L1-topology and p :Ξ → F is continuous. Hence there
exists a subset E of F with μf (E ) = 1 such that the conclusion of Lemma 7.24
holds for a subset E = p−1(E ) of Ξ . To prove the corollary it is enough to show
that μF (E)= 1.

Let χE = χE ◦ p and take ψn : F → R a sequence of continuous functions
such that ψn → χE when n→ +∞ in the L1 topology with respect to μf . Then
ϕn = ψn ◦ p is a sequence of continuous functions on Ξ such that ϕn → χE when
n→ +∞ in the L1 norm with respect to μF .

Then it is straightforward to check that

μF (ϕn)= lim
k→+∞μf

(

(ϕn ◦ Fk)−
) = lim

k→+∞μf (ψn ◦ f k)= μf (ψn)

which converges to μf (E )= 1. Since μF (ϕn) tends to μF (E) when n→ +∞, we
conclude that μF (E)= 1, as we wanted. �

7.3.5 Physical Measure for the Global Poincaré Map

Let us now apply these results (with R replacing F ) to the case of the global
Poincaré map for a singular-hyperbolic attractor.
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From the previous results in Sects. 7.3.3 and 7.3.4.1, the finitely many acim’s
υ1, . . . , υl for the one-dimensional quotient map f uniquely induce R-invariant er-
godic probability measures η1, . . . , ηl on Ξ .

We claim that the basins of each η1, . . . , ηl have positive Lebesgue area λ2 on
Ξ and cover λ2 almost every point of p−1(I ). Indeed the uniform contraction of
the leaves F s

Σ \Γ provided by Lemma 6.23 implies that the forward time averages
of any pair x, y of points in ξ ∈ F \ p(Γ ) on continuous functions ϕ :Ξ → R are
equal, i.e.,

lim
n→+∞

[

1

n

n−1
∑

j=0

ϕ
(

Rj (x)
) − 1

n

n−1
∑

j=0

ϕ
(

Rj (y)
)

]

= 0.

Hence B(ηi) ⊃ p−1(B(υi)), i = 1, . . . , l. This shows that B(ηi) contains an entire
strip except for a subset of λ2-null measure, because B(υi) contains some open
interval λ modulo zero. Since p∗(λ2)� λ we get in particular

λ2(B(ηi)
)

> 0 and λ2
(

p−1(I ) \
l

⋃

i=1

B(ηi)

)

= p∗(λ2)

(

I \
l

⋃

i=1

B(υi)

)

= 0,

showing that η1, . . . , ηl are physical measures whose basins cover p−1(I ) Lebesgue
almost everywhere. We observe that p−1(I )⊂Ξ is forward invariant under R, and
thus it contains Λ∩Ξ .

7.3.6 Suspension Flow from the Poincaré Map

Let Ξ be a measurable space, Γ some measurable subset of Ξ , and F : (Ξ \Γ )→
Ξ a measurable map. Let τ : Ξ → (0,+∞] be a measurable function such that
inf τ > 0 and τ ≡ +∞ on Γ .

Let ∼ be the equivalence relation on Ξ × [0,+∞) generated by (x, τ (x)) ∼
(F (x),0), that is, (x, s)∼ (x̃, s̃) if and only if there exist

(x, s)= (x0, s0), (x1, s1), . . . , (xN, sN)= (x̃, s̃)

in Ξ × (0,+∞) such that, for every 1 ≤ i ≤N ,

either xi = F(xi−1) and si = si−1 − τ(xi−1);
or xi−1 = F(xi) and si−1 = si − τ(xi).

We denote by V = Ξ × [0,+∞)/ ∼ the corresponding quotient space and by π :
Ξ × [0,+∞)→ V the canonical projection which induces on V a topology and a
Borel σ -algebra of measurable subsets of V .
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Definition 7.26 The suspension of F with roof function (or return-time) τ is the
semi-flow (Xtτ )t≥0 defined on V by

Xtτ (π(x, s))= π(x, s + t) for every (x, s) ∈Ξ × [0,+∞) and t > 0.

It is easy to see that this is indeed well defined as in Sect. 2.3.2.2. In what follows
we write Xt instead of Xtτ since τ is fixed and no ambiguity can arise.

Remark 7.27 If F is injective then we can also define

X−t(π(x, s)
) = π(

F−n(x), s + τ(F−n(x))+ · · · + τ(F−1(x))− t)

for every x ∈ Fn(Ξ) and 0< t ≤ s+τ(F−n(x))+· · ·+τ(F−1(x)). The expression
on the right does not depend on the choice of n≥ 1. In particular, the restriction of
the semi-flow (Xt )t≥0 to the maximal invariant set

Λ=
{

(x, t) : x ∈
⋂

n≥0

Fn(Ξ) and t ≥ 0

}

extends, in this way, to a flow (Xt )t∈R on Λ.

Let μF be any probability measure on Ξ that is invariant under F . Then the
product μF × dt of μF by Lebesgue measure on [0,+∞) is an infinite measure,
invariant under the trivial flow (x, s) �→ (x, s + t) in Ξ × [0,+∞). In what follows
we assume that the return time is integrable with respect to μF , i.e.,

μF (τ)=
∫

τ dμF <∞. (7.6)

In particular μF (Γ )= 0. Then we introduce the probability measure μX on V de-
fined by

∫

ϕ dμX = 1

μF (τ)

∫ ∫ τ(x)

0
ϕ(π(x, t)) dt dμF (x)

for each bounded measurable ϕ : V → R.
We observe that the correspondence μF �→ μX defined above is injective. Indeed

for any bounded measurable ψ : Ξ → R, defining ϕ on {x} × [0, τ (x)) to equal
μF (τ) · ψ(x)/τ(x) gives a bounded measurable map ϕ : V → R (since inf τ > 0)
such that μX(ϕ)= μF (ψ). Hence if μX = μ′

X then μF = μ′
F .

Lemma 7.28 The measure μX is invariant under the semi-flow (Xt )t≥0.

Proof It is enough to show that μX((Xt )−1(B))= μX(B) for every measurable set
B ⊂ V and any 0 < t < inf τ . Moreover, we may suppose that B is of the form
B = π(A× J ) for some A⊂Ξ and J a bounded interval in [0, inf(τ |A)). This is
because these sets form a basis for the σ -algebra of measurable subsets of V .
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Let B be of this form and let (x, s) be any point in Ξ with 0 ≤ s < τ(x). Then
Xtπ(x, s) ∈ B if and only if π(x, s+ t)= π(x̃, s̃) for some (x̃, s̃) ∈A× J . In other
words, π(x, s) ∈ (Xt )−1(B) if and only if there exists some n≥ 0 such that

x̃ = Fn(x) and s̃ = s + t − τ(x)− · · · − τ(Fn−1(x)).

Since s < τ(x), t < inf τ , and s̃ ≥ 0, it is impossible to have n≥ 2. So,

• either x̃ = x and s̃ = s + t (corresponding to n= 0),
• or x̃ = F(x) and s̃ = s + t − τ(x) (corresponding to n= 1).

The two possibilities are mutually exclusive: for the first one (x, s) must be such
that s + t < τ(x), whereas in the second case s + t ≥ τ(x). This shows that we can
write (Xt )−(B) as a disjoint union (Xt )−(B)= B1 ∪B2 with

B1 = π{

(x, s) : x ∈A and s ∈ (J − t)∩ [0, τ (x))}

B2 = π{

(x, s) : F(x) ∈A and s ∈ (J + τ(x)− t)∩ [0, τ (x))}.
Since t > 0 and sup J < τ(x), we have (J − t)∩ [0, τ (x))= (J − t)∩ [0,+∞) for
every x ∈A. So, by definition, μX(B1) equals

1

μF (τ)

∫

A

�
(

(J − t)∩ [0, τ (x))
)

dμF (x)= 1

μF (τ)
μF (A) · �

(

(J − t)∩ [0,+∞)
)

.

Similarly infJ ≥ 0 and t < τ(x) imply that

(J + τ(x)− t)∩ [0, τ (x))= τ(x)+ (J − t)∩ (−∞,0).
Hence μX(B2) is given by

1

μF (τ)

∫

F−1(A)

�
(

(J− t)∩(−∞,0)
)

dμF (x)= μF (F
−1(A))

μF (τ)
�
(

(J− t)∩(−∞,0)
)

.

Since μF is invariant under F , we may replace μF (F−1(A)) by μF (A) in the last
expression. It follows that

μX
(

(Xt )−1(B)
) = μX(B1)+μX(B2)= 1

μF (τ)
μF (A) · �

(

(J − t)).

Clearly, the last term may be written as μF (τ)−1μF (A) · �(J ) which, by definition,
is the same as μX(B). This proves that μX is invariant under the semi-flow and ends
the proof. �

Given a bounded measurable function ϕ : V → R, let ϕ̂ :Ξ → R be defined by

ϕ̂(x)=
∫ τ(x)

0
ϕ(π(x, t)) dt. (7.7)
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Observe that ϕ̂ is integrable with respect to μF and

∫

ϕ̂ dμF = μF (τ) ·
∫

ϕ dμX,

by the definition of μX .

Lemma 7.29 Let ϕ : V → R be a bounded function and let ϕ̂ be as above. We
assume that x ∈ Ξ is such that τ(F j (x)) and ϕ̂(F j (x)) are finite for every j ≥ 0,
and also

(a) limn 1
n

∑n−1
j=0 τ(F

j (x))= ∫

τ dμF , and

(b) limn 1
n

∑n−1
j=0 ϕ̂(F

j (x))= ∫

ϕ̂ dμF .

Then limT→+∞ 1
T

∫ T

0 ϕ(π(x, s + t)) dt = ∫

ϕ dμX for every π(x, s) ∈ V .

Proof Let x be fixed, satisfying (a) and (b). Given any T > 0 we define n= n(T )
by

Tn−1 ≤ T < Tn where Tj = τ(x)+ · · · + τ(F j (x)) for j ≥ 0.

Then using (y, τ (y))∼ (F (y),0) we get

1

T

∫ T

0
ϕ(π(x, s + t)) dt = 1

T

[
n−1
∑

j=0

∫ τ(F j (x))

0
ϕ(π(F j (x), t)) dt

+
∫ T−Tn−1

0
ϕ(π(Fn(x), t)) dt −

∫ s

0
ϕ(π(x, t)) dt

]

.

(7.8)

Using the definition of ϕ̂, we may rewrite the first term on the right-hand side as

n

T
· 1

n

n−1
∑

j=0

ϕ̂(F j (x)). (7.9)

Now we fix ε > 0. Assumption (a) and the definition of n imply that

n ·
(∫

τ dμF − ε
)

≤ Tn−1 ≤ T ≤ Tn ≤ (n+ 1) ·
(∫

τ dμF + ε
)

for large enough n. Observe also that n goes to infinity as T → +∞, since
τ(F j (x)) <∞ for every j . So, for large T ,

μF (τ)− ε ≤ T

n
≤ n+ 1

n

(

μF (τ)+ ε
) ≤ μF (τ)+ 2ε.
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This proves that T/n converges to μF (τ) when T → +∞. Consequently, assump-
tion (b) implies that (7.9) converges to

1

μF (τ)

∫

ϕ̂ dμF =
∫

ϕ dμX.

Now we prove that the remaining terms in (7.8) converge to zero when T goes to
infinity. Since ϕ is bounded,

∣
∣
∣
∣

1

T

∫ T−Tn−1

0
ϕ(π(Fn(x), t)) dt

∣
∣
∣
∣
≤ T − Tn−1

T
sup |ϕ|. (7.10)

Using the definition of n once more,

T − Tn−1 ≤ Tn − Tn−1 ≤ (n+ 1)

(∫

τ dμF + ε
)

− n
(∫

τ dμF − ε
)

whenever n is large enough. Then

T − Tn−1

T
≤

∫

τ dμF + (2n+ 1)ε

n(
∫

τ dμF − ε) ≤ 4ε
∫

τ dμF − ε
for all large enough T . This proves that (T − Tn−1)/T converges to zero, and then
so does the left-hand side of (7.10). Finally, it is clear that

1

T

∫ s

0
ϕ(π(x, t)) dt → 0 when T → +∞.

This completes the proof of the lemma. �

Corollary 7.30 If μF is ergodic then μX is ergodic.

Proof Let ϕ : V → R be any bounded measurable function, and let ϕ̂ be as in (7.7).
As already noted, ϕ̂ is μF -integrable. It follows that ϕ̂(F j (x)) <∞ for every j ≥ 0,
at μF -almost every point x ∈Ξ . Moreover, by the Ergodic Theorem, condition (b)
in Lemma 7.29 holds μF -almost everywhere. For the same reasons, τ(F j (x)) is
finite for all j ≥ 0, and condition (a) in the lemma is satisfied for μF -almost all
x ∈Ξ .

This shows that Lemma 7.29 applies to every point x in a subset A ⊂ Ξ with
μF (A)= 1. It follows that

lim
T→+∞

1

T

∫ T

0
ϕ(Xt (z)) dt =

∫

ϕ dμX

for every point z in B = π(A× [0,+∞)). Since the latter has μX(B)= 1, we have
shown that the Birkhoff average of ϕ is constant μX-almost everywhere. Then the
same is true for any integrable function, as bounded functions are dense in L1(μX).
Thus μX is ergodic and the corollary is proved. �
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7.3.7 Physical Measures for the Suspension

Using the results from Sects. 7.3.5 and 7.3.6, it is straightforward to obtain ergodic
probability measures ν1, . . . , νl invariant under the suspension (Xtτ )t≥0 of R with
return time τ , corresponding to the R-physical probability measures η1, . . . , ηl re-
spectively.

Now we use Lemma 7.29 to show that each νi is a physical measure for (Xtτ )t≥0,
i = 1, . . . , l. Let x ∈Σ ∩ B(νi) for a fixed Σ ∈Ξ and i ∈ {1, . . . , l}. According to
Remark 7.20 the return time τI on I is Lebesgue integrable, and thus υi-integrable
also since dυi

dλ
is bounded. Hence τ is ηi -integrable by the construction of ηi from υi

(see Sect. 7.3.4.1).
Lemma 7.29, together with the fact that ηi is physical for R, ensures that B(νi)

contains the positive Xtτ orbit of almost every point (x,0), x ∈ B(νi), with respect
to λ2 on B(ηi). If we denote by λ3 = π∗(λ2 × dt) a natural volume measure on V ,
then we get λ3(B(νi)) > 0.

This also shows that the basins B(ν1), . . . ,B(νl) cover λ3-almost every point
in V0 = π(p−1(I ) × [0,+∞)). Notice that this subset is a neighborhood of the
suspension π((Λ∩Ξ \ Γ )× [0,+∞)) of Λ∩Ξ \ Γ .

7.3.8 Physical Measure for the Flow

Here we extend the previous conclusions to the original flow, completing the proof
of Theorem 7.6.

We relate the suspension (Xtτ )t≥0 of R with return time τ to (Xt )t≥0 in U as
follows. We define

Φ :Ξ × [0,+∞)→U by (x, t) �→Xt(x)

and since Φ(x, τ(x))= (R(x),0) ∈ Ξ × {0}, this map naturally defines a quotient
map

φ : V →U such that φ ◦Xtτ =Xt ◦ φ, for all t ≥ 0, (7.11)

through the identification ∼ from Sect. 7.3.6.
Let Ξτ = {(x, t) ∈ (Ξ \ Γ )× [0,+∞) : 0< t < τ(x)}. Note that Ξτ is an open

set in V and that π | Ξτ : Ξτ → Ξτ is a homeomorphism (the identity). Then the
map φ |Ξτ is a local diffeomorphism into V0 = φ(Ξ×[0,+∞))⊂U by the natural
identification given by π and by the Tubular Flow Theorem, since points in Ξτ are
not sent into singularities of X. Notice that Ξτ is a full Lebesgue (λ3) measure
subset of V . Thus φ is a semi-conjugation modulo zero. Note also that the number
of pre-images of φ is globally bounded by r0 from Remark 6.28.

Therefore the measures νi constructed for the semiflow Xtτ in the previous
Sect. 7.3.7 define physical measures μi = φ∗(νi), i = 1, . . . , l, whose basins cover
a full Lebesgue (m) measure subset of V0, which is a neighborhood of Λ. Indeed
the semi-conjugacy (7.11) ensures that φ(B(νi)) ⊂ B(μi) and, since φ is a local
diffeomorphisms on a full Lebesgue measure subset, then
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m
(

V0 \ φ(

B(ν1)∪ · · · ∪B(νl)
)) = 0.

Since V0 ⊂U we have

Ws(Λ)=
⋃

t<0

Xt(V0).

MoreoverXt is a diffeomorphism for all t ∈ R, and thus preserves subsets of zerom
measure. Hence ∪t<0X

t(B(μ1)∪· · ·∪B(μl)) has full Lebesgue measure inWs(Λ).
In other words, Lebesgue (m) almost every point x in the basinWs(Λ) of Λ is such
that Xt(x) ∈ B(μi) for some t > 0 and i = 1, . . . , l.

7.3.8.1 Uniqueness of the Physical Measure

The set Λ is an attractor. According to our definition of attractor there exists z0 ∈Λ
such that {Xt(z0) : t > 0} is a dense regular orbit in Λ.

We prove uniqueness of the physical measure by contradiction, assuming that the
number l of distinct physical measures is bigger than one. Then we can take distinct
physical measures η1, η2 for R onΞ associated to distinct physical measures μ1,μ2

for X |Λ. Then there are open sets U1,U2 ⊂Ξ such that

U1 ∩U2 = ∅ and λ2(B(ηi) \Ui
) = 0, i = 1,2.

For a very small ζ > 0 we consider the open subsets Vi =X(−ζ,ζ )(Ui), i = 1,2, of
U such that V1 ∩ V2 = ∅. According to the construction of μi we have m(B(μi) \
Vi)= 0, i = 1,2.

The transitivity assumption ensures that there are positive times T1 < T2 (ex-
changing V1 and V2 if needed) such that XTi (z0) ∈ Vi, i = 1,2. Since V1,V2

are open sets and g = XT2−T1 is a diffeomorphism, there exists a small open
set W1 ⊂ V1 such that g | W1 : W1 → V2 is a C1 diffeomorphism into its image
W2 = g(W1)⊂ V2.

Now the C1 smoothness of g | W1 ensures that a full Lebesgue (m) measure
subset of W1 is sent into a full Lebesgue measure subset of W2. By the definition
of g and the choice of V1,V2, there exists a point in B(μ1) ∩W1 whose positive
orbit contains a point in B(μ2)∩W2, and thus μ1 = μ2. Hence singular-hyperbolic
attractors have a unique physical probability measure μ.

7.3.9 Hyperbolicity of the Physical Measure

For the hyperbolicity of the measure μ we note that

• the sub-bundle Es is one-dimensional and uniformly contracting, and thus on the
Es -direction the Lyapunov exponent is negative for every point in U ;
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• the sub-bundleEcu is two-dimensional, dominatesEs , contains the flow direction
and is volume expanding, and thus by Oseledets’ Theorem [147, 269] the sum of
the Lyapunov exponents on the direction of Ecu is given by μ(log |detDX1 |
Ecu|) > 0. Hence there is a positive Lyapunov exponent for μ-almost every point
on the direction of Ecu.

We already know from Sect. 2.7 that an expanding direction in Ecu does not
coincide with the flow direction EXz = {s ·X(z) : s ∈ R}, z ∈ Λ, since EXz always
has zero Lyapunov exponent for regular points for a smooth flow on a compact
manifold.

This shows that at μ-almost every point z the Oseledets splitting of the tangent
bundle has the form

TzM =Esz ⊕EXz ⊕ Fz,
where Fz is the one-dimensional measurable sub-bundle of vectors with positive
Lyapunov exponent. The proof of Theorem 7.6 is complete.

7.3.10 Absolutely Continuous Disintegration of the Physical
Measure

Here we prove Theorem 7.7. We let μ be a physical ergodic probability measure for
a singular-hyperbolic attractor Λ of a C2-flow in an open subset U ⊂M3, obtained
through the sequence of reductions of the dynamics of the flowXt to the suspension
flow Xtτ of the Poincaré map R and return time function τ , with corresponding
Xtτ -invariant measure ν obtained from the R-invariant measure η. In addition η is
obtained through the ergodic invariant measure υ of the one-dimensional map f :
I → I . This is explained in Sect. 7.3.5. We know that μ is hyperbolic as explained
in Sect. 7.3.8.

Let us fix δ0 > 0 small. Then by Pesin’s non-uniformly hyperbolic theory [86,
196, 216] we know that there exists a compact subset K ⊂Λ such that μ(Λ \K) <
δ0, and there exists δ1 > 0 for which every z ∈ K admits a strong-unstable mani-
fold Wuu

δ1
(z) with inner radius δ1. We refer to this kind of set as a Pesin set. The

inner radius of Wuu
δ1
(z) is defined as the length of the shortest smooth curve in this

manifold from z to its boundary. Moreover K � z �→Wuu
δ1
(z) is a continuous map

K → E 1(I1,M) (recall the notations in Sect. 6.1.1).
The suspension flowXtτ defined on V in Sect. 7.3.6 is semi-conjugated to theXt -

flow on an open subset of U through a finite-to-1 local homeomorphism φ, defined
in Sect. 7.3.8, which takes orbits to orbits and preserves time as in (7.11). Hence
there exists a corresponding set K ′ = φ−1(K) satisfying the same properties of K
with respect to Xtτ , where the constants δ0, δ1 are changed by at most a constant
factor due to φ−1 by the compactness of K . In what follows we use the measure
ν = (φ−1)∗μ instead of μ and write K for K ′.

We fix a density point x0 ∈ K of ν | K . We may assume that x0 ∈ Σ for some
Σ ∈Ξ . Otherwise if x0 �∈Ξ , since x0 = (x, t) for some x ∈Σ , Σ ∈Ξ and 0< t <
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T (x), then we use (x,0) instead of x0 in the following arguments, but we still write
x0. Clearly the length of the unstable manifold through (x,0) is unchanged due to
the form of the suspension flow, at least for small values of δ1. Since ν is given as a
product measure on the quotient space V (see Sect. 7.3.7), we may assume without
loss of generality that x0 is a density point of η on Σ ∩K .

We set Wu(x,Σ) to be the connected component of Wu(x) ∩Σ , the unstable
manifold of x that contains x, for x ∈K ∩Σ . Recall that Wu(x)⊂Λ because Λ is
an attracting set. Then Wu(x,Σ) has inner radius bigger than some positive value
δ2 > 0 for x ∈ K ∩Σ , which depends only on δ1 and the angle between Wuu

δ1
(x)

and TxΣ .
Let us define F s(x0, δ2) = {Ws(x,Σ) : x ∈ Wu(x0,Σ)} and the correspond-

ing horizontal strip F s(x0, δ2)= ∪γ∈F s (x0,δ2)γ . Points z ∈ F s(x0, δ2) can be spec-
ified using coordinates (x, y) ∈Wu(x0,Σ)× R, where x is given by Wu(x0,Σ) ∩
Ws(z,Σ) and y is the length of the shortest smooth curve connecting x to z in
Ws(z,Σ). Let us consider

F u(x0, δ2)= {Wu(z,Σ) : z ∈Σ and Wu(z,Σ) crosses Fs(x0, δ2)},
where we say that a curve γ crosses Fs(x0, δ2) if the trace of γ can be written as
the graph of a map Wu(x0,Σ)→Ws(x0,Σ) using the coordinates outlined above.
We stress that F u(x0, δ2) is not restricted to leaves through points of K .

We may assume that the set Fu(x0, δ2) = Fu(x0, δ2) = ∪γ∈F u(x0,δ2)γ satisfies
η(Fu(x0, δ2)) > 0 up to taking a smaller δ2 > 0, since x0 is a density point of η |
K ∩Σ . Let η̂ be the measure on F u(x0, δ2) given by

η̂(A)= η
(

⋃

γ∈A
γ

)

for every measurable set A⊂ F u(x0, δ2).

Proposition 7.31 The measure η | Fu(x0, δ2) admits a disintegration into condi-
tional measures ηγ along η̂-a.e. γ ∈ F u(x0, δ2) such that ηγ � λγ , where λγ is the
measure (length) induced on γ by the natural Riemannian measure λ2 (area) on Σ .
Moreover there exists D0 > 0 such that

1

D0
≤ dηγ

dλγ
≤D0, ηγ -almost everywhere for η̂-almost every γ .

This is enough to conclude the proof of Theorem 7.7 since both δ0 and δ2 can be
taken arbitrarily close to zero, so that all unstable leaves Wu(x,Σ) through almost
every point with respect to η will support a conditional measure of η.

Indeed, to obtain the disintegration of ν along the center-unstable leaves that
cross any small ball around a density point x0 of K , we project that neighborhood
of x0 along the flow in negative time onto a cross-section Σ . Then we obtain the
family {ηγ }, the disintegration of η along the unstable leaves γ ∈ F u on a strip Fs

of Σ , and consider the family {ηγ × dt} of measures on F u × [0, T ] to obtain a
disintegration of ν, where T > 0 is a fixed time slightly smaller than the return time
of the points in the strip F s ; see Fig. 7.7.
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Fig. 7.7 Center-unstable
leaves on the suspension flow

In fact, ηγ × dt � λγ × dt and λγ × dt is the induced (area) measure on the
center-unstable leaves by the volume measure λ3 on V , and it can be given by
restricting the volume form λ3 to the surface γ × [0, T ] which we write λ3

γ , for
γ ∈ F u. Thus, by Proposition 7.31 and by the definition of ν, we have

νγ = ηγ × dt = dηγ

dλγ
· λ3
γ , γ ∈ F u,

and the densities of the conditional measures ηγ × dt with respect to λ3
γ are also

uniformly bounded from above and from below away from zero – we have left out
the constant factor 1/μ(τ) to simplify the notation.

Since μ= φ∗ν and φ is a finite-to-1 local diffeomorphism when restricted to Ξτ ,
then μ also has an absolutely continuous disintegration along the center-unstable
leaves. The densities on unstable leaves γ are related by the expression (where
mγ denotes the area measure on the center-unstable leaves induced by the volume
form m)

μγ = φ∗(νγ )= φ∗
(
dηγ

λγ
· λ3
γ

)

=
(

1

detD(φ | γ × [0, T ]) · dηγ
λγ

)

◦ φ−1 ·mγ ,

for γ ∈ F u, which implies that the densities along the center-unstable leaves are
uniformly bounded from above.

Indeed observe first that the number of pre-images of x under φ is uniformly
bounded by r0 from Remark 6.28, i.e., by the number of cross-sections of Ξ hit by
the orbit of x from time 0 to time t2. Moreover the tangent bundle of γ × [0, T ]
is sent by Dφ into the bundle Ecu by construction. Then, recalling that φ(x, t) =
Xt(x), if e1 is a unit tangent vector at x ∈ γ , ê1 is the unit tangent vector at φ(x,0) ∈
Wu(x,Σ) and e2 is the flow direction at (x, t), we get

Dφ(x, t)(e1)=DXt
(

Xt(x)
)

(ê1) and

Dφ(x, t)(e2)=DXt
(

Xt(x)
)(

X(x,0)
) =X(

Xt(x)
)

.
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Hence D(φ | γ × [0, T ])(x, t)=DXt |Ecuφ(x,t) for (x, t) ∈ γ × [0, T ] and so

∣
∣detD

(

φ | γ × [0, T ])(x, t)∣∣ = J ct (x).
Now the volume expanding property of Xt along the center-unstable sub-bundle,
together with the fact that the return time function τ is not bounded from above near
the singularities, show that the densities of μγ are uniformly bounded from above
throughout Λ but not from below. In fact, this shows that these densities will tend
to zero close to the singularities of X in Λ.

This finishes the proof of Theorem 7.7 except for the proof of Proposition 7.31
and of supp(μ)=Λ, which we present in what follows.

7.3.11 Constructing the Disintegration

Here we prove Proposition 7.31. We split the proof into several lemmas keeping the
notations of the previous sections.

Let λ2, R : p−1(I )→Ξ , F u(x0, δ2), Fu(x0, δ2) and η be as before, where x0 ∈
K ∩Σ is a density point of η |K and K is a compact Pesin set.

7.3.11.1 Existence of Hyperbolic Times for f and Consequences for R

Now we show that a full measure subset of F u(x0, δ2) has absolutely continuous
disintegrations, which is enough to conclude the proof of Proposition 7.31 except
for the bounds on the densities.

We need the notion of hyperbolic time for the one-dimensional map f [9]. We
know that log( 1

f ′ ) is α-Hölder and the boundaries Γ0 of the intervals I1, . . . , In can
be taken as a singular set for f (where the map is not defined or is not differentiable)
which behaves like a power of the distance to Γ0, as follows. Denoting by d the usual
distance on the intervals I , there exist B > 0 and β > 0 such that

• 1
B

· d(x,Γ0)
β ≤ |f ′| ≤ B · d(x,Γ0)

−β ;
• ∣

∣ log |f ′(x)| − log |f ′(y)|∣∣ ≤ B · d(x, y) · d(x,Γ0)
−β ,

for all x, y ∈ I with d(x, y) < d(x,Γ0)/2. This is true for f since it was shown in
Sect. 6.1.5 that f ′ | Ij either is bounded from above and below away from zero, or
else is of the form xβ with β ∈ (0,1).

Given δ > 0 we define dδ(x,Γ0)= d(x,Γ0) if d(x,Γ0) < δ and 1 otherwise.

Definition 7.32 Given b, c, δ > 0 we say that n ≥ 1 is a (b, c, δ)-hyperbolic time
for x ∈ I if

n−1
∏

j=n−k

∣
∣f ′(f j (x)

)∣
∣−1 ≤ e−ck and

n−1
∏

j=n−k
dδ

(

f j (x),Γ0
) ≥ e−bk (7.12)

for all k = 0, . . . , n− 1.
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Since f has positive Lyapunov exponent υ-almost everywhere, i.e.,

lim
n→+∞

1

n
log

∣
∣(f n)′(x)

∣
∣> 0 for υ-almost all x ∈ I,

and since dυ
dλ

is bounded from above (where λ is the Lebesgue length measure on
I ), it follows that | logd(x,Γ0)| is υ-integrable and, for any given ε > 0, we can
find δ > 0 such that

lim
n→∞

1

n

n−1
∑

j=0

− logdδ
(

f j (x),Γ0
) =

∫

− logdδ(x,Γ0) dυ(x) < ε,

for υ-a.e. x ∈ I . This means that f is non-uniformly expanding and has slow recur-
rence to the singular set. Hence we are in the setting of the following result.

Theorem 7.33 (Existence of a positive frequency of hyperbolic times) Let f : I →
I be a map with log |f ′| α-Hölder, behaving like a power of the distance to a sin-
gular set Γ0, non-uniformly expanding and with slow recurrence to Γ0 with respect
to an absolutely continuous invariant probability measure υ . Then for b, c, δ > 0
small enough there exists θ = θ(b, c, δ) > 0 such that υ-a.e. x ∈ I has infinitely
many (b, c, δ)-hyperbolic times. Moreover if we write 0 < n1 < n2 < n2 < · · · for
the hyperbolic times of x then their asymptotic frequency satisfies

lim inf
N→∞

#{k ≥ 1 : nk ≤N}
N

≥ θ for υ-a.e. x ∈ I.

Proof A complete proof can be found in [9, Sect. 5] with weaker assumptions cor-
responding to Theorem C in that paper. �

From now on we fix values of (b, c, δ) so that the conclusions of Theorem 7.33
are true.

We now outline the properties of these special times. For detailed proofs see [9,
Proposition 2.8] and [7, Proposition 2.6, Corollary 2.7, Proposition 5.2].

Proposition 7.34 There are constants β1, β2 > 0 depending on (b, c, δ) and f only
such that, if n is a (b, c, δ)-hyperbolic time for x ∈ I , then there are neighborhoods
Wk(x)⊂ I of f n−k(x), k = 1, . . . , n, such that

1. f k |Wk(x)mapsWk(x) diffeomorphically to the ball of radius β1 around f n(x);
2. for every 1 ≤ k ≤ n and y, z ∈Wn(x)

d
(

f n−k(y), f n−k(z)
) ≤ e−ck/2 · d(f n(y), f n(z));

3. for y, z ∈Wn(x)
1

β2
≤

∣
∣(f n)′(y)

∣
∣

∣
∣(f n)′(z)

∣
∣

≤ β2.
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The conjugacy p ◦ R = f ◦ p between the actions of the Poincaré map and the
one-dimensional map on the space of leaves, together with the bounds on the deriva-
tive (6.8), enables us to extend the properties given by Proposition 7.34 to any
cu-curve inside B(η), as follows.

Let γ : J → Ξ be a cu-curve in Ξ \ Γ such that γ (s) ∈ B(η) for Lebesgue
almost every s ∈ J , where J is a non-empty interval—such a curve exists since the
basin B(η) contains entire strips of some section Σ ∈Ξ except for a subset of zero
area. Note that we have the following limit in the weak∗ topology,

lim
n→+∞λ

n
γ = η where λnγ = 1

n

n−1
∑

j=0

R
j∗(λγ ),

by the choice of γ and by an easy application of the Dominated Convergence The-
orem.

Proposition 7.35 There are constants κ0, κ1 > 0 depending on (b, c, δ) and on R0,
β0, β1 and β2 only such that, if x ∈ γ and n a big enough (b, c, δ)-hyperbolic
time for p(x) ∈ I , then there are neighborhoods Vk(x) of Rn−k(x) on Rn−k(x)(γ ),
k = 1, . . . , n, such that

1. Rk | Vk(x) maps Vk(x) diffeomorphically to the ball of radius κ0 around Rn(x)
on Rn(γ );

2. for every 1 ≤ k ≤ n and y, z ∈ Vn(x)
dRn−k(γ )

(

Rn−k(y),Rn−k(z)
) ≤ β0 · e−ck/2 · dRn(γ )

(

Rn(y),Rn(z)
);

3. for y, z ∈ Vn(x)
1

κ1
≤

∣
∣D(Rn | γ )(y)∣∣
∣
∣D(Rn | γ )(z)∣∣ ≤ κ1;

4. the inducing time of Rk on Vk(x) is constant, i.e., rn−k | Vk(x)≡ const.

Here dγ denotes the distance along γ given by the shortest smooth curve in γ
joining two given points and λγ denotes the normalized Lebesgue length measure
induced on γ by the area form λ2 on Ξ .

Proof of Proposition 7.35 Let x0 = p(x) and Wk(x0) be given by Proposi-
tion 7.34, k = 1, . . . , n. Then p(γ ) is an interval in I and p | γ : γ → p(γ ) is a
diffeomorphism—we may take γ with smaller length if needed.

If n is big enough, thenWn(x0)⊂ p(γ ). Moreover the conjugacy implies that the
following maps are all diffeomorphisms

Vk(x)
Rk−→ Rk(Vk(x))

p ↓ ↓ p
Wk(x0)

f k−→ B
(

f k(x0), κ0
)

,
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Fig. 7.8 Hyperbolic times
and projections

and the diagram commutes, where Vk(x)= (p |Rn−k(γ ))−1(Wk(x0)), k = 1, . . . , n;
see Fig. 7.8. Using the bounds (6.8) to compare derivatives we get κ0 = β1/β0 and
κ1 = β0 · β2.

