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Abstract. The purpose of this article is to motivate the study of invariant, and especially
conformally invariant, differential pairings. Since a general theory is lacking, this work
merely presents some interesting examples of these pairings, explains how they naturally
arise, and formulates various associated problems.
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1 Introduction

The Lie derivative is an extremely familiar operation in differential geometry. Given a smooth
vector field V and tensor field φ, the Lie derivative LV φ is certainly an intrinsic or invariant
construction. In practise, we can take this to mean that the result is independent of any local
coördinate formula that may be used. Alternatively, we may employ an arbitrary torsion-free
affine connection ∇ to write explicit formulae such as

φbc
LV7−→ V a∇aφbc + (∇bV

a)φac + (∇cV
a)φba, (1)

checking that the result is independent of the connection used. In this formula, the indices are
‘abstract indices’ in the sense of Penrose [18]. It follows that the expression is coördinate-free
whilst its freedom from choice of connection follows immediately from the formulae

∇̂aV
c = ∇aV

c + Γab
cV b and ∇̂aφbc = ∇aφbc − Γab

dφdc − Γac
dφbd, (2)

capturing all possible torsion-free connections via the choice of tensor Γab
c = Γba

c. For further
details on this point of view, see [18].

Writing the Lie derivative as LV φ suggests that we are regarding it as a linear differential
operator acting on the tensor field φ for a fixed choice of vector field V . However, it is clear
from expressions such as (1) that we may equally well fix φ and regard the result as a linear
differential operator acting on vector fields V . Sometimes, this is the natural viewpoint. For
example, if φab is symmetric then we may rewrite (1) as

(LV φ)bc = φbc∇aV
c + φac∇bV

c + (∇cφab)V
c

and now if φab is a metric and we choose ∇a to be its Levi-Civita connection, then

LV φ = 0 ⇐⇒ ∇aVb + ∇bVa = 0,

⋆This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in
Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). The full collection is available at
http://www.emis.de/journals/SIGMA/symmetry2007.html

http://arXiv.org/abs/0711.3746v1
mailto:meastwoo@member.ams.org
http://www.emis.de/journals/SIGMA/2007/113/
http://www.emis.de/journals/SIGMA/symmetry2007.html


2 M.G. Eastwood

which is the usual way of viewing the Killing equation on a Riemannian manifold. Of course,
the best way of viewing LV φ is as a bilinear differential operator or as a differential pairing. It
is invariantly defined on any manifold and is an example of the subject matter of this article.

One can easily imagine other expressions along the lines of the right hand side of (1) that
turn out to be independent of choice of connection. Restricting the choice of connection leads
to a greater range of expressions that might be invariant. In the next two sections we shall find
examples that are invariant when the connections are deemed to be Levi-Civita connections for
metrics taken from a fixed conformal class.

2 First order symmetries

Suppose  L : E → F is a linear differential operator between vector bundles E and F . A linear
differential operator D : E → E is said to be a symmetry of  L if and only if

 LD = δ L for some linear differential operator δ : F → F.

When  L is the Laplacian on R
3 (and the bundles E and F are trivial), its first order symmetries

are well-known [17]. Specifically, they comprise an 11-dimensional vector space spanned by the
following

f 7→ f, f 7→
∂f

∂x
, f 7→

∂f

∂y
, f 7→

∂f

∂z
, f 7→ x

∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
,

f 7→ x
∂f

∂y
− y

∂f

∂x
, f 7→ (x2 − y2 − z2)

∂f

∂x
+ 2xy

∂f

∂y
+ 2xz

∂f

∂z
+ xf,

f 7→ y
∂f

∂z
− z

∂f

∂y
, f 7→ (y2 − z2 − x2)

∂f

∂y
+ 2yz

∂f

∂z
+ 2yx

∂f

∂x
+ yf,

f 7→ z
∂f

∂x
− x

∂f

∂z
, f 7→ (z2 − x2 − y2)

