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Introduction

What schemes are

The theory of schemes is the foundation for algebraic geometry formu�
lated by Alexandre Grothendieck and his many coworkers� It is the basis
for a grand uni�cation of number theory and algebraic geometry� dreamt
of by number theorists and geometers for over a century� It has strength�
ened classical algebraic geometry by allowing �exible geometric arguments
about in�nitesimals and limits in a way that the classic theory could not
handle� In both these ways it has made possible astonishing solutions of
many concrete problems� On the number�theoretic side one may cite the
proof of the Weil conjectures� Grothendieck�s original goal Deligne �������
and the proof of the Mordell Conjecture Faltings �������� In classical alge�
braic geometry one has the development of the theory of moduli of curves�
including the resolution of the Brill�Noether�Petri problems� by Deligne�
Mumford� Gri�ths� and their coworkers see Harris and Morrison ������
for an account�� leading to new insights even in such basic areas as the the�
ory of plane curves� the �rm footing given to the classi�cation of algebraic
surfaces in all characteristics see Bombieri and Mumford �������� and the
development of higher�dimensional classi�cation theory by Mori and his
coworkers see Koll�ar ��������

No one can doubt the success and potency of the scheme�theoretic meth�
ods� Unfortunately� the average mathematician� and indeed many a be�
ginner in algebraic geometry� would consider our title� �The Geometry of
Schemes�� an oxymoron akin to �civil war�� The theory of schemes is widely
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regarded as a horribly abstract algebraic tool that hides the appeal of ge�
ometry to promote an overwhelming and often unnecessary generality�

By contrast� experts know that schemes make things simpler� The ideas
behind the theory�often not told to the beginner�are directly related
to those from the other great geometric theories� such as di�erential ge�
ometry� algebraic topology� and complex analysis� Understood from this
perspective� the basic de�nitions of scheme theory appear as natural and
necessary ways of dealing with a range of ordinary geometric phenomena�
and the constructions in the theory take on an intuitive geometric content
which makes them much easier to learn and work with�

It is the goal of this book to share this �secret� geometry of schemes�
Chapters I and II� with the beginning of Chapter III� form a rapid intro�
duction to basic de�nitions� with plenty of concrete instances worked out
to give readers experience and con�dence with important families of ex�
amples� The reader who goes further in our book will be rewarded with
a variety of speci�c topics that show some of the power of the scheme�
theoretic approach in a geometric setting� such as blow�ups� �exes of plane
curves� dual curves� resultants� discriminants� universal hypersurfaces and
the Hilbert scheme�

What�s in this book�

Here is a more detailed look at the contents�
Chapter I lays out the basic de�nitions of schemes� sheaves� and mor�

phisms of schemes� explaining in each case why the de�nitions are made
the way they are� The chapter culminates with an explanation of �bered
products� a fundamental technical tool� and of the language of the �functor
of points� associated with a scheme� which in many cases enables one to
characterize a scheme by its geometric properties�

Chapter II explains� by example� what various kinds of schemes look like�
We focus on a�ne schemes because virtually all of the di�erences between
the theory of schemes and the theory of abstract varieties are encountered
in the a�ne case� the general theory is really just the direct product of the
theory of abstract varieties �a la Serre and the theory of a�ne schemes� We
begin with the schemes that come from varieties over an algebraically closed
�eld II���� Then we drop various hypotheses in turn and look successively
at cases where the ground �eld is not algebraically closed II���� the scheme
is not reduced II�
�� and where the scheme is �arithmetic��not de�ned
over a �eld at all II����

In Chapter II we also introduce the notion of families of schemes� Families
of varieties� parametrized by other varieties� are central and characteristic
aspects of algebraic geometry� Indeed� one of the great triumphs of scheme
theory�and a reason for much of its success� is that it incorporates this
aspect of algebraic geometry so e�ectively� The central concepts of limits�
and �atness make their �rst appearance in section II�
 and are discussed
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in detail� with a number of examples� We see in particular how to take
�at limits of families of subschemes� and how nonreduced schemes occur
naturally as limits in �at families�

In all geometric theories the compact objects play a central role� In many
theories such as di�erential geometry� the compact objects can be embed�
ded in a�ne space� but this is not so in algebraic geometry� This is the
reason for the importance of projective schemes� which are proper�this is
the property corresponding to compactness� Projective schemes form the
most important family of nona�ne schemes� indeed the most important
family of schemes altogether� and we devote Chapter III to them� After
a discussion of properness we give the construction of Proj and describe
in some detail the examples corresponding to projective space over the in�
tegers and to double lines in three�dimensional projective space in a�ne
space all double lines are equivalent� as we show in Chapter II� but this is
not so in projective space�� We also discuss the important geometric con�
structions of tangent spaces and tangent cones� the universal hypersurface
and intersection multiplicities�

We devote the remainder of Chapter III to some invariants of projec�
tive schemes� We de�ne free resolutions� graded Betti numbers and Hilbert
functions� and we study a number of examples to see what these invariants
yield in simple cases� We also return to �atness and describe its relation to
the Hilbert polynomial�

In Chapters IV and V we exhibit a number of classical constructions
whose geometry is enriched and clari�ed by the theory of schemes� We be�
gin Chapter IV with a discussion of one of the most classical of subjects in
algebraic geometry� the �exes of a plane curve� We then turn to blow�ups� a
tool that recurs throughout algebraic geometry� from resolutions of singu�
larities to the classi�cation theory of varieties� We see among other things�
that this very geometric construction makes sense and is useful for such ap�
parently non�geometric objects as arithmetic schemes� Next� we study the
Fano schemes of projective varieties�that is� the schemes parametrizing
the lines and other linear spaces contained in projective varieties� focusing
in particular on the Fano schemes of lines on quadric and cubic surfaces�
Finally� we introduce the reader to the forms of an algebraic variety�
that is� varieties that become isomorphic to a given variety when the �eld
is extended�

In Chapter V we treat various constructions that are de�ned locally� For
example� Fitting ideals give one way to de�ne the image of a morphism of
schemes� This kind of image is behind Sylvester�s classical construction of
resultants and discriminants� and we work out this connection explicitly�
As an application we discuss the set of all tangent lines to a plane curve
suitably interpreted for singular curves� called the dual curve� Finally� we
discuss the double point locus of a morphism�

In Chapter VI we return to the functor of points of a scheme� and give
some of its varied applications� to group schemes� to tangent spaces� and
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to describing moduli schemes� We also give a taste of the way in which
geometric de�nitions such as that of tangent space or of openness can be
extended from schemes to certain functors� This extension represents the
beginning of the program of enlarging the category of schemes to a more
�exible one� which is akin to the idea of adding distributions to the ordinary
theory of functions�

Since we believe in learning by doing we have included a large num�
ber of exercises� spread through the text� Their level of di�culty and the
background they assume vary considerably�

Didn�t you guys already write a book on schemes�

This book represents a major revision and extension of our book Schemes�
The Language of Modern Algebraic Geometry� published by Wadsworth in
����� About two�thirds of the material in this volume is new� The intro�
ductory sections have been improved and extended� but the main di�erence
is the addition of the material in Chapters IV and V� and related material
elsewhere in the book� These additions are intended to show schemes at
work in a number of topics in classical geometry� Thus for example we de�ne
blowups and study the blowup of the plane at various nonreduced points�
and we de�ne duals of plane curves� and study how the dual degenerates
as the curve does�

What to do with this book

Our goal in writing this manuscript has been simply to communicate to the
reader our sense of what schemes are and why they have become the fun�
damental objects in algebraic geometry� This has governed both our choice
of material and the way we have chosen to present it� For the �rst� we have
chosen topics that illustrate the geometry of schemes� rather than develop�
ing more re�ned tools for working with schemes� such as cohomology and
di�erentials� For the second� we have placed more emphasis on instructive
examples and applications� rather than trying to develop a comprehensive
logical framework for the subject�

Accordingly� this book can be used in several di�erent ways� It could be
the basis of a second semester course in algebraic geometry� following a
course on classical algebraic geometry� Alternatively� after reading the �rst
two chapters and the �rst half of Chapter III of this book� the reader may
wish to pass to a more technical treatment of the subject� we would recom�
mend Hartshorne ������ to our students� Thirdly� one could use this book
selectively to complement a course on algebraic geometry from a book such
as Hartshorne�s� Many topics are treated independently� as illustrations� so
that they can easily be disengaged from the rest of the text�
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We expect that the reader of this book will already have some famil�
iarity with algebraic varieties� Good sources for this include Harris �������
Hartshorne ������ Chapter ��� Mumford ������� Reid ������� or Shafare�
vich ������ Part ��� although all these sources contain more than is strictly
necessary�

Beginners do not stay beginners forever� and those who want to apply
schemes to their own areas will want to go on to a more technically oriented
treatise fairly soon� For this we recommend to our students Hartshorne�s
book Algebraic Geometry ������� Chapters � and 
 of that book contain
many fundamental topics not treated here but essential to the modern
uses of the theory� Another classic source� from which we both learned a
great deal� is David Mumford�s The Red Book of Varieties and Schemes
������� The pioneering work of Grothendieck �Grothendieck ���	� ����a�
����b� ���
� ����� ����� ����� ����� and Dieudonn�e remains an important
reference�

Who helped �x it

We are grateful to many readers who pointed out errors in earlier versions
of this book� They include Leo Alonso� Joe Buhler� Herbert Clemens� Ves�
selin Gashorov� Andreas Gathmann� Tom Graber� Benedict Gross� Brendan
Hassett� Ana Jeremias� Alex Lee� Silvio Levy� Kurt Mederer� Mircea Mus�
tata� Arthur Ogus� Keith Pardue� Irena Peeva� Gregory Smith� Jason Starr�
and Ravi Vakil�

Silvio Levy helped us enormously with his patience and skill� He trans�
formed a crude document into the book you see before you� providing a
level of editing that could only come from a professional mathematician
devoted to publishing�

How we learned it

Our teacher for most of the matters presented here was David Mumford�
The expert will easily perceive his in�uence� and a few of his drawings� such
as that of the projective space over the integers� remain almost intact� It was
from a project originally with him that this book eventually emerged� We
are glad to express our gratitude and appreciation for what he taught us�

David Eisenbud
Joe Harris
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I

Basic De�nitions

Just as topological or di�erentiable manifolds are made by gluing together
open balls from Euclidean space� schemes are made by gluing together open
sets of a simple kind� called a�ne schemes� There is one major di�erence�
in a manifold one point looks locally just like another� and open balls are
the only open sets necessary for the construction� they are all the same
and very simple� By contrast� schemes admit much more local variation�
the smallest open sets in a scheme are so large that a lot of interesting and
nontrivial geometry happens within each one� Indeed� in many schemes
no two points have isomorphic open neighborhoods other than the whole
scheme�� We will thus spend a large portion of our time describing a�ne
schemes�

We will lay out basic de�nitions in this chapter� We have provided a series
of easy exercises embodying and applying the de�nitions� The examples
given here are mostly of the simplest possible kind and are not necessarily
typical of interesting geometric examples� The next chapter will be devoted
to examples of a more representative sort� intended to indicate the ways in
which the notion of a scheme di�ers from that of a variety and to give a
sense of the unifying power of the scheme�theoretic point of view�

I�� A�ne Schemes

An a�ne scheme is an object made from a commutative ring� The rela�
tionship is modeled on and generalizes the relationship between an a�ne
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variety and its coordinate ring� In fact� one can be led to the de�nition of
scheme in the following way� The basic correspondence of classical algebraic
geometry is the bijection

fa�ne varietiesg ��
�

�nitely generated� nilpotent�free rings
over an algebraically closed �eld K

�

Here the left�hand side corresponds to the geometric objects we are
naively interested in studying� the zero loci of polynomials� If we start
by saying that these are the objects of interest� we arrive at the restricted
category of rings on the right� Scheme theory arises if we adopt the oppo�
site point of view� if we do not accept the restrictions ��nitely generated��
�nilpotent�free� or �K�algebra� and insist that the right�hand side include
all commutative rings� what sort of geometric object should we put on the
left The answer is �a�ne schemes�� and in this section we will show how
to extend the preceding correspondence to a diagram

fa�ne varietiesg ��
�

�nitely generated� nilpotent�free rings
over an algebraically closed �eld K

�
��y ��y

fa�ne schemesg �� fcommutative rings with identityg

We shall see that in fact the ring and the corresponding a�ne scheme
are equivalent objects� The scheme is� however� a more natural setting for
many geometric arguments� speaking in terms of schemes will also allow us
to globalize our constructions in succeeding sections�

Looking ahead� the case of di�erentiable manifolds provides a paradigm
for our approach to the de�nition of schemes� A di�erentiable manifold M
was originally de�ned to be something obtained by gluing together open
balls� that is� a topological space with an atlas of coordinate charts� How�
ever� specifying the manifold structure on M is equivalent to specifying
which of the continuous functions on any open subset of M are di�eren�
tiable� The property of di�erentiability is de�ned locally� so the di�eren�
tiable functions form a subsheaf C�M� of the sheaf C M� of continuous
functions on M the de�nition of sheaves is given below�� Thus we may
give an alternative de�nition of a di�erentiable manifold� it is a topological
space M together with a subsheaf C�M� � C M� such that the pair
M� C�M�� is locally isomorphic to an open subset of Rn with its sheaf
of di�erentiable functions� Sheaves of functions can also be used to de�ne
many other kinds of geometric structure� for example� real analytic man�
ifolds� complex analytic manifolds� and Nash manifolds may all be de�ned
in this way� We will adopt an analogous approach in de�ning schemes� a
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scheme will be a topological space X with a sheaf O� locally isomorphic to
an a�ne scheme as de�ned below�

Let R be a commutative ring� The a�ne scheme de�ned from R will be
called SpecR� the spectrum of R� As indicated� it like any scheme� consists
of a set of points� a topology on it called the Zariski topology� and a sheaf
OSpecR on this topological space� called the sheaf of regular functions� or
structure sheaf of the scheme� Where there is a possibility of confusion we
will use the notation jSpecRj to refer to the underlying set or topological
space� without the sheaf� though if it is clear from context what we mean
�an open subset of SpecR�� for example�� we may omit the vertical bars�

We will give the de�nition of the a�ne scheme SpecR in three stages�
specifying �rst the underlying set� then the topological structure� and ��
nally the sheaf�

I���� Schemes as Sets

We de�ne a point of SpecR to be a prime�that is� a prime ideal�of
R� To avoid confusion� we will sometimes write �p� for the point of SpecR
corresponding to the prime p of R� We will adopt the usual convention that
R itself is not a prime ideal� Of course� the zero ideal 	� is a prime if R is
a domain�

If R is the coordinate ring of an ordinary a�ne variety V over an alge�
braically closed �eld� SpecR will have points corresponding to the points of
the a�ne variety� the maximal ideals of R�and also a point correspond�
ing to each irreducible subvariety of V� The new points� corresponding to
subvarieties of positive dimension� are at �rst rather unsettling but turn
out to be quite convenient� They play the role of the �generic points� of
classical algebraic geometry�

Exercise I��� Find SpecR when R is a� Z� b� Z�
�� c� Z����
d� Z���� e� C �x�� f� C �x��x���

Each element f � R de�nes a �function�� which we also write as f � on the
space SpecR� if x ! �p� � SpecR� we denote by �x� or �p� the quotient
�eld of the integral domain R�p� called the residue �eld of X at x� and we
de�ne fx� � �x� to be the image of f via the canonical maps

R� R�p� �x��

Exercise I��� What is the value of the �function� �� at the point �� �
SpecZ At the point �� 

Exercise I�� a� Consider the ring of polynomials C �x�� and let px� be
a polynomial� Show that if � � C is a number� then x��� is a prime
of C �x�� and there is a natural identi�cation of �x���� with C such
that the value of px� at the point x � �� � Spec C �x� is the number
p���
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b� More generally� if R is the coordinate ring of an a�ne variety V over an
algebraically closed �eld K and p is the maximal ideal corresponding
to a point x � V in the usual sense� then �x� ! K and fx� is the
value of f at x in the usual sense�

In general� the �function� f has values in �elds that vary from point
to point� Moreover� f is not necessarily determined by the values of this
�function�� For example� if K is a �eld� the ring R ! K�x��x�� has only
one prime ideal� which is x�� and thus the element x � R� albeit nonzero�
induces a �function� whose value is 	 at every point of SpecR�

We de�ne a regular function on SpecR to be simply an element of R�
So a regular function gives rise to a �function� on SpecR� but is not itself
determined by the values of this �function��

I���� Schemes as Topological Spaces

By using regular functions� we make SpecR into a topological space� the
topology is called the Zariski topology� The closed sets are de�ned as follows�
For each subset S � R� let

V S� ! fx � SpecR j fx� ! 	 for all f � Sg ! f�p� � SpecR j p � Sg�
The impulse behind this de�nition is to make each f � R behave as

much like a continuous function as possible� Of course the �elds �x� have
no topology� and since they vary with x the usual notion of continuity
makes no sense� But at least they all contain an element called zero� so
one can speak of the locus of points in SpecR on which f is zero� and if
f is to be like a continuous function� this locus should be closed� Since
intersections of closed sets must be closed� we are led immediately to the
de�nition above� V S� is just the intersection of the loci where the elements
of S vanish�

For the family of sets V S� to be the closed sets of a topology it is
necessary that it be closed under arbitrary intersections� from the descrip�
tion above it is clear that for any family of sets Sa we have

T
a V Sa� !

V
�S

a Sa
�
� as required� It is worth noting also that� if I is the ideal gener�

ated by S� then V I� ! V S��
An open set in the Zariski topology is simply the complement of one of

the sets V S�� The open sets corresponding to sets S with just one element
will play a special role� essentially because they are again spectra of rings�
for this reason they get a special name and notation� If f � R� we de�ne
the distinguished or basic� open subset of X ! SpecR associated with f
to be

Xf ! jSpecRj � V f� ! jSpecRf j�
where Rf is the localization of R obtained by adjoining an inverse to f � and
the last equality comes from the fact that the prime ideals of Rf correspond
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to the prime ideals of R that do not contain f� under the correspondence
that sends p � R to pRf � Rf � The distinguished open sets form a base
for the Zariski topology in the sense that any open set is a union of distin�
guished ones�

U ! SpecR� V S� ! SpecR �
�
f�S

V f� !
�
f�S

SpecR�f �

Distinguished open sets are also closed under �nite intersections� since a
prime ideal contains a product if and only if it contains one of the factors�
we have �

i�������n

SpecR�fi ! SpecR�g�

where g is the product f� � � � fn� In particular� any distinguished open set
that is a subset of the distinguished open set SpecR�f has the form
SpecR�fg for suitable g�

SpecR is almost never a Hausdor� space� the open sets are simply too
large� In fact� the only points of SpecR that are closed are those corre�
sponding to maximal ideals of R� In general� it is clear that the smallest
closed set containing a given point �p� must be V p�� so the closure of the
point �p� consists of all �q� such that q � p� The point �p� is closed if and only
if p is maximal� Thus in the case where R is the a�ne ring of an algebraic
variety V over an algebraically closed �eld� the points of V correspond pre�
cisely to the closed points of SpecR� and the closed points contained in
the closure of the point �p� are exactly the points of V in the subvariety
determined by p�

Exercise I��� a� The points of Spec C �x� are the primes x�a�� for every
a � C � and the prime 	�� Describe the topology� Which points are
closed Are any of them open 

b� Let K be a �eld and let R be the local ring K�x��x�� Describe the
topological space SpecR� The answer is given later in this section��

To complete the de�nition of SpecR� we have to describe the structure
sheaf� or sheaf of regular functions on X� Before doing this� we will take
a moment out to give some of the basic de�nitions of sheaf theory and to
prove a proposition that will be essential later on Proposition I�����

I���� An Interlude on Sheaf Theory

Let X be any topological space� A presheaf F on X assigns to each open
set U in X a set� denoted F U�� and to every pair of nested open sets
U � V � X a restriction map

resV�U � F V �� F U�
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satisfying the basic properties that

resU�U ! identity

and

resV�U 	 resW�V ! resW�U for all U � V �W � X�

The elements of F U� are called the sections of F over U � elements of
F X� are called global sections�

Another way to express this is to de�ne a presheaf to be a contravariant
functor from the category of open sets in X with a morphism U � V
for each containment U 
 V � to the category of sets� Changing the target
category to abelian groups� say� we have the de�nition of a presheaf of
abelian groups� and the same goes for rings� algebras� and so on�

One of the most important constructions of this type is that of a presheaf
of modules F over a presheaf of rings O on a space X� Such a thing is a
pair consisting of

for each open set U of X� a ring OU� and an OU��module F U�

and

for each containment U � V� a ring homomorphism � � OU��
OV � and a map of sets F U�� F V � that is a map of OU��
modules if we regard F V � as an OU��module by means of ��

A presheaf of sets� abelian groups� rings� modules� and so on� is called
a sheaf if it satis�es one further condition� called the sheaf axiom� This
condition is that� for each open covering U !

S
a�A Ua of an open set

U � X and each collection of elements

fa � F Ua� for each a � A

having the property that for all a� b � A the restrictions of fa and fb to
Ua � Ub are equal� there is a unique element f � F U� whose restriction
to Ua is fa for all a�

A trivial but occasionally confusing point deserves a remark� The empty
set � is of course an open subset of SpecR� and can be written as the union
of an empty family that is� the indexing set A in the preceding paragraph
is empty�� Therefore the sheaf axiom imply that any sheaf has exactly one
section over the empty set� In particular� for a sheaf F of rings� F �� is
the zero ring where 	 ! ��� Note that the zero ring has no prime ideals at
all� it is the only ring with unit having this property� if one accepts the
axiom of choice� so that its spectrum is ��

Exercise I��� a� Let X be the two�element set f	� �g� and make X into
a topological space by taking each of the four subsets to be open� A
sheaf on X is thus a collection of four sets with certain maps between
them� describe the relations among these objects� X is actually SpecR
for some rings R� can you �nd one �
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b� Do the same in the case where the topology of X ! f	� �g has as
open sets only �� f	g and f	� �g� Again� this space may be realized as
SpecR�

If F is a presheaf on X and U is an open subset of X� we may de�ne a
presheaf F jU on U� called the restriction of F to U� by setting F jU V � !
F V � for any open subset V of U� the restriction maps being the same as
those of F as well� It is easy to see that� if F is actually a sheaf� so is F jU �

In the sequel we shall work exclusively with presheaves and sheaves of
things that are at least abelian groups� so we will usually omit the phrase
�of abelian groups�� Given two presheaves of abelian groups� one can de�ne
their direct sum� tensor product� and so on� open set by open set� thus� for
example� if F and G are presheaves of abelian groups� we de�ne F G by

F  G �U� �! F U� G U� for any open set U�

This always produces a presheaf� and if F and G are sheaves then F  G
will be one as well� Tensor product is not as well behaved� even if F and
G are sheaves� the presheaf de�ned by

F � G �U� �! F U�� G U�

may not be� and we de�ne the sheaf F � G to be the shea��cation of this
presheaf� as described below�

The simplest sheaves on any topological space X are the sheaves of lo�
cally constant functions with values in a set K�that is� sheavesK where
K U� is the set of locally constant functions from U to K� if K is a group�
we may make K into a sheaf of groups by pointwise addition� Similarly�
if K is a ring and we de�ne multiplication in K U� to be pointwise mul�
tiplication� then K becomes a sheaf of rings� When K has a topology� we
can de�ne the sheaf of continuous functions with values in K as the sheaf
C� where C U� is the set of continuous functions from U to K� again with
pointwise addition� If X is a di�erentiable manifold� there are also sheaves
of di�erentiable functions� vector �elds� di�erential forms� and so on�

Generally� if � � Y � X is any map of topological spaces� we may de�ne
the sheaf I of sections of �� that is� for every open set U of X we de�ne
I U� to be the set of continuous maps � � U � ���U such that � 	� ! ��
the identity on U such a map being a section of � in the set�theoretical
sense� elements of F U� for any sheaf F are called sections by extension
from this case��

Exercise I��� For readers familiar with vector bundles�� Let V be a vec�
tor bundle on a topological spaceX� Check that the sheaf of sections of V is
a sheaf of modules over the sheaf of continuous functions on X� Sheaves of
modules in general may in this way be seen as generalized vector bundles��

Another way to describe a sheaf is by its stalks� For any presheaf F and
any point x � X� we de�ne the stalk Fx of F at x to be the direct limit
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of the groups F U� over all open neighborhoods U of x in X�that is� by
de�nition�

Fx ! lim��x�U F U�

!

�				

				�

the disjoint union of F U� over all open sets U containing x�
modulo the equivalence relation � � 	 if � � F U�� 	 � F V ��
and there is an open neighborhood W of x contained in U � V
such that the restrictions of � and 	 to W are equal�

resU�W� ! resV�W 	 �

�				
				�

For every x � U there is a map F U� � Fx� sending a section s to the
equivalence class of U� s�� this class is denoted sx� If F is a sheaf� a section
s � F U� of F over U is determined by its images in the stalks Fx for all
x � U �equivalently� s ! 	 if and only if sx ! 	 for all x � U� This follows
from the sheaf axiom� to say that sx ! 	 for all x � U is to say that for
each x there is a neighborhood Ux of x in U such that resU�Uxs� ! 	� and
then it follows that s ! 	 in F U��

This notion of stalks has a familiar geometric content� it is an abstraction
of the notion of rings of germs� For example� if X is an analytic manifold
of dimension n and Oan

X is the sheaf of analytic functions on X� the stalk
of Oan

X at x is the ring of germs of analytic functions at x�that is� the
ring of convergent power series in n variables�

Exercise I��� Find the stalks of the sheaves you produced for Exercises I��
and I���

Exercise I�
� Topologize the disjoint union F !
S
Fx by taking as a

base for the open sets of F all sets of the form

V U� s� �! fx� sx� � x � Ug�
where U is an open set and s is a �xed section over U �

a� Show that the natural map � � F � X is continuous� and that� for
U and s � F U�� the map � � x �� sx from U to F is a continuous
section of � over U that is� it is continuous and � 	 � is the identity
on U��

b� Conversely� show that any continuous map � � U � F such that � 	 �
is the identity on U arises in this way�
Hint� Take x � U and a basic open set V V� t� containing �x�� where
V � U � What relation does t have to � 

This construction shows that the sheaf of germs of sections of � � F � X
is isomorphic to F � so any sheaf �is� the sheaf of germs of sections of a
suitable map� In early works sheaves were de�ned this way� The topological
space F is called the �espace �etal�e� of the sheaf� because its open sets are
�stretched out �at� over open sets of X �
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A morphism 
 � F � G of sheaves on a space X is de�ned simply to
be a collection of maps 
U� � F U�� G U� such that for every inclusion
U � V the diagram

F V �

V �� G V �

F U�

resV�U �


U�
� G U�

resV�U�

commutes� In categorical language� a morphism of sheaves is just a natural
transformation of the corresponding functors from the category of open sets
on X to the category of sets��

A morphism 
 � F � G induces as well a map of stalks 
x � Fx � Gx
for each x � X � By the sheaf axiom� the morphism is determined by the
induced maps of stalks� if 
 and � are morphisms such that 
x ! �x for
all x � X� then 
 ! ��

We say that a map 
 � F � G of sheaves is injective� surjective� or
bijective if each of the induced maps 
x � Fx � Gx on stalks has the
corresponding property� The following exercises show how these notions
are related to their more naive counterparts de�ned in terms of sections on
arbitrary sets�

Exercise I��� Show that� if 
 � F � G is a morphism of sheaves� then

U� is injective respectively� bijective� for all open sets U � X if and
only if 
x is injective respectively� bijective� for all points x � X�

Exercise I��	� Show that Exercise I�� is false if the condition �injective�
is replaced by �surjective� by checking that in each of the following exam�
ples the maps induced by 
 on stalks are surjective� but for some open set
U the map 
U� � F U�� G U� is not surjective�

a� Let X be the topological space C � f	g� let F ! G be the sheaf of
nowhere�zero� continuous� complex�valued functions� and let 
 be the
map sending a function f to f��

b� Let X be the Riemann sphere C P� ! C �f�g and let G be the sheaf of
analytic functions� Let F� be the sheaf of analytic functions vanishing
at 	� that is� F�U� is the set of analytic functions on U that vanish
at 	 if 	 � U� and the set of all analytic functions on U if 	 �� U�
Similarly� let F� be the sheaf of analytic functions vanishing at�� Let
F !F� F�� and let 
 � F � G be the addition map�

c� Find an example of this phenomenon in which the set X consists of
three points�

These examples are the beginning of the cohomology theory of sheaves�
the reader will �nd more in this direction in the references on sheaves listed
on page ���
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If F is a presheaf on X� we de�ne the shea��cation of F to be the
unique sheaf F � and morphism of presheaves 
 � F � F � such that for
all x � X the map 
x � Fx � F �

x is an isomorphism� More explicitly� the
sheaf F � may be de�ned by saying that a section of F � over an open set
U is a map � that takes each point x � U to an element in Fx in such a
way that � is locally induced by sections of F � by this we mean that there
exists an open cover of U by open sets Ui and elements si � F Ui� such
that �x� ! si�x for x � Ui� The map F � F � is de�ned by associating
to s � F U� the function x �� sx � Fx� The sheaf F � should be thought
of as the sheaf �best approximating� the presheaf F�

Exercise I���� Here is an alternate construction for F �� topologize the
disjoint union F !

S
Fx exactly as in Exercise I��� then let F � be the

sheaf of sections of the natural map � � F � X � Convince yourself that
the two constructions are equivalent� and that the result does have the
universal property stated at the beginning of the preceding paragraph�

If 
 � F � G is an injective map of sheaves� we will say that F is a
subsheaf of G� We often write F � G � omitting 
 from the notation� If 
 �
F � G is any map of sheaves� the presheaf Ker
 de�ned by Ker
�U� !
Ker
U�� is a subsheaf of F �

The notion of a quotient is more subtle� SupposeF and G are presheaves
of abelian groups� where F injects in G � The quotient of G by F as
presheaves is the presheaf H de�ned by H U� ! G U��F U�� But if
F and G are sheaves�H will generally not be a sheaf� and we must de�ne
their quotient as sheaves to be the shea��cation ofH � that is� G �F �!H ��
The natural map from H to its shea��cation H �� together with the map
of presheaves G � H � de�nes the quotient map from G to G �F� This
map is the cokernel of 
�

The signi�cance of the sheaf axiom is that sheaves are de�ned by local
properties� We give two aspects of this principle explicitly�

In our applications to schemes� we will encounter a situation where we
are given a base B for the open sets of a topological space X� and we
will want to specify a sheaf F just by saying what the groups F U� and
homomorphisms resV�U are for open sets U of our base and inclusions U �
V of basic sets� The next proposition is exactly the tool that says we can
do this�

We say that a collection of groups F U� for open sets U � B and maps
resV�U � F V � � F U� for V � U form a B�sheaf if they satisfy the
sheaf axiom with respect to inclusions of basic open sets in basic open sets
and coverings of basic open sets by basic open sets� The condition in the
de�nition that sections of Ua� Ub � B agree on Ua � Ub must be replaced
by the condition that they agree on any basic open set V � B such that
V � Ua � Ub��
Proposition I���� Let B be a base of open sets for X�
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i� Every B�sheaf on X extends uniquely to a sheaf on X�

ii� Given sheaves F and G on X and a collection of maps

"
U� � F U�� G U� for all U � B
commuting with restrictions� there is a unique morphism 
 � F � G
of sheaves such that 
U� ! "
U� for all U � B�

Beginning of the proof� For any open set U � X� de�ne F U� as the in�
verse limit of the sets F V �� where V runs over basic open sets contained
in U �

F U� ! lim��V�U� V �BF V �

!

�
the set of families fV �V�U� V �B �

Q
V�U� V �BF V � such

that resV�W fV �!fW whenever W �V �U with V�W �B�

�

The restriction maps are de�ned immediately from the universal property
of the inverse limit�

Exercise I��� Complete the proof of the proposition by checking the
sheaf axioms and showing that� for U � B� the new de�nition of F is the
same as the old one�

The second application� which is really a special case of the �rst� says
that to de�ne a sheaf it is enough to give it on each open set of an open
cover� as long as the de�nitions are compatible�

Corollary I���� Let U be an open covering of a topological space X� If
FU is a sheaf on U for each U � U � and if


UV � FU jU�V � FV jU�V
are isomorphisms satisfying the compatibility conditions


VW
UV ! 
UW on U � V �W�

for all U� V�W � U � there is a unique sheaf F on X whose restriction to
each U � U is FU �

Proof� The open sets contained in some U � U form a base B for the
topology of X� For each such set V we choose arbitrarily a set U that
contains it� and de�neF V � !FU V �� If for someW � V the valueF W �
has been de�ned with reference to a di�erent FU � � we use the isomorphism

UU � to de�ne the restriction maps� These maps compose correctly because
of the compatibility conditions on the isomorphisms 
UU � � Thus we have a
B�sheaf� and therefore a sheaf�

The pushforward operation on sheaves is so basic and trivial� that we
introduce it here� If � � X � Y is a continuous map on topological spaces
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and F is a presheaf on X� we de�ne the pushforward ��F of F by � to
be the presheaf on Y given by

��F V � �! F ���V �� for any open V � Y�

Of course� the pushforward of a sheaf of abelian groups rings� modules
over a sheaf of rings� and so on� is again of the same type�

Exercise I���� Show that the pushforward of a sheaf is again a sheaf�

References for the Theory of Sheaves� Serre�s landmark paper �������
which established sheaves as an important tool in algebraic geometry� is
still a wonderful source of information� Godement ������ and Swan ������
are more systematic introductions� Hartshorne ������ Chapter II� contains
an excellent account adapted to the technical requirements of scheme the�
ory� it is a simpli�ed version of that found in Grothendieck �����a� ����b�
���
� ����� ����� ����� ������ Some good references for the analytic case are
Forster ������ especially for an introduction to cohomology� and Gunning
����	��

I���	 Schemes as Schemes 
Structure Sheaves�

We return at last to the de�nition of the scheme X ! SpecR� We will com�
plete the construction by specifying the structure sheaf OX ! OSpecR� As
indicated above� we want the relationship between SpecR and R to gener�
alize that between an a�ne variety and its coordinate ring� in particular�
we want the ring of global sections of the structure sheaf OX to be R�

We thus wish to extend the ring R of functions on X to a whole sheaf
of rings� This means that for each open set U of X� we wish to give a ring
OXU�� and for every pair of open sets U � V we wish to give a restriction
homomorphism

resV�U � OX V �� OX U�

satisfying the various axioms above� It is quite easy to say what the rings
OXU� and the maps resV�U should be for distinguished open sets U and
V � we set

OX Xf � ! Rf �

If Xf � Xg � some power of g is a multiple of f recall that the radical
of f� is the intersection of the primes containing f�� Thus the restriction
map resXf �Xg

can be de�ned as the localization map Rf � Rfg ! Rg� By
Proposition I���� this will su�ce to de�ne the structure sheaf O� as long
as we verify that it satis�es the sheaf axiom with respect to coverings of
distinguished opens by distinguished opens� Before doing this� in Proposi�
tion I��� below� we exhibit a simple but fundamental lemma that describes
the coverings of a�ne schemes by distinguished open sets�
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Lemma I���� Let X ! SpecR� and let ffag be a collection of elements of
R� The open sets Xfa cover X if and only if the elements fa generate the
unit ideal� In particular� X is quasicompact as a topological space�

Recall that quasicompact means that every open cover has a �nite sub�
cover� the quasi is there because the space is not necessarily Hausdor�� In
fact� schemes are almost never Hausdor�# Unfortunately� this fact vitiates
most of the usual advantages of compactness� For example� in contrast to
the situation for compact manifolds� say� the continuous image of one a�ne
scheme in another need not be closed� For this reason� we will discuss in
Section III�� a better �compactness� notion� called properness� which will
play just as important a role as compactness does in the usual geometric
theories�

Proof� The Xfa cover X if and only if no prime of R contains all the fa�
which happens if and only if the fa generate the unit ideal� this proves the
�rst statement� To prove the second� note �rst that every open cover has
a re�nement of the form X !

S
Xfa � where each fa � R� Since the Xfa

cover X � the fa generate the unit ideal� so the element � can be written
as a linear combination�necessarily �nite�of the fa� Taking just the fa
involved in this expansion of �� we see that the cover X !

S
Xfa � and with

it the original cover� has a �nite subcover�

Exercise I���� If R is Noetherian� every subset of SpecR is quasicompact�

Proposition I��
� Let X ! SpecR� and suppose that Xf is covered by
open sets Xfa � Xf �

a� If g� h � Rf become equal in each Rfa � they are equal�

b� If for each a there is ga � Rfa such that for each pair a and b the images
of ga and gb in Rfafb are equal� then there is an element g � Rf whose
image in Rfa is ga for all a�

Equivalently� if B is the collection of distinguished open sets SpecRf

of SpecR� and if we set OX SpecRf � �! Rf � then OX is a B�sheaf� By
Proposition I���� OX extends uniquely to a sheaf on X�

De�nition I���� The sheaf OX de�ned in the proposition is called the
structure sheaf of X or the sheaf of regular functions on X�

Proof of Proposition I�	
� We begin with the case f ! �� so Rf ! R and
Xf ! X�

For the �rst part� observe that if g and h become equal in each Xfa then
g � h is annihilated by a power of each fa� Since by Lemma I��� we may
assume that the cover is �nite� this implies that g � h is annihilated by
a power of the ideal generated by all the fNa for some N� But this ideal
contains a power of the ideal generated by all the fa� which is the unit
ideal� Thus g ! h in R�
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For part b�� we will use an argument analogous to the classical partition
of unity to piece together the elements ga into a single element g � R� Since
ga and gb become equal in Xfafb we must have

fafb�
Nga ! fafb�

Ngb

for all large N� and since by Lemma I��� we may assume that the covering
fXfag is �nite� one N will do for all a� b� Again by Lemma I��� the elements
fa� and with them the elements fNa � generate the unit ideal� so we may write

� !
X
a

eaf
N
a with ea � R�

this is our partition of unity� We claim that

g !
X
a

eaf
N
a ga

is the element we seek� Indeed� for each b�

fNb g !
X
a

fNb eaf
N
a ga !