To prove item (4) we just note that by definition of (b, c, δ)-hyperbolic time none
of the sets Wk(x0) may intersect Γ0. According to the definition of Γ0, this means
that orbits through x, y ∈ Vk(x) cannot cut different cross-sections in Ξ before the
next return in time τ(x), τ (y) respectively. Hence every orbit through Wk(x0) cuts
the same cross-sections on its way to the next return cross-section. In particular the
number of cross-section cuts is the same, i.e., r | Vk(x) is constant, k = 1, . . . , n.
Hence by definition of rk we obtain the statement of item (4) since R(Vk(x)) =
Vk−1(x) by definition. This completes the proof of the proposition. �

7.3.11.2 Approximating η by Push Forwards of Lebesgue Measure
at Hyperbolic Times

We define for n≥ 1

Hn = {x ∈ γ : n is a (b, c/2, δ)-hyperbolic time for p(x)}.
As a consequence of items (1-2) of Proposition 7.35, Hn is an open subset of γ and
for any x ∈ γ ∩Hn we can find a connected component γ n of Rn(γ )∩B(Rn(x), κ0)

containing x such that Rn | Vn(x) : Vn(x)→ γ n is a diffeomorphism. In addition,
γ n is a cu-curve according to Corollary 6.17, and by item (3) of Proposition 7.35
we deduce that

1

κ1
≤ d

(

Rn∗(λγ ) | B(Rn(x), κ0)
)

dλγ n
≤ κ1, λγ n − a.e. on γ n, (7.13)

where λγ n is the Lebesgue induced measure on γ n for any n≥ 1, and we normal-
ize both measures so that ((Rn)∗(λγ ) | B(Rn(x), κ0))(γ

n) = λγ n(γ
n), i.e., their

masses on γ n are the same.
Moreover the set Rn(γ ∩ Hn) has an at most countable number of connected

components which are diffeomorphic to open intervals. Each of these components
is a cu-curve with diameter bigger than κ0 and hence we can find a pairwise disjoint
family γ ni of κ0-neighborhoods around Rn(xi) in Rn(γ ), for some xi ∈ Hn, with
maximum cardinality, such that

Δn =
⋃

i

γ ni ⊂Rn(γ ∩Hn
)

and
(

Rn∗(λγ ) |Δn
)

(Δn)≥ 1

2κ1
· λγ (Hn). (7.14)



7.3 Non-uniform Hyperbolicity 243

Indeed, since Rn(γ ∩ Hn) is one-dimensional, for each connected component the
family Δn may miss a set of points of length at most equal to the length of one γ ni ,
for otherwise we would manage to include an extra κ0-neighborhood in Δn. Hence
we have in the worst case (assuming that there is only one set γ ni for each connected
component)

λγ n
(

Rn(γ ∩Hn) \Δn
) ≤ λγ n

(
⋃

i

γ ni

)

= λγ n(Δn)

so that

λγ n(Δn)≥ 1

2
· λγ n

(

Rn(γ ∩Hn)
)

and the constant κ1 comes from (7.13).
For a fixed small ρ > 0 we consider Δn,ρ given by the balls γ ni with the same

center xn,i but a reduced radius of κ0 − ρ. Then the same bound in (7.14) still holds
with 2κ1 replaced by 3κ1.

We write Dn for the family of disks from ∪j≥1Δj with the same expanding
iterate (the disks with the same centers as those from Dn,ρ but with their original
size).

We define the following sequences of measures for each n≥ 1

ωnρ := 1

n

n−1
∑

j=0

R
j∗(λγ ) |Δj,ρ; ωn0 := 1

n

n−1
∑

j=0

R
j∗(λγ ) |Δj ; λ

n

γ = λnγ −ωnρ;

and also ωn0 := 1

n

n−1
∑

j=0

R
j∗(λγ ) |Δj , where Δj =Δj,0.

Then any weak∗ limit point η̃ = limk ω
nk
ρ for some subsequence n1 < n2 < · · · , as

well as

η= lim
k
λ
n′
k
γ

(where n′
k may be taken as a subsequence of nk), are R-invariant measures which

after normalization satisfy η= aη̃+ bη for some a, b ≥ 0 with a + b= 1.
We claim that η̃ �≡ 0, and thus η = η̃ as a consequence of the ergodicity of η. In

fact, we can bound the mass of ωnρ from below using the density of hyperbolic times
from Theorem 7.33 and the bound from (7.14) through the following Fubini-Toneli-
type argument. Write #n(J )= #J/n for any J ⊂ {0, . . . , n−1}, the uniform discrete
measure on the first n integers. Also set χi(x) = 1 if x ∈ Hi and zero otherwise,
i = 0, . . . , n− 1. Then

ωnρ(M) ≥ 1

3κ1 · n
n−1
∑

j=0

λγ (Hj )= n

3κ1n

∫ ∫

χi(x) dλγ (x) d#n(i)
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= 1

3κ1

∫ ∫

χi(x) d#n(i) dλγ (x)≥ θ

6κ1
> 0,

for every n big enough by the choice of γ .

7.3.11.3 Approximating Unstable Curves by Images of Curves at Hyperbolic
Times

We now observe that, since η(Fu(x0, δ2)) > 0 and x0 is a density point for the
measure η | Fu(x0, δ2), then ωnρ(F

u(x0, δ2)) ≥ c for some constant c > 0 for all
big enough n. If we assume that δ2 < ρ, which poses no restriction, then we see
that the cu-curves from Dj,ρ intersecting Fu(x0, δ2) will cross this horizontal strip
when we restore their original size. Thus the leaves ∪n−1

j=0Dj in the support of ωn0
which intersect F s(x0, δ2) cross this strip. Given any sequence γ nk of leaves in
Dnk crossing Fs(x0, δ2) with n1 < n2 < n3 < · · · , then there exists a C1 limit leaf
γ∞ also crossing Fu(x0, δ2), by the Ascoli-Arzela Theorem. We claim that this
leaf coincides with the unstable manifold of its points, i.e., γ∞ =Wu(x,Σ) for all
x ∈ γ∞. This shows that the accumulation curves γ∞ are defined independently of
the chosen sequence γ nk of curves in Σ .

To prove the claim let us fix l > 0 and take a large k so that nk � l. We note
that for any distinct x, y ∈ γ∞ there are xk, yk ∈ γ nk such that (xk, yk)→ (x, y)

when k→ ∞. Then for xk, yk there exists a neighborhood Vnk in γ such that γ nk =
Rnk (Vnk ).

We take j = nk − l. We can now write for some wk, zk ∈ Vnk
d(xk, yk)= d

(

Rnk−j
(

Rj (wk)
)

,Rnk−j
(

Rj(zk)
))

≥ elc/4

β0
· d(Rnk−l (wk),Rnk−l (zk)

)

.

Note that each pair Rnk−l (wk),Rnk−l (zk) belongs to a section Σl ∈ Ξ and that
Rl(Rnk−l (wk)) = xk and Rl(Rnk−l(zk)) = yk . Letting k → ∞ we obtain limit
points (Rnk−l (wk),Rnk−l (zk)) → (wl, zl) in some section Σ ∈ Ξ (recall that Ξ
is a finite family of compact adapted cross-sections) satisfying

Rl(wl)= x, Rl(zl)= y and d(wl, zl)≤ β0e
−lc/4 · d(x, y).

Since this is true for any l > 0 we conclude that y is in the unstable manifold of x
with respect to R, i.e., y ∈Wu

R(x), and thus y ∈Wu(x,Σ) by the following lemma.
This proves the claim.

Lemma 7.36 In the same setting as above, we have Wu
R(x)=Wu(x,Σ).

Proof On the one hand, let y0 ∈Wu
R(x). Then for each l ≥ 1 there exist yl, xl in

some section Σl ∈Ξ such that
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1. Rl(yl)= y0,R
l(xl)= x;

2. d(yl, xl)→ 0 when l→ +∞.

This means that there are sl, tl −−−−→
l→+∞ +∞ such that

Xsl (yl)= y0, Xtl (xl)= x and dist
(

X−sl (y0),X
−tl (x)

) −−−−→
l→+∞ 0.

But this ensures that the points yl, xl belong to the same smoothness domain of R in
each Σl , for otherwise xl−1 =R(xl) and yl−1 =R(yl) would be in distinct sections
of Ξ and the distance between them would be larger than some constant bounded
away from zero. Since there are only finitely many such smoothness domains on
Ξ , the flow orbits between the pair xl, yl and xl−1, yl−1 are contained in a tubular
neighborhood for the flow of X. Hence condition 2 above implies that the distance
between the orbits of xl and yl under the flow of X up until the points xl−1, yl−1 are
uniformly close and tend to zero. Moreover, as a consequence of the construction
of the cross-sections in Ξ , as stated in Remark 6.14, we also have y0 = Xtl+εl (yl)
with εl → 0 as l→ +∞. Altogether we get

sup
{

dist
(

X−t+εl (y0),X
−t (x)

) : tl < t < tl+1

}

−−−−→
l→+∞ 0.

Thus y0 ∈Wu(x)∩Σ =Wu(x,Σ).
On the other hand, let us take y0 ∈Wu(x,Σ). Then, by Remark 6.14, there exists

ε so that z0 =Xε(y0) ∈Wuu(x), with |ε| small and tending to 0 when we let y0 →
x. Let tl > 0 be such that X−tl (x)=wl ∈Σ for l ≥ 1. Then we have

dist
(

X−tl (z0),X
−tl (x)

) −−−→
l→∞ 0 (7.15)

and so there exists εl such that Xεl−tl (z0)= zl =Xεl+ε−tl (y0) ∈Σ with |εl | small.
Notice that (7.15) ensures that |εl | → 0 also.

Hence there exists δ = δ(ε, εl) satisfying δ → 0 when (ε + εl) → 0 and also
d(zl,wl) < δ for all l ≥ 1. SinceRl(zl)= y0 we conclude that y0 ∈Wu

R(x), finishing
the proof. �

7.3.11.4 Upper and Lower Bounds for Densities Through Approximation

We define F u∞ to be the family of all leaves γ∞ obtained as C1 accumulation points
of leaves in

F u
n = {

ξ ∈ ∪n−1
j=0Dj : ξ crosses F s(x0, δ2)

}

.

We note that F u∞ ⊂ F u(x0, δ2). Since for all n we have ωn0 ≥ ωnρ , then ωn0(∪F u
n ) >

c and we obtain η(∪F u∞)≥ c.

Lemma 7.37 In our setting F u∞ equals F u(x, δ2) except possibly in a η-measure
zero subset.
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Proof Let A be the family of leaves of F u(x, δ2) which are not accumulated by
leaves of F u

n , and let us assume that η(A ) > 0. Since the family of leaves provides
a measurable partition of A , we can consider the quotient measure η̂ of η | A on
the space ˜A of leaves which, by the dimension of the objects considered, can be
identified with a subset of an interval. Therefore η̃-almost every leaf ζ ∈ A is a
density point of ˜A . We fix a density point ζ in this sense.

For any given ε > 0 we can always find a δ-neighborhood Vδ of ζ such that
0< δ < ε and η(∂Vδ)= 0, so that ωnρ(Vδ)→ η(Vδ) > 0 when n→ +∞. Therefore
ζ will be δ-close to a leaf ξn of F u

n for every big enough n. This contradicts the
definition of A so that we must have η(A )= 0, as claimed. �

By definition of F u
n and by (7.13) we see that ωn0 | Fun disintegrates along the

partition F u
n of Fun = ∪F u

n into measures ωnξ having density with respect to λξ
uniformly bounded from above and below, for almost every ξ ∈ F u

n .
To take advantage of this in order to prove Proposition 7.31 we consider a se-

quence of increasing partitions (Vk)k≥1 ofWs(x0,Σ) whose diameter tends to zero.
This defines a sequence Pk of partitions of F̃ = ∪0≤n≤∞F u

n as follows: we fix
k ≥ 1 and say that two elements ξ ∈ Fu

i , ξ
′ ∈ F u

j ,0 ≤ i, j ≤ ∞ are in the same
atom of Pk when both intersectWs(x,Σ) in the same atom of Vk and either i, j ≥ k
or i = j < k.

If q is the projection q : F̃ →Ws(x0,Σ) given by the transverse intersection
ξ ∩Ws(x0,Σ) for all ξ ∈ F̃ , then F̃ can be identified with a subset of the real
line. Thus we may assume without loss that the union ∂Pk of the boundaries of Pk

satisfies η(∂Pk)= η̂(∂Pk)= 0 for all k ≥ 1, by suitably choosing the sequence Vk .

Upper and Lower Bounds for Densities Given ζ ∈ F̃ we write p : Fu(x0, δ2)→
ζ as the projection along stable leaves and ω for ω0. We also write Pk(ζ ) for the
atom of Pk which contains ζ . Then, since Pk(ζ ) is a union of leaves, for any given
Borel set B ⊂ ζ and n≥ 1, we have

ωn
(

Pk(ζ )∩ p−1(B)
) =

∫

ωnξ
(

Pk(ζ )∩ p−1(B)
)

dω̂n(ξ) (7.16)

through disintegration, where ω̂n is the measure on F̃ induced by ωn. Moreover
by (7.13) and because each curve in F̃ crosses Fu(x0, δ2)

1

κ1κ2
· λζ (B)≤ 1

κ1
· λξ

(

p−1(B)
) ≤ ωnξ

(

Pk(ζ )∩ p−1(B)
)

(7.17)

ωnξ
(

Pk(ζ )∩ p−1(B)
) ≤ κ1 · λξ

(

p−1(B)
) ≤ κ1κ2 · λζ (B) (7.18)

for all n, k ≥ 1 and ω̂n-a.e. ξ ∈ F̃ , where κ2 > 0 is a constant such that

1

κ2
· λζ ≤ λξ ≤ κ2 · λζ for all ξ ∈ F̃ .

This constant exists because the angle between the stable leaves in any Σ ∈Ξ and
any cu-curve is bounded from below; see Fig. 7.9.
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Fig. 7.9 Leaves crossing
F s(x0, δ2) and the
projection p

Finally letting ζ ∈ F u∞ and choosing B such that η(∂p−1(B))= 0 (which poses
no restriction) and assuming that η(∂(Pk(ζ ) ∩ p−1(B)))= 0, we get from (7.16),
(7.17) and (7.18) for all k ≥ 1

1

κ1κ2
·λζ (B) · η̂

(

Pk(ζ )
) ≤ η(Pk(ζ )∩p−1(B)

) ≤ κ1κ2 ·λζ (B) · η̂
(

Pk(ζ )
)

(7.19)

by the weak∗ convergence of ωn to η. Thus to conclude the proof we are left to check
that η(∂(Pk(ζ ) ∩ p−1(B)))= 0. To do this we observe that Pk(ζ ) ∩ p−1(B) can
be written as the product q(Pk(ζ ))×B . Hence the boundary is equal to

(

∂q(Pk(ζ ))×B
) ∪ (

q(Pk(ζ ))× ∂B
) ⊂ q−1(∂q(Pk(ζ ))

) ∪ p−1(B)

and the right-hand side has η-zero measure by construction.
This completes the proof of Proposition 7.31 since we have {ζ } = ∩k≥1Pk(ζ ) for

all ζ ∈ F̃ and, by the Theorem of Radon-Nikodym, the bounds in (7.19) imply that
the disintegration of η | ∪F u∞ along the curves ζ ∈ F u∞ is absolutely continuous
with respect to Lebesgue measure along these curves and with uniformly bounded
densities from above and from below.

7.3.12 The Support Covers the Whole Attractor

Finally to conclude that supp(μ) = Λ it is enough to show that supp(μ) contains
some cu-curve γ : (a, b)→ Σ in some subsection Σ ∈ Ξ . Indeed, see Fig. 7.10,
letting x0 ∈ Λ ∩ Σ be a point of a forward dense regular X-orbit and fixing c ∈
(a, b) and ε > 0 such that a < c− ε < c+ ε < b, then there exists t > 0 satisfying
dist(γ (c),Xt (x0)) < ρ for any ρ > 0. SinceWs(Xt (x0),Σ) � (γ | (c− ε, c+ ε))=
{z} (because γ is a cu-curve in Σ and ρ > 0 can be made arbitrarily small, where
� means transverse intersection), then, by the construction of the adapted cross-
section Σ (see Sect. 6.1), this means that z ∈Ws(Xt (x0)). Hence the ω-limit sets
of z and x0 are equal to Λ. Thus supp(μ)⊇Λ because supp(μ) is X-invariant and
closed, and Λ⊇ supp(μ) because Λ is an attracting set.
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Fig. 7.10 Transitiveness and
support of the physical
measure

We now use (7.19) to show that η̂-almost every γ ∈ F̃ is contained in supp(η),
which is contained in supp(μ) by the construction of μ from η in Sect. 7.3.5. In
fact, η̂-almost every ζ ∈ F̃ is a density point of η̂ | F̃ and so, for any one ζ of these
curves, we have η̂(Pk(ζ )) > 0 for all k ≥ 1. Fixing z ∈ ζ and choosing ε > 0 we
may find k ≥ 1 big enough and a small enough open neighborhood B of z in ζ such
that

Pk(ζ )∩ p−1(B)⊂ B(z, ε)∩Σ and η
(

Pk(ζ )∩ p−1(B)
)

> 0,

by the left-hand inequality in (7.19). Since ε > 0 and z ∈ ζ were arbitrarily chosen,
this shows that ζ ⊂ supp(η)⊂ supp(μ) and completes the proof of Theorem 7.7.



Chapter 8
Singular-Hyperbolicity and Volume

It is well known that a C2 dynamical system admitting a hyperbolic basic set
with positive measure must be globally hyperbolic: see e.g. Bowen-Ruelle [62] and
Bochi-Viana [52]. The construction of the geometric Lorenz models, presented in
Chap. 3, forces the divergence of the vector field to be strictly negative in a isolating
neighborhood of the attractor. This feature is also present in the Lorenz system of
equations (2.2) for the classical parameters. It is then trivial to show that the corre-
sponding attractor has zero volume.

Using only the partial hyperbolic character of singular-hyperbolicity we show
in Sect. 8.2, following [8] for flows which are Hölder-C1, that either singular-
hyperbolic attractors have zero volume or else the flow is globally hyperbolic, that
is, an Anosov flow (without singularities).

Using the fact that C∞ flows are dense among C1 flows in the C1 topology, we
extend this result in Sect. 8.2.3 to a locally generic subset of all C1 flows exhibiting
robust attractors. This extends the results of Bowen cited above.

A similar result can be obtained for invariant sets satisfying the weaker condition
of dominated splitting for the Linear Poincaré Flow among incompressible Hölder-
C1 flows in 3-manifolds, which we present first in Sect. 8.1 following [19]. This
extends the results of Bochi-Viana mentioned earlier and will be very useful to com-
plete the proof of the C1 generic dichotomy for conservative flows on 3-manifolds
in Chap. 9.

8.1 Dominated Decomposition, Incompressibility and Zero
Volume

Given a C1 flow Xt say that an invariant subset Λ is regular if Λ∩S(X) = ∅, that is,
Λ does not contain zeroes of the vector field X. In what follows we write Xr

μ(M) for
the family of Cr vector fields which preserve the volume form (Lebesgue measure)
μ on the manifold M .

V. Araújo, M.J. Pacifico, Three-Dimensional Flows, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 53,
DOI 10.1007/978-3-642-11414-4_8, © Springer-Verlag Berlin Heidelberg 2010
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Theorem 8.1 Given a compact 3-manifold M , there exists an open and dense subset
G ⊂ X2

μ(M) such that for every X ∈ G with a regular invariant set Λ (not necessarily
closed) satisfying:

• the Linear Poincaré Flow over Λ has a dominated decomposition; and
• Λ has positive volume: μ(Λ) > 0;

then X is Anosov and the closure of Λ is the whole of M .

Before giving the proof of the theorem, we can deduce the following useful con-
sequence.

Corollary 8.2 Given a compact 3-manifold M , there exists D ⊆ X1
μ(M)

∗
such that

D is C1-dense and, for X ∈ D, Xt is aperiodic (that is, μ(Per(Xt )) = 0), X is of
class Cs (s ≥ 2) and all its sets with dominated splitting for the Linear Poincaré
Flow have zero or full measure.

Proof We take the Cs -residual given by Robinson’s version of Kupka-Smale Theo-
rem for incompressible flows; see [223] and Sect. 2.5.10.

This residual set of vector fields is of class Cs and the associated flows have
countable periodic points. Since Xs

μ(M) is a Baire space (with respect to Cs topol-
ogy), it follows that we have a Cs -dense set D and therefore a C1-dense set, of
vector fields with countable periodic orbits on Xs

μ(M). We know that Xs
μ(M) is C1-

dense on X1
μ(M) (by Zuppa [277]), and so D is C1-dense on X1

μ(M) and all vector
fields in D are Cs . Finally, we use Theorem 8.1 and the corollary is proved. �

8.1.1 Dominated Splitting and Regularity

Here we prove that positive volume regular invariant subsets with dominated split-
ting for a 3-dimensional Hölder-C1 flow cannot admit singularities in its closure
and thus are essentially uniformly hyperbolic sets. This result will be used to prove
Theorem 8.1.

We denote by X1+(M) the set of all C1 vector fields X whose derivative DX

is Hölder continuous with respect to the given Riemannian norm, and we say that
X ∈ X1+(M) is of class C1+ or Hölder-C1. We clearly have

X
1(M) ⊃ X

1+(M) ⊃ X
r (M), for every r ≥ 2.

Proposition 8.3 Let X ∈ X1+
μ (M) be given, where M is a 3-manifold. Assume that

Λ is a regular Xt -invariant subset of M with positive volume and admitting a dom-
inated splitting. Then the closure A of the set of Lebesgue density points of Λ does
not contain singularities.
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According to Proposition 2.34, a compact invariant set without singularities of
a C1 three-dimensional vector field admitting a dominated splitting for the Linear
Poincaré Flow is a uniformly hyperbolic set. Then we obtain the following.

Corollary 8.4 Let M be a compact 3-manifold, let X ∈ X1+
μ (M) and let Λ be a

regular Xt -invariant subset of M with positive volume and admitting a dominated
splitting. Then the closure A of the set of Lebesgue density points of Λ is a hyper-
bolic set.

This implies in particular that there are neither singular-hyperbolic sets nor par-
tially hyperbolic sets with positive volume for Hölder-C1 incompressible flows on
three-dimensional manifolds. A similar conclusion for singular-hyperbolic sets was
obtained by Arbieto-Matheus in [22] but assuming that the invariant compact subset
is robustly transitive.

The proof of Proposition 8.3 is divided into several steps, which we state and
prove as a sequence of lemmas in the rest of this subsection.

8.1.1.1 Bounded Angles, Eigenvalues and Lorenz-Like Singularities

Denote by D(Λ) the subset of the Lebesgue density points of Λ, that is, x ∈ D(Λ)

if x ∈ Λ and

lim
r→0+

μ(Λ ∩ B(x, r))

μ(B(x, r))
= 1.

is well known (see e.g. [233] or [178]) that almost all points of a measurable set are
Lebesgue density points, that is, μ(Λ\D(Λ)) = 0. Moreover, since every nonempty
open subset of M has positive μ-measure, we see that D(Λ) is contained in the
closure of Λ.

Assume that Λ is a Xt -invariant set without singularities such that μ(Λ) > 0 and
write A for the closure of D(Λ) in what follows. Note that A is contained in the
closure of Λ.

Lemma 8.5 Suppose that the Linear Poincaré Flow over Λ has a dominated split-
ting for X. Then there exist a neighborhood V of Λ, a neighborhood U of X in
X1(M) (not necessarily contained in the space of conservative flows) and η > 0
such that, for every Y ∈ U, every periodic orbit contained in U is hyperbolic of sad-
dle type and its eigenvalues λ1 and λ2 satisfy λ1 < −η and λ2 > η. Moreover the
angle between the unstable and stable directions of these periodic orbits is greater
than η.

Proof The Dominated Splitting for the Linear Poincaré Flow extends by continuity
to every regular orbit O which remains close to Λ for a C1 nearby flow Y ; this
is Lemma 2.29. The domination implies that the eigenvalues λ1 ≤ λ2 of O satisfy
λ1 + 2κ ≤ λ2 for some κ > 0 which only depends on the domination constant of Λ.
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Since the flow Y is close to being conservative, we have |λ1 + λ2| ≤ ε, where we
can take ε < κ/2 just by letting Y be in a small C1-neighborhood of X.

Thus we have −λ2 − ε ≤ λ1 which implies that −λ2 − ε + 2κ ≤ λ1 + 2κ ≤ λ2,

and so 2λ2 ≥ 2κ − ε > 0 on the one hand. On the other hand λ1 ≤ ε − λ2 implies
that λ1 ≤ ε − (κ − ε/2) = 3ε/2 − κ < 0.

Hence there exists η > 0, independent of Y in a C1 neighborhood of X, and
independent of the periodic orbit O of Y in a neighborhood of Λ, such that λ1 < −η

and λ2 > η, as stated.
For the angle bound we argue by contradiction as in the proof of Theorem 5.37:

assume there exists a sequence of flows Yn
C1−−−−→

n→+∞ X and of periodic orbits On

of Yn contained in the neighborhood V of Λ such that the angle αn between the
unstable subspace and the stable direction satisfies αn −−−−→

n→+∞ 0.

Then as in the proof of Theorem 5.37 we can find (through the flow version of
Frank’s Lemma, Theorem 2.24) an arbitrarily small C1 perturbation Zn of Yn, for
all big enough n ≥ 1, sending the stable direction close to the unstable direction
along the periodic orbit, such that the orbit of On becomes a sink or a source for Zn.
This contradicts the first part of the statement of the lemma. �

In the next lemma, recall the definition of Lorenz-like singularity from Chap. 2.

Lemma 8.6 Assume that X ∈ X1
μ(M) is such that all singularities are hyperbolic

with no resonances (real eigenvalues are all distinct). Then the singularities S(X)∩
A are all Lorenz-like for X or for −X.

Remark 8.7 The assumptions of the lemma above hold true for an open and dense
subset of all Cr vector fields, whether volume preserving or not.

Proof Fix σ in S(X) ∩ A if this set is nonempty (otherwise there is nothing to
prove). By assumption on X we known that σ is hyperbolic. As in Chap. 5 we show
first that σ has only real eigenvalues. For otherwise we would get a conjugate pair
of complex eigenvalues ω,ω and a real one λ and, by reversing time if needed, we
can assume that λ < 0 < Re(ω). Since μ(A) > 0 there are infinitely many distinct
orbits of Λ passing through every given neighborhood of σ , because each regular
orbit of a flow is a regular curve, and so does not fill volume in a three-dimensional
manifold.

Using the Connecting Lemma of Hayashi adapted to conservative flows (see
e.g. [271]) we can find a C1-close flow Y preserving the same measure μ with a
saddle-focus connection associated to the continuation σY of the singularity σ . By a
small perturbation of the vector field we can assume that Y is of class C∞ and still
C1-close to X (see e.g. [277]).

We can now unfold the saddle-focus connection to obtain a Shil’nikov bifurcation
as in [47]; see also Sect. 3.2.3. In this way we produce a periodic orbit with all
Lyapunov exponents equal to zero (an elliptic closed orbit) for a C1-close flow and
near A. This contradicts Lemma 8.5, since such an orbit will be contained in a
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neighborhood of Λ. This shows that complex eigenvalues are not allowed for any
singularity in A.

Let then λ2 ≤ λ3 ≤ λ1 be the eigenvalues of σ . We have λ2 < 0 < λ1 because σ

is hyperbolic. The preservation of volume implies that λ2 = −(λ1 +λ3) < 0, so that
−λ3 < λ1. We have now two cases:

λ3 < 0: this implies that λ2 < λ3 < 0 < −λ3 < λ1 by the non-resonance assump-
tion, and σ is Lorenz-like for X;

λ3 > 0: since λ1 = −(λ2 +λ3) > 0 the non-resonance assumption ensures that λ2 <

−λ3 < 0 < λ3 < λ1, and so σ is Lorenz-like for −X.

The proof is complete. �

8.1.1.2 Invariant Manifolds of a Positive Volume Set with Dominated Splitting
for the Linear Poincaré Flow

Now we show that there can be no equilibria in A. To do this we show that A

admits generalized stable and unstable manifolds which are fully contained in A.
This in turn implies that the existence of equilibria in A leads to a contradiction to
the assumption of dominated decomposition.

Invariant Manifolds and (Non-uniform) Hyperbolicity An embedded disk γ ⊂
M is a (local) strong-unstable manifold, or a strong-unstable disk, if dist(X−t (x),
X−t (y)) tends to zero exponentially fast as t → +∞, for every x, y ∈ γ . In the
same way γ is called a (local) strong-stable manifold, or a strong-stable disk, if
dist(Xt (x),Xt (y)) → 0 exponentially fast as n → +∞, for every x, y ∈ γ .

We observe that since A has positive volume, by Lemma 8.5 and its proof, the
Lebesgue measure μA normalized and restricted to A is a (non-uniformly) hyper-
bolic invariant probability measure; see e.g. [33]: indeed every Lyapunov exponent
of μA is non-zero, except along the direction of the flow.

Assuming from now on that X ∈ X1+(M) we know that, according to the non-
uniform hyperbolic theory (see [33, 196, 197]), there are smooth strong-stable and
strong-unstable disks tangent to the directions corresponding to negative and posi-
tive Lyapunov exponents, respectively, at μA almost every point. The sizes of these
disks depend measurably on the point as well as the rates of exponential contraction
and expansion. We can define as before the strong-stable, strong-unstable, stable
and unstable manifolds at μA almost all points.

In addition, since μ is a smooth invariant measure, we can use [34, Theorem
11.3] and conclude that there are at most countably many ergodic components
of μA. Therefore we assume from now on that μA is ergodic without loss of gener-
ality.

In addition, hyperbolic smooth ergodic invariant probability measures for a C1+
dynamics are in the setting of Katok’s Closing Lemma; see [119] or [34, Sect. 15].
In particular, the support of μA is contained in the closure of the closed orbits inside
A, that is,
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supp(μA) ⊂ Per(X) ∩ A, (8.1)

where the periodic points in our setting are all hyperbolic by Lemma 8.5.

Almost All Invariant Manifolds Are Contained in A Now we adapt the argu-
ments of Bochi-Viana in [52] to our setting to deduce the following. Let μu and μs

denote the measures induced on (strong-)unstable and (strong-)stable manifolds by
the Lebesgue volume form μ.

Lemma 8.8 For μA almost every x the corresponding invariant manifolds satisfy

μs

(

Wss(x) \ A
) = 0 and μu

(

Wuu(x) \ A
) = 0,

that is, the invariant manifolds are μu,s mod 0 contained in A.

In addition, since A is closed and every open subset of either Wss(x) or Wuu(x)

has positive μs or μu measure, respectively, then we see that in fact

Wss(x) ⊂ A and Wuu(x) ⊂ A for μ − almost every x. (8.2)

To prove Lemma 8.8 we need a bounded distortion property along invariant man-
ifolds which is provided by [34, Theorems 11.1 & 11.2] and stated in Theorem 2.36.

Recurrent and Lebesgue Density Points We are now ready to start the proof of
Lemma 8.8.

Let us take a strong-unstable disk Wuu(x) satisfying simultaneously

• x ∈ H (κ),
• μu(W

uu(x) ∩ A) > 0 and
• x is a μu density point of Wuu(x) ∩ A.

For this it is enough to take κ big enough since, by the absolute continuity of
the foliation of strong-unstable disks, a positive volume subset, such as H (κ),
must intersect almost all strong-stable disks on a subset of μu positive measure,
see e.g. [216].

Using the Recurrence Theorem we can also assume without loss of generality
that x is recurrent inside H (κ), that is, there exists a strictly increasing sequence of
integers n1 < n2 < · · · such that

xk := f nk (x) ∈ H (κ) for all k ∈ N and xk −−−→
k→∞ x.

Therefore we can consider the disk Wk = f −nk (Wuu
loc(xk)). Observe that Wk ⊂

Wuu
loc(x) is a neighborhood of x and, since the sizes of the strong-unstable disks

on H (κ) are uniformly bounded, we see that diam(Wk) → 0 exponentially fast as
k → +∞.
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Now Wuu
loc(x) is one-dimensional in our setting and thus the shrinking of Wk to x

together with the f -invariance of A are enough to ensure

μu

(

f −nk (Wuu
loc(xk) \ A)

)

μu

(

f −nk (Wuu
loc(xk))

) = μu(Wk \ A)

μu(Wk)
−−−→
k→∞ 0.

Finally the bounded distortion given by Theorem 2.36 implies that

μu

(

f −nk (Wuu
loc(xk) \ A)

)

μu

(

f −nk (Wuu
loc(xk))

) =
∫

Wuu
loc(xk)\A |detDf −nk | Eu(z)|dμu(z)

∫

Wuu
loc(xk)

|detDf −nk | Eu(z)|dμu(z)

≥ 1

hu
κ

· μu

(

Wuu
loc(xk) \ A

)

μu(W
uu
loc(xk))

,

which means that

μu

(

Wuu
loc(xk) \ A

)

μu(W
uu
loc(xk))

≤ hκ · μu(Wk \ A)

μu(Wk)

for all k ≥ 1. Hence we get μu(W
uu
loc(x) \A) = 0 by the choice of xk and the contin-

uous dependence of the strong-unstable disks on the points of the hyperbolic block
H (κ). The argument for the stable direction is the same. Since the points of a
full μA measure subset have all the properties we used, this concludes the proof of
Lemma 8.8 and of the property (8.2).

Dense Invariant Manifolds of a Periodic Orbit Now we use the density of pe-
riodic points in A (property (8.1)). Consider again a hyperbolic block H (κ) with
a big enough κ ∈ N such that μA(H (κ)) > 0. For any given x ∈ H (κ) and δ > 0
there exists a hyperbolic periodic orbit O(p) intersecting B(x, δ). Because the sizes
and angles of the stable and unstable disks of points in H (κ) are uniformly bounded
away from zero, we can ensure that we have the following transversal intersections1

Wu(p) � Ws(x) = ∅ = Ws(p) � Wu(x).

This together with the inclination lemma implies that

Wu(p) = Wu(x) ⊂ A and Ws(p) = Ws(x) ⊂ A. (8.3)

Moreover since we can pick any x ∈ H (κ) we can assume without loss that x has a
dense orbit in A (since we took μA to be ergodic) and then we can strengthen (8.3)
to: there exists a periodic orbit O(p) inside A such that

Wu(p) = A and Ws(p) = A. (8.4)

1Recall the difference between Wuu(p) and Wu(p) etc in the flow setting.
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Absence of Singularities in A Using property (8.4) we consider, on the one hand,
the invariant compact subset of A given by

L = αX(Wss(p)),

the closure of the accumulation points of backward orbits of points in the strong-
stable manifold of the periodic orbit O(p). By (8.4) we have L = A. On the other
hand, considering N = ωX(Wuu(p)) we likewise obtain N = A.

Let us assume that σ is a singularity contained in A. By Lemma 8.6, σ is either
Lorenz-like for X or Lorenz-like for −X.

In the former case, we would get Wss(σ ) ⊂ A because any compact part of the
strong-stable manifold of σ is accumulated by backward iterates of a small neigh-
borhood γ inside Wss(x). Here we are using the property that the contraction along
the strong-stable manifold, which becomes an expansion for negative time, is uni-
form. In the latter case we would get Wuu(σ ) ⊂ A by a similar argument reversing
the time direction.

We now explain that each one of these possibilities leads to a contradiction to the
dominated splitting of the Linear Poincaré Flow on the regular orbits of A, following
an argument from Chap. 5. It is enough to deduce a contradiction for a Lorenz-like
singularity for X, since the other case reduces to this one through a time inversion.

If Wss(σ ) ∩ A \ {σ } ⊃ {y} for some point y ∈ A and for some singularity σ ∈ A,
then we have countably distinct regular orbits of Λ accumulating on y ∈ Wss(σ ) (by
the definition of A) and on a point q ∈ Wu(σ) (by the dynamics of the flow near σ ).

Applying the Connecting Lemma, we obtain a saddle-connection associated to
the continuation of σ for a C1-close vector field Y , which is an “orbit-flip” connec-
tion; see Chap. 3.