∂f

∂z
+ 2zx

∂f

∂x
+ 2zy

∂f

∂y
+ zf, (3)

where x, y, z are the usual Euclidean coördinates on R
3. Following [10], it is convenient to

rewrite the general first order symmetry as

f 7→ V a∇af + 1
6(∇aV

a)f + Cf,

where V a is an arbitrary vector field of the form

V a = −sa −ma
bx

b + λxa + rbx
bxa − 1

2xbx
bra (4)

and C is an arbitrary constant. In fact, vector fields of the form (4) on R
n are precisely the

conformal Killing fields, i.e. the solutions of the equation

∇aVb + ∇bVa = 2
ngab∇

cVc, (5)

where gab is the usual Euclidean metric on R
n. More generally, on R

n the first order symmetries
of the Laplacian may be written as f 7→ DV f + Cf , where

DV f ≡ V a∇af + n−2
2n (∇aV

a)f (6)

for an arbitrary conformal Killing field V a. This expression certainly resembles the Lie derivative
and we now make this precise as follows. If φbc···de is an n-form, then

0 = (n+ 1)(∇[aV
a)φbc···de] = (∇aV

a)φbc···de −
[
(∇bV

a)φac···de + · · · + (∇eV
a)φbc···da

]
,
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where we are following [18] in employing square brackets to denote the result of skewing over
the indices they enclose and also noting that a skew tensor with n+ 1 indices on R

n necessarily
vanishes. Hence, the Lie derivative on n-forms simplifies:

LV φbc···de = V a∇aφbc···de + (∇bV
a)φac···de + · · · + (∇eV

a)φbc···da

= V a∇aφbc···de + (∇aV
a)φbc···de.

Thus, if h is a section of the bundle Λn of n-forms, then

LV h = V a∇ah+ (∇aV
a)h.

Therefore, the expression (6) coincides with the Lie derivative if f is interpreted as a section of the
line bundle (Λn)(n−2)/2n (supposing that the manifold is orientable so that such fractional powers
are allowed). In particular, we deduce that [DV ,DW ] = D[V,W ], as is also readily verified by
direct computation. Also we conclude that, with this interpretation, the differential pairing DV f
between V a and f is invariant in the sense discussed for Lie derivative in Section 1.

3 Conformal geometry

An alternative viewpoint on these matters is as follows. If ∇a is the Levi-Civita connection for
a metric gab, then the Levi-Civita connection ∇̂a for the conformally related metric ĝab = Ω2gab

is given on 1-forms by

∇̂aφb = ∇aφb − Υaφb − Υbφa + Υcφcgab, (7)

where Υa = ∇a log Ω and Υc = gcdΥd. Thus, associated with a conformal class of metrics we
have a restricted supply of torsion-free connections related by formulae such as (2) where

Γab
c = Υaδb

c + Υbδa
c − gabΥ

c (8)

for closed 1-forms Υa. It is convenient introduce a line bundle L on a general conformal manifold
as follows. A choice of metric gab in the conformal class trivialises L, allowing us to view a
section of L as a function f . We decree, however, that viewing the same section by means of
the trivialisation due to ĝab = Ω2gab gives us the function f̂ = Ωf . More generally, sections of
the bundle Lw transform by f̂ = Ωwf and are called conformal densities of conformal weight w.
Since

∇af̂ = ∇a(Ωwf) = Ωw(∇af + wΥaf)

we may view Lw as equipped with a family of connections related by

∇̂af = ∇af + wΥaf. (9)

On an oriented conformal n-manifold, the line bundle Λn is also trivialised by a choice of metric.
Specifically, we may use the inverse metric gab to raise indices and then normalise the volume
form ǫbc···de so that ǫbc···deǫbc···de = n!. Since ĝab = Ω−2gab it follows that ǫ̂bc···de = Ωnǫbc···de and
hence that we may identify Λn = L−n. It is easily confirmed that (7) implies