X
a

fNb eaf
N
a gb ! fNb

�X
a

eaf
N
a

�
gb ! fNb gb�

so g becomes equal to gb on Xfa � as required�
Returning to the case of arbitrary f � set X � ! Xf � R

� ! Rf � f
�
a ! ffa�

then X � ! SpecR� and X �
f �a

! Xfa � so we can apply the case already proved
to the primed data�

The proposition is still valid� and has essentially the same proof� if we
replace Rf and Rfa by Mf and Mfa for any R�module M�

Exercise I��	� Describe the points and the sheaf of functions of each of
the following schemes�

a� X� ! Spec C �x��x���
b� X� ! Spec C �x��x� � x��

c� X� ! Spec C �x��x� � x���

d� X� ! SpecR �x��x� $ �� �

In contrast with the situation in many geometric theories though similar
to the situation in the category of complex manifolds�� there may be really
rather few regular functions on a scheme� For example� when we de�ne
arbitrary schemes� we shall see that the schemes that are the analogues
of compact manifolds may have no nonconstant regular functions on them
at all� For this reason� partially de�ned functions on a scheme X�that
is� elements OXU� for some open dense subset U �play an unusually
large role� They are called rational functions on X because in the case
X ! SpecR with R a domain� and U ! Xf � the elements of OXXf � ! Rf

are ratios of elements in R� In the cases of most interest� we shall see that
every nonempty open set is dense in X� so the behavior of rational functions
re�ects the properties of X as a whole�
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Exercise I���� Let U be the set of open and dense sets in X � Compute
the ring of rational functions

lim��U�U OX U� �!�

�
the disjoint union of OXU� for all U �U � modulo the equiva�
lence relation � � 	 if � � OXU�� 	 � OXV �� and the restric�
tions of � and 	 are equal on some W �U contained in U � V

�
� �

�rst in the case where R is a domain and then for an arbitrary Noetherian
ring�

Example I���� Another very simple example will perhaps help to �x
these ideas� Let K be a �eld� and let R ! K�x��x�� the localization of the
polynomial ring in one variable X at the maximal ideal x�� The scheme
X ! SpecR has only two points� the two prime ideals 	� and x� of R� As
a topological space� it has precisely three open sets�

� � U �! f	�g � f	�� x�g ! X�

U and � are distinguished open sets� since f	�g ! Xx� The sheaf OX is
thus easy to describe� It has values OXX� ! R ! K�x��x� and OXU� !
Kx�� the �eld of rational functions� The restriction map from the �rst to
the second is the natural inclusion�

Exercise I��� Give a similarly complete description for the structure
sheaf of the scheme SpecK�x�� The answer is given in Chapter II��

I�� Schemes in General

After this lengthy description of a�ne schemes� it is easy to de�ne schemes
in general� A scheme X is simply a topological space� called the support of
X and denoted jX j or supp X� together with a sheaf OX of rings onX � such
that the pair jX j�OX� is locally a�ne� Locally a�ne means that jX j is
covered by open sets Ui such that there exist ringsRi� and homeomorphisms
Ui �! jSpecRij with OX jUi�! OSpecRi �

To better understand this de�nition� we must identify the key properties
of the structure sheaf of an a�ne scheme� Let X be any topological space
and let O be a sheaf of rings on it� We call the pair X�O� a ringed space�
and ask when it is isomorphic to an a�ne scheme jSpecRj�OSpecR�� Note
that if X�O� were an a�ne scheme then it would have to be the scheme
SpecR�

Now let X�O� be any ringed space� and let R ! OX�� For any f � R
we can de�ne a set Uf � X as the set of points x � X such that f maps
to a unit of the stalk Ox� If X�O� is an a�ne scheme we must have�

i� OUf � ! R�f����
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However� this condition is not enough� it does not even force the existence
of a map between X and jSpecRj� To give such a map� we need to assume
a further condition on O that is posessed by a�ne schemes�

ii� The stalks Ox of O are local rings�

A ringed space X�O� satisfying ii� is often called a local ringed space�
If X�O� satis�es ii�� there is a natural mapX � jSpecOX�j that takes

x � X to the prime ideal of OX� that is the preimage of the maximal ideal
of Ox� The third condition for X�O� to be an a�ne scheme is this�

iii� The map X � jSpecOX�j is a homeomorphism�

Given these considerations� we say that a pair X�O� is a�ne if it satis�es
i��iii�� The de�nition of scheme given above now becomes� A pair X�O�
is a scheme if it is locally a�ne�

Again� where there is no danger of confusion� we will use the same letter
X to denote the scheme and the underlying space jX j� as in the construction
�let p � X be a point��

Exercise I���� a� Take Z ! Spec C �x�� let X be the result of identifying
the two closed points x� and x� �� of jZj� and let 
 � Z � X be the
natural projection� Let O be 
�OZ � a sheaf of rings on X � Show that
X�O� satis�es condition i� above for all elements f � OX� ! C �x��
but does not satisfy condition ii�� Note that there is no natural map
X � jSpec C �x�j�

b� Take Z ! Spec C �x� y�� the scheme corresponding to the a�ne plane�
and let X be the open subset obtained by leaving out the origin in
the plane� that is� X ! jZj � fx� y�g� Let O be the sheaf OZ jX that
is� OV � ! OZV � for any open subset V � X � jZj�� Show that
OX� ! C �x� y�� that X�O satis�es condition i� and ii�� and that the
natural map X � jSpecOX�j is the inclusion X � jZj�

Some notation and terminology are in order at this point�
A regular function on an open set U � X is a section of OX over U � A

global regular function is a regular function on X �
The stalks OX�x of the structure sheaf OX at the points x � X are called

the local rings of OX � The residue �eld of OX�x is denoted by �x�� Just
as in the situation of Section I����� a section of OX can be thought of as a
�function� taking values in these �elds �x�� if f � OXU� and x � U � the
image of f under the composite

OX U�� OX�x � �x�

is the value of f at x�

Exercise I��� the smallest nona�ne scheme�� Let X be the topological
space with three points p� q�� and q�� TopologizeX by makingX� �! fp� q�g
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and X� �! fp� q�g open sets so that� in addition� �� fpg� and X itself are
open�� De�ne a presheaf O of rings on X by setting

OX� ! OX�� ! OX�� ! K�x��x�� Ofpg� ! Kx��

with restriction maps OX� � OXi� the identity and OXi� � Ofpg�
the obvious inclusion� Check that this presheaf is a sheaf and that X�O� is
a scheme� Show that it is not an a�ne scheme� Geometrically� the scheme
X�O� is the �germ of the doubled point� in the scheme called X� in
Exercise I�����

I���� Subschemes

Let U be an open subset of a scheme X� The pair U�OX jU � is again
a scheme� though this is not completely obvious� To check it� note that
at least a distinguished open set of an a�ne scheme is again an a�ne
scheme� if X ! SpecR and U ! Xf � then U�OX jU � ! SpecRf � Since the
distinguished open sets of X that are contained in U cover U� this shows
that U�OX jU � is covered by a�ne schemes� as required� An open subset of
a scheme is correspondingly referred to as an open subscheme of X� with
this structure understood�

The de�nition of a closed subscheme is more complicated� it is not enough
to specify a closed subspace of X� because the sheaf structure is not de�ned
thereby�

Consider �rst an a�ne scheme X ! SpecR� For any ideal I in the ring
R� we may make the closed subset V I� � X into an a�ne scheme by
identifying it with Y ! SpecR�I� This makes sense because the primes of
R�I are exactly the primes of R that contain I taken modulo I� and thus
the topological space jSpecR�I j is canonically homeomorphic to the closed
set V I� � X� We de�ne a closed subscheme of X to be a scheme Y that
is the spectrum of a quotient ring of R so that the closed subschemes of
X by de�nition correspond one to one with the ideals in the ring R��

We can de�ne in these terms all the usual operations on and relations
between closed subschemes of a given scheme X ! SpecR� Thus� we say
that the closed subscheme Y ! SpecR�I of X contains the closed sub�
scheme Z ! SpecR�J if Z is in turn a closed subscheme of Y�that is� if
J � I� This implies that V J� � V I�� but the converse is not true�

Exercise I���� The schemes X�� X�� and X� of Exercise I��	 may all be
viewed as closed subschemes of Spec C �x�� Show that

X� � X� and X� � X��

but no other inclusions Xi � Xj hold� even though the underlying sets
of X� and X� coincide and the underlying set of X� is contained in the
underlying set of X��
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The union of the closed subschemes SpecR�I and SpecR�J is de�ned as
SpecR�I�J�� and their intersection as SpecR�I$J�� It is important to
note that the notions of containment� intersection� and union do not satisfy
all the usual properties of their set�theoretical counterparts� for example�
we will see on page �� an example of closed subschemes X�Y� Z of a scheme
such that X � Y ! X � Z and X � Y ! X � Z but Y �! Z�

We would now like to generalize the notion of closed subscheme to an
arbitrary scheme X� To do this� the �rst step must be to replace the ideal
I � R associated to a closed subscheme Y of an a�ne scheme X ! SpecR
by a sheaf� which we do as follows� We de�ne J !JY�X � the ideal sheaf
of Y in X � to be the sheaf of ideals of OX given on a distinguished open
set V ! Xf of X by J Xf � ! I Rf � Now we can identify the structure
sheaf OY of Y ! SpecR�I�more precisely� the pushforward j�OY � where
j is the inclusion map jY j �� jX j�with the quotient sheaf OX�J � You
should spell out this identi�cation�� The sheaf of idealsJ may be recovered
as the kernel of the restriction map OX � j�OY �

One subtle point requires mention� not all sheaves of ideals in OX arise
from ideals of R� For example� in the case of R ! K�x��x� considered in
Example I���� we may de�ne a sheaf of ideals by

J X� ! 	� J U� ! OX U� for U ! f	�g�
For a sheaf of ideals J coming from an ideal of R we would have

J U� !J X�x !J X�Kx��

so J does not come from any ideal of R� In the de�nition of a closed
subscheme above� we are only interested in sheaves of ideals that do come
from ideals of R� The theory obviously needs a name for such sheaves� they
are called quasicoherent sheaves of ideals� This seems a poor name for
such a basic and simple object� but it is �rmly rooted in the literature�
It comes from the fact that a sheaf on the spectrum of a Noetherian ring
that corresponds to a �nitely generated module has a property called co�
herence� it was thus natural to say that the sheaf coming from a �nitely
generated module is coherent� and that coming from an arbitrary module
is quasicoherent��

More generally� a quasicoherent sheaf of ideals J � OX on an arbitrary
scheme X is a sheaf of ideals J such that� for every open a�ne subset U
of X� the restriction J jU is a quasicoherent sheaf of ideals on U�

Now we are ready to de�ne a closed subscheme of an arbitrary scheme as
something that looks locally like a closed subscheme of an a�ne scheme�

De�nition I���� If X is an arbitrary scheme� a closed subscheme Y of X
is a closed topological subspace jY j � jX j together with a sheaf of rings OY
that is a quotient sheaf of the structure sheaf OX by a quasicoherent sheaf
of ideals J � such that the intersection of Y with any a�ne open subset
U � X is the closed subscheme associated to the ideal J U��
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If V � X is any open set� we say that a regular function f � OXV �
vanishes on Y if f �J V ��

In fact� jY j is uniquely determined by J � so closed subschemes of X
are in one�to�one correspondence with the quasicoherent sheaves of ideals
J � OX �

The notion of quasicoherence arises in a more general context as well� We
similarly de�ne a quasicoherent sheaf F on X to be a sheaf of OX �modules
that is� F U� is an OX U��module for each U� such that for any a�ne set
U and distinguished open subset Uf � U� the OXUf � ! OXU�f �module
F Uf � is obtained from F U� by inverting f �more precisely� the restric�
tion map F U� � F Uf � becomes an isomorphism after inverting f � F
is called coherent if all the modules F U� are �nitely generated� A more
restrictive use of the word coherence is also current� but coincides with this
one in the case where X is covered by �nitely many spectra of Noetherian
rings� the situation of primary interest�� One might say informally that qua�
sicoherent sheaves are those sheaves of modules whose restrictions to open
a�ne sets are modules �nitely generated in the case of coherent sheaves�
on the corresponding rings� This is the right analogue in the context of
schemes of the notion of module over a ring� for most purposes� one should
think of them simply as modules�

Exercise I��
� To check that a sheaf of ideals or any sheaf of modules�
is quasicoherent or for that matter coherent�� it is enough to check the
de�ning property on each set U of a �xed open a�ne cover of X�

One of the most important closed subschemes of an a�ne scheme X is
Xred� the reduced scheme associated to X� This may be de�ned by setting
Xred ! SpecRred� where Rred is R modulo its nilradical �that is� modulo
the ideal of nilpotent elements of R� Recall that the nilradical of a ring R
equals the intersection of all the primes of R in fact� the intersection of
all minimal primes�� Therefore jX j and jXredj are identical as topological
spaces�

Exercise I���� Xred may also be de�ned as the topological space jX j with
structure sheaf OXred

associating to every open subset U � X the ring
OXU� modulo its nilradical�

To globalize this notion� we may de�ne for any scheme X a sheaf of
ideals N � OX � called the nilradical � this is the sheaf whose value on
any open set U is the nilradical of OXU�� Because the construction of
the nilradical commutes with localization� N is a quasicoherent sheaf of
ideals� The associated closed subscheme of X is called the reduced scheme
associated to X and denoted Xred� We say that X is reduced if X ! Xred�
Irreducibility is another possible property of schemes� in spite of the

name� it is independent of whether the scheme is reduced� A scheme X is
irreducible if jX j is not the union of two properly contained closed sets�
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Here are some easy but important remarks about reduced and irreducible
schemes�

Exercise I�	� A scheme is irreducible if and only if every open subset is
dense�

Exercise I��� An a�ne scheme X ! SpecR is reduced and irreducible
if and only if R is a domain� X is irreducible if and only if R has a unique
minimal prime� or� equivalently� if the nilradical of R is a prime�

Exercise I��� A scheme X is reduced if and only if every a�ne open
subscheme of X is reduced� if and only if every local ring OX�p is reduced
for closed points p � X� A ring is called reduced if its only nilpotent
element is 	��

Exercise I�� How do you de�ne the disjoint union of two schemes Show
that the disjoint union of two a�ne schemes SpecR and SpecS may be
identi�ed with the scheme SpecR� S�

Exercise I��� An arbitrary scheme X is irreducible if and only if every
open a�ne subset is irreducible� If it is connected in the sense that the
topological space jX j is connected�� then it is irreducible if and only if every
local ring of OX has a unique minimal prime�

We have now introduced the notion of open subscheme and closed sub�
scheme of a scheme X� A further generalization� a locally closed subscheme
of X � is immediate� it is simply a closed subscheme of an open subscheme
of X� This is as general a notion as we will have occasion to consider in this
book� so that when we speak just of a subscheme of X� without modi�ers�
we will mean a locally closed subscheme�

Exercise I��� Let X be an arbitrary scheme and let Y� Z be closed
subschemes of X � Explain what it means for Y to be contained in Z� Same
question if Y� Z are only locally closed subschemes�

Given a locally closed subscheme Z � X of a scheme X� we de�ne the
closure Z of Z to be the smallest closed subscheme of X containing Z� that
is� the intersection of all closed subschemes ofX containing Z� Equivalently�
if Z is a closed subscheme of an open subscheme U � X� the closure Z
is the closed subscheme of X de�ned by the sheaf of ideals consisting of
regular functions whose restrictions to U vanish on Z�

I���� The Local Ring at a Point

The Noetherian property is fundamental in the theory of rings� and its
extension is equally fundamental in the theory of schemes� we say that a
schemeX is Noetherian if it admits a �nite cover by open a�ne subschemes�
each the spectrum of a Noetherian ring� As usual� one can check that this
is independent of the cover chosen�
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There is a good notion of the germ of a scheme X at a point x � X
which is the intersection� in a natural sense� of all the open subschemes
containing the point� This is embodied in the local ring of X at x� de�ned
earlier as

OX�x �! lim��x�U OXU��

The maximal ideal mX�x of this local ring is the set of all sections that
vanish at x� The local ring is a simple object� to compute it and to show
in particular that it is a local ring� with the given maximal ideal�� we may
begin by replacing X by an a�ne open neighborhood of x� thus assuming
that X ! SpecR and x ! �p�� We may next restrict the open subsets U in
the direct limit to the distinguished open sets SpecRf such that fx� �! 	�
that is� f �� p� Thus

OX�x �! lim��f ��pRf ! Rp

and
mX�x �! lim��f ��p pRf ! pRp�

the localization of R at p� We can think of the germ of X at x as being
SpecOX�x� we will study some schemes of this type in the next chapter�

This notion of the local ring of a scheme at a point is crucial to the whole
theory of schemes� We give a few illustrations� showing how to de�ne various
geometric notions in terms of the local ring� Let X be a scheme�

�� The dimension of X at a point x � X� written dimX� x�� is the
Krull� dimension of the local ring OX�x�that is� the supremum of lengths
of chains of prime ideals in OX�x� The length of a chain is the number of
strict inclusions�� The dimension of X� or dimX� itself is the supremum of
these local dimensions�

Exercise I��� The underlying space of a zero�dimensional scheme is a
discrete set� If the scheme is Noetherian� the set is �nite�

�� The Zariski cotangent space to X at x is mX�x�m
�
X�x� regarded as

a vector space over the residue �eld �x� ! OX�x�mX�x� The dual of this
vector space is called the Zariski tangent space at x�

To understand this de�nition� consider �rst a complex algebraic variety
X that is nonsingular� In this setting the notion of the tangent space to
X at a point p is unambiguous� it may be taken as the vector space of
derivations from the ring of germs of analytic functions at the point into
C � If mX�p is the ideal of regular functions vanishing at p� then such a
derivation induces a C �linear map mX�p�m

�
X�p � C � and the tangent space

may be identi�ed in this way with HomC mX�p�m
�
X�p� C � ! mX�p�m

�
X�p�

��
See Eisenbud ������ Ch� ���� It was Zariski�s insight that this latter vector
space is the correct analogue of the tangent space for any point� smooth or
singular� on any variety� Grothendieck subsequently carried the idea over
to the context of schemes� as in the de�nition given above� We shall return
to this construction� from a new point of view� in Chapter VI�
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Exercise I��� If K is a �eld� the Zariski tangent space to the scheme
SpecK�x�� � � � � xn� at �x�� � � � � xn�� is n�dimensional�


� X is said to be nonsingular or regular� at x � X if the Zariski tan�
gent space to X at x has dimension equal to dimX� x�� else the dimension
of the Zariski tangent space must be larger� and we say that X is singular
at x� Thus in the case of primary interest� when X is Noetherian� X is
nonsingular at x if and only if the local ring OX�x is a regular local ring�
This fundamental notion represents� historically� one of the important steps
toward the algebraization of geometry� It was taken by Zariski in his classic
paper ������ remarkably� this was some years after Krull had introduced
the notion of a regular local ring to generalize the properties of polynomial
rings� one of the rare cases in which the algebraists beat the geometers to
a fundamental geometric notion��

Exercise I�
� A zero�dimensional Noetherian scheme is nonsingular if
and only if it is the union of reduced points�

I���� Morphisms

We will next de�ne morphisms of schemes� In the classical theory a regu�
lar map of a�ne varieties gives rise� by composition� to a map of coordi�
nate rings going in the opposite direction� This correspondence makes the
two kinds of objects� regular maps of a�ne varieties and algebra homo�
morphisms of their coordinate algebras�equivalent� The de�nition given
below generalizes this� we will see that maps between a�ne schemes are
simply given by maps of the corresponding rings in the opposite direction��

Given the simple description of morphisms of a�ne schemes in terms of
maps of rings� it is tempting just to de�ne a morphism of schemes to be
something that is �locally a morphism of a�ne schemes�� One can make
sense of this� and it gives the correct answer� but it leads to awkward
problems of checking that the de�nition is independent of the choice of an
a�ne cover� For this reason� we give a de�nition below that works without
the choice of an a�ne cover� Although it may at �rst appear complicated�
it is quite convenient in practice� It also has the advantage of working
uniformly for all �local ringed spaces��structures de�ned by a topological
space with a sheaf of rings whose stalks are local rings�

To understand the motivation behind this de�nition� consider once more
the case of di�erentiable manifolds� A continuous map � � M � N between
di�erentiable manifolds is di�erentiable if and only if� for every di�eren�
tiable function f on an open subset U � N� the pullback ��f �! f 	� is a
di�erentiable function on ���U �M� We can express this readily enough
in the language of sheaves� Any continuous map � � M � N induces a map
of sheaves on N

�� � C N� �� ��C M�
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sending a continuous function f � C N�U� on an open subset U � N
to the pullback f 	 � � C M����U� ! ��C M��U�� In these terms�
a di�erentiable map � � M � N may be de�ned as a continuous map
� � M � N such that the induced map �� carries the subsheaf C�N� �
C N� into the subsheaf ��C�M� � ��C M�� That is� we require that
there be a commutative diagram

C N�
��
� ��C M�

C�
�

�

��
� ��C�M�

�

�

We�d like to adapt this idea to the case of schemes� The di�erence is that
the structure sheaf OX of a scheme X is not a subsheaf of a prede�ned
sheaf of functions on X� Thus� in order to give a map of schemes� we have
to specify both a continuous map �� � X � Y on underlying topological
spaces and a pullback map

�� � OX � ��OY �

Of course� some compatibility conditions have to be satis�ed by �� and ��
The problem in specifying them is that a section of the structure sheaf OY
does not take values in a �xed �eld but in a �eld �q� that varies with the
point q � Y � in particular� it doesn�t make sense to require that the value
of f � OY U� at q � U � Y agree with the value of ��f � ��OXU� !
OX���U� at a point p � ���U � X mapping to q which is in e�ect how
�� was de�ned in the case of di�erentiable functions�� since these �values�
lie in di�erent �elds� About all that does make sense is to require that f
vanish at q if and only if ��f vanishes at p�and this is exactly what we
do require� We thus make the following de�nition�

De�nition I��� A morphism� or map� between schemes X and Y is a
pair �� ���� where � � X � Y is a continuous map on the underlying
topological spaces and

�� � OY � ��OX

is a map of sheaves on Y satisfying the condition that for any point p � X
and any neighborhood U of q ! �p� in Y a section f � OY U� vanishes at
q if and only if the section ��f of ��OX U� ! OX���U� vanishes at p�

This last condition has a nice reformulation in terms of the local rings
OX�p and OY�q� Any map of sheaves �� � OY � ��OX induces on passing
to the limit a map

OY�q ! lim��q�U�Y OY U�� lim��q�U�Y OX���U��

and this last ring naturally maps to the limit

lim��p�V�X OX V �
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over all open subsets V containing p� which is OX�p� Thus �� induces a
map of the local rings OY�q � OX�p� Saying that a section f � OY U�
vanishes at q if and only if ��f � ��OX U� ! OX���U� vanishes at p
is saying that this map OY�q � OX�p sends the maximal ideal mY�q into
mX�p�in other words� that it is a local homomorphism of local rings�

As we mentioned above� a morphism of a�ne schemes

� � X ! SpecS �� SpecR ! Y

is the same as a homomorphism of rings 
 � R � S� Here is the precise
result� along with an important improvement that describes maps from an
arbitrary scheme to an a�ne scheme�

Theorem I��	� For any scheme X and any ring R� the morphisms

�� ��� � X �� SpecR

are in one�to�one correspondence with the homomorphisms of rings


 � R� OXX�

by the association


 ! ��SpecR� � R ! OSpecRSpecR�� ��OX �SpecR� ! OXX��

Proof� We describe the inverse association� Set Y ! SpecR� and let 
 �
R � OX X� be a map of commutative rings� If p � jX j is a point� the
preimage of the maximal ideal under the composite R � OXX� � OX�p
is a prime ideal� so that 
 induces a map of sets

� � jX j � jY j�
which is easily seen to be continuous in the Zariski topology� Next� for each
basic open set U ! SpecRf � Y� de�ne the map �� � Rf ! OY U� �
��OX �U� to be the composite

Rf � OXX���f� � OX���U�

obtained by localizing �� By Proposition I���ii� this is enough to de�ne a
map of sheaves� Localizing further� we see that if �p� ! q� then �� de�nes
a local map of local rings Rq � OX�p� and thus �� ��� is a morphism of
schemes� Clearly� the induced map satis�es

��Y � ! 
�

so the construction is indeed the inverse of the given one�

Of course this result says in particular that all the information in the
category of a�ne schemes is already in the category of commutative rings�

Corollary I���� The category of a�ne schemes is equivalent to the cate�
gory of commutative rings with identity� with arrows reversed� the so�called
opposite category�
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Exercise I���� a� Using this� show that there exists one and only one
map from any scheme to SpecZ� In the language of categories� this
says that SpecZ is the terminal object of the category of schemes�

b� Show that the one�point set is the terminal object of the category of
sets�

For example� each point �p� of X ! SpecR corresponds to a scheme
Spec�p� that has a natural map to X de�ned by the composite map of
rings

R� Rp � Rp�pp ! �p�

Of course� the inclusion makes �p� a closed subscheme if and only if p is
a maximal ideal of R in general� �p� is an in�nite intersection of open
subschemes of a closed subscheme��

If � � Y � X is a morphism of a�ne schemes� X ! SpecR and Y !
SpecT� and X � is a closed subscheme of X� de�ned by an ideal I in R� then
we de�ne the preimage sometimes� for emphasis� the �scheme�theoretic
preimage�� ���X � of � over X � to be the closed subscheme of Y de�ned
by the ideal 
I�T in T� If X � is a closed point p of X� we call ���p the
�ber over X �� We will soon see how to de�ne �bers over arbitrary points��
The underlying topological space of the preimage is just the set�theoretic
preimage� while the scheme structure of the preimage gives a subtle and
useful notion of the �correct multiplicity� with which to count the points in
the preimage� The simplest classical example is given later in Exercise II���
here we give two others�

Exercise I��� a� Let 
 � X � Y be the map of a�ne schemes illus�
trated by

�

p
X

Y

That is� X ! SpecK�x� u��xu� is the union of two lines meeting in
a point p ! x� u�� while Y ! SpecK�t� is a line� and the map is an
isomorphism on each of the lines of X � for example� it might be given
by the map of rings

K�t�� K�x� u��xu��

t �� x$ u�
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Show that the �ber over the point qa ! t�a�� with a �! 	� is the scheme
SpecK � K� consisting of two distinct points� while the �ber over
q	�that is� the �ber containing the double point p�is isomorphic to
SpecK�x��x��� The fact that the algebraK�x��x�� is two�dimensional
as a vector space overK� re�ects the structure of the map locally at p�

b� Let 
 � X � Y be the map of a�ne schemes illustrated by

�

p

X

Y

That is� X ! SpecK�x� y� u� v��x� y� � u� v�� is the union of two
planes in four�space meeting in a single point p ! x� y� u� v�� while
Y ! SpecK�s� t� is a plane� and the map is an isomorphism on each of
the planes of X � for example� it might be given by the map of rings

K�s� t�� K�x� y� u� v��

t �� x$ u�

s �� y $ v�

Show that the �ber over the point

qa�b ! s�a� t�b�
is the scheme SpecK�K� consisting of two distinct points if a or b �! 	�
while the �ber over q	�	�that is� the �ber containing the �double
point� p�is isomorphic to

SpecK�x� y��x�� xy� y���

The fact that the algebra K�x� y��x�� xy� y�� is a three�dimensional
vector space over K instead of a two�dimensional vector space as one
might expect by analogy with the previous example� re�ects a deep
fact about the variety X that it is not �locally Cohen�Macaulay���
This example will be taken up again� from the point of view of �atness�
in section II�
���
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I���	 The Gluing Construction

Using the notion of morphism� we can construct more complicated schemes
for example� nona�ne schemes� by identifying simpler schemes along open
subsets� This is a basic operation� called the gluing construction�

Suppose we are given a collection of schemes fX�gI � and an open set
X�� in X� for each  �! � in I� Suppose also that we are given a family of
isomorphisms of schemes

��� � X�� � X�� for each � �!  in I

satisfying the compatibility condition

������ ! ���

whenever both sides are de�ned� Under these circumstances we may de�ne
a scheme X by gluing the X� along the ��� in an obvious way�that is to
say� there exists a unique� scheme X with a covering by open subschemes
isomorphic to the X� such that the identity maps on the intersections
X� �X� � X correspond to the isomorphisms ��� �

This construction can be used� for example� to de�ne projective schemes
out of a�ne ones� Another use is in the theory of toric varieties� see� for
example� Kempf et al� ����
��

In these and indeed in almost all applications� we don�t really need to
give the maps ��� explicitly� we are actually given a topological space jX j
and a family of open subsets jX�j� each endowed with the structure of an
a�ne scheme�that is� with a structure sheaf OX�

�in such a way that
OX�

X��X�� is naturally identi�ed with OX�
X��X��� For example� they

might both be given as subsets of a �xed set� Under these circumstances
it is immediate that the conditions of Corollary I��� are satis�ed� so that
there is a uniquely de�ned sheaf OX on X extending all the OX�

� The pair
jX j�OX� is then a scheme�

Probably the simplest example of this is the de�nition of a�ne space
A nS over an abitrary scheme S� To begin with� for any a�ne scheme X !
SpecR we de�ne a�ne n�space over X to be simply SpecR�x�� � � � � xn��
this is denoted by either A nX or A nR� The geometry of a�ne spaces and
their subschemes will be taken up in Chapter II�� Next� we note that any
morphism X � Y of a�ne schemes induces a natural map A nX � A nY � As
a consequence� we may apply the gluing construction as follows� If S is an
arbitrary scheme covered by a�ne schemes U� ! SpecR�� we de�ne a�ne
space A nS over S to be the union of the a�ne spaces A nU� � with the gluing
maps induced by the identity maps on U� � U��

We will see two other ways of de�ning a�ne space A nS over an arbitrary
base S in Exercises I��� and I��� below�

The following exercise illustrates some of the dangers of the gluing con�
struction� we can� by inappropriate but legal� gluing� create schemes that
do not arise in any geometric setting�
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Exercise I���� Put Y ! SpecK�s� and Z ! SpecK�t�� Let U � Y be the
open set Ys and let V � Z be the open set Zt� Let � � V � U be the
isomorphism corresponding to the map

OY U� ! K�s� s���� K�t� t��� ! OZV �

sending s to t� and let � be the map sending s to t��� Let X� be the scheme
obtained by gluing together Y and Z along �� and let X� be the scheme
obtained by gluing along � instead�

Show that X� is not isomorphic to X�� In fact� X� is the scheme cor�
responding to the projective line P�K which we will describe in the next
section�� while X� is the a�ne space with a doubled origin�

In Chapter III we will introduce a condition� called separatedness� that
will preclude schemes such as this X��

Projective Space� An important example of a scheme constructed by
gluing is projective n�space over a ring R� denoted PnR� It is made by gluing
n$ � copies of a�ne space

A nR ! SpecR�x�� � � � � xn�

over R� An extensive treatment of projective schemes will begin in Chapter
III� Here we will use the idea only as an illustration of gluing�

The construction is exactly parallel to the classical construction of pro�
jective space as a variety over a �eld� Although not logically necessary� it
is convenient to work as follows� Start with the polynomial ring in n $ �
variables R�X	� � � � � Xn� and form the localization

A �! R�X	� X
��
	 � � � � � Xn� X

��
n ��

Recall that the ring A has a natural grading� that is� a direct�sum decom�
position as an abelian group� into subgroups A�n�� for n � Z� such that

A�n�A�m� � A�m
n��

here A�n� is spanned by monomial rational fractions of degree n� In par�
ticular� the degree 	 part A�	� is a subring of A� Now take the rings of our
de�ning a�ne covering to be R�subalgebras of A�	�� the i�th subring being
the subalgebra Ai consisting of all polynomials P�X

deg�P �
i � where P is a

homogeneous element of R�x	� � � � � xn�� Clearly� Ai is generated over R by
the n algebraically independent elements

X	�Xi� � � � � �Xi�Xi� � � � � Xn�Xi�
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where the hat denotes as usual an element omitted from the list� Ai is thus
isomorphic to the polynomial ring in n variables over R� Further� for i �! j
we have

Ai�Xj�Xi�
��� ! Aj �Xi�Xj�

���

as subsets of A� both may be described as the subalgebra of all degree
	 elements having denominator of the form Xa

i X
b
j � If we use the identity

maps as gluing maps� the compatibility conditions are obvious�

If X ! SpecR is an a�ne scheme� we will often write PnX instead of PnR�
and refer to the space as projective space over X� Any morphism X � Y
of a�ne schemes induces a natural map PnX � PnY � As a consequence� we
may apply the gluing construction again to de�ne projective space PnS over
an arbitrary scheme S as well� This is straightforward� if S is covered by
a�ne schemes U� ! SpecR�� we de�ne projective space PnS to be the union
of the projective spaces PnU� � with the gluing maps induced by the identity
maps on U� � U��

I�� Relative Schemes

I���� Fibered Products

There is an extremely important generalization of the idea of preimage of
a set under a function in the notion of the �bered product of schemes� To
prepare for the de�nition� we �rst recall the situation in the category of
sets�

The �bered product of two sets X and Y over a third set S�that is� of
a diagram of maps of sets

X

Y
�
� S



�

is by de�nition the set

X �S Y ! fx� y� � X � Y � 
x ! �yg�
The �bered product is sometimes called the pullback of X or of X � S�
to Y� This construction generalizes several more elementary ones in a very
useful way�

If S is a point� it gives the usual direct product�
If X�Y are both subsets of S and 
� � are the inclusions� it gives the

intersection�
If Y � S and � is the inclusion� it gives the preimage of Y in X�
If X ! Y� it gives the set on which the maps 
� � are equal� the equalizer

of the maps�
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Exercise I���� Check these assertions#

Note that X �S Y comes with natural projection maps to X and Y
making the diagram

X �S Y � X

Y
�

�
� S



�

commute� Indeed� the set X�SY may be de�ned by the following universal
property� among all sets Z with given maps toX and Y making the diagram

Z � X

Y
�

�
� S



�

commute� X �S Y with its projection maps is the unique �most e�cient�
choice in the sense that� given the diagram with Z above� there is a unique
map Z � X �S Y making the diagram

Z

X �S Y �

�

X
�

Y
� ��

�

S



�

commute�
In the category of schemes we simply de�ne the �bered product to be a

scheme with this universal property� the universal property guarantees in
particular that such a thing� with its projections toX and Y� will be unique�
We can then de�ne products� intersections� preimages� and equalizers in
terms of the �bered product# However� this begs the question of whether
any such object as the �bered product exists in the category of schemes� It
does� and we will now describe the construction�

First� we treat the a�ne case� Recall that the category of a�ne schemes is
opposite to the category of commutative rings� by Corollary I���� Therefore�
if we have schemes

X ! SpecA� Y ! SpecB� S ! SpecR�

where X and Y map to S so that A and B are R�algebras�� we must de�ne
the �bered product X �S Y to be

X �S Y ! SpecA�R B��
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This is because the natural diagram

A�R B � A

B

�

� R



�

has� in an obvious sense� the opposite universal property to the one desired
for the �bered product� In fancy language� the tensor product is a �bered
coproduct� or �bered sum� in the category of commutative rings�

To check that this de�nition is reasonable� one may note that in the
situation where Y is a closed subscheme of S de�ned by an ideal I� so that
B ! R�I� we have A �R B ! A�IA� Thus X �S Y ! SpecA�IA is the
same as the preimage of Y in X� as previously de�ned�

Exercise I���� A few simple special cases are a great help when comput�
ing �bered products� Prove the following facts directly from the universal
property of the tensor product of algebras�

a� For any R�algebra S we have R�R S ! S�

b� If S� T are R�algebras and I � S is an ideal� then

S�I��R T ! S �R T ��I � ��S �R T ��

c� If x�� � � � � xn� y�� � � � � ym are indeterminates then

R�x�� � � � � xn��R R�y�� � � � � ym� ! R�x�� � � � � xn� y�� � � � � ym��

Use these principles to solve the remainder of this exercise�

d� Let m�n be integers� Compute the �bered product

SpecZ�m��SpecZSpecZ�n��

e� Compute the �bered product Spec C �SpecR Spec C �
f� Show that for any polynomial rings R�x� and R�y� over a ring R� we

have

SpecR�x��SpecR SpecR�y� ! SpecR�x� y��

Note that in example d� the underlying set of the �bered product is the
�bered product of the underlying sets� but this is not true in e� and f��

g� Consider the ring homomorphisms

R�x�� R� x �� 	

and

R�x�� R�y�� x �� y��

Show that with respect to these maps we have

SpecR�y��SpecR�x� SpecR ! SpecR�y��y���



�� I� Basic De�nitions

In the general case� we cover S by a�ne schemes SpecR	� and cover
their preimages in X and Y by a�ne schemes SpecA	� and SpecB	� �
respectively� so that in a suitable sense the diagram

X

Y
�
� S



�

is covered by diagrams of the form

SpecA	�

SpecB	�
�	�
� SpecR	


	�
�

Of course� we already know that the �ber product of this last diagram
is SpecA	� �R� B	��� Using the idea of gluing explained at the end of the
preceding section� it is easy but tedious to check that these schemes agree on
overlaps and patch together to form the schemeX�SY as required� we omit
the computation� A di�erent approach will be sketched in section VI�����

One immediate use of the notion of product is an alternative description
of a�ne space A nS over a scheme S�

Exercise I���� Let S be any scheme� Let A nZ ! SpecZ�x�� � � � � xn� be
a�ne space over SpecZ� as de�ned above this scheme will be discussed
in detail in the next chapter�� Show that a�ne space A nS over S may be
described as a product�

A nS ! A nZ�SpecZS�

We can also use the �bered product to de�ne the �ber of a morphism
� � Y � X over an arbitrary point of arbitrary schemes� if p is a point
of X corresponding to a prime ideal p of R� then the �ber of � over p is
the �bered product of Y and the one�point scheme Spec�p�� In the case
where X and Y are a�ne�say� Y ! Spec T and X ! SpecR�we get

���p� ! Spec �p��X Y ! SpecRp�pp �R T � ! SpecRp�pp �R T�pT �

as a point set� this is the set of primes of T whose preimages in R are equal
to p� More generally� we de�ne the preimage� or inverse image of a closed
subscheme X � of X under � to be the �bered product X � �X Y�

Another typical use of the �bered product is in studying the behavior of
varieties under extension of a base �eld one usually speaks in this context
of a �base change� rather than a �bered product�� In this setting� of which
we will see some examples in the following chapter� the notion is responsible
for the great �exibility and convenience of the theory of schemes in handling
arithmetic questions�
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As in examples b� and c� of Exercise I���� the set of points of the �bered
product of schemes X �S Y is usually not equal to the �bered product in
the category of sets� of the sets of points of X and Y� This is no terrible
pathology but simply re�ects the fact that the theory of functions fx� y�
of two variables is much richer than the theory of functions of the form
gx�hy�� In any case� the de�nitions of Chapter VI provide a viewpoint
from which this oddity disappears�

I���� The Category of S�Schemes

Just as in the case of sets� we can use the �bered product to de�ne an
absolute product by taking S to be a terminal object in the category of
schemes� that is� a scheme such that every scheme has a unique map to S�
By Exercise I��� the terminal object in the category of schemes is SpecZ�
However� the absolute product has some rather surprising properties� We
have already seen in Exercise I���d� cases when m and n are relatively
prime� where the product in this sense of nonempty sets may be empty#
There are other peculiarities as well� for example� the dimension of an
irreducible scheme can be de�ned as the Krull dimension of the coordinate
ring of any of its a�ne open sets� One might expect the product

X � Y ! X �SpecZY

of two schemes to have dimension equal to the sum of the dimensions of X
and Y� But in fact we have the result in the next exercise�

Exercise I��
� Show that if X ! SpecR and Y ! SpecS� where R and
S are domains �nitely generated as Z�algebras and containing Z� then

dimX � Y ! dimX $ dimY � dimSpecZ ! dimX $ dimY � ��

This oddity and many like it can be eliminated by a simple but convenient
generalization of our de�nitions� we often wish to work with schemes X over
a given �eld or ring� K� or K�schemes� Of course� we will then use only
morphisms that respect this structure� Informally� this just means that we
consider X together with a K�algebra structure on OX X� and morphisms
respecting these structures�

In this category� SpecK is the terminal object and the absolute product
is the �bered product over SpecK� If K is a �eld� the product in the
category of K�schemes behaves more in accord with elementary geometric
intuition� For example�

Exercise I���� Let K be a �eld� If X and Y are nonempty K�schemes�
then the product X � Y ! X �SpecK Y in the category of K�schemes is
nonempty�

Further� in this case the dimension of SpecK is 	� and one can check
that for schemes built up from spectra of �nitely generated K�algebras the
dimension of products is additive� as it should be�
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In order to accommodate families of schemes� we may extend this notion
a little further� A K�algebra structure on OX X� is nothing but a homo�
morphism of rings from K to OXX�� and by Theorem I��	 this is exactly
the same as a map X � SpecK� Replacing SpecK by an arbitrary scheme
S� we de�ne a scheme over S� or S�scheme� to be a scheme X together
with a morphism X � S� We may think of a scheme over S informally
as a family of schemes �parametrized by points of S�� for each point of
S we have the �ber over that point� A morphism of schemes over S or
S�morphism� is a commutative diagram

X � Y

S
�

�

If X and Y are schemes over S� then we write MorSX�Y � for the set of
S�morphisms� Note that the �bered product X �S Y of schemes over S is
precisely the ordinary direct product in the category of schemes over S�

As usual� if S ! SpecR is a�ne� we will use the terms �R�scheme� and
�the category of R�schemes� interchangeably with �S�scheme� and �the
category of S�schemes��

Introducing the category of schemes over S may seem to add a layer of
complication� but in reality it more often removes one� For example� if we
want to do classical algebraic geometry over the complex numbers in scheme
language� it is necessary to work in the category of schemes over C � To see
that this is so� note that in any reasonable sense the point Spec C should
have no nontrivial automorphisms� and the scheme Spec C �x��x�$�� con�
sisting of a pair of points should have automorphism group Z���� This
is in fact the case in the category of schemes over C � In the category
of all schemes� however� the automorphism group of the point Spec C is
huge� it is the Galois group of C over Q � and the automorphism group of
Spec C �x��x� $�� is worse� Thus� working in the category of schemes over
C removes the presumably unwanted� extra structure of the Galois group
GalC �Q ��

Exercise I��	� Find the automorphism groups of the schemes X� and X�

of Exercise I��	 in the category of schemes over C �

I���� Global Spec

If S ! SpecR is an a�ne scheme� an a�ne S�scheme is simply the spectrum
of an R�algebra� We will now extend this construction to describe analogous
objects in the category of S�schemes for arbitrary S�

To begin with� for any scheme S we de�ne a quasicoherent sheaf of OS�
algebras� This is� as you might expect� a sheaf F of OS�algebras� such
that for any a�ne open U ! SpecR � S and distinguished open subset
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U � ! SpecRf � U� we have

F U �� ! F U��R OSU
�� !F U� �R Rf

as R ! OSU��algebras� We then associate to any quasicoherent sheaf F
of OS�algebras on a scheme S a scheme X ! SpecF� together with a
structure morphism X � S� such that in case S ! SpecR is a�ne we
get simply X ! SpecF S� together with the structure morphism X � S
induced by the R ! OSS��algebra structure on F S��

There are a couple ways to do this� One is simply to use the gluing
construction again� we cover S by a�ne open subsets U� ! SpecR�� and
de�ne X to be the union of the schemes SpecF U��� with attaching maps
induced by the restrictions maps F U�� � F U� � U��� This works� but
it�s a mess to verify that the resulting space SpecF is independent of the
choice of cover� and has the further drawback that it can be awkward to
describe the set of points of SpecF� We will give here instead an alternative
construction�

We start with a de�nition� given a quasicoherent sheafF of OS�algebras�
we de�ne a prime ideal sheaf in F to be a quasicoherent sheaf of ideals
I � F� such that for each a�ne open subset U � S� the ideal I U� �
F U� is either prime or the unit ideal� Observe that for any scheme X� the
points of X are simply the prime ideal sheaves of OX �� Now� we will de�ne
X ! SpecF in three stages� as we did the spectrum of a ring� First� as a
set� X is the set of prime ideal sheaves inF� Second� as a topological space�
for every open U � S not necessarily a�ne� and section � � F U�� let
VU�
 � X be the set of prime ideal sheaves P � F such that � �� PU��
take these as a basis for the topology� Finally� we de�ne the structure sheaf
OX on basis open sets by setting

OXVU�
� ! F U�������

As for the morphism f � X � S� as a set� we associate to a prime ideal
sheaf P � F its inverse image in OS � F � and the pullback map on
functions

f� � OSU�� OXf��U�� !F U�

is just the structure map OS � F on U�

Exercise I���� Show that the points of a scheme X are in one�to�one
correspondence with the set of prime ideal sheaves in OX �

Exercise I���� Show that if f � X � Y is a morphism� andP is a prime
ideal sheaf of OY � then f�P� is a prime ideal sheaf in f�OY �

Exercise I��� Show that if f � X � Y is a morphism then the map on
sets corresponding to f sends P � OY to f����f�P�� � OX �

The simplest example of global Spec gives us yet another construction
of a�ne space over an arbitrary scheme S�
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Exercise I���� Let S be any scheme� Show that a�ne space A nS over S
may be constructed as a global Spec�

A nS ! Spec
�
SymO	nS �

�
�

I�� The Functor of Points

One of the intriguing things about schemes is precisely that they have so
much structure that is not conveyed by their underlying sets� so that the
familiar operations on sets such as taking direct products require vigilant
scrutiny lest they turn out not to make sense� It is therefore remarkable that
many of the set�theoretic ideas can be restored through a simple device�
the functor of points� This point of view� while initially adding a layer of
complication to the subject� is often extremely illuminating� as a result it
and its attendant terminology have become pervasive� We will give a brief
introduction to the necessary de�nitions here and use them occasionally in
the following chapters before returning to them in detail in Chapter VI�

We start with the observation that the points of a scheme do not in
general look anything like one another� we have nonclosed points as well as
closed ones� and if we are working over a non�algebraically closed �eld� then
even closed points may be distinguished by having di�erent residue �elds�
Similarly� if we are working over Z� di�erent points may have residue �elds
of di�erent characteristic� and if we extend the notion of point to �closed
subscheme whose underlying topological space is a point�� we have an even
greater variety� And� of course� a morphism between schemes will not at all
be determined by the associated map on underlying point sets�

There is� however� a way of looking at a scheme�via its functor of
points�that reduces it in e�ect to a set� More precisely� we may think of
a scheme as an organized collection of sets� a functor on the category of
schemes� on which the familiar operations on sets behave as usual� In this
section we will examine this functorial description� A big payo� is that we
will see the category of schemes embedded in a larger category of functors�
in which many constructions are much easier� The advantage of this is
something like the advantage in analysis of working with distributions� not
just ordinary functions� it shifts the problem of making constructions in
the category of schemes to the problem of understanding which functors
come from schemes� Further� many geometric constructions that arise in
the category of schemes can be extended to larger categories of functors in
a useful way�

To introduce the notion of the functor of points� we start out in a general
categorical setting� To begin with� in many categories whose objects are
sets with additional structure� the underlying set jX j of an object X may
be described as the set of morphisms from a universal object to X � for
example�
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a� In the category of di�erentiable manifolds� if Z is the manifold consist�
ing of one point� then for any manifold X we have jX j ! HomZ�X��

b� In the category of groups� for any group X we have jX j ! HomZ� X��

c� In the category of rings with unit and unit�preserving homomorphisms�
if we set Z ! Z�x�� then for any ring X with unit we have jX j !
HomZ�X��

In general� for any object Z of a category X the association

X �� HomX Z�X�

de�nes a functor 
 from the category X to the category of sets� As indi�
cated in the �rst paragraph above� however� it is not really satisfactory to
call the set �X� ! HomX Z�X� the set of points of the object X unless
this functor is faithful �that is� unless for any pair of objects X� and X�

of X a morphism

f � X� � X�

is determined by the map of sets

f � � HomX Z�X��� HomX Z�X���

It may not always be possible to satisfy this condition� For example� let
Hot� be the category of CW �complexes� where Hom�Hot�X�Z� is the set
of homotopy classes of continuous maps from X to Z� If Z is the one�point
complex� then

Hom�Hot�Z�X� ! �	X�

the set of connected components of X� and this does not give a faithful
functor� Nor is it possible to chose a better object Z� Likewise� in the
category of schemes� there is no one object Z that will serve in this capacity�

Grothendieck�s ingenious idea was to remedy this situation by consid�
ering not just one set MorZ�X� but all at once# That is� we associate to
each scheme X the �structured set� consisting of all the sets MorZ�X�� to�
gether with� for each morphism f � Z � Z �� the mapping from MorZ �� X�
obtained by composing with f �

To put this more formally� the functor of points of a scheme X is the
�representable� functor determined by X � that is� the functor

hX � schemes�
 � sets��

where schemes�
 and sets� represent the category of schemes with the
arrows reversed and the category of sets� respectively� hX takes each scheme
Y to the set

hXY � ! MorY�X�

and each morphism f � Y � Z to the map of sets

hXZ�� hXY �
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de�ned by sending an element g � hXZ� ! MorZ�X� to the composition
g 	f � MorY�X�� The reason for the name �representable functor� is that
we say this functor is represented by the scheme X� The set hXY � is called
the set of Y �valued points of X if Y ! SpecT is a�ne� we will often write
hXT � instead of hXSpecT � and call it the set of T �valued points of X��

To introduce one more layer of abstraction� note that this construction
de�nes a functor

h � schemes�� Funschemes�
� sets��

where morphisms in the category of functors are natural transformations��
sending

X �� hX

and associating to a morphism f � X � X � the natural transformation
hX � hX� that for any scheme Y sends g � hXY � ! MorY�X� to the
composition f 	 g � hX�Y � ! MorY�X ���

Of course� when we want to work with schemes over a given base S� we
should take morphisms over S as well� The situation is completely analo�
gous to that above� we describe in this way a functor

X �� hX

from the category of S�schemes to the category

FunS�schemes�
� sets���

The apparently abstract idea of the functor of points has its root in the
study of solutions of equations� Let X ! SpecR be an a�ne scheme� where
R ! Z�x�� x�� � � ���f�� f�� � � ��� If T is any other ring one should think of

T ! Z� Z�p�� Z�p�� %Z�p�� Q p� R � C � and so on�� then a morphism from
SpecT to SpecR is the same as a ring homomorphism from R to T� and
this is determined by the images ai of the xi� Of course� a set of elements
ai � T determines a morphism in this way if and only if they are solutions
to the equations fi ! 	� We have shown that

hXT � !

�
sequences of elements a�� � � � � T that
are solutions of the equations fi ! 	

�
�

Similarly� if X is an arbitrary scheme� so that X is the union of a�ne
schemes Xa meeting along open subsets� then a map from an a�ne scheme
Y to X may be described by giving a covering of Y by distinguished a�ne
open subsets Yfa and maps from Yfa to Xa for each a� agreeing on open sets
some of the Yfa may� of course� be empty�� Thus an element of hXY � may
be described even in this general context as a set of solutions to systems of
equations� corresponding to some of the Xa� with compatibility conditions
satis�ed by the solutions on the sets where certain polynomials are non�
zero�

Even with this interpretation� the notion of the functor of points may
seem an arid one� while we can phrase problems in this new language�
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it�s far from clear that we can solve them in it� The key to being able to
work in this setting is the fact that many apparently geometric notions
have natural extensions from the category of schemes to larger categories
of functors� Thus� for example� we can talk about an open subfunctor of
a functor� a closed subfunctor� a smooth functor� the tangent space to a
functor� and so on� These notions will be developed in Chapter VI� where
we will also give a better idea of how they are used�

In this chapter we have used the word �point� in two di�erent ways� we
have both the points of a scheme X� and� for any scheme Y� the set of
Y �valued points of X� It is important not to let this double usage cause
confusion� The two notions are of course very di�erent� for example� if
Y ! SpecL for some �nite extension L of Q � then we have a map

fY �valued points of Xg �� jX j
but this map is in general neither injective or surjective� the image will be
the subset of points p � X whose residue �eld �p� is a sub�eld of L� and
the �ber of the map over such a point p will be the group of automorphisms
of L over �p�� Another distinction is that while the set jX j of points of X
is absolute� the set of Y �valued points is relative in the sense that it may
depend on the speci�cation of a base scheme S and the structure morphism
X � S� Finally� in case S ! SpecK� the set of K�valued points of X�
that is� the subset of points p � X such that �p� ! K�is often called
the set of K�rational points of X�

Each of the two notions of �point� has some but not all� of the properties
we might expect from the behavior of points in the category of sets� For
example� the set of Y �valued points of a product X��X� is the product of
the sets of Y �valued points of X� and X�� However� it is not the case that
the set of Y �valued points of a union X ! U � V is the union of the sets
of Y �valued points of U and V for example� the identity map X � X is
an X�valued point of X not in general contained in U or V �� By contrast�
exactly the opposite situation holds for the set jX j of points of a scheme
X in the ordinary sense�

We have now outlined the basic de�nitions in the theory of schemes� In
the next chapter we will give many examples� from which the reader may
form some idea of the �look and feel� of schemes�
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II

Examples

II�� Reduced Schemes over Algebraically Closed
Fields

We will start our series of examples with the one that the concept of scheme
is intended to generalize� the classical notion of an a�ne variety over an
algebraically closed �eld K� In our present context� this means considering
schemes of the form SpecR� where R is the coordinate ring of a varietyX�
that is� a �nitely generated� reduced algebra overK� Recall that �reduced�
means nilpotent�free�� SpecR is sometimes called the scheme associated to
the variety X � such schemes are sometimes referred to just as varieties� In
later sections we will consider the ways in which schemes may di�er from
this basic model�

The K�scheme associated to an a�ne variety over an algebraically closed
�eld K is an equivalent object to the variety� either one determines and
is determined by its coordinate algebra� which is the same for both� But
already in this case� classical notions such as the intersection of varieties
and the �bers of maps are given a more precise meaning in the theory of
schemes� We will see examples of this phenomenon in this and succeeding
sections�

II���� Ane Spaces

We start with the scheme A nK �! SpecK�x�� � � � � xn�� with K an alge�
braically closed �eld� This scheme is called a�ne n�space over K�
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We will make use of a standard but nontrivial result from algebra� a form
of Hilbert�s Nullstellensatz� see Eisenbud ������� for example�

Theorem II�� Nullstellensatz�� Let K be any �eld� If m is a maximal
ideal of a polynomial ring K�x�� � � � � xn� or� geometrically� p is a closed
point of any subvariety of an a�ne space over a �eld K�� then

K�x�� � � � � xn��m ! �p�

is a �nite�dimensional vector space over K�

In our case� with K algebraically closed� this implies that �p� ! K�
Thus� writing �i for the image of xi in �p�� we see that

m ! x� � ��� � � � � xn � �n��

In this way the closed points of A nK correspond to n�tuples of elements ofK�
as one should expect� We will sometimes refer to �the point ��� � � � � �n��
instead of �the point �x� � ��� � � � � xn � �n����

To begin with dimension �� the a�ne line

A �
K ! SpecK�x�

looks almost exactly like its classical counterpart� the algebraic variety
also called the a�ne line� It contains one closed point for each value � �
K� The Zariski topology on the set of closed points is the same as the
classical Zariski topology on the variety� the open sets are the complements
of �nite sets� The scheme A � di�ers from the variety only in that the scheme
contains one more point� called the generic point of A �� corresponding to
the ideal 	��

���
�x� �x� ��

The closure of the point 	� is all of A �
K � so that the closed subsets of A �

K

are exactly the �nite subsets of A �
K � f	�g�

The a�ne plane A �
K ! SpecK�x� y� is also similar to its counterpart

variety� but now the additional points of the scheme are more numerous and
behave in more interesting ways� We have as before closed points� coming
from the maximal ideals x � �� y � ��� which correspond to the points
�� �� in the ordinary plane� There are now� however� two types of nonclosed
points� To begin with� for each irreducible polynomial fx� y� � K�x� y� we
have a point corresponding to the prime ideal f� � K�x� y�� whose closure
consists of the point itself and all the closed points �� �� with f�� �� ! 	�
The point f� is called the generic point of this set� more generally� any
point in a scheme is called the generic point of its closure� As compared to
the variety A �

K � we have added one more point for every irreducible plane
curve� This new point lies in the closure of the set of closed points on�
that curve� and its closure contains this set of closed points� Finally� we
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have as before a point corresponding to the zero ideal� the generic point of
A �
K � whose closure is all of A �

K �

��� generic point of A �

�x� generic point of the x�axis

�x��� y���

f�x� y�� generic point of the curve
�y�

Since K�x� y� ! K�x��K K�y�� we have by de�nition

A �
K ! A �

K �SpecK A �
K �

Even here� though it�s clear that the �bered product is the correct notion of
product� the set of points of the �bered product is not the �bered product
of the sets of points of the factors�

The situation with the a�ne spaces A nK!SpecK�x�� � � � � xn� is a straight�
forward extension of the last case� geometrically� we can see the scheme A nK
as the classical a�ne n�space� with one point p added for every positive�
dimensional irreducible subvariety & of n�space� As above� p will lie in
the closure of the locus of closed points in & and contain in its closure all
these points� as well as the generic points of the subvarieties of &�

More generally� suppose X � A nK is any a�ne variety� with ideal I �
K�x�� � � � � xn� and coordinate ring R ! K�x�� � � � � xn��I� We can associate
to X the a�ne scheme SpecR� the quotient map K�x�� � � � � xn� � R ex�
presses this as a subscheme of A nK � This scheme is� as in the case of A nK
itself� just like the variety X except that we have added one new generic
point p for every positive�dimensional irreducible subvariety & � X�

Fibers� and more generally preimages� are among the most common ways
that schemes other than varieties may arise even in the context of classical
geometry�

Exercise II��� Consider the map of the a�ne line SpecK�x� to itself in�
duced by the ring homomorphism K�x� � K�x� mapping x to x�� Show
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that the scheme�theoretic �ber over the point 	 is the subscheme of the
line de�ned by the ideal x���

Among all schemes� those associated to a�ne varieties over algebraically
closed �elds may be characterized as spectra of rings R that are

� �nitely generated

� reduced algebras

� over a �eld

� that is algebraically closed�

To get a sense of what more general schemes look like� and what they
are good for� we will in the remainder of this section and the next consider
what may happen if we remove these four restrictions� We will consider
primarily examples in which exactly one of the hypotheses fails� since an
understanding of these basic cases will enable one to understand the general
case� we will occasionally mention more complex examples in exercises�

II���� Local Schemes

Our �rst collection of examples of schemes other than varieties is provided
by the spectra of local rings� called local schemes� The examples we will
consider here are spectra of rings that are reduced algebras over an alge�
braically closed �eld but not� in general� �nitely generated� Local schemes
are for the most part technical tools in the study of other� more geomet�
ric schemes� they are often used to focus attention on the local structure
of an a�ne scheme� The extra points we have added to classical varieties
show up even more strikingly in the following examples� where in each case
there is only one closed point� It would� of course� be a mistake to try to
picture these schemes as geometric objects with just one point� Rather�
they should be seen as germs of varieties� The phenomenon of having only
one closed point is not some novelty invented by algebraists but is already
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present if one considers such a familiar object as the germ of a point x
on a complex analytic manifold� here one pictures a �su�ciently small�
neighborhood of x� in which� for example� each curve through x can be
plainly distinguished� even though no other de�nite points beside x belong
to every neighborhood� We will see that the same kind of picture is valid
for the spectrum of a local ring�

Consider �rst the localization K�x��x� of the ring K�x� at the maximal
ideal x�� and let X ! SpecK�x��x�� The space jX j has only two points�
the closed point corresponding to the maximal ideal x�� and the open
point corresponding to 	�� which contains the point x� in its closure� The
inclusion of K�x� in K�x��x� induces a map X � A �

K � so that we may think

of X as a subscheme of A �
K though jX j is neither open nor closed in jA �

K j��
The subscheme X is �local� in that it is the intersection of all the open
subsets of A �

K containing the point x�� so that� for example� the regular
functions onX are exactly the rational functions on A �

K regular at the point
x��that is� they are the elements of OA �

K
U� for some neighborhood U

of the point 	 ! x� in A �
K � In these senses� X is the germ of A �

K at the
origin�

Next� consider the scheme X ! SpecR� where R ! K�x� y��x�y� is the
localization of K�x� y� at the maximal ideal x� y� corresponding to the
point 	� 	�� As in the previous example� we have a map X � A �

K � in terms
of which we can think of X as the intersection of all open subschemes of A �

K

containing the closed point 	� 	�� Again� X has only one closed point� but
now there are in�nitely many nonclosed points� one for every irreducible
curve in the plane passing through the origin� Subschemes of X are thus
germs at 	� 	� of subschemes of A �

K and X itself is the germ of A �
K at the

origin�
There are analogous constructions in A nK � and more generally for any

subscheme of A nK � if X ! SpecK�x� � � � � xn��I � A nK is the scheme asso�
ciated to the a�ne variety with ideal I � K�x� � � � � xn� and m ! x��a��
� � � � xn�an� a maximal ideal corresponding to a closed point of X� we can
consider the scheme SpecK�x�� � � � � xn�m�Im as a germ of a neighborhood
of �m� in X� While we can talk about germs of functions on a space at a
point in many contexts� in scheme theory the germ is again a scheme in its
own right�

For some purposes� the local schemes introduced in this way are not
local enough� the local ring of a scheme at a point still contains a lot
of information about the global structure of the scheme� For example� the
germs of a nonsingular variety X at various closed points will not in general
be isomorphic schemes�� although if Xan denotes the complex analytic
variety de�ned by the same equations or indeed any analytic manifold��

�This has nothing to do with schemes but is already the case for varieties over C � for

example� it is so already for the general plane curve of degree d � ��
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the germs of Xan at any two points are isomorphic� This phenomenon
occurs essentially because the open sets used to de�ne the germs of X are
so big� To get a more local picture within the setting of schemes� we can
look at the schemes associated to power series rings� for example� instead
of looking at the germ X ! SpecK�x� y��x�y� of a neighborhood of the

origin in A �
K above� we can consider the scheme Y ! SpecK��x� y��� As in

the previous case� this scheme has one closed point �x� y�� and one generic
point �	�� whose closure is all of Y � in addition� it has one point for every
irreducible power series

P
ai�jx

iyj in x and y� The maps

K�x� y� �� K�x� y��x�y� �� K��x� y��

give maps Y � X � A �
K � we think of the Y as a �smaller� neighborhood

of the origin than X� Note� however� that X and Y are neither closed
subschemes nor open subschemes of A �

K �� For example� while the curve
corresponding to the prime ideal y��x��x�� is irreducible in X� because
the curve in A �

K de�ned by this equation is� the preimage in Y of this curve
is the nontrivial� union of two curves in Y � as long as the characteristic of
K is not �� because x� $ x� has the square root

u ! x$ �
�x

� � �
�x

� $ � � �
in the power series ring� Thus we can factorize y� � x� � x� as

y� � x� � x� ! y � u�y $ u��

so the scheme SpecK��x� y���y� � x� � x�� is reducible� See the �gure on
the next page��

Of course� Y must have �more� curves than X for such things to be
possible� The following exercise ampli�es this fact�

Exercise II�� a� With u !
p
x� $ x� as above� what is the image of

�y�u�� in SpecK�x� y� Hint� it�s a prime ideal containing y��x��x���
b� Show that the image of the point y�Pn�� x

n�n#� of Y is the generic

point of A �
K �

In general� under the map Y � X above� the inverse image of a point
corresponding to an irreducible curve C � A �

K consists of the set of analytic
branches of C at the origin� See Walker ����	� or Brieskorn and Kn'orrer
������ for further discussion of branches��

Here is yet another important example of a local scheme� One problem
with the scheme Y above is that the points described in Exercise II�
b�
are extraneous from an algebraic point of view� To avoid this� we may work
with the spectrum Z of the ring H � K��x� y�� of power series that satisfy
algebraic equations over Kx� y�� the �eld of rational functions� Called the
Henselization of X � the scheme Z sits in between Y and X in the sense
that we have a series of maps

Y � Z � X � A �
K �
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SpecK�x� y���y��x��x�� �
SpecK�x� y� is irreducible�

its preimage
SpecK��x� y����y��x��x��
� Spec K��x� y�� is not�

The usefulness of this construction is thatH is the union of algebras �nitely
generated over K� so that Z is the inverse limit of schemes coming from
ordinary varieties� Geometrically� Z is the germ of A �

K in the �etale topology�
a concept we will not pursue here� see Artin ������ for further information�

Exercise II��� In the case K ! C � how does the spectrum of the ring of
convergent power series �t into this picture 

II�� Reduced Schemes over Non�Algebraically
Closed Fields

We now consider what happens when we look at the spectrum of a �nitely
generated� reduced algebra over a �eld K that is not algebraically closed�
The interest in such structures came originally from number theory� and�
of course� it predates scheme theory very substantially# For example� the
study of rational quadratic forms� an old subject in number theory� can
be thought of as the study of varieties over the rational numbers de�ned
by a quadratic equation� Cubic forms in three variables over the rationals
still make up a very active number�theoretic research topic� now mostly
pursued through the theory of elliptic curves over Q � The basic objects
themselves are varieties over Q or schemes over Z� a situation we�ll return
to later�� but in the course of handling them� number theorists frequently
make use of all the base rings shown in the following diagram� along with
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many intermediate �elds and rings�

%Z�p� � %Q p
� C p

Z�p�

�

Z

�

� Q

�

� R � C

�

F p
�

� (F p
The theory of schemes provides a particularly �exible and convenient frame�
work for handling these many changes of base� Also� a nice variety reduced
mod p may suddenly become something nonreduced�something that re�
quires the theory of schemes more fully see for example Section II������

To start with the simplest case� consider A �
R ! SpecR �x�� Using the

Nullstellensatz we see that there are two kinds of maximal ideals in R �x��
those whose residue class �eld is R � which have the form x��� for � � R �
and those whose residue class �eld is C � which have the form x�$�x$���
for � and � � R with �� � �� � 	� The latter type of ideals may also be
written in the form x � z�x � (z��� for z � C not real� A closed point
of A �

R thus corresponds either to a real number or to a conjugate pair of
nonreal complex numbers� Finally� A �

R has again a unique nonclosed point
corresponding to the prime 	�� whose closure is all of A �

R�
Next� we turn to the a�ne plane over R � A �

R ! SpecR �x� y�� and consider
a closed point given by a maximal ideal m of R �x� y�� Again by the Null�
stellensatz the residue class �eld of m is either R or C � and the composite
map

R � R �x� y��m �! R or C �

is either the identity or the inclusion of R in C � Taking � and � to be the
images of x and y in C � we see that in the former case m ! x��� y���
corresponds to the ordinary point �� �� in R �� But in the latter case m
corresponds to both �� �� and (�� (��� put di�erently� the map R �x� y�� C
sending x� y to �� � has the same kernel as the one sending x� y to (�� (� since
they di�er by the automorphism of C over R �

It is not di�cult to give generators for the maximal ideals described
above� If R �x� y��m �! R � then clearly m ! x��� y���� In the other
case� suppose �rst that � is real� Then � must satisfy an irreducible real
quadratic polynomial equation y�$ay$b ! 	� so m contains the ideal
x��� y�$ay$b�� But this last ideal is immediately seen to be prime for
example� by factoring out x�� �rst�� so m ! x��� y�$ay$b�� Of course�
a similar result holds if the image of y is real�
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Finally� suppose that � and � are both nonreal� Then m contains the
irreducible polynomials fx� and gy� satis�ed by � and �� but since gy�
factors as

gy� ! y���y�(��

in R �x��fx�� �! C the ideal fx�� gy�� is not prime# The picture here�
over the complex numbers� is as follows�

��� ������ ��

��� ������� ���

f�x� � �

g�y� � �

Im���x�Im��� y � Im�����

A line whose equation
has real coe
cients

The loci de�ned by fx� ! 	 and gy� ! 	 are unions of two vertical and
two horizontal lines� respectively� and intersect in the four points �� ���
(�� ��� �� (��� and (�� (��� But the polynomial

hx� y� ! Im��x � Im�� y � Im�(��

de�ning the line joining the two points �� �� and (�� (�� has real coe�cients�
The ideal

fx�� hx� y�� ! gy�� hx� y�� � R �x� y�
thus strictly contains the ideal fx�� gy��� and this ideal is the maximal
ideal m we seek� as one checks by working in

R �x� �! R �x� y��h� �! R �y�
for these isomorphisms� note that (���� and (���� are both nonzero��

In sum� then� the closed points of A �
R correspond either to points �� ��

of A �
C with � and � real� or to unordered� pairs of points z� w� and

(z� (w� � A �
C with at least one of z� w not real� To put it another way� closed

points of A �
R correspond to orbits of the action of complex conjugation on

the points of A �
C � Note� in particular� that the closed points of A �

R are not
ordered pairs of closed points of A �

R#� Observe also that the residue �eld is



� II� Examples

R at the points of A �
R corresponding to points �� �� with �� � real� while

at points of A �
R corresponding to pairs of complex conjugate points of A �

C

the residue �eld is C �

Exercise II��� Show that the nonclosed points of A �
R are all either

a� �	��� whose closure is all of A �
R� or

b� the point �f�� of A �
R corresponding to an irreducible polynomial f �

R �x� y��
Those of type b� may or may not remain irreducible in C �x� y�� so that

a nonclosed point f� in A �
R will correspond either to a single nonclosed

point in A �
C if f remains irreducible in C �x� y�� or to two nonclosed points

in A �
C if f may be written as a product g (g with g � C �x� y��� The closed

points in the closure of such a nonclosed point may be either of both types
above or only of the second� Give examples with all these possibilities�

The situation in general follows the lines of these examples� if K is any
�eld� (K its algebraic closure� and G ! Gal (K�K� the corresponding Galois
group� the points of A nK correspond to orbits of the action ofG on the points
of A n�K see� for example� Nagata ������ Theorem �	�
��� The closed points
correspond to orbits of closed points� the orbits being �nite� The residue
�eld at the point p corresponding to such an orbit� moreover� is isomorphic
to the �xed �eld of the action on (K of the subgroupGp �xing a point of that
orbit� For example� the closed points of A �

Q correspond to algebraic numbers
modulo conjugacy� and for a prime number q � Z the closed points of A �

Fq

correspond to the orbits of the Frobenius automorphism of the algebraic
closure of F q ! Z�q� namely� 	 and the orbits of the map a �� aq on the
multiplicative group (K�� which may be described as the inductive limit of
all cyclic groups of order prime to q or as the q�torsion�free part of Q �Z��

Exercise II��� An inclusion of �elds K �� L induces a map A nL � A nK �
Find the images in A �

Q of the following points of A �
Q

under this map�

a� x�p�� y�p��

b� x�p�� y�p
�

c� x��� y������ where � is a p�th root of unity� with p prime

d� 
p
�x�p
y�

e� 
p
�x�p
y���

Where feasible� draw pictures�

Exercise II��� We say that a subscheme X � A nK is absolutely irreducible
or geometrically irreducible if the inverse image of X in A n�K is irreducible�
More generally� we say any K�scheme X is absolutely irreducible if the
�ber product X �SpecK Spec (K is irreducible�� Classify the following sub�
schemes of A �

Q ! SpecQ �x� y� as reducible� irreducible but not absolutely
irreducible� or absolutely irreducible�
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a� V x��y��
b� V x�$y��

c� V x�$y����

d� V x$y� xy���

e� V x���y�� x�$
y��

Finally� here is an example that combines the notions of local schemes and
schemes over non�algebraically closed �elds� Classically� a plane curve X �
A �
C was said to have a node at the origin if in some analytic neighborhood

of the origin the locus of complex points of Y consisted of two smooth arcs
intersecting transversely at 	� 	�� In the language of schemes� this is the
same as saying that the �ber product of X with the formal neighborhood
Spec C ��x� y��� Spec C �x� y� ! A �

C is isomorphic to Spec C ��u� v���uv��
Consider now a curve in the real plane X � A �

R� We say in this case that
X has a node at the origin if the corresponding complex curve

X �SpecR Spec C � A �
C

does� In this case� the formal neighborhood

X �SpecR�x�y� SpecR ��x� y��

may have either one of two nonisomorphic forms� it may be isomorphic
to SpecR ��u� v���uv� or to SpecR ��u� v���u� $ v��� The former is the case
if the locus of real points of X that is� the locus of points with residue
�eld R � looks in an analytic neighborhood of 	� 	� like two smooth real
arcs intersecting transversely at 	� 	�� classically� such a point was called a
crunode of X� The latter is the case if the origin is isolated as a real point
of X � this was called an acnode in the past�

Exercise II�
� Verify the assertions made above� speci�cally� show that if
X is a curve in A �

C with a node at the origin� then the formal neighborhood
X �SpecC �x�y� Spec C ��x� y�� is isomorphic to Spec C ��u� v���uv�� and that if

X � A �
R is a real plane curve with a node at the origin� then the formal

neighborhood X �SpecR�x�y� SpecR ��x� y�� has one of the two forms above�

Show that there are in�nitely many curvesX � A �
Q with nodes at the origin

having nonisomorphic formal neighborhoods� As in the real case� we say
that X � A �

Q has a node at the origin if the complex curveX�SpecQSpec C
does��

II�� Nonreduced Schemes

We now leave the realm of objects that could be treated in the theory of
varieties to look at some examples of a�ne schemes SpecR where R is a
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�nitely generated algebra over an algebraically closed �eld K but may have
nilpotents� The phenomena here are much less familiar� and we will spend
rather more e�ort on them�

Schemes of this type arise already in quite simple geometric contexts� for
example� the multiple points treated below occur already as intersections
of two ordinary varieties and as �degenerate� �bers of maps� as in Exercise
II��� One of the most important applications of nonreduced schemes is to
the theory of families of varieties� deformation theory and moduli theory�
We will explain how to take limits of one�parameter families of varieties�
and introduce the key notion of �atness� Finally� we will give some examples
of nonreduced schemes that are interesting objects in themselves�

To start with the easiest cases� we will focus �rst on subschemes of a�ne
space A nK supported at the origin�equivalently� given by ideals I whose
zero locus V I� consists� as a set� just of 	� � � � � 	�� Recall that the support
of a scheme is the underlying topological space��

II���� Double Points

Example II��� The simplest such scheme is the subscheme X of A �
K de�

�ned by the ideal x��� that is� the scheme SpecK�x��x��� viewed as
a subscheme of A �

K via the map induced by the quotient map K�x� �
K�x��x��� This scheme has only one point� corresponding to the ideal x��
but it di�ers� both as a subscheme of A �

K and as an abstract scheme� from
the scheme SpecK�x��x� ! SpecK� As an abstract scheme� we can see
the di�erence in that there exist regular functions such as x� on X that
are not equal to zero but that have value 	 at the one point of X � of course�
any such function will have square 	� As a subscheme of A �

K � the di�erence
is that a function f � K�x� on A �

K vanishes on X if and only if both f and
its �rst derivative vanish at 	� The data of a function on X thus consists of
the values at 	 of both a function on A �

K and its �rst derivative� Possibly
for this reason� X is sometimes called the �rst�order neighborhood of 	 in
A �
K �

More generally� for any n the ideal xn� de�nes a subscheme X � A �
K

with coordinate ring K�x��xn�� a function fx� on A �
K vanishes on X if

and only if the value of f at 	 vanishes together with the values of the �rst
n� � derivatives of f �

Example II��	 double points�� The next step in understanding double
points is to consider subschemes of A �

K ! SpecK�x� y� supported at the
origin and isomorphic to the scheme X of Example II��� Let Y � A �

K be
such a subscheme� R ! OY Y � �! K������� its coordinate ring� and


 � K�x� y�� R

the surjection de�ning the inclusion of Y in A �
K � Since the inverse image of

the unique maximal ideal m of R is the ideal x� y� � K�x� y� corresponding
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to the origin� and since m� ! 	 in R� the map 
 vanishes on x� y�� !
x�� xy� y�� and so factors through a map

(
 � K�x� y��x�� xy� y��� R�

Equivalently� Y must be contained in the subscheme

SpecK�x� y��x�� xy� y���

But the ring K�x� y��x�� xy� y�� is a three�dimensional vector space over
K� whereas R is only two�dimensional� It follows that the kernel of 
 will
contain a nonzero homogeneous linear form �x $ y� for some ��  � K�
Write

X��� ! SpecK�x� y��x�� xy� y�� �x$y� �� A �
K �

The subscheme X��� can be characterized either as

i� the subscheme of A �
K associated to the ideal of functions f � K�x� y�

that vanish at the origin and have partial derivatives satisfying


�f

�x
� �

�f

�y
! 	

there since this implies that f ! c�x$y� $higher�order terms�� or

ii� the image of the subscheme X � A �
K of Example II�� under the inclu�

sion of A �
K in A �

K given by x �� x���x��
In the classical language� the subscheme X��� was said to consist of the

point 	� 	� and an �in�nitely near point� in the direction speci�ed by the
line de�ned by �x $ y ! 	� We draw X��� as the small arrow in this
traditional picture�

�x� �y � �

This is intended to represent a point with a distinguished one�dimensional
subspace of the tangent space to the plane at that point there is actually
no distinguished tangent vector� despite the impression given by the arrow��

How do schemes such as X��� arise in practice One way is as intersec�
tions of curves� For example� when we want to work with the intersection of
a line L and a conic C that happen to be tangent� it is clearly unsatisfactory
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to take their intersection in the purely set�theoretic sense� a line and a conic
should meet twice� Nor is it completely satisfactory to describe C�L as their
point of intersection �with multiplicity two�� for example� the intersection
should determine L� as it does in the non�
tangent case� The satisfactory de�nition
is that C �L is the subscheme of A �

K de�
�ned by the sum of the ideals IC and IL so
that� for example� the line y ! 	 and the
parabola y ! x� will intersect in the sub�
scheme X	�� ! SpecK�x� y��x�� y�� This
does indeed determine L� as the unique
line in the plane containing X	���

Another important way in which subschemes such as X��� arise is as
limits of reduced schemes� For example� consider a pair of distinct closed
points 	� 	� and a� b� in the plane� Their union is the closed subscheme

X ! f	� 	�� a� b�g ! SpecS � A �
K �

where

S ! K�x� y��x� y� � x� a� y � b��

! K�x� y��x� � ax� xy � bx� xy � ay� y� � by��

By the Chinese Remainder Theorem� S �! K �K� so in particular� S is a
K�algebra of vector space� dimension � over K�

Now suppose the point a� b� moves toward the point 	� 	� along a curve
at�� bt��� with a	�� b	�� ! 	� 	�� where a and b are polynomials in t�
we write

at� ! a�t$ a�t
� $ � � � � bt� ! b�t$ b�t

� $ � � � �

a�t�� b�t��

What should be the limit of Xt ! f	� 	�� at�� bt��g as t � 	 Using
schemes� we can a�ord the luxury of the idea that it will continue to be two
points� in a suitable sense� it will be an a�ne scheme X whose coordinate
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ring is again a two�dimensional vector space over K� We may de�ne X by
taking its ideal to be the limit as t� 	 of the ideal

It ! x� y� � x� at�� y � bt���

Of course� this only shifts the burden to describing what is the limit of a
family of ideals# But this is easy� in the current case� for example� we can
take their limit as codimension�� subspaces of K�x� y�� viewed as a vector
space over K� That this limit is again an ideal follows from the continuity
of multiplication� A more delicate description is necessary in the general
case� where the ideals are of in�nite codimension� we will discuss this below
when we come to limits of families of one�dimensional schemes and again
in Section III�
�� in the projective case�

To see what this means in practice� observe �rst that the generators
x� � at�x� xy � bt�x� xy � at�y� and y� � bt�y of the ideal It clearly
have as their limit when t� 	 the polynomials x�� xy� xy� and y�� so these
polynomials will be in I� In addition� observe that It contains the linear
form

at�y � bt�x ! xy�bt�x�� xy�at�y�

and hence� for t �! 	� also the polynomial

at�y � bt�x

t
! a�y � b�x$ t� � ���

The ideal I thus contains the limit a�y�b�x of this polynomial as well� so we
have I � x�� xy� y�� a�y � b�x�� But the right�hand side of this expression
already has codimension � as a vector subspace in the polynomial ring
K�x� y�� Thus I ! x�� xy� y�� a�y � b�x�� and correspondingly

lim
t�	

Xt� ! X��� with � ! b��  ! �a��

From this we see that X� as a
subscheme of A �

K � �remembers� the
direction of approach of at�� bt���
we think of it as consisting of the
origin together with a tangent di�
rection� along the line with equa�
tion a�y� b�x ! 	� This line is the
limit of the lines Lt joining 	� 	� to
at�� bt��� that is� it is the tangent
line to the curve parametrized by
at�� bt�� at the origin� as shown
on the right�

We will see how to generalize this notion of limit in Section II�
���
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II���� Multiple Points

The subschemes X��� of the preceding examples are called �double points�
in the plane� the double referring to the vector space dimension of their
coordinate rings

R ! K�x� y��x�� xy� y�� �x$y� �! K�t��t��

as K�modules� In general� if X ! SpecR is an a�ne scheme and R is a
�nite�dimensional vector space over a �eld K� we de�ne the degree of X
relative to K� denoted degKX� or simply degX�� to be the dimension of
R as a K�vector space� Where there is unlikely to be ambiguity about the
�eld K� we may suppress it in both the language and the notation�� In this
situation we call SpecR a �nite K�scheme�

We next consider examples having degree 
 or more� A number of things
are di�erent here� To begin with� all double points over an algebraically
closed �eld K�that is� schemes of the form SpecR� where R is a local
K�algebra of vector space dimension ��are isomorphic� since such an R
must be isomorphic to K�x��x��� Proof� Let m be the maximal ideal of
R� Then R�m �! K� since K has no �nite�dimensional extension� Since R
is two�dimensional� m is one�dimensional� Also m� ! 	� for example� by
Nakayama�s Lemma�so the obvious map from K�x� onto R has x� in the
kernel and identi�es R with K�x��x�� as required�� By contrast� this is not
true of triple points� the schemes

SpecK�x��x�� and SpecK�x� y��x�� xy� y��

are readily seen to be nonisomorphic� However� any triple point is isomor�
phic to either of these� a fact whose proof we leave as the following exercise�

Exercise II���� Suppose that K is algebraically closed� and let Z !
SpecK�x�� � � � � xn��I � A nK be any subscheme of dimension 	 and de�
gree 
� supported at the origin� Show that Z is isomorphic either to X !
SpecK�x��x�� or to

Y ! SpecK�x� y��x�� xy� y���

and X�Y are not isomorphic to each other�

In particular� any ring K�x�� � � � � xn��I of vector space dimension 
 over
K can be generated over K by two linear forms in the xi� In geometric
terms� this says that any triple point in A nK is planar� that is� lies in a
linear subspace A �

K � A nK � Inside A �
K both types of triple points can be

realized as limits of triples of distinct points� The ones isomorphic to X
above may be obtained from three points coming together in the plane along
a nonsingular curve� while those isomorphic to Y above arise when two
points approach a third from di�erent directions� The following exercises
contain examples of these phenomena�
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Exercise II���� i� Show that the subscheme of A �
K given by the ideal

y�x�� xy� arises as the limit of three points on the conic curve y ! x�

and is isomorphic to X above� but is not contained in any line in A �
K �

i� ii�

ii� Show that subschemes of A �
K isomorphic to Y above arise when two

points approach a third from di�erent directions�

Exercise II��� For those familiar with the Grassmannian�� The exam�
ples above may lead one to expect that the schemes isomorphic to X are
limits of those isomorphic to Y� In fact� just the opposite is the case� in the
following sense� Let H be the set of �nite subschemes of degree 
 of A �

K

supported at the origin� H naturally parametrized by a closed subscheme
of the Grassmannian of codimension�
 subspaces of the six�dimensional
vector space K�x� y��x� y��� Show that H is a surface� with one point cor�
responding to the unique subscheme SpecK�x� y��x�� xy� y�� isomorphic to
Y and the rest corresponding to subschemes isomorphic to X� Show that
the scheme H is isomorphic to a two�dimensional cubic cone in P�K � and
that the vertex is the one point corresponding to Y�

Exercise II���� Let C be the subscheme of A nK given by the ideal

J ! x� � x��� x� � x��� � � ���

A closed point in C is of the form ft� ! t� t�� t�� � � � � tn�� for t � K�
that is� it has ideal x��t� x��t�� � � ��� Consider for t �! 	 the three�point
subscheme

Xt ! ff	�� ft�� f�t�g � C�

a� Show that the limit scheme as t� 	 is

X	 ! SpecK�x�� � � � � xn��x� � x��� x�x�� x�� x�� � � � � xn�

and is isomorphic to the triple point SpecK�x��x�� above�

b� Show� however� that X	 is not contained in the tangent line to C at
the origin� Rather� the smallest linear subspace of A nK in which X	 lies
is the osculating ��plane

x� ! x� ! � � � ! xn ! 	
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to C recall that this is by de�nition the limit of the planes spanned by
the tangent line and another point on C near the origin as the point
approaches the origin�� while the tangent line to C is the smallest linear
subspace of A nK containing the subscheme de�ned by the square of the
maximal ideal in the coordinate ring of X	� Thus� in this sense� X	

�remembers� both the tangent line and the osculating ��plane to C�

Exercise II���� Consider for t �! 	 the subschemes

Xt ! f	� 	�� t� 	�� 	� t�g � A �
K �

each consisting of three distinct points in A �
K �

a� Show that the limit scheme as t� 	 is

X	 ! SpecK�x� y��x�� xy� y���

b� Show that the restriction of a function f � K�x� y� on A �
K to X	 de�

termines and is determined by the values at the origin of f and its
�rst derivatives in every direction� thus we think of it as a �rst�order
in�nitesimal neighborhood of the point 	� 	��

c� Show thatX	 is contained in the union of any two distinct lines through
	� 	��

d� Show that X	 is not contained in any nonsingular curve and thus� in
particular� is not the scheme�theoretic intersection of any two nonsin�
gular curves in A �

K �

As we said� both types of triple point are contained in planes inside
any a�ne space in which they are embedded� But the quadruple point
SpecK�x� y� z��x� y� z�� is not� since its maximal ideal cannot be gener�
ated by two elements� Other new phenomena occur for spatial multiple
points� those not contained in the plane�and multiple points in higher�
dimensional spaces� For example� not every point of degree �� in ��space
arises as a limit of sets of �� distinct points� as the following exercise shows�
See also Iarrobino ��������

Exercise II���� Consider zero�dimensional subschemes ) � A �
K of degree

�� such that

V m�� � ) � V m���

where m is the maximal ideal of the origin in A �
K � Show that there is an

���dimensional family of such subschemes� and conclude that a general one
is not a �at limit of a reduced scheme�

Exercise II���� Classify up to isomorphism subschemes of A �
K of dimen�

sion 	 and degrees � and � with support at the origin� Which are isomorphic
as schemes over SpecK 
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Exercise II��
� A scheme SpecR supported at a point is called curvilin�
ear if the maximal ideal of the necessarily local� ring R is generated by one
element� or� equivalently� if its Zariski tangent space has dimension zero or
one� The name comes from the fact that these are exactly the schemes that
can be contained in a nonsingular curve�� Show that any two subschemes
of A �

K having degree � and supported at a point can be transformed into
one another by a linear transformation of the plane� but that this is not
possible for curvilinear schemes of length 
� Note� however� that any two
curvilinear subschemes of A �

K of the same degree can be carried into one
another by an automorphism of A �

K ��

Exercise II���� For those with some familiarity with curves�� There are
in�nitely many isomorphism types of degree�� subschemes supported at
the origin in 
�space and in�nitely many types of degree�� subschemes
supported at the origin in the plane�

As might be expected� the behavior of nonreduced schemes over non�
algebraically closed �elds is more complex� The following exercise gives an
example�

Exercise II��	� Classify all schemes of degree � and 
 over R supported
at the origin in A �

R� In particular� show that while any such schemeX whose
complexi�cation X �SpecR Spec C is isomorphic to Spec C �x��x�� is itself
isomorphic to SpecR �x��x��� there are exactly two nonisomorphic schemes
X whose complexi�cation is isomorphic to Spec C �x� y��x�� xy� y���

Degree and Multiplicity� Recall that on page �� we de�ned the degree
of a �nite a�ne K�scheme X ! SpecR� where R is a �nite�dimensional
vector space over some �eld K� as the dimension of R over K� When K
is algebraically closed� the degree of such a scheme X measures� in some
sense� its nonreducedness� As the last exercise shows� however� this is not
true in general� Spec C is reduced� but has degree � as a scheme over R �

There is an alternative concept� called the multiplicity� which measures
the nonreducedness of X � Unlike the degree� which is a relative notion
dependent on the speci�cation of a base �eld K � R� the multiplicity is
an invariant of X alone� and it is de�ned in a more general situation�
we will de�ne it here for any local ring R that has Krull dimension zero
equivalently� any local Artinian ring��

So let R be any zero�dimensional local ring� with maximal ideal m� It is
possible to choose ideals of R� say

R � m ! I� � I� � � � � � Il�� � Il ! 	

such that each successive quotient Ij�Ij
� is isomorphic to R�m as an
R�module� For example� we could start with the coarser �ltration

R � m � m
� � � � � � 	
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and re�ne it by choosing arbitrary subspaces of the R�m�vector spaces
mj�mj
��� Though such a �ltration is not unique� the length l is indepen�
dent of the �ltration chosen� we de�ne the multiplicity or length of the ring
R and of the zero�dimensional scheme X to be the number l see for ex�
ample Eisenbud ������ Section ������ Notice that in the original situation�
when R is an algebra over a �eld K� �nite�dimensional as a vector space
over K� the residue �eld R�m ! � is a �nite extension of K and we have
the relation

degKX� ! �� � K� multX� �

For any zero�dimensional scheme X and point p � X we de�ne the
multiplicity of X at p� denoted multpX�� to be the multiplicity of the
local ring OX�p� if X is a �nite K�scheme� the degree of X relative to K is
given by

degKX� !
X
p�X

��p� � K� multpX� �

In Chapter III we will see how the notions of degree and multiplicity may
each be extended to positive�dimensional schemes�

II���� Embedded Points

We now consider some examples of nonreduced schemes of higher dimen�
sion� for simplicity we will restrict ourselves to the case where the under�
lying reduced scheme is a line� Even so� the variety of possible behaviors
increases enormously� for example� we can have schemes that look like
reduced schemes except at a point� or schemes that are everywhere nonre�
duced� In this subsection� we consider the former type� By way of termi�
nology� we will say that a scheme X ! SpecK�x� � � � � xn��I � A nK has an
embedded component if for some open subset U � A nK meeting X in a dense
subset of X the closure of X � U as de�ned in Section I���� above� does
not equal X � or if� equivalently� the primary decomposition of the ideal I
contains embedded primes see the discussion of primary decomposition
that follows�� If the embedded prime is maximal�equivalently� if U may
be taken to be the complement of a point�we talk about an embedded
point � since the schemes X we will discuss below are all one�dimensional�
this is all we will see�

The simplest example of a nonreduced scheme that is reduced except at
one point is X ! SpecK�x� y��y�� xy� � A �

K � The ideal I ! y�� xy� �
K�x� y� is the ideal of functions on the plane vanishing along the line y ! 	
and in addition vanishing to order � at the point 	� 	�� in algebraic terms�
this means that y�� xy� ! y� � x� y��� We can thus think of the scheme
X as the line y ! 	 with the proviso that a function f on X is de�ned by
its restriction fx� 	� to the line y ! 	 together with the speci�cation of its
normal derivative at the point 	� 	�� that is� together with the number
�f��y	� 	��
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It is convenient to realize X as the union of the line de�ned by y ! 	
with a nonreduced point� for example� the ��rst�order neighborhood of
the origin� de�ned by the ideal x�� xy� y���

Such primary decompositions exist for any scheme� we brie�y review
the background from algebra� For more details see� for example� Eisenbud
������ Atiyah and Macdonald ������� or� for perhaps the gentlest treatment
of all� Northcott ����
��

Primary Decomposition� Given any ideal I in a Noetherian ring R� we
de�ne the associated prime ideals of I to be the prime ideals p such that p
is the annihilator of some element of R�I� These primes make up a �nite
set�

An ideal q � p is called primary to p if p is the radical of q the set of
elements having a power in q� and for any elements f� g in R with fg � q

but f �� p we have g � q� equivalently� q is p�primary if p is its radical and
the localization map R�q� Rp�qRp is a monomorphism�

Any ideal I may be expressed as the intersection of primary ideals� Since
the intersection of ideals primary to a given prime ideal is again primary
to that prime� I can even be expressed as an intersection of ideals that are
primary to distinct prime ideals� If this is done in such a way that none of
the primary ideals can be left out� the expression is called a primary decom�
position of I� The primary ideals involved are called primary components
of I�

The associated primes of I are exactly the radicals of the primary com�
ponents� The primary component of I corresponding to a given associated
prime is not uniquely determined by I � it is� however� so determined if the
corresponding prime is minimal among the associated primes� Such primary
components are called isolated components�

Example II���� Taking I ! y�� xy� as above� the decomposition

I ! y� � x� y��

already given expresses I as an intersection of primary ideals the �rst is
prime� the second is primary to x� y���

Since neither y� nor x� y�� can be omitted from this expression� it is a
primary decomposition and the associated schemes of X as de�ned below�
are precisely the line Xred and the reduced point at the origin� The primary
component associated to x� y� in the decomposition is not unique� it could
have been taken to be x� y��� or x$y� y��� or indeed any of an in�nite
number of other such ideals� as well as their intersection x�� xy� y��� or
for that matter the ideal xn� xy� y�� for any n � �� Of course� the primary
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component y� corresponding to y� is unique� becauseXred is not contained
in any other associated scheme�

Despite this nonuniqueness� there is a well�de�ned length for the primary
component corresponding to a given associated prime p� which may be
computed� without choosing a primary decomposition� as the length of the
largest ideal of �nite length in the ring Rp�IRp� Here the length of a module
M is the maximal length l of a chain

M �M� �M� � � � � �Ml�� �Ml ! 	

of submodules of M�

Exercise II���� The length of the primary component of xy� y�� at the
origin is ��

It is easy to translate these matters into the geometry of schemes� any
a�ne scheme X ! SpecR� where R is Noetherian� is the union of �pri�
mary� closed subschemes� called primary components� where a primary
a�ne scheme is an a�ne scheme Y such that Yred is irreducible and such
that� if f� g are functions on Y�

fg vanishes on Y but

f does not vanish on Yred

�
!� g vanishes on Y�

In such a primary decomposition of X� the components that are set�theore�
tically maximal�called isolated components�are unique� The others�
called embedded components� because their supports are contained in larger
components�are not unique� Nonetheless� the decomposition does have at
least two nice uniqueness properties�

�� The set of reduced subschemes associated to primary components in
a minimal primary decomposition is unique� this is called the set of
associated schemes to X�

�� The �length� of the primary component associated to each of the asso�
ciated schemes of X� called the multiplicity of that associated scheme
in X� is unique�

We may use our example X ! SpecK�x� y��y�� xy� to illustrate these
notions� we have already observed that X is the union of the line

Xred ! SpecK�x� y��y�

and the multiple point

Y �! SpecK�x� y��x�� xy� y��

and we have seen that this gives a primary decomposition� the multiplicity
of the embedded subscheme at the origin being ��

As we observed� we can write X in many di�erent ways as the union
of a line and a point� for example� for any � �! 	� we have X ! Y � Z�
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where Z ! Xred ! SpecK�x� y��y� is the line and Y is� in the notation of
Section II�
��� the subscheme X����

Y ! SpecK�x� y��x�� xy� y�� x$�y� �

Choosing two such subschemes Y� Y � gives an example of closed subschemes
Y� Y � and Z in A �

K such that

Y � Z ! Y � � Z and Y � Z ! Y � � Z� but Y �! Y ��

In the example above�X can be described as the unique subscheme of A �
K

consisting of the reduced� x�axis plus an embedded point of multiplicity �
at the origin� But embedded points can carry geometric information� too�

Exercise II��� Choose a linear embedding of A �
K in A �

K � let P be the
image of A �

K � and let X � be the image of X� Show that X � determines P
as the unique plane in A �

K containing X ��

It is also interesting to consider subschemes of A �
K and A �

K supported
on a union of two given lines� with an embedded point of multiplicity � at
the intersection of the two lines� In the plane� if we take the two lines to
be the coordinate axes� such a scheme may be given as

X ! SpecK�x� y��x�y� xy���

Geometrically� this may be viewed as the union of the two lines de�ned by
xy ! 	 with the point SpecK�x� y��x�� x�y� xy�� y��� In 
�space� if we take
the lines to be x ! z ! 	� and y ! z ! 	�� we can get such a scheme
either as

Y� ! SpecK�x� y� z��z� x�y� xy��

or as

Y� ! SpecK�x� y� z��z�� xz� yz� xy��

Y� is the image of the scheme X above under the embedding of A �
K into

A �
K as the plane z ! 	� whereas Y� is the union of the two lines with the

subscheme of A�
K de�ned by the square of the maximal ideal of the origin

in A�
K �

Exercise II���� a� Show that Y� ��! Y��

b� Show that Y� �! X is� up to isomorphism� the unique example contained
in a plane of two lines meeting in a point and having an embedded point
of multiplicity � at that intersection point�

c� Show that Y� is� up to isomorphism� the unique example contained in

�space but not in any plane of two lines meeting in a point and having
an embedded point of multiplicity � at that intersection point�

One justi�cation for the idea that the multiplicity of the embedded point
at the origin in our scheme X ! SpecK�x� y��xy� y�� is � is that X is the
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limit as t� 	 of the family of subschemes

Xred � Yt �
where Yt is the scheme consisting of one reduced point

SpecK�x� y��x� y�t� � A �
K �

This is plausible since the ideal

x� y�t� � y� ! xy� y��ty�
of Xred � Yt naturally seems to approach xy� y�� at t � 	� However� the
notion of limit that we introduced earlier is not quite strong enough to deal
with this example� since the ideal x� y�t�� y� of Xred�Yt is not of �nite
codimension� In the next section we will rectify this� describing the general
context for taking limits of schemes�

II���	 Flat Families of Schemes

The notion of a family of schemes is extremely general� we de�ne a family of
schemes to be simply a morphism � � X � B of schemes# The individual
schemes in the family are the �bers of � over points of B� This notion
includes all others that one can think of� such as a scheme de�ned by
�equations with parameters�� B being the space on which the parameters
vary�

However� the notion of a family as an arbitrary morphism � � X � B is
so general as to be virtually useless� because the �bers of the family may
have nothing in common� For example� given such a family and a closed
point b � B� one could make a new family by replacing X by the disjoint
union of X����b and some other scheme Y� sending all of Y to b� Thus we
must add some condition if we wish to have families of schemes that vary
continuously� in some reasonable sense� What �reasonable� should mean
is not obvious� It seems natural at least to ask that it include the mother
of all continuously varying families� the family of projective plane curves
of a given degree see Section III������ Other examples are the families
of schemes de�ned by families of ideals of constant �nite codimension in
a polynomial ring� as we considered in the context of limits of multiple
points�

In many geometric theories one gets the right notion of a continuously
varying family by demanding some local triviality of the family� that is�
locally� in some suitable sense� the family should look like the projection of
a direct product to one factor� This is wrong for us on two counts� First�
if we do this naively for schemes� interpreting locally as meaning locally
in the Zariski topology� we get a notion that is far too restrictive to be of
much use� A more sophisticated approach would be to demand this local
triviality analytically� that is� to demand that if x � X and b ! �x��
then the completion of the local ring OX�x should look like a power series
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ring over the completion of the local ring OB�b� This notion is quite useful
it is called smoothness�� but it excludes� for example� the family of plane
curves of a given degree� since a smooth family can�t have singular �bers�
Smoothness also excludes the families treated in the previous section� in
which a disjoint union of distinct points approaches a multiple point� at the
multiple point� the criterion is not met� Thus we must look for something
more general�

The best current candidate for such a general notion is that of �atness�
In order to motivate this de�nition� we consider �rst the more intuitive
notion of limits�

Limits� The starting point for understanding the geometric content of
�atness is the notion of the limit of a one�parameter family of schemes�

To set this up� we start with something fairly concrete� A family of
closed subschemes of a given scheme A over a base B is a closed subscheme
X � B � A� together with the restriction to X of the projection map
B�A� B� the �bers ofX over b � B are then naturally closed subschemes
of the �bers Ab of B �A over B�

Let B be a nonsingular� one�dimensional scheme�typically� we think
of SpecR� where R ! K�t�� K�t��t� or K��t��� but any Dedekind domain
including Z or Z�p�� will do� Let 	 � B be any closed point� and write
B� ! B n f	g for the complement of 	 in B� Let A nB and A nB� be as usual
a�ne n�space over B and B� respectively�

We consider a closed subscheme X � � A nB� ! A nZ� B�� which we
view as a family of closed a�ne schemes parametrized by B��that is� for
any point b � B� we let Xb ! ���b� be the �ber of the projection map
� � X � � A nB� � B�� and consider these schemes Xb as the members of
a family� In case B ! SpecR with R ! K�t� or K�t��t� we can think of
X � as a �family of subschemes of A nK varying with parameter t��� We ask
the basic question� what is the limit of the schemes Xb as b approaches the
point 	 

X
�

B�

A
n
B
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The answer� the only possible answer� is simple enough� since the
limit of the schemes Xb in any reasonable sense must �t into a family
with them� we take X � A nB to be the closure X � of X � in A nB � and take
the limit limb�	Xb of the schemes Xb to be the �ber X	 of X over the
point 	 � B�

To make this more concrete� if B ! SpecR is a�ne and t � R a generator
of the maximal idealm � R corresponding to the point 	 � B so that B� !
SpecR�t����� and IX �� � R�t����x�� � � � � xn� is the ideal of X � � A nB� �
then the ideal of the subscheme X � A nB is the intersection

IX � ! IX �� � R�x�� � � � � xn� �

To be even more concrete� if we take B ! SpecK�t�� the limiting scheme
X	 � A nK is cut out by the limits of polynomials vanishing on the schemes
Xt�in other words� if we view the ideals IXt� � K�x�� � � � � xn� as linear
subspaces of the K�vector space K�x�� � � � � xn� and let V � K�x�� � � � � xn�
be the limiting position of the planes IXt�� the ideal IX	� is generated
by V� Thus this de�nition of limit generalizes the naive notion used in
Section II�
���

For example� take B ! SpecK�t� and B� ! B nf	g ! SpecK�t� t���� and
letXt be the subscheme of A �

K consisting of the two points with coordinates
t and �t�that is� take X � ! V x� � t�� � SpecK�t� t����x� ! A �

B� �
Then the closure X of X � in A nB is given again as X ! V x� � t�� �
SpecK�t��x� ! A �

B � and the �ber X	 of X over the point 	 � B is simply
the double point X	 ! V x�� � A �

K �

The notion of the limit of a family of schemes X � � A nB� depends very
much on the embedding in A nB� � not just on the abstract familyX � � B��
Thus� in the preceding example� the schemes Y � ! V x� � �� and Z � !
V x��t��� � SpecK�t� t����x� ! A �

B� are isomorphic as B��schemes to the
schemeX �� but the limit of Y � is the two reduced points V x���� � A �

K

and that of Z � is the empty set�

Examples� The examples of limits we have encountered up to now have all
involved limits of zero�dimensional schemes� Here are a couple of examples
involving positive�dimensional ones� They are instructive also because they
illustrate how embedded points arise naturally in limits of varieties�

The �rst example is that of three lines through the origin in a�ne 
�
space A �

K over a �eld K� We take the three coordinate axes� rotate one
down until it lies in the plane of the other two� and ask what is the limit
of this family� Speci�cally� in A �

K ! SpecK�x� y� z� we let L ! V y� z� be
the x�axis and M ! V x� z� the y�axis� and let Nt be the line

Nt ! V x�y� z�tx� �
For t �! 	 we let Xt ! L �M � Nt� The curves fXtgt��	 form a family
X � � A �

B� over the base B� ! SpecK�t� t���� and we ask for the limit X	

of this family�
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This is straightforward to calculate� though the answer may initially be
surprising� The ideal of the union of the three coordinate axes is xy� xz� yz��
so the ideal of the scheme Xt for t �! 	 is generated simply by products of
linear forms�

IXt� ! Q�� Q�� Q���

where
Q� ! z z � tx��

Q� ! z z � ty��

Q� ! z � tx�z � ty��

When we let t go to zero� we see that the ideal of the limiting scheme
contains z�� the common limit of Q�� Q� and Q�� In addition� for t �! 	
the ideal IXt� contains Q� �Q� ! tyz � t�xy and Q� �Q� ! txz � t�xy�
Thus� for t �! 	 the ideal contains

Q� �Q�

t
! yz � txy and

Q� �Q�

t
! xz � txy�

and hence the ideal of the limiting scheme X	 contains xz and yz� Finally�
the ideal of Xt contains

x
Q� �Q�

t
� y

Q� �Q�

t
! txy x� y��

and hence the ideal of the limiting scheme contains xy x � y�� Thus we
have

IX	� �
�
xz� yz� z�� xy x�y��

and we claim that in fact this is an equality� We will establish this in a
moment� but before we do we should point out the striking fact about this�
the limit scheme X	 of the family of schemes fXt ! L�M �Ntgt��	 is not
simply the union L �M �N	� In fact� the ideal of the union is

IL �M �N	� !
�
z� xy x�y���

so that

IX	� ! IL �M �N	� � x� y� z���

In other words� the limit scheme X	 has an embedded point at the origin�
In fact� it�s not hard to see this directly� which in turn allows us to prove

the equality IX	� ! xz� yz� z�� xy x�y��� the schemes Xt all have three�
dimensional Zariski tangent space at the origin 	� 	� 	� � A �

K � so X	 must
as well� because if X � A nB is any closed subscheme and � � B � X any
section of X � B� the dimension of the Zariski tangent space T
�b�X is
an upper�semicontinuous function of b � B� This in turn implies that

IX	� � IL �M �N	� � x� y� z�� !
�
xz� yz� z�� xy x�y���

from which equality follows�
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A similar example is the limit of the scheme consisting of two disjoint
lines in A �

K as the lines move to meet in a single point� As the following
exercise shows� their limit actually has an embedded point at the point of
intersection�

Exercise II���� Let Lt be the line in A �
K de�ned by the ideal y� z�t�

and M be the line de�ned by x� z�� for t �! 	 let Xt be their union� Show
that the limit of Xt as t� 	 is the scheme

X	 ! SpecK�x� y� z��z�� xz� yz� xy� �

y � z � t � � x � z � �

Xt

y � z � �

x � z � �

X	

The following exercise shows that the appearance of the embedded point
in the limit is no accident�

Exercise II���� a� Show that there does not exist a family of lines Lt �
A �
K disjoint from M ! V x� z� parametrized by B� ! SpecK�t� t���

such that the limit of M � Lt as t� 	 is the reduced scheme

X ! SpecK�x� y� z��z� xy� �

b� Similarly� show that there does not exist a family of lines Lt � A �
K

parametrized by B� ! SpecK�t� t��� such that the limit of M � Lt as
t� 	 is the scheme

X ! SpecK�x� y� z��z� x�y� xy�� �

Note that in these two examples� as well as those analyzed earlier� the
limit of a union of schemes properly contains the union of their limits� We
will return to this in Chapter V�

Taking the limit of a one�parameter family of subschemes of a given
scheme is a fundamental operation in algebraic geometry� In the examples
occurring throughout the remainder of this book� we will calculate the
ideals of such limits by ad�hoc methods� as we�ve done here� But there
is a general algorithm� best carried out by machines� for performing this
computation� For example� suppose that the base B ! SpecK�t�� and we
have an ideal I � K�t��x�� � � � � xn� such that for � �! 	 the scheme X� �
A nK is de�ned by the ideal

I� ! I� t����t��� � K�t��x�� � � � � xn��t� �� �! K�x�� � � � � xn��
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Then we de�ne an ideal J � K�t��x�� � � � � xn� by setting

J !
�
k

I � tk��

that is� J is the ideal of polynomials ft� x�� � � � � xn� such that tkf � I
for some k� This can be computed using Gr'obner bases� see Eisenbud ������
Chapter XV��

Flatness� The preceding discussion su�ces to describe the notion of a
continuously varying family of subschemes of a �xed scheme A such as
a�ne or projective space� over a nonsingular one�dimensional base� we say
such a family X � B � A is continuous if each �ber is the limit of nearby
ones� This notion is still too restrictive� however� it does not su�ce� for
example� if the base B is nonreduced� a case that turns out to be of great
utility� To extend the notion to the most general setting� Serre introduced
the following notion�

De�nition II���� A module M over a ring R is �at if for every monomor�
phism of R�modules A� B the induced map M �RA�M �RB is again
a monomorphism�

In particular� any free module is �at� and thus if R is a �eld� every module
is �at� It is not hard to show that if R is a Dedekind domain� then M is �at
if and only if M is torsion�free� We next make the corresponding geometric
de�nition�

De�nition II��
� A family � � X � B of schemes is �at if for every point
x � X the local ring OX�x� regarded as an OB���x��module via the map ���
is �at�

This notion is general enough to include the families of plane curves of
given degree but restrictive enough so that the varieties in a �at family have
a lot in common� It is really quite satisfactory� except for the fact that�
initially� at least� it does not seem to be a very �geometric� property� In
fact� however� it is the most natural� indeed� the only possible�extension
of the naive notion of limits introduced above# We will establish this fact�
and then go on to consider other properties of the notion of �atness� see
Eisenbud ������ Matsumura ������ Hartshorne ������ for good technical
discussions�

To begin with� �atness expresses the quality we desire in the cases we
have already considered�

Proposition II���� Let B ! SpecR be a nonsingular� one�dimensional
a�ne scheme� 	 � B a closed point and B� ! B nf	g� Let X � A nB be any
closed subscheme� and � �X � B the projection� The following conditions
are equivalent�

�� � is �at over 	�
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�� The �ber X	 ! ���	� is the limit of the �bers Xb ! ���b� as b� 	�


� No irreducible component or embedded component of X is supported
on X	�

Proof� We start with the equivalence of �� and 
�� Set X � ! ���B�� �
X � Since X � A nB is closed� it contains the closure of X �� so the �ber
X	 ! ���	� contains the limit of the �bers Xb ! ���b� as b� 	� and to
say that X	 ! limb�	Xb is simply to say that we have equality� X !X ��
Conversely�X	 properly contains the limit of theXb if and only ifX � �X �
that is� the expression

X !X � �X	

as a union of closed subschemes is nontrivial� Thus �� and 
� are equiva�
lent�

To see that �� is equivalent to 
�� simply observe that OX �x� regarded
as an OB�	�module� is �at for all x � X	 if and only if OX X � is torsion�
free as an R�module see Bourbaki ������ I����� Proposition 
�ii�� because
all these rings R are principal ideal domains� this also follows easily from
Matsumura ������ Theorem ��� and its converse on p� �	� or Eisenbud
������ Corollary ��
���

How general is this interpretation of �atness To begin with� since the
condition of �atness is local in the domain of a morphism � � X � B�
the assumption that X and B are a�ne is really no restriction at all� If
we assume that X is of �nite type over B� a mild extra �niteness condi�
tion described in Section III����� we can further reduce to the case where
X is a closed subscheme of A nB and � is the restriction to X of the pro�
jection A nB � B� All these are minor hypotheses� The serious restriction
in applying the preceding result is that we take B to be nonsingular and
one�dimensional� We can� however� broaden this substantially with the fol�
lowing lemma� which characterizes �at families of �nite type over a reduced
base�

Lemma II�	� Let K be a �eld� B a reduced K�scheme� b � B a closed
point and X � A nB a closed subscheme� X is �at over b if and only if for
any nonsingular� one�dimensional K�scheme B�� any closed point 	 � B�

and any morphism 
 � B� � B carrying 	 to b� the �ber Xb is the limit of
the �bers X��b�� as b

� approaches 	�that is� for any 
 � B� � B carrying
	 to b� the pullback family

X � !X �B B� � A nB� � B�

is �at over 	�

Proof� Since X��b�� ! X �
b� � Proposition II��� asserts the equivalence of the

limit condition Xb ! limb��	X��b�� with the �atness of X � over B�� That
said� one direction is clear� in general� if X � B is �at and B� � B is any
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morphism� the �ber product X �B B� � B� is �at� see Matsumura ������
Chapter �� Section 
�� For the other direction� which is much harder� see
Raynaud and Gruson ������ Cor� �����	��

When the conditions of Lemma II�
	 are met� we will call the �ber Xb

the �at limit of the nearby �bers of X over B�

A word of warning� while for B one�dimensional and 	 � B a nonsin�
gular point there exists a unique �at limit of a given family X � A nB�
over B� ! B n f	g� two�parameter families may not admit any �at lim�
its at all� Consider for example the degree�� subschemes of A �

K discussed
earlier� We take as our base the scheme B ! SpecK�s� t� ! A �

K � with
the origin as our special point 	 � B� For s� t� �! 	� 	� � B� we let
Xs�t � SpecK�x� y� ! A �

K be the subscheme consisting of the union of the
points x� y� and x�s� y�t� � A �

K � These subschemes form a family X �

over B� ! B n f	g� de�ned by

X � ! V
�
xx�s�� xy� t�� y x�s�� y y� t�� � A �

B� �

But we have seen that the limits of the schemesXs�t as s� t� approaches the
origin along lines of di�erent slope are di�erent double points� all supported
at the origin� of course� but with di�erent tangent lines� The �ber X	 of the
closure X !X � � A �

B of X � in A �
B over the origin 	 � B must therefore

contain the union of these double points� that is� it must contain the �fat
point� V x�� xy� y�� � A �

K � It follows that the closure must be simply the
subscheme

X ! V
�
xx�s�� xy�t�� y x�s�� y y�t�� � A �

B �

whose �ber over the origin is V x�� xy� y��� We see in particular that no
closed subscheme of A �

B containing X � as an open subscheme can be �at
over 	 � B�

The morphism X � B here is the same as the morphism X � Y of
Exercise I��
b�� the scheme X is the union of two planes in a�ne four�
space A �

K meeting at a point� with the projectionX � B an isomorphism
on each plane� In particular� the failure of the family X � � A �

B� to have a
�at limit is very much a function of the embedding in A �

B� � outside of the
origin in A �

B � we could include X � in the disjoint union A �
B

�
A �
B of two

copies of A �
B to obtain a surjective morphism � � X � B with ���B�� �!

X � as B��schemes� Thus the failure of this family to have a �at limit might
be ascribed to our perversity in choosing a bad embedding of X � in A �

B �
The following exercise gives another classic example of a non�at family�
and one that moreover has no �at limit� irrespective of the embedding�

Exercise II��� Consider the cone B ! V su � t�� � SpecK�s� t� u� !
A �
K � Let 	 ! s� t� u� � B be the origin� and let B� ! B n f	g as usual�

Set X ! SpecK�x� y� ! A �
K � and let 
 � X � B be the map dual to the

inclusion of rings


� � K�s� t� u��su� t�� �� K�x� y�
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sending s to x�� t to xy� and u to y�� Equivalently� B is simply the quotient
ofX ! A �

K by the involution x� y� �� �x��y�� and 
 the quotient map��
Let X � be the inverse image 
��B�� �X � Show that X � B is not �at
over 	�

In fact� the family X � � B� has no �at limit� in the sense that there
is no scheme Y and surjection � � Y � B such that ���B�� �! X �

as B��schemes� Nor is this really pathological� in Section IV�
�� we�ll see
examples of naturally occurring families that don�t admit �at limits�

Proposition II��� and Lemma II�
	 together give us a geometric inter�
pretation of the �atness of a morphism 
 � X � B� at least in case
where X is of �nite type over a base B that is reduced and over a �eld�
it says that 
 is �at at p if� under any embedding of a neighborhood of
p � X in a�ne space A nB � the �ber X	 ! 
��	� over 	 ! 
p� � B is
an open subset of� the limit of the �bers Xb as b � B approaches 	 along
any one�parameter family� The wonderful thing about the de�nition of �at�
ness in general is that it takes this basic notion and extends it� in a very
natural way� to arbitrary morphisms# This is particularly remarkable and
useful� in case the base space B is a nonreduced scheme� If� for example�
B ! SpecK�������� it makes no sense to talk about the ��bers of X � B
over nearby points�� B has only one point� Nonetheless as we will see ex�
plicitly in Chapter VI� it does make sense to talk about familiesX � B of
schemes parametrized by B �varying continuously�� �atness exactly cap�
tures this property� Even in case the base B has one�dimensional Zariski
tangent space� as in the example B ! SpecK�������� we can�t just use the
criterion that no component of X � irreducible or embedded� is supported
on the inverse image of the reduced point Bred� for example� the morphism
SpecK�x� y��x�� xy� y��� SpecK������� dual to the ring homomorphism
� �� x is not �at��

In general� if B ! SpecR is the spectrum of a local Artinian ring R
with maximal ideal m� 	 ! V m� ! Bred � B its unique point� a �at
morphism 
 � X � B is called an �in�nitesimal deformation� of the �ber
X	 ! 
��	�� Such things played an important role in the algebraization
of the theory of curves on surfaces� see� for example� Mumford ������ and
the discussion in Section VI���
�

To conclude this section� we mention without proof� two facts about
�atness� both of which will rea�rm that �atness is indeed the correct cri�
terion for a family X � B of schemes to be �varying continuously�� The
�rst is one we mentioned at the outset� we would like families of hypersur�
faces to be �at� Explicitly� if

fx�� � � � � xn� !
X

aIx
I

is a polynomial in n variables whose coe�cients aI are regular functions
on a scheme B� then the corresponding subscheme V f� � A nB should be
�at over B� at least away from the common zero locus V faIg� � B of the
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coe�cients� In fact� more is true� the same holds for families of complete
intersections X ! V f�� � � � � fc� � A nB � We state this as follows�

Proposition II��� Let R be a local ring with maximal ideal m� B !
SpecR� 	 ! �m� � B the unique closed point of B and � ! �	� ! R�m the
residue �eld� Let f�� � � � � fc � R�x�� � � � � xn� be polynomials with coe�cients
in R� and

X ! V f�� � � � � fc� � SpecR�x�� � � � � xn� ! A nB �

If the �ber X	 ! ���	� of the projection � �X � B over 	 has codimen�
sion c in A n� then X � B is �at�

More generally� we have the following criterion for �atness� which is ex�
tremely useful in practice�

Exercise II�� a� Prove that a module M over the ring R ! K�t��t� is
�at if and only if t is a nonzerodivisor on M� that is� if and only if M
is torsion�free�

b� Let A ! R�x�� � � � � xn� be a polynomial ring over R ! K�t��t�� and let
M be an A�module with free presentation

F�
��� F	 ��M �� 	�

Consider the module (M �! M�Mt over the factor ring (A �! A�tA� and
let

(F�
���� (F	 �� (M �� 	

be the corresponding presentation� Show that M is �at over R if and
only if every second syzygy of (M over (A can be lifted to a second
syzygy over A in the sense that every element of the kernel of (
 comes
from an element of the kernel of 
� Something similar is true for any
local base ring R with maximal ideal m if M is �nitely generated over
A� this is a form of the �local criterion of �atness��see� for example�
Eisenbud ������ Section ���� or Matsumura ������ p� �����

A second thing that makes �atness a good notion is the generic �atness
theorem� due to Grothendieck see for example Eisenbud ������ Section
������ This says that if one has any reasonable family of schemes X � B
over a reduced base� then there is an open dense subset U of B such that
the restricted family ���U � U is �at here �reasonable� includes� for
example� any family of subschemes of a �xed a�ne or projective space��
In some sense this vindicates our choice of �atness as the analogue of the
notion of bundle in topology� it is analogous to the observation that if
f � M � N is a di�erentiable map of compact C� manifolds� then there
is a dense collection of open subsets U of the target space N such that the
restriction of f to each f��U� is a �ber bundle� In any event� the generic
�atness theorem certainly assures us that �at families are ubiquitous in
algebraic geometry�
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This concludes our initial discussion of �atness� We will see other ge�
ometric interpretations of �atness when we discuss families of projective
schemes in Chapter IV�

II���� Multiple Lines

We now consider a nonreduced a�ne scheme X supported on a line and
not having embedded components� We will assume that the multiplicity
of the line in the sense of the primary decomposition� is �� and we will
analyze the possibilities�

It is very easy to write down a �rst example� the scheme

X ! SpecK�x� y��y�� � A �
K

obviously has the desired properties� It�s pretty clear that there are no more
examples supported on the line y ! 	 in A �

K � but we can construct many in
A �
K � A subscheme X of the sort we want will meet a general plane in A �

K

passing through a point of the reduced line in a double point contained in
that plane� We already know that any double point may be thought of as a
point plus a tangent vector at that point� and this suggests that we obtain
X by choosing a normal direction at each point of the line� For example�
take L �! Xred to be the line x ! y ! 	� with coordinate z� Now� choose a
pair of polynomials p and q in z without common zeros� and at each point
	� 	� z	� � L take the normal direction to be the one with slope pz	��qz	�
in the normal plane z ! z	� It is easy to see that the union over all z of the
double points in the given directions will be contained in the scheme Xp�q

de�ned by taking

Ip�q ! x�� xy� y�� pz�x�qz�y�
and

Xp�q ! SpecK�x� y� z��Ip�q

The simplest nonplanar example would be one where the chosen normal
directions twist just once around L�for example� the one given by the
ideal

I� ! x�� xy� y�� zy�x��

z
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Exercise II��� If p� q are relatively prime polynomials� then the ideal

x� y��Ip�q

in the ring

K�x� y� z��Ip�q

is torsion�free of rank � as a K�z��module� thus Xp�q is primary� with
Xp�q�red the line SpecK�x� y� z��x� y�� and Xp�q has multiplicity ��

At �rst sight it looks as though these examples will possess many in�
teresting invariants and thus� in particular� be distinct� but this is not so�
we can �untwist� any of the schemes Xp�q by an automorphism of A �

K to
give an isomorphism of it with the planar double line SpecK�y� z��y���
To do this� note that since p and q have no common zeros� we may write
� ! aq $ bp for some polynomials a� b � K�z�� thus the matrix�

a b
p �q

�

has unit determinant� so the map A �
K � A �

K given by

x� y� z� �� x�� y�� z�� with x� �! pz�x� qz�y� y� �! az�x$ bz�y�

is invertible� Again because the matrix is invertible� we have

x� y� ! x�� y�� and x�� xy� y�� ! x��� x�y�� y���

so the ideal of Xp�q is x� x�� xy� y�� ! x� y��� as required�
More generally� it turns out that there is up to isomorphism only one

a�ne double line� in the following sense�

Exercise II��� Prove that if A is a Noetherian K�algebra such that
X ! SpecA has no embedded components� has multiplicity �� and sat�
is�es Xred

�! A �
K � then X is isomorphic to SpecK�x� y��y���

We will see in the next chapter that this situation contrasts with the one
in projective space� there are many nonisomorphic projective double lines�

II�� Arithmetic Schemes

Our last collection of examples will be spectra of rings that are �nitely
generated and reduced but that do not contain any �eld at all� In general�
the spectra of rings �nitely generated over Z are called arithmetic schemes �
they arise primarily in the context of number theory� although by no means
all schemes of number�theoretic interest are of this type� In these examples
we will see some hint of the amazing uni�cation that schemes allow between
the arithmetic and the geometric points of view�
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II�	�� SpecZ

We start with the most obvious example� the scheme SpecZ itself� The
prime ideals of Z are� of course� the ideals p�� for p � Z a prime number�
and the ideal 	�� the former correspond to closed points of SpecZ� with
residue �eld F p� while the latter is a �generic� point� whose closure is all
of SpecZ and whose residue �eld is Q � The picture is this�

������ ��� ��� ��� �		�

This bears a formal resemblance to an a�ne line A �
K over a �eld� indeed�

this similarity is just the beginning of a long sequence of analogies� and it
is well to bear it in mind while looking at the following examples� However�
the analogy also has its limits� while SpecZ behaves much like A�

K � for
example� it is not an open dense subscheme of any scheme analogous to
P�K �

II�	�� Spec of the Ring of Integers in a Number Field

Secondly� consider a scheme of the form SpecA� where A � K is the ring
of integers in a number �eld K� we will analyze the example K ! Q �

p

�

and A ! Z�
p

�� As in the case of SpecZ� there are just two types of

points� closed points corresponding to nonzero prime ideals in A� having
�nite residue �elds� and a generic point corresponding to 	� with residue
�eld K� What makes this example interesting is the map SpecA� SpecZ
induced by the inclusion of Z in A� Consider� for example� the �ber over
a point �p�� � SpecZ� This is just the set of primes in A containing the
ideal pA � A� and it may behave in any one of three ways a good basic
reference for the unexplained material here is Serre ��������

�� If p divides the discriminant �� of K over Q �that is� for p ! � or 
�
the ideal p� is the square of an ideal in A� we have

�A ! � $
p

��

and� of course�


A ! 
p

���

The residue �elds at the points � $
p

� and 

p

� � SpecA are the

�elds F � and F �� respectively�
�� Otherwise� if 
 is a square mod p� the prime p� will factor into a

product of distinct primes� for example

��A ! � $ 

p

��� 


p

�

and

�
A ! � $
p

���

p

��
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The residue �elds at these points will again be the prime �elds� in this
case F �� and F ��� respectively�


� Finally� if p � 
 and 
 is not a square mod p�for example� when p ! �
or ��the ideal pA is still prime and corresponds to a single point in
SpecA� In these eases� the residue �eld is the quadratic extension of
F p�for instance� F �� and F �� in the two examples�

In general� as in this example� if K is a quadratic number �eld� and A
is the ring of algebraic integers in K� then the inclusion Z � A induces a
map of schemes � � SpecA � SpecZ whose �ber over each closed point
p� � SpecZ is one of the following�

�� A single� nonreduced point� with coordinate ring isomorphic to A�p��
whose underlying reduced point p has residue �eld F p� if p rami�es in
A�that is� if pA is the square of a prime ideal p of A�

�� The disjoint union of two reduced points� p and p�� with residue �elds
A�p ! A�p� ! F p� if pA is a product of two distinct prime ideals of A�


� A single reduced point p� with residue �eld A�p of degree � over F p� if
p remains prime in A�

In every case the coordinate ring of the �ber has dimension � as an F p�
algebra� That is because A is a free Z�module of rank �� Of interest here
is the analogy between the map SpecA� SpecZ and a branched cover of
Riemann surfaces or� more generally� of one�dimensional schemes over an
algebraically closed �eld such as C �� Essentially� we may think of SpecA as
a two�sheeted cover of SpecZ� with branching over the �rami�ed� primes�
just as� for example� Spec C �z� is a double cover of Spec C �z�� branched
over the origin� The one apparent di�erence is that over some points p� �
SpecZ other than rami�cation points we may have� instead of two distinct
points with multiplicity �� one point with multiplicity � but with a residue
�eld that is a quadratic extension of the residue �eld F p at p�� These are
denoted by uniform gray dots in the picture�

������ ��� ��� �	� ���� ������� �	�

��

p
�� �

p
��

��� �	�

��
�
p
��

����
p
��

��

p
��

���
p
��

A more inclusive analogy would be with a �nite map between one�
dimensional schemes over a non�algebraically closed �eld� Consider� for
example� the map

SpecR �x��y��y� � x�� A �
R ! SpecR �x�

Looking just at points of A �
R ! SpecR �x� with residue �eld R �that is�

points of the form x��� with � real�we have rami�cation over the point



�� II� Examples

x�� and for � �! 	 the inverse image of x��� is either two distinct points
with residue �eld R if � � 	� or one point with residue �eld C if � � 	��

We may continue this analogy a little further by looking at schemes of
the form SpecB� where B � A � K is an order in a number �eld�
that is� a subring of the ring of integers in K having quotient �eld K� For
example� let A ! Z�

p

� and consider the ring B ! Z���

p

� and the asso�

ciated scheme SpecB� The map SpecA � SpecZ described above factors
through SpecB� and indeed the map SpecA � SpecB is an isomorphism
except that the two points � $ 


p

� and �� 


p

� � SpecA map to the

same point ��� ��
p

� � SpecB� We may thus picture SpecB as a sort of

�nodal curve��that is� the double cover SpecA of SpecZ with two points
identi�ed�

������ ��� ��� �	� ���� ������� �	�

��

p
�� �

p
��

��� �	�

��
�
p
�� �

����
p
��

Alternatively� consider the case A ! Z�
p

� and B ! Z��

p

�� Here the

map SpecA � SpecB is one�to�one but not an isomorphism at the point
�� $

p

�� which goes to ��� �

p

���

Exercise II��� Show that the point p ! ��� �
p

�� is a �cusp� of the

scheme SpecZ��
p

� in the sense that it is a singular point and the desin�

gularization SpecA� SpecB has �ber over p consisting of a double point�

II�	�� Ane Spaces over Spec Z

Our next example is of a two�dimensional scheme� SpecZ�x�� this is also
denoted A �

Z� The prime ideals in Z�x� are
i� 	��
ii� p�� for p � Z prime�
iii� principal ideals of the form f�� where f � Z�x� is a polynomial ir�

reducible over Q whose coe�cients have greatest common divisor ��
and

iv� maximal ideals of the form p� f�� where p � Z is a prime and f � Z�x�
a monic polynomial whose reduction mod p is irreducible�

Exercise II��� Prove this�

Of these� only the last are closed points� the �rst� of course� has closure
all of A �

Z� while the second and third types have closures we will describe
below�

Probably the best way to picture A �
Z is via the map A �

Z� SpecZ again
a �at map#�� Under this map� points of type ii� and iv� above go to
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the corresponding points p� � SpecZ� while the points of types i� and
iii� go to the generic point 	� � SpecZ� Indeed� the �ber of this map
over the point p� is isomorphic to A �

Fp
! Spec F p�x�� the point p� f� � A �

Z

corresponding to the point in A �
Fp

given by the set of roots of the polynomial
f in the algebraic closure (F p recall that points of A �

Fp
correspond to orbits

of the action of the Galois group Gal(F p�F p� on F p�� Similarly� the �ber
over the generic point 	� � SpecZ is the scheme A �

Q ! SpecQ �x�� with
f� � A �

Zmeeting A �
Q in the point corresponding to the set of roots of f in

Q � The picture thus is as follows�

���

��� x�

��� x � ��

��� x�

��� x� ��

��� x� ��

���� x�

���� x � ��

���� x � ��

�x�

�x � ��

�x � ��


��x 
 ��

��� ��� ����

��� ��� ���� ���

The closure of the point p� � A �
Z is the �ber A �

Fp
over the point p� �

SpecZ� The closures of the other nonclosed points� those of type iii�
above�are more interesting� These will consist of the point f� itself in
the �ber A �

Q over 	� together with all the points p� g� � A �
Z� where g is

a factor of f over (F p�that is� in each �ber A �
Fp

of A �
Z� the union of the

points of A �
Fp

corresponding to roots of f mod p�

Exercise II�
� What is the point marked with a  in the picture above 
Why are the closures of the points �x$�� and x��� indicated by curves
meeting tangentially at the point 
� x���� while they are both transverse
to the closure of 
� See the discussion leading up to Exercise II��� for
one answer�� Why is the closure of the point �x $ �� drawn as having a
vertical asymptote over the point �� � SpecZ 
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For another example� consider the ideal generated by a simple linear
polynomial� such as �x � ���� To continue the analogy between SpecZ
and the a�ne line over a �eld� we can think of the closure of this point as
the graph of the function ��*� on SpecZ� this is a function with a simple
pole at the point �� and a double zero at ��� This curve is tangent to the
closed subscheme x� in A �

Z� as evidenced by the fact that the intersection
of x� with the subscheme �x � ��� is not just the point �� x� but a
nonreduced point supported at this point��

The closure of the point x� � 
� is pictured below in a slightly di�erent
style�

������ ��� ��� �	� ���� ����

��� ��� �	� ������� ���

��� �	�

��� x��� ��� x� ��� x���� ���� x
��

���� x���

�x����

This closure is just the scheme SpecZ�x��x� � 
� ! SpecZ�
p

� described

above� realized here as a subscheme of A �
Z�

Exercise II��� Identify the three unlabeled points in the above diagram�

More generally� the scheme A nZ! SpecZ�x�� � � � � xn� can best be viewed
via the natural map A nZ� SpecZ� whose �bers are the schemes A nFp and
A nQ �

II�	�	 A Conic over SpecZ

Our next example gives a hint of the depth of the uni�cation of geometry
and arithmetic achieved in scheme theory� We consider the scheme

SpecZ�x� y��x� � y� � ��

and its morphism to SpecZ�
To begin with� the �ber of this scheme over the generic point �	�� �

SpecZ is the scheme X ! SpecQ �x� y��x��y����� which we have already
described� its points are the orbits� under the action of the Galois groupG !
Gal (Q �Q �� of the set of pairs x� y� of elements of (Q satisfying x��y� ! ��
The �ber over p� is similarly the subscheme of the a�ne plane A �

Fp
over

F p de�ned by the equation x� � y� ! ��that is� whose points are the
orbits� under the action of the Galois group G ! Gal(F p�F p�� of the set of
pairs x� y� of elements of (F p satisfying x� � y� ! ��



II�� Arithmetic Schemes ��

The �bers of this scheme over all primes other than � and � are nonsin�
gular conics� as is the �ber over the generic point�

Exercise II��	� Are there plane conics over SpecZ that are reducible but
nonsingular Classify them�

The �bers over �� and �� are singular� however� modulo �� we have

x� � y� � � ! x $ y $ ���

and modulo � we can write

x� � y� � � ! x$ y�x� y�

Thus the �ber over �� is a double line� while the �ber over �� is a union
of two lines so that in particular there are two nonclosed points mapping
to the point ��� while there is only one such point mapping to each of the
other points p� � SpecZ��

��� ��� ��� ���

Exercise II���� This assumes some knowledge of projective geometry��
The �ber of X over a point p� � SpecZ such that p � � mod ��� p �! �� is
really a hyperbola� that is� it meets the �line at in�nity� in the �ber A �

Fp

in two points with residue �eld F p and is isomorphic to A �
Fp
� f	g� Thus�

for example� the �ber over p� is the curve x�$y��� ! 	� its closure in the
projective plane over F p has equation X�$Y ���Z� ! 	� and so meets the
line Z ! 	 at � in the two points ��� �� 	� where �� ! p� � mod p�� Show
that� by constrast� if p � 
 mod ���
the �ber is an ellipse� that is� it meets
the line at� in one point with residue
�eld F p� �

The preceding picture is very much
in keeping with the geometric analogy�
a surface �bered over a curve� for ex�
ample� the surface V x� � y� � z� �
SpecK�x� y� z� �bered over the z�line
SpecK�z��will have a �nite number
of singular �bers� as in the classic pic�
ture shown on the right�
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II�	�� Double Points in A
�
Z

Next� we consider some double points over Z� Again� let

X ! A �
Z! SpecZ�x��

If Z � X is a closed subscheme supported at only one point� corresponding
to a prime p� f�� say� we will wish to speak of the degree of Z just as we did
in the case of �nite subschemes over a �eld� In the case of schemes over a
�eld� we de�ned the degree to be the dimension of OZZ� as a vector space
over K� But in the current case OZZ� might contain no �eld at all� it
might be Z�p��� for example� More confusing still� its residue �eld might
not be Z�p�� In the case at hand the cheapest way out of this dilemma
is to note that the cardinality +OZZ� is always of the form pd and take
the degree to be d�this is obviously the vector space dimension if OZZ�
happens to be a Z�p� vector space� A more sophisticated approach is
to de�ne the degree of a reduced closed point �rst as the vector space
dimension over Z�p� and then de�ne the degree of Z by multiplying the
degree of the reduced point by the multiplicity of Z at this point��

Consider for example the subschemes of degree � supported at the point
�� x�� These behave in a manner analogous to subschemes of degree � in
the a�ne plane over a �eld� The ideal I of such a subscheme will always
contain the square of the maximal ideal p ! �� x� and so will be generated
by p� together with one element of p� thus�

I ! I��� ! ��� �x� x�� ��$x�

for some ��  � Z not both divisible by �� It will depend only on the
congruence classes of � and  in Z���� and multiplying the pair �� �
simultaneously by a unit in Z��� will not change I either� Thus for each
point ��� � of the projective line over the �eld of seven elements we get a
double point supported at p�

Exercise II���� Show that this correspondence is bijective�

The set of subschemes of degree � supported at �� x� may thus be iden�
ti�ed with the projective line P�K over the �eld K ! F �� much as the set
of subschemes of A �

K over a �eld K may be identi�ed with the projective
line over that �eld� The identi�cation in either case is actually with the
projectivization of the Zariski tangent space to the ambient space at the
point�� There is� however� one di�erence� whereas all subschemes of A �

K of
degree � supported at a point are isomorphic� the subschemes Z��� de�ned
by I��� look di�erent� even abstractly� We have

Z��� ! SpecZ���� if  �! 	

but

Z��	 ! SpecZ�����x��x��

which are not isomorphic�
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Exercise II��� Classify a� the subschemes of degree 
 supported at the
point �� x� � A �

Z� and b� the subschemes of degree � supported at the
point �� x� $ x$ ���

Exercise II���� Referring to the diagram on page ��� use the preceding
discussion to justify the fact that the curves �x$�� and x��� are drawn
tangent to one another� while the curves �x $ �� and ��� are drawn
transverse�

Finally� here is an example of a �at family over SpecZ� Recall that in
the preceding section there was a discussion of the family of pairs of lines
M � Lt� where M is the line x ! z ! 	 and Lt is the line y ! z � t ! 	�
The key observation there was that the �at limit of the schemes M � Lt
as t approached zero was not the scheme M � L	 but� rather� that scheme
with an embedded point at the origin�

Here is the analogous phenomenon in a family parametrized by SpecZ�
Let U ! SpecZ����� ! SpecZ � f��g be the complement of the point
�� � SpecZ� and let

W ! A �
U �! SpecZ����� x� y� z� � A �

Z

be the corresponding open subscheme of A �
Z� Let N and L be the closed

subschemes of A �
Z given by the ideals x� z� and y� z���� respectively� and

let N � ! N �W and L � ! L �W� Let X � be the union of N � and
L � and let X � A �

Z be the closure of X � in A �
Z� We may then think of

X � as a family of pairs of lines parametrized by U � and the �ber X� of
X over �� � SpecZ is the �at limit of this family �as � goes to 	�� The
�ber X� is� as we expect� supported on the union of the �bers x ! z ! 	�
and y ! z ! 	� of N and L over ��� but the scheme X� is not reduced�
exactly as in the picture in the preceding section� it has an embedded point
at the origin�

Exercise II���� Verify the �atness of X over SpecZ and the descrip�
tion of X�� Can you �nd analogues over SpecZ of the other �at families
discussed in the preceding section 
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III

Projective Schemes

Once we have understood a�ne schemes� the theory of projective schemes
does not really contain so much that is still novel� for the most part it di�ers
from the classical theory of projective varieties in ways that are completely
analogous to the di�erence between a�ne schemes and a�ne varieties�

We start by introducing two �niteness conditions� �nite and of �nite
type� We then de�ne and discuss separated and proper morphisms� which
correspond to the attributes of Hausdor�ness and compactness in most of
geometry� It is partly because projective varieties and schemes have these
properties that they are fundamental objects in classical algebraic geometry
and in the theory of schemes�

The next part of the chapter is devoted to the introduction of projective
schemes and some examples� Just as in the case of a�ne schemes� two
approaches to projective schemes are possible� one can de�ne projective
space and then take subschemes� or one can de�ne all projective schemes
on an equal footing� starting with graded algebras� As we did in the a�ne
case� we adopt the second possibility�

After introducing the basic de�nitions of projective schemes and sub�
schemes� we describe morphisms of projective schemes� a topic that as in
the category of varieties� is more subtle than its a�ne counterpart� We con�
clude the section with some examples of projective schemes� most notably
the Grassmannian�

The �nal section of the chapter is devoted to three invariants of projec�
tive schemes embedded in projective space that were introduced by David
Hilbert� the Hilbert polynomial� Hilbert function� and free resolution� Us�
ing these� we can sometimes distinguish among similar schemes� such as
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the projective double lines� and we can also shed some new light on the
phenomenon of �atness� Among the invariants of a projective scheme that
can be de�ned in terms of its Hilbert polynomial is its degree� and in this
connection we discuss the famous B�ezout theorem�

III�� Attributes of Morphisms

III���� Finiteness Conditions

There are two �niteness conditions that play a major role in most nontrivial
results about schemes� They have similar names but very di�erent charac�
ter� The �rst� �nite type� is a straightforward condition satis�ed by almost
any morphism arising in a geometric contexts� it is invoked usually just
to preclude in�nite�dimensional �bers� or �non�geometric� schemes such as
spectra of local rings� The second condition� �niteness� is by contrast a very
stringent condition� it says that a morphism is proper and that all its �bers
are �nite in particular� zero�dimensional��

First� we say that a morphism 
 � X � Y of schemes is of �nite type if
for every point y � Y there is an open a�ne neighborhood V ! SpecB � Y
of y and a �nite covering


��V � !

n�
i��

Ui

of its inverse image by a�ne open sets Ui �! SpecAi� such that the map


�V � B ! OY V �� OX 
��V �� OXUi� ! Ai

makes each Ai into a �nitely generated algebra over B� Thus� for example�
any subscheme X of A nK or PnK is of �nite type over K meaning the
structure morphism X � SpecK is of �nite type�� while the spectrum of
a positive�dimensional local K�algebra is not�

A morphism 
 � X � Y is called �nite if for every point y � Y there is
an open a�ne neighborhood V ! SpecB � Y of y such that the inverse
image 
��V � ! SpecA is itself a�ne� and if� via the pullback map


�V � B ! OY V �� OX
��V � ! A�

A is a �nitely generated B�module� This is a far more restrictive hypothesis
than being of �nite type� for one thing� it immediately implies that the
�bers of 
 are �nite� and it implies that the map j
j � jX j � jY j of
underlying topological spaces is closed� that is� the image of a closed subset
of X is closed in Y� Thus� for example� if Y ! SpecB and f � B�x� is
a polynomial� the morphism SpecB�x��f�� � Y is �nite if the leading
coe�cient of f is a unit� but not otherwise� For all this see Eisenbud ������
Chapter � and Section �����
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III���� Properness and Separation

Many techniques of geometry yield the most complete results when applied
to compact Hausdor� spaces� Although a�ne schemes are quasicompact in
the Zariski topology� they do not share the good properties of compact
spaces in other theories because the Zariski topology is not Hausdor�� For
example� the image of a regular map of a�ne schemes 
 � X � Y need not
be closed� even though X is quasicompact�

The fact that the Zariski topology is not Hausdor� has another unpleas�
ant consequence� Recall that in the general de�nition of a manifold� one
starts with a topological space that is Hausdor� and admits a covering by
charts of the standard form balls in Euclidean space� say�� The fact that
the balls themselves are Hausdor� is not enough by itself to guarantee that
the total space is� This is why the line with the doubled origin described
in Exercise I��� and shown again here

is not a manifold� However� when we work with schemes or� for that matter�
with varieties� glued together from a�ne schemes� we cannot a�ord to
specify that the total space is Hausdor� because even the local pieces are
not� This has the result that given two maps of schemes 
� � � X � Y� the
set where 
 and � are equal may not be closed� This is illustrated in the
following exercise� which is a typical case�

Exercise III��� a� Let Y be the line with doubled origin over a �eld
K� de�ned in Exercise I���� and let 
�� 
� � A �

K � Y be the two
obvious inclusions� Show that the locus where 
� and 
� agree simply
as continuous maps of topological spaces� is not closed�

b� Now let X ! Y �K Y and let 
 and � be the two projection maps
from X to Y� Show that the set of points at which 
 and � agree is not
closed note that this is just the diagonal� de�ned below�� Show that
the same is true for the set of closed points at which 
 and � agree�
so this is not a pathology special to schemes but occurs already in the
category of varieties�

Such a pathology cannot happen� however� if X is an a�ne scheme� nor�
it turns out� can it happen when X is a projective scheme� The desirable
property that these schemes have� which is one of the most important
consequences of the Hausdor� property for manifolds� is expressed by saying
that X is separated as a scheme overK� In general� given any map � � X �
S of schemes� we de�ne the diagonal subscheme , � X �S X to be the
subscheme de�ned locally on X �S X for each a�ne open

X � SpecA
�jSpecA� SpecB � S
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by the ideal I generated by all elements of the form

a� �� ��a � A�B A�

We then say that � is separated� or that X is separated as a scheme over
S� if , is a closed subscheme of X �S X�

Exercise III��� Let X � S be any map of topological spaces� and let

, � X �S X

be the diagonal� Show that if , is a closed set� then for any commutative
diagram

X

 �

�
� Y

S
�

�

of continuous functions the set of points of X where 
 and � agree is closed�
Now prove a similar lemma for regular maps of schemes� show that there
is a naturally de�ned that is� maximal� closed subscheme on which 
 and
� agree�

Exercise III�� Let X be a scheme separated over S� Show that closed
or open� subschemes of X are again separated over S�

Exercise III��� Note that from the very de�nition of the diagonal it fol�
lows that a�ne schemes are separated�

We shall see below that projective schemes� to be de�ned shortly� are also
separated� so at least these features of the properties of Hausdor� spaces
are valid for them as well�

In the case of classical a�ne varieties�even things as simple as plane
curves� it was realized early in the previous century that the simplest
way to get something that would behave like a compact object�would� in
fact� be compact in the classical topology� in the case of varieties over the
complex numbers�was to take the closure of an a�ne variety in projective
space� It turns out that if 
 � X � Y is a map of projective varieties�
then indeed 
 maps closed subvarieties of X to closed subvarieties of Y�
Somewhat more generally� if we take the product of such a map with an
arbitrary variety Z� to get

� �! 
� �Z � X � Z � Y � Z

then � maps closed subvarieties of X�Z onto closed subvarieties of Y �Z�
It turns out that this� with the separation property� is the central property of
projective varieties that makes them so useful� But it is a property satis�ed
by a slightly larger class of varieties than the projective ones� and it is a
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property that is sometimes easier to verify than projectivity� so it is of great
importance to make a general de�nition�

If � � X � S is a map of schemes of �nite type� we will say that �
is proper� or that X is proper over S� if � is separated and for all maps
T � S� the projection map of the �bered product

X �S T � T

carries closed subsets onto closed subsets� As usual� if S ! SpecR is a ring�
we shall often say �proper over R� when we mean �proper over SpecR��

The additional property given here� besides that of separation� is some�
times expressed by saying that � is universally closed� The name proper
comes from an old geometric usage� a map � � M � N of Hausdor� spaces
is called proper if the preimage of every compact set is compact� This is a
kind of relative compactness for the map �� It is related to our notion by
the property expressed in the following exercise�

Exercise III��� Show that if M � N is a map of Hausdor� topological
spaces� then it is proper in the old sense in the category of Hausdor�
spaces and continuous maps� if and only if it is universally closed in this
category�

This notion of properness turns out to be the key property in alge�
braic geometry whether of schemes or of varieties� it plays the role played
by �compact and Hausdor�� in other geometric theories� The projective
schemes that we will introduce below are simply the most common exam�
ples of schemes proper over a given scheme B� We will not prove this central
result here� it is not terribly di�cult� but it would take us too far a�eld�
See� for example� Hartshorne ������ Theorem II����� for a proof�

A �nite morphism 
 � X � Y is necessarily proper� see Eisenbud ������
Section �����

III�� Proj of a Graded Ring

III���� The Construction of ProjS

By far the most important examples of schemes that are not a�ne are the
schemes projective over an a�ne scheme SpecA� where A is an arbitrary
commutative ring� For simplicity we usually say that such a scheme is
projective over A instead of over SpecA�� Such a scheme is obtained from
a graded A�algebra by a process very much analogous to the construction
of a projective variety from its homogeneous coordinate ring� One can also
de�ne schemes projective over an arbitrary base scheme B by starting with
a sheaf of graded OB�algebras� and this generalization has important ap�
plications� But most of the theory quickly reduces to the case where B is
a�ne� and we will stick with that level of generality here�
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To describe this construction� we start with a positively graded A�algebra
having A as the degree 	 part� that is� an A�algebra S with a grading

S !

�M
��	

S� as A�modules�

such that

S�S� � S�
� and S	 ! A�

An element of S is called homogeneous of degree � if it lies in S� � We will
de�ne an A�scheme X ! ProjS from S� The schemes projective over A are
by de�nition the schemes of the form ProjS� where S is a �nitely generated
A�algebra� The algebra S is called the homogeneous coordinate ring of X�
though like the homogeneous coordinate ring of a projective variety� it is
in fact not determined by X�

In case S is the polynomial ring

S ! A�x	� � � � � xr�

overA� with grading de�ned by giving the elements of A degree 	 and giving
each variable degree �� the resulting scheme ProjS is called projective r�
space over A and is written PrA� The following exercises will make it clear
that this is the same scheme PnA as de�ned in Chapter I�� In case A ! K is a
�eld� the scheme PrK bears the same relation to the variety called projective
space over K as the scheme A rK bears to the variety called a�ne r�space�

We will suppose for simplicity that� as in the case of the polynomial ring�
the algebra S is generated over A by its elements of degree �� and we leave
the general case as an exercise� In a di�erent direction� most of what we
say below also holds if S is not assumed to be �nitely generated over A�
but this generalization is less frequently used��

ProjS may be de�ned as follows� we write

S
 !

�M
���

S�

for the ideal generated by homogeneous elements of strictly positive degree
in S� We say that an ideal is homogeneous if it is generated by homo�
geneous elements� The underlying topological space jProjSj is the set of
homogeneous prime ideals in the ring S that do not contain S
 these are
sometimes called relevant prime ideals� and S
 is thus called the irrelevant
ideal�� The topology of jProjSj is de�ned by taking the closed sets to be
the sets of the form

V I� �! fp j p is a relevant prime of S and p � Ig
for some homogeneous ideal I of S�

We will give jProjSj the structure of a scheme by specifying this structure
on each of a basis of open sets� To do this� let f be any homogeneous element
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of S of degree �� and let U be the open set

jProjSj � V f�

of homogeneous primes of S not containing f and thus not containing S
��
The points of U may be identi�ed with the homogeneous primes of S�f����
On the other hand� these homogeneous primes correspond to all the primes
of the ring of elements of degree 	 in S�f���� which is denoted by S�f���	�
see Exercise III��a�� Thus we may identify U with the topological space
SpecS�f���	 and give it the corresponding structure of an a�ne scheme�
We will write ProjS�f for this open a�ne subscheme of ProjS� If x	� x�� � � �
are elements of degree � generating an ideal whose radical is the irrelevant
ideal S
� then the open sets

ProjS�xi �! ProjS � V xi�

form an a�ne open cover of ProjS�
If g is another degree � element of S� then the overlap ProjS�f �

ProjS�g is the open a�ne subset of ProjS�f given by the spectrum of

S�f���	�g�f���� ! S�f��� g���	�

Since this expression is symmetric in f and g� we get a natural identi�cation

ProjS�f ��g�f� ! ProjS�g��f�g��

As in the discussion of gluing in Section I����� this makes ProjS into a
scheme�

The scheme X ! ProjS has a natural structure map to SpecS	 de�ned
by the map S	 � OXX�� One case is so important that it deserves a
de�nition� If B ! SpecA is an a�ne scheme� then a morphism X � B is
projective if it is the structure map ProjS � SpecS	 for a graded ring S
such that S	 ! A and S is generated over A by �nitely many elements� We
will soon be in a position to generalize this to arbitrary schemes B�

In the rest of this section and the next we present some basic facts about
projective schemes and their closed subschemes� Since these facts and their
proofs are quite parallel to things from the theory of varieties� we present
them as exercises�

Exercise III��� a� For any homogeneous ideal I of S and homogeneous
element f of degree �� the intersection

I � S�f���� � S�f���	
is generated by elements obtained by choosing a set of homogeneous
generators of I and multiplying them by the appropriate negative�
powers of f see Exercise III��	 for the generalization where f has
arbitrary degree�� Thus the homogeneous primes of S�f��� are in one�
to�one correspondence with all the primes no homogeneity condition�
of the ring of elements of degree 	 in S�f���� the correspondence is
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given by taking a prime p of S�f��� to q ! p� S�f���	 and taking the
prime q of S�f���	 to qS�f����

b� Let S ! A�x	� � � � � xr� be the polynomial ring� and let U be the open
a�ne set PrA�xi � of P

r
A ! ProjS� By de�nition�

U ! SpecS�x��i �	

Show that

S�x��i �	 ! A�x�	� � � � � x
�
r�

the polynomial ring with generators x�j ! xj�xi� Note that x�i ! �� so
that this is a polynomial ring in r variables�� Thus

PrA�xi ! A
r
A

so projective r�space has an open a�ne cover by r $ � copies of a�ne
r�space� as described in Chapter I�

c� Consider the map � � S � S�x��i �	 obtained by mapping xi to � and
xj to x�j for j �! i� Show from part a� that if I is a homogeneous ideal
of S� then

I � �! I � S�x��i � � S�x��i �	 ! �I�� � S�x��i �	�

The process of making I � from I is called dehomogenization� Describe�
as in the classical case� the inverse process� homogenization�

Exercise III��� If I is a homogeneous ideal of the graded ring S� then we
have an inclusion of underlying sets

jProjS�I j � jProjSj�

Show that the intersection of this subset with an open a�ne ProjS�f
is a closed subset of ProjS�f � and that the corresponding subscheme is
isomorphic to ProjS�I�f � so that ProjS�I can be realized as a closed
subscheme of ProjS� Every �nitely generated A�algebra generated in de�
gree � is a factor ring� by a homogeneous ideal� of the polynomial ring
A�x	� � � � � xr� for some r� so we see that every projective scheme over A is
a closed subscheme of a projective space over A� We will see in more detail
the correspondence between ideals in the ring S and closed subschemes of
ProjS in Exercises III��� and III����

Exercise III�
� Show that PrA is the disjoint union of the open set A rA
and the closed set Pr��A � In particular� P	A ! SpecA� Thus� for example�
we may picture P�Z as the union of the a�ne line A rZ over Z as pictured
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in Chapter II� with a �point at �� isomorphic to SpecZ� as follows�

���

��� x��

��� x��x��

��� x��

��� x��x��

��� x���x��

���� x��

���� x��x��

���� x���x��

�x��

�x��x��

�x���x��


��x�
x��

��� ��� ����

��� ��� ���� ���

Exercise III��� Add to this diagram pictures of the closures of the points
�x� � �x	�� �x� � �x	�� and �� compare with the diagram of A �

Z in
Section II���
�� Note� The curve �x� � �x	� should be drawn tangent to
the �point at�� x	�� while the curve �x� ��x	� should not� informally�
we could say this is because the function �*� has a double pole at ��� while
�*� has only a simple pole there� See also the discussion in Exercise II�
���

Exercise III��	� With notation as above� let h be a homogeneous element
of S of any strictly positive degree� The set

ProjS�h �! ProjS � V h�

is as above the set of homogeneous primes of S not containing h� Show
that this set is again in one�to�one correspondence with the set of primes
of S�h���	 and that in fact there is an isomorphism of SpecS�h���	 with
an open a�ne� subscheme of ProjS� Show also that a collection

fProjS�hgh�H
of such open a�nes is an open cover of ProjS if and only if the elements
of H generate an ideal whose radical equals S
�

Exercise III���� Extend the de�nition of ProjS to the case where S is
not necessarily generated by elements of degree �� and show that ProjS is
a projective scheme�
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Exercise III���� Let S be a graded ring� not necessarily generated in
degree �� For any positive integer d� de�ne the d�th Veronese subring of S
to be the graded ring

S�d� !

�M
��	

Sd�

Show that ProjS is isomorphic to ProjS�d�� However� show that if S !
A�x� y�� then S�d� is not isomorphic to S as a graded algebra or even as a
ring�� Thus� as in the case of varieties� the correspondence between graded
algebras and projective schemes is not one�to�one�

III���� Closed Subschemes of ProjR

A homogeneous ideal I � A�x	� � � � � xr� determines a coherent sheaf of ideals
"I � OPr

A
� and hence a closed subscheme of PrA� The following problems

develop these facts�

Exercise III��� For each open set

Ui ! PrA�xi ! SpecA�x	� � � � � xr� x
��
i �	 �! A rA�

let "IUi� be the ideal I �A�x	� � � � � xr� x
��
i ��A�x	� � � � � xr� x

��
i �	� Show that

this de�nition may be extended in a unique way to other open sets U in
such a way that "I becomes a coherent sheaf of ideals� We may thus speak
of the closed subscheme V "I� of PrA associated to a homogeneous ideal I �

Exercise III���� Conversely� given a closed subscheme X in PrA� we may
de�ne a homogeneous ideal IX� � A�x	� � � � � xr � to be the ideal generated
by all homogeneous polynomials px	� � � � � xr� such that for every i setting
the i�th variable equal to � gives rise to an element

px	� � � � � �� � � � � xr� �JXUi� � A�x	� � � � � xr� x
��
i �	

Show that if I ! IX�� then "I !JX �

Note that with Exercise III�� this shows that every closed subscheme of a
projective scheme is projective� if I � S ! A�x	� � � � � xr� is a homogeneous
ideal� then V "I� � PrA is isomorphic to the scheme ProjS�I�

Exercise III���� The correspondence between subschemes and ideals is
not� as it was in the case of a�ne schemes� one to one� For example� show
that in P�K with K a �eld� the ideals I ! x	� and I � ! x�	� x	x�� both
de�ne the same reduced� one�point subscheme� More generally� show that
if I � S ! K�x�� � � � � xr� is any homogeneous ideal� and for any integer n	
we de�ne an ideal I � � I by

I � !
M
n�n�

In

then I and I � de�ne the same subscheme of PrK �
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Exercise III���� To deal with this� de�ne the saturation of a homoge�
neous ideal J � S �! A�x	� � � � � xr� to be the ideal

I ! fF � S � for some n� F � Sn � Ig
and say that a homogeneous ideal is saturated if it equals its saturation�
Show that there is a bijective correspondence between subschemes of PrA
and saturated ideals�

Exercise III���� Show that the isomorphism of Exercise III��� de�nes
an isomorphism between projective space PrA and a closed subscheme of
PN��A � where N ! dimAA�x	� � � � � xr�d�� This is just the scheme�theoretic
version of the Veronese map��

Exercise III��
� Show that if R is any graded ring �nitely generated over
a ring A ! R	�but not necessarily generated by its graded part of degree
�� then ProjR is isomorphic to a closed subscheme of some projective
space PrA�

We conclude with a de�nition and a basic theorem�

De�nition III���� A morphism 
 � X � Y of schemes is said to be
projective if it is the composition of a closed embedding X � PnY with the
structure morphism PnY � Y�

Note that if Y ! SpecA is a�ne� this amounts to saying that X is of the
form ProjS for some �nitely generated A�algebra S� The basic fact about
projective morphisms is the one stated above�

Theorem III��	� Projective morphisms are proper�

For a proof see Hartshorne ������ Theorem II������

Exercise III���� Show that a �nite morphism is projective�

III���� Global Proj

Proj of a Sheaf of Graded OX�Algebras� The construction of Proj of
a graded ring S gives rise to a scheme X ! ProjS together with a structure
morphism X � B ! SpecS	�� Because the association of ProjS to S is
functorial� there is a more general construction that gives rise to schemes
X with structure morphisms X � B to arbitrary schemes B� and that
specializes to the construction Proj when B is a�ne� all we have to do for
general B is replace the graded S	�algebra S with a sheaf of algebras over
OB �

To carry this out� let B be any scheme� By a quasicoherent sheaf of graded
OB�algebras we will mean a quasicoherent sheaf F of algebras on B� and
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a grading

F !

�M
��	

F�

such thatF�F� � F�
�� andF	 ! OB � Thus� for every a�ne open subset
U � B with coordinate ring A ! OBU�� the ring F U� will be a graded
A�algebra with 	�th graded piece F U�	 ! A�

Given such a sheaf F� for each a�ne open subset U � B we will let
XU � U be the scheme XU ! ProjF U� with the structure morphism
ProjF U� � SpecA� ! U� For every inclusion U � V of open subsets
of B� the restriction map F V � � F U� is a homomorphism of graded
rings whose 	�th graded piece is the restriction map OBV �� OBU�� and
so induces a map XU � XV commuting with the structure morphisms
XU � U and XV � V and the inclusion U �� V� We may thus glue
together the schemes XU to arrive at a scheme X with structure morphism
X � B� X is denoted ProjF � and the construction of X is called global
Proj�

As in the case of ordinary Proj� in most situations it will be the case that
the sheaf of algebras F is generated by its �rst graded piece F�� and that
F� is coherent or� somewhat more generally� for some d � 	 the Veronese
subsheaf

F �d� !