These connections can be C1 approximated by “inclination-flip” connections
for another C1 nearby vector field Z, not necessarily conservative, as explained
in Chap. 3.

However the presence of “inclination-flip” connections is an obstruction to the
dominated decomposition of the Linear Poincaré Flow for nearby regular orbits.
This contradicts Lemma 2.29 and concludes the proof of Proposition 8.3.

8.1.2 Uniform Hyperbolicity

Here we conclude the proof of Theorem 8.1, showing that proper invariant hyper-
bolic subsets of a C1+ incompressible flow cannot have positive volume.

Proposition 8.9 Let A be a compact invariant hyperbolic subset for X ∈ X1+
μ (M),

where M is compact manifold with finite dimension. Then either μ(A) = 0 or else
X is an Anosov flow and A = M .

The proof of Proposition 8.9 is given as a sequence of intermediate results in the
rest of this subsection. Assuming this result we easily have the following.
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Proof of Theorem 8.1 From Corollary 8.4 we have the result that a regular invariant
subset with positive volume with dominated splitting for the Linear Poincaré Flow
admits a positive volume subset which is hyperbolic. Therefore the flow of X is
Anosov from Proposition 8.9. �

8.1.2.1 Positive Volume Hyperbolic Sets and Conservative Anosov Flows

For the proof, we recall the notion of partial hyperbolicity from Sect. 5.1.2. We need
the following result which will be demonstrated in the next section.

Theorem 8.10 ([8, Theorem 2.2]) Let f : M → M be a C1+ diffeomorphism and
let Λ ⊂ M be a partially hyperbolic set with positive volume, where M is a finite-
dimensional compact manifold. Then Λ contains a strong-stable disk.

Proof of Proposition 8.9 Let A be a hyperbolic subset for X ∈ X1+
μ (M) with

μ(A) > 0. Theorem 8.10 applied to f = X1 provides a strong-stable disk γ con-
tained in A. From Lemma 6.20 we see that L = α(γ ) satisfies Wss(L) = {Wss(z) :
z ∈ L} ⊂ L. This implies that Ws(L) = L by invariance.

Consider now Wu(L) = {Wu(z) : z ∈ L = Ws(L)}. This collection of unstable
leaves crossing the stable leaves of L forms a neighborhood U of L. Hence L is a
repeller: for w ∈ U we have dist(X−t (w),L) −−−−→

t→+∞ 0.

This contradicts the preservation of the volume form μ, unless L is the whole of
M . Thus M = L ⊂ A and X is Anosov. �

8.2 Singular-Hyperbolic Attractors Have Zero Volume

The following result generalizes the results of Bowen-Ruelle [62] which show that
a uniformly hyperbolic transitive subset of saddle-type for a C1+ flow has zero
volume.

Theorem 8.11 Let X ∈ X1+(M) be a vector field on a 3-dimensional manifold M .
Then any proper singular-hyperbolic attractor or repeller for X has zero volume.

Moreover, we obtain the following dichotomy extending to the continuous time
setting a similar result obtained for partially hyperbolic diffeomorphisms in [11].

Theorem 8.12 Let Λ be a transitive isolated uniformly hyperbolic set of saddle
type for X ∈ X1+(M) on a d-dimensional manifold M , for some d ≥ 3. Then either
Λ has zero volume or X is a transitive Anosov vector field.

Using these results the dichotomy of Theorem 8.12 extends to singular-
hyperbolic attractors in three-dimensional manifolds.
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Theorem 8.13 Let Λ be a singular-hyperbolic attractor for X ∈ X1+(M) where M

is a 3-manifold. Then either Λ has zero volume or X is a transitive Anosov vector
field.

8.2.1 Partial Hyperbolicity and Zero Volume on C1+ Flows

The following result plays a crucial role in the proof of Theorem 8.11. We say that
a disk of topological dimension d ≥ 1 is a d-disk.

Theorem 8.14 Let X be a C1+ flow on a d-dimensional manifold with d ≥ 3 and
let Λ be a partially hyperbolic invariant subset such that

Λ ∩ γ does not contain dE-disks for any strong-stable disk γ . (8.5)

Then Λ has zero volume.

The proof of the above theorem is a consequence of the following result for com-
pact invariant subsets of C1+ diffeomorphisms f with dominated decomposition,
whose proof is the content of the rest of this subsection.

Before we state the result let us recall the notion of dominated splitting for a
diffeomorphism f over a compact f -invariant set Λ, which is very similar to the
one given in the definition of (K,λ)-dominated splitting in Chap. 5 since we need
only replace the relation (5.1) by

‖Df | Ex‖ · ‖Df −1 | Fx‖ < λ (8.6)

for all x ∈ Λ. Analogously partial hyperbolicity for a diffeomorphism f is given by
a dominated decomposition E ⊕ F over a compact invariant subset Λ with uniform
contraction along the direction E.

Theorem 8.15 Let f : M → M be a C1+ diffeomorphism and let Λ ⊂ M be a
partially hyperbolic set with positive volume. Then Λ contains a strong-stable disk.

Let us now prove Theorem 8.14 using Theorem 8.15. Let Λ be a partially hyper-
bolic compact invariant set for a flow X ∈ X1+(M) where M is a d-manifold with
d ≥ 3. Assume that condition (8.5) is satisfied by Λ.

Arguing by contradiction, if m(Λ) > 0 then setting f = X1, the time-one dif-
feomorphism induced by the vector field X, we see that Λ is a partially hyperbolic
set for f with positive volume. Hence, by Theorem 8.15, there exists some strong-
stable disk γ for f contained in Λ with dimension dE , which is a strong-stable
disk for the flow Xt and contradicts property (8.5). This contradiction shows that
m(Λ) = 0 and proves Theorem 8.14.
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8.2.1.1 Pre-balls and Bounded Distortion

Here we give some preparatory results for the proof of Theorem 8.15. We fix contin-
uous extensions of the two bundles E and F to some neighborhood U of Λ, which
we denote by Ẽ and F̃ . We do not require these extensions to be invariant under Df .
Given 0 < a < 1, we define the center-unstable cone field (CF

a (x))x∈U of width a

by

CF
a (x) = {

v1 + v2 ∈ Ẽx ⊕ F̃x such that ‖v1‖ ≤ a · ‖v2‖
}

. (8.7)

We define the stable cone field (CE
a (x))x∈U of width a in a similar way, just revers-

ing the roles of the bundles in (8.7). We fix a > 0 and U small enough so that, up to
slightly increasing λ < 1, the domination condition (8.6) remains valid for any pair
of vectors in the two cone fields:

‖Df (x)u‖ · ‖Df −1(f (x))v‖ ≤ λ · ‖u‖ · ‖v‖ (8.8)

for every u ∈ CE
a (x), v ∈ CF

a (f (x)), and any point x ∈ U ∩ f −1(U). Note that the
unstable cone field is positively invariant:

Df (x)CF
a (x) ⊂ CF

a (f (x)),

whenever x,f (x) ∈ U . Indeed, the domination (8.8) together with the invariance of
F = F̃ | Λ imply that

Df (x)CF
a (x) ⊂ CF

λa(f (x)) ⊂ CF
a (f (x)),

for every x ∈ Λ. This extends to any x ∈ U ∩ f −1(U) by continuity. Analogously
the stable cone field is negatively invariant:

Df −1(x)CE
a (x) ⊂ CE

a (f −1(x)),

whenever x,f (x) ∈ U .
If a > 0 is taken sufficiently small in the definition of the cone fields, and we

choose δ1 > 0 also so small that the δ1-neighborhood of Λ is contained in U , then
by uniform continuity of Df we have ‖Df | Ẽy‖ < λ−1/2 · ‖Df | Ex‖ and

‖Df (y)u‖ ≤ λ−1/2 · ∥∥Df | Ex

∥
∥ · ‖u‖ ≤ λ1/2‖u‖, (8.9)

whenever x ∈ Λ, dist(x, y) ≤ δ1, and u ∈ CE
a (y).

We say that an embedded C1 submanifold N ⊂ U is tangent to the stable cone
field if the tangent subspace to N at each point x ∈ N is contained in CE

a (x). Then,
by the domination property (8.6), f −1(N) is also tangent to the stable cone field,
if it is contained in U . In particular, if N,f −1(N), . . . , f −k(N) ⊂ U , then Df k |
Tf −k(x)N is a λk/2-contraction according to (8.9), since ‖Df | Ex‖ < λ by partial
hyperbolicity. Thus, denoting by distN the distance along N given by the length of
the shortest smooth curve connecting two given points inside N , we obtain
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Lemma 8.16 Let Δ ⊂ U be a C1 disk of radius δ < δ1 tangent to the stable cone
field. Then there exists n0 ≥ 1 such that, for n ≥ n0 and x ∈ Δ with distΔ(x, ∂Δ) ≥
δ/2, there is a neighborhood Vn of x in Δ such that f −n maps Vn diffeomorphically
onto a disk of radius δ1 around f −n(x). Moreover,

distf −n+k(Vn)(f
−n+k(y), f −n+k(z)) ≤ λk/2 · distf −n(Vn)(f

−n(y), f −n(z))

for every 1 ≤ k ≤ n and every y, z ∈ Vn.

We shall sometimes refer to the sets Vn as pre-balls. The next corollary is a
consequence of the contraction given by the previous lemma, together with some
Hölder control of the tangent direction which can be found in [9, Corollary 2.4,
Proposition 2.8].

Corollary 8.17 There exists C > 1 such that, given Δ as in Lemma 8.16 and given
any pre-ball Vn ⊂ Δ with n ≥ n0, then for all y, z ∈ Vn

1

C
≤ |detDf −n | TyΔ|

|detDf −n | TzΔ| ≤ C.

8.2.1.2 A Local Unstable Disk Inside Λ

Assuming that Λ has positive volume and given an embedded disk Δ in M , denote
by mΔ the measure naturally induced by the volume form m on Δ. Choosing an
m density point of Λ, we laminate a neighborhood of that point into disks tangent
to the stable cone field. Since the relative Lebesgue measure of the intersections of
these disks with Λ cannot be all equal to zero, we obtain some disk Δ intersecting
Λ in a positive mΔ subset. Hence, in the setting of Theorem 8.15, we assure that
there is a disk Δ tangent to the stable cone field intersecting Λ in a positive mΔ

subset. Let H = Δ ∩ Λ.

Lemma 8.18 There exist an infinite sequence of integers 1 ≤ k1 < k2 < · · · and, for
each n ∈ N, a disk Δn of radius δ1/4 tangent to the stable cone field such that the
relative Lebesgue measure of f −kn(H) in Δn converges to 1 as n → ∞.

Proof Let ε > 0 be some small number. By regularity of mΔ, let K be a compact
subset of H and let A be an open neighborhood of H in Δ such that mΔ(A \ K) <

ε · mΔ(H)/(1 + ε). Then

mΔ(A \ K) < ε · mΔ(K).

Choose n sufficiently large so that Vx ⊂ A for each x ∈ K , where Vx is the pre-
ball associated to n. This pre-ball is mapped diffeomorphically by f −n onto a
ball Bδ1(f

−n(x)) of radius δ1 around f −n(x) tangent to the stable cone field. Let
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Wx ⊂ Vx be the pre-image of the ball Bδ1/4(f
−n(x)) of radius δ1/4 under this dif-

feomorphism. By compactness we have

K ⊂ Wx1 ∪ · · · ∪ Wxm,

for some x1, . . . , xm ∈ K . Let I be a maximal subset of {1, . . . ,m} such that
Wxi

∩ Wxj
= ∅ for i, j ∈ I with i = j . By maximality, each Wxj

, 1 ≤ j ≤ m,
intersects some Wxi

with i ∈ I , and thus f −n(Wxj
) = Bδ1/4(f

−n(xj )) intersects
Bδ1/4(f

−n(xi)) = f −n(Wxi
). Hence f −n(Wxj

) ⊂ Bδ1(f
−n(xi)) = f −n(Vxi

), that
is, Wxj

⊂ Vxi
. Hence {Vxi

}i∈I is a covering of K . Denoting by D the disk f −nΔ

tangent to the stable cone field, by Corollary 8.17 we have

mD(f −n(Wxi
))

mD(f −n(Vxi
))

=
∫

Wxi
|detDf −n | TyΔ|dmΔ

∫

Vxi
|detDf −n | TyΔ|dmΔ

≤ C
mΔ(Wxi

)

mΔ(Vxi
)

and, since the area of any δ1/4-ball is comparable to the area of a δ1-ball centered at
the same point on a given disk (recall that lengths are measured along the disk with
respect to the induced metric), there is a uniform constant θ > 0 such that

mΔ(Wxi
)

mΔ(Vxi
)

≥ θ, for every i ∈ I.

Hence

mΔ

( ∪i∈I Wxi

) =
∑

i∈I

mΔ(Wxi
) ≥

∑

i∈I

θmΔ(Vxi
) ≥ θmΔ(K).

Setting

ρ = min

{
mΔ(Wxi

\ K)

mΔ(Wxi
)

: i ∈ I

}

,

we have

εmΔ(K) ≥ mΔ(A \ K)

≥ mΔ

( ∪i∈I Wxi
\ K

)

≥ ρmΔ

( ∪i∈I Wxi

)

≥ ρθmΔ(K).

This implies that ρ ≤ ε/θ . Since ε > 0 can be taken arbitrarily small, by increasing
n we may take Wxi

such that the relative Lebesgue measure of K in Wxi
is arbitrarily

close to 1. Then, by the bounded distortion provided by Corollary 8.17, the relative
Lebesgue measure of f −n(H) ⊃ f −n(K) in f −n(Wxi

), which is a disk of radius
δ1/4 around f −n(xi) tangent to unstable cone field, can be made arbitrarily close
to 1. �
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Let us now prove that there is a strong-stable disk of radius δ1/4 inside Λ. Let
(Δn)n be the sequence of disks given by Lemma 8.18, and consider (xn)n the se-
quence of points at which these disks are centered. Up to taking subsequences, we
may assume that the centers of the disks converge to some point x. By Ascoli-
Arzela, these disks converge to some disk Δ∞ centered at x. By construction, every
point in Δ∞ is accumulated by some iterate of a point in H ⊂ Λ, and so Δ∞ ⊂ Λ.

Note that each Δn is contained in the kn-iterate of Δ, which is a disk tangent to
the stable cone field. The domination property implies that the angle between Δn

and E goes to zero as n → ∞, uniformly on Λ. In particular, Δ∞ is tangent to E

at every point in Δ∞ ⊂ Λ. By Lemma 8.16, given any k ≥ 1, then f k is a σ k/2-
contraction on Δn for every large n. Passing to the limit, we find that f k is a σ k/2-
contraction on Δ∞ for every k ≥ 1. In particular, we have shown that the subspace
Ex is uniformly contracting for Df for x ∈ Δ∞. The fact that TΛM = E ⊕ F is
a dominated splitting implies that any contraction which Df may exhibit along
the complementary direction Fx is weaker than the contraction in the Ex direction
whenever x ∈ Δ∞. Then, by [196], there exists a unique strong-stable manifold
Wss

loc(x) tangent to E which is contracted by the positive iterates of f . Since Δ∞ is
contracted by every f k , and all its positive iterates are tangent to stable cone field,
then Δ∞ is contained in Wss

loc(x).
This completes the proof of Theorem 8.15.

8.2.2 Positive Volume Versus Transitive Anosov Flows

Now we prove Theorems 8.11, 8.12 and 8.13.

8.2.2.1 Positive Volume Transitive Hyperbolic Sets and Anosov Flows

We start by proving Theorem 8.12.

Lemma 8.19 Let Λ be a transitive uniformly hyperbolic set for X ∈ X1+(M) such
that m(Λ) > 0, where M is a d-manifold, for some d ≥ 3. If there exists a point
x ∈ Λ in the interior of Wss

loc(x) ∩ Λ, then Λ ⊃ Wss(y) for all y ∈ Λ. Moreover, the
set Wu(Λ) formed by the union of all unstable manifolds through points of Λ is an
open neighborhood of Λ.

Here the interior of Wss
loc(x) ∩ Λ is taken with respect to the topology of the disk

Wss
loc(x). The proof follows [174, Lemma 2.16] and [21, Lemma 2.8] closely; see

also the proof of Lemma 6.19.

Proof Let x ∈ Λ be such that x is in the interior of Wss(x)∩Λ. Let α(x) ⊂ Λ be its
α-limit set. Then Lemma 6.20 ensures that α(x) contains all strong-stable manifolds
through its points.
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Clearly the invariant set α(x) ⊂ Λ is uniformly hyperbolic.
It also follows from the previous remarks that the union

S =
⋃

y∈α(x)

Wss(y) or S = Wss(α(x))

of the strong-stable manifolds through the points of α(x) is contained in Λ. By
continuity of the strong-stable manifolds and the fact that α(x) is a closed set, we
find that S is also closed. Again S is a uniformly hyperbolic set.

We claim that Wu(S), the union of the unstable manifolds of the points of S, is
an open set. To prove this, we note that S contains the whole stable manifold Ws(z)

of every z ∈ S: this is because S is invariant and contains the strong-stable manifold
of z. Now the union of the strong-unstable manifolds through the points of Ws(z)

contains a neighborhood of z. This proves that Wu(S) is a neighborhood of S. Thus
the backward orbit of any point in Wu(S) must enter the interior of Wu(S). Since
the interior is, clearly, an invariant set, this proves that Wu(S) is open, as claimed.

Finally, consider any backward dense orbit in Λ of a point that we call w. On the
one hand α(w) = Λ. On the other hand, X−t (w) must belong to Wu(S) for some
t > 0, and so α(w) ⊂ S by invariance. This implies that Λ ⊂ S and, since S ⊂ Λ by
construction, we see that Λ = S. �

Proof of Theorem 8.12 Assume that m(Λ) > 0. Then Theorem 8.15, applied to the
map f = X1 and to the set Λ with dominated decomposition given by the splitting

E ⊕ (

EX ⊕ F
)

,

ensures that there exists a strong-stable disk γ contained in Λ. Analogously, apply-
ing Theorem 8.15 to f = X−1 and to the set Λ with dominated decomposition given
by the splitting

(

E ⊕ EX
) ⊕ F,

we get a strong-unstable disk δ contained in Λ.
Now the existence of γ enables us to use Lemma 8.19 and deduce that Λ contains

the strong-stable manifolds of each of its points and that Wu(Λ) is an open neigh-
borhood of Λ. In the same way, using Lemma 8.19 for the flow generated by −X,
from the existence of δ we deduce that Λ contains the strong-unstable manifolds of
all of its points, that is, Wu(Λ) ⊂ Λ.

But since Wu(Λ) is an open neighborhood of Λ, we conclude that Λ is simul-
taneously open and closed in M . Hence Λ = M by connectedness. This shows that
the whole of M is a transitive uniformly hyperbolic set for X and completes the
proof of Theorem 8.12. �

8.2.2.2 Positive Volume Singular-Hyperbolic Sets and Anosov Flows

Now we prove Theorems 8.11 and 8.13. To do this we need some preliminary re-
sults which show in particular that transitive singular-hyperbolic sets satisfy condi-
tion (8.5).
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In what follows X is a vector field in X1+(M) and M is a 3-manifold.

Lemma 8.20 Let Λ be a transitive partially hyperbolic invariant set for X with
volume expanding central direction. Then

• either Wss(x) ∩ Λ contains no strong stable disks for all x ∈ Λ,
• or Λ is a uniformly hyperbolic set (and in particular Λ does not contain singu-

larities).

Proof Let us suppose that there exists x ∈ Λ such that x is in the interior of
Wss(x) ∩ Λ. Then Lemma 6.20 ensures that α(x) contains the stable manifold
through all its points. It follows that α(x) does not contain any singularity, according
to Theorem 6.3, and from Theorem 2.27 the set α(x) is uniformly hyperbolic.

As in the proof of Lemma 8.19 we have

S = Wss(α(x)) ⊂ Λ

and S is closed. Again we see that S does not contain any singularity σ , for other-
wise we would have Wss(σ ) ⊃ Wss(z) for some z ∈ α(x) which would contradict
Theorem 6.3 since Wss(z) ⊂ Λ. Thus S is a uniformly hyperbolic set.

Then Wu(S) is also an open set as in the proof of Lemma 8.19. Since we are
assuming that Λ is transitive, again by the same arguments as in the proof of
Lemma 8.19, we have Λ = S. This shows that Λ is uniformly hyperbolic and in
particular it does not contain any singularity of X. �

Proof of Theorem 8.11 Let Λ be a proper transitive singular-hyperbolic set for X.
Assume first that Λ does not contain singularities. Then Λ is a proper uniformly
hyperbolic subset of saddle type and by Theorem 8.12 Λ has zero volume.

Now if Λ contains singularities, by Lemma 8.20 we know that Λ satisfies prop-
erty (8.5) in the statement of Theorem 8.14. Hence Λ has zero volume. �

We can obtain a stronger conclusion if we further assume that Λ is an attractor.

Lemma 8.21 Let Λ be a singular-hyperbolic attractor for X. Then

• either Wss(x) ∩ Λ contains no strong stable disks for all x ∈ Λ,
• or Λ = M is a uniformly hyperbolic set (and consequently X is a transitive

Anosov vector field).

Proof Assume that there exists x ∈ Λ such that x is in the interior of Wss(x) ∩ Λ.
From Lemma 8.20 we know that there exists a uniformly hyperbolic set S ⊂ Λ such
that Wu(S) is an open neighborhood of S. Moreover we also have Λ = S.

However, if Λ is an attractor, then Wu(S) ⊂ Λ and so Λ = Wu(S). Hence Λ is
closed and also open. The connectedness of M implies that Λ = S = M . In par-
ticular X has no singularities and the whole of M admits a uniformly hyperbolic
structure with a dense orbit, and thus X is a transitive Anosov vector field. �
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Proof of Theorem 8.13 Let Λ be a singular-hyperbolic attractor for a C1+ vector
field X on a 3-manifold. If m(Λ) > 0 then according to Theorem 8.15 we find that
there exists some strong-stable disk γ contained in Λ.

Hence, since Λ does not satisfy the first alternative of Lemma 8.21, we con-
clude that Λ = M and so X is an Anosov vector field. This concludes the proof of
Theorem 8.13. �

8.2.3 Zero-Volume for C1 Generic Singular-Hyperbolic Attractors

It is possible to extend the previous results on zero volume for singular-hyperbolic
attractors for C1+ flows to some locally generic subsets in the C1 topology. Recall
that a subset G of a set U is generic if it may be written as a countable intersection
of open and dense subsets of U. Since X1(M) is a Baire space, generic subsets of a
given open subset U of X1(M) are dense in U.

Concrete examples of such open sets on 3-manifolds are given by robust singular-
hyperbolic attractors, which comprise the Lorenz attractor, the geometric Lorenz
attractors, attractors arising from certain resonant double homoclinic loops [176]
or from certain singular cycles [171], and certain models across the boundary of
uniform hyperbolicity [173]; see Chap. 10.

Theorem 8.22 Let Λ be a robust attractor for X ∈ X1(M) on a 3-manifold M

with isolating neighborhood U . Then there is a C1-neighborhood U of X and a C1

generic set G ⊂ U such that ΛY (U) has volume zero for all Y ∈ G.

The proof of this is a consequence of the following.

Theorem 8.23 Let Λ be an isolated partially hyperbolic set satisfying condi-
tion (8.5) for X ∈ X1(M) on a d-dimensional manifold M with d ≥ 3. Given an
isolating neighborhood U of Λ, let U ⊂ X1(M) be such that ΛY (U) is partially
hyperbolic and also satisfies condition (8.5) for all Y ∈ U.

If U is C1-open, then there exists a generic set G ⊂ U such that ΛY (U) has
volume zero for all Y ∈ G.

Proof Let Λ be an isolated partially hyperbolic invariant compact subset for a flow
X ∈ Xr (M), for some r ≥ 1, such that Λ satisfies condition (8.5). We always write
U for the isolating neighborhood of Λ.

We consider the sets

• U = {Y ∈ X1(M) : ΛY (U) is partially hyperbolic satisfying (8.5)} which we as-
sume is a C1 open subset of X1(M);

• V = {Y ∈ X2(M) : ΛY (U) is partially hyperbolic satisfying (8.5)};
• Uε = {Y ∈ U : m(ΛY (U)) < ε}.
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Since every C1 flow X is arbitrarily close to some C2 flow Y in the C1 topology
(see e.g. [190]) and we are assuming that U is C1-open, we conclude that V is dense
in U in the C1 topology.

We claim that Uε is open and dense in U in the C1 topology. After proving this
claim the proof of Theorem 8.23 finishes by setting G = ∩n≥1U1/n. In what follows
we prove this claim.

Let Y ∈ Uε be given. Then for every sufficiently large fixed T > 0 we set

ΛT
Y = ∩T

t=−T Yt (U) ⊇ ΛY (U) and ε1 = ε − m
(

ΛT
Y

)

> 0.

There exists δ > 0 such that

m
(

B
(

ΛT
Y , δ

) \ ΛT
Y

)

<
ε1

2
.

Let BC1(Y, ζ ) denote the C1-neighborhood of radius ζ around Y . Using the fact that
T is finite, by continuity and compactness we find ζ > 0 such that

Z ∈ BC1(Y, ζ ) ⇒ ΛT
Z ⊂ B

(

ΛT
Y , δ

)

.

We have

m
(

ΛT
Z

) ≤ m
(

B
(

ΛT
Y , δ

)) ≤ m
(

ΛT
Y

) + ε1

2
< ε,

for all Z ∈ U ∩ BC1(Y, ζ ). Since ΛZ(U) ⊂ ΛT
Z , we conclude that m(ΛZ(U)) < ε,

for all Z ∈ U ∩ BC1(Y, ζ ).
This proves that Uε is C1-open. To prove that Uε is C1-dense in U, just observe

that V ∩ U ⊂ Uε by Theorem 8.14. Since V is C1-dense in U this concludes the
proof of the claim and ends the proof of Theorem 8.23. �

Proof of Theorem 8.22 This is a consequence of Theorem 8.23 since a C1 robust
attractor for 3-flows is a singular-hyperbolic attractor as shown in Chap. 5. �

8.2.4 Extension to Sectionally Expanding Attractors in Higher
Dimensions

The class of sectionally expanding attractors was introduced, by Metzger and
Morales in [156], to extend the singular-hyperbolic class of attractors in three-
dimensional manifold to higher dimensions; see Sect. 5.2. The same results proved
in this subsection are also true for this class of attractors for higher dimensional
flows.

Theorem 8.24 Let Λ be a sectionally expanding attractor for a C1+ flow Xt on a
d-dimensional manifold, where d ≥ 4. Then either Λ has zero volume, or Λ = M

and the flow is Anosov.
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Indeed, a sectionally expanding attractor without singularities is a hyperbolic
attractor from Theorem 2.27, because of the following.

Lemma 8.25 The Linear Poincaré Flow over Λ admits a hyperbolic splitting.

Proof Indeed, if Es ⊕Ec is the splitting of T M over Λ, then the projections Ns :=
O · Es and Nu := O · Ec are P t -invariant, and Ns is uniformly contracted by P t

by the same arguments as in the proof of Theorem 2.27. The expansion along Nu is
obtained as follows.

Let v be a unit vector on Nu
x for some fixed x ∈ Λ and let Fx be the subspace

spanned by v and X(x). We recall that X = 0 over Λ by assumption and for some
K > 0 we have K−1 ≤ ‖X(x)‖ ≤ K for all x ∈ Λ by compactness. Let us fix t > 0
and consider the basis { X(x)

‖X(x)‖ , v} of Fx . We note that DXt(Fx) is a bidimensional

subspace F t
x of Ec

Xt(x)
, where we take the basis { X(Xt (x))

‖X(Xt (x)x)‖ , w}, with

w := OXt (x) · DXt
x(v)

‖OXt (x) · DXt
x(v)‖ belonging to Nu

Xt (x)
.

The same argument of Proposition 6.15 applies here: with respect to these othonor-
mal bases we have

DXt | Fx =
[ ‖X(Xt (x))‖

‖X(x)‖ �

0 Δ

]

,

because the flow direction is invariant. Since we can assume without loss of gener-
ality that ‖O‖ ≤ K over Λ (taking a bigger value for K if needed), we have

‖X(R(x))‖
‖X(x)‖ Δ ≥ 1

K
· det

(

DXt(x) | Ecu
x

)

and

‖P t
x · v‖ = ‖OXt (x) · DXt

x(v)‖ = ‖Δ · w‖ = |Δ|
≥ K−3|det(DXt | Fx)| ≥ K−3Cλt .

This proves that Nu is uniformly expanded by the Linear Poincaré Flow. �

Next we argue that sectionally expanding attractors with positive volume for C1+
flows cannot have equilibria. Thus from the previous arguments these are hyperbolic
attractors with positive volume. Then we deduce Theorem 8.24 using Theorem 8.12.

The possible singularities belonging to a sectionally expanding attractor are gen-
eralized Lorenz-like by Remark 5.33.

Assuming that a sectionally expanding attractor Λ has singularities, then they
are Lorenz-like and their strong-stable manifolds do not intersect Λ except at the
singularities, again by Remark 5.33.
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Now we are in exactly the same situation as at the beginning of Sect. 8.2.2 to
show that Λ cannot contain strong-stable disks if Λ contains singularities. However
Λ is a partially hyperbolic set so, if Λ has positive volume, then by Theorem 8.15
Λ must contain a strong-stable disk. Thus Λ cannot contain singularities, as we
needed. The proof of Theorem 8.24 is complete.



Chapter 9
Global Dynamics of Generic 3-Flows

Vítor Araújo, Mário Bessa,
and Maria José Pacifico

The results in Chap. 5 form the basis of a theory of flows on three-dimensional man-
ifolds and paved the way for a global understanding of the dynamics of C1 generic
flows in dimension 3. Here we present some results from the generic viewpoint,
either for C1 flows on 3-manifolds, or for C1 conservative flows on 3-manifolds.
This means that we present some properties satisfied by a generic subset of all vec-
tor fields in compact 3-manifolds in the C1 topology. We recall that a generic subset
of a topological space is a countable intersection of open and dense subsets. Since
X1(M), endowed with the C1 topology, is a Baire space, then every generic subset
in dense. The importance of generic properties stems from the fact that the intersec-
tion of any countable number of generic subsets is itself a generic subset, so that
we can always add the properties we know to be generic. In this way we obtain
topologically large families of vector fields with fairly strong dynamical properties.

The choice of the C1 topology is a consequence of the present development of
deep perturbation tools, such as the Closing and Connecting Lemmas, which are
only available in the C1 topology. However, dealing with the C1 topology has se-
rious disadvantages. This topology does not have a strong physical meaning when
dealing with solutions of differential equations, since perturbations of solutions of-
ten arise naturally in higher topologies (Cr with r > 1) by dealing with higher order
derivatives. Moreover, some results that can be proved using the C1 topology, such
as the dichotomy we present in what follows for C1 generic conservative vector
fields in 3-manifolds, are simply not true in higher topologies, since the “KAM
Theory” (see e.g. [26, 248]) directly contradicts this dichotomy; see below.

We first extend a classification result from hyperbolic dynamics to singular-
hyperbolic attracting sets. The Spectral Decomposition Theorem for hyperbolic sys-
tems plays a central role. It ensures that an attracting hyperbolic set having dense
periodic orbits must be a finite disjoint union of homoclinic classes. Here we pro-
vide a version of this result in the setting of singular-hyperbolic systems, presented
in Sect. 5, following [170].

Theorem 9.1 An attracting singular-hyperbolic set with dense periodic orbits and
a unique singularity is a finite union of transitive sets. Moreover, either the union is

V. Araújo, M.J. Pacifico, Three-Dimensional Flows, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 53,
DOI 10.1007/978-3-642-11414-4_9, © Springer-Verlag Berlin Heidelberg 2010

269

http://dx.doi.org/10.1007/978-3-642-11414-4_9


270 9 Global Dynamics of Generic 3-Flows

disjoint or the set contains finitely many distinct homoclinic classes. For Cr -generic
flows, r ≥ 1, the union is in fact disjoint.

We also show that a generic C1 vector field on a closed 3-manifold either has
infinitely many sinks or sources, or else is singular Axiom A without cycles. These
results are contained in [168].

Theorem 9.2 A generic vector field X ∈ X1(M) satisfies (only) one of the following
properties:

1. X has infinitely many sinks or sources.
2. X is singular Axiom A without cycles.

A Singular Axiom A vector field is such that the non-wandering set of the vec-
tor field has a decomposition into finitely many compact invariant sets Ω(X) =
Ω1 ∪ · · · ∪ Ωk , each one being either a (uniformly) hyperbolic basic set (i.e. tran-
sitive, isolated and with a dense subset of periodic orbits) or a singular-hyperbolic
attractor, or a singular-hyperbolic repeller with dense subset of periodic orbits (these
are defined in Chap. 5—we note that, in this decomposition, the singular-hyperbolic
sets are transitive by definition).

An analogous result was proved by Mañé in [145] for C1 generic diffeomor-
phisms on surfaces.

Conservative flows are a traditional object of study from Classical Mechanics,
see e.g. [26]. These flows preserve a volume form on the ambient manifold and thus
come equipped with a natural invariant measure. On compact manifolds this pro-
vides an invariant probability giving positive measure (volume) to all open subsets.
Therefore for vector fields in this class we have Ω(X) = M by the Recurrence The-
orem. In particular such flows cannot have Lyapunov stable sets, either for X or for
−X.

The device of Poincaré sections has been used extensively in the previous chap-
ters to reduce several problems, arising naturally in the setting of flows, to lower
dimensional questions about the behavior of a transformation. In the opposite direc-
tion, recent breakthroughs in the understanding of generic volume preserving diffeo-
morphisms on surfaces have non-trivial consequences for the dynamics of generic
conservative flows on three-dimensional manifolds.

The Bochi-Mañé Theorem [51] asserts that, for a C1 residual subset of area
preserving diffeomorphisms, either the transformation is Anosov, or the Lyapunov
exponents are zero Lebesgue almost everywhere. This was announced by Mañé
in [146] but only a sketch of a proof was available [149]. The complete proof,
presented by Bochi, admits extensions to higher dimensions, obtained by Bochi
and Viana in [53], stating in particular that either the Lyapunov exponents of a C1

generic conservative diffeomorphism are zero Lebesgue almost everywhere, or the
system admits a dominated splitting for the tangent bundle dynamics. A survey of
this theory can be found in [52].

Using an important result of Zuppa in [277] proving that C∞ conservative flows
are C1 dense among conservative flows (which was recently generalized by Arbieto-
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Matheus in [22] providing the C1 denseness of Hölder-C1 conservative flows), to-
gether with the zero volume results above and several delicate perturbation tech-
niques adapted from the work of Bochi [51], we follow [19, 39] in Sect. 9.3 to prove
the Bochi-Mañé dichotomy for C1 conservative flows on 3-manifolds: C1 generi-
cally either the flow is Anosov or else the Lyapunov exponents are zero Lebesgue
almost everywhere.

The presence of singularities imposes some differences between the discrete and
continuous systems. More precisely, let Xr

μ(M) be the space of Cr vector fields
defining flows which preserve the volume form μ on M , for any r ≥ 1, and let
Xr

μ(M)∗ be the subset of Xr
μ(M) of Cr flows with zero divergence but without

singularities.

Theorem 9.3 There exists a residual set R ⊂ X1
μ(M)∗ such that, for X ∈ R, either

X is Anosov or else for Lebesgue almost every p ∈ M all the Lyapunov exponents
of Xt are zero.

Developing the ideas of the proof of this result, the following statement on dense-
ness of dominated splitting, now admitting singularities, was also obtained in the
same work by Bessa [41].