∇̂aφbc···de = ∇aφbc···de − nΥaφbc···de

for n-forms φbc···de, which is consistent with (9) for w = −n, as it should be. Combining (7)
and (9) gives us a formula for the change of connection on Λ1 ⊗ Lw, namely

∇̂aφb = ∇aφb + (w − 1)Υaφb − Υbφa + Υcφcgab.
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Let us now consider how the Laplacian ∆ = ∇a∇
a acting on densities of weight w is affected

by a conformal rescaling of the metric. We compute:

∇̂a∇̂bf = ∇a∇̂bf + (w − 1)Υa∇̂bf − Υb∇̂af + (Υc∇̂cf)gab

and so

∆̂f = ĝab∇̂a∇̂bf = Ω−2gab
(
∇a∇̂bf + (w − 1)Υa∇̂bf − Υb∇̂af + (Υc∇̂cf)gab

)

= Ω−2
(
∇a∇̂af + (n+ w − 2)Υa∇̂af

)

= Ω−2
(
∇a(∇af + wΥaf) + (n+ w − 2)Υa(∇af + wΥaf)

)
.

Here, we are using gab to raise indices on the right hand side. Regrouping as

∆̂f = Ω−2
(
∆f + (n + 2w − 2)Υa∇af + w(∇aΥa + (n+ w − 2)ΥaΥa)f

)
,

we see that when w = 1 − n/2 there are no first order derivatives in f and

∆̂f = Ω−2
(
∆f − (n/2 − 1)(∇aΥa + (n/2 − 1)ΥaΥa)f

)
. (10)

On the other hand, the Riemann curvature tensor transforms by

R̂abcd = Ω2(Rabcd − Ξacgbd + Ξbcgad − Ξbdgac + Ξadgbc)

where

Ξab ≡ ∇aΥb − ΥaΥb + 1
2ΥcΥ

cgab.

It follows immediately that the scalar curvature R = gacgcdRabcd transforms by

R̂ = Ω−2
(
R− 2(n− 1)(∇aΥa + (n/2 − 1)ΥaΥa)

)
. (11)

From (10) and (11) we conclude that

∆̂f − n−2
4(n−1) R̂f = Ω−2

(
∆f − n−2

4(n−1)Rf
)
.

If we also absorb the factor of Ω−2 into a change of conformal weight, then we conclude that
Y ≡ ∆− n−2

4(n−1)R is a conformally invariant differential operator Y : L1−n/2 → L−1−n/2. This is
the conformal Laplacian or Yamabe operator. The peculiar multiple of the scalar curvature that
must be added to the Laplacian to achieve conformal invariance is often referred to a curvature

correction term.
Now we are in a position to compare with the first order symmetries of the Laplacian on R

n

found in Section 2. Of course, the curvature correction terms are absent for the flat metric
on R

n. Therefore, there is no difference between the Laplacian and the Yamabe operator
provided we restrict our attention to conformal rescalings that take the flat metric to another
flat metric. But flat-to-flat rescalings are precisely what are provided by the conformal Killing
fields (5). Specifically, the conformal Killing fields are those vector fields whose flows preserve
the conformal structure on R

n and, moreover, the flat-to-flat conformal factors generated in this
way are general [2]. The conformal invariance of the Yamabe operator on a general conformal
manifold therefore implies the invariance of the Laplacian on R

n under Lie derivative LV for
conformal Killing fields V . Here, as we have just seen, LV should be interpreted as acting on
the bundles L1−n/2 and L−1−n/2. At the end of Section 2 we found that the symmetry DV given
by (6) may be regarded as the Lie derivative on (Λn)(n−2)/2n. These viewpoints now coincide
because

Λn = L−n =⇒ (Λn)(n−2)/2n = L1−n/2.

The same reasoning applies more generally. The geometric interpretation of conformal Killing
fields combines with the conformal invariance of the Yamabe operator and we have proved:
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Theorem 1. Suppose that V a is a conformal Killing field on a Riemannian manifold, i.e.

a solution of the equation (5). Then DV given by (6) is a symmetry of the Yamabe operator.