�M
��	

Fd�

is generated byFd� andFd is coherent�� Under these hypotheses it follows�
again as in the case of ordinary Proj� that the morphism ProjF � B is
proper�

The simplest example of global Proj gives us yet another construction of
projective space over an arbitrary scheme S� Recall that projective space
PnS over an arbitrary scheme S was de�ned initially in Chapter I via the
gluing construction� if S is covered by a�ne schemes U� ! SpecR�� we
de�ne projective space PnS to be the union of the projective spaces PnU� �
with the gluing maps induced by the identity maps on U� � U�� We can
also de�ne it as a product�

PnS ! PnZ�SpecZS�

Finally� we can realize it as the global Proj of the symmetric algebra of the
free sheaf of rank n$ � on S�

Exercise III���� Let S be any scheme� Show that projective space PnS
over S may be constructed as a global Proj�

PnS ! Proj
�
SymO	n
�S �

�
�

In particular� we can realize products of projective spaces over a given
scheme S either as �bered products� or via global Proj� if we denote by
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OPn
S
�X	� � � � � Xm� the sheaf of graded OPn

S
�algebras SymO	m
�

PnS
�� then

PnS �S PmS ! ProjOPn
S
�X	� � � � � Xm��

A third way is via the Segre embedding �

Exercise III��� Let S be any scheme� Show that

PnS �S PmS �! V
�fXi�jXk�l �Xi�lXk�jg

� � ProjOS �fXi�jg	in�	jm�

! P�n
���m
����
S �

This in turn gives us a way of describing subschemes of such a product�
at least locally over the base�

Exercise III���� Let S ! SpecR be any a�ne scheme� Show that any
closed subscheme

X � ProjR�x	� � � � � xn��S ProjR�y	� � � � � ym� ! PnS �S PmS
may be given as the zero locus of a collection fF�x	� � � � � xn� y	� � � � � ym�g
of bihomogeneous polynomials F� in the two sets of variables x	� � � � � xn�
and y	� � � � � ym��

A more serious application of the global Proj construction is the de�ni�
tion of the blow�up of a scheme X along a closed subscheme Y � X � we
will discuss this in full in Chapter V� Another common use of global Proj is
the construction of the projectivization of a vector bundle� which we now
describe�

The Projectivization PE � of a Coherent Sheaf E � We saw in Exer�
cise III��� that projective space PnS over a scheme S is ProjSymO	n
�S ���
We make a similar construction for any coherent sheaf E� and de�ne the
projectivization PE � of E to be the B�scheme

PE � ! ProjSym E � �� B�

To review the simplest case� let V be an n�dimensional vector space over
a �eld K� regarded as a vector bundle over the one�point scheme SpecK�
The projectivization of V is a projective space of dimension n over K� The
projectivization of V � is called the the dual projective space to PV� The
K�valued points of PV � correspond to one�dimensional quotients of V or
equivalently to hyperplanes in V� TheK�valued points of PV �� correspond
to one�dimensional subspaces of V � this is what what was classically called
Pn�

More generally� if E is a locally free sheaf of rank n $ �� then PE � is
a projective bundle over B� in the sense that for su�ciently small a�ne
open subsets U � B the inverse image of U in PE � is isomorphic to pro�
jective space PnU as U �scheme� When E is not locally free� it is less clear
what the resulting scheme PE � will look like�� When B is a variety over
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an algebraically closed �eld K and E the sheaf of sections of a vector bun�
dle E on B� the K�valued points of PE �� correspond to one�dimensional
subspaces of �bers of E� while the K�valued points of PE � correspond to
one�dimensional quotients of �bers of E� or equivalently to hyperplanes in
these �bers�

Note that any closed subscheme X � PnB may be realized as ProjF � for
some quasicoherent sheaf F of graded OB�algebras� More generally� if E
is any coherent sheaf� any closed subscheme X � PE � of its projectiviza�
tion may be so realized� Conversely� if F is any quasicoherent sheaf of
graded OB�algebras generated by F�� the surjection SymF�� � F gives
an embedding X ! ProjF �� PF���

Exercise III���� Let K be a �eld� P�K ! ProjK�X�Y� Z� the projective
plane over K and P�K�� ! ProjK�A�B�C� the dual projective plane� Let
& be the universal line over P�K��� that is�

& ! V AX $BY $ CZ� � P�K �K P�K��

viewed as a family over P�K��� Show that &� P�K�� is the projectivization
of a locally free sheaf E of rank � on P�K��� and describe the sheaf E�

Exercise III���� Let B be any scheme� E a locally free sheaf on B and
E ! SpecSymE �� � B the total space of the vector bundle associated
to E� Show that we can complete E � B to a bundle of projective spaces
over B� speci�cally� show that we have an inclusion on E in the bundle
PE � OB� as an open subscheme� with complement a hyperplane bundle
PE �� � PE � OB��

III���	 Tangent Spaces and Tangent Cones

A�ne and Projective Tangent Spaces� The Zariski tangent spaces to
a scheme are abstract vector spaces� When a scheme X over a �eld K is
embedded in an ambient space like a�ne space or projective space over
K� however� we can also associate to a point p of X with residue �eld K a
corresponding linear subvariety of that a�ne or projective space� called the
a�ne tangent space or projective tangent space to X at p� In the case of
an a�ne scheme X ! V f�� � � � � fk� � A nK and point p ! a�� � � � � an� � X�
this is the subvariety given as

V

�nX
i

�f�
�xi

a�� � � � � an� � xi � ai�
o
��������k

�
�

To understand the relationship between this scheme and the Zariski tangent
space� note that a vector space over a �eld K is not the same thing as a�ne
space A nK � But it is true that� given a vector space V of dimension n over
K� we may associate to V a scheme V� isomorphic to a�ne space A nK � so
that the points of V with residue �eld K correspond naturally to vectors
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in V � this is just the spectrum of the symmetric algebra of the dual vector
space

V ! Spec SymV ��� �

We will call V the scheme associated to the vector space V�
This said� the scheme TpA nK� associated to the Zariski tangent space to

a�ne space A nK over a �eld K at any K�rational point p � An
K that is� a

closed point with residue �eld �p� ! K� may be naturally identi�ed with
the a�ne space itself� via an identi�cation carrying the origin in TpA nK�
to p� Now� suppose X � A nK is any subscheme� and p � X any K�rational
point� The di�erential d�p of the inclusion � � X �� A nK at p represents the
Zariski tangent space TpX� as a vector subspace

d�p � TpX� �� TpA nK��

We take the induced inclusion of schemes

d�p � TpX� �� TpA nK� ! A nK
and compose it with the translation morphism tp � A nK � A nK sending the
origin to p to obtain an inclusion

tp � d�p � TpX� �� A nK �� A nK �
The image of this inclusion is an a�ne subspace of A nK � which we will call
the a�ne tangent space to X at p� Again� note that it is a scheme� not a
vector space�

A similar construction will associate to a point p with residue �eld K
on a projective scheme X � PnK a linear space TpX� � PnK � One way to
do this is to choose an open subset U �! A nK � PnK containing p� and take
the closure in PnK of the a�ne tangent space to X �U at p� But there is a
more intrinsic way� First� we write our ambient projective space PnK as the
projective space PV associated to a vector space V� that is� as

PnK ! ProjS

where

S ! SymV �

is the symmetric algebra of the dual of a vector space V� Thus� k $ ���
dimensional linear subspaces of S� ! V correspond to k�planes in PnK � We
let

I ! IX� � S

be the homogeneous ideal of X � PnK � and let m ! mp � S be the ideal of
forms vanishing at the point p � X� Let J be the saturation of the ideal
I $m� � S� We de�ne the projective tangent space TpX� � PnK to X at
p to be the subspace

TpX� ! V J � S�� � PnK
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of PnK � By way of explanation� note that J is the ideal of the �rst�order
neighborhood of p in X�that is� the intersection of X with the �fat point�
P � PnK de�ned by the square of the ideal m of p� The projective tangent
space TpX� ! V J � S�� is thus the span of this �rst�order neighborhood
V J�� that is� the smallest linear subspace of PnK containing V J��

Exercise III���� Show that this de�nition coincides with the naive de��
nition proposed initially�

Since the projective tangent space TpX� to a projective scheme X at
a K�rational point p � X is a linear subspace of the ambient projective
space PV� it is of the form TpX� ! PW for some quotient vector space
V �W � 	� We may ask then what the relationship is between the vector
space W and the Zariski tangent space TpX�� The answer� which we will
see in Section VI���� is that we have an exact sequence

	 �� K ��W � �� TpX� �� 	�

More precisely� if V � U � 	 is the one�dimensional quotient of V cor�
responding to the point p � X � PV� then the surjection V � U factors
through a surjection 
 � W � U� and we have a natural identi�cation

TpX� ! HomKer
�U��

In any event� note that we do have a natural identi�cation of the set of
lines through p in TpX� with the set of lines through the origin in TpX��

Exercise III��
� Let X ! V F � � PnK be the hypersurface in PnK given
by the homogeneous polynomial F Z	� � � � � Zn�� and let p ! �a	� � � � � an� �
X be any point with residue �eld K� Show that the projective tangent
space TpX� is the zero locus V L� � PnK of the linear form

LZ	� � � � � Zn� !

nX
k�	

�F

�Zi
a	� � � � � an� � Zk�

Tangent Cones� A more accurate re�ection of the tangential behavior of
a scheme X at a point p � X is its tangent cone� To de�ne this� let X now
be an arbitrary scheme� p � X and point� OX�p the local ring of X at p
and m ! mX�p � OX�p the maximal ideal in OX�p� We de�ne the tangent
cone TCpX� to X at p to be the scheme

TCpX� ! Spec

� �M
��	

m
��m�
�

�
�

A few observations about this construction are in order� First� we note that
the graded ring B !

L
m��m�
�� is generated by its �rst graded piece

B� ! m�m� ! TpX��

so that B is a quotient of the ring

A ! SymTpX����
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We thus have an inclusion

TCpX� ! SpecB �� SpecA ! TpX�

or in other words� the tangent cone to X at p is naturally a subscheme of
the scheme associated to the Zariski tangent space TpX to X at p�

To give a more concrete realization of the tangent cone� suppose that X
is a subscheme of a�ne space over a �eld K� that is�

X � SpecK�x�� � � � � xn�

and let I ! IX� � K�x�� � � � � xn� be the ideal of X � suppose moreover
that the point p � X is the origin x�� � � � � xn� � A nK � For any polynomial
f � K�x�� � � � � xn�� write

fx�� � � � � xn� ! fmx�� � � � � xn� $ fm
�x�� � � � � xn� $ � � �
with flx�� � � � � xn� homogeneous of degree l and fm �! 	� the �rst nonzero
term fmx�� � � � � xn� is called the leading term of f � Then we have the
following interpretation�

Exercise III���� Show that the tangent cone

TCpX� � TpX � TpA nK� ! A nK
is the subscheme de�ned as the zero locus of the leading terms of all ele�
ments f � I�

Returning to the general case� note that since the ringB !
L

m��m�
��
is graded� we can also associate a geometric object to the pair X� p� by
taking ProjB� This is a subscheme of the projective space PTpX� �! Pn�p�
associated to the Zariski tangent space to X at p� called the projectivized
tangent cone to X at p and denoted PTCpX�� In many ways it is more
convenient to deal with� being a projective scheme and of one lower dimen�
sion than the tangent cone� it contains in general slightly less information
as exercise III�
	 below will show� the tangent cone TCpX� may have an
embedded point at the origin� which the projectivized tangent cone will
miss��

Even though the degree of a general subscheme of projective space will
not be de�ned until Section III�
��� we should mention here an important
invariant of a scheme that can be de�ned in terms of the projectivized
tangent cone to X at p� we de�ne the multiplicity of X at p to be the
degree of the projectivized tangent cone PTCpX� � PTpX� �! Pn�p��
This de�nition represents one more example of how schemes arise naturally
and are useful in the context of varieties� in the category of varieties we
can still de�ne the tangent cone as the reduced scheme associated to our
tangent cone� and projectivized tangent cone� but they do not behave well
in families�
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There are many naturally occurring examples of nonreduced tangent
cones� For example� consider the family of plane cubic curves with equation
Ct ! SpecK�x� y��y� � tx� � x�� that is� we let B ! A �

K ! SpecK�t��
and take our family to be C ! V y� � tx� � x�� � A �

B � B�� For each t�
the curve Ct may be given parametrically as the image of the map

A �
K ! SpecK��� �� A �

K ! SpecK�x� y�

given by t �� �� � t� �� � t��� For t �! 	� this curve has a node at the
origin� the two points � ! �pt each map to the origin�and this is
re�ected in the tangent cone T�	�	�Ct ! V y� � tx��� which is the union of

the two lines y ! �pt x� When t ! 	� we see that the node of the curve
has degenerated to a cusp� and the tangent cone is now the double line
T�	�	�C	 ! V y���

For more subtle examples� consider the curves C� and C� � A �
K given

as the images of the maps �i � A �
K � A �

K given by

�� � t ��� t�� t�� t��

and

�� � t ��� t�� t�� t���

In each case� let p be the singular point of Ci�

Exercise III�	� a� Show that the projectivized tangent cones

PTCpCi� � P�K
to both curves Ci are curvilinear schemes of degree 
� that is� isomor�
phic to SpecK�s��s��� and that they are not contained in any line in
P�K �

b� Find an example of a curve C � A �
K where the projectivized tangent

cone to C at the origin is isomorphic to SpecK�s��s�� and contained
in a line�

c� Find an example of a curve C � A �
K where the projectivized tangent

cone to C at the origin is isomorphic to SpecK�s� t��s�� st� t���

d� Find an example of a curve C � A �
K where the projectivized tangent

cone to C at the origin is contained in a line� but the Zariski tangent
space T	C� is three�dimensional�

There is another geometric characterization of the tangent cone to a
scheme X at a point p � X � simply put� the tangent cone is the locus of
limiting positions of lines pq joining p to points q �! p � X as q approaches
p� To state this precisely� suppose �rst that a neighborhood of p in X
is embedded in a�ne space A nK over a �eld K� Let T ! TpA nK be the
a�ne space associated to the Zariski tangent space TpA nK to A nK at p� and
consider the incidence correspondence

& !
�
v� q� � v � T ppq� � T � A nK n fpg���
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Equivalently� in terms of the identi�cation of T with A nK itself� & is the
subscheme of A nK � A nK n fpg� given by the equations

yi
�
xj � xjp�

�� yj
�
xi � xip�

�
! 	�

Let ) ! ���� X n fpg� � T � X n fpg� be the inverse image of X n fpg in
&� and ) the closure of ) in T �X� We have then�

Proposition III��� The tangent cone TCpX is the �ber of ) over the
point p � X�

This statement modulo possible embedded components at the origin in
TCpX� will be proved in Chapter IV� It amounts to the statement that
the projectivization of TCpX is the exceptional divisor of the blow�up of
X at p�

Proposition III�
� is very useful� for example in doing Exercises III�
��
III�
� below�

Exercise III��� Let V be the vector space of polynomials of degree n on
P�K ! ProjK�X�Y �� that is� homogeneous polynomials of degree n in two
variables X�Y� and let PV � �! PnK be the projective space parametrizing
one�dimensional subspaces of V� Let , � PnK be the discriminant hyper�
surface� that is� the locus of polynomials with a repeated factor with the
reduced scheme structure we will see in Chapter V how to give equations
for� and hence a natural scheme structure on� ,�� If

F X�Y � !
Y

aiX $ biY �mi

is any polynomial of degree n with the factors aiX$biY pairwise indepen�
dent�� what is the support of the tangent cone to , at the point p ! �F � 
Hint� consider lines in PnK through the point �F �� How many other points
of intersection with , will a general such line have� and which lines will
have fewer �

Exercise III�� More generally� suppose ,m � PnK is the locus of poly�
nomials with an m�fold root� Again� what is the support of the tangent
cone to ,m at a point �F �� where F is as above 

Exercise III��� This is an exercise from classical geometry� Suppose C �
PnK is a nonsingular curve� The union of the projective tangent lines to C
is the support of a surface S � PnK � called the tangent developable to C�
this surface will be singular along C see Harris ������ for example�� What
is the support of its tangent cone at a general point p � C Note that if
we take C to be the rational normal curve in PnK � that is� the image of the
n�th Veronese map P�K � PnK � then this is a special case of exercise III�


above��

Exercise III��� In each of the following� a �nite group G acts on the
a�ne plane A �

K ! SpecK�x� y�� The quotient A �
K�G that is� SpecK�x� y�G�
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will have a singularity at the image of the origin x� y� � A �
K � Describe the

tangent cone in each case�

a� G ! Z�
�� acting by x� y� �� �x� �y�� where � is a cube root of unity�

b� G ! Z�
�� acting by x� y� �� �x� ��y�� where � is a cube root of
unity�

c� G ! Z���� acting by x� y� �� �x� �y�� where � is a �fth root of unity�

We will encounter tangent cones again in our discussion of blowing up�
as we indicated� the projectivized tangent cone PTCpX� to a scheme X
at a point p � X is the exceptional divisor in the blow�up BlpX� of X at
p� In particular� tangent cones to arithmetic schemes will come up again in
this way in Section IV�����

III���� Morphisms to Projective Space

Just as there is a simple characterization of morphisms to an a�ne scheme
Theorem I��	�� there is a simple way of viewing morphisms to projective
space in terms of line bundles� or� equivalently� invertible sheaves� a concept
we will introduce in this section� Invertible sheaves have another geometric
realization in the notion of Cartier divisors� and we will describe this con�
nection as well� See Hartshorne ������ Chapter II� for further information�

If we understand morphisms to the scheme PnA� we will understand mor�
phisms to an arbitrary projective scheme Y � PnA� since a morphism to Y
is just a morphism to PnA that factors through Y a sharp version of this is
given in Exercise III����� thus we will study morphisms to projective space�

To understand the situation� we �rst consider morphisms 
 � X � PnA !
ProjA�x	� � � � � xn� in the category of A�schemes� where X ! SpecK is the
spectrum of a �eld� Since X has only one point� the image p of such a
morphism must be contained in one of the open sets

Ui ! PnA�xi ! SpecA
hx	
xi
� � � � �

xn
xi

i �! A nA�
Thus the map corresponds to an n�tuple of scalars a	� � � � � %ai� � � � � an� �
Kn� Of course� p may also be contained in another open set Uj � in this case
aj �! 	 and the coordinates in Uj are

b	� � � � � bj � � � � � bn� !
�a	
aj
� � � � �

�

aj
� � � �

an
aj

�
�

To show the coordinates without prejudice toward one or another of the
Ui� we may say that a map SpecK � PnA corresponds to an n$���tuple
of elements of K� not all zero� with two such n$���tuples corresponding
to the same map if and only if they di�er by a scalar� the map above
corresponds to the n$���tuple ��	!a	� � � � � �i!�� � � � � �n!an�� or� equiv�
alently� �	!b	� � � � � j!�� � � � � n!bn��
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Having said this� we may extend exactly the same consideration to the
case of a morphism X � PnA� where X is the spectrum of a local A�algebra�

Proposition III��� If T is a local A�algebra� the morphisms SpecT �
PnA in the category of A�schemes� are in one�to�one correspondence with
the set of n$���tuples ��	� � � � � �n� � Tn
� such that at least one of the �i
is a unit� modulo the equivalence relation ��	� � � � � �n� � ���	� � � � � ��n� for
any unit � � T �

Proof� Write PnA ! ProjA�x	� � � � � xn�� Given an n$���tuple ��	� � � � � �n�
with �i a unit� we map SpecT to Ui ! PnA�xi � PnA via the map corre�
sponding to the A�algebra homomorphismhx	

xi
� � � � �

xn
xi

i
�� T�

xj
xi
��� �j

�i
�

Conversely� given a morphism 
 � SpecT � PnA of A�schemes� let p �
SpecT be the unique closed point� and suppose that 
p� � Ui� The preim�
age 
��Ui� is an open subset of SpecT containing p� and hence in all of
SpecT � in other words� 
X� � Ui� The map 
 is thus given by a map of
A�algebras hx	

xi
� � � � �

xn
xi

i
� T

and we may associate to 
 the n$���tupleh
�	!

x	
xi
� � � � � �i!�� � � � � �n!

xn
xi

i
�

If the image 
x� is also contained in Uj � we arrive at the n$���tupleh
	!

x	
xj
� � � � � j!�� � � � � �n!

xn
xj

i
�

which equals ���	� � � � � ��n� for � ! xi�xj ��

To generalize this further� to a�ne rings or schemes� we seek a construc�
tion that� locally� reduces to the one above� To this end� we may regard the
n$���tuple �	� � � � � �n� of the proposition as giving a module homomor�
phism

� � Tn
� � T�

To say that � is surjective is equivalent to saying that any of the �i is a
unit in T � And two such maps are equivalent if they di�er by composition
with an automorphism of the module T that is� multiplication by a unit��
Equivalently� the kernel is a rank�n summand of Tn
��

It turns out that this last sentence generalizes to describe A�morphisms
from an A�scheme X to Pn� they correspond to subsheaves E � On
�

X of
rank n that are locally direct summands of On
�

X � or� equivalently� to maps

On
�
X � P � 	�
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where P is a sheaf locally isomorphic to OX such a sheaf is called invertible�
a term that will be explained in the following discussion�� modulo units of
OX acting as automorphisms of P �

Theorem III��� For any scheme X� we have natural bijections

MorX�PnZ�
! fsubsheaves K � On
�

X that locally are summands of rank ng

!
finvertible sheaves P on X� together with an epimorphism On
�

X �Pg
funits of OX X� acting as automorphisms of Pg �

Here �natural� means that for any morphism 
 � X � Y of schemes� the
map MorY�PnZ� � MorX�PnZ� given by composition with 
 commutes
with pullback of invertible sheaves and epimorphisms� in other words� we
have an isomorphism of functors from the category of schemes to the cat�
egory of sets�

Of course� if X � B is a B�scheme� we will be interested in describing
the morphisms of X to PnB over B� This turns out to involve no new ideas�
somewhat surprisingly� for any B�scheme X � B� a B�morphism X � PnB
is exactly the same thing as a morphism X � PnZ# The point is� since PnB is
the product of PnZwith B� a morphism of any scheme X to PnB is uniquely
determined by the data of a morphism X � B and a morphism X � PnZ�

X ����������������������������� PnB

B
�� PnZ

��

SpecZ
�

�

Thus� after specifying a structure morphism 
 � X � B we get a bijection

MorX�PnZ�� MorBX�PnB��

We now proceed with the proof of Theorem III�
�� Because all the terms
in these equalities are de�ned locally on X� the theorem reduces easily to
the case where X is a�ne� and this is the case we will actually prove below�
First� we review the corresponding notions about modules� A good basic
reference is Bourbaki ������ Chap� II����

Recall that a module K over a ring T is locally free of rank m if for every
maximal ideal or� equivalently� every prime ideal� p the Tp�module Kp is
free of rank m� This is the same as the sheaf�theoretic notion�

Exercise III�
� Let K be a �nitely generated module over a Noetherian
ring T� and let "K be the corresponding coherent sheaf over SpecT� Show
thatK is a locally free module in the sense above if and only if "K is a locally
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free coherent sheaf in the sense that there is an a�ne cover of SpecT by
basic open sets Spec Tfi such that the restriction of "K to each of these sets
is free equivalently� each K�f��i � is free over Tfi ! T �f��i ���

An invertible T �module is a �nitely generated� locally free T �module of
rank ��

In commutative algebra� locally free modules are usually called projective
modules � their characteristic property is that if P is a locally free T �module�
then any epimorphism of T �modules M �� P splits� It follows that if
K � Tn
� is a submodule� then K is a summand of Tn
� if and only if
Tn
��K is a locally free module� in particular� K is a rank n summand of
Tn
� if and only if Tn
��K is an invertible module�

Before giving the proof of Theorem III�
�� we record a result that comes
from an immediate application of the de�nitions�

Proposition III��� A morphism of an arbitrary scheme X to projective
space PrZ ! ProjZ�x	� � � � � xr� may be given by a collection of maps 
i �
Ui � PrZ�xi � where fUig is an open cover of X� the PrZ�xi � PrZ are the
open subsets of Exercise III��� and the maps 
i and 
j induce the same
map Ui � Uj � PrZ�xi � PrZ�xj ! SpecZ�x	� � � � � xr��x��i � x��j ��	�

The heart of Theorem III�
� is the following result� which is the a�ne
version of the �rst equality�

Proposition III��	� If T is any ring� then

MorSpecT�PnZ�

! fK � Tn
� j K is locally a rank n direct summand of Tn
�g�

Proof� Suppose� �rst� that K is a rank n free summand of Tn
�� and write
P for the module Tn
��K� This module is locally free of rank � and is
generated by the n $ � images ei of the n $ � generators of Tn
�� Let Ij
be the annihilator of P�Tej�� and let Uj be the complement of V Ij� in
SpecT� so that the Uj form an open cover of SpecT� Regard T �modules
as sheaves on Spec T� On Uj the map T � P de�ned by � �� ej is an
isomorphism� and identifying P jUj with T jUj via this map� the projec�
tion Tn
�jUj � Tn
��K�jUj ! P jUj ! T jUj has a matrix of the form

tj	� � � � � tjj ! �� � � � � tjn�� which de�nes an element of Tn
�Uj
and thus a

morphism Spec T � A nZ� These morphisms agree on overlaps as in Propo�
sition III�
�� so they de�ne a morphism SpecT � PnZ�

Conversely� suppose that we are given a morphism � from SpecT to
PnZ� Since PnZ is covered by n $ � a�ne n�spaces� � is by de�nition asso�
ciated to an open cover Spec T !

S
i�	�����n Ui and for each j an element

tj	� � � � � tjj ! �� � � � � tjn� of Tn
�jUj such that tij is a unit on Ui � Uj and
til ! tijtjl in T jUi�Uj for all i� j� l� Two such T �valued points are the same
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if and only if the corresponding elements of Tn
�jUj are equal for each j�
Let Kj be the kernel of the map

Tn
�jUj � T jUj
de�ned by the matrix tj	� � � � � tjj ! �� � � � � tjn�� and let

K ! fa � Tn
� � ajUj � Kj for each jg�
To see that K is locally a rank n summand of Tn
�� note that any local

ring of T is a local ring of one of the Uj so the result of localizing the
sequence

	� K � Tn
� � Tn
��K � 	

at any prime ideal p is a sequence of the form

	� Kp � Tn
�p � Tp � 	�

and such a sequence must split�

Exercise III���� The word �locally� can be omitted in the statement of
the proposition� This is because a submodule of a �nitely generated free
module that is locally a direct summand is in fact a direct summand� Prove
this�

To derive a version of this with invertible modules� we use the fact that
K � Tn
� is a direct summand of rank n if and only if Tn
��K is an
invertible module� and identify the set on the right�hand side of the equality
in Proposition III��	 with the set of invertible quotient modules of Tn
��
We may separate the isomorphism class of the quotient from the surjection
that makes it a quotient and look at invertible T �modules P with surjections
Tn
� � P� Two surjections ��  � Tn
� � P have the same kernel if and
only if there is an automorphism � � P � P such that  ! ��� But if
P is an invertible T �module� then HomT P� P � ! T reason� the natural
map � � T � HomT P� P � taking � to the identity is locally the same as
the natural map T � HomT T� T �� which is an isomorphism� so � is an
isomorphism�� Thus the automorphisms of P may be identi�ed with units
of T� and we get the following corollary�

Corollary III���� If T is any ring� then

MorSpecT�PnZ�

!

�
invertible T �modules P with an epimorphism Tn
� � P

�
funits of T acting as automorphisms of Pg �

In the classical case of the variety PnK over a �eldK� we can specify points
of PnK by giving n$���tuples of elements of K� not all zero� In the scheme
PnK � of course� there are other� nonclosed points as well�� Analogously� for
any ring A� an n$ ���tuple a	� � � � � an� of elements ai � A that generate
the unit ideal de�nes a surjection An
� � A of A�modules and thus de�nes
an A�valued point of PnA�
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Exercise III��� a� Show that there are bijections between the sets�
n$ ���tuples of elements of A that generate the unit ideal

�
and�

maps SpecA� PnA such that the composite SpecA� PnA � SpecA
is the identity A�valued points of PnA in the category of A�schemes�

�
�

b� Show that the image of the morphism SpecA � PnA associated to an
n$ ���tuple a	� � � � � an� is the closed subscheme

V faiXj � ajXig	i�jn��
If A is a domain� show that faiXj � ajXig	i�jn� is a prime ideal�

If A is a domain� Exercise III��
 shows that the image is a reduced and
irreducible closed subscheme of PnA� and in particular corresponds to a point
of jPnAj� The example of the point of P�Z corresponding to �� �� is treated
in Exercise III�� above� Note that the SpecZ�valued point �� �� is not a
SpecZ�valued point of either open set in the standard a�ne open cover
P�Z! A �

Z�A �
Z of P�Z� even though the point �x���x	� � jP �

Zj lies in both#

Finally� if we are working in the category of B�schemes� we may ask for
a generalization of this result describing maps of a given B�scheme X to a
projective bundle� To state the result� let E be any coherent sheaf on B�
We have then�

Theorem III���� For any B�scheme 
 � X � B and coherent sheaf E on
B� there is a natural bijection

MorBX�PE ��

!
finvertible sheaves P on X� together with an epimorphism 
�E � Pg

funits of OX X� acting as automorphisms of Pg �

We will not prove this here� the proof can be carried out by locally
expressing the coherent sheaf E as a quotient of a free sheaf On
�

B � and
characterizing the subset of morphisms from X to PnB that factor through
the resulting inclusion PE � �� PnB �
Exercise III���� a� Suppose that Y � PnA is the closed subscheme de�

�ned by homogeneous equations fFig� If T is a local A�algebra then� as
we showed above� the morphisms from SpecT to PnA may be identi�ed
with n $ ��tuples of elements of T generating the unit ideal� modulo
units of T� Show that the condition that such an n$��tuple correspond
to a map to Y is simply that it be a zero of all the polynomials Fi�

b� The general case of a map from an a�ne A�scheme to a projective A�
scheme can be reduced to the local one using the following fact� if T is
any A�algebra a morphism SpecT � PnA factors through X if and only
if for all primes p of T the composite morphisms Spec Tp � Spec T �
PnA� factor through X� Prove this�
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Having characterized morphisms of schemes to projective spaces� it is
instructive to look back to other geometric theories for similar characteri�
zations� Recall that in topology the space PnC of n�dimensional subspaces
of a complex n$���dimensional vector space C n
� is the classifying space
for subbundles of rank n of a trivial bundle of rank n$� and similarly for
PnR�� This means that for all spaces X� maps X � PnC correspond to the
rank n subbundles of the trivial bundle on X� The correspondence is easy
to describe� a rank n subbundleJ of the trivial bundle V ! C n
��X on
X corresponds to the map X � PnC that sends a point p � X to the point
of PnC corresponding to the space

Jp � Vp ! C n � fpg ! C n�

There are other equivalent descriptions� which may be more familiar� in
terms of the rank � quotient bundle V �J or the subbundle V �J �� � V �

of rank ��
Analogous results hold in the category of complex analytic spaces and

maps and in the category of algebraic varieties and regular maps taking
the subbundles to be complex analytic� or algebraic� respectively�� In this
section we give a corresponding result for schemes� The main di�erence is
that in algebraic geometry� it is traditional to replace vector bundles on Y
by their sheaves of sections�

To see what these sheaves should look like� consider �rst that if E is
a trivial vector bundle of rank � on a scheme X � then a section of E is
the same as a function on X � so the sheaf of sections of E should be OX �
Taking direct sums� we see that the sheaf of sections of a trivial vector
bundle of rank m is the coherent sheaf that is the free OX �module Om

X � In
general� since vector bundles are by de�nition locally trivial� their sheaves
of sections are locally free sheaves of OX �modules of �nite rank� locally
free coherent sheaves� It is not hard to go in the other direction as well and
to derive from a locally free coherent sheaf a vector bundle�

Given this equivalence between vector bundles and locally free coherent
sheaves� why work with locally free sheaves The reason is similar to the
reason for working with schemes instead of varieties even if one is primarily
interested in varieties� locally free coherent sheaves live naturally in the
larger category of coherent sheaves� and working in the larger category
gives us �exibility� Standard constructions in the smaller category such
as taking the �bers of a morphism of schemes� or taking the cokernel of
a homomorphism of locally free sheaves� are most naturally interpreted in
the larger category�

Like the line bundles to which they correspond� locally free sheaves of
rank � play an especially important role and have a special name� they are
called invertible sheaves� The terminology comes from number theory� an
invertible module over a domain T is a �nitely generated submodule I of
the quotient �eld such that� for some other �nitely generated submodule
J of the quotient �eld called its inverse� we have IJ ! T� the unit ideal�
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Over the scheme SpecT� the corresponding sheaf is an invertible sheaf�
More generally� given any invertible sheaf I over an arbitrary scheme X�
the sheaf I � ! HomI �OX� is again invertible and the natural map I �
I � � OX is an isomorphism check locally�� For this reason I � is called
the inverse of I �

Knowing that invertible sheaves correspond to line bundles does not at
�rst seem to help connect them to geometry� Just as in classical algebraic
geometry� however� morphisms of a schemeX to projective space can in fact
be characterized in geometric terms using the related notion of an e�ective
Cartier divisor� This is de�ned to be a subschemeD � X such that at every
point x � X the ideal of D in the local ring OX�x is principal and generated
by a nonzerodivisor� In other words� a subscheme D is an e�ective Cartier
divisor if and only if its ideal sheaf ID is invertible� Following tradition�
we de�ne the invertible sheaf OXD� associated to D to be the inverse

OXD� ! I �
D�

The invertible sheaves form a group PicX under the tensor product oper�
ation� and under reasonable circumstances� for example� for subschemes
of projective space over a �eld�every invertible sheaf can be written as
OXD��IE ! OXD��OX E�� for some e�ective Cartier divisors D�E�

Note the unfortunate but essentially unambiguous notation� if U is an
open set ofX then OU� denotes the ring of sections of the sheaf OX de�ned
over U � while if D is a Cartier divisor OD� denotes the sheaf above� Of
course we could also manufacture such monstrosities as OXD�U�� � � �

We may tighten the connection between invertible sheaves and e�ective
Cartier divisors as follows� If D is an e�ective Cartier divisor then the
inclusion ID �� OX is a global section of HomID �OX� ! OXD�� This
section is regular in the sense that for every open set U � X no nonzero
element of OX U� annihilates the restriction of this section to U Reason�
the image of IDU� in OX U� contains a nonzerodivisor�� Thus an e�ective
Cartier divisor gives rise to an invertible sheaf with a global section�

Conversely� given an invertible sheaf L and a global section �� we de�ne
the zero locus of that section to be the support of the quotient L �OX��
To understand what this means� choose a covering of X by open sets U
such that L jU �! OU � The zero locus of � in U is then the zero locus of the
corresponding element of OU � If the section is regular� it follows that the
zero locus is an e�ective Cartier divisor� Note that another global section
di�ering from � by a unit in OXX� would give the same Cartier divisor�
We thus have a bijection

fe�ective Cartier divisorsg
l

finvertible sheaves with choice of global section modulo unitsg �
The reader might wonder about the signi�cance of �e�ective�� An ef�

fective Cartier divisor D may be de�ned by giving a nonzerodivisor in
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fU � OX U� for each set U of an open covering of X � and fU is de�ned up
to a unit of OX U�� Thus D gives rise to a unique global section of the sheaf
of invertible rational functions modulo invertible regular functions�that
is� the sheaf M �

X�O
�
X � where � denotes the sheaf of multiplicative units�

andMX is the shea��cation of the presheaf whose value on an open set U
is the localization OX U��S��U � of the ring OXU� at the multiplicatively
closed set SU of elements that become nonzerodivisors in OX�x for every
x � U � All that one usually needs to know about this slightly baroque def�
inition is that if U ! SpecA for a Noetherian ring A� then MXU� is the
result of inverting all nonzerodivisors in A� More general cases are subtle�
see for example Kleiman ������ for information�� We de�ne a Cartier divi�
sor in general to be an arbitrary section of the sheafM �

X�O
�
X � The Cartier

divisors on X form a group called DivX � and the association D �� OXD�
de�nes a homomorphism DivX � PicX�

The e�ective Cartier divisors form a monoid in DivX � again� in reason�
able circumstances such as for subschemes of a projective space over a �eld�
the monoid of e�ective Cartier divisors generates DivX � and in the freest
possible way� DivX may also be realized as the Grothendieck group of the
monoid� The e�ective Cartier divisors are then just the Cartier divisors
that �e�ectively� de�ne subschemes�

III���� Graded Modules and Sheaves

The attentive reader may have noticed that Theorem III�
� implies the
existence of a distinguished invertible sheaf on PnZ� namely� the one corre�
sponding to the identity map� In this section we will give descriptions of
this sheaf� which plays a fundamental role in projective geometry�

We begin with a general method for constructing sheaves on schemes
of the form ProjA analogous to the construction of sheaves on SpecA
from modules over A� Let B be a scheme� and let A ! A	  A�  � � �
be a quasicoherent sheaf of graded OB�algebras� Let P ! ProjA � Let M
be a quasicoherent sheaf on B which has the additional structure of a
sheaf of graded A �modules� that is� we have a direct sum decomposition
M ! � � �MiMi
�� � � and there are maps Ai�Mj �Mi
j satisfying
the usual axioms associativity� identity� � � � �� We may associate to M a
quasicoherent sheaf eM on P as follows� Let U be an a�ne subset of B�
and consider the graded ring A U�� For each homogeneous element f of
A U� we have an a�ne open set PU�f �! ProjA U��f ! SpecA U�f �	
of P� the schemes PU�f form an a�ne open cover of P� The sectionsM U�
over U form a graded module over the graded ring A U�� Let MU�f be
the A U�f �	�module MU�f ! M U��A �U� A U��f����	� and let eMU�f

the corresponding sheaf on the a�ne scheme PU�f � These patch together
to de�ne a quasicoherent sheaf on P that we denote by eM �

In fact� every quasicoherent sheaf on ProjA corresponds to a sheaf of
gradedA modules in this way� However� unlike the correspondence between
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modules over a ring and quasicoherent sheaves over Spec of that ring� the
correspondence is not bijective� For example� as the reader can easily check�
the sheaf associated to a module M is the same as the sheaf associated to
the truncated module M � ! n�n�Mn for any n	� But in good cases this
is the only kind of failure� for example� the association M �� eM gives a
bijection

fsheaves of �nitely generated graded A �modules up to truncationg
l

fquasicoherent sheaves on Pg �
To start with the simplest example� if we takeM ! A we get the struc�

ture sheaf OP� Much more interesting is the deceptively simple modi�cation
obtained by shifting the grading by �� In general� if M !

L
iMi then we

de�ne the n�th twist M n� ofM to be the same module but with degrees
shifted by n� that is

M n�i !Mn
i�

We de�ne OPn� to be the sheaf �A n� associated to the sheaf of graded
modulesA n�� The most important of these is OP��� called the tautological
sheaf on P�

Exercise III���� Show that all the sheaves OPn� are invertible� Show
that OPn��OPm� ! OPn$m�� and in particular OPn��� ! OPn�� !
OP�n��
Exercise III���� Let � � ProjA � SpecA	 be the structure map� Show
that for any quasicoherent sheaf N on SpecA	 the pullback ��N � is the
sheaf assocated to A �A� N �

Exercise III��
� LetK be a �eld� and consider the projective space PnK !
ProjK�x	� � � � � xn�� LetH be a hyperplane� Show that H is a Cartier divisor
on PnK and that the associated invertible sheaf is OPn

K
���

III���� Grassmannians

Grassmannians exist in the category of schemes� and behave very much
like Grassmannians in classical algebraic geometry� More precisely� there
is� for any scheme S and positive integers n and k � n� a scheme GSk� n�
called the Grassmannian over S� the construction is functorial in S� in the
sense that for any morphism T � S� the Grassmannian GT k� n� is the
�ber product GSk� n� �S T� In particular� there is a scheme GZk� n��
the Grassmannian over SpecZ�such that any Grassmannian may be re�
alized as GSk� n� ! GZk� n� � S�� Moreover� in case S ! SpecK is the
spectrum of an algebraically closed �eld the scheme GSk� n� is the scheme
associated to the classical Grassmann variety Gk� n� over K� In fact� the
constructions� which we will describe brie�y below� are themselves exactly
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analogous to the standard constructions of the Grassmannian in the clas�
sical context� Rather� as in the case of projective space� what is new and
di�erent about the Grassmannian as a scheme are the subschemes of it� we
will illustrate this with our discussion of Fano schemes below�

We will begin with the constructions of the Grassmannian GSk� n� for
S ! SpecA an a�ne scheme this is also called the Grassmannian over A
and denoted GAk� n��� At the end� we will observe that the construction
is natural� in the sense that for any morphism T � S of a�ne schemes we
have

GT k� n� ! GSk� n��S T�

It will follow that we can construct Grassmannians over arbitrary schemes
S by gluing together the GrassmanniansGU�k� n� over a collection of a�ne
open subsets U� � S covering S� Alternatively� we can simply carry out
the construction of the Grassmannian GZk� n� over SpecZ� and then for
any scheme S simply de�ne GSk� n� ! S �GZk� n��

In the classical setting� there are two ways of constructing the Grass�
mannian GKk� n� as a variety over a �eld K� Abstractly� we may describe

GKk� n� as a union of open sets� each isomorphic to a�ne space A k�n�k�K �
Alternatively� we may describe it at one stroke as the closed subvariety of
projective space PNK given by the Pl'ucker equations� Each of these construc�
tions has an immediate extension to the category of schemes� and they do
yield the same object� Moreover� there is in the language of schemes a third
way to characterize Grassmannians� as Hilbert schemes� or more precisely
as the schemes representing the functors of families of linear subspaces of a
�xed vector space� We will discuss this third construction in Section VI�����
This is in many ways the optimal characterization of the Grassmannian� it
avoids the extraneous introduction of coordinates� gives us immediately a
description of morphisms of an arbitrary scheme Z to GKk� n�� and gives
us a natural de�nition of equations for subschemes of the Grassmannian
such as Fano schemes and more general Hilbert schemes�

We will start by reviewing the gluing construction of the Grassmannian
as a variety over a �eld� We begin by realizing the set of k�dimensional
linear subspaces - of the n�dimensional vector space Kn over a �eld K as
the set of k�n matrices M of rank k� modulo multiplication on the left by
invertible k� k matrices� For each subset I � f�� �� � � � � ng of cardinality k
we can multiply any matrix M whose I�th minor is nonzero by the inverse
of its I�th submatrix MI � to obtain a matrix M � with I�th submatrix equal
to the identity� In this way� we may identify the subset UI � GKk� n�
of planes - complementary to the subspace of Kn spanned by the basis

vectors feigi��I with the a�ne space A k�n�k�K whose coordinates are the
remaining entries of M �� We thus have the following recipe for the variety
GKk� n��

Let W �! A knK be the space of k � n matrices� and for each subset I �
f�� �� � � � � ng of cardinality k� let WI �W be the closed subset of matrices
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with I�th submatrix equal to the identity� For each I and J �! I� let WI�J �
WI be the open subset of matrices whose J th minor is nonzero� let 
I�J �
WI�J �WJ�I be the isomorphism given by multiplication on the left byMJ �
M��

I � We then de�ne the Grassmannian GKk� n� as an abstract variety to

be the union of the a�ne spaces WI
�! A k�n�k�K modulo the identi�cations

of WI�J with WJ�I given by 
I�J �
This recipe applies perfectly well to de�ne the Grassmannian GSk� n�

over any a�ne scheme S ! SpecA� using the gluing construction of Sec�
tion I����� let

W ! SpecA� � � � � xi�j � � � � � �! A knS �

and for each subset I ! i�� � � � � ik� � f�� �� � � � � ng let WI � W be the
closed subscheme corresponding to matrices whose I�th k� k submatrix is
the identity� that is� the zero locus of the ideal � � � � x��i� � ���� � � � ��� For
each I and J �! I� we de�ne exactly as before open subschemes WI�J !
WI �detMj

� WI and isomorphisms 
I�J � WI�J � WJ�I � and we then
de�ne the Grassmannian GSk� n� to be the S�scheme obtained by gluing

the a�ne spaces WI
�! A k�n�k�S along the 
I�J �

An alternative construction of the Grassmannian GSk� n� is as a sub�
scheme of projective space PNS � where N !