Recall the definition of Linear Poincaré Flow in Sect. 2.6. Given an invariant
subset Λ for X ∈ X1(M), an invariant splitting N1 ⊕ N2 of the normal bundle NΛ

for the Linear Poincaré Flow P t is said to be n-dominated if there exists an integer
n such that we have the domination relation

∥
∥P n | N1(p)

∥
∥

∥
∥P n | N2(p)

∥
∥

≤ 1

2
,

for every p ∈ Λ.

Theorem 9.4 There exists a dense set D ⊂ X1
ω(M) such that, for X ∈ D, there exist

invariant subsets D and Z whose union has full measure, such that

• for p ∈ Z the flow has only zero Lyapunov exponents;
• D is a countable increasing union Λn of compact invariant sets admitting an

n-dominated splitting for the Linear Poincaré Flow.

We prove these two results in Sect. 9.3. Now from Theorem 8.1 already proved
in Chap. 8, we observe that C1 generically the subset D in the second possibility of
the statement of Theorem 9.4 has positive volume if, and only if, the flow is Anosov.
Hence we can extend Theorem 9.3 to flows with singularities.

Theorem 9.5 There exists a generic subset R ⊂ X1
μ(M) such that for X ∈ R

• either X is Anosov;
• or else for Lebesgue almost every p ∈ M all the Lyapunov exponents of Xt are

zero.
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We remark the Kolmogorov-Arnold-Moser Theorem ensures the persistence of
invariant circles with irrational rotations near an elliptic fixed point (the eigenval-
ues of the derivative of the map at the point are both complex with norm one) of
a conservative diffeomorphism of a surface. In many cases the family of invari-
ant circles has positive Lebesgue area for all C∞ nearby maps. Suspending this
diffeomorphism we obtain a flow on a compact 3-manifold, which can be made in-
compressible, with a positive Lebesgue volume set consisting of invariant tori. The
flow restricted to these bidimensional tori behaves like a linear irrational flow, with-
out singularities, and with all Lyapunov exponents zero. Hence we obtain a positive
Lebesgue measure invariant subset for a conservative flow on a 3-manifold, whose
points have only zero Lyapunov exponents, and this is a persistent feature, valid for
all nearby flows in the Cr topology, for r ≥ 4.

This clearly contradicts the statement of Theorem 9.5. So this C1 generic result
cannot be extended to higher topologies.

9.1 Spectral Decomposition

Here we prove Theorem 9.1, stating that an attracting singular-hyperbolic set with
dense periodic orbits, and a unique singularity, is a finite union of transitive sets.

The straightforward extension of the result on a finite disjoint union of homo-
clinic classes from uniformly hyperbolic to a singular-hyperbolic attracting set with
a dense subset of periodic orbits is false, as the next counterexample shows.

Consider a modification of the construction of the geometric Lorenz attractor
given in Sect. 3.3, obtained by adding two equilibria to the flow located at Wu(σ) as
indicated in Fig. 9.1. This modification can be done in such a way that the new flow
restricted to the cross-section S has a C∞ invariant stable foliation and the quotient
map in the leaf space is piecewise expanding with a single discontinuity c as in
the Lorenz case. The resulting attracting set can be proved to be a homoclinic class
just as in the geometrical Lorenz case (see Sect. 3.3.6). In particular, such a set is
transitive with dense periodic orbits and is also singular-hyperbolic by construction.

Fig. 9.1 A modified
geometric Lorenz attractor
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Fig. 9.2 A sketch of the
construction of a
singular-hyperbolic attractor
which is not the disjoint
union of homoclinic classes

Now glue two copies of this flow along the unstable manifold of the singularity σ

obtaining the flow depicted in Fig. 9.2. The resulting flow can be made C∞ easily.
In this way we construct an attracting singular-hyperbolic set with dense peri-

odic orbits and three equilibria which is not the disjoint union of homoclinic classes
(although it is the union of two transitive sets). It is possible to construct a simi-
lar counter-example with a unique singularity, while this counterexample has three
equilibria. However the construction in this case is more involved; see [38].

The above counterexample shows that, when dealing with the spectral decompo-
sition for singular-hyperbolic sets, it is possible to obtain a finite union of transitive
sets rather than a finite disjoint union of homoclinic classes. The next result shows
that the former situation always occurs if the attracting set has only one singularity.

Theorem 9.6 An attracting singular-hyperbolic set with dense periodic orbits and
a unique singularity is a finite union of transitive sets.

Proof Split Λ into finitely many connected components. On the one hand such com-
ponents are clearly attracting with dense periodic orbits and the non-singular ones
are hyperbolic, hence transitive, by the Spectral Theorem for uniformly hyperbolic
sets; see e.g. [252]. On the other hand, the singular component satisfies the condi-
tions of Theorem 6.38. Hence this component is either transitive or the union of two
homoclinic classes, which are transitive sets. Therefore Λ, which is the union of its
connected components, is a finite union of transitive sets. �

Note that by a result of Morales [163] every transitive set of a flow Y , close to X,
contained in the isolating neighborhood U of a singular-hyperbolic attractor Λ of
X must contain a singularity. Therefore, since compact invariant subsets in Λ not
containing singularities are hyperbolic and admit a spectral decomposition, and the
number of singularities in U is finite, the ω-limit set in U for Y has finitely many
transitive pieces only, all of which are singular. Hence, near a singular-hyperbolic
attractor, the number of transitive pieces is robustly finite.
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It is natural to ask whether the union in Theorem 9.6 is disjoint. Recall that a
vector field is Kupka-Smale if all its closed orbits are hyperbolic and their associated
invariant manifolds are in general position; see Sect. 2.5.10.

Theorem 9.7 An attracting singular-hyperbolic set, with dense periodic orbits and
a unique singularity, of a Kupka-Smale vector field is a finite disjoint union of tran-
sitive sets.

Proof Let X be a Kupka-Smale vector field in a compact 3-manifold and let Λ be
an attracting singular-hyperbolic set of X with dense periodic orbits and a unique
singularity σ . It suffices to prove that the connected component of Λ containing the
singularity σ is transitive. By contradiction, suppose that this is not so.

On the one hand, by Theorem 6.44, we obtain a regular point a in the unstable
manifold Wu(σ) of σ such that ω(a) is a periodic orbit O(p). On the other hand,
the unstable manifold Wu(σ) is one-dimensional, and so the vector field exhibits a
non-transverse intersection between Wu(σ) and Ws(p), contradicting the choice of
X in the Kupka-Smale class. �

Theorem 9.7 implies that the union in Theorem 9.6 is disjoint for most vector
fields on closed 3-manifolds. Denote by Rr (M) the subset of all vector fields X ∈
Xr (M) for which every attracting singular-hyperbolic set with dense periodic orbits
and a unique singularity of X is a finite disjoint union of transitive sets. Standard C1

generic arguments (see e.g. [56]) imply that Rr (M) is residual in Xr (M) when r =
1. The following corollary proves this assertion for all r ≥ 1. The proof combines
Theorem 9.7 with the classical Kupka-Smale Theorem (see e.g. [190]).

Corollary 9.8 The class Rr (M) is residual in Xr (M) for every r ≥ 1.

Now consider the complement of Rr (M). For a compact invariant subset Λ of a
vector field X define the family C (Λ) of homoclinic classes contained in Λ. Note
that if Λ is hyperbolic then C (Λ) is finite. We are able to give sufficient conditions
for the finiteness of C (Λ) when Λ is a singular-hyperbolic set.

Theorem 9.9 Let Λ be an attracting singular-hyperbolic set with dense periodic
orbits and a unique singularity of X ∈ Xr (M). If Λ is not a disjoint union of transi-
tive sets, then C (Λ) contains finitely many homoclinic classes only.

Theorem 9.6 applies to the class of singular-hyperbolic vector fields introduced
by Bautista in [36]. A vector field X is singular-hyperbolic if its non-wandering set
Ω(X) has dense critical elements and, if A(X) denotes the union of the attracting
and repelling closed orbits, there is a disjoint union

Ω(X) \ A(X) = Ω1(X) ∪ Ω2(X),

where Ω1(X) is a singular-hyperbolic set for X and Ω2(X) is a singular-hyperbolic
set for −X.
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This class of singular-hyperbolic vector fields contains the Axiom A vector fields
(uniformly hyperbolic) and the singular Axiom A example resembling the geometric
Lorenz attractor, described after Corollary 9.14.

Remark 9.10 An example of a singular-hyperbolic vector field in the 3-sphere S
3

which is not Kupka-Smale can be derived from the example described in Fig. 9.1:
we consider the singularity σ1, which is accumulated by regular orbits only on one
side, and weaken its weak-contracting eigenvalue so that DX(σ1) now has three
real eigenvalues −λ,0, κ with λ,κ > 0. We can perform this perturbation keeping
the local stable manifold of σ1 so that the global picture in Fig. 9.1 is kept. Since σ1
becomes non-hyperbolic, the vector field is not Kupka-Smale.

The following is a direct consequence of Theorems 9.6 and 9.7, and taken to-
gether this completes the proof of Theorem 9.1.

Corollary 9.11 Let X be a singular-hyperbolic vector field with a unique singular-
ity on a compact 3-manifold. If Ω1(X) is attracting and Ω2(X) is repelling, then
Ω(X) is a finite union of transitive sets. If X is Kupka-Smale, then such a union is
disjoint. In particular, the union is disjoint for a residual subset of vector fields in
Xr (M), r ≥ 1.

An example of a singular-hyperbolic vector field in S
3 satisfying the conditions

of Corollary 9.11, without sinks nor sources, was described just before the statement
of Corollary 9.12.

The extension of these results to general singular-hyperbolic attracting sets, with
several singularities, is still work in progress.

Proof of Theorem 9.9 Suppose that Λ is not a disjoint union of transitive sets. Split
Λ into finitely many connected components as before. It suffices to prove that C (Λ′)
contains finitely many homoclinic classes for all connected components Λ′ of Λ. On
the one hand, for non-singular Λ′ we have nothing to prove, since Λ′ is uniformly
hyperbolic by Proposition 6.2.

On the other hand, the singular connected component Λ0 must contain Wu(σ)

(since it is connected), and Wu(σ) has two connected components. Choose points
a, a′ in each one. Observe that Λ0 must not be transitive by the assumptions on Λ.
Then by Theorem 6.44 there are periodic orbits such that ω(a) = O(a) and ω(a′) =
O(a′). By contradiction assume that there are infinitely many distinct homoclinic
classes in Λ0.

Then there exists an infinite sequence of pairwise distinct periodic orbits On ⊂
Λ0 and an infinite sequence zn ∈ On, and so the set A = ∪nH(zn) must contain σ .
For otherwise A ⊂ Λ0 \ {σ } is uniformly hyperbolic and the number of homoclinic
classes would be finite.

Consider then xn ∈ On such that xn −−−−→
n→+∞ σ . Since xn is not σ , the accumula-

tion on σ and the flow-boxes near σ show that the orbit On accumulates also either
a or a′. Without loss of generality, assume the former case is true.
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Fig. 9.3 The accumulation
on one of the components
of Ws(σ)

Since ωX(a) = O(p) and On accumulates at a, we can find z′
n ∈ On passing

close to O as indicated in Fig. 9.3.
By the inclination lemma we can assume that z′

n converges to a point either in one
component Ws,+ of Ws(O) \ O , or in the other component Ws,−. Again suppose
that we are in the former case. By Lemma 6.43 and the inclination lemma we obtain
z′
n ∈ Wu,+ = H+. But then H(z′

n) = H(x) = H(zn) = H+ for infinitely many n

(since Theorem 2.17 ensures that every homoclinic class contains a dense subset of
periodic orbits, all of which are homoclinically related).

This contradicts the choice of zn. �

9.2 A Dichotomy for C1 Generic 3-Flows

It is known that a generic non-singular vector field X ∈ X1(M) either has infinitely
many sinks or sources, or else is Axiom A without cycles; see Mañé [145] or
Liao [133]. The robustness of the geometric Lorenz attractor obtained in Sect. 3.3
shows that this is not true in general if singularities are allowed. Allowing singu-
larities we can improve this as follows. Let V1(M) ⊂ X1(M) be the set of vec-
tor fields that cannot be C1 approximated by homoclinic loops. The Connecting
Lemma 2.20 implies that any singularity of every X ∈ V1(M) is separated from
the non-wandering set. Using the arguments of Wen [270] and Hayashi [108] we
conclude that a generic vector field in V1(M) either has infinitely many sinks or
sources or else it is Axiom A without cycles.

Recently Arroyo and Hertz [28] proved that every vector field in V1(M) either
can be approximated by one that is Axiom A without cycles, or exhibits a homo-
clinic tangency associated to a periodic orbit.

9.2.1 Some Consequences of the Generic Dichotomy

Let us describe some consequences of Theorem 9.2. The first one is related to the
abundance of three-dimensional vector fields exhibiting either attractors or repellers.
As noted by Mañé in [145], a generic C1 diffeomorphism in the 2-sphere S

2 does
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exhibit either sinks or sources. It is then natural to ask whether such a result is valid
for C1 vector fields in the 3-sphere S

3 instead of C1 diffeomorphisms in S
2. The

answer is negative as the following example shows.
Write S

3 = R
3 ∪ {∞} and consider in R

3 an unknotted two-torus T
2. Then the

closure in S
3 of each connected component of S

3 \T
2 is a solid two-torus. Consider

a Lorenz attractor in one solid two-torus and a Lorenz repeller in the other. Since a
fundamental domain for the Lorenz attractor (respectively repeller) is an unknotted
solid two-torus, we can glue the two solid two-torus through the unknotted torus,
obtaining a flow in S

3 whose non-wandering set equals the disjoint union of one
Lorenz attractor and one Lorenz repeller. Such a flow is singular Axiom A, and it
can not be approximated by vector fields with either sinks or sources. However from
Theorem 9.2 we deduce

Corollary 9.12 A generic vector field in X1(M) does exhibit either attractors or
repellers.

The second consequence of Theorem 9.2 is related to a conjecture by Palis in
[189], see also Sect. 2.8, asserting the denseness of vector fields exhibiting a finite
number of attractors whose basin of attraction forms a full Lebesgue measure subset.
Theorem 9.2 gives an approach to this conjecture in the (open) set N1(M) of C1

vector fields on a closed 3-manifold M which cannot be C1 approximated by ones
exhibiting infinitely many sinks or sources.

Corollary 9.13 A generic vector field in N1(M) exhibits a finite number of attrac-
tors whose basins of attraction form an open and dense subset of M .

This corollary follows from the no-cycle condition by the classical construction
of filtrations adapted to the decomposition of the positive limit set of the flow, as the
reader can easily see in [247, Chaps. 2 & 3].

Using the filtration to isolate the dynamics around each basic piece of the singular
Axiom A decomposition, since the critical elements are robustly hyperbolic near to
each basic piece (recall that singular-hyperbolicity is a robust property of the action
of the flow on the tangent bundle), we obtain

Corollary 9.14 A Cr singular Axiom A flow without cycles is in G r (M), the interior
of the set of Cr vector fields whose critical elements are hyperbolic, for any r ≥ 1.

We note that there exists a classification by Hayashi [107] of the C1 interior of
the set of diffeomorphisms whose periodic points are hyperbolic: they are Axiom A
without cycles.

The corresponding result for vector fields is false since the Lorenz attractor is
not uniformly hyperbolic. Indeed, we note that we can easily construct a singular
Axiom A vector field without cycles and with a singular basic set equivalent to the
Lorenz attractor: just take the geometric Lorenz attractor constructed in Sect. 3.3,
and embed and extend this flow to S

3 with a repelling singularity at the “north pole”
and a sink at the “south pole”.
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Proof of Theorem 9.2 The argument is based on the following result whose proof
we postpone to Sect. 9.2. Denote by Hr (M) the interior of the set of vector fields
X ∈ Xr (M) such that every periodic orbit and singularity of X is hyperbolic, for
any r ≥ 1.

Theorem 9.15 Generic vector fields in H1(M) are singular Axiom A without cycles.

Following the arguments of Mañé in [145], we can obtain Theorem 9.2 from
Theorem 9.15. Indeed, let S1(M) ⊂ X1(M) be the subset of C1 vector fields such
that every singularity of X is hyperbolic. Then S1(M) is open and dense in X1(M)

by the local stability of hyperbolic critical elements. For X ∈ S1(M) define A(X)

to be the set of periodic orbits and singularities of X that are sinks or sources.
The set-valued function X1(M) � X → A(X) ∈ P(M) is lower semicontinuous,

again by the local stability of hyperbolic critical elements, where P(M) denotes the
family of compact subsets of M endowed with the Hausdorff distance. Well known
topological properties imply that the continuity points O of this map form a residual
subset of S1(M).

This ensures that every X ∈ O not satisfying the first item of Theorem 9.2 is in
H1(M).

Indeed, for X0 ∈ O with finitely many sinks and sources the set A(X0) is a finite
collection of critical elements of X0. Assume by contradiction that X0 �∈ H1(M).
Then we can find a C1-near vector field Y with a non-hyperbolic critical element ξ .
Hence ξ is away from a neighborhood of A(X0). However O ⊂ S1(M) and S1(M)

is open, and thus we can take Y ∈ S1(M). This guarantees that ξ is not a singularity
of Y . Then the return map to a Poincaré section of the periodic orbit ξ has two
eigenvalues, one of which has modulus 1. Perturbing Y we can find Z ∈ S1(M)

arbitrarily C1-close to Y (and to X0) having either an attracting or repelling periodic
orbit close to ξ . This contradicts the continuity of the set map A(X) at X0.

Now from Theorem 9.15 there exists a residual set R ⊂ H1(M) such that every
vector field in R is singular Axiom A without cycles. The class

Y = (

O \ H1(M)
) ∪ (

O ∩ R
)

is residual in X1(M) by construction (recall that S1(M) is open and dense in
X1(M)). Note that if X0 ∈ Y does not satisfy the first item of Theorem 9.2, then
X0 ∈ O ∩ R, since X0 cannot belong to O \ H1(M) be the previous claim. This
means that X0 satisfies the second item of the statement of Theorem 9.2. �

9.2.2 Generic 3-Flows, Lyapunov Stability
and Singular-Hyperbolicity

Here we present a proof of Theorem 9.15. We use the auxiliary Theorems 9.16
and 9.17 below. Recall the definition and properties of Lyapunov stable sets in
Sect. 2.5.10.
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The first theorem ensures that transitive Lyapunov stable sets containing singu-
larities, if not equal to a critical element, are C1 generically singular-hyperbolic sets.

Theorem 9.16 For generic vector fields X ∈ X1(M), every nontrivial transitive
Lyapunov stable set with singularities of X is singular-hyperbolic.

The second result provides a way to obtain a singular-hyperbolic attractor from a
singularity belonging to a Lyapunov stable set of a generic three-dimensional vector
field. Together with the previous results, it asserts that the unstable manifold of a
singularity accumulates on a singular-hyperbolic set containing the singularity.

Theorem 9.17 Every Lyapunov stable singular-hyperbolic set with dense singular
unstable branches of X ∈ X1(M) is an attractor of X.

Here we say that a singular-hyperbolic set Λ has dense singular unstable
branches if Λ = ω(x) for all x ∈ Wu(σ) \ {σ } and for every singularity σ ∈ Λ.

Now we explain how Theorem 9.15 is a consequence of Theorems 9.16 and 9.17,
but first we need some preliminary results. The first one gives a sufficient condi-
tion for a transitive Lyapunov stable set with singularities to have singular unstable
branches.

Lemma 9.18 For generic vector fields X ∈ X1(M), a transitive Lyapunov stable set
with singularities Λ of X, such that the unstable manifold of every singularity in Λ

is one-dimensional, has dense singular unstable branches.

Proof Generically we can assume that X ∈ X1(M) satisfies the properties presented
in Sect. 2.5.10 (in particular X is Kupka-Smale). Let Λ be a transitive Lyapunov
stable set of X, σ a singularity of Λ and q ∈ Wu(σ) \ {σ }.

On the one hand, since Λ is Lyapunov stable we have Wu(σ) ⊂ Λ and in partic-
ular ω(q) ⊂ Λ. On the other hand, we have dim(Wu(σ )) = 1 by assumption. Then
ω(q) is Lyapunov stable by Property L5 in Sect. 2.5.10.

But Λ is transitive by construction and intersects ω(q), and so by Lemma 2.25
we have Λ ⊂ ω(q). Then ω(q) = Λ and Λ has dense singular unstable branches as
desired. �

The next one shows that the closure of the unstable manifold of a singularity
accumulated by periodic orbits is transitive, provided that the unstable manifold is
one-dimensional and its closure is Lyapunov stable.

Lemma 9.19 Let X ∈ X1(M) and σ ∈ S(X) ∩ Per(X) be such that Wu(σ) is one-
dimensional and ω(q) is Lyapunov stable for every q in any of the branches of
Wu

X(σ) \ {σ }. Then Wu(σ) is transitive.

Proof We have Wu
X(σ) \ {σ } = O(q1) ∪ O(q2) for every q1, q2 belonging to differ-

ent connected components of Wu(σ) \ {σ }.
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On the one hand, since σ ∈ Per(X) we can assume that q1 ∈ Per(X) without
loss of generality. Then ω(q1) ⊂ Per(X) by invariance. On the other hand, ω(q1) is
Lyapunov stable for X by assumption. These two properties imply that σ ∈ ω(q1),
since for pn ∈ Per(X) with pn −−−−→

n→+∞ q1 we also have Xtn(pn) → σ for some

sequence tn > 0, and we can apply Lemma 2.25.
Therefore Wu(σ) ⊂ ω(q1) by the Lyapunov stability of ω(q1) once more. But

Wu(σ) ⊃ ω(q1) by construction, and so we conclude that Wu(σ) = ω(q1). This
shows that Wu(σ) is transitive. �

Using this we now show that any hyperbolic singularity accumulated by regular
orbits of X is in a singular-hyperbolic attractor or repeller of the flow induced by X.

Theorem 9.20 For generic X ∈ X1(M) every σ ∈ S(X) ∩ Per(X) belongs to either
a singular-hyperbolic attractor or a singular hyperbolic repeller.

Proof Let X ∈ X1(M) and let σ be as in the statement. Since X is generic we can
assume that σ is hyperbolic. Note that σ must be of saddle-type, for otherwise σ

is either a sink or a source, and in each case no periodic orbit would approach σ .
Hence either Wu(σ) or Ws(σ) is one-dimensional.

Suppose the former case is true. The latter case is the same for −X. Define Λ =
Wu(σ). Property L3 in Sect. 2.5.10 implies that Λ is Lyapunov stable for X because
X is generic. Property L5 then guarantees that we are in the setting of Lemma 9.19
and so Λ is transitive.

Therefore Λ is a nontrivial transitive Lyapunov stable set of X. As X is generic,
Theorem 9.16 ensures that Λ is singular-hyperbolic. By Theorem 5.10 we know that
every singularity in Λ has one-dimensional unstable manifold. We conclude that Λ

has dense singular unstable branches by Lemma 9.18, since X is generic. Then Λ is
an attractor by Theorem 9.17. �

Now we have the tools to complete the proof of Theorem 9.15 using all the
previous results which assume Theorems 9.16 and 9.17.

Proof of Theorem 9.15 For X ∈ X1(M) denote by S∗(X) = S(X) ∩ Per(X) the
(finite) set {σ1, . . . , σk} of singularities accumulated by periodic orbits of X.

Theorem 9.20 ensures that for generic X ∈ X1(M) and for every i = 1, . . . , k

there is a compact invariant set Λi of X such that σi ∈ Λi , and Λi is either a singular-
hyperbolic attractor or a singular-hyperbolic repeller of X.

We claim that H ∗ = Ω(X) \ ∪k
i=1Λi is a finite disjoint union of uniformly

hyperbolic basic sets. Indeed H∗ \ S(X) is closed in M , for otherwise we can
find a sequence of regular points xn in H ∗ converging to some singularity σ ∈
S(X) \ S∗(X). But Property L2 gives Ω(X) = Per(X) ∪ S(X), and so σ is accu-
mulated by periodic orbits because S(X) is finite. Hence H ∗ \ S(X) is a closed
invariant subset of X without singularities. It is known, after Wen [270], that C1
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generically such sets are uniformly hyperbolic. Property L2 again ensures that
H ∗ = Per(X) ∩ H ∗ ∪S(X) \S∗(X). The Spectral Decomposition Theorem for uni-
formly hyperbolic sets now guarantees that H ∗ decomposes into finitely many basic
pieces, together with finitely many singularities.

From this we see that Ω(X) splits into a disjoint union of compact invariant
sets each one being either a hyperbolic basic set or a singular-hyperbolic attractor,
or a singular-hyperbolic repeller. Hence X is a singular Axiom A vector field. For
generic X we can also assume that the vector field is Kupka-Smale, and thus there
are no cycles between the transitive pieces in the above decomposition. The proof
of Theorem 9.15 is complete depending on Theorems 9.16 and 9.17. �

Proof of Theorem 9.16 Recall that there exists a residual subset O of the family
S1(M) of vector fields whose singularities are hyperbolic, such that the map X ∈
S1(M) → A(X) restricted to O is continuous (see the arguments after the statement
of Theorem 9.15). Define R = O ∩ H1(M) which is residual in H1(M).

Given X ∈ R and σ ∈ S(X) ∩ Λ for a non-trivial attractor Λ, observe that every
vector field Y sufficiently C1-close to X has no sources or sinks near to Λ, for oth-
erwise we deduce a contradiction to the choice of X in the continuity set O. All the
critical elements of Y are also hyperbolic. Then Y is in the setting of Theorem 2.33,
and thus the Linear Poincaré Flow over Λ\S(X) is robustly dominated. This means
that Λ is in the setting of Lemmas 5.22 and 5.30. Thus we deduce that, for X ∈ R,
if σ ∈ S(X) belongs to a non-trivial attractor Λ of X, then σ is Lorenz-like for X

and Wss(σ ) ∩ Λ = {σ }.
Now let X ∈ R have a non-trivial transitive Lyapunov stable set Λ containing a

singularity. The previous arguments ensure that Λ is in the setting of Theorem 5.34,
and hence Λ is a singular-hyperbolic attractor. �

Proof of Theorem 9.17 We need the following sufficient condition for a Lyapunov
stable singular-hyperbolic set, with dense singular unstable branches, to be an at-
tractor.

Lemma 9.21 Let Λ be a Lyapunov stable singular-hyperbolic set with dense singu-
lar unstable branches of X ∈ Xr (M), r ≥ 1. If Λ admits an adapted cross-section
Σ such that every point in the interior of Σ belongs to the stable leaf of some point
of Λ ∩ Σ , then Λ is an attractor.

Proof From Lemma 2.26 it is enough to prove that, if xn is a sequence converging
to some point p ∈ Λ, then ω(xn) is contained in Λ for every big enough n. Now
ω(p) satisfies one of the following alternatives.

1. ω(p) contains a singularity σ of Λ.
The orbits of xn will have σ has an accumulation point. Hence the orbit of xn

also accumulates on some regular point q of the unstable manifold of σ . Since
ω(q) = Λ by assumption, we see that for every big enough n the orbit of xn
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crosses the interior of Σ . Then by the assumption on Σ we get y ∈ Λ such that
O(xn) ⊂ Ws(y), that is, ω(xn) ⊂ Λ for all sufficiently big n.

2. ω(p) is far from singularities.
Take S an adapted cross-section to a point q of ω(p). Then for all big enough

n the orbit of xn crosses the interior of S at some point x′
n very close to q . Since

ω(p) is uniformly hyperbolic by Proposition 6.2, the unstable manifold of q is
well defined and Wu(q) ∩ S is a line in S crossing all stable manifolds of S in a
neighborhood of q . Then x′

n belongs to some of these stable lines. Since Wu(q)

is inside Λ by Lyapunov stability, we see that xn belongs to the stable manifold
of some point of Λ. Again ω(xn) ⊂ Λ for all sufficiently big n.

�

Now suppose that Λ is not an attractor. Then by Lemma 9.21, given any regular
point x ∈ Λ, we can find an adapted cross-section Σ ′ such that the intersection
Λ ∩ Σ ′ is contained in the interior of Σ . Indeed, Σ ∩ Λ contains z0 such that
Ws(z0,Σ) does not touch Λ, and then one of the connected components of Σ \
Ws(z0,Σ), which is also an adapted cross-section containing x, contains z1 such
that Ws(z1,Σ) ∩ Λ = ∅. The substrip Σ ′ between Ws(z0,Σ) and Ws(z1,Σ) only
intersects Λ in its interior.

Cover Λ by finitely many flow-boxes near singularities and tubular flow-boxes
through adapted cross-sections, around regular pieces of Λ, just as in Chap. 7, but
with the family Ξ of adapted cross-sections chosen so that Λ ∩ Ξ ⊂ int(Ξ).

Observe that, since Λ is Lyapunov stable, we can find a neighborhood U of Λ

such that U ∩ Ξ ⊂ int(Ξ) and then another neighborhood V ⊂ U of Λ satisfying
Xt(V ) ⊂ U for all t > 0. Then the Poincaré map R defined as in Sect. 6.1 between
the sections of Ξ admits only finitely many discontinuity points, at the intersection
of Ξ with a compact part of the stable manifolds of the singularities of Λ, since its
image cannot touch the boundary of Ξ . We can choose the “waiting time t2” of R

so that the expansion rate on center-unstable cones is at least 4.
Let Ξ∗ be the subset of ingoing cross-sections near singularities of Ξ . Fix a

point x0 ∈ Λ ∩ Ξ∗ \ ∪{Ws(σ) : σ ∈ S(X) ∩ Λ} and a connected cu-curve γ0 inside
Ξ∗ through x0 not touching the lines of intersection of Ξ∗ with the local stable
manifold of the singularities. The image curve Ri(γ1), for i > 0, is well defined
until it returns to Ξ∗, because the image of R does not fall outside of int(Ξ). Let γ2

be the next return to Ξ∗. Then its length �(γ2) is at least 4 · �(γ1).
The image of γ2 is well defined except perhaps at γ2 ∩ Ws

loc(σ ) for some sin-
gularity σ of Λ. In this case we replace γ2 by the longest connected component of
γ2 \ Ws

loc(σ ). Then �(γ2) ≥ 2 · �(γ1).
Inductively we obtain a sequence γn, n ≥ 1, of larger and larger cu-curves in the

interior Ξ∗, which is a finite collection of bounded cross-sections. Since the cu-
curves cannot be tangent to the stable foliation, and so cannot curl inside Ξ , this is
impossible.

This contradiction shows that Λ must be an attractor and concludes the proof of
Theorem 9.17. �



9.3 C1 Generic Incompressible Flows 283

9.3 Lyapunov Exponents of C1 Generic Incompressible 3-Flows

Here we prove Theorems 9.3 and 9.4. Since the proof is rather technical, we present
first an outline of the strategy.

Recall the definition of dominated splitting for the Linear Poincaré Flow and that
the splitting N1 ⊕ N2 of the normal bundle N is an m-dominated splitting for the
Linear Poincaré Flow if it is P t

X-invariant and there is an uniform m ∈ N such that

Δ(p,m) = ‖P m
X (p)|N1

p‖
‖P m

X (p)|N2
p‖ ≤ 1

2
, (9.1)

for any point p ∈ Λ.
We define some useful Xt -invariant sets:

• O = {Oseledec regular points}, has full Lebesgue measure in M , since a volume
form is assumed to be invariant (see Sect. 2.7.2);

• O+ = {p ∈ O : the orbit of p has positive Lyapunov exponent};
• O0 = {p ∈ O : the orbit of p has only zero Lyapunov exponents};
• Λm(X) := {p ∈ O+ : p has m-dominated splitting for the Linear Poincaré Flow};
• Γm(X) := M \ Λm(X);
• Γ +

m (X) := O+(X) \ Λm(X);
• Γ ∗

m(X) := {p ∈ Γ +
m (X) : p /∈ Per(X)}.

The set of Oseledec regular points where (9.1) does not hold will be denoted by
Δm(X). Clearly, in Δm(X), the orbits do not have an m-dominated splitting. Never-
theless for some p ∈ Δm(X) there might still exist some iterate Xt(p) where (9.1)
holds. Taking this into account we note that Γ +

m (X) = ⋃

tX
t (Δm(X)).

Let λ+(X,p) be the upper Lyapunov exponent which exists for μ-almost every
p ∈ M3 by the Theorem of Oseledec; see Sect. 2.7.1 and [147]. When there is no
ambiguity we denote λ+(X,p) by λ+(p). Given an Xt -invariant set Γ ⊆ M we
define the “entropy function” by

LE : X1
μ(M) → [0,+∞), X →

∫

M

λ+(p)dμ(p).

The next lemma gives an equivalent expression for this function.

Lemma 9.22 Let Γ ⊂ M be an Xt -invariant subset. Then

LE(X,Γ ) =
∫

Γ

λ+(p)dμ(p) = inf
n≥1

1

n

∫

Γ

log‖P n
X (p)‖dμ(p).

In particular, this shows that LE(X) = LE(X,M) is upper semicontinuous as a
function of X.

Proof Using the definition of λ+(p) we write
∫

Γ
λ+(p)dμ(p) as

lim
t→+∞

1

t

∫

Γ

log‖P t
X(p)‖dμ(p) = lim

n→+∞
1

n

∫

Γ

log‖P n
X (p)‖dμ(p) =: In(X)
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and the sequence In(X) is subadditive: Ip+q(X) ≤ Ip(X)+Iq(X) for all p,q ∈ Z
+.

Thus it satisfies limn→+∞(In(X)/n) = infn≥1(In(X)/n). �

Denote LE(X,M) by LE(X). The next proposition will be crucial to prove The-
orem 9.3.

Proposition 9.23 Let X ∈ X2
μ(M)

∗
, with Xt aperiodic, and suppose that any hy-

perbolic set has zero Lebesgue measure. Let ε, δ > 0 be given. Then there exists a
C1 zero divergence vector field Y which is ε-C1-close to X, such that LE(Y ) < δ.

We assume Proposition 9.23 and prove Theorem 9.3 first. By Corollary 8.2, we
have a dense set such that every X is C2, aperiodic and with hyperbolic sets having
full or zero measure. The set of conservative Anosov vector fields, denoted by A , is
open. For all k ∈ N the set Ak = {X ∈ X1

μ(M)∗ : LE(X) < k−1} is open because, by
Lemma 9.22, LE is upper semicontinuous. By Proposition 9.23, with δ = k−1, we
get Ak dense in A c, and so the set R = ⋂

kA ∪ Ak is a C1-residual set. But R =
A ∪ ⋂

k Ak = A ∪ {X ∈ X1
μ(M)∗ : LE(X) = 0}, and therefore for X ∈ R either

X is an Anosov vector field or LE(X) = ∫

M
λ+(p)dμ(p) = 0. This last equality

implies that μ-almost every p ∈ M has zero Lyapunov exponents and Theorem 9.3
is proved.

To prove Proposition 9.23, we consider a large m ∈ N (depending on ε) and we
use the fact that almost every orbit does not have an m-dominated splitting, for
otherwise by Corollary 8.2 X must be Anosov. We start with a local argument and
take p ∈ Γ +

m (X), and also t � m. By a recurrence result (see Lemma 9.40), we
obtain q ≈ Xt/2(p) such that Δ(q,m) ≥ 1/2, say q ∈ Δm(X). In Sect. 9.3.3 we
use the ε-C1-perturbation Y of X, developed previously in Sects. 9.3.1 and 9.3.2,
to map the direction Nu

q into Ns
Xm(q)

. In Sect. 9.3.4 we conclude that this argument

allows us to prove that for most points q near p the norm of P t
Y (q) is smaller than

δ. The formula for LE in Lemma 9.22 allows us to compute a bound for LE(Y ) in
a finite time t . Finally, in Sect. 9.3.5, extend this local procedure to the whole of M

through a Kakutani tower argument.