More precisely,

(
∆ − n−2

4(n−1)R
)
DV = δV

(
∆ − n−2

4(n−1)R
)
,

where

DV = V a∇a + n−2
2n (∇aV

a) and δV = V a∇a + n+2
2n (∇aV

a).

In fact, it follows from proof of [10, Theorem 1] that these are the only symmetries of the
Yamabe operator.

We have already observed that the differential pairing DV f given by (6) is invariant in the
very strong sense of being intrinsically defined on any manifold. Conformal invariance is a
weaker statement but one that is easily verified directly. From (2) and (8),

∇̂aV
b = ∇aV

b + ΥaV
b − ΥbVa + ΥcV

cδa
b =⇒ ∇̂aV

a = ∇aV
a + nΥaV

a

whilst for f a density of weight w we have (9). It follows immediately that

V a∇af − w
n (∇aV

a)f (12)

is a conformally invariant differential pairing and for w = 1 − n/2 this agrees with (6).

4 Higher order symmetries

There are some second order symmetries of the Laplacian on R
n that should be regarded as

trivial. If D = h∆ for some smooth function h, then ∆D = δ∆ simply by taking δf = ∆(hf).
All symmetries preserve harmonic functions but D = h∆ does this by dint of annihilating them.
Ignoring these trivial symmetries, the second order symmetries of the Laplacian in R

3 were
found by Boyer, Kalnins, and Miller [3]. They add an extra 35 dimensions to the 11-dimensional
space (3). In [10] all higher symmetries were found in all dimensions and, ignoring the trivial
ones, there is an additional finite-dimensional space of second order ones. More precisely, there
are second order symmetries

DV f = V ab∇a∇bf + n
n+2(∇aV

ab)∇bf + (n−2)n
4(n+1)(n+2) (∇a∇bV

ab)f (13)

for any trace-free symmetric tensor V ab satisfying

∇aVbc + ∇bVca + ∇cVab = 2
n+2

(
gab∇

dVcd + gbc∇
dVad + gca∇

dVbd

)
. (14)

Such V ab are called conformal Killing tensors (of valence 2) and on R
n form a vector space of

dimension

(n−1)(n+2)(n+3)(n+4)
12 .

As detailed in [10], this is the ‘additional space’ of second order symmetries referred to
above. As with first order symmetries (6), the pairing between valence 2 symmetric trace-free
tensors V ab and densities f of weight 1−n/2 given by the right hand side of (13) is conformally
invariant under flat-to-flat conformal rescalings. Unlike the first order case, however, the pair-
ing (13) is not invariant under general conformal rescalings of a general Riemannian manifold
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but, like the Laplacian, becomes so with the addition of suitable curvature correction terms.
Specifically, for V ab any trace-free symmetric contravariant tensor and f of weight w

V ab∇a∇bf − 2(w−1)
n+2 (∇aV

ab)∇bf + w(w−1)
(n+1)(n+2) (∇a∇bV

ab)f + w(n+w)
(n+1)(n−2)RabV

abf, (15)

where Rab is the Ricci tensor, is a conformally invariant differential pairing on an arbitrary
Riemannian manifold. When w = 1 − n/2, we obtain

DV f ≡ V ab∇a∇bf + n
n+2(∇aV

ab)∇bf + (n−2)n
4(n+1)(n+2) (∇a∇bV

ab)f − n+2
4(n+1)RabV

abf

as a conformally invariant analogue of the flat symmetry operator (13). Whether this operator
actually provides a symmetry of the Yamabe operator in general, however, is unclear. By analogy
with Theorem 1, one might hope that if V ab were a conformal Killing tensor (14), then it would
follow that

(
∆ − n−2

4(n−1)R
)
DV = δV

(
∆ − n−2

4(n−1)R
)

(16)

for DV as above and

δV f ≡ V ab∇a∇bf + n+4
n+2(∇aV

ab)∇bf + n+4
4(n+1) (∇a∇bV

ab)f − n+2
4(n+1)RabV

abf.