�
n
k

� � �� given by the Pl'ucker
equations� Again� if we are simply careful about transcribing the classical
construction� it works in this new setting as well�

To set it up� start with the polynomial ring A� � � � � XI � � � � � in
�
n
k

�
vari�

ables overA� where the variables are labeled by subsets I ! i� � � � �� ik��
f�� � � � � ng� We may think of the variables XI as corresponding to the max�
imal minors of a k � n matrix M� If we specify further that the �rst k � k
submatrix of M is the identity� that is� M is of the form Ik � B� where
B is a k� n� k� matrix� then these are in turn up to sign the minors of
all sizes of the matrix B� For example� the i� l��th entry of B is the I�th
minor of M� where I ! �� �� � � � �%�� � � � � k� k$ l�� the i� j�� l�m���th minor
of B is the I�th minor of M� where I ! �� �� � � � �%�� � � � � %�� � � � � k� k$l� k$m��
and so on�

In terms of this description of the coordinatesXI as the minors of all sizes
of a k � n � k� matrix A� the Pl�ucker relations are simply homogeneous
polynomials in the variables XI obtained by expanding the determinants
of these submatrices in terms of products of complementary minors of com�
plementary submatrices� For example� Cramer�s rule translates into an ex�
pression of the determinant of an l� l submatrix of A as a sum of products
of entries and determinants of l � �� � l � �� submatrices� in particular�
on the basis of the identi�cation made above we have the relation

�X�����������������������k�k
l�k
m�X���������k�

! X����������������k�k
l�X����������������k�k
m��X����������������k�k
m�X����������������k�k
l��

We take the Pl�ucker ideal J � A� � � � � XI � � � � � to be the ideal generated by
the Pl'ucker relations�
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Another� more intrinsic way to describe the ideal J is simply this� we let

 be the map

A� � � � � XI � � � � � �� A�x���� � � � � xk�n�

XI ���

�������
x��i� � � � x��ik
���

���
xk�i� � � � xk�ik

�������
sending each generator XI of A� � � � � XI � � � � � to the corresponding minor
of the matrix xi�j�� and we let J ! Ker
� In either case� we de�ne the
Grassmannian GSk� n� to be the projective scheme

GSk� n� ! ProjA� � � � � XI � � � � ��J � ProjA� � � � � XI � � � � � ! P
nk���
S �

Exercise III���� Show that the two constructions yield the same scheme
GSk� n��

This description of GSk� n� allows us to describe intrinsically the Grass�
mannian Gk� V � of subspaces of an n�dimensional vector space V over a
�eld K� and hence more generally to de�ne the Grassmannian Gk�E � of
k�dimensional subspaces of a locally free sheaf E over a given base scheme
S� In the more general setting� we take the map of sheaves

E�k ! E � E � � � � � E �� �kE
given simply by �� � � � � � �k �� �� � � � � � �k � and let 
 be the induced
map on symmetric algebras


 � Sym
��kE �� �� Sym

�
E�k

��
�

We then de�ne Gk�E � to be the subscheme of PE �� ! Proj Sym
��kE ��

given by the ideal sheaf Ker
��

One notational convention� since the Grassmannian arises sometimes in
the context of linear subspaces of a vector space� and sometimes in the
context of subspaces of a projective space� we will adopt the convention that
GSk� n� is the scheme described above� and G Sk� n� ! GSk$�� n$���

III���� Universal Hypersurfaces

De�nition III��	� Let S be any scheme� By a hypersurface of degree d
in PnS we mean a closed subscheme X � PnS given locally over S as the zero
locus of a homogeneous polynomial of degree d� that is� for every point
p � S there is an a�ne neighborhood U ! SpecA of p in S and elements
faI � Ag such that the aI generate the unit ideal in A� and

X � PnU ! V
�P

aI x
i�
	 � � � xinn

� � PnU ! ProjA�x	� � � � � xn��
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A hypersurface X � PnS is �at over S the condition that the aI generate
the unit ideal in A means that they have no common zeros in S� so that
the dimensions of the �bers of X � S are everywhere n� ��� and of pure
codimension � in PnS � Note that the �bers of X � S have no embedded
points�

By a plane curve over a scheme S we will mean a hypersurface in P�S �
We can now introduce a fundamental object in algebraic geometry� the

universal family of hypersurfaces of degree d in PnS � This is very straight�
forward to de�ne� for any positive d and n� we set N !

�
d
n
n

� � �� and
let

PNS ! ProjOS �faIg�
be projective space of dimension N over S� with homogeneous coordinates
aI indexed by monomials of degree d in n $ � variables x	� � � � � xn�� We
then introduce the subscheme X !Xd�n � PNS �S PnS given by the single
bihomogeneous polynomial

X ! V
�X

I

aIx
I
�
�

The scheme X � PNS �S PnS � viewed as a family of closed subschemes of
PnS parametrized by PNS � is called the universal hypersurface of degree d in
PnS � By Proposition II�
�� X is �at over PNS �

Note that if S ! SpecK is the spectrum of an algebraically closed �eld�
then every hypersurface X � PnK of degree d is a �ber of X � PNK �
In fact� much more is true� as we will see in Chapter VI� if B is any S�
scheme� and Y � PnB is any closed subscheme� �at over B� whose �bers are
hypersurfaces of degree d� then there is a unique morphism 
 � B � PnS
of S�schemes such that Y ! X �Pn

S
B� This is the meaning of the term

�universal���
Universal hypersurfaces are fundamental objects in algebraic geometry�

and arise in a number of contexts� We will see many examples of these
objects� or variants of them� in the following chapter� and will describe them
in more detail in Section V���� and the following discussions of resultants
and discriminants� We will present here a few of the simpler examples and
related constructions�

We start with some notation and terminology� First� we will assume
throughout that S is irreducible with generic point Q�� so that PNS is
irreducible as well for the most part� we can think of S as the spectrum
of a �eld K� though there will be occasions when it will be handy to be
able to take S ! SpecZ�� Let P � PNS be the generic point� and L ! �P �
its residue �eld� that is� the function �eld in N variables over the function
�eld K ! �Q� of S� Let XP � PNL be the �ber of X � PNS over the
generic point P ! SpecL� XP is sometimes called the generic hypersurface
of degree d� We will as usual write X L� ! XLL� for the set of L�valued
points of X � or equivalently the L�rational points of XP � Geometrically�
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these are sections of X � PNS de�ned over some open subset U � PNS �
algebraically� they are simply solutions xi ! fia� of the equation

P
I aIx

I�
with the xi rational functions of the aI �

We start with a basic fact�

Exercise III���� Show thatX is irreducible� and smooth as an S�scheme�
Hint� consider the projectionX � PNS �SPnS � PnS �� Deduce in particular
that XL � PnL is smooth as an L�scheme�

Now for some examples�

Exercise III���� If d ! �� so that PNS ! PnS��� the scheme X � PnS �S

PnS�� is called� naturally enough� the universal hyperplane� Show that it is
a projective bundle over PnS �

Exercise III��� Suppose now that d is arbitrary and n ! �� so that
N ! d and the scheme X � PdS �S P�S is �nite of degree d over PdS � Show
that the generic �ber XL is a single reduced point R� with residue �eld an
extension of degree d of the function �eld L of PdK �

The last exercise is a little harder�

Exercise III���� Suppose now that S is the spectrum of a �eld K� and
take d ! n ! �� Show that X L� �! ��
Hint � Show that we can reduce to the inverse image of the subspace of

PNK ! P�K corresponding to polynomials aX� $ bY � $ cZ�� or just see the
argument for Proposition IV����

It is in fact the case for all n and d that X L� �! � if and only if d ! ��
as can be seen by an application of the Lefschetz Hyperplane Theorem to
X � PNK �K PnK �

III�� Invariants of Projective Schemes

In this section we assume that K is a �eld and work with K�schemes�
except when explicit mention is made to the contrary�

Suppose that we are given a scheme in a projective space� how can we
�nd invariants of it The simplest idea is to ask� how many independent
forms of degree d vanish on it Putting the answers together� for various d�
we get what used to be called the postulation of the scheme presumably
because one was then interested in schemes for which one postulated certain
values for these numbers�� Nowadays� it is usual to discuss this informa�
tion in the equivalent form of the Hilbert function� We will discuss here
several variations of the method of Hilbert functions� which yield a wide
range of invariants� Some of the invariants that we produce actually depend
only on the abstract scheme and not on the given projective embedding�
while others depend on the data associated to the embedding� and we will
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comment on these matters along the way� The approach we follow is the
original one used by Hilbert ����	�� rather than that of Samuel� which is
more commonly adopted see� for example� Hartshorne ������ Chapter I���
Hilbert�s method requires slightly more technique but yields a stronger and
more easily understood result�

We begin by de�ning the basic invariants� In the last part of the chapter
we will exhibit a number of simple geometric examples showing what sort
of information the invariants contain�

III���� Hilbert Functions and Hilbert Polynomials

To begin with� suppose that we are given a closed subscheme X � PrK
described by a saturated ideal I ! IX� � S ! K�x	� � � � � xr� de�ned as
in Example III���� Suppose that the homogeneous polynomials F�� � � � � Fn
generate I� Write R ! S�IX� for the homogeneous coordinate ring of X�
and write R� for the homogeneous component of degree ��

The basic idea is to associate to X � PrK a function

HX� � � � N � N
called the Hilbert function of X and de�ned by

HX� �� ! dimK R� �

More generally� if M is any �nitely generated graded S�module� we de�ne
its Hilbert function to be HM� �� �! dimK M� � The fundamental result is
as follows�

Theorem III��� Hilbert�� There exists a unique polynomial P X� �� in
� such that HX� �� ! P X� �� for all su�ciently large �� More generally�
for any �nitely generated graded S�module M there exists a unique polyno�
mial P M� �� such that HM� �� ! P M� �� for all su�ciently large ��

We will indicate below how this may be proved along the lines of
Hilbert�s original proof ����	���

The polynomial P X� �� is called the Hilbert polynomial of X� As in the
classical case of varieties� it carries basic information about the scheme X�
For example� we will see that its degree is the dimension of X� and in case
X is of dimension 	� its constant� value is the degree of X� More generally�
we de�ne the degree of any n�dimensional subscheme X of projective space
over a �eldK to be n# times the leading coe�cient of the Hilbert polynomial
of X � this allows us to extend to the larger class of subschemes X � PrK
the classical notion of degree for varieties�

III���� Flatness II� Families of Projective Schemes

Another aspect of the signi�cance of the Hilbert polynomial is that it gives
us a geometric interpretation of the notion of �atness�
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Proposition III���� A family X � PrB of closed subschemes of a projec�
tive space over a reduced connected base B is �at if and only if all �bers
have the same Hilbert polynomial�

A proof of this in the general case would take us too far a�eld� but the
result is easy when the base is B ! SpecK�t��t��

Proof when B ! SpecK�t��t�� A closed subscheme X � PrK�B is given by
an ideal I in

K�t��t��x	� � � � � xr�

which is homogeneous in x	� � � � � xr� Thus each graded piece of the homo�
geneous coordinate ring

R ! K�t��t��x	� � � � � xr��I

is a module over K�t��t��
As we know� the family X � B is �at if and only if each local ring

OX�x is K�t��t��torsion�free� This is the same as saying that the torsion
submodule of R goes to zero if we invert any of the xi� It follows that
the torsion submodule is killed by a power of the ideal x	� � � � � xr� and
thus meets only �nitely many graded components of R� But if R� is a
graded component of R� then since K�t��t� is a principal ideal ring and R�

is �nitely generated as a K�t��t��module� R� is torsion�free if and only if it
is free� Further� R� is free if the number of generators it requires� which by
Nakayama�s Lemma is

dimK R� �K�t��t� K

is equal to its rank

dimK�t�R� �K�t��t� Kt�

that is� if and only if the value of the HX�	�� �� is equal to the value of
HX�t�� ��� where X�	� and X�t� are the �bers of the family X over the two
points 	� and t� of B� By the same argument� the Hilbert function itself
is constant if and only if the family of a�ne cones SpecR is a �at family
over B��

This proposition shows that �at limits of closed subschemes of projective
space behave better than �at limits in general� For example� though it is
certainly possible that the �at limit of nonempty subschemes of an a�ne
scheme may be empty� the proposition shows that this is not possible for
�at limits of nonempty subschemes of a projective space� This� together
with the existence and uniqueness of �at limits of closed subschemes in
a one�parameter family Sections II�
�� and II�
���� gives one approach to
proving that projective schemes are proper� using the �valuative criterion��
For all this� see� for example� Hartshorne ������ Chap� II��

Of course HX� �� contains more information than P X� ��� but it may
appear that P X� ��� as a polynomial with only �nitely many coe�cients� is
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easier to manipulate than the whole Hilbert function� Actually� the Hilbert
function has a �nite expression too� in terms of binomial coe�cients� To
see this� we will introduce a still �ner set of invariants� the graded Betti
numbers of the free resolution of R� in terms of which both the Hilbert
function and the Hilbert polynomial can be written conveniently� The real
advantage that the Hilbert polynomial has over the Hilbert function is that
the information it contains depends a little less� in a sense we will make
precise�on the details of the embedding of X��

III���� Free Resolutions

We will write S�b� for the graded� free module of rank � with generator
in degree b� the apparently unfortunate choice of sign is recompensed by
the convenient and eminently memorable formula

S�b�� ! S��b�

We can resolve R� or indeed any graded S�module� by using graded� free
modules� which are direct sums of copies of modules of the form S�b��
Here is how�

Let us suppose that F�� � � � � Fn is a minimal set of generators for M� We
will write b	j for the degree of Fj � We de�ne an epimorphism


	 � E	 �!
nM
j��

S�b	j��M

by sending the generator of S�b	j� to Fj � M� Let M ��� be the kernel
of 
	� If M ��� �! 	� we repeat the process above with M ��� in place of
M which could be called M �	��� choosing a minimal set of homogeneous

elements e
���
i of E	 that generate M ��� with degrees b�i� we map a graded

free module with generators of degrees b�i onto M�� by a map


� � E� �!

mM
j��

S�b�j�� E	

sending the i�th generator of E� to e
���
i � Continuing in this way� we obtain

a resolution

E � � � � � Ei

i� Ei�� � � � � 
� � E	�

with

Ei !
M
j

S�bij��

Of course� the process stops if some 
i is a monomorphism� Hilbert�s fun�
damental discovery was that this always occurs if S is a polynomial ring�
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Theorem III��� Hilbert�s syzygy theorem�� Let S ! K�x	� � � � � xr �� In
any minimal free resolution as above� 
i is a monomorphism for some
i � r $ �� the number of variables� in particular� any graded S�module has
a �nite� graded� free resolution�

We will not prove this here� see Hilbert ����	� or� for a modern account�
Eisenbud ������ Section ���	� Chap� ��� or Matsumura ������ Theorem
������ The syzygy theorem allows us to prove Theorem III����

Proof of Theorem III���� The Hilbert function of the module S�b� is easy
to write down� Since

S�b�� ! S��b

has a basis consisting of all monomials of degree � � b in r $ � variables�
we see that

HS�b�� �� !
�
r $ � � b

r

�
�

where the binomial coe�cient is to be interpreted as 	 when the bottom is
larger than the top� For � � b� r this agrees with the polynomial

P S�b�� �� ! r $ � � b�r $ � � b� �� � � � � � b�

rr � �� � � � �
so we see that HX� �� is a polynomial for large ��

From a �nite� free resolution for M as an S�module

E � 	 � Er
�

r
�� Er � � � � � E�

� M � 	�

with

Ei !
M
j

S�bij��

we see that the Hilbert function of M can be written in the form

HM� �� !
rX
i�	

���iHEi� �� !
rX
i�	

���i
X
j

HS�bij�� ���

Since we have already shown that each HS�bij�� �� is a polynomial for
large �� we see that HM� �� is a polynomial for large �� as required� This
proves Theorem III����

The Hilbert function and polynomial are clearly invariants of X � PrK �
but it is perhaps not obvious that the graded Betti numbers bij are too�
This follows from Nakayama�s Lemma� see� for example� Eisenbud ������
Chap� ��� or Matsumura ������ Section ��� for a discussion of minimal free
resolutions over a local ring that translates immediately to the graded case�

We have thus three progressively weaker sets of invariants of a projective
scheme� the graded Betti numbers� the Hilbert function� and the Hilbert
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polynomial� To orient the reader� we will list some facts about them that
we will not prove here and that will not be used in an essential way� Then
we will give some examples�

�� As we have already mentioned� the degree d of the polynomial
P X� �� is the dimension of X�

�� The leading term is of the form

�X�

d#
�d

and �X� is called the degree of X� It may be identi�ed with the length
of the subscheme in which X meets a general plane in PrK of dimension
r � d� See� for example� Hartshorne ������ Chapter I� ��
 and ������ This
follows from the observation� proved below Proposition III����� that the
Hilbert polynomial of a zero�dimensional subscheme of degree � in PnK is
the constant polynomial � together with the fact that if Y is a general
hyperplane section of X� then the Hilbert polynomial of Y is the �rst
di�erence function of the Hilbert polynomial of X�that is�

P Y� �� ! P X� ��� P X� �����


� In terms of the description given in Section III���� of maps to pro�
jective space� the Hilbert polynomial P X� �� of a subscheme X � PrK
depends only on the invertible sheaf L corresponding to the embedding
X �� PrK � and not on the particular epimorphism Or
�

X � L In fact� for
readers familiar with cohomology of coherent sheaves� P X� �� is equal� for
all �� to the alternating sum of dimensions of cohomology groups

�L ��� !
X

���i dimK H iX�L ����

In particular� P X� 	� ! �OX � !
P

���i dimK H iOX � is a number
depending onX and not on the embedding# In caseX is a nonsingular curve
over the complex numbers� that is� a Riemann surface� the number

dimK H�OX � ! g ! �� P X� 	�

is the genus of X� and � � P X� 	� turns out to be the right notion of
genus for any one�dimensional scheme� It is called the arithmetic genus of
the scheme� In the case where the dimension d of X is greater than one� it
was at �rst felt that the normal case was the case where H iOX � ! 	 for
� � i � d and this cohomology group always vanishes for i � d�� so the
arithmetic genus of X was by analogy de�ned as � $ ���dP X� 	��

�� The set of all varieties in PrK with Hilbert polynomial equal to a
given polynomial turns out to be itself naturally the set of K�valued points
of a projective scheme� called the Hilbert scheme associated with the given
polynomial� For example� any subscheme X � PrK with Hilbert polynomial
P �� !

�

�
k

�
that is� the Hilbert polynomial of a k�plane� is in fact a

k�plane� and the Hilbert scheme of all such subschemes turns out to be the
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Grassmannian G k� r� ! Gk$�� r$��� There are� however� not many other
cases in which these Hilbert schemes have been understood geometrically#
We will return to this construction in Sections VI���� and VI���� of the �nal
chapter�

Exercise III��
� Let A be a Noetherian ring and X a closed subscheme
of PnA� regarded as a family of schemes over SpecA� Since the �ber Xp of
X over a point p � SpecA is a closed subscheme of Pn�p�� it has a Hilbert
functionHXp� ��� Show that the function HXp� ��� regarded as a function
in p� is upper semicontinuous in the Zariski topology on SpecA� that is� for
any � and any number m�

fp � SpecA j HXp� �� � mg
is a closed subset of SpecA�

We extend the de�nition of the Hilbert polynomial to the case of a sub�
scheme X � PrS of projective space over an arbitrary irreducible base S by
de�ning the polynomial P X� �� to be the Hilbert polynomial of the �ber of
X over the generic point of S� This doesn�t involve anything new�by the
generic �atness theorem of Section II�
�� combined with Proposition III����
or by Exercise III���� X will be �at over an open dense subset U � Sred�
and P X� �� is simply the common Hilbert polynomial of the �bers of XU

over U �but it�s convenient terminology�

�� In many ways the invariant provided by the graded Betti numbers
is the most subtle of all� and until very recently nothing was known of its
geometric signi�cance beyond that of the Hilbert function and polynomial�
Now� however� we know in a few cases and conjecture in a few more� how
they re�ect some subtle aspects of the intrinsic geometry of X� See� for
example� Green ������ Green and Lazarsfeld ������ for more information�

III���	 Examples

Points in the Plane� Already for the case of zero�dimensional subschemes
in the plane we get di�erent information from the Hilbert polynomial�
Hilbert function� and graded Betti numbers�

First of all� we have stated above that the Hilbert polynomial of a sub�
scheme X � PrK is a polynomial whose degree is equal to the dimension of
X � so when X is zero�dimensional� the Hilbert polynomial is a constant�
We can easily prove this and somewhat more in the case of points�

Proposition III���� The Hilbert function of a 	�dimensional subscheme
of degree � in PrK satis�es

HX� �� � �

for all �� with equality for large �� Thus P X� �� � ��
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Proof� We must show that the codimension in K�x	� � � � � xr� of the set of
homogeneous forms of degree � that vanish on X�that is� codim IX�� �
is less than or equal to �� with equality for large �� The reason is that van�
ishing at a point is one linear condition on the coe�cients of a polynomial�
and thus vanishing at X should be � linear conditions� for large � we will
show that these conditions are always linearly independent�

To make this precise� we pass to an a�ne open set� Changing coordinates�
we may suppose that X is contained in the a�ne open set xr �! 	� so that a
form F of degree � belongs to IX� if and only if F x	� � � � � xr��� �� belongs
to the ideal J � K�x	� � � � � xr��� of X in the a�ne open set xr �! 	� To say
that X is of length � means that J is of codimension � in K�x	� � � � � xr���
and thus of codimension less than or equal to � in the space of those poly�
nomials that can be written as F x	� � � � � xr��� �� for F of degree ��these
are simply the polynomials in K�x	� � � � � xr��� of degree less than or equal
to �� This shows at once that HX� �� � � for all �� with equality if J has
codimension � in the space of polynomials of degree less than or equal to
�� But J will have codimension � in the space of polynomials of degree less
than or equal to � as soon as a set of representatives for K�x	� � � � � xr����J
can be chosen from among the polynomials of degree less than or equal to
�� which is certainly true for all large ��

If X � PrK is nonempty� IX� contains nothing of degree 	 we are
working over a �eld#�� so HX� 	� ! �� Thus the proposition provides easy
examples where P X� 	� �! HX� 	��

We can easily exhibit a family of subschemes of P�K with constant Hilbert
polynomial but varying Hilbert function� To construct such a family X �
P�K � SpecK�t�� for example� we can take the �constant� points P and Q
given by x� ! x�$x	 ! 	� and x� ! x��x	 ! 	�� and the variable point
R given by x� ! x�� tx	 ! 	�� and let X be the disjoint� union of P�Q�
and R in P�K � SpecK�t��

P Q

R
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We regard X as a �at family over SpecK�t� by means of the projection
to the second factor� whose �bers X�	� and X� over the generic point and
over every closed point t� �� as schemes over Kt� and K� respectively�
have Hilbert polynomials P X�	�� �� ! P X�� �� � 
� but while the Hilbert
function HX�� �� ! 
 for � ! 	� we have HX	� �� ! ��

Exercise III��	� Let "X� � A �
K be the cone over the �ber X� of the

family X above� Show that there does not exist a �at family "X � A �
K�K

SpecK�t� whose �ber over each point t� �� is "X�� There does exist such
a family over the complement of the origin in SpecK�t�� however�� What
is the �at limit of the cones "X� as � approaches 	 See the example in
Section II�
����

Now consider the case where X is a set of four distinct points in the
plane P�K � We already know that P X� �� � �� We will treat separately the
cases where all the points or all but one of the points lie on a line�

�� X is contained in a line� Suppose� �rst� that the points lie on a line
L� with equation l ! 	� say� The only line containing X is L� so

HX� �� ! HP�K � ��� � ! ��

If q ! 	 is the equation of a conic containing X� then q restricts to a
form of degree � on L� vanishing at the four points of X� so q must vanish
identically on L� Thus q ! 	 is the union of L and one other line� and the
set of equations of conics containing X is the three�dimensional space of
multiples of l by linear forms� This gives

HX� ���HP�K � ��� 
 ! 
�

Starting with � ! 
� however� vanishing at the four points imposes four
independent conditions on forms of degree �� so HX� �� ! �� To prove
this� it is enough� for each 
 point subset X � of X� to �nd a curve of degree
� that contains X � but not the fourth point of X� We may do this with a
curve consisting of � straight lines� three of these passing through one each
of the points of X � and the rest far away from X �
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To compute the minimal free resolution in this and the next examples�
we will use a result of Hilbert� which was generalized and extended to the
local case by Lindsay Burch�

Theorem III���� If I is the homogeneous ideal of a zero�dimensional sub�
scheme X � P�K � then any minimal free resolution of the homogeneous
coordinate ring S�I has the form

	 �
n��X
j��

S�b�j�
A� S�b�j� � S�

Further� the j�th generator of I�that is� the image of S�b�j� in S�is
up to sign the determinant of the matrix A with the j�th row deleted�

For a proof� see Eisenbud ������ Section �	���� for example�
We will make use of this to compute minimal generators of the ideal

IX� through the following corollary�

Corollary III���� If I is the homogeneous ideal of a zero�dimensional
subscheme X � P�K � and if I contains an element of degree e� then I can
be generated by e$ � elements�

Proof� If the minimal number of generators of I is g� then I is generated by
g���� g��� determinants of a matrix A whose entries are in the graded
maximal ideal of S and are thus forms of positive degree� Consequently�
no element of I has degree less than g � �� and we have g � e $ �� as
claimed�

By the theorem� knowing the degrees of the entries of the matrix A is
equivalent to knowing the graded Betti numbers in this case� the b�j are
just the degrees of the minors of A� and b�j is the sum of b�j plus the degree
of the ij�th entry of A�

Applying this to the example at hand� we see that since X lies on a line�
IX� may be generated by two elements� which may� of course� be taken to
be L and a form of smallest possible degree in I that is not divisible by L�

L � �

F � �

As we have noted� this smallest possible degree is �� and we may� for
example� take F to be the equation of a quartic consisting of four lines�
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each through one point of X�

L � �

F � �

Since L and P have no common factor� we see that the minimal free
resolution of S�IX� has the form

	 �� S��� �� S��� S��� �� S�

giving the expression for the Hilbert function

HX� �� !

�
� $ �

�

�
�
�
� $ �

�

�
�
�
� � �

�

�
$

�
� � 


�

�
�

�� All but one of the points of X lie on a line� Next� consider the case
where only three of the four points lie on the line L� Now there is no linear
form in IX�� so HX� �� ! 
�

L � �

F � �

Any quadric containing the three points on L must� by the same argu�
ment as before� contain L� so any quadric containing X is the union of L
and a line through the fourth point� Since the space of linear forms corre�
sponding to lines through the fourth point is two�dimensional� the space
of quadrics containing X is two�dimensional and we have HX� �� ! ��
Following the same argument as before� we show that HX� �� ! � for all
larger �� so this is the case for all � � ��
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As for the resolution� we see by the corollary above that IX� requires at
most three generators� But IX� is not generated by the two independent
quadrics it contains� since these have a common factor� thus it is mini�
mally generated by these two quadrics and another generator� an element
of smallest possible degree not contained in the ideal generated by the two
quadrics or� equivalently� vanishing on a curve not containing L� It is easy
to see that there is a cubic curve with the desired properties� it may be
taken� for example� to be the union of three lines� each passing through one
of the points of L and one passing� in addition� through the fourth point�
Since the minimal generators of IX� have degrees �� �� 
� the matrix A
must be a ��
 matrix whose entries have degrees as given in the following
diagram up to a rearrangement of the rows and columns���

� � �
� �
	 �

�
A �

Of course� the entry of degree 	 must actually be 	� since all the entries
must be in the maximal graded ideal�� Thus the minimal free resolution
has the form

	 � S�
� S���
A� S��� S��� S�
� � S�


� No three points of X lie on a line� Finally� consider the case where
X consists of four points� no three of which lie on a line� We claim that
the Hilbert function of X is the same as in the previous case� HX� �� !

� HX� �� ! � for � � �� The �rst of these values is obvious� since X lies
on no lines� For the second� it is enough as before to note that there are
quadrics and thus a fortiori forms of higher degree� containing any subset
of the four points but missing the last� these may be constructed as before
as unions of lines�

Now we compute the free resolution of S�IX�� Taking the two pairs
of opposite sides of the quadrilateral formed by the points gives us two
quadrics q� and q� without common factor in the ideal of X�

q�

q�
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Since q� and q� are relatively prime� the free resolution of the ideal I they
generate has the form

	 � S���
A� S��� S���

B � S�

where

B ! q� q�� A !

��q�
q�

�
�

Computing the Hilbert function of S�I from this resolution� we see that
it is the same as that of S�IX�� and since I � IX�� we must have
I ! IX�� that is� IX� is generated by q� and q� and X is correspondingly
the intersection of the two conics containing it�

Summing up� we see that all three of the examples look the same from
the point of view of Hilbert polynomials� the �rst two examples are dis�
tinguished by their Hilbert functions� and the last two examples look the
same from the point of view of Hilbert functions but are distinguished by
their graded Betti numbers� It is not hard to �nd corresponding examples
of subschemesX of length � where the properties distinguished are actually
intrinsic properties of the schemes� not dependent on the embedding� For
example� while the scheme SpecK�x��x�� may be embedded in P�K so as
to have any of the Hilbert functions and Betti numbers above for instance�
as the subschemes de�ned by the ideals x	� x

�
��� x	x

�
��x��� x	x�� x�	�� and

x	x��x��� x�	� respectively� the subscheme de�ned by x�	� x
�
�� will always

have the graded Betti numbers and Hilbert function of case 
��

Exercise III��� Find the Hilbert polynomial� the Hilbert function� and
the graded Betti numbers of all subschemes of the plane of length 
�

Examples� Double Lines in General and in P�K� So far� most of our
discussion of projective schemes has been parallel to the theory of varieties�
We will now look at one genuinely nonclassical family of examples�

Exercise II�
� asked you to show that all a�ne double lines are equiv�
alent� This is not true for projective double lines� Here are some simple
examples�

Let K be a �eld� Consider the graded ring

S ! K�u� v� x� y��x�� xy� y�� udx� vdy�

and the scheme

X ! Xd ! ProjS�

To see that X is a double line� we construct an open a�ne covering of
X� The elements x and y are nilpotent in S� so the radical of the ideal
generated by u and v is the irrelevant ideal of S� and X is covered by Xu

and Xv� From the de�nitions we see that

Xu ! SpecS�u����	�
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To analyze the ring S�u����	� we note that it is a factor ring of

K�u� v� x� y��u���	 ! K�v�� x�� y���

where

v� !
v

u
� x� !

x

u
� y� !

y

u
�

and the kernel of the map to S�u����	 is generated by x���� x�y�� y����
and x� � v��dy� see Exercise III���� Thus

S�u����	 �! K�v�� y���y���

and Xu is an a�ne double line� By symmetry� Xv is too� and this proves
that X is a projective double line� Explicitly�

Xv
�! SpecS�v����	

and
S�v����	 �! K�u��� x��� y����x���� x��y��� y���� u���dx�� � y���

�! K�u��� x��� y����x�����

where

u�� !
u

v
!

�

v�
� x�� !

x

v
� y�� !

y

v
�

The simplest way to see that� in contrast to the a�ne case� not all double
lines are isomorphic to one another� is to show that the isomorphism class
of X depends on the integer d� which may be thought of as specifying how
fast the double line twists around the reduced line inside it� To demonstrate
this� we will show that the ring of global sections OX X� of the structure
sheaf of X depends on d� To compute it� suppose �rst that � � OX X��
The element � restricts to an element of OXXu�� which is isomorphic to
K�v�� y���y��� by the above� so we may write

�jXu
! av�� $ bv��y�

and similarly

�jXv
! fu��� $ gu���x��

for unique polynomials a� b� f � and g with coe�cients in K� But on Xu�Xv

we have

u�� !
�

v�

and

x�� !
x

v
!

x�u
v

! v��dy�
u

v
! v��d��y��

Thus f��v�� ! av��� which is only possible if f and a are constant poly�
nomials and f ! a� Also� g��v��v��d�� ! bv��� which is only possible if
both g and b have degree less than or equal to d � � and then each of
g and b determines the other�� Conversely� any element of OXXu� of the
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form a$ bv��y� with a a constant and b a polynomial of degree less than
or equal to d�� extends uniquely to a global section of OX � so we see that
the dimension of OXX� is d $ �� This shows that the isomorphism class
of X depends on d� as claimed�

In fact� we will see below that the integer d is the negative of the arith�
metic genus of X� as de�ned in Section III�
�
� As it turns out� every
projective double line of genus �d� with d � 	� is isomorphic to X�

There are also double lines of positive arithmetic genus� the simplest
example of which is the double conic ProjK�x� y� z��xy � z���� which has
genus 
�and even continuous families of these when the genus is greater
than or equal to �� These objects arise naturally in the study of nonsingular
curves� as a nonsingular nonhyperelliptic curve degenerates to a hyperel�
liptic curve� a phenomenon well known in the classical theory of varieties�
the canonical model of the smooth curve approaches a projective double
line see Bayer and Eisenbud ������ and Fong ����
� for more details��

Exercise III���� What is the ring structure of OXX� for the double line
X above 

Exercise III���� Compute OX X� for the double line

X ! ProjK�u� v� x� y��x�� xy� y��pu� v�x$qu� v�y��

where p and q are any homogeneous polynomials of degree d without com�
mon zeros in P�K � Prove that this double line is isomorphic to the double
line of the example and thus does not depend on the choice of p and q��

To calculate the Hilbert polynomial of X� observe that for each d� the
ideal Id ! x�� xy� y�� udx�vdy� contains the ideal

I ! x�� xy� y���

Since S�I is a free K�u� v��module on the generators �� x� and y� we see
that

HS�I� �� ! HS�x� y�� �� $ �HS�x� y�� �����

Further� we see easily� using this basis� that if we write p ! udx � vdy for
the fourth generator of Id as written above� then for any homogeneous form
q ! qx� y� u� v� we have qp � I if and only if q � x� y�� Thus

HS�Id� �� ! HS�I� ���HS�x� y�� ��d����

But P S�x� y�� �� ! � $ �� Putting all these equalities together� we get

P X� �� ! �� $ d$ ��

so the Hilbert polynomial� and in particular the arithmetic genus

paX� ! �� P X� 	� ! �d�
distinguishes between these double lines for di�erent d�

Here is an exercise that will be useful for the following three examples�
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Exercise III���� Compute the Hilbert polynomials of the following sub�
schemes of P�K �

a� The union of two skew lines�

b� The union of two incident lines�

c� The subscheme supported on the union of two incident lines with an
embedded point of degree � at their point of intersection� not lying in
the plane spanned by the two lines� Also� show that for any point p
on the double line X	 or on any of the double lines above� there is a
unique subscheme of P�K consisting of X	 with an embedded point of
degree � at p� and compute the Hilbert polynomial of this subscheme�

Given this exercise� we can use the notion of Hilbert polynomial to further
illuminate the example of a family of pairs of skew lines tending to a pair of
incident lines� Recall that in Exercise II��� we discussed such a family and
showed that the �at limit was not reduced� it was supported on the union of
the incident lines but had an embedded point at their point of intersection�
As the exercise above suggests� if we complete these families in P�K � we see
that this is necessary from the point of view of Hilbert polynomials�

Consider next a family of pairs of skew lines in P�K � described as follows�
First� let L � P�K be the constant line x ! y ! 	� and let M � P�K be
the line x ! tv� y ! tu� Let Yt be the union of these two lines� We may
ask then for the �at limit of the family Yt� or in other words� the �ber
Y	 over the origin in A �

K of the union Y of the subschemes L and M of
P�K � A �

K given by x ! y ! 	 and x ! tv� y ! tu� respectively� Of course�
the support of Y	 will be the line L� but it is equally clear that it must
have some nonreduced structure� In fact� the �at limit is none other than
the double line X� above�

Exercise III���� Verify that the �at limit Y	 is the double line X�� By
comparing Hilbert polynomials� it is enough to prove inclusion in one di�
rection��

An interesting wrinkle on this last construction is to consider a slightly
di�erent family of pairs of skew lines� we let L be as above� and let Mt

be the line given by x ! tv� y ! �t�u� At �rst glance it might appear
that the �at limit of the unions Yt ! L �Mt will be the double line given
by x� ! y ! 	�� which is isomorphic to the double line X	 above� but
this cannot be� since the Hilbert polynomials are not equal� The following
exercise gives the real situation�

Exercise III��
� Show that with L and Mt as above� the �at limit as
t� 	 of the union L �M is the double line x� ! y ! 	 with an embedded
point of degree � located at the point �	� 	� �� 	��

Exercise III���� Let L� M� and Nt � P�K be the lines u ! v ! 	� y !
v ! 	� and y $ u ! ty$ �� t�v ! 	� respectively� let Zt be their union in
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P�K � Find the Hilbert polynomial of Zt and the Hilbert polynomial of Z	�
What is the limit� in the sense discussed above� of the subschemes Zt � P�K
as t� 	 

N� � � v�axis�

M � � u�axis�

L � � y�axis�
N�

Finally� there are arithmetic analogues of each of the last three examples�
For example� consider the following three families of subschemes of P�Z
which are �at families over SpecZ��
a� Let L � P�Z be the constant line x ! y ! 	� and let M � P�Z be the

line x ! �v� y ! ��u� let U be the union of these two subschemes�

b� Let L � P�Z be the constant line x ! y ! 	� and let M � P�Z be the
line x ! �v� y ! ���u� let U be the union of these two subschemes�

c� Let L � M� and N � P�Z be the subschemes de�ned by u ! v ! 	�
y ! v ! 	� and y$u ! �y��v ! 	� respectively� let U be their union�

Exercise III��	� For each of the subschemes U � P�Z above� �nd the
�ber of U over the point �� � SpecZ� Compare your answer with that
found in the preceding three exercises�

III���� B�ezout�s Theorem

The most classical form of B�ezout�s theorem asserts that if plane curves
C�C � � P�K de�ned by equations of degrees d and e meet in only �nitely
many points� then the number of points of intersection is at most de� with
equality if the two curves meet transversely and the �eld K is algebraically
closed� This important result has gone through many successive generaliza�
tions� In particular� the language of schemes allows us to give a version that
is simultaneously simpler and more general than the original� and� while
this version is not the most general possible� we will focus on this�

For the following� we will work with schemes over a �eld K� As in the dis�
cussion of degree� we could state B�ezout�s theorem for a projective scheme
X � PnS over any base S� but this conveys no more information than
B�ezout�s theorem for schemes over a �eld� applied to the �bers of X over
the generic points of S� Also� note that we do not assume K is algebraically
closed� We will see in Exercises III��� through III��� below examples over
non�algebraically closed �elds�
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The statement of B�ezout�s theorem is very simple� Recall that by a hy�
persurface in projective space PnK ! ProjK�X	� � � � � Xn� over a �eld K we
mean not any n � ���dimensional subscheme of PnK but speci�cally the
zero locus V F � of a single homogeneous polynomial F� In particular� it
will have pure dimension n � � see Eisenbud ������� for example�� and
while it may be nonreduced if F has repeated factors� it will have no em�
bedded components� Recall also that the degree of an arbitrary subscheme
X � PnK of projective space over a �eld K is de�ned in terms of its Hilbert
polynomial� and that if in particular the dimension of X is zero� then its
degree is simply the dimension of the space OX X� of global sections as a
K�vector space�

Theorem III��� B�ezout�s Theorem for complete intersections�� Assume
that Z�� � � � � Zr � PnK are hypersurfaces of degrees d�� � � � � dr in projective
space over a �eld K� and that the intersection ) !

T
Zi has dimension

n� r� Then

deg)� !
Y

di�

Thus� for example� if D and E � P�K are plane curves of degrees d
and e with no common components� then the intersection ) ! D � E will
have degree de� As an immediate consquence� we can deduce from this the
classical �deg)� � de� form of the theorem� together with the fact that
equality holds if and only if ) is reduced and each point of ) has residue
�eld K�

More generally� we can deduce from Theorem III��� the general form of
the equality statement of the classical B�ezout theorem for complete inter�
sections over an algebraically closed �eld� in which we express the productQ
di of the degrees of the hypersurfaces as a linear combination of the de�

grees of the irreducible components )i of the reduced scheme )red� with
coe�cients referred to as the multiplicity of the intersection Z� � � � � � Zr
along )i arising from the nonreduced structure� In this form we can further
generalize the statement of B�ezout�s theorem to arbitrary proper intersec�
tions in projective space that is� intersections of subschemes X�Y � PnK
of pure codimensions k and l such that X � Y has codimension k $ l��
but to do this we will need also to de�ne in general the multiplicity of an
intersection along one of its components� We postpone this� and the proof
of B�ezout�s theorem for complete intersections� in order to give the reader
a chance to try some examples�

Exercise III���� Let C � P�R be the conic curve given as

C ! ProjR �X�Y� Z��X� $ Y � � Z�� � ProjR �X�Y� Z�

and let L�� L� and L� be the lines given by X� X �Z and X � �Z respec�
tively� Show that no two of the schemes C � Li are isomorphic� but that
they all have degree � as schemes over R �
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The following four exercises describe a situation in which B�ezout�s theo�
rem over a non�algebraically closed �eld arises naturally� an intersection of
universal curves over the product of the schemes parametrizing such curves�
The situation is one that occurs frequently� and is of interest apart from its
value as an illustration of B�ezout� as an example of �generic� intersections�

Exercise III��� Let K be a �eld� and let

B ! A ��
K ! SpecK�a� b� c� d� e� f� g� h� i� j� k� l��

Consider the two conic curves Ci � P�B given by

C� ! V aX� $ bY � $ cZ� $ dXY $ eXZ $ f Y Z�

� Proj
�
K�a� b� c� d� e� f� g� h� i� j� k� l��X�Y� Z�� ! P�B

and similarly

C� ! V gX� $ hY � $ iZ� $ jXY $ kXZ $ lY Z� � P�B �
By considering the projection map

�� � C� � C� � P�B ! P�K �SpecK B �� P�K
show that C� � C� is an irreducible K�scheme�

Exercise III���� a� With C� and C� as above� show that the intersection
C� � C� is generically reduced by showing that the projection

�� � C� � C� � P�B �� B ! A ��
K

has a �ber consisting of four distinct hence reduced and K�rational�
points�

b� Although part a� is enough for the application in the following ex�
ercise� deduce that C� � C� is everywhere reduced by unmixedness
of complete intersections see Eisenbud ������� for example�� Alterna�
tively� show that it is nonsingular by a direct tangent space calculation�

Exercise III���� Let L ! Ka� b� c� d� e� f� g� h� i� j� k� l� be the �eld of
rational functions in �� variables over K that is� the function �eld of
B ! A ��

K �� Let

C� ! V aX� $ bY � $ cZ� $ dXY $ eXZ $ f Y Z� � P�L
and

C� ! V gX� $ hY � $ iZ� $ jXY $ kXZ $ lY Z� � P�L�
that is� C� and C� are the �bers of C� and C� over the generic point of A ��

K �
Deduce from the preceding two exercises that the intersection C� �C� is a
single� reduced point P�
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Exercise III���� Keeping the notation of the preceding problem� show
that� as B�ezout predicts� the intersection C� �C� has degree � as a scheme
over L�that is� the residue �eld �P � of the point P ! C��C� is a quartic
extension of L�
Hint� introduce a�ne coordinates x ! X�Z and y ! Y�Z on an open

subset of P�L� and express �P � as

�P � ! L�x��Rx��

where Rx� is the resultant of the dehomogenized form of the de�ning
polynomials for C� and C� with respect to x as in Section V���

There is an interesting sidelight to this example� which we will mention
in passing� One question we may ask in this situation is� what is the Galois
group of the Galois normalization of the extension L � �P � To answer
this� at least in case the ground �eld K ! C � we should introduce what we
call the monodromy group of the four points of intersection of two general
conics� Brie�y� there is an open subset U � B over which the �bers of the
projection 
 � C��C� � B are reduced� and in terms of the classical topol�
ogy� the restriction of the map 
 to the inverse image of U is a topological
covering space� As such� for any point p � U we have a monodromy action of
the fundamental group ��U� p� on the points of the �ber 
��p�� to an arc
� � �	� ��� U starting and ending at p and any point q � 
��p� we asso�
ciate the end point of the unique lifting "� � �	� ��� 
��U� of � to 
��U�
with "�	� ! q� Informally� suppose we allow two conics C�t�� C�t� � P�C to
vary with a real parameter t � �	� ��� keeping them transverse at all times�
As t varies� the four points of the intersection C�t� � C�t� vary� and if
the conics return to their original positions�that is� Ci	� ! Ci���we
�nd that while the intersection C�	� � C�	� ! C��� � C��� the four
points individually may not return to their original positions� the resulting
group of permutations of the four is called the monodromy group� It turns
out that the answer to our original problem�that is� the Galois group of
the Galois normalization of �P � over L�coincides with the monodromy
group of the four points� which it is possible to see from this geometric
characterization is the symmetric group on four letters�

More generally� in many enumerative problems that depend on parame�
ters in this example� the intersection of two conics�� the universal solution
turns out to be a single point P� with residue �eld �P � a �nite extension
of the function �eld L of the scheme in this case B ! A ��

K � parametrizing
the problems� In this situation� we may ask� what is the Galois group of
the Galois normalization of the extension L � �P � This turns out in gen�
eral to coincide with the monodromy group of the problem� For a general
treatment see Harris �������

We will now give a proof of B�ezout�s theorem� and also discuss its possible
generalizations� We will prove it by using the Koszul complex to calculate
the Hilbert polynomial of ) and in particular its degree�� The Koszul
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complex is fully described in Eisenbud ������ Chapter ���� we will sketch
the construction here and simply state the properties we need�

First� we introduce the de�ning equations of the hypersurfaces Zi� we
write

Zi ! ProjK�X	� � � � � Xn��Fi� � ProjK�X	� � � � � Xn��

so that

) ! ProjK�X	� � � � � Xn��F�� � � � � Fr��

We now describe a resolution of the homogeneous coordinate ring S� as
follows� First� for any subset

I ! fi�� i�� � � � � ikg � f�� �� � � � � rg�
we will denote by jI j ! k the number of elements of I� and by

dI !
kX

���

di�

the sum of the degrees of the corresponding polynomials� We then set

Mk !
M
jIj�k

S�dI�

where as usual S ! K�X	� � � � � Xn� is the polynomial ring� As there is
a unique I with jI j ! 	� we set M	 ! S� We will write an element of
Mk as a collection fGIg of polynomials� where I ranges over all multi�
indices of size k� by our de�nition� fGIg will be homogeneous of degree d
if degGI� ! d� dI for each I�

We now de�ne a complex

	 ��Mr ��Mr�� �� � � � ��M� ��M� ��M	 ! S�

The map 
k � Mk � Mk�� is given by setting 
kfGIg� equal to the
collection of polynomials fHJg� where

HJ !
X
���J

�F� �GJ�f�g

and the sign depends on the number of elements of J less than ��
Notice that the image of 
� � M� �M	 ! S is exactly the ideal of )� In

fact� this sequence is a free resolution of the coordinate ring S�� This is a
general phenomenon� whenever we have a collection of elements F�� � � � � Fr
in a ring S� we can form a sequence in this way� which is called the Koszul
complex� It is a standard theorem that whenever the collection F�� � � � � Fr
is a regular sequence� then the associated Koszul complex is a resolution
see Eisenbud ������ Chapter ���� for example�� In the present circum�
stance� where the polynomials Fi are homogeneous� the hypothesis on the
dimension of ) together with the fact that the polynomial ring S is Cohen�
Macaulay implies that the polynomials F�� � � � � Fr form a regular sequence
in S just as in the local case�� so the sequence above is a resolution�
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Given the Koszul resolution� it is straightforward to describe the Hilbert
polynomial P )� ��� If we write HMk� �� for the Hilbert polynomial of
the module Mk that is� HMk� �� is the polynomial that agrees with the
dimension of Mk in degree � when � is large�� then from the exactness of
the Koszul complex we see that

P )� �� !
X

���kP Mk� ��

depends only on the numbers di and not on the particular polynomials Fi�
For convenience� we will denote the Hilbert polynomial of such a complete
intersection by Pd������dr��� Note that we don�t need to write down the
Koszul complex to see that complete intersections of given multidegree all
have the same Hilbert polynomial� this follows directly from the �atness of
families of complete intersections as stated in Proposition II�
���

Now� simply adding up the contributions of the summands in the Kozsul
complex above� we see that

Pd������dr�� !
X

I�f������rg
���jIj

�
n$ � � dI

n

�

where the sum ranges over all subsets of f�� �� � � � � rg� including the empty
set and the whole set�

This in a sense the complete answer to the question of the Hilbert poly�
nomial of )� but there remains the problem of reading o� from it things like
the degree of )� To do this� we use an induction on the number r to relate
the functions Pd������dr�� and Pd������dr����� This is simple� in the expres�
sion above for Pd������dr��� we simply separate out those terms in which
r � I and those terms in which it is not� The terms in which r �� I visibly
add up to Pd������dr����� and comparing terms in which r � I to the term
corresponding to I n frg� we see that these add up to Pd������dr��� � dr��
Thus�

Pd������dr�� ! Pd������dr����� Pd������dr��� � dr��

Now� since

�m � � � ��m ! m��m�� $O�m���

where� following the analysts� convention� we have written O�m��� to
denote a sum of terms of degree at most m� ��� we see that if f�� is any
polynomial� written as

f�� ! cm�
m $O�m���

then

f��� f� � �� ! m�cm�
m�� $O�m����

Since the Hilbert polynomial of projective space itself is

P PnK � �� !
�
� $ n

n

�
!

�

n#
�n $O�n����
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we can write

Pd������dr�� ! nn� �� � � � n� r $ ��d�d� � � � dr �

n#
�n�r $O�n�r���

!
d�d� � � � dr
n� r�#

�n�r $O�n�r����

Hence

deg)� ! d�d� � � � dr�
as desired�

We could have avoided the �nal computation in this proof by specializing�
By using the fact established at the outset that complete intersections of
given multidegree all have the same Hilbert polynomial� we can just choose
for each pair i� j� with � � i � r and � � j � di a general linear form Li�j
and let Zi ! V Fi� where

Fi !

diY
j��

Li�j

for each i� The intersection ) !
T
Zi is then the union of

Q
di reduced lin�

ear subspaces in PnK � and so has degree
Q
di� we conclude that all complete

intersections of multidegree d�� � � � � dr� do�

Exercise III���� For another specialization� let Zi � PnK be the sub�
scheme de�ned by FiX	� � � � � Xn� ! Xdi

i � Show directly that the intersec�
tion

T
Zi has degree

Q
di� Hint� you can reduce to the case r ! n��

Multiplicity of Intersections� B�ezout�s theorem for complete intersec�
tions Theorem III���� gives the degree of a complete intersection of hyper�
surfaces� but in practice we are often interested in intersecting more general
subvarieties or subschemes of projective space� Since we have already de�
�ned the degree of any subscheme of projective space� it seems natural
to ask whether the degree of an arbitrary intersection of subschemes X�
Y � PnK is the product of the degrees of X and Y� always assuming the
intersection is proper� that is� has the expected codimension� This turns
out to be false in general� although it does hold if we make some hypoth�
esis on the singularities of the schemes being intersected� if X and Y are
locally complete intersection subschemes of PnK � or more generally Cohen�
Macaulay subschemes of PnK � we have�

Theorem III��
 B�ezout�s Theorem for Cohen�Macaulay schemes�� Let
X and Y � PnK be Cohen�Macaulay schemes of pure codimensions k and l
in PnK � If the intersection X � Y has codimension k $ l� then

degX � Y � ! degX degY�

Example III���� As we indicated� the statement of Theorem III��� fails
without the hypothesis that X and Y are Cohen�Macaulay� and it�s in�
structive to see an example of this� Perhaps the simplest occurs in P�K !
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ProjK�Z	� Z�� Z�� Z�� Z��� we take X ! -� � -� the union of the two ��
planes

-� ! V Z�� Z�� and -� ! V Z�� Z��

and we take Y the two�plane

Y ! V Z��Z�� Z��Z���

We have already discussed this example in Exercise I��
 and following
Lemma II�
	� in particular� we have seen that the scheme X � Y of in�
tersection is the subscheme of the plane Y de�ned by the square of the
maximal ideal of the origin� and so has degree 
� Alternatively� since the
projective tangent space to X is all of P�K � it follows that the Zariski tan�
gent space toX�Y is two�dimensional� from which we may see immediately
that degX �Y � � 
�� But degX deg Y ! � � � ! �� and so Theorem III���
cannot hold�

What is going on in this example is not mysterious� Express Y as the
intersection of two general hyperplanes H�� H� containing it� and reparen�
thesize the intersection X � Y as

X � Y ! X � H� �H�� ! X �H�� �H��

The �rst time we intersect� we �nd that the intersection scheme X�H� has
an embedded point at the point Z�� Z�� Z�� Z��� The second hyperplaneH�

passes through this point� in e�ect picking up the extra intersection�

This example both demonstrates the need for a re�ned way of ascribing
multiplicity to a component of the intersection of subschemes of projective
space� and suggests a way to do it� Here is the idea� Suppose we are given
schemes X�Y � PnK � of pure codimensions k and l� intersecting in a scheme
of codimension k $ l� We �rst reduce to the case where the scheme Y is a
linear subspace of projective space� as follows� choose two complementary
n�dimensional linear subspaces -�� -� � P�n
�K � and an isomorphism of
PnK with each� Concretely� we can label the homogeneous coordinates of
P�n
�K as x	� � � � � xn� y	� � � � � yn and take the linear spaces to be given by
x	 ! � � � ! xn ! 	 and y	 ! � � � ! yn ! 	�� Write X � and Y � for the
images of X and Y � PnK under these two embeddings� Let J � P�n
�K

be the subscheme de�ned by the equations of X� written in the variables
xi� together with the equations of Y� written in the variables yi�in other
words� the intersection of the cone over X � with vertex -� with the cone
over Y � with vertex -�� J is called the join ofX � and Y �� set theoretically� it
is the union of the lines joining points of X � to points of Y �� Let , � P�n
�K

be the subscheme de�ned by the equations x	 � y	 ! � � � ! xn � yn ! 	� It
is clear that the scheme X � Y is isomorphic to the scheme J �,� and we
will de�ne the multiplicity of intersection of X and Y along an irreducible
component Z � X �Y to be the intersection multiplicity of J and , along
the corresponding component of J �,� We have thus reduced the problem
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of de�ning the multiplicity of intersection of X and Y along an irreducible
component Z � X � Y to the case where Y is a linear space�

We will handle this case� as suggested by the example above� by writing
Y as an intersection of hyperplanes H� � � � � �Hl and intersecting X with
the Hi one at a time� After each step we discard the embedded components
of the intersection� In the end we arrive at a scheme W contained in the
actual intersection X � Y� which has degree satisfying B�ezout�s theorem�
degW � ! degX� degY �� To relate this to the classical language� for each
irreducible component Z of the intersection X � Y� we de�ne the inter�
section multiplicity of X and Y along Z� denoted �ZX � Y �� to be the
length of the local ring of W at the generic point of W corresponding to
the component Z� We have then�

Theorem III�
	 B�ezout�s Theorem with multiplicities�� Let X and Y �
PnK be schemes of pure codimensions k and l in PnK � If the intersection X�Y
has codimension k $ l� then

degX � Y � !
X
Z

�ZX � Y � degZred�

There are other approaches to the de�nition of the multiplicity �ZX �Y �
of intersection of two schemes X and Y � PnK along a component Z �
X �Y � the classical literature is full of attempts at de�nitions� and there is
also a modern approach involving the sheaves TorOX �OY �� Most of these
approaches will work as well to de�ne intersection multiplicities of any two
subschemes X� Y of a nonsingular subscheme� as long as the intersection
is proper�

Beyond this� there is a still more general version of B�ezout�s theorem
that works for arbitrary subschemes X and Y of pure codimensions k and
l in a nonsingular scheme T� even when the intersection X � Y does not
have codimension k$ l or even for subschemes X� Y of a possibly singular
scheme T� in case one of the two is locally a complete intersection subscheme
of T �� In this setting� one associates multiplicities to certain subschemes� or
equivalence classes of subschemes� of the actual intersection X �Y� in such
as way that in case T ! PnK� the degrees of these subschemes times the
corresponding multiplicities add up to degX degY � For this and further
re�nements� see Fulton ������ and Vogel �������

Exercise III�
�� In case the idea of taking X reducible in Example III���
strikes the reader as cheating� show that the same phenomenon occurs if we
take X � P�K the cone over a nonsingular rational quartic curve C � P�K �
with Y again a two�plane passing through the vertex�

Exercise III�
�� To see that the failure of Theorem III��� to hold in
general cannot be remedied by replacing degX�Y � by any other invariant
of the schemeX�Y in the left hand side of the statement of Theorem III����
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�nd an example of a scheme ) � PnK and subschemes X�Y� Z�W � PnK of
the appropriate dimensions� such that X � Y ! Z �W ! )� and

degX deg Y ! deg ) �! degZ degW�

III���� Hilbert Series

As the �nal note in our discussion of Hilbert functions� Hilbert polynomials
and free resolutions� we mention the Hilbert series of a subscheme X � PnK �
or more generally of a graded module M over the coordinate ring S of PnK �
This is simply a very useful vehicle for conveying the information of the
Hilbert polynomial� as an illustration� we will be able to write down the
Hilbert polynomial of a complete intersection in a much more transparent
way�

The Hilbert series HM t� of a module M is easy to de�ne� if P M� �� is
the Hilbert function of M� we let HM t� be the Laurent series

HM t� !

�X
����

P M� ��t� �

We de�ne the Hilbert series HXt� of a subscheme X � PnK to be the
Hilbert series of its coordinate ring SX ! S�IX�� The �rst thing to note
is that the Hilbert series of projective space itself is simple� we have

HPn
K
t� ! HSt� !

�

�� t�n
�
�

Similarly� the Hilbert series of any twist Sd� of S is simply

HS�d�t� !
td

�� t�n
�
�

Given any exact sequence of graded S�modules

	 ��Mr ��Mr�� �� � � � ��M� ��M� ��M	 �� 	�

we see that their Hilbert series satisfy the relation

rX
k�	

���kHMk
t� ! 	�

Thus� if we have a free resolution of a scheme X � PnK

� � � ��
k�M
i��

S�a�i� ��
k�M
i��

S�a�i� �� S �� SX �� 	�

we see that the Hilbert series

HX t� !

P
���itai�j

�� t�n
�
�
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where we adopt the convention that k	 ! � and a	� ! 	�� One thing we
see from this is that the Hilbert series of any subscheme of projective space
is a rational function of t�

Exercise III�
� Show that if X � PnK is a subscheme of dimension m�
then the rational function HXt�� reduced to lowest terms� has numerator

"HXt� ! �� t�m
�HXt��

in particular� this is a polynomial in t� Show that its value at � is

"HX�� ! degX��

Now suppose that X � PnK is a complete intersection of r hypersur�
faces of degrees d�� � � � � dr� By the Koszul resolution above� we see that the
Hilbert series

HXt� !

P
���jIjtjIj

�� t�n
�
�

We can factor this� and cancel factors� writing

HXt� !

Q
�� tdi�

�� t�n
�
!

Q
� $ t$ � � �$ tdi���

�� t�n�r
�
�

Hence�

"HXt� ! �� t�dim�X�
�HXt� !
Y

� $ t$ � � �$ tdi����

Since the value of this polynomial at t ! � is the product
Q
di� B�ezout�s

theorem follows�
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IV

Classical Constructions

In this chapter� we illustrate how some geometric constructions from clas�
sical algebraic geometry are carried out in the setting of scheme theory� We
will see in each case how the new language allows us to extend the range of
the de�nitions and of the questions we may ask about the objects�� how it
enables us to give precise formulations of classical problems� and in some
cases how it helps us to solve them�

IV�� Flexes of Plane Curves

In this section� we will describe the classical de�nition of a �ex of a nonsin�
gular plane curve C � P�K over an algebraically closed �eldK� We will then
indicate how this de�nition may be extended to the setting of schemes� and
show how this extension sheds light on the geometry of �exes� even in the
classical case�

IV���� De�nitions

We need one preliminary de�nition� Let K be any �eld� let C�D � P�K be
two plane curves without common components� and let p � C � D be a
point of intersection� We de�ne the intersection multiplicity of C and D
at p� denoted �pC �D�� to be the multiplicity of the component ) of the
scheme C � D supported at p� Since plane curves are Cohen�Macaulay�
this coincides with the notion of intersection multiplicity introduced in
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Section III�
��� Note also the relation with the notion of degree� the degree
of ) as a subscheme of P�K is the intersection multiplicity �pC �D� times
the degree �p� � K� of the residue �eld as an extension of K� Thus� for
example� the B�ezout theorem III���� for plane curves asserts that

degC degD !
X

p�C�D
�p� � K��pC �D��

This said� the notion of a �ex of a plane curve in classical algebraic
geometry is a straightforward and geometrically reasonable one� if C �
P�C is a nonsingular plane curve of degree d over the complex numbers� a
point p � C is called a �ex if the projective tangent line TpC � P�C see
Section III����� has contact of order 
 or more with C at p� or� in modern
language� if the intersection multiplicity �pC � TpC� of TpC and C at p
is at least 
� Here� since we are working over an algebraically closed �eld�
the intersection multiplicity coincides with the degree of the component of
TpC�C supported at p� that is� dimC OTpC�C�p��� It is a classical theorem
which we will establish below� that if C is not a line� then C has �nitely
many �exes� and that if they are counted with the proper multiplicity the
number is 
dd� ���

This simple de�nition was extended to singular curves� see� for example�
Coolidge ���
��� though the de�nitions are not always precise by modern
standards� There are also problems with the de�nition if we consider curves
C � P�K over non�algebraically closed �elds K� or over �elds K of �nite
characteristic� or curves that contain a line or a multiple component�

What we will do here is to give a uniform de�nition of �exes for an
arbitrary plane curve C � P�S over any scheme S� First recall from Sec�
tion III���� that by a plane curve of degree d over a scheme S we mean a
subscheme C � P�S that is� locally on S� the zero locus V F � of a single
homogeneous polynomial

F X�Y� Z� !
X

i
j
k�d

aijkX
iY jZk

of degree d whose coe�cients aijk are regular functions on S not vanishing
simultaneously� Recall also that if S is a�ne� we can dispense with the
word �locally�� that is� if S ! SpecA� a plane curve C over S is of the form

C ! ProjA�X�Y� Z��F �

for some polynomial F�
Now� given a plane curve C � P�S over S� we will de�ne a closed sub�

scheme F ! FC � C� which we will call the scheme of �exes on C� This
will commute with base change S� � S that is� if we set C � ! S� �S C �
P�S� � then FC� ! ���

��FC�� and F will be �nite and �at of degree

dd � �� over at least the open subset of S where the relative dimension
of F is zero� The signi�cance of this is that if we have a family of plane
curves� the limits of the �exes of the general �ber are �exes of the special



IV�	 Flexes of Plane Curves 	��

�ber that is� F is closed�� and conversely in case F has relative dimen�
sion zero F is �at�� Moreover� in the classical setting� that is� if C is a
nonsingular plane curve over the spectrum S ! SpecK of an algebraically
closed �eld of characteristic zero�the support ofF will be the set of �exes
of C as de�ned classically and hence in the general case� if s � S is any
point whose residue �eld �s� is algebraically closed of characteristic zero�
the support of the �ber Fs of F over s will be the set of �exes of Cs��

To motivate our de�nition in the general case� we recall one of the earliest
results in the classical setting� for a nonsingular plane curve C ! V F � �
P�K over an algebraically closed �eld K� given as the zero locus of a poly�
nomial F X�Y� Z�� the �exes of C are the points of its intersection with its
Hessian� the curve de�ned as the zero locus of the polynomial

HX�Y� Z� !

������������

��F
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��F
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��F
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We leave the proof of this fact as an exercise�

Exercise IV��� Let K be an algebraically closed �eld of characteristic
zero� C � P�K a plane curve and p � C a nonsingular point of C� Show
that the projective tangent line TpC has contact of order 
 or more with
C at p if and only if Hp� ! 	�
Hint� introduce a�ne coordinates

x !
X

Z
� y !

Y

Z

on the corresponding subset of P�K and use Euler�s relation to see that the
dehomogenization hx� y� ! Hx� y� �� of the Hessian determinant is up to
scalars�

hx� y� !

�������������

f
�f
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��f

�x�
��f
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��f
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��f
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�������������
�

where fx� y� ! F x� y� �� is the dehomogeneization of F�

To de�ne the scheme of �exes of an arbitrary plane curve C � P�S in the
general setting� we simply generalize the Hessian and extend this charac�
terization� Suppose that in some a�ne open subset U ! SpecR � S the
curve

C � P�U ! ProjR�X�Y� Z�
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is the zero locus of the polynomial F � R�X�Y� Z�� We de�ne the Hessian
determinant to be the polynomial

HX�Y� Z� !

������������
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Since F� and hence H� is determined by C up to multiplication by a unit
in R ! OU�� we may de�ne the Hessian C � of C to be the subscheme of
P�S de�ned by the Hessian determinant over each a�ne open U � S� and
we de�ne the scheme F of �exes of C to be the intersection

F ! C � C ��
We see immediately that this is a closed subscheme of C and that its
formation commutes with base change� In particular� for any point s � S�
the �ber Fs of F over s will be simply the scheme of �exes of the �ber
Cs � P��s� of C over s� As the intersection of two plane curves of degrees
d and 
d� �� it is �nite and �at of degree 
dd� �� over at least the open
subset of S where the �ber dimension is zero by Proposition II�
�� families
of complete intersections are �at�� And� by Exercise IV��� a nonsingular
point of a curve C over an algebraically closed �eld of characteristic zero
lies in F if and only if it is a �ex in the classical sense�

One word of warning� our de�nition does not coincide with the classical
one in the case of a singular curve C � P�K � in our de�nition the singular
points of C will always be in the support of F� As we will see� this is as
it must be if the �exes of a family of curves are to be closed in the total
space�� As for the classical formulas� we will see below how to derive them
from our de�nition�

We can go further and relate the scheme structure of F at p to the
geometry of C at p�

Exercise IV��� Let C � P�K be as in Exercise IV��� and p � C a non�
singular point of C� Show that the projective tangent line TpC � P�K to
C at p has intersection multiplicity m � 
 with C at p if and only if the
component )p of the intersection C � C � supported at p is isomorphic to

)p �! SpecK�x��xm����

As this exercise suggests� we de�ne the multiplicity of a �ex p � Csmooth

to be the order of contact of TpC with C at p minus �� We would like to
apply B�ezout�s theorem to deduce that a nonsingular plane curve of degree
d � � over an algebraically closed �eld K has exactly 
dd � �� �exes�
counting multiplicity� but there is one further issue� we need to know that
F is a proper subscheme of C� that is� that not every point of C is a
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�ex# Although this seems intuitively obvious� it is actually false in positive
characteristic�

Exercise IV�� Let K be a �eld of characteristic p� and let C � P�K be
the plane curve given by the polynomial XpY $XY p � Zp
�� Show that
C is nonsingular� but that every point of C is a �ex�

In characteristic 	� however� our intuition is correct�

Theorem IV��� If C � P�K is any nonsingular plane curve of degree d � �
over an algebraically closed �eld K of characteristic zero� then not every
point of C is a �ex so that in particular C has exactly 
dd � �� �exes�
counting multiplicity��

Proof� See for example Hartshorne ������ Chapter IV� Exercise ��
e� or
Gri�ths and Harris ������ Chapter �� Section ���

Flexes of multiplicity m � � certainly can occur on nonsingular curves�
This naturally raises the question of whether� on a general curve� all the
�exes are simple that is� have multiplicity ��� In fact� this is the case�

Exercise IV��� LetK be an algebraically closed �eld� Fix an integer d � �
and let B ! PNK the projective space parametrizing plane curves C � P�K
of degree d� Show that for a general point �C� � B�that is� for all points
�C� in a dense open set in B�all the �exes on the corresponding curve
C � P�K are simple�
Hint� Consider the scheme of �exes F of the universal curve C � P�B

as de�ned in Section III������ Show that F is irreducible� and deduce that
it is su�cient to exhibit a single plane curve C � P�K with a single simple
�ex�

Exercise IV��� Suppose we want to remove the hypothesis that K is al�
gebraically closed in Theorem IV�� above� How should we de�ne the mul�
tiplicity of a �ex point p � C with residue �eld a �nite extension L of K
so as to preserve the conclusion that X has 
dd� �� �exes 

IV���� Flexes on Singular Curves

Interesting new questions arise when we consider singular curves� First of
all� every singular point is a �ex�

Exercise IV��� Let C � P�K be a plane curve� Show that all singular
points of C are �exes�
Hint� either exhibit a line through a singular point p of C with intersec�

tion multiplicity 
 or more by looking at the tangent cone to C at p that
is� expanding f around p and taking a component of the zero locus of the
quadratic term�� or use Exercise IV�� and show that the Hessian vanishes
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at p by observing that X times the �rst column of the Hessian determinant�
plus Y times the second column� plus Z times the third� vanishes at p�

There are two sorts of questions about �exes on singular curves� First� we
can consider curves C with isolated singularities and no line components�
so that the Hessian C � will still meet C in a zero�dimensional scheme )� and
thus C will have a �nite number of �exes� we ask for the number of �exes
supported at nonsingular points of C� To �nd this number� we simply have
to �nd the degree of the part of the scheme ) whose support is contained
in the singular locus Csing and subtract this from 
dd � ��� It turns out
that this has a nice answer in particular cases� two of which are expressed
in the following exercise�

Exercise IV�
� Let C � P�K be irreducible and reduced� with Hessian
C �� Looking ahead to De�nition V�
�� let p � C be an ordinary node of C
�ordinary� here means neither branch of C at p has contact of order 
 or
more with its projective tangent line�� Show that the component )p of the
intersection C � C � supported at p has degree � over the residue �eld �p�
of p� Similarly� show that the component supported at a cusp p of C has
degree �� What is the degree if p is an ordinary tacnode of C For formal
de�nitions of node� cusp and tacnode see De�nition V�
���

Thus� over an algebraically closed �eld� the number of nonsingular �exes
of a plane curve of degree d not containing any lines and having as singu�
larities � ordinary nodes and � cusps is


dd� ��� �� � ���

This is an example of the classical Pl�ucker formulas for plane curves�

Exercise IV��� Verify that if C is reducible again assuming no com�
ponent of C is a line�� we can get the same answer by considering the
components of C individually�

IV���� Curves with Multiple Components

A very di�erent sort of question emerges when we consider curves with
multiple components� for example the curve de�ned by a power F ! Gm of
a polynomial GX�Y� Z�� Of course� for such a curve C the scheme FC of
�exes is positive�dimensional� and typically not that interesting� Rather� the
interesting questions arise when we consider families of curves specializing
to such a multiple curve� We ask� in such a family� where do the �exes go 

To give just an example of such a problem� consider the case of a nonsin�
gular quartic plane curve degenerating to a double conic in a linear family�
Let K be an algebraically closed �eld of characteristic zero and consider a
curve C over the scheme B ! A �

K ! SpecK�t�� Suppose U ! UX�Y� Z� is
an irreducible quadric polynomial and G ! GX�Y� Z� any quartic poly�
nomial such that the curves V U� and V G� � P�K intersect transversely�
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Consider the family � � C � A �
K of quartic plane curves given by the

equation F ! U� $ tG ! 	�that is� the scheme

� � C ! ProjK�t��X�Y� Z��
�
UX�Y� Z�� $ tGX�Y� Z�

�
� ProjK�t��X�Y� Z� ! P�B �� B�

Let F be the scheme of �exes of the curve C � P�B � To set up the
problem� let F � � P�B� be the inverse image in F of the punctured line
B� ! SpecK�t� t��� � B� and F � the closure of F � in P�B � The scheme F �

is �nite and �at over B�� and readily described� if C� � P�K is the �ber of
C over the point t��� � B ! A �

K � then for � �! 	� the �ber F� of F over
t� �� will be the 
dd� �� ! �� �exes of C�� In other words� away from
the origin t� � B ! A �

K the �exes of the curves C� themselves form a �at
family�

Let F � be the closure of F � in P�B � and let F �	 be the �ber of F � over
the origin� Since B is one�dimensional and nonsingular�F � will be �at over
all of B� it follows in particular that F �	 � C	 � P�K has dimension zero
and degree �� over K� We may think of F �	 as the �limiting position� of
the �� �exes of the nearby nonsingular curves C� as � approaches zero�
Thus� the naive question� �where do the �exes of a plane quartic go when
the quartic degenerates into a double conic � translates into the precise
problem� determine the �at limit F �	� and in particular its support�

What makes this tricky is that the scheme F �	 is not the �ber of F over
the origin� Rather�F will have two components� one� the closureF � of F �

consisting of the �real� �exes and their limits� and the other supported on
the conic V t� U� in the special �ber ���t�� ! P�K of P�B � Thus we cannot
hope to gain any clues to the answer simply by looking only at the curve
C	 indeed� since the group of automorphisms of P�K carrying C	 into itself
acts transitively on the closed points of the conic C	�red� we see that the
answer must depend on the family C ��

To answer the question� we �rst write down the ideal I of the scheme
F in an a�ne open subset SpecK�t��x� y� �! A �

B � P�B�� then the ideal
I� ! I � K�t� t����x� y� of F �� then the ideal I � ! I� � K�t��x� y� of the
closure F �� and �nally the ideal I �	 ! I �� t� of the �ber F �	 of F � over the
origin t� � B� To illustrate how such calculations are done� we will carry
out these steps in detail� You may wish to wait to look at these details
until you have a similar problem of your own to solve#�

To start� if ux� y� ! UX�Y� �� and gx� y� ! GX�Y� �� are the inhomo�
geneous forms of U and G respectively in the a�ne open SpecK�t��x� y� �!
A �
B � P�B � the ideal I is by de�nition generated by two elements� the equa�

tion u� � tg and the a�ne Hessian������
u� � tg �uux $ tgx �uuy $ tgy

�uux $ tgx �uuxx $ �u�x $ tgxx �uuxy $ �uxuy $ tgxy
�uuy $ tgy �uuxy $ �uxuy $ tgxy �uuyy $ �u�y $ tgyy

������ �
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Thus� I ! u� � tg�H�� where

H !

������
	 �uux $ tgx �uuy $ tgy

�uux $ tgx �uuxx $ �u�x $ tgxx �uuxy $ �uxuy $ tgxy
�uuy $ tgy �uuxy $ �uxuy $ tgxy �uuyy $ �u�y $ tgyy

������ �
We may expand out H� grouping terms involving like powers of t�

H ! �u�
��u�xuuyy $ u�y� $ �uxuyuuxy $ uxuy�� u�yuux $ u�x�

�
$ �tu

��gxuxuuyy $ u�y� $ gxuyuuxy $ uxuy�

$ gyuxuuxy $ uxuy�� gyuyuuxx $ u�x�
�

$ �tu�
��u�xgyy $ uxuygxy � u�ygxx

�
$ �t�

��g�xuuyy $ u�y� $ �gxgyuuxy $ uxuy�� g�yuuxx $ u�x�
�

$ �t�u �gxuxgyy $ gxuygxy $ gyuxgxy � gyuygxx�

$ t�
��g�xgyy $ gxg
ygxy � g�ygxx

�
�

The �rst two terms on the right may be simpli�ed� yielding the expression

H ! �u�
��u�xuyy $ uxuyuxy � u�yuxx

�
$ �tu� �gxuxuyy $ gxuyuxy $ gyuxuxy � gyuyuxx�

$ �tu�
��u�xgyy $ uxuygxy � u�ygxx

�
$ �t�

��g�xuuyy $ u�y� $ �gxgyuuxy $ uxuy�� g�yuuxx $ u�x�
�

$ �t�u �gxuxgyy $ gxuygxy $ gyuxgxy � gyuygxx�

$ t�
��g�xgyy $ gxg
ygxy � g�ygxx

�
�

Now� modulo the other generator u� � tg of I� we may replace u� by
�tg in this expression to arrive at a polynomial divisible by t� Thus the
ideal I� ! IF �� ! I �K�t� t����x� y� � K�t� t����x� y�� and hence the ideal
I � ! IF �� ! I� �K�t��x� y� � K�t��x� y�� contain as well the element

H � ! � �ug
��u�xuyy $ uxu
yuxy � u�yuxx

�
� �tg �gxuxuyy $ gxuyuxy $ gyuxuxy � gyuyuxx�

� �tg
��u�xgyy $ uxuygxy � u�ygxx

�
$ �t

��g�xuuyy $ u�y� $ �gxgyuuxy $ uxuy�� g�yuuxx $ u�x�
�

$ �tu �gxuxgyy $ gxuygxy $ gyuxgxy � gyuygxx�

$ t�
��g�xgyy $ gxg
ygxy � g�ygxx

�
�

Moreover� if we multiply this generator of I� by u and once more replace
u� by �tg� we arrive again at a polynomial divisible by t� we conclude that
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the ideals I� and I � contain as well

J ! �g�
��u�xuyy $ uxu
yuxy � u�yuxx

�
� �gu �gxuxuyy $ gxuyuxy $ gyuxuxy � gyuyuxx�

� �gu
��u�xgyy $ uxuygxy � u�ygxx

�
$ �u

��g�xuuyy $ u�y� $ �gxgyuuxy $ uxuy�� g�yuuxx $ u�x�
�

� �tg �gxuxgyy $ gxuygxy $ gyuxgxy � gyuygxx�

$ tu
��g�xgyy $ gxg
ygxy � g�ygxx

�
�

To continue with this analysis� we have to use the fact that� for any
homogeneous quadratic polynomial UX�Y� Z�� the Hessian������������
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is a scalar � ! �U�� nonzero if U is irreducible that is� if the curve
V U� � P� is nonsingular�� and zero otherwise� It follows that�������������

u
�u

�x

�u

�y

�u

�x

��u

�x�
��u

�x�y

�u

�y

��u

�x�y

��u
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�������������
! �u�xuyy $ uxu
yuxy � u�yuxx ! �u$ ��

for some scalar �� Substituting this in the expression for J� we have

J ! ��g�

$ ��g�u

� �gu �gxuxuyy $ gxuyuxy $ gyuxuxy � gyuyuxx�

� �gu
��u�xgyy $ uxuygxy � u�ygxx

�
$ �u

��g�xuuyy $ u�y� $ �gxgyuuxy $ uxuy�� g�yuuxx $ u�x�
�

� �tg �gxuxgyy $ gxuygxy $ gyuxgxy � gyuygxx�

$ tu
��g�xgyy $ gxg
ygxy � g�ygxx

�
�

Now� we have seen that the ideal I � � u�$ tg�H �� J�� Restricting to the
�ber over the origin in B�that is� setting t ! 	�we see that the ideal
I �	 ! I �� t� of the �ber F �	 of F � contains

u� $ tg � u� mod t��

H � � ug mod t� u���
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and

J � ��g� � ��u mod t� u�� ug��

where

� ! g�xuuyy $ u�y�� �gxgyuuxy $ uxuy� $ g�yuuxx $ u�x��

We see from this that I �	 � t� u�� ug� ��g� $ ��u�� Now� we may write

� ! g�xuuyy $ u�y�� �gxgyuuxy $ uxuy� $ g�yuuxx $ u�x�

� gxuy � gyux�
� mod u�

�
��