9.3.1 Conservative Tubular Flow Theorem

The following theorem, due to Dacorogna and Moser [75], will be used to obtain a
conservative local change of coordinates which trivialize a vector field.

Theorem 9.24 (Dacorogna-Moser) Let Ω be a bounded open subset of R
n with C5

boundary ∂Ω and g,f : Ω → R positive functions of class Cs (s ≥ 2). Then there
exists a diffeomorphism ϕ : Ω → ϕ(Ω) ⊆ R

n of class Cs which satisfies the partial
differential equation:

g(ϕ(q))det(Dϕq) = λf (q), (9.2)

for all q ∈ Ω where λ = ∫

g dμ/
∫

f dμ. We also have ϕ = Id at ∂Ω .
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Let T : R
3 → R

3 be the constant vector field defined by T (x, y, z) = (c,0,0) for
some c > 0 and let F, C be the flow-boxes F 1

X(p)(B(p, r)) and F 1
T (p)(B(p, r)).

We start by giving a brief and informal idea of the proof of Lemma 9.25 below.
We would like to find a C2 volume-preserving diffeomorphism Ψ̂ : C → F such
that X = Ψ̂∗T . Given a map ψ : B(p, r) → B(p, r) and w ∈ C, let tw be such that
T −tw ∈ B(p, r). We define Ψ̂ (w) := Xtw(ψ ◦ T −tw (w)). It is clear that, if ψ is
volume-preserving, then Ψ̂ will be a composition of three volume-preserving maps
and we are done. However, the choice of ψ to be volume-preserving needs some
care and to achieve our purposes we use Theorem 9.24 in an appropriate way.

Lemma 9.25 (Conservative flow-box theorem) Given a vector field X ∈ Xs
μ(M)

(for s ≥ 2) and a non-singular point p ∈ M (eventually periodic with period τ > 1),
there exists a conservative Cs diffeomorphism Ψ : F → C such that T = Ψ∗X.

Proof Assume that p = 0 and X(p) ⊆ {(x,0,0) : x ∈ R}. Let X1(x, y, z) be the
projection into the first coordinate of X(x,y, z). For a small r > 0 we define
the functions f : B(p, r) → R and g : B(p, r) → R such that f (y, z) := 1 for
(0, y, z) ∈ B(p, r) and g(y, z) := X1(0, y, z) for (0, y, z) ∈ B(p, r) (see Fig. 9.4).
Since g is of class Cs , we apply Theorem 9.24 to Ω = B(p, r) ⊆ R

2 and obtain a
diffeomorphism ϕ : Ω → ϕ(Ω) ⊆ R

2 of class Cs satisfying the partial differential
equation g(ϕ(y, z))det(Dϕy,z) = λ, for all (y, z) ∈ Ω , where λ = ∫

g dμ/
∫

1dμ

and ϕ|∂Ω = Id.
Now we define the Cs change of coordinates by

Ψ̂ : R × Ω → R
3, (x, y, z) → Xλ−1x(0, ϕ(y, z)).

First we claim that

det
(

DΨ̂(0,y,z)

) = 1 for all (0, y, z) ∈ R × Ω. (9.3)

By a straightforward computation of the derivative, we obtain

det(DΨ̂(0,y,z)) =

∣
∣
∣
∣
∣
∣
∣

λ−1X1(X
0(0, y, z)) 0 0

λ−1X2(X
0(0, y, z))

∂ϕ1
∂y

|(y,z)
∂ϕ1
∂z

|(y,z)

λ−1X3(X
0(0, y, z))

∂ϕ2
∂y

|(y,z)
∂ϕ2
∂z

|(y,z)

∣
∣
∣
∣
∣
∣
∣

.

Fig. 9.4 The conservative
change of coordinates
straightening out all orbits
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Now using (9.2) of Theorem 9.24 we conclude that

det
(

DΨ̂(0,y,z)

) = λ−1X1(0, y, z)det
(

Dϕ(y,z)

) = g(y, z)λ−1 det
(

Dϕ(y,z)

) = 1,

and therefore (9.3) is proved. Let us now check that

det
(

DΨ̂(x0,y0,z0)

) = 1 for all (x0, y0, z0) ∈ C.

We note that

Ψ̂ (x, y, z) = Xλ−1x0
[

Xλ−1(x−x0)(0, ϕ(y, z))
] = Xλ−1x0

[

Ψ̂ (x − x0, y, z)
]

,

so that DΨ̂(x,y,z) = DX
λ−1x0

Ψ̂ (x−x0,y,z)
◦ DΨ̂(x−x0,y,z).

Evaluating DΨ̂(x,y,z) at x = x0 we get DΨ̂(x0,y,z) = DX
λ−1x0

Ψ̂ (0,y,z)
◦ DΨ̂(0,y,z).

Now we use (9.3) and the fact that the flow Xt is volume-preserving to conclude
that det(DΨ̂(x0,y0,z0)) = 1. Finally, we take c := λ and consider the constant vector

field T := (λ,0,0). Let (x, y, z) = Ψ̂ (x, y, z). By a simple computation, we deduce
that

Ψ̂∗T (x, y, z) = DΨ̂(x,y,z)(T (x,y, z))

=
(

X1
(

Xλ−1x(0, y, z)
)

,X2
(

Xλ−1x(0, y, z)
)

,X3
(

Xλ−1x(0, y, z)
))

= X
(

Ψ̂ (x, y, z)
)

.

Taking Ψ = Ψ̂ −1 we obtain T = Ψ∗X. �

9.3.2 Realizable Linear Flows

The next definition adapts the definition of realizable sequence given by Bochi
in [51] and will also be central in the proof of our theorem. In broad terms we
consider modified area-preserving linear maps acting in the normal bundle at p,
Lt(p) : Np → NXt(p) that do exactly what we want. Finally, we ask whether these
maps are (γ -almost C1) realizable as the Linear Poincaré Flow of Y , ε-C1-close to
X, computed on small transversal neighborhoods of one point.

We need to fix some notations before the statement. We recall that the Linear
Poincaré Flow is the differential of the standard Poincaré map

P t
X(p) : Vp ⊂ Np → NXt(p),

where NXs(p), for s = 0, t , is a surface contained in M whose tangent space at
Xs(p) is the normal direction NXs(p) for s = 0, t and Vp is a small neighborhood
of p. We can always guarantee the existence of a continuous time-t arrival function
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τ(p, t)(·) from Vp into NXt (p) by using the implicit function theorem. Due to the
presence of singularities, Vp may be very small.

Given the Poincaré map P t
X(p) : Vp ⊆ Np → NXt (p), where Vp is chosen suf-

ficiently small, and given B ⊆ Vp , the set

F n
X(p)(B) := {P t

X(p)(q) : q ∈ B, t ∈ [0, n]} = P[0,n]
X (p)(B)

is called the time-n length flow-box at p associated to the vector field X. We remark
that the sections (P t

X(p)(B))t∈[0,n] are pairwise disjoint if Vp is small enough.
We include here the following useful result that will be crucial later; this enables

us to estimate the distortion of the area form pushed-forward between cross-sections
by Poincaré maps. Given n1, n2 ∈ TqNp for q ∈ Np, we can define a pair of 2-forms
induced by the volume form ω according to

ω̂q(n1, n2) := ωq(X(q), n1, n2) and ωq(n1, n2) := ωq

(
X(q)

‖X(q)‖ , n1, n2

)

.

It turns out that (P t
X(p))∗ω̂q = ω̂Xτ(t,q)(q) for all q ∈ Np . The measure μ induced

by the 2-form ω is not necessarily P t
X-invariant; however both measures μ̂ and μ

are equivalent. We call μ the Lebesgue measure at normal sections or modified area.
In fact, given n1, n2 ∈ Np we have

(P t
X(p))∗ωp(n1, n2) = x(t)−1ωXt (p)(n1, n2),

where x(t) = ‖X(Xt(p))‖‖X(p)‖−1. Since the flow is volume-preserving we have
|detP t

X(p)| = x(t)−1. Therefore we can give an explicit expression for the infinites-
imal factor of area distortion by the Linear Poincaré Flow, which in turn implies the
following simple lemma.

Lemma 9.26 Given ν > 0 and T > 0, there exists r > 0 such that for any mea-
surable set K ⊆ B(p, r) ⊆ Np we have |μ(K) − x(t) · μ(P t

X(p)(K))| < ν for all
t ∈ [0, T ].

This provides a way to estimate the area distortion due to the Poincaré map be-
tween cross-sections on a very small neighborhood around a piece of orbit of the
flow (for a proof see [39, Lemma 3.1.3]).

Definition 9.27 Given X ∈ X1
μ(M), ε > 0, 0 < κ < 1 and a non-periodic point p,

we say that the modified area-preserving sequence of linear maps Lj : NXj (p) →
NXj+1(p) for j = 0, . . . , n − 1 is an (ε, κ)-realizable linear flow of length n at p if,
for all γ > 0, there exists r > 0 such that for any open set ∅ �= U ⊆ B(p, r) ⊆ Np

we can find

(a) a measurable set K ⊆ U such that μ(K) > (1 − κ)μ(U), and
(b) a zero divergence vector field Y , ε-C1-close to X, such that:

(i) Y t = Xt outside F n
X(p)(U) and DXq = DYq for every q ∈ U,Pn

X(p)(U);
(ii) if q ∈ K , then ‖P 1

Y (Y j (q)) − Lj‖ < γ for j = 0,1, . . . , n − 1.
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In the previous definition we consider integer iterates, but there is no restriction
to consider any intermediate linear maps, such as Lj : N

X
tj (p)

→ N
X

tj+1 (p)
with

tj < tj+1 and
∑n−1

j=0 tj = n. The point p may also be periodic, but with period larger

than n. The realizability we deal here is with respect to the C1 topology.
Next we show how to build some elementary realizable linear flows: the Linear

Poincaré Flow itself and also the juxtaposition of two realizable linear flows are
realizable linear flows.

Lemma 9.28 Let X ∈ X1
μ(M) and p ∈ M a non-periodic point.

(1) For each t ∈ R, P t
X(p) is (ε, κ)-realizable of length t for every ε and κ .

(2) Let {L0, . . . ,Ln−1} be a (ε, κ1)-realizable sequence of linear maps of length
n at p and let {Ln, . . . ,Ln+m−1} be (ε, κ2)-realizable of length m at Xn(p).
Then, for κ = κ1 + κ2 < 1 the sequence of linear maps {L0, . . . ,Ln+m−1} is
(ε, κ)-realizable.

Proof Item (1) follows by choosing Y = X.
For item (2), given γ > 0, let r1, r2 be the radius according to Definition 9.27

related to the realizable linear flows {L0, . . . ,Ln−1} and {Ln, . . . ,Ln+m−1} respec-
tively. We take any nonempty open set U ⊆ B(p, r1). If we have Pn

X(p)(B(p, r1)) ⊆
B(Xn(p), r2) then we have what we need to compose and obtain the realization;
otherwise we choose a smaller r < r1.

Given ν > 0, we decrease the radius r if necessary, by using Lemma 9.26, to
get |μ(K) − x(t)μ(Pn

X(p)(K))| < ν for all t ∈ [0, n] and any measurable set
K ⊆ B(p, r). By definition and choice of the radius r > 0, we have the flow-box
F n+m

X (p)(U). Again, by definition, given any U ⊆ B(p, r) we get a measurable
K1 ⊆ U and a vector field Y1 satisfying (a) and (b) of Definition 9.27. Also for
any nonempty open subset of B(Xn(p), r2), in particular for Pn

X(p)(U), we get a
measurable K̂2 ⊆ Pn

X(p)(U) =: Û and a vector field Y2 satisfying (a) and (b) of
Definition 9.27.

Now we define the vector field Y = Y1 in the flow-box F n
X(p)(U), Y = Y2 in the

flow-box Fm
X (Xn(p))(Û ) and Y = X elsewhere.

The vector field Y is C1 since, by definition, (DY1)q = DXq = (DY2)q for any
q ∈ Pn

X(p)(U), and so Y and U satisfies (i). To check (a) we define K := K1 ∩ K2

where K2 is such that Pn
X(p)(K2) = K̂2. By Lemma 9.26, we get x(n)μ(Û) <

μ(U) + ν and also μ(U \ K2) < x(n)μ(Û \ K̂2) + ν. So we obtain

μ(U \ K) = μ(U \ (K1 ∩ K2)) ≤ μ(U \ K1) + μ(U \ K2)

< κ1μ(U) + x(n)μ(Û \ K̂2) + ν < κ1μ(U) + x(n)κ2μ(Û) + ν

< κ1μ(U) + κ2μ(U) + κ2ν + ν = κμ(U) + (1 + κ2)ν.

Therefore the result follows by considering a sufficiently small ν. Finally, (ii) fol-
lows by definition. �
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Remark 9.29 Using elementary Vitali’s covering arguments, we can show that we
only have to prove realizability of the linear maps {L0, . . . ,Ln−1} for U = B(p′, r ′)
where B(p′, r ′) ⊆ B(p, r).

9.3.2.1 Small Rotations

Here we construct realizable linear flows of time-1 length at p, which rotate by a
small angle ξ the action of the Linear Poincaré Flow, i.e. L0 := P 1

X(p) ◦ R̂ξ where
R̂ξ is a rotation of angle ξ defined by

R̂ξ :=
(

cos(ξ) − sin(ξ)

sin(ξ) cos(ξ)

)

in a canonical base of Np . Let Rξ be the 3 × 3 matrix associated to the linear map
(x, y, z) → (x, R̂ξ (y, z)).

Lemma 9.30 Given X ∈ X2
μ(M), a non-periodic point p ∈ M , ε > 0, 0 < κ < 1

and a fixed time T = 1. Then there exists an angle ξ (not depending on p and
ξ = O(ε)) such that, for every γ > 0, there exist r > 0 (depending on p) and a zero
divergence vector field Y , ε-C1-close to X, such that

(a) Y − X is supported in the flow-box F 1
X(p)(B(p, r));

(b) ‖P 1
Y (q) − P 1

X(p)R̂ξ‖ < γ for all q ∈ B(p, r
√

1 − κ).

Proof We take a nonperiodic point p ∈ M and define

C := max{‖DY 1
p‖ : p ∈ M,Y ∈ U (X, ε)},

where U (X, ε) is a ε-C1-neighborhood of X. Using Lemma 9.25 we obtain a C2

conservative diffeomorphism Ψ : F → C and T = (c,0,0). Take an uniform bound
Θ > 0 for the norm of the first and second derivatives of Ψ computed in time-1 thin
flow-boxes and suppose that this constant is also valid for any vector field ε-C1-
close to X. We take the angle ξ such that

ξ <
ε(1 −

√

1 − κ
2 )

4Θ2
. (9.4)

We now fix γ > 0. To obtain item (a), we note that for any α < 1 with α ≈ 1 there
exists r > 0 such that X[0,α](q) ∩ NX1(p) = ∅ for every q ∈ B(p, r). We fix such
α > 0 and let g : R → R be a C∞ function such that g(t) = 0 for t < 0, g(t) = t for
t ∈ [1 − α,2α − 1], g(t) = α for t ≥ α and ġ ≤ 2.

Now for all q = (0, y, z) ∈ B(p, r) we decrease r so that

|y|, |z| < min

{
cε

Θ2g̈
,

ε

2Θ

}

. (9.5)
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For such r > 0, let G : R → [0,1] be a C∞ function such that G(ρ) = 1 for ρ ≤
r
√

1 − κ
2 , G(ρ) = 0 for ρ ≥ r and Ġ ≤ 2[(1 −

√

1 − κ
2 )r]−1. We set ρ = √

y2 + z2

and consider the rotation flow Rξg(t)G(ρ)(0, y, z) acting on Np , which we denote by
Rt (q), and which is defined by Rt (0, y, z) = (0, R̂ξg(t)G(ρ)(y, z)). Denote the time
derivative by Ṙt . By a simple computation, we obtain

Ṙt ◦ R−1
t (0, y, z) = ξ ġ(t)G(ρ)(0,−z, y). (9.6)

We consider the flow T t = (ct,0,0) associated to T and define the map Υ (t, q) :=
T t (Rt (q)) for q = (0, y, z) ∈ B(p, r). Setting H(t, q) := (t,Rt (q)) and

F(t,Rt (q)) := T t (Rt (q)) = Υ (t, q)

we obtain Υ (t, q) = F ◦ H(t, q). Taking time derivatives at t = s we obtain

d

dt
Υ (t, q)|t=s = d

dt
T t (Rt (q))|t=s = DFH(s,q) · DHs

= (

∂1F ∂2F
)

H(s,q)

(

∂1H

∂2H

)

s

=
(

T (T s(Rs)) DT s
Rs (q)

)(

1
Ṙs(q)

)

= T (T s ◦ Rs(q)) + DT s
Rs (q)Ṙs(q).

The vector field Z is defined in flow-box coordinates by

Z(·) = T (·) + DT s
Rs (q) · Ṙs(R−s · T −s)(·).

From (9.6) we deduce that the C1-perturbation is given by Z = T + P with

P(x, y, z) = ξf (x, y, z) · A(x,y, z), (9.7)

where f (x, y, z) is the scalar function ġ(x/c)G(
√

y2 + z2) and A(x,y, z) is the
linear map (0,−z, y). It is straightforward to see that div(Z) = 0. Also, the support
of the perturbation P is B(p, r) × [0, cα] ⊂ C.

Now we estimate the C1-norm of P . We note that ‖P‖C0 ≤ ε/Θ by (9.5). To
compute the C1-norm we take derivatives in (9.7) and, by the product rule,

DP = ξ [∇f · A(x,y, z) + f · A]

= ξ

[(

g̈
(x

c

)

Gc−1, ġ
(x

c

)

Ġ
y

√

y2 + z2
, ġ

(x

c

)

Ġ
z

√

y2 + z2

)

· A(x,y, z)+f ·A
]

.

We use again (9.5) to bound the terms g̈(x/c)G(ρ)c−1z and g̈(x/c)G(ρ)c−1y.
We remark that the other terms are unaffected by the choice of r > 0 small. We

take, for example, ġ(x/c)Ġ
y√

y2+z2
z and, using polar coordinates given by (y, z) =
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(ρ cos(β), ρ sin(β)), we get

ξ ġ
(x

c

)

Ġ
ρ cos(β)

ρ
ρ sin(β) ≤ ξĠ

2ρ2

ρ
≤ ξ

4ρ

(1 −
√

1 − κ
2 )r

≤ ξ
4

(1 −
√

1 − κ
2 )

<
ε

Θ2
.

For the other three analogous terms we proceed in the same way to obtain
‖DP ‖C0 < ε/Θ2. We note that we are allowed to take y, z close to zero without
interfering with the size of the perturbation. This is a key property of the C1 topol-
ogy.

For q ∈B(p, r
√

1−κ) we have Z1(Ψ (q))= (c,Rξα(Ψ (q))), and so P 1
Z(Ψ (q))=

R̂ξα ≈ R̂ξ (we just have to choose r suitably small). Hence we obtain the analog of
(b) for the trivial vector field.

Now it is straightforward to see that (b) follows by choosing r suitably small
(depending on the constants γ , C and Θ) which is possible by what we have seen
above.

Finally, we estimate the C1-norm of P1. Using (9.5) and the choice of ξ in (9.4)
we obtain ‖Y − X‖C1 = ‖P1‖C1 ≤ ε, and Lemma 9.30 is proved. �

Now we commute the composition with the rotation and perturb in the past.

Lemma 9.31 Let X ∈ X2
μ(M), a non-periodic point p ∈ M , ε > 0, 0 < κ < 1, and

a fixed time T = 1 be given. Then there exists an angle ξ (not depending on p) such
that, for every γ > 0, there exists r > 0 (depending on p) and a zero divergence
vector field Y , ε-C1-close to X, such that:

(a) Y − X is supported in

F−1
X (p)(B(p, r)) = {P t

X(p)(q) : q ∈ B(p, r), t ∈ [−1,0]};
(b) ‖P 1

Y (q) − R̂ξP
1
X(X−1(p))‖ < γ for each q ∈ P−1

X (p)(B(p,
√

1 − κr)).

Proof We proceed as in Lemma 9.30, this time for X−t , finding a change of coor-
dinates Ψ̂ (x, y, z) = X−λ−1x(0, ϕ(y, z)). Then we consider R−1

ξg(t)G(ρ) for t > 0 and
we find Z. We define Z = Ψ∗Y and we get

P 1
Y (q) = [P −1

Y (Y 1(q))]−1 ≈ [P −1
X (p)R̂−1

ξ ]−1 = R̂ξ [P −1
X (p)]−1 = R̂ξP

1
X(X−1(p)),

by the same arguments used in the proof of Lemma 9.30. �

Now we use the two previous lemmas to build some useful realizable linear flows.

Lemma 9.32 Given X ∈ X2
μ(M), ε > 0, 0 < κ < 1, a non-periodic point p and a

fixed time T = 1. Then there exists an angle ξ (not depending on p) such that L0 =
P 1

X(p)R̂ξ and L0 = R̂ξP
1
X(p) are (ε, κ)-realizable linear flows of length 1 at p.
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Proof We prove that L0 = P 1
X(p)R̂ξ is (ε, κ)-realizable. Let γ > 0. By Re-

mark 9.29, we may choose the open set U to be a ball, say B(p′, r ′) ⊆ B(p, r).
Now we apply Lemma 9.30 and we get a zero divergence vector field Y , ε-C1-close
to X, such that Y − X is supported inside the flow-box F 1

X(p′)(B(p′, r ′)) and, for
every q ∈ B(p′, r ′√1 − κ), we have ‖P 1

Y (q)−P 1
X(p′)R̂ξ‖ < γ . We note that, since

r > 0 can be taken arbitrarily small, the arrival time at NX1(p) for points in B(p, r)

is almost 1.
Taking K = B(p′, r ′√1 − κ) ⊆ U , we get

μ(K)

μ(U)
= π(1 − κ)r ′2

π.r ′2 = 1 − κ

and so the first statement of the lemma follows.
For the perturbation P , defined in Lemma 9.30, we have DXq = DYq for any

q ∈ B(p′, r ′) ∪ P1
X(p)(B(p′, r ′)). Therefore item (i) on Definition 9.27 is true.

Finally, item (ii) follows from item (b) of Lemma 9.30 and the continuity of the
Linear Poincaré Flow.

For L0 = R̂ξP
1
X(p) we proceed analogously now using Lemma 9.31. This com-

pletes the proof. �

Lemma 9.33 Given X ∈ X2
μ(M), ε > 0, 0 < κ < 1 and a non-periodic point p,

there exists an angle ξ such that, for |ξi | < ξ , i = 1,2, the composition

Np

P 1
X

(p)R̂ξ1−−−−−→ NX1(p)

P r
X(p)−−−→ NX1+r (p)

R̂ξ2 P 1
X

(X1+r (p))−−−−−−−−−→ NXr+2(p)

is an (ε, κ)-realizable linear flow of length r + 2 at p.

Proof Take γ > 0. By Lemma 9.32, for κ1 < κ we get ξ such that P 1
X(p)R̂ξ1 and

R̂ξ2P
1
X(X1+r (p)) are (ε, κ1)-realizable. By item (1) of Lemma 9.28, the trivial map

P r
X is (ε, κ1)-realizable. Now, if κ1 = κ/3, then we use item (2) of Lemma 9.28 and

obtain the (ε, κ)-realizability. �

9.3.2.2 Large Rotations

Now we find conditions under which we can rotate by large angles. In the previous
section we were able to rotate by time-1, but we need to rotate along arbitrarily long
times. What then happens if we increase time?

We want to rotate by an angle 2π , and thus we take a time m such that ξm = 2π .
But ξ is in general very small, and so m must be very large. Note that the choice
of m may affect the norm of the perturbation because, for Ψ given by Lemma 9.25,
‖Ψ ‖ depends on m and, in general, increases with m. One of the reasons for this
fact is that, for v ∈ Np , we may have a very small angle �(Xm(v),X(Xm(p))).

Furthermore, the dynamics along the orbit may also obstruct the construction of
a small norm perturbation. Let us consider a situation in which this last problem is
minimized, say when we have simultaneously
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(a) no domination, that is P t
X(p) is “almost conformal” for all t ∈ [0,m];

(b) almost right angles: �(Nu
Xt (p),Ns

Xt (p)) ≈ π
2 , for all t ∈ [0,m].

Even if we have properties (a) and (b), our perturbations may not have a small C1

norm, because the normal directions may be sent almost parallel to EX . If this prob-
lem does not occur, then under conditions (a) and (b) we can perform large rotations
with just a single perturbation. In fact, this was the strategy for the development of
perturbations for linear differential systems in [40, Lemma 3.5].

In general, we concatenate several time-1 small rotations. However, this concate-
nation implies that κ grows. In [51, Lemma 3.7], Bochi bypassed this problem using
a nested rotation lemma. Here we adapt this method to our setting.

Let E (p) ⊆ Np be an ellipse centered in p. As in [51], the eccentricity E of an

ellipse is defined by E :=
√

major axis
minor axis . We also consider the map J ∈ SL(2,R) such

that J (E (p)) is a disk. For r > 0 we define the ellipse E (p, r) := J−1(B(p, r)).
Given any ellipse E (p, r) and J ∈ SL(2,R) such that J (E (p, r)) is a disk, we
denote by Êξ the elliptical rotation defined by J−1R̂ξ J .

Lemma 9.34 Let there be given X ∈ X2
μ(M), a non-periodic point p ∈ M , ε > 0,

0 < κ < 1, a fixed time T = 1 and e ≥ 1. Then there exists ε̂ > 0 (not depending
on p) such that, for every γ > 0, there exists r > 0 (depending on p) with the
following properties.

If E (p, r) is an ellipse with eccentricity E ≤ e and diam(E (p, r)) < ε, Êξ is a
rotation of the ellipse E (p, r) satisfying ‖P 1

X(p)−P 1
X(p)Êξ‖ < ε̂, then there exists

a zero divergence vector field Y of class C1, ε-C1-close to X such that

(a) Y − X is supported in the flowbox F 1
X(p)(E (p, r));

(b) ‖P 1
Y (q) − P 1

X(p)Êξ‖ < γ for all q ∈ E (p, r
√

1 − κ).

Proof The proof is the same as for Lemma 9.30, but the angle ξ depends also on E.
We use Lemma 9.25 and consider the flow-box F 1

T (p)(E (p, r)). Let J ∈ SL(2,R)

be such that J (E (p, r)) is a disk. Now we take the flow-box F 1
T (p)(J (E (p, r)))

and define the elliptical rotation by Eξg(t)G(ρ) := J−1Rξg(t)G(ρ)J . Since E = ‖J‖ =
‖J−1‖, ξ should be smaller than the one in Lemma 9.30, which is obtained by taking
ε̂ ≈ 0. �

The next simple lemma says that, if we fix a small ellipse in a small ball
B(p, r) ⊆ Np and consider its arrival into NX1(p), then this set is almost the im-
age under the Linear Poincaré Flow at p of the same ellipse modulo translations. A
similar statement is proved in [51, Lemma 3.6].

Lemma 9.35 Let Xt : M −→ M be a C1-flow, ζ ∈]0,1[ (near 1), and E ≥ 1. There
exists r > 0 such that, for all ellipses E (q, r̃) ⊆ B(p, r) ⊆ Np with eccentricity ≤ E,
P 1

X(p)(E (q, ζ r̃) − q) + P1
X(p)(q) is contained in

P1
X(p)(E (q, r̃)) ⊆ P 1

X(p)(E (q, (2 − ζ )r̃) − q) + P1
X(p)(q).
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Since P t
X(p) is modified area-preserving, we measure the non-conformality

using its norm ‖P t
X(p)‖ in the following way: suppose that d ≥ a are the ma-

jor axis and the minor axis (respectively) of the ellipse E (p) = P t
X(p)(B(p,1)).

Then the eccentricity of E (p) is E = √
d/a. Since ‖P t

X(p)‖ = d and, by volume-

preservation, we have a−1 = d · x(t), we conclude that E = √
d/a = √

d2x(t) =
d
√

x(t) = ‖P t
X(p)‖√x(t).

The next lemma is a version of [51, Lemma 3.7] and says that bounded eccen-
tricity is crucial to concatenate many elliptical small rotations keeping κ controlled.

Lemma 9.36 Given X ∈ X2
μ(M), ε > 0, 0 < κ < 1 and E ≥ 1, there exists ε̂ > 0

satisfying the following.
Let p ∈ M be a non-periodic point and suppose that for some n ∈ N we

have ‖P j
X(p)‖ ≤ E

√

x−1(j) for j = 1, . . . , n. If Lj : NXj (p) → NXj+1(p) for
j = 0, . . . , n − 1 is a sequence of linear maps satisfying:

(a) Lj−1. . .L0(B(p,1)) = P
j
X(p)(B(p,1)) for j = 1, . . . , n;

(b) ‖P 1
X(Xj (p)) − Lj‖ < ε̂ for j = 0,1, . . . , n − 1;

then {L0,L1, . . . ,Ln−1} is an (ε, κ)-realizable linear flow at p.

Proof Let us start by fixing some constants. We choose κ0 < κ by taking λ ∈]0,1[
near 1 such that λ4n(1 − κ0) > 1 − κ . We take ζ ∈]0,1[ such that ζ ∈]λ,1[ and
2 − ζ ∈]1, λ−1[. Let ε̂ be given by Lemma 9.34 depending on ε, E and κ0.

Using (a) and the hypothesis ‖P j
X(p)‖ ≤ E

√

x−1(j) (for each j ) we consider

Êj the rotation of the ellipse P
j
X(p)(B(p,1)). Then Lj := P 1

X(Xj (p))Êj satisfies
(b) and these are the linear maps which we will (ε, κ)-realize. Let γ > 0 be given.

By Lemma 9.35 applied n times, and shrinking the radii at each step, there exists
r1 > 0 such that, for each j and all ellipses E (q, r̃) ⊆ B(Xj (p), r1) ⊆ NXj (p) with
eccentricity ≤ E, we have

• P 1
X(Xj (p))(E (q, ζ r̃) − q) + P1

X(Xj (p))(q) ⊆ P1
X(Xj (p))(E (q, r̃)), and

• P1
X(Xj (p))(E (q, r̃)) ⊆ P 1

X(Xj (p))(E (q, (2 − ζ )r̃) − q) + P1
X(Xj (p))(q).

Take r < r1. Now we will define the vector field Y and the measurable set K as in
Definition 9.27. By Remark 9.29, we consider U = B(p′, r ′) ⊆ B(p, r). For each j ,
denoting P

j
X(p)(p′) by p′

j , we define a sequence of ellipses E
j
s ⊆ NXj (p) with

eccentricity ≤ E by

E 0
s = B(p′, sr ′) for s ∈]0,1] and E

j
s = P

j
X(p)(B(p′, sr ′) − p′) + p′

j .

Decreasing r , if necessary, these ellipses satisfy the conditions of Lemma 9.35.
Thus, for each j we also have

E
j+1
sλ−1 ⊃ E

j+1
s(2−ζ ) ⊇ P1

X(Xj (p))(E
j
s ) ⊇ E

j+1
sζ ⊇ E

j+1
sλ .

For each j we apply Lemma 9.34 to p′
j , κ0, E

j
s and Êj , with s = λn. Hence there

exists a vector field Yj such that
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(i) Yj − X is supported in the flow-box F 1
X(p′

j )(E
j
λn);

(ii) for every qj ∈ E
j

λn
√

1−κ0
we have ‖P 1

Y (qj ) − P 1
X(p′

j )Êj‖ < γ .

By item (i), the Yj have disjoint supports, and so we define Y := ∑n−1
j=0 Yj . We

define also K := E
0
λ2n

√
1−κ0

= B(p′, λ2n
√

1 − κ0r
′). Hence we obtain

μ(K)

μ(U)
= π(λ2n

√
1 − κ0r

′)2

πr ′2 = λ4n(1 − κ0) > 1 − κ.

Let us see that when we iterate we have a nested sequence, i.e., for all q ∈ K and

each j we have Y j (q) ∈ E
j

λn
√

1−κ0
. We have P1

Y (p′)(E 0
s ) ⊆ E

1
s(2−ζ ) ⊂ E

1
sλ−1 , and

so for every j we obtain P
j
Y (p′)(E 0

s ) ⊂ E
j

sλ−j ⊆ E
j

sλ−n . Hence for s = λ2n
√

1 − κ0

we get P1
Y (p′)(K) ⊂ E

j

λn
√

1−κ0
, and the orbit of q will be inside the domain of

each of these rotations.
Finally, to prove that ‖P 1

Y (Y j (q)) − Lj‖ < γ for all q ∈ K , we use item (ii), and
go back and decrease r once more, if necessary. �

9.3.3 Blending Oseledets Directions Along an Orbit Segment

Given p ∈ Γ +
m (X), we suppose that

Δ(Xt(p), r) =
‖P r

X(Xt (p))|Ns
Xt (p)

‖
‖P r

X(Xt (p))|Nu
Xt (p)

‖ ≥ c,

for c � 1 and 0 ≤ t + r ≤ m. Then the dynamics sends vectors near Nu
Xt (p)

into
vectors near Ns

Xt+r (p)
during that period. The next simple lemma, whose proof may

be found in [51, Lemma 3.9], clarifies this behavior. Denote two unit vectors by
nσ

t ∈ Nσ
Xt (p)

for σ = u, s.

Lemma 9.37 Given an angle ξ , there exists c > 1 such that, if Δ(Xt(p), r) > c,
then there exists v ∈ NXt(p) \ {0} satisfying �(v, nu

t ) < ξ and �(P r
X(Xt (p)) ·

v,ns
t+r ) < ξ .

The next lemma gives us the conditions under which we may apply Lemma 9.36.
For a proof of the next lemma see [39, Lemma 4.0.11].

Lemma 9.38 Let ξ > 0 and d > 1 be given. Let �(Nu
Xt (p)

,Ns
Xt (p)

) > ξ for each

t > 0, and let d−1 ≤ ‖P t
X(p)|Ns

p
‖

‖P t
X(p)|Nu

p
‖ ≤ d . Then there exists E > 1 such that ‖P t

X(p)‖ ≤
E

√

x(t)−1 for all t > 0.
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Now we are able to mix the Oseledets subspaces by small perturbations along
orbits which have no domination.

Lemma 9.39 Let X ∈ X2
μ(M), ε > 0 and 0 < κ < 1. There exists m ∈ N such that,

for every p ∈ Δm(X) = {p ∈ O+ : ‖P m
X (p)|Ns

p‖
‖Pm

X (p)|Nu
p‖ ≥ 1

2 }, there exists an (ε, κ)-realizable

linear flow such that Lm(Nu
p) = Ns

Xm(p)
.

Proof First we set up the constants. We take ξ > 0 the minimum of the angles
satisfying simultaneously Lemma 9.32 and Lemma 9.33 and depending on X, ε and
κ/2. We set C := max{‖DX±1‖ : p ∈ M} and c given by Lemma 9.37 depending
on the angle ξ . We take c > C2 also.

Lemma 9.38 gives us E > 1 depending on ξ and d = 2c2. Let ε̂ > 0, depending
on X, ε, κ and E, be given by Lemma 9.36. Let β > 0 be such that ‖Rξ0 − Id‖ ≤
C−1E−2ε̂ for ξ0 < β .

Finally, we take a sufficiently large m ∈ N satisfying m ≥ 2π
β

. Now we divide the
proof into three steps.