This is currently unknown. The problem is that there does not seem to be any useful geometric
interpretation of V ab being a conformal Killing tensor in parallel to V a being a conformal Killing
field. In principle, the validity or otherwise of (16) should boil down to a calculation once the
differential consequences of (14) are determined. Furthermore, the differential consequences
of (14) can all be found by prolonging the system, as described in [5] for example. Nevertheless,
it will surely be a difficult calculation.

5 Further examples of invariant pairings

The simple conformally invariant pairings we have found so far, namely (12) and (15), may be
extended by allowing V a and V ab to have a general conformal weight as follows. It is convenient
to set

Φab ≡
1

n− 2

(
Rab −

1
nRgab

)
.

Proposition 1. Suppose that V a has conformal weight v and f has conformal weight w. Then

(v + n)V a∇af − w(∇aV
a)f (17)

is conformally invariant. Suppose V ab is trace-free symmetric with conformal weight v and f
has conformal weight w. Then

(n + v + 2)(n + v + 1)V ab∇a∇bf − 2(w − 1)(n + v + 1)(∇aV
ab)∇bf

+ w(w − 1)(∇a∇bV
ab)f + w(n + v + w)(n + v + 2)ΦabV

abf (18)

is conformally invariant.

Proof. These are easily verified using the formulae for conformal rescaling developed in Sec-
tion 3. �
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Notice that there are several special cases occurring for particular values of v and w. The
form of (17) suggests setting w = 0 or v = −n and, when we do, we find

(v + n)V a∇af is invariant ∀V a =⇒ f 7→ ∇af is invariant

and

−w(∇aV
a)f is invariant ∀ f =⇒ V a 7→ ∇aV

a is invariant.

These are familiar invariant linear differential operators. The first one is the exterior derivative
d : Λ0 → Λ1 and the second may be identified as d : Λn−1 → Λn. More interesting are the
consequences of setting w = 1 and v = −n − 1 in (18). We obtain conformally invariant linear
differential operators

f 7→ ∇a∇bf − 1
n(∆f)gab + Φabf and V ab 7→ ∇a∇bV

ab + ΦabV
ab, respectively.

The theory of conformally invariant linear differential operators is well understood [1, 4, 12, 14]
and includes these two as simple examples. Other special values of the weights v and w show
up as zeroes of the coefficients in (18). We have already seen that for w = 0 there is an
invariant differential operator f 7→ ∇af . Similarly, for v = −n− 2 the operator V ab 7→ ∇aV

ab

is conformally invariant.
It is also interesting to note that, conversely, we can build the invariant pairing (18) from

these various linear invariant operators. Specifically, if V ab has weight v and f has weight w 6= 0
then, at least where f does not vanish,

f−(n+v+1)/wV ab has weight − n− 1 and f−(n+v+2)/wV ab has weight − n− 2.

Therefore,

∇a∇b(f
−(n+v+1)/wV ab) + Φabf

−(n+v+1)/wV ab and ∇b(f
−(n+v+2)/wV ab)

are invariant. If the second of these is multiplied by f2/w we obtain a vector field of weight −n
and conclude that

∇a

(
f2/w∇b(f

−(n+v+2)/wV ab)
)

is also invariant. It follows, therefore, that the combination

w(n + v + 2)(n + v + w)f (n+v+1+w)/w
(
∇a∇b(f

−(n+v+1)/wV ab) + Φabf
−(n+v+1)/wV ab

)

− w(n + v + 1)(n + v + 1 + w)f (n+v+w)/w
(
∇a

(
f2/w∇b(f

−(n+v+2)/wV ab)
))

is invariant. A short calculation reveals that this expression agrees with (18) and, although we
supposed w 6= 0 and also that f 6= 0 in carrying out this derivation, the final conclusion is valid
regardless. These tricks reveal some sort of relationship between invariant differential pairings
and invariant linear differential operators, at least when one of the quantities to be paired is
a conformal density.

These tricks are unavailable more generally but there are, nevertheless, many conformally in-
variant differential pairings. For example, if V ab is symmetric trace-free with conformal weight v
and φa has conformal weight w, then

(n + v + 2)V ab∇aφb − (w − 2)(∇aV
ab)φb.

is invariant. Operators such as this one and (17) are referred to as first order , not only because
there are no higher derivatives involved than first order but also because there are no cross terms
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of the form ∇V ⊲⊳ ∇φ where ⊲⊳ denotes some algebraic pairing (we shall come back to this point
soon). The theory of first order invariant differential pairings on a conformal manifold, or more
generally on a manifold with AHS structure, is reasonably well understood thanks to recent work
of Kroeske [16]. Following the approach of Fegan [14] in the conformal case and Čap, Slovák, and
Souček [7] more generally, Kroeske classifies the first order invariant pairings provided that the
weights of the tensors involved are so that invariant linear differential operators are excluded.
This corresponds well to the relationship that seemed to be emerging in our examples. For
higher order pairings, however, Kroeske [16] finds additional unexpected pairings and is able to
present a satisfactory theory only in the flat projective setting.

6 Some precise formulations

When E and F are smooth vector bundles on some smooth manifold, it is well-known that linear
differential operators D : E → F of order ≤ k are in 1–1 correspondence with vector bundle
homomorphisms JkE → F where JkE is the kth jet bundle of E. Indeed, it is usual to abuse
notation and also write D : JkE → F , sometimes adopting this viewpoint as the definition of
a linear differential operator. There are canonical short exact sequences of vector bundles

0 →
⊙kΛ1 ⊗ E → JkE → Jk−1E → 0, (19)

where
⊙kΛ1 is the bundle of symmetric covariant tensors of valence k and the composition

⊙kΛ1 ⊗ E → JkE
D
−→ F

is called the symbol of D. For further details, see [19] for example.
Differential pairings may be formulated similarly. Suppose another vector bundle V is given

and we wish to define what is a differential pairing E × F → V . The jet exact sequences (19)
may be written as

JkE = E + Λ1 ⊗ E +
⊙2Λ1 ⊗E +

⊙3Λ1 ⊗ E + · · · +
⊙kΛ1 ⊗ E,

meaning that JkE is filtered with successive quotients as shown. It follows that

JkE ⊗ JkF = E ⊗ F +
Λ1 ⊗ E ⊗ F

⊕
E ⊗ Λ1 ⊗ F

+

⊙2Λ1 ⊗ E ⊗ F
⊕

Λ1 ⊗ E ⊗ Λ1 ⊗ F
⊕

E ⊗
⊙2Λ1 ⊗ F

+ · · ·

and, following [16], we define the bi-jet bundle Jk(E,F ) as the quotient of JkE ⊗ JkF corre-
sponding to the first k + 1 columns of this composition series. There are bi-jet exact sequences
starting with

0 →
Λ1 ⊗E ⊗ F

⊕
E ⊗ Λ1 ⊗ F

→ J1(E,F ) → E ⊗ F → 0

and

0 →

⊙2Λ1 ⊗ E ⊗ F
⊕

Λ1 ⊗E ⊗ Λ1 ⊗ F
⊕

E ⊗
⊙2Λ1 ⊗ F

→ J2(E,F ) → J1(E,F ) → 0.
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A differential pairing E × F → V of order k may now defined as a homomorphism of vector
bundles Jk(E,F ) → V . Notice that it is the total order of the operator that is constrained to
be less than of equal to k. For first order pairings, for example, we are excluding terms of the
form ∇ψ ⊲⊳ ∇φ (written in the presence of chosen connections). For second order pairings we
exclude ∇2ψ ⊲⊳ ∇φ, ∇ψ ⊲⊳ ∇2φ, and ∇2ψ ⊲⊳ ∇2φ. The symbol of a pairing is defined as the
composition

k⊕

j=0

⊙jΛ1 ⊗ E ⊗
⊙k−jΛ1 ⊗ F −→ Jk(E,F ) −→ V.