Step I – Small angle between the Oseledets subspaces. We assume that

for some r ∈ [0,m] we have �(Nu
Xr(p),N

s
Xr (p)) < ξ. (9.8)

We take advantage of this fact and we define a realizable linear flow of length 1
in the following way. On the one hand, if r < m − 1, the linear map is based at
Xr(p) and is defined by L0 := P 1

X(Xr(p))Rξ . On the other hand, if r > m − 1,
the linear map is based at Xr−1(p) and is defined by L0 := RξP

1
X(Xr−1(p)).

Now we use Lemma 9.32 and concatenate from the right and left, if necessary,
with trivial maps by using item (1) of Lemma 9.28. We obtain Lm(Nu

p)=Ns
Xm(p)

.
Step II – Locally Ns dominates Nu. Now we assume that

for some 0 ≤ r + t ≤ m we have Δ(Xt(p), r) > c. (9.9)

From Lemma 9.37 there exists a vector v ∈ NXt(p) such that �(v, nu
t ) < ξ and

�(P r
X(Xt (p)) · v,ns

t+r ) < ξ . Since ξ is small, we apply Lemma 9.32 at Xt(p)

and at Xt+r (p). By the choice of c above, we get r > 2 and so we have disjoint
perturbations.
Therefore, our first rotation allows us to send Nu

Xt(p)
onto the subspace R ·v. The

flow then maps this direction into P r
X(Xt (p)) · v in time r and, finally, another

rotation sends P r
X(Xt (p)) · Rv onto Ns

Xt+r (p)
.

Now we use Lemma 9.28 and concatenate the three realizable linear flows, say
rotation-trivial-rotation, by using Lemma 9.33 and we get Lm(Nu

p) = Ns
Xm(p)

.
Step III – Conformal behavior. Finally, we suppose that we do not have either (9.8)

or (9.9). We set up the conditions for Lemma 9.38. Since Δ(p,m) ≥ 1
2 and (9.9)

is false we have

Δ(Xr(p), t) = Δ(Xt+r (p),m − t − r)−1Δ(p,m)Δ(p, r)−1 ≥ 1

2c2
.
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Therefore, since d = 2c2,

1

d
≤

‖P t
X(Xr(p))|Ns

Xr (p)
‖

‖P t
X(Xr(p))|Nu

Xr (p)
‖ ≤ d,

for every r, t with 0 ≤ r + t ≤ m. We observe that, in particular, for r = 0, we
have �(Nu

Xt (p)
,Ns

Xt (p)
) > ξ for all t ∈ [0,m]. Now we use Lemma 9.38 and

conclude that ‖P t
X(p)‖ ≤ E

√

x(t)−1 for each t ∈ [0,m].
Let us take ξ0, ξ1, . . . , ξm−1 with ξj < β for each j and satisfying also
∑m−1

j=0 ξj = �(Nu
p,Ns

p). We define

Lj : NXj (p) → NXj+1(p), v → P
j+1
X (p)Rξj

[P j
X(p)]−1 · v.

Let us check the conditions of Lemma 9.36. Since, by definition, for each j we
have Lj−1. . .L0 = P

j
X(p)R∑j−1

i=0 ξi
, we obtain item (a) of Lemma 9.36. Now we

have

‖P 1
X(Xj (p)) − Lj‖ ≤ ‖P 1

X(Xj(p)) − P
j+1
X (p)Rξj

[P j
X(p)]−1‖

= ‖P 1
X(Xj (p))[Id − P

j
X(p)Rξj

[P j
X(p)]−1]‖

≤ ‖P 1
X(Xj(p))‖‖P j

X(p)[Id − Rξj
][P j

X(p)]−1]‖
≤ ‖P 1

X(Xj(p))‖‖P j
X(p)‖‖[P j

X(p)]−1‖‖Id − Rξj
‖

≤ CE

√

x−1(j)E
√

x(j)‖Id − Rξj
‖.

(In the last inequality we have used ‖P −t
X ‖ ≤ E

√
x(t).) Therefore we obtain

‖P 1
X(Xj (p)) − Lj‖ ≤ CE2‖Id − Rξj

‖ ≤ ε̂

and item (b) of Lemma 9.36 is true. From this lemma we have the realizability,
and therefore

Lm(Nu
p) = Lm−1 ◦· · ·◦L0(N

u
p) = P m

X (p)R∑m−1
j=0 ξj

(Nu
p) = P m

X (p)·Ns
p =Ns

Xm(p),

which proves the lemma. �

9.3.4 Lowering the Norm: Local Procedure

We begin this section by adapting to our setting the results [51, Lemma 3.12] and
[53, Lemma 4.5]. The first lemma (for a proof see [39, Lemma 5.0.13]) gives us
information about when we have a recurrence to a positive measure set. The second
lemma is an elementary result which relates the original norm to a new norm.
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Lemma 9.40 Let Xt : M → M be a measurable μ-invariant flow, Δ ⊆ M a positive
measure set, Γ := ∪t∈RXt(Δ) and let γ > 0.

Then there exists a measurable function T : Γ → R such that, for μ-a.e. p ∈ Γ ,
all t ≥ T (p) and every τ ∈ [0,1], there exists some s ∈ [0, t] satisfying | s

t
− τ | < γ

and Xs(p) ∈ Δ.

Consider p,q := Xt(p) ∈ Γ and the map P : Np → Nq whose matrix written
with respect to the Oseledets basis (given by {nu

p,ns
p} and {nu

q,ns
q}) is

P =
(

auu aus

asu ass

)

.

Let ‖P‖max = max{|auu|, |aus |, |asu|, |ass |}.

Lemma 9.41 We have the bounds

(a) ‖P‖ ≤ 4(sin∠(Nu
p,Ns

p))−1‖P‖max;

(b) ‖P‖max ≤ (sin∠(Nu
q ,Ns

q))−1‖P‖.

Now we are able to decrease the norm under a small perturbation.

Lemma 9.42 Let X ∈ X2
μ(M), where Xt is aperiodic and all hyperbolic sets have

zero measure. Let ε, δ > 0, 0 < κ < 1. Then there exists a measurable function
T : M → R such that for μ-a.e. p ∈ M and every t ≥ T (p), there exists a (ε, κ)-
realizable linear flow at p with length t such that ‖Lt(p)‖ ≤ etδ .

Proof First we take m ∈ R large enough given by Lemma 9.39 and depending on
X,ε, κ/2. Write Γ := Γ +

m (X), Δ := Δm(X) and note that Xt aperiodic implies that
μ(Γ ∗

m(X)) = μ(Γ ). We have μ(O0 ∪Γ ) = 1, for otherwise there exists a hyperbolic
set with positive measure, contradicting our hypothesis. We suppose that μ(Γ ) > 0,
for otherwise, with μ(Γ ) = 0, μ-a.e. point p ∈ M would be such that λ+(p) = 0
and there is nothing to prove, because a trivial map does the work.

We recall that Γ = ⋃

t∈R
Xt(Δ). For μ-a.e. p ∈ Γ , the Oseledets’ Theorem in

the particular case of a three-dimensional conservative flow gives us Q(p) such that
for all t ≥ Q(p)

(1) 1
t

log‖P t
X(p) · nu‖ < λ+(p) + δ for all nu ∈ Nu

p \ {0};
(2) 1

t
log‖P t

X(p) · ns‖ < −λ+(p) + δ for all ns ∈ Ns
p \ {0};

(3) − log sin�(Nu
Xt(p)

,Ns
Xt (p)

) < tδ.

By using Lemma 9.40, with τ = 1/2, we get recurrence to Δ approximately in the
middle of the orbit segment. However, to get good estimates of the norm of the
linear map Lt , points in the orbit after this time must also satisfy items (1) and (2)
above.

Let Bn := {p ∈ Γ : Q(p) ≤ n} for n ∈ N. We have Bn ⊆ Bn+1 and μ(Γ \
Bn) −→

n→∞ 0.
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We consider now the following family of sets:

C0 := ∅ and Cn :=
⋃

t∈R
Xt(Δ ∩ X−m(Bn)).

It is easy to see that Cn −→
n→∞ Γ , and so the measurable function T : Γ → R will

be μ-a.e. defined on each Cn \ Cn−1 for n ∈ N.
Taking c > max{log‖DX1

p‖ : p ∈ M} yields the Lyapunov exponents of any p ∈
O less than c (recall the definition of O at the beginning of Sect. 9.3). For p ∈ Γ

we have non-zero Lyapunov exponents, and so we have well-defined Oseledets one-
dimensional subspaces Nu

p and Ns
p .

Let γ = min{1/6, δ/c}. Now we use Lemma 9.40, replacing Δ by Δ∩X−m(Bn)

and Γ by
⋃

t∈R
Xt(Δ ∩ X−m(Bn)). By this lemma, for each n, there exists a mea-

surable function Tn : Cn → R such that, for μ-a.e p ∈ Cn and for all t ≥ Tn(p),
there exists some s ∈ [0, t] satisfying Xs(p) ∈ Δ ∩ X−m(Bn) and | s

t
− 1

2 | < γ .
Now we define a sufficiently large T (p) for p ∈ Cn \ Cn−1 so that

T (p) ≥ max

{

Tn(p),
m

γ
,6Q(p),

1

δ
log

4

sin�(Nu
p,Ns

p)

}

. (9.10)

Let p ∈ Cn \ Cn−1 and t ≥ T (p). Since t ≥ T (p) ≥ Tn(p), we obtain Xs(p) ∈ Δ.
Hence, by Lemma 9.39, we define a (ε, κ/2)-realizable linear flow L1 : NXs(p) −→
NXs+m(p), sending Nu

Xs(p) into Ns
Xs+m(p)

. Now we concatenate from right to left with
trivial maps and, by Lemma 9.28, we obtain a (ε, κ)-realizable linear flow defined by

Np
L0−→ NXs(p)

L1−→ NXs+m(p)

L2−→ NXt(p)

with L0 = P s
X(p) and L2 = P t−m−s

X (Xs+m(p)).
To estimate ‖Lt(p)‖ we consider the linear maps relative to a suitable unitary

basis {nu
Xr(p), n

s
Xr(p)} for r ∈ [0, t], which is invariant for the Linear Poincaré Flow,

so they have the form

L2 =
(

cuu 0
0 css

)

, L1 =
(

buu bus

bsu bss

)

, L0 =
(

auu 0
0 ass

)

.

The key observation is that buu = 0. Consider the product matrix

Lt(p) = L2 · L1 · L0 =
(

0 auubuscss

assbsucuu assbsscss

)

.

Claim For p ∈ Cn \ Cn−1 and t ≥ T (p) we have:

(a) max{log |auu|, log |cuu|} < 1
2 t (λ+(p) + 4δ);

(b) max{log |ass |, log |css |} < 1
2 t (−λ+(p) + 4δ).

Proof of the claim To prove that log|auu| < 1
2 t (λ+(p) + 4δ) we first note that

s > t(1/2 − γ ) > t/3 ≥ T (p)/3 ≥ Q(p) and so, by Oseledets’ Theorem, we have



300 9 Global Dynamics of Generic 3-Flows

log|auu| = log |P s
X(p) · nu

p| < s(λ+(p) + δ). Since γ λ+(p) < γ c ≤ δ and γ < 1/2,
we get

s
(

λ+(p) + δ
)

< t(1/2 + γ )
(

λ+(p) + δ
)

< t
(

λ+(p)/2 + δ/2 + λ+(p)γ + γ δ
)

< t
(

λ+(p)/2 + δ/2 + δ + δ/2
)

<
1

2
t
(

λ+(p) + 4δ
)

and the inequality follows.
To prove that log|cuu| < 1

2 t (λ+(p) + 4δ) we consider the fact that Xs(p) ∈
X−m(Bn), therefore Xs+m(p) ∈ Bn and Q(Xs+m(p)) ≤ n by definition of Bn. So
we will have the approximation rate given by Oseledets’ Theorem if t − m − s > n.
By (9.10) for t ≥ T (p), we have −m/t ≥ −γ . Since −s/t > − 1

2 − γ and −γ ≥
−1/6 we obtain

t − m − s = t

(

1 − m

t
− s

t

)

> t

(
1

2
− 2γ

)

>
t

6
≥ Q(p) ≥ n.

Thus t − m − s will be sufficiently large to use item (1) above. Hence

log|cuu| = log |P t−m−s
X (Xs+m(p)) · nu

Xs+m(p)
| < (t − m − s)(λ+(p) + δ)

< t(1 − m/t − s/t)(λ+(p) + δ) < t(γ + 1/2)(λ+(p) + δ)

= t (γ λ+(p) + γ δ + λ+(p)/2 + δ/2)

< t(δ + δ/2 + λ+(p)/2 + δ/2) = 1

2
t (λ+(p) + 4δ).

We note that item (b) is analogous to item (a) and the claim is proved. �

Now we estimate ‖L1‖max. First note that

s + m > t(1/2 − γ + m/t) > t(1/2 − γ ) > t/6 > Q(p) ≥ n,

and so by (3) we have (sin�(Nu
Xs+m(p)

,Ns
Xs+m(p)

))−1 < e(s+m)δ < etδ . Since L1 is
(ε, κ)-realizable, we conclude that ‖L1 −P m

X (Xs(p))‖ is small. Therefore, because
t > T (p) ≥ m/γ and γ c ≤ δ, we get ‖L1‖ ≤ emc ≤ etγ c ≤ etδ . By Lemma 9.41(b)
we also have

‖L1‖max ≤ sin−1 �(Nu
Xs+m(p)

,Ns
Xs+m(p)

)‖L1‖ ≤ e2tδ .

Now we estimate each of the entries of the product matrix:

|auubuscss | ≤ e
1
2 t (λ+(p)+4δ)+2tδ+ 1

2 t (−λ+(p)+4δ) = e6tδ;
|assbsucuu| ≤ e

1
2 t (−λ+(p)+4δ)+2tδ+ 1

2 t (λ+(p)+4δ) = e6tδ;
|assbsscss | ≤ e

1
2 t (−λ+(p)+4δ)+2tδ+ 1

2 t (−λ+(p)+4δ) ≤ e−tλ+(p)+6tδ ≤ e6tδ.
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This implies the inequality ‖Lt(p)‖max < e6tδ . By item (a) of Lemma 9.41 we have

‖Lt(p)‖ ≤ 4
1

sin�(Nu
p,Ns

p)
‖Lt(p)‖max.

But t ≥ T (p) ≥ 1
δ

log 4
sin�(Nu

p,Ns
p)

so 4
sin�(Nu

p,Ns
p)

≤ etδ and we get ‖Lt(p)‖ ≤ e7tδ .

Replacing δ by δ/7 we conclude that ‖Lt(p)‖ ≤ etδ and the lemma is proved. �

9.3.4.1 Realizing Vector Fields

Let X ∈ X2
μ(M)∗, where Xt is aperiodic and also all hyperbolic sets have zero

Lebesgue measure. Given ε, δ > 0 and 0 < κ < 1, we assume that m is large
enough to satisfy Lemma 9.39. By Lemma 9.42, there exists a measurable func-
tion T : M → R such that, for μ-a.e. p ∈ M and for every t ≥ T (p), there exists a
(ε, κ)-realizable linear flow at p with length t such that ‖Lt(p)‖ ≤ etδ .

This means that, for each γ > 0, we can find r = r(p, t) > 0 such that, for every
open subset U of B(p, r), there exists a conservative vector field Y , ε-C1-close
to X, satisfying the following. First, Y = X outside the flow-box F t

X(p)(U) and,
moreover, ‖P t

Y (q) − Lt‖ < γ for q in a measurable subset K ⊂ U which is close to
U in measure (i.e. μ(K) > (1 − κ)μ(U) for a small κ > 0); see Definition 9.27.

Since ‖Lt(p)‖ ≤ etδ we conclude that ‖P t
Y (q)‖ ≤ eδt + γ for all q ∈ K (where

γ ≈ 0). The vector field Y realizes the abstract map Lt(p), i.e., P t
Y (q) ≈ Lt(p) for

a large percentage of points q ∈ U ⊂ Np (see Fig. 9.5).

9.3.5 Lowering the Norm: Global Procedure

Now we use the local construction of realizable linear flows with a small norm in
order to decrease the function LE(·) for a zero divergence vector field Y C1-close

Fig. 9.5 Realizing vector fields given a linear map Lt
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to X. We will use the notion of suspension or special flow built under a function,
from Sect. 2.3.2.2.

It follows from the Ambrose-Kakutani Theorem [12, 13] that any aperiodic flow
is isomorphic to some special flow. This theorem is applicable to the flow of Propo-
sition 9.23. The isomorphism is given by W : M → Mh, where Mh is the flow
under the roof function h. The measure μ∗ = W∗μ is decomposed into the prod-
uct of Lebesgue measure in R and an R-invariant measure μ̃ in the base Σ , that
is,

∫

Mh
f (x, s)dμ∗ = ∫

Σ

( ∫ h(x)

0 f (x, s) ds
)

dμ̃(x). Thus we have a simplified rep-
resentation of our flow Xs(p). Hereafter we assume that our flow has this represen-
tation.

9.3.5.1 Sections of Flows and Special Flows

Given a special flow over a section Σ , the set Q = ∪t∈RXt(Σ) is called the Kaku-
tani castle. The tower of height i, which is denoted by Ti , is the set below the graph
of h(Bi), where Bi = {x ∈ Σ : h(x) = i}, that is, Ti = X[0,i](Bi). The next lemma
is the flow version of [51, Lemma 4.1].

Lemma 9.43 Let Xt : M → M be a μ-preserving aperiodic flow. For every positive
measure set U ⊆ M and every h ∈ R, there exists a μ̃-positive measure section
B ⊆ U such that X[0,h](B) is a flow-box and B is maximal (i.e. no set containing B

and with larger measure has the same properties as B).

Proof See [39, Lemma 6.1.2]. �

For a μ-generic point p, Lemma 9.42 gives us T (p) which, in general, is very
large. Hence Lemma 9.43 is crucial to avoid the overlapping of perturbations.

Consider a vector field X under the conditions of Proposition 9.23. For all Y ε-
C1 close to X we define C := max{‖P 1

Y (p)‖ : p ∈ M}. We take κ = δ2. Using the
function given by Lemma 9.42, we define Zh := {p ∈ M : T (p) ≤ h}. Then we get
μ(M \ Zh) −→

h→∞ 0, and so for h sufficiently large we have

μ(M \ Zh) < δ2. (9.11)

We intend to build a special flow with a ceiling function with height not less than
h and section inside Zh. Since, for large h, the set Zh has almost full measure, by
Lemma 9.43, we get a μ̃-positive measure set B ⊆ Zh. If x ∈ B , then h(x) ≥ h and,
since B ⊆ Zh, we have h ≥ T (x), and so the conditions of Lemma 9.42 are satisfied.

Let Q̂ be the castle with base B . We have Q̂ ⊇ Zh in the measure theoreti-
cal sense so, by (9.11), we get the inequality μ(Q̂c) ≤ δ2. We define the subcastle
Q ⊆ Q̂ by excluding the towers of Q̂ with height larger than 3h. Adapting [51,
Lemma 4.2] (the details are fully presented in [39, Lemma 6.2.1]) we obtain

μ(Q̂ \ Q) < 3δ2. (9.12)
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9.3.5.2 The Zero Divergence Vector Field Y ε-C1-Close to X

Now we make use of the realizability of vector fields and the properties of special
flows to construct a conservative vector field Y inside the subcastle Q by gluing
a finite number of local perturbations supported on self-disjoint flow-boxes. We
note that the measures μ̃ and μ are equivalent. In the next lemma we follow [53,
Lemma 4.14].

Lemma 9.44 Given γ > 0, there exist Y , ε-C1-close to X, a castle U for Y t and a
subcastle K for Y t such that:

(a) the castle U is open;
(b) μ(U \ Q) < γ and μ(Q \ U) < γ ;
(c) μ(U \ K) < κ(1 + γ );
(d) Y t (U) = Xt(U) and Y t = Xt outside the castle U ;
(e) if q is in the base of K and h(q) is the height of the tower of K that contains q ,

then

‖P h(q)
Y (q)‖ ≤ eδh(q) + γ .

Proof The castle Q is a measurable set and, since μ is Borel regular, there exists a
compact J ⊆ Q such that

μ(Q \ J ) < γμ(Q̂)/2. (9.13)

The compact J is a Xt -castle with the same structure as Q (i.e., preserving the same
dynamics of bases and towers as is the case for the castle Q). Now we choose an
open castle V such that J ⊆ V with

μ(V \ J ) < γμ(Q̂), (9.14)

and also with the same structure of Q and J . For every point p1 in J ∩ B we
have h(p1) ≥ h. Since (J ∩ B) ⊆ Zh we have T (p1) ≤ h, and therefore T (p1) ≤
h ≤ h(p1). So, for all t1 ≥ T (p1), and for γ fixed, there exists a radius r1(p1, t1)

(decrease r1 if one leaves the open castle V ) such that for almost (related with
κ = δ2) every point in U1 = B(p1, r1) ⊆ Np1 , more precisely for each point q ∈
K1 ⊆ U1, we have a vector field Y1 supported in a small flow-box containing the
orbit segment X[0,t1](p1) such that ‖P t1

Y1
(q)‖ ≤ eδt1 + γ .

We continue by choosing p′
i s and by Vitali’s arguments we fill up J with a union

U of self-disjoint open flow-boxes in order to obtain

μ(J \ U) ≤ γμ(J )/2. (9.15)

The set U is a Xt -castle with its section (base of the castle) the union of the Ui .
So for each i we get a vector field Yi supported in a small flow-box containing the
orbit segment X[0,ti ](pi), ε-C1-close to X, and such that ‖P ti

Yi
(q)‖ ≤ eδti + γ for all

q ∈ Ki ⊆ Ui .
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We define Y = Yi inside each flow-box and Y = X outside. Since these flow-
boxes are pairwise disjoint, the vector field is well defined and it is ε-C1-close to X.
Note that V is also a castle for Y t , and U is also a Y t -subcastle of the Y t -castle V

(having for base the union of all Ui ). We take K as the Y t -subcastle with a section
equal to the union of all the Ki . By construction of U , we get items (a), (d) and (e).

Now we prove item (b). Recalling that V ⊇ U and J ⊆ Q, by (9.14) we obtain

μ(U \ Q) < μ(V \ J ) < γμ(Q̂) ≤ γ.

To prove that μ(Q \ U) < γ we use (9.13) and (9.15) and conclude that

μ(Q \ U) ≤ μ(Q \ J ) + μ(J \ U) < γμ(Q̂) < γ.

Finally, for item (c) we observe that from item (b) we deduce that μ(U) < μ(Q) +
μ(U \ Q) < 1 + γ . The inequality μ(U \ K) < κμ(U) then leads to μ(U \ K) <

κ(1 + γ ). The proof is complete. �

9.3.5.3 Computing LE(Y)

We take t = hδ−1 (we may assume that this is an integer). By Lemma 9.22, we
obtain LE(Y ) ≤ ∫

M
1
t

log‖P t
Y (p)‖dμ(p). By the above construction for orbit seg-

ments inside the castle K and starting in the base, we guarantee a small upper Lya-
punov exponent. Therefore we define the set of points whose orbit stays for a long
time in K by G := {p ∈ M : Y s(p) ∈ K ∀s ∈ [0, t]} and denote by Gc its comple-
mentary set.

Lemma 9.45 For p ∈ G we have ‖P t
Y (p)‖ < et(1+6 logC)δ for some C > 0.

Proof Let p ∈ G. We split the orbit segment X[0,t](p) by return-times at BK (the
section of the castle K), say t = b + rn + · · · + r2 + r1 + a, where

Xa(p),Xr1+a(p),Xr2+r1+a(p), . . . ,X
∑n

i=1 ri+a(p)

are all in the base BK . It is clear that a, b, ri ∈]0,3h] except when p ∈ BK (a = 0)
and Xt(p) ∈ BK (b = 0). Note that

‖P t
Y (p)‖ = ‖P b+∑n

i=1 ri+a

Y (p)‖ ≤ ‖P b
Y (X

∑n
i=1 ri+a(p)))‖

× ‖P rn
Y (X

∑n−1
i=1 ri+a(p)))‖ × · · · × ‖P r1

Y (Xa(p))‖ × ‖P a
Y (p)‖.

But these maps are based at points in BK . Hence by Lemma 9.44(e) and for C :=
max{‖DX1

p‖ : p ∈ M} (this constant is valid for any vector field ε-C1-close to X)
we get

‖P t
Y (p)‖ ≤ C3he

∑n
i=1 ri δC3h ≤ e(b+∑n

i=1 ri+a)δC6h ≤ etδC6δt ≤ et(1+6 logC)δ

concluding the proof. �
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For points in Gc we use inequality (9.12), Lemma 9.44 and some elementary
observations (see [53, Lemma 4.16]) to deduce the following.

Lemma 9.46 Let γ = δ2h−1 as in Lemma 9.44. Then μ(U ∪ Γ ∗
m(X) \ G) < 12δ.

Now using Lemma 9.46 we obtain μ(Gc) < 12δ. Finally, we finish the proof of
Proposition 9.23 and consequently Theorem 9.3:

LE(Y ) = inf
n≥1

∫

M

1

n
log‖P n

Y (p)‖dμ(p) ≤
∫

M

1

t
log‖P t

Y (p)‖dμ(p)

≤
∫

G

1

t
log‖P t

Y (p)‖dμ(p) +
∫

Gc

1

t
log‖P t

Y (p)‖dμ(p)

≤ (1 + 6 logC)δμ(G) + logCμ(Gc) = (1 + 18 logC)δ.

Now we replace δ by δ
(1+18 logC)

in the proof, and Proposition 9.23 is complete.

9.3.6 Proof of the Dichotomy with Singularities (Theorem 9.4)

We begin by noting that, since Xt is aperiodic, the measure of all singularities
is zero. Moreover, when we estimate the C1-norm of the perturbation P , defined
in (9.7), the choice of r(p) in (9.5) guarantees that, even near singularities (when
c ≈ 0), the perturbation can be done. Furthermore, if in Theorem 9.24 we take
Ω with C∞ boundary and g,f also C∞, the diffeomorphism ϕ, provided by
Dacorogna-Moser, is also C∞. So our conservative flow-box theorem guarantees
a C∞ conservative change of coordinates Ψ . Note that the perturbation P , de-
fined in (9.7), is also C∞; moreover we know by [277] that X∞

μ (M) is C1-dense
in X1

μ(M).

9.3.6.1 Adapting the Proof with Singularities, from Theorem 9.3

The following proposition is similar to Proposition 9.23. The main difference is
where the computation of the entropy function is done.

Proposition 9.47 Let X ∈ X∞
μ (M) and ε, δ > 0. There exists m ∈ N and a zero

divergence C∞ vector field Y , ε-C1-close to X, which equals X outside the open
set Γm(X) and is such that LE(Y,Γm(X)) < δ.

Proof For a fixed m ∈ N we have p ∈ Γ +
m (X) \ Γ ∗

m(X) if p is periodic, has positive
Lyapunov exponent and belongs to Γm(X). We consider the following simple claim.
For a proof see [40, Lemma 3.1].

Lemma 9.48 Given δ > 0, there exists m ∈ N such that μ(Γ +
m (X) \ Γ ∗

m(X)) < δ.
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We take m ∈ N satisfying both Lemma 9.39 and Lemma 9.48 and let T :
Γ ∗

m(X) → R be similar to the function of Lemma 9.42. We now define

Zh = {p ∈ Γ ∗
m(X) : T (p) ≤ h}.

It is standard that μ(Γ ∗
m(X) \ Zh) −→

h→∞ 0, and so we may choose h > 0 satisfying

μ(Γ ∗
m(X) \ Zh) < δ2μ(Γ ∗

m(X)).

Now we increase h, if necessary, and use Oseledets’ Theorem to obtain the inequal-
ity

‖P t
X(p)‖ < etδ for all t ≥ h, (9.16)

for p ∈ O0(X). Since Xt : Γ ∗
m(X) → Γ ∗

m(X) is an aperiodic flow, we can follow the
construction of section 9.3.5.2 and finally compute LE(Y,Γ ∗

m(X)). Analogously,
we define

G := {p ∈ Γ ∗
m(X) : Y s(p) ∈ K, for all s ∈ [0, t]},

and denote 1
t

log‖P t
(·)(p)‖ by At

p(·). Then we compute

LE(Y,Γm(X)) ≤
∫

Γm(X)

At
p(Y )dμ

≤
∫

Γm(X)\(U∪Γ +
m (X))

At
p(Y )dμ +

∫

U∪Γ +
m (X)\G

At
p(Y )dμ

+
∫

G

At
p(Y )dμ.

Since Y = X outside U , by (9.16) we obtain
∫

Γm(X)\(U∪Γ +
m (X))

At
p(Y )dμ ≤

∫

Γm(X)\Γ +
m (X)

At
p(X)dμ ≤ δ.

Setting C := max{‖P 1
X(p)‖ : p ∈ M} and using Lemma 9.48 and Lemma 9.46, we

conclude that
∫

U∪Γ +
m (X)\G At

p(Y )dμ ≤ 13δ logC. Finally, on G, our construction

allows us to obtain
∫

G
At

p(Y )dμ(p) ≤ δ and the proposition is proved. �

9.3.6.2 The Concluding Argument

Let X̃ ∈ X1
μ(M) and ε̃ > 0 be given. We will prove that there exists Y ∈ X1

μ(M), ε̃-
C1-close to X satisfying the conclusions of Theorem 9.4. For ε = ε̃/2, there exists
X ∈ X∞

μ (M) ε-C1-close to X̃. It suffices to prove Theorem 9.4 for the vector field
X and ε > 0.
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Proof of Theorem 9.4 Let X ∈ X∞
μ (M) and ε > 0. We will find Y ε-C1-close to X

and a partition M = D ∪ O into Y t -invariant sets such that ∀p ∈ O we have zero
Lyapunov exponents and D is a countable increasing union of compact invariant
sets Λmn admitting an mn-dominated splitting for the Linear Poincaré Flow. We
define the sequence {Xn}n≥0 ∈ X∞

μ (M), mn ∈ N, and eventually εn > 0 for n ≥ 0.
Take X0 = X, θ > 1 (near 1) and δn →

n→0
0.

If
∫

Γm(X)
λ+(X)dμ = 0 for some m ∈ N, then we are finished by taking Y = X,

D = Λm(X) and O a full measure subset of Γm(X). Otherwise, for some m = m0
and X = X0, we have

∫

Γm0 (X0)
λ+(X0) dμ > 0. Let ε0 ∈ (0, ε/2) be such that

∫

Γm0 (X0)

λ+(Z)dμ ≤ θ

∫

Γm0 (X0)

λ+(X0) dμ,

for all vector fields Z which are 2ε0-C1-close of X0 and Z = X0 outside Γm0(X0).
We observe that such ε0 exists because LE(·,Γm0(X0)) is upper semicontinuous
and Γm0(X0) is invariant, both for Xt

0 and Zt . Recursively, knowing Xn−1, mn−1

and εn−1 ∈ (0, ε2−n), we define Xn ∈ X∞
μ (M), mn ∈ N, and eventually εn > 0.

By Proposition 9.47, there exists mn ∈ N and a perturbation of Xn−1, Xn ∈
X∞

μ (M), εn−1-C1-close to Xn−1, with Xn = Xn−1 outside Γmn(Xn−1) and such
that

∫

Γmn(Xn−1)

λ+(Xn)dμ < δn.

We assume that mn ≥ mn−1 and note that Γmn(Xn) ⊆ Γmn(Xn−1) ⊆ Γmn−1(Xn−1).
If

∫

Γmn(Xn)
λ+(Xn) = 0, then we finish the argument by taking Y = Xn, D =

Λmn(Y ) and O a full measure subset of Γmn(Y ). Otherwise, if
∫

Γmn(Xn)
λ+(Xn) > 0,

we choose εn ∈ (0, εn−1/2) such that B(Xn,2εn) ⊆ B(Xn−1, εn−1) and also
∫

Γmn(Xn)

λ+(Z)dμ ≤ θ

∫

Γmn(Xn)

λ+(Xn)dμ,

for all vector fields Z which are 2εn-C1-close to Xn and Z = Xn outside Γmn(Xn).
We continue this procedure recursively and if we obtain

∫

Γmn(Xn)
λ+(Xn)dμ =

0 for some n ∈ N, then we conclude the proof. Otherwise the sequence {Xn}n≥0
converges in the C1 topology to some Y ∈ X1

μ(M). Moreover, since εn < ε/2n, we
conclude that Y is ε-C1-close to X.

If we set D = ⋃

n∈Z+Λmn
(Xn), since Λmn

(Xn) ⊇ Λmn−1(Xn−1) and Y = Xn at
Λmn

(Xn), then Y t has an mn-dominated splitting at Λmn
(Xn).

Letting Γ := Dc = ⋂

n∈Z+Γmn(Xn), then Γ ⊆ Γmn(Xn). To finish the proof of
Theorem 9.4, we now check that

∫

Γ
λ+(Y ) dμ = 0.

We note that Y ∈ B(Xn,2εn) for all n ∈ N. Hence we have
∫

Γ

λ+(Y ) dμ <

∫

Γmn(Xn)

λ+(Y ) dμ ≤ θ

∫

Γmn(Xn)

λ+(Xn)dμ ≤ θδn −→
n→∞ 0.
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We conclude that we have zero Lyapunov exponents in a full measure subset O

of Γ . The proof of Theorem 9.4 is complete. �

Now we consider the reason why Theorem 9.4 is stated for a dense subset instead
of a residual subset. In [53], the authors developed a strategy to obtain a residual
subset; unfortunately, this strategy does not apply in our case. Let us see why: they
start with a C1 system X which is a continuity point of the entropy function. Then
they define the “jump” (see [53, pp 1467]) of this semi-continuous function which
is an integral over Γ∞(X) := ⋂

mΓm(X). Being a continuity point implies that the
“jump” is zero. So, by definition of “jump”, μ(Γ∞(X)) = 0 or λ+(p) = 0 for μ-
a.e. point p ∈ Γ∞(X) and the statements of Theorem 9.4 are verified. In order to
estimate a lower bound for the “jump” we perturb the original vector field X as
we did to prove Theorem 9.4. But our conservative flow-box theorem may not be
applied to X, unless X is of class C2, and so this argument only works for X ∈
X2

μ(M). However this set, equipped with C1 topology, is not a Baire space, and so
in general residual sets are meaningless.

As explained at the beginning of Sect. 9.3, this can be extended to a full di-
chotomy for C1 generic incompressible vector fields using the extension of the
Bowen result for positive volume invariant sets having a dominated decomposition
for the Linear Poincaré Flow.



Chapter 10
Related Results and Recent Developments

Here we briefly present other related results about three-dimensional flows and some
recent developments, advancing some conjectures about future developments that
we feel are achievable.

10.1 More on Singular-Hyperbolicity

As shown in Chap. 4, Doering in [79] was able to prove, for 3-manifolds, that ro-
bustly transitive vector fields are Anosov. Vivier, in [268], extended the results of
Doering to higher dimensions, showing that a C1 robustly transitive vector field
on a compact boundaryless n-manifold, with n ≥ 3, does not have any singular-
ity. Similarly to Doering, Vivier showed that, for n-dimensional manifolds, robustly
transitive vector fields admit a global dominated splitting. In Chap. 4 we proved a
weaker version of this.

Robust transitivity of a compact invariant set in the C1 topology for three-
dimensional flows is characterized in Chap. 5: such robust sets are singular-
hyperbolic attractors or repellers, and are hyperbolic if they have no singularities.

In Sect. 6.3 of Chap. 6 we provided sufficient conditions for a singular-hyperbolic
attractor, having only one singularity, to be robustly transitive. The conditions de-
pend on the behavior of the C1 nearby vector fields in the trapping region of the
original attractor.

Conjecture 10.1 Sufficient conditions can be found which imply the robust tran-
sitivity of any singular-hyperbolic attractor (with no restriction on the number of
equilibria) depending only on the given vector field.

10.1.1 Topological Dynamics

Some aspects of the topological dynamics of the Lorenz geometric model were stud-
ied by Komuro in [124, 125], where it was proved that most geometrical Lorenz

V. Araújo, M.J. Pacifico, Three-Dimensional Flows, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 53,
DOI 10.1007/978-3-642-11414-4_10, © Springer-Verlag Berlin Heidelberg 2010
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attractors do not have the shadowing property, and their expansive properties are in-
vestigated. In [123] Klinshpont finds a topological invariant for the Lorenz attractor,
allowing him to exhibit an uncountable number of non-homeomorphic Lorenz at-
tractors in the unfolding of a certain homoclinic loop. In [50], Birman and Williams
analyze the knot type of the periodic orbits of the geometric model, and in [93]
Ghrist and Holmes use the Lorenz attractor to investigate the existence of flows
realizing all links and knots as periodic orbits in 3-manifolds, and an explicit ordi-
nary differential equation with such properties is exhibited. The reader is advised to
consult the survey [200] by Pesin and Sinai.

Morales in [163] shows that a vector field Y which is C1 close to a given one
X in a 3-manifold exhibiting a singular-hyperbolic attractor Λ must have at least
one singularity, and the number of attractors of Y near Λ is bounded above by the
number of singularities of X in Λ.

Bautista showed in [35] that the geometric Lorenz model is a homoclinic class
and, together with Morales, proved in [37] that every singular-hyperbolic attractor
admits a (hyperbolic) periodic orbit.

Arroyo and Hertz, in [28], have advanced a significant step towards an affirmative
answer to the Palis Conjecture for 3-flows; see Sect. 2.8. They show that any C1

vector field on a compact 3-manifold can be approximated by another one showing
one of the following phenomena:

• uniform hyperbolicity with the non-cycle condition,
• a homoclinic tangency, or
• a singular cycle.

Arroyo and Pujals, in [27], show that a singular-hyperbolic attractor has a dense
set of periodic orbits and is the homoclinic class associated to one of these orbits.
These results show that singular-hyperbolic attractors do play the same role as the
basic pieces of Smale’s Spectral Decomposition. In the same work, Arroyo and
Pujals also prove that there exists a relatively open and dense subset of a singular-
hyperbolic attractor whose points admit well-defined unstable manifolds which have
uniform size. This may prove to be a decisive step towards a criterion for C1 ro-
bustness of singular-hyperbolic attractors which depends only on the attractor. We
present a robustness criterium for singular-hyperbolic attractors with only one equi-
libria in Chap. 6, but depending on the nearby vector fields.

Conjecture 10.2 There is a characterization of robust singular-hyperbolic attractors,
and robust 2-sectionally expanding attractors, with any (finite) number of equilibria.

Abdenur, Avila and Bochi [1] prove that nontrivial homoclinic classes of Cr -
generic flows are topologically mixing. This implies that, given a nontrivial C1-
robustly transitive set Λ of a vector field X, there is a small C1-perturbation Y of X

such that the continuation ΛY of Λ is a topologically mixing set for Y . In particular,
robustly transitive flows become topologically mixing after C1-perturbations. These
results generalize a theorem by Bowen [61] on the basic sets of generic Axiom A
flows: they are mixing for a Cr generic family of vector fields in compact manifolds.
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In this work it is also shown that the set of flows whose nontrivial homoclinic classes
are topologically mixing is in general not open and dense.

10.1.2 Attractors that Resemble the Lorenz Attractor

In Chap. 5, we present several results showing that every robust attractor of a 3-flow
containing equilibria looks like a geometric Lorenz attractor.

Shil’nikov and Turaev, in [263], present an example of a 4-dimensional quasi-
attractor and study its perturbations. The quasi-attractor is partially hyperbolic with
contracting dominated direction and volume expanding central direction with di-
mension higher than 2, and contains a singularity with a complex eigenvalue. Such
a quasi-attractor can not be destroyed by small perturbations of the system. Since
this set has a dense subset of homoclinic tangencies, it is called a wild strange attrac-
tor, because Newhouse in [182] (see also [193] for a detailed presentation) showed
that dynamics with such features for surface diffeomorphism imply the existence of
infinitely many attracting periodic orbits for open subsets of arbitrarily close maps.

Conjecture 10.3 Sets of this type exhibit the main chaotic features of the singular-
hyperbolic attractors: they support a physical probability measure and are expansive.

Lorenz, in [141], reports a careful numerical study of what seems to be a strange
(chaotic) attractor in four dimensions for a system of 2-degree polynomial equa-
tions. Rovella in [232] proves existence and persistence of contracting Lorenz at-
tractors, that is, with the contracting eigenvalue condition −λ3 > λ1; see the fol-
lowing Sect. 10.1.4.

In [187], Pacifico, Rovella and Viana prove that certain parametrized families of
one-dimensional maps with infinitely many critical points exhibit global chaotic be-
havior in a persistent way. Later Araújo and Pacifico, in [20], proved that these maps
have a unique physical (absolutely continuous) measure which varies continuously
in the space of parameters with very nice statistical properties. An application of the
methods developed in these works yields a proof of existence and even persistence
of global spiral attractors for smooth flows in three dimensions, to be given in [74].

In [198] Pesin proposed abstract models for attractors with singularities, called
generalized hyperbolic attractors, and studied their properties.

Bonatti, Pumariño and Viana, in [58], construct a multidimensional Lorenz-like
attractor that is C1-robust and contains a singularity with at least two positive eigen-
values. Their construction works in dimensions greater than or equal to 5. They also
obtain a physical measure for these attractors for an open set of flows in the C∞
topology.

More recently Metzger and Morales [156] introduced the class of sectionally
hyperbolic vector fields on n-manifolds containing the singular-hyperbolic systems
on 3-manifolds, the multidimensional Lorenz attractors of [58] and the C1 robustly
transitive sets in Li, Gan and Wen [132]. We present these notions in Chap. 5.
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Conjecture 10.4 The 2-sectionally expanding attractors satisfy all the properties
we have obtained for the singular-hyperbolic attractors in dimension 3. Namely, the
periodic orbits are dense in these attractors; they are homoclinic classes associated to
a hyperbolic periodic orbit; they are expansive/chaotic; they admit a unique physical
measure which is an equilibrium state for the logarithm of the unstable Jacobian of
the flow.

10.1.3 Lorenz-Like Attractors Through the Unfolding of Singular
Cycles

It is natural to investigate whether an attractor resembling the Lorenz attractor can
be obtained as a result of a bifurcation of a singular cycle of a given vector field.

Rychlik and Robinson studied the existence of Lorenz-like attractors in generic
unfoldings of resonant double homoclinic loops, for flows in dimension three, in a
series of works [227–229, 239]. Rychlik starts with a vector field with a Lorenz-like
singularity σ with a connection between both branches of the unstable manifold of
σ and the bidimensional stable manifold of σ , such that the singular cycle obtained
is of inclination-flip type; see Sect. 3.2.2. Robinson considers a resonant connection,
that is, the eigenvalues at σ are λ2 < λ3 < 0 < λ1 but λ3 + λ1 = 0. This means that
the singularity neither expands nor contracts volume in the central-unstable direc-
tion. In the setting of axially-symmetric vector fields, both cases are co-dimension
two bifurcations.

Similarly Ushiki, Oka, Kokubu [264] and Dumortier, Kokubu, Oka [83] show
that Lorenz-like attractors appear in the unfolding of local bifurcation of certain
degenerate singularities. Analogously Bamón in [31] obtains attractors resembling
the Lorenz attractor in higher dimensions unfolding cycles associated to degenerate
singularities.

An extension of the results of Robinson, in dimension 3, was obtained in [175]
by Morales, Pacifico and San Martin.

Conjecture 10.5 The new 2-sectionally expanding attractors can also be obtained
through the unfolding of higher-dimensional cycles associated to (hyperbolic) equi-
libria.

10.1.4 Contracting Lorenz-Like Attractors

Rovella in [186, 232] presented a parametrized model, similar to the geometric
Lorenz model described in Sect. 3.3, which exhibits an attractor for a positive
Lebesgue measure subset of the parameter space. This attractor contains a singu-
larity with three real eigenvalues λ2 < λ3 < 0 < λ1 but, unlike a Lorenz-like singu-
larity, we have λ1 < −λ3, that is, the central-unstable direction at the singularity is
volume contracting.
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Fig. 10.1 The
one-dimensional map for the
contracting Lorenz model

This construction is very similar to the geometric Lorenz model, amounting es-
sentially to replacing the one-dimensional map f , whose graph is presented in
Fig. 3.24 and obtained through projecting along the contracting foliation, by the
map g whose graph can be any of these sketched in Fig. 10.1.

The parameters of these maps describe the vertical coordinates of the critical
points of each branch of continuity of the maps in Fig. 10.1.

This example is far from being robustly transitive, but it is 2-persistent. Here 2-
persistent means that there exists a surface S on the space of C∞ vector fields such
that

lim
r→0

Leb
({(u, v) ∈ Br(0,0) : ΛX(u,v)

is an attractor for X(u,v)}
)

Leb
(

Br(0,0)
) = 1

for 2-parameter families of C∞ vector fields Xu,v transversal to S at X(0,0) = X0.
Moreover, for the parameters above, Lebesgue almost every point in a neighborhood
of the attractor has a positive Lyapunov exponent.

Rovella also showed that, in a neighborhood U of X outside of the surface S,
there exists an open and dense subset U1 ⊂ U such that for all Y ∈ U1 the set
ΛY = ∩t>0X

t(U) consists of the union of one or at most two attracting periodic
orbits, a hyperbolic set of topological dimension one, a singularity, and wandering
orbits linking them.

Metzger in [153, 154] proved the existence of a physical measure and its stability
under random perturbations for the contracting Lorenz model. More recently Met-
zger and Morales, in [155], showed that the contracting Lorenz attractor is also a
homoclinic class in a 2-persistent way.

Conjecture 10.6 There exists a higher dimensional example of an attractor for a
smooth flow with several positive Lyapunov exponents, which is not 2-sectionally
expanding, not robust, but persistent along parameterized families of flows with
finitely many parameters. This attractor has a physical measure which is hyperbolic,
an equilibrium state with respect to the logarithm of the center-unstable Jacobian of
the flow, depends continuously on the attractor (on the parameters where it exists)
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Fig. 10.2 A double
homoclinic connection

and has exponentially large deviation estimates and exponential decay of correla-
tions.

10.1.5 Contracting Lorenz-Like Attractors Through the Unfolding
of Singular Cycles

Recently, in [176], Morales, Pacifico and San Martin proved that, similarly to
the (expanding) geometric Lorenz attractors, contracting Lorenz-like attractors can
be obtained by unfolding a resonant double homoclinic connection with a con-
tracting Lorenz-like singularity σ , i.e. the eigenvalues are λ2 < λ3 < 0 < λ1 with
λ3 +λ1 <0; see Fig. 10.2.

We note that contracting Lorenz-like attractors persist only in a measure theo-
retical sense. In this setting, the authors prove the existence of a non-degenerate
two-parameter family of vector fields generically unfolding the singular cycle de-
scribed above, which admits a positive Lebesgue measure subset of parameters such
that the corresponding flow exhibits a contracting Lorenz-like attractor.

Conjecture 10.7 There are cycles, for higher-dimensional smooth vector fields,
whose unfolding generates examples of non-robust but persistent attractors along
finite-dimensional parameterized families, exhibiting several positive Lyapunov ex-
ponents.

10.2 Dimension Theory, Ergodic and Statistical Properties

Afraimovich and Pesin in [6] investigate the dimensional properties of “triangular
maps” which are a class of maps generalizing the Poincaré first return map P of the
geometric Lorenz model.

Concerning fractal dimensions of Lorenz attractors we mention the results of
Leonov [130, 131] together with Bouichenko [54]. The first contains explicit formu-
las for the Lyapunov dimension of the Lorenz attractor and, in the second, a simple
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upper bound on the Hausdorff dimension of Lorenz attractors is given in terms of
the parameters of the Lorenz systems of equations (2.2).

Conjecture 10.8 As in a hyperbolic attractor on a surface, the Hausdorff dimension
of any singular-hyperbolic attractor on a 3-manifold satisfies Bowen’s formula: it
is the value 2 + γ where γ satisfies Ptop(γ log |detDX1 | Es |) = 0, Ptop is the
topological pressure of the attractor, and Es is the one-dimensional stable bundle
over the attractor.

In [161] Morales shows that every (nontrivial) compact invariant subset of a tran-
sitive singular set containing a singularity is one-dimensional, extending a similar
result of Bowen in [59] in the setting of uniform hyperbolic flows.

Statistical and ergodic properties of the geometrical model were investigated by,
among others, Araújo, Pacifico, Pujals and Viana in [21] and Colmenarez [72],
whose results and proofs are contained in Sect. 7.3.

In [276] Young shows that the geometrical Lorenz attractor can be approximated
by horseshoes with entropy close to that of the Lorenz attractor.

Conjecture 10.9 It is possible to approximate the topological entropy of a singular-
hyperbolic or 2-sectionally expanding attractor by the topological entropy of horse-
shoes contained in the attractor.

The construction of the geometric Lorenz models forces the divergence of the
vector field to be strictly negative in an isolating neighborhood of the attractor.
This feature is also present in the Lorenz system of equations (2.2) for the clas-
sical parameters. It is then trivial to show that the corresponding attractor has zero
volume. Recently it was proved by Araújo, Alves, Pacifico, Pinheiro, in [8], that
singular-hyperbolic attractors always have zero volume for flows which are Hölder-
C1, although there is no volume dissipative condition on the definition of singular-
hyperbolicity. The precise statement of this result and its proof are contained in
Chap. 8.

10.2.1 Large Deviations for the Lorenz Flow

We recall that an invariant probability measure μ for a flow Xt on a compact mani-
fold is physical if the points z satisfying

lim
t→+∞

1

t

∫ t

0
ψ

(

Xs(z)
)

ds =
∫

ψ dμ,

for all continuous functions ψ form a subset with positive volume (or positive
Lebesgue measure) on the ambient space. These time averages are in principle phys-
ically observable if the flow models a real world phenomenon admitting some mea-
surable features. It is then natural to consider the rate of convergence of the time
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averages to the space average, given by the volume of the subset of points whose
time averages stay away from the space average by a prescribed amount up to some
evolution time. This rate is closely related to the so-called thermodynamical for-
malism first developed for (uniformly) hyperbolic diffeomorphisms, borrowed from
statistical mechanics by Bowen, Ruelle and Sinai (among others, see e.g. [56, 60,
62, 84, 237, 238]). The main insight behind this is that the family {ψ ◦ Xt }t>0
should behave asymptotically in many respects just like an independent identically
distributed sequence of random variables.

Studying suspension semiflows over piecewise expanding base transforma-
tions, which naturally appear as representations of singular-hyperbolic flows, as in
Chap. 7, Araújo in [18] was able to obtain exponential bounds for large deviations
for Lebesgue measure on a neighborhood of the geometric Lorenz attractor (and so
for the Lorenz flow in the classical parameters, after the work of Tucker [261]; see
Chap. 2). More precisely, if we set ε > 0 as an error margin and consider

Bt =
{

z :
∣
∣
∣
∣

1

t

∫ t

0
ψ

(

Xt(z)
) −

∫

ψ dμ

∣
∣
∣
∣
> ε

}

,

then sufficient conditions were found, in terms of the base transformation and the
roof function, under which the Lebesgue measure of Bt decays to zero exponentially
fast, i.e., whether there are constants C,ξ > 0 such that

Leb
(

Bt

) ≤ Ce−ξ t for all t > 0.

We observe that in this setting Lebesgue measure or volume is not an invariant
measure.

In [152] Melbourne and Nicol and in [221] Rey-Bellet and Young obtained large
deviations principles for invariant measures in the same setting, including subexpo-
nential or polynomial bounds on large deviations depending on the properties of the
base transformation.

Conjecture 10.10 These results are also true for general singular-hyperbolic attrac-
tors and should be true, under some mild conditions, for singular-hyperbolic attract-
ing sets as well.

Conjecture 10.11 Exponentially large deviation bounds are true for 2-sectionally
expanding attractors with respect to the Lebesgue measure and the physical mea-
sure.

10.2.2 Central Limit Theorem for the Lorenz Flow

In [114] Holland and Melbourne, building on the work [151] of Melbourne and
Nicol, obtained the Almost Sure Invariance Principle for geometrical Lorenz attrac-
tors (and so for the Lorenz flow) which, in turn, implies the Central Limit Theorem.
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More precisely, if Xt is the geometric Lorenz flow with physical probability mea-
sure μ and ψ is a Hölder continuous function (observable) on the manifold with
zero mean

∫

ψ dμ = 0, then there exists a Brownian motion W(t) with variance
σ 2 > 0, and there is ε > 0, such that

∫ t

0
ψ ◦ Xs ds = W(t) + O(t

1
2 −ε) as t → +∞ for μ-almost all x.

This result, in turn, implies the Central Limit Theorem: in the same setting as above,
for any interval A ⊂ R

μ

{

x : 1√
t

(∫ t

0
ψ ◦ Xs ds − μ(ψ)

)

∈ A

}

−−−−→
t→+∞

1

σ
√

2π

∫

A

e− s2
2σ ds;

and the Law of the Iterated Logarithm

lim sup
t→+∞

1√
2t log log t

∫ t

0
ψ ◦ Xs ds = σ μ-almost everywhere.

Conjecture 10.12 The Central Limit Theorem holds for every singular-hyperbolic
attractor and for 2-sectionally expanding attractors.

10.2.3 Decay of Correlations

After obtaining an interesting invariant probability measure for a dynamical system
the next thing to do is to study the properties of this measure. Besides ergodicity
there are various degrees of mixing (see e.g. [147, 269]).

Given a flow X and an invariant ergodic probability measure μ, we say that the
system (X,μ) is mixing if for any two measurable sets A,B

μ
(

A ∩ X−tB
) −−−→

t→∞ μ(A) · μ(B) (10.1)

or equivalently
∫

ϕ · (ψ ◦ Xt
)

dμ −−−→
t→∞

∫

ϕ dμ

∫

ψ dμ

for any pair ϕ,ψ : M → R of continuous functions.
Considering ϕ and ψ ◦ Xt : M → R as random variables over the probability

space (M,μ), this definition just says that “the random variables ϕ and ψ ◦ Xt are
asymptotically independent” since the expected value E(ϕ · (ψ ◦ Xt)) tends to the
product E(ϕ) · E(ψ) when t goes to infinity. The correlation function

Ct(ϕ,ψ) = ∣
∣E

(

ϕ · (ψ ◦ Xt)
) − E(ϕ) · E(ψ)

∣
∣

=
∣
∣
∣
∣

∫

ϕ · (ψ ◦ Xt
)

dμ −
∫

ϕ dμ

∫

ψ dμ

∣
∣
∣
∣

(10.2)
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satisfies Ct(ϕ,ψ) −−−→
t→∞ 0 in this case. The rate of approach to zero of the correla-

tion function is called the rate of decay of correlations for the observables ϕ and ψ

of the system (X,μ).
The study of decay of correlations for hyperbolic systems goes back to the work

of Sinai [250] and Ruelle [235]. Many results were obtained for transformations.
For a diffeomorphism f the notion of decay of correlations is the same as above
replacing Xt by f n and letting n go to infinity. Since [60, 235] it is known that
the physical (SRB) measures for Axiom A diffeomorphisms are mixing and have
exponential decay of correlations, that is, there exists a constant α ∈ (0,1) such that
given ϕ and ψ there exists C = C(ϕ,ψ) > 0 such that

Cn(ϕ,ψ) ≤ C · e−αn for all n ≥ 1, (10.3)

for a suitable class of continuous functions M → R, in this case the Hölder contin-
uous functions.

In more general cases for smooth endomorphisms (see e.g. [10, 113] and refer-
ences therein) where the inverse in (10.1) is to be taken as the inverse image of f n,
it is possible to have slower rates of decay.

In contrast to the results available in the case of discrete dynamical systems,
obtaining the rate of decay of correlations for flows seems to be much more complex
and some results have been established for Anosov flows only recently. Ergodicity
and mixing for geodesic flows on manifolds of negative curvature are known since
the early half of the XXth century [16, 116, 249].

The proof of exponential decay of correlations for geodesic flows on manifolds
of constant negative curvature was first obtained in two [70, 160, 220] and three
dimensions [210] through group theoretical arguments.

10.2.4 Decay of Correlations for the Return Map and Quantitative
Recurrence on the Geometric Lorenz Flow

Quantitative recurrence estimations and logarithm laws can be seen in the following
framework: we are interested in a quantitative estimation of the speed of approach-
ing of a certain orbit Xt(x) of the system to a given point x0. We consider the time

τr(x, x0) = inf{t ∈ R
+ : Xt(x) ∈ Br(x0)}

needed for the orbit of x to enter the ball with radius r centered at x0 for the first
time, and the asymptotic behavior of τr(x, x0) as r decreases to 0. Often this is a
power law of the type τr ∼ r−d and then we may try to extract the exponent d by
looking at the behavior of

R(x, x0) = lim
r→0

log τr (x, x0)

− log r
. (10.4)
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In this way, we have a hitting time indicator for orbits of the system. Another way
to look at the same phenomena is by considering the behavior of the ratio of the

distance − logd(Xt (x),x0)
log t

as t → ∞ (for the equivalence see [92]).
Hitting time results of this kind (sometime replacing balls with other suitable

target sets) have been proved in many continuous time dynamical systems of ge-
ometrical interest: geodesic flows, unipotent flows, homogeneous spaces, etc. etc.
For discrete time systems, results of this kind hold in general if the system has fast
enough decay of correlation; see [90]. Mixing is however not sufficient, since this
relation does not hold in some slowly mixing system having particular arithmetical
properties, as shown in [92].

For the geometric Lorenz flow Xt to the cross-section Σ , with the added regu-
larity assumption that the one-dimensional quotient map f of the return map R to
Σ over the stable foliation is such that 1/f ′ is Lipschitz (see the description of the
construction of the geometric Lorenz flow on Sect. 3.3), Galatolo and Pacifico in
[91] found that R has exponential decay of correlations for Lipschitz observables.
Moreover they obtain a logarithmic law for quantitative recurrence: if μ is the phys-
ical measure for the geometrical Lorenz attractor, and dμ is the dimension of μ, then
for every regular point x0 in the attractor, not belonging to the local stable manifold
of the equilibrium, and for which the local dimension dμ(x0) is defined,

lim
r→0+

log τr (x, x0)

− log r
= dμ(x0) − 1 for a.e. starting point x.

Here the local dimension dμ(x0) of μ at x0 is defined by

dμ(x) = lim
r→0+

logμ(Br(x))

log r

if this limit exists.

Conjecture 10.13 Relations of this kind hold for every smooth enough singular-
hyperbolic attractors, without restrictive assumptions on the smoothness of the one-
dimensional quotient maps.

10.2.5 Non-mixing Flows and Slow Decay of Correlations

Let f : M → M be a diffeomorphism with an invariant probability measure μ and
consider the suspension flow Xf over f with constant roof function r ≡ 1. Then the
probability measure ν = μ × Leb on M × [0,1) defines in a straightforward way a
Xf -invariant probability measure on Xr which is NOT mixing, whatever f may be.

Indeed, consider A = π(M ×[0,1/2)) and B = Mr \A (recall that π : M ×R →
Xr is the projection defined in Sect. 2.3.2.2). Then the function t �→ ν(A ∩ X−tB)

for t > 0 has the graph as in Fig. 10.3 (here X−t is a shorthand for (Xt )−1, the
inverse image of the map Xt ).
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Fig. 10.3 A correlation
function for a non-mixing
flow

This system is clearly not mixing since the sawtooth pattern in Fig. 10.3 goes on
for all positive t . Moreover this shows in particular that this suspension flow is not
even topologically mixing (see below for the definition).

If however if (X,f,μ) is ergodic, then ν is Xf -ergodic also: indeed, given
A ⊂ Xr such that (Xt

f )−1(A) = A for all t > 0 (an Xf -invariant set), then A is

saturated, i.e., p ∈ A if, and only if, OXf
(p) ⊂ A; thus we may find Â ⊂ X such

that A ∩ π(X × {0}) = π(Â) is X1
f -invariant by construction (because r ≡ 1), Â

is f -invariant and ν(A) = μ(Â) · Leb([0,1)). Hence μ(Â) · μ(X \ Â) = 0 by the
ergodicity of (f,μ) which implies that ν(A) · ν(Xr \ A) = 0.

In addition to the examples of non-mixing suspension flows, which arguably can
be characterized as very particular cases, not all Axiom A mixing flows have expo-
nential decay of correlations: Ruelle [236] and Pollicott [209] exhibited suspensions
semiflows with piecewise constant ceiling functions over uniformly expanding base
dynamics, with arbitrarily slow decay rates of correlations.

Anosov [15] showed that geodesic flows for negatively curved compact Rieman-
nian manifolds are mixing and obtained the Anosov alternative: given a transitive
volume preserving Anosov flow, either it is mixing (with respect to the volume mea-
sure), or it is a suspension of an Anosov diffeomorphism by a constant roof function.
We note that Bowen [61] showed that, if a mixing Anosov flow is the suspension
of an Anosov diffeomorphism, then it is stably mixing, that is, the mixing property
remains true for all nearby flows (which are Anosov also by the structural stability
of Axiom A flows).

Bowen also showed [61] that the class of Cr Axiom A flows, r ≥ 1, admits a
residual subset R such that for every X ∈ R the spectral decomposition of Ω(X)

is formed by pairwise disjoint pieces Ω1 ∪ · · · ∪ Ωk each of which is topologically
mixing. That is, given any pair of open sets U,V in Ωi , there exists T0 = T0(U,V ) >

0 such that U ∩ Xt(V ) �= ∅ for all t > T0.

10.2.6 Decay of Correlations for Flows

Chernov [68] provided a dynamical proof showing sub-exponential decay of cor-
relations for geodesic flows on surfaces of variable negative curvature through a
suitable stochastic approximation of the flow (see also [137] for a generalization
and previous results [70]).
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More recently, a breakthrough was obtained by Dolgopyat [80–82]: smooth
(Cr with r ≥ 7) geodesic flows on manifolds of negative curvature, under a non-
integrability condition exhibit exponential decay of correlations. Also Liverani
[138] building on the work [80] obtained exponential decay of correlations for C4

contact Anosov flows.
Using these ideas, applied to the particular case of a suspension over uniformly

expanding base dynamics, a conjecture of Ruelle was proved by Pollicott [211]: on
a mild (cohomological) condition on the ceiling function, the decay of correlations
for this type of suspension flows is exponential for observables not supported on the
base. This was extended by Baladi-Vallée [30], clarifying the assumptions on the
base and on the ceiling function which suffice to obtain exponential decay of cor-
relations for suspension of one-dimensional expanding maps. All these ideas were
used, in a more abstract setting, by Avila-Gouezel-Yoccoz [29] to obtain exponential
decay of correlations for the Teichmüller flow on flat surfaces.

Recently Field-Melbourne-Törok obtained [87] what they call stability of rapid
mixing among Axiom A flows, meaning that the correlation function Ct(ϕ,ψ) de-
cays to zero faster than t−k for all k ∈ N when t → ∞, for a C2-open and Cr -dense
set of flows among the family of Cr Axiom A flows with r ≥ 2.

Luzzatto, Melbourne and Paccaut [142] showed that the physical measure for the
geometric Lorenz flow is mixing. The speed of mixing for the Lorenz flow is still
an open problem.

Conjecture 10.14 Physical measures for singular-hyperbolic attractors are mixing
and have exponential decay of correlations. The rates of decay depend continuously
on the flow.

10.2.7 Thermodynamical Formalism

The thermodynamical formalism was first developed for (uniformly) hyperbolic dif-
feomorphisms, borrowed from statistical mechanics by Bowen, Ruelle and Sinai
(among others, see e.g. [56, 60, 62, 84, 237, 238]). This was extended to hyperbolic
flows by Bowen and Ruelle in [62]. The classical theory relies heavily on the coding
of basic pieces of hyperbolic dynamics by subshifts of finite type, for which many
tools are available to study in fine detail the relations among its invariant measures.
Recently most of this theory was extended to countable shifts by Gurevich [100],
Sarig [241, 242] and many others.

The extension of this theory for singular-hyperbolic attractors faces several dif-
ficulties: these attractors are modeled by a suspension semiflow whose base trans-
formation is a Hölder-C1 piecewise expanding but non-Markov map, and the roof
function is unbounded. In the hyperbolic flow case, the corresponding suspension
semiflow has a piecewise expanding Markov map as the base transformation and
the roof function is continuous and bounded. In the singular-hyperbolic case, nei-
ther the thermodynamical formalism is complete for the base transformation, nor
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is it clear how to proceed with unbounded roof functions, which imply an extra re-
striction of integrability on the observables with respect to invariant measure for the
base transformation.

Hope of solving this problem in the near future is provided by recent advances
in the construction of a thermodynamical formalism for non-uniformly expanding
transformations by Oliveira, Viana, Senti, Pesin, Varandas, Bruin, Todd, Pinheiro
[64, 65, 184, 199, 202, 265], and ongoing work [17, 188] on the study of equilibrium
states for multiples of the logarithm of the derivative, for suspension flows over
transformations resembling the Rovella or Lorenz one-dimensional transformations.

Conjecture 10.15 It is possible to build a thermodynamical formalism for Rovella-
like, singular-hyperbolic and 2-sectionally expanding attractors.

10.3 Generic Conservative Flows in Dimension 3

Besides the generic dichotomy for conservative flows on 3-manifolds obtained by
Bessa [41] and Araújo, Bessa [19] presented in Chap. 9, there are other extensions
of generic results first obtained for conservative surface diffeomorphisms.

A result of fundamental importance in the theory of generic conservative dif-
feomorphisms on surfaces was obtained by Newhouse in [180]. Newhouse’s theo-
rem states that C1 generic area-preserving diffeomorphisms on surfaces either are
Anosov, or else the elliptical periodic points are dense. A refined version of this
result was presented by Arnaud in [24] in the family of 4-dimensional symplecto-
morphisms. Even more recently Saghin-Xia [240] generalized the Arnauld result
for the multidimensional symplectic case, and in [43] Bessa and Duarte obtained
a similar dichotomy for C1 generic incompressible flows without equilibria on 3-
manifolds: either the flow is Anosov, or else the elliptic periodic orbits are dense in
the manifold. This dichotomy was extended by Araújo and Bessa in [19] to general
incompressible 3-flows either with or without equilibria.

Considering C2 Hamiltonian functions on compact 4-dimensional symplectic
manifolds, Bessa and Dias in [44] were able to obtain the Newhouse dichotomy:
for any open set U intersecting a far from Anosov regular energy surface, there is a
nearby Hamiltonian having an elliptic closed orbit through U . This implies that, for
far from Anosov regular energy surfaces of a C2 generic Hamiltonian, the elliptic
closed orbits are generic.

Bessa in [42] extends the results of Bowen [61] and Abdenur, Avila, Bochi [1]
(see Sect. 10.1.1) for incompressible flows on compact manifolds showing that there
exists a C1 residual subset R ⊂ X1

μ(M) such that every X ∈ R is a topologically
mixing vector field.

Bessa and Rocha, in [45], prove that an incompressible and C1-robustly transitive
vector field among incompressible nearby flows has no singularities (we stress that
this robust transitivity condition is weaker than the assumption of robust transitivity
among all nearby C1 flows). Moreover, if the vector field is smooth enough, then
the Linear Poincaré Flow associated to it admits a dominated splitting over M .
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Conjecture 10.16 The C1 generic dichotomy for conservative 3-flows admits an
extension to higher dimensions: there exists a residual subset R of X1

μ such that, for
X ∈ R and for μ-almost every x, either the Lyapunov exponents are zero at x, or
the Oseledets splitting at x is dominated.





Appendix A
Lyapunov Stability on Generic Vector Fields

Here we prove properties L3 through L6 stated in Sect. 2.5.10 following [66].
First we state some general results on continuity points of lower/upper semicon-

tinuous maps. Given a metric space M , consider a set-valued map

Φ : M → K (M)

with values in the metric space K (M) of all compact subsets of M , endowed with
the Hausdorff distance: for K1,K2 ∈ K (M)

dH (K1,K2) = inf{ε > 0 : K1 ⊂ B(K2, ε) and K2 ⊂ B(K1, ε)}.
We say that Φ is lower semicontinuous at x ∈ M if, for every open set V of M in-
tersecting Φ(x), we can find a neighborhood U of x in M such that V ∩ Φ(y) �= ∅
for every y ∈ U . Similarly, Φ is upper semicontinuous at x ∈ M if, for every com-
pact subset K ∈ K (M) satisfying K ∩ Φ(x) = ∅, there exists a neighborhood U of
x such that K ∩ Φ(y) = ∅ for every y ∈ U . We say that Φ is lower (respectively,
upper) semicontinuous if Φ is lower (resp., upper) semicontinuous at every x ∈ M .

A well known result from general topology (see e.g. [127]) asserts that, for Baire
spaces M (e.g. complete metric spaces), if Φ is lower (resp., upper) semicontinuous
then there is a residual subset R of M such that Φ is also upper (resp., lower) semi-
continuous at every point of R. This result is often used as a device to produce
residual subsets, as we do from now on.

Properties L5 and L6 stated in Sect. 2.5.10 are a consequence of the following.
We note that property L6 is exactly the same as L5 after reversing time, and so it is
enough to prove L5.

Proposition A.1 There is a residual subset R of X1(M) such that, if X ∈ R and

σ ∈ S(X), then the set {p ∈ Wu
X(σ) : O+

X (p) is Lyapunov stable for X} is residual
in Wu

X(σ).

Indeed we have the following relation.

V. Araújo, M.J. Pacifico, Three-Dimensional Flows, Ergebnisse der Mathematik und ihrer
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Lemma A.2 If X ∈ X1(M) and z ∈ M , then O+
X (z) is Lyapunov stable for X if, and

only if, ωX(z) is Lyapunov stable for X.

Proof If z ∈ ωX(z) (i.e., z is recurrent), then ωX(z) = O+
X (z) and we have nothing

to prove. So we assume that z is not recurrent. In particular, z is not a singularity.

Arguing by contradiction, assume that O+
X (z) is Lyapunov stable but that ωX(z)

is not Lyapunov stable. Then there are a neighborhood U of ωX(z) and a sequence
pn ∈ M converging to p ∈ ωX(z) such that p′

n = Xtn(pn) /∈ U for some sequence
tn ≥ 0. We can assume without loss of generality that the limit x of p′

n as n → +∞
exists.

The characterization of Lyapunov stability provided by Lemma 2.25 ensures that

x belongs to O+
X (z) \ U , since ωX(z) ⊂ U . Moreover there exists t0 > 0 such that

t > t0 implies that Xt(z) ∈ U for t > t0. Then x ∈ X[0,t0](z) \ U .
Using the Tubular Flow Theorem we cover X[0,t0](z) by a flow-box B and we

note that {B,U} is an open cover of O+
X (z). In addition, because z is not recurrent,

we can assume without loss of generality that z /∈ U , so that B ∪ U does not cover
X[−s,0](z) for some s > 0 which can be taken as small as desired. Since B is a flow-
box, the positive orbits of pn must leave U and enter B before they approach x.
Hence we can find 0 < sn < tn such that p̃n = Xsn(pn) is not in B ∪ U . But then

every accumulation point of p̃n belongs to O+
X (z) \ (U ∪ B), a contradiction to the

construction of {U,B} as a cover of O+
X (z) \ (U ∪ B). �

From Lemma A.2 the proof of Proposition A.1 is a consequence of the local
result below, see e.g. [190]. Denote by KS1(M) the family of all Kupka-Smale
vector fields of X1(M).