Several other basic notions for linear differential operators immediately carry over to bilinear
differential pairings. Suppose, for example, that we consider homogeneous vector bundles on
a homogeneous space G/P . If E and F are induced from P -modules E and F, then Jk(E,F )
will also be induced from a P -module, say Jk(E,F). If V is induced from V, a G-invariant
differential pairing will correspond to a P -module homomorphism Jk(E,F) → V. In particular,
whenG = SO(n+1, 1) andG/P is the conformal sphere (as detailed in [9] for example) then these
P -module homomorphisms correspond to flat-to-flat invariant differential pairings. This gives
an approach to classification as adopted in [16]. Nevertheless, it remains a difficult problem.

7 Other sources of invariant pairings

Firstly, there are other conformally invariant differential operators whose symmetries give rise
to invariant differential pairings. The square of the Laplacian is treated in [11] and the Dirac
operator in [13]. There is also another source of pairings derived from the structure of the
symmetry algebra as follows. Let us consider the symmetries of the Laplacian as in Sections 2
and 4. It is clear that the composition of symmetries is again a symmetry. In particular, if we
compose two first order symmetries (6) on R

n then we find [10]

DV DW f = DV ⊚W f + 1
2D[V,W ]f − n−2

4n(n+1) 〈V,W 〉f + 1
nV

aWa∆f

where DV ⊚W is given by (13) and

(V ⊚W )ab = 1
2V

aW b + 1
2V

bW a − 1
ng

abV cWc,

[V,W ]a = V b∇bV
a −W b∇bV

a,

〈V,W 〉 = (n+ 2)(∇bV
a)(∇aW

b) − n+2
n (∇aV

a)(∇bW
b) − n+2

n V a∇a∇bW
b

− n+2
n W a∇a∇bV

b + ∆(VaW
a).

The last of these is constant when V a and W a are Killing fields on R
n and in this case coincides

with their inner product under the Killing form in so(n+1, 1). Remarkably, there is a curvature
corrected version

(n + 2)(∇bV
a)(∇aW

b) − n+2
n (∇aV

a)(∇bW
b) − n+2

n V a∇a∇bW
b

− n+2
n W a∇a∇bV

b + ∆(VaW
a) − 2(n+2)

(n−2) RabV
aW b + 2n

(n−1)(n−2)RVaW
a

that provides an invariant differential pairing on arbitrary vector fields.
This approach to constructing invariant pairings is sometimes called quantisation: the symbol

of an operator is specified, one attempts to build an invariant operator with this symbol, and
then one composes these operators. Further examples are given by Duval and Ovsienko [8] in
the conformal case and Fox [15] in the projective case.

Finally, there is a general construction of invariant pairings for very particular weights called
cup products by Calderbank and Diemer [6]. This construction applies in any parabolic geometry

but further discussion is beyond the scope of this article.
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Jens Kroeske. Support from the Australian Research Council is also gratefully acknowledged.

References

[1] Baston R.J., Eastwood M.G., Invariant operators, in Twistors in Mathematics and Physics, London Math.

Soc. Lecture Note Ser., Vol. 156, Cambridge University Press, 1990, 129–163.

[2] Baird P., Wood J.C., Harmonic morphisms between Riemannian manifolds, Oxford University Press, 2003.

[3] Boyer C.P., Kalnins E.G., Miller W. Jr., Symmetry and separation of variables for the Helmholtz and
Laplace equations, Nagoya Math. J. 60 (1976), 35–80.

[4] Branson T.P., Differential operators canonically associated to a conformal structure, Math. Scand. 57 (1985),
293–345.
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