Lemma A.3 For every X ∈ KS1(M) there is a neighborhood U of X in X1(M) and
a residual subset R of U such that, if Y ∈ R, σ ∈ S(Y ) and Du

Y (σ ) is a fundamental
domain for the dynamics of Y t on Wu

Y (σ ), then the set

{p ∈ Du
Y (σ ) : O+

Y (p) is Lyapunov stable for Y }
is residual in Du

Y (σ ).

Indeed, since Du
Y (σ ) crosses every orbit of Y t inside Wu

Y (σ ), Wu
Y (σ ) \ {σ } =

∪t∈RY t (Du
Y (σ )), and so a residual set R on Du

Y (σ ) becomes a residual set
∪t∈RY t (R) in Wu

Y (σ ).

Proof Let X ∈ KS1(M) be given. Then by the hyperbolicity of the singularities
S(X) of X, they are finitely many S(X) = {σ1(X), . . . , σk(X)} and admit “analytic
continuations” so that S(Y ) = {σ1(Y ), . . . , σk(Y )} for all vector fields Y in a neigh-
borhood U of X in X1(M).

We denote by ui the dimension of the unstable manifold of σi and assume without
loss of generality that Du

X(σi(X)) is the ui -sphere of radius r > 0 on Wu
X(σi) around
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σi , for i = 1, . . . , k, such that ui > 0 (otherwise σi is a sink and there is nothing to
prove).

Let Σi be a cross-section of X such that Du
X(σi) = Σi ∩ Wu

X(σi). Taking r > 0
small enough, we can assume that Du

Y (σi) = Σi ∩ Wu
Y (σi(Y )) is a fundamental

domain for Y t on Wu
Y (σi(Y )) if we also shrink the neighborhood U accordingly.

By the Stable Manifold Theory (see e.g. [110]) it follows that there is a C1 map
Γi : U × Du

X(σi) → Σi such that

Du
Y (σi) = Graph(Γi(Y, ·)) = {Γi(Y, z) : z ∈ Du

X(σi)}.
Note that the natural projection Πi : Du

Y (σi(Y ) → Du
X(σi), Γi(Y, z) �→ z is a C1

diffeomorphism. Now define the set-valued map

Φi : U × Du
X(σi) → K (M) by (Y, y) �→ O+

Y (Γi(Y, y)).

The Tubular Flow Theorem and the continuity of Γi imply that Φi is lower semi-
continuous. Let Ri be the residual set of U × Du

X(σi) where Φi is continuous, and
define the set Ri (Y ) = {y ∈ Du

X(σi) : (Y, y) ∈ Ri} for any given Y ∈ U . Then the
set

Vi = {Y ∈ U : Ri (Y ) is residual in Du
X(σi)}

is also residual in U .
Now set R = KS1(M) ∩ V1 ∩ · · · ∩ Vk which is a residual subset of U , and

note that Gi(Y ) = {Γi(Y, y) : y ∈ Ri (Y )} is residual in Du
Y (σi) for all Y ∈ R and

i = 1, . . . , k. We need to prove that O+
Y (p) is Lyapunov stable for Y for every triple

(i, Y,p) ∈ {1, . . . , k} × R × Gi(Y ) with i = 1, . . . , k.
We argue by contradiction, assuming that there exists (i, Y,p) ∈ {1, . . . , k} ×

R × Gi(Y ) for some i ∈ {1, . . . , k} such that O+
Y (p) is not Lyapunov stable for Y .

We can find y ∈ Ri (Y ) such that Φi(Y, y) = O+
Y (p) and so (Y, y) ∈ Ri , that is, Φi

is continuous at (Y, y).

According to item 1 of Lemma 2.25, we can find sequences xn → x ∈ O+
Y (p)

and tn > 0 such that Xtn(xn) → q /∈ O+
Y (p). We note that p is not a critical element

of X, that is, it is not a singularity nor a periodic orbit. We observe also that x

cannot be a sink, for otherwise O+
Y (p) would equal O+

Y (p) ∪ {x}, and so would
be Lyapunov stable. By the definition of q we see that q cannot be a source and,
likewise, x cannot be a source either.

We can also assume that x is not a critical element of Y , for otherwise, since
Y ∈ KS1(M) the point x would be a hyperbolic critical element of saddle-type for

Y and, using the linearization of the flow near x, we see that O+
Y (p) will contain

some point w �= x in the stable manifold of x and also some point r �= x in the
unstable manifold of x. Both p and w are not singularities nor periodic orbits, and
so we can apply the Connecting Lemma to obtain a flow Z which is arbitrarily C1-
close to Y with an orbit connecting the unstable manifold of the continuation of
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σi to the stable manifold of the continuation x(Z) of x. Then, for the continuation
p(Z) of p, the set OZ(p(Z)) is just the orbit segment from p(Z) to x(Z). This
contradicts the lower semi-continuity of the map Φi at Y , since OY (p) contains a
point r away from x.

We can also assume without loss of generality that q is not a critical element of
Y either, for otherwise, using the linearization of the flow near q , we can replace
q by an accumulation point of the positive orbits of xn in Ws

Y (q) \ {q} (this is not
empty since q is not a source and is hyperbolic).

Let U be a neighborhood of O+
Y (p) not containing q . Since K = M \ U is com-

pact, we have Φi(Y, y) ∩ K = ∅ by upper semi-continuity, but q ∈ K . The defini-
tion of q ensures the existence of a sequence sn ≥ 0 such that Xsn(p) → x and we
are ready to apply the Connecting Lemma; see Sect. 2.5.7. Recall that the Closing
Lemma demands that the accumulation point of the orbits to be connected is not a
critical element of the flow.

For every δ > 0 there are xp = p ∈ B(p, δ), xq = Xtn(xn) ∈ B(x, δ), tp = sn ≥ 0
and tq = −tn ≤ 0 such that Xtp (xp) ∈ B(x, δ) and Xtq (xq) ∈ B(x, δ). Hence the
Connecting Lemma ensures that we can find Z ∈ X1(M) arbitrarily C1 close to

Y satisfying q ∈ O+
Z (p). This last fact contradicts the upper semicontinuity of Φi

at (Y, y) since it shows that Φi(Z,p) ∩ K �= ∅. This contradiction concludes the
proof. �

Now we proceed to prove properties L3 and L4 stated in Sect. 2.5.10. Again
L4 is just L3 after reversing time, and thus we prove only L3. These properties are
consequences of the properties L5 and L6 as in the following argument, very similar
to the proof of Lemma A.3.

Let X ∈ KS1(M) be given and consider now the set-valued maps

Φ±
i : U → K (M), Y �→ Wu±

Y (σi(Y )), i = 1, . . . , k,

where {σ1(Y ), . . . , σk(Y )} ⊂ S(Y ) are the singularities with one-dimensional unsta-
ble manifolds, for every Y in a neighborhood U of X in X1(M), and Wu±

Y (σi(Y ))

are the connected components of Wu
Y (σi) \ {σi}. We observe that Φ±

i (Y ) = OY (p±
i )

for any chosen points p±
i ∈ Wu±

Y (σi(Y )). Then the Lyapunov stability of Φ±
i (Y ) is

true for C1 generic vector fields Y since L5 has already been proved and we can
write

Φ±
i (Y ) =

⋃

t>0

Y−t (O+
Y (p±

i )).

Indeed, the continuous dependence of the unstable manifolds on the vector field
ensures that each of these maps is lower semi-continuous. Therefore they are con-
tinuous on a residual subset R±

i of U . We define R = KS1(M)∩R+
1 ∩ · · ·∩R+

k ∩
R−

1 ∩ · · · ∩ R−
k which is also a residual subset of U .

We now show that R is the generic set we are seeking. For Y ∈ R and for σ ∈
S(Y ) with one-dimensional unstable manifold, we have σ = σi(Y ) for some i ∈
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{1, . . . , k}, and so Wu±
Y (σ ) = Φ±

i (Y ). It is enough to prove that each Φ±
i (Y ) is

Lyapunov stable for Y since the set Wu
Y (σi) is then the union of two Lyapunov

stable sets for Y , and so it is Lyapunov stable for Y also.
Arguing by contradiction, we assume that Φ+

i (Y ) is not Lyapunov stable for Y

(an analogous argument holds for the other connected component). Then we can
find sequences xn ∈ M such that xn → x ∈ Φ+

i (Y ) and tn ≥ 0 satisfying Y tn(xn) →
q /∈ Φ+

i (Y ) as n → +∞.
As in the proof of Lemma A.3 we can assume that q is not a source. Now x

cannot belong to the orbit of a periodic attractor or to a sink, for otherwise q = x

would belong to Φ+
i (Y ). We observe that the only way for the point x ∈ Φ+

i (Y ) to
be in the orbit of a periodic source (or to be a source singularity) is for σ = x. In
this case the unstable manifold of σi is not one-dimensional.

Therefore, if x is a critical element of Y , then x either belongs to a saddle-type
hyperbolic periodic orbit or is a hyperbolic saddle singularity. Thus

Wu
Y (x) \ {x} �= ∅ �= Ws

Y (x) \ {x}.
Again this contradicts the continuity of Φ+

i at Y , if the unstable manifold of σi

is one-dimensional. Indeed, linearizing the flow near the saddle x, we see that the
positive orbit of p+

i which accumulates on x must also accumulate on distinct points
w ∈ Wu

Y (x) \ {x} and r ∈ Ws
Y (x) \ {x}. Both w and r are not critical elements of Y .

The Connecting Lemma ensures the existence of a vector field Z arbitrarily C1-
close to Y having a saddle connection between the continuation of the branch of the
unstable manifold of σi and the stable manifold of the continuation of x. But this
means that the branch of the unstable manifold of the continuation of σi for Z does
not accumulate on any point of the unstable manifold of x(Z), which contradicts
the lower semi-continuity of Φ+

i at Y .
Now again x and q are not critical elements of Y , and so the Connecting Lemma

enables us to obtain a vector field Z very close to Y in the C1 topology such that the
branch of the unstable manifold of the continuation σi(Z) of σi passes very close
to q . This contradicts the upper semi-continuity of Φ+

i at Y and completes the proof.





Appendix B
A Perturbation Lemma for Flows

Here we present a proof of Theorem 2.24. This is an unpublished joint work of M. J.
Pacifico and E. R. Pujals. Recently another proof by Bonatti-Gourmelon-Vivier ap-
peared in [57]. Let Y be a vector field in the setting of the statement of the theorem.

Given v and w ∈ R
n, v ·w stands for the inner product of v and w. Given v ∈ R

n

we set [v]⊥ = {w ∈ R
n,w · v = 0}. Given p, let Σ ⊂ [Y(p)]⊥ be a cross-section to

Y at p whose size will be fixed later.
Define the parametrized family of maps

Ât (q) = Y t(p) + At(q)

for q ∈ Σ . Observe first that Ât is C2 and if Σ is taken small enough then

T = {Ât (q) : q ∈ Σ, t ∈ [a, b]}
gives a neighborhood of Y [a,b](p).

Lemma B.1 There exists r > 0 such that the following is true whenever diam(Σ) <

r . If Ât1(q1) = Ât2(q2) with qi ∈ Σ and ti ∈ [a, b], then t1 = t2 and q1 = q2.

Proof Assume that Ât1(q1) = Ât2(q2) with t1 < t2 and q1 �= q2. Then

Y t1(p) − Y t2(p) = At2(q2) − At1(q1). (B.1)

On one hand there exists t0 ∈ (t1, t2) such that

Y t1(p) − Y t2(p) = (t1 − t2)
∂

∂s
Y t0+s(p)

∣
∣
s=0

= ∂

∂s
Y s

∣
∣
s=0(p) = (t1 − t2)Y (Y t0(p)). (B.2)

On the other hand there exists l ∈ (t1, t2) such that

At2(q2) − At1(q1) = (At2 − At1)(q2) + At1(q2 − q1)

= ∂

∂t
At

∣
∣
t=l

(q2)(t2 − t1) + At1(q2 − q1). (B.3)

V. Araújo, M.J. Pacifico, Three-Dimensional Flows, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 53,
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Substituting (B.2) and (B.3) into (B.1) we get

Y(Y t0(p)) = − ∂

∂t
At

∣
∣
t=l

(q2) + At1

(q2 − q1)

(t1 − t2)
. (B.4)

Observe that At0(Y (p)) = Y(Y t0(p)). Since the family At depends continuously
on t there are h > 0 and γ > 0 such that, if PY(p) denotes the projection on the
direction of Y(p), then

‖PY(p)(A
−1
t (Y (Y t0(p))‖ > γ (B.5)

for all t with |t − t0| < h. Define the numbers

K1 = sup

{∥
∥
∥
∥

∂

∂t
At

∥
∥
∥
∥
, t ∈ [a, b]

}

, K2 = sup{‖At‖, t ∈ [a, b]}

and γ0 = inf{‖Y(Y t (p))‖, t ∈ [a, b]}. Observe that γ0 is positive since p is a regular
point. Let r > 0 be such that r < γ/K1, and K1r + K2r/h < γ0, and take Σ with
diam(Σ) < r . We split the arguments into a pair of cases.

First case |t1 − t2| ≥ h. Taking norms in (B.4) leads to γ0 < K1r + K2r/h < γ0,
which is a contradiction.

Second case |t1 − t2| < h. Observe that (B.1) and (B.2) imply that

(t1 − t2)Y (Y t0(p)) = At2(q2) − At1(q1),

which is the same as (t1 − t2)A
−1
t1

Y(Y t0(p)) = A−1
t1

At2(q2) − q1. Thus

PY(p)[(t1 − t2)A
−1
t1

Y(Y t0(p))] = PY(p)[A−1
t1

At2(q2) − q1]
= PY(p)[A−1

t1
At2(q2) − q2]

= PY(p)[(A−1
t1

At2 − Id)(q2)]. (B.6)

Observe that we have used q2 ∈ Σ = [Y(p)]⊥.
But there exists l ∈ (t1, t2) such that

(A−1
t1

At2 − Id)(q2) = (t1 − t2)
∂

∂s
Al+sA

−1
l

∣
∣
s=0(q2).

Substituting this into (B.6) we get

PY(p)[A−1
t1

Y(Y t0(p))] = PY(p)

[
∂

∂s
Al+sA

−1
l

∣
∣
s=0(q2)

]

. (B.7)

Taking norms in (B.7) and using (B.5) we obtain γ < K1‖q2‖. Since diam(Σ)<r

and r < γ (K1)
−1, this is a contradiction. All together this shows that t1 = t2 and

from (B.4) we see that q1 = q2. The proof of Lemma B.1 is complete.
�
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Now define Ã : T ⊂ [a, b] × Σ → T as follows. For w ∈ T there exists, by
Lemma B.1, a unique pair (qw, tw) ∈ Σ × [a, b] such that Âtw (qw) = w. We define

Ã(w) = Âtw+s (qw). (B.8)

In other words, we have Ãs(Ât (q)) = Y t+s(p) + At+sA
−1
t (At (q)) for q ∈ Σ and

t + s < b.

Lemma B.2 The family Ãs defines a C2 flow in T . Moreover

∂

∂s
DwÃs = Dw

∂

∂s
Ãs . (B.9)

Proof Clearly Ãs is C2. Let us prove that Ãs+t = ÃsÃt .

Let w ∈ T . Then Âtw (qw) = w for a unique (qw, tw) ∈ Σ × [a, b]. By defini-
tion (B.8)

ÃsÃt (w) = Ãs(Ãt (Âtw (qw)) = Ãs(Ât+tw (qw)). (B.10)

Define now Ât+tw (qw) = ŵ. Note that ŵ = Âtŵ (qŵ). By the uniqueness of tŵ and
qŵ given by Lemma B.1, we get t + tw = tŵ and qw = qŵ . Thus

Ãs(Ât+tw (qw)) = Ãs(Âtŵ (qŵ)) = Âs+tŵ (qŵ)

= Âs+t+tw (qw) = Ãs+t (Atw(qw)) = Ãs+t (w). (B.11)

Combining (B.10) and (B.11) we deduce that Ãs+t = ÃsÃt .

Now we prove (B.9). Define Â(t, q) = Ât (q). Then Â is C2 and

(a) ∂
∂t

Â = ∂
∂t

Y t (p) + ∂
∂t

At (q) is C1,
(b) DqÂ = At is C1.

Note that (a) and (b) imply that

∂

∂t
At = ∂

∂t
DqÂt = Dq

∂

∂t
Ât = ∂

∂t
At . (B.12)

Note also that ∂
∂t

DqÂt and Dq
∂
∂t

Ât are C1 maps since At is a family of invertible
linear maps depending C2 in the parameter .

Now Lemma B.1 shows that Â has an inverse map R defined in the image T̂ =
Â(T ). Moreover R is C1 since Â is C1.

Again for s ∈ [a, b] and w ∈ T define Ã(s,w) = Ãs(w).

Let π1 and π2 be the projections on the first and second coordinates:

π1 : [a, b] × T → [a, b], (s,w) �→ s π2 : [a, b] × T → T , (s,w) �→ w.

Clearly πi is C∞, i = 1,2. Since

Ã(s,w) = Ãs(w) = Âs+tw (qw) = Â(s + tw, qw) = Â(s + π1 ◦ R(w),π2 ◦ R(w))

we see that Ã is C1, which implies that Ãs induces a C1 flow in T .
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Finally let us verify (B.9). For this, let R̂(s,w) = (s + π1 ◦ R(w),π2 ◦ R(w)),
where R was defined above. Clearly Ã = Â ◦ R̂. Observe that (B.12) and the fact
that R̂ and Â are C2 imply that

DwÃ = DR̂(s,w)Â · DwR̂,

∂

∂s
Ã = DR̂(s,w)Â · ∂

∂s
R̂,

∂

∂s
DwÃ = ∂

∂s
DR̂(s,w)Â · ∂sR̂ · DwR̂ + DR̂(s,w)Â · ∂

∂s
DwR̂

and Dw
∂
∂s

Ã all exist and are continuous. Thus, by the Schwartz Lemma we ob-
tain (B.9). �

Let ZA be the vector field induced by Ãs , that is, ZA(w) = ∂
∂s

Ãs(w)
∣
∣
s=0.

Lemma B.3 The vector field ZA is C1. Moreover

DwZA = ∂

∂s
Atw+sA

−1
tw

∣
∣
s=0. (B.13)

Proof Since Ãs is a C2 flow, ZA is C1.
Let us calculate DwZA. We first calculate DwÃs |s=0. For this recall that w =

Âtw (qw) with tw ∈ [a, b] and qw ∈ Σ . To simplify notation we set tw = t and qw =
q . Then, Ãs(w) = Ãs(Ât (q)) = Ât+s(q) and so DqÂt+s = D

Ât (q)
Ãs .DqÂt . This

implies that

D
Ât (q)

Ãs = DqÂt+s(DqÂt )
−1. (B.14)

On the other hand Ât+s(q) = Y t+s(p)+At+s(q) implies that DqÂt+s = At+s . Sub-
stituting this into (B.14) and using the fact that (DqÂt )

−1 = A−1
t we get

D
Ât (q)

Ãs = At+sA
−1
t .

Thus

DwZA = ∂

∂s
DwÃs

∣
∣
s=0 = ∂

∂s
D

Ât (q)
Ã

∣
∣
s=0 = ∂

∂s
At+sA

−1
t

∣
∣
s=0

proving (B.13). The proof of Lemma B.3 is completed. �

If U ⊂ R
n, then Uc stands for the complement of U .

Fix ε > 0 and take 0 < r < ε. For each t ∈ [a, b] let Σr be a cross-section to
Y t (p) satisfying diam(Σr) < r and Σr ⊂ [Y(Y t (p)]⊥.

Let Ω = ⋃

t∈[a,b] Σr . Note that Ω is a neighborhood of Y [a,b](p). Thus there are

neighborhoods U1 ⊂ U1 ⊂ U2 ⊂ U2 ⊂ Ω of Y [a,b](p) and a C1 function f : T →
R satisfying:
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• f | U1 = 1, f | Uc
2 = 0 and |f | ≤ 1; and

• given w ∈ U2, for each tw such that dist(w,Y [a,b](p)) = dist(w,Y tw (p)), we have

‖Dwf ‖ · ‖w − Y tw (p)‖ < ε.

Define the C1 vector field in R
n

Z(w) = f (w) · ZA(w) + (1 − f (w)) · Y(w).

Lemma B.4 Z is C0-near Y .

Proof Indeed,

Z(w) − Y(w) = f (w) · (ZA(w) − Y(w)). (B.15)

Given w, there are tw and qw such that w = Âtw (qw). By (B.8) and the definition of
ZA we get

ZA(w) = ∂

∂s
Ãs(w)

∣
∣
s=0 = ∂

∂s

(

Y s(Y tw (p)
)∣
∣
s=0 + ∂

∂s

(

Atw+s

)∣
∣
s=0(qw)

= Y(Y tw(p)) + ∂

∂s
(Atw+s)

∣
∣
s=0(qw).

Substituting this last inequality into (B.15) we obtain

ZA(w) − Y(w) = f (w) ·
(

Y(Y tw (p)) − Y(w) + ∂

∂s
Atw+s

∣
∣
s=0(qw)

)

and then

‖ZA(w) − Y(w)‖ ≤ ‖Y(Y tw (p)) − Y(w)‖ +
∥
∥
∥
∥

∂

∂s
Atw+s

∣
∣
s=0

∥
∥
∥
∥

· ‖(qw)‖. (B.16)

Now we can assume that Σ is sufficiently small so that ‖At(q)‖ ≤ ‖At‖ · ‖q‖ is
small for all t and q . We can estimate the first term on the right-hand side of (B.16):

‖Y(Y tw (p)) − Y(w)‖ ≤ ‖Y‖ · ‖Y tw (p) − w‖ = ‖Y‖ · ‖Y tw (p) − Âtw (qw)‖
= ‖Y‖ · ‖Y tw (p) − Y tw (p) + Atw(qw)‖
= ‖Y‖ · ‖Atw(qw)‖ ≤ ‖Y‖ · ‖Atw‖ · ‖qw‖ ≤ ε. (B.17)

The second term on the right-hand side of (B.16) can be bounded by

‖∂sAtw+s

∣
∣
s=0‖ · ‖(qw)‖ ≤ ε, (B.18)

if Σ is small. Substituting (B.17) and (B.18) into (B.16) we conclude the proof. �

To finish we need one last lemma.
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Lemma B.5 The vector field Z is C1-near Y .

Proof We have

DwZ−DwY = Dwf · (ZA(w)−Y(w))+f (w) · (DwZA −DwY)+DwY. (B.19)

The norm of the first term here is bounded by

‖Dwf ‖ · ‖ZA(w) − Y(w)‖
≤ ‖Dwf ‖ · ‖ZA(w) − ZA(Y tw (p)‖ + ‖Y(Y tw (p)) − Y(w)‖
≤ ‖Dwf ‖ · ‖ZA‖ · ‖w − Y tw (p)‖ + ‖Y‖ · ‖w − Y tw(p)‖ · ‖Dwf ‖

and the condition on the bump function f implies that both terms in the last expres-
sion are small if Σ is small.

To estimate the second term on the right-hand side of (B.19) we recall that
Lemma B.3 gives

DwZA = ∂

∂s
At+sA

−1
t

∣
∣
s=0.

On the one hand this is, by hypothesis, near DYt (p)Y .

On the other hand, since w = Ât (q) = Y t (p) + At(q), we also get that w is near
Y t (p) and so DwY is near DYt (p)Y . Combining these last two observations we find
that DwZA is near DwY , concluding the proof of Lemma B.5. �

The proof of Theorem 2.24 is complete.



Appendix C
Robustness of Dominated Decomposition

Here we prove Lemma 2.29. We assume that we are given an invariant subset Λ of a
C1 flow on a boundaryless manifold M such that Λ is compact, Λ does not contain
singularities and the Linear Poincaré Flow on Λ admits a dominated decomposition
NΛ = N1

Λ ⊕ N2
Λ where the dimensions of the sub-bundles do not depend on the

points of Λ. Alternatively we can assume that Λ is connected.
We already know from Lemma 2.28 that this decomposition is continuous, that

is, there are d1, d2 ∈ N such that d1 + d2 = d := dim(M) and continuous vector
fields (e

j
i )i=1,...,dj

defined on Λ such that for j = 1,2

• each family ej := (e
j
i )i=1,...,dj

is orthonormal;
• the span of ej equals Nj at each point x ∈ Λ.

We first construct families of vector fields close to these on Λ but defined on a
neighborhood of Λ. The compactness of Λ guarantees the existence of finitely many
charts ϕk : Vk → R

d where each Vk is a non-empty connected open set of M and
(Vk)k=1,...,l is an open cover of Λ. Let ε0 > 0 be a Lebesgue number of this open
cover.

Given η > 0 and x ∈ Λ, let 0 < εx < ε0 be such that

dist(y, x) < εx =⇒ ‖(ej )(y) − (ej )(x)‖ ≤ η, j = 1,2

where the norm here denotes

sup
k

{ dj
∑

i=1

∥
∥Dϕk(y) · ej

i (y) − Dϕk(x) · ej
i (x)

∥
∥

2

}

with the supremum taken over all charts ϕk : Vk → R
d such that Vk ⊃ B(x, εx), and

‖ · ‖2 is the Euclidean norm on R
d .

Fixing 0 < λ̄ < λ and ξ > 0 we can also choose T > 0 so that

C · e−λ̄T =
(

1 + ξ

1 − ξ

)−2
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and find δ > 0 such that

• for every C1 vector field Y satisfying ‖Y − X‖C1 < δ, and
• for every pair of unit vectors ux ∈ TxM , vy ∈ TyM satisfying

– x ∈ Λ, y ∈ U , Y(y) �= 0;
– dist(x, y) < εx and
– supk ‖Dϕk(x) · ux − Dϕk(y) · vy‖ < η (where the supremum is taken over all

charts ϕk such that x, y ∈ Vk),

we have for all −T ≤ t ≤ T

dist
(

Y t (y),Xt (x)
)

< η,
∥
∥DY t(y) · vy − DXt(x) · ux

∥
∥ ≤ ξ. (C.1)

Moreover taking δ small enough we can ensure that the orthogonal projections
OYt (y) and OXt(x) are also close, that is,

∥
∥OYt (y)DY t (y) · vy − OXt(x)DXt(x) · ux

∥
∥ = ∥

∥P t
Y · vy − P t

X · ux

∥
∥ ≤ ξ (C.2)

for −T ≤ t ≤ T .
Now define the collection of constant functions near x ∈ Λ

ē
j
x(y) := ej (x) for all y ∈ B(x, εx/2)

for each x ∈ Λ and extend them to the whole manifold M through a bump function
so that ē

j
x | ∂B(x, εx) ≡ 0.

The union U := ∪x∈ΛB(x, εx/2) is a neighborhood of Λ and (B(x, εx/2))x∈Λ

is an open cover of Λ. Let us take a countable sub-cover C with the balls centered
at some sequence (xn) and let Ψ = (ψn)n∈N be a partition of unity subordinated to
this cover (for these notions, see e.g. [255]). We define

êj :=
∑

n

ψn · ēj
xn

, j = 1,2. (C.3)

Note that Ψ is locally finite: for any given y ∈ U there exists a neighborhood V of
y such that all but finitely many ψn are non-zero on V . Since Ψ is subordinate to
the cover C we can be more precise:

ψn(y) �= 0 ⇐⇒ dist(y, xn) < εxn for all n ∈ N.

Hence the sum (C.3) is well defined on U and for any given y ∈ Λ, êj (y) is a finite
linear convex combination of some ēj (xn), all of which are close to y. Hence for all
such xn

‖ēj (xn) − ej (y)‖ ≤ η and thus ‖êj (y) − ej (y)‖ ≤ η. (C.4)

In particular we have ‖êj (y)‖ ≥ 1 − η which we may assume is bigger than 3/4.
Now we define cone fields around the subspaces spanned by êj on Ny for all

y ∈ U \ S(X), and check that they are invariant under P t for every flow Y close
enough to X in the C1 topology.
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The cone field C
j
a (x) of width a > 0 around the subspace N̂

j
x generated by êj (x),

for a vector field Y close to X and x ∈ U \ S(Y ) and j = 1,2, is given by

C
j
a (Y, x) := {

w = w1 + w2 + α · Y(x) ∈ TxM : wj ∈ N
j
x ,α ∈ R

a · ‖wj‖ ≥ ‖w3−j‖, j = 1,2 and a · ‖wj‖ ≥ |α| · ‖Y(x)‖}.
It is impossible that C1

a(Y, x) ∩ C2
a(Y, x) �= {0} with a < 1, since a non-zero vector

v in the intersection could be written as v1 + v2 with

a‖v1‖ ≥ ‖v2‖ and a‖v2‖ ≥ ‖v1‖ =⇒ a2‖v1‖ ≥ a‖v2‖ ≥ ‖v1‖ =⇒ a2 ≥ 1.

We remark that the cone field (C
j
a (Y, y))y∈U is continuous in (Y, y) in the sense

that for γ > 1 there exists δ > 0 satisfying

‖Z − Y‖C1 < δ & dist(z, y) < δ =⇒ C
j
a/γ (Z, z) ⊂ C

j
a (Y, z) ⊂ C

j
γa(Z, z)

because the vector fields ê
j
i are continuous, j = 1,2, i = 1, . . . , dj . The domination

on the original splitting for X plus the approximation to this splitting of the exten-
sion êj of the basis of vector fields ensures that, if we are given a > 0 and take T

big enough and ξ small enough so that

• P t
X · C2

a(x) is a cone of width Ce−λt · a � a around the image of N̂2
x by P t

X ,
which is contained in C2

a/8(X
t (x)) for all t ≥ T ,

then we obtain

P t
X · C2

a(x) ⊂ C2
a/4

(

Xt(x)
)

for all x ∈ Λ and t ≥ T .

A dual inclusion is also true for the cone around N1
x . These inclusions together

with (C.1), (C.2) and (C.4) ensure that we can also assume that, for Y close enough
to X and y ∈ U \ S(Y ),

P t
Y · C2

a(y) ⊂ C2
a(Y t (y)) and P −t

Y · C1
a(y) ⊂ C1

a(Y−t (y)) (C.5)

for all t ≥ T if Y s(y) ∈ U for all 0 ≤ s ≤ t . Indeed, P t
Y ·C2

a(y) is close to P t
X ·C2

a(x)

for 0 ≤ t ≤ T , and so for t = T we have the statement. In addition, if Y t (y) ∈ U for
T ≤ t < 2T , then the vectors in P t−T

Y P T
Y ·C2

a(y) are at a distance of at most η from
vectors in P t−T

X P T
X · C2

a(x) which is again contained in C2
a/4(X

t (x)). The same
argument applies for kT ≤ t ≤ (k + 1)T , k ≥ 1.

Let y ∈ U be given and choose x ∈ Λ close to y, that is, such that dist(y, x) < εx .
Then we estimate using (C.2) for 0 ≤ t ≤ T and i = 1, . . . , d1, k = 1, . . . , d2:

∥
∥P t

Y · ê1
i (y)

∥
∥

∥
∥P t

Y · ê2
k(y)

∥
∥

=
∥
∥P t

Y · ê1
i (y)

∥
∥

∥
∥P t

X · ê1
i (x)

∥
∥

·
∥
∥P t

X · ê1
i (x)

∥
∥

∥
∥P t

X · ê2
k(x)

∥
∥

·
∥
∥P t

X · ê2
k(x)

∥
∥

∥
∥P t

Y · ê2
k(y)

∥
∥

≤ 1 + ξ

1 − ξ
·
∥
∥P t

X · ê1
i (x)

∥
∥

∥
∥P t

X · ê2
k(x)

∥
∥
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and
∥
∥P t

X · ê1
i (x)

∥
∥

∥
∥P t

X · ê2
k(x)

∥
∥

=
∥
∥P t

X · ê1
i (x)

∥
∥

∥
∥P t

X · e1
i (x)

∥
∥

·
∥
∥P t

X · e1
i (x)

∥
∥

∥
∥P t

X · e2
k(x)

∥
∥

·
∥
∥P t

X · e2
k(x)

∥
∥

∥
∥P t

X · ê2
k(x)

∥
∥

≤ 1 + ξ

1 − ξ
·
∥
∥P t

X · e1
i (x)

∥
∥

∥
∥P t

X · e2
k(x)

∥
∥
.

Thus we get
∥
∥P t

Y · ê1
i (y)

∥
∥

∥
∥P t

Y · ê2
k(y)

∥
∥

≤
(

1 + ξ

1 − ξ

)2

· Ce−λt . (C.6)

This ensures that P t
Y · C2

a(Y, y) is a cone on NYt (y) with respect to the splitting

given by the subspaces E
j

Y t (x)
generated by (P t

Y · êj
i )i=1,...,dj

, j = 1,2, around the

subspace E2
Y t (y)

, whose width is bounded from above by the expression (1+ξ)2(1−
ξ)−2 · Ce−λt · a. But this is only for 0 ≤ t ≤ T .

To obtain a similar exponential bound for t > T we reapply the bound. Let � =
[t/T ] and write t = �T + s with 0 ≤ s < T . Then, by induction on the number �

of subintervals of length T in [0, t], we get (recall the choice of T and of λ̄ at the
beginning)

∥
∥P t

Y · ê1
i (y)

∥
∥

∥
∥P t

Y · ê2
k(y)

∥
∥

≤
[(

1 + ξ

1 − ξ

)2

· Ce−λT

]�

· Ce−λs

=
[(

1 + ξ

1 − ξ

)2

· Ce−λ̄T

]�

· Ce−λs−(λ−λ̄)�T ≤ Ce−(λ−λ̄)t .

Moreover (C.5) implies that this cone is contained in C2
a(Y t (y)) for t > T whenever

Y s(y) ∈ U for all 0 ≤ s ≤ t . A dual statement holds for P −t
Y · C1

a(Y, y).
Finally we define for all y ∈ ΛY (U) \ S(Y ) the splitting

N2
y (Y ) :=

⋂

t≥T

P t
Y · C2

a

(

Y,Y−t (y)
)

and N1
y (Y ) :=

⋂

t≥T

P−t
Y · C1

a

(

Y,Y t (y)
)

,

which is invariant under P t for all t ∈ R (it is clearly invariant for all |t | ≥ T and
P tP −t = Id). The domination is given by (C.6) since the subspaces are contained in
the cone of width 2a around the subspaces F j generated by êj : write u = u1 +u2 ∈
N1

y (Y ) and v = v1 + v2 ∈ N2
y (Y ) with u1, v1 ∈ F 1

y and u2, v2 ∈ F 2
y , and compute

‖P t
Y (u)‖

‖P t
Y (v)‖ ≤ ‖P t

Y (u1)‖ + ‖P t
Y (u2)‖

∣
∣‖P t

Y (v2)‖ − ‖P t
Y (v1)‖∣∣ ≤ ‖P t

Y (u1)‖ + ‖P t
Y (u1)‖/a

∣
∣‖P t

Y (v2)‖ − ‖P t
Y (v2)‖/a∣

∣

≤ Ce−(λ−λ̄)t · 1 + a−1

a−1 − 1
.
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This goes to zero exponentially fast. We remark that the quotients involving ξ and a

can be made as close to 1 as desired by choosing ξ and a sufficiently close to zero,
which can be done by shrinking U through setting η > 0 and δ > 0 small enough
from the beginning. In addition, the exponent λ̄ can be made as close to λ as needed
by choosing 0 < λ̄ < λ with λ − λ̄ close to zero from the beginning, shrinking the
neighborhood U and reducing ξ, δ accordingly.

The proof of Lemma 2.29 is complete.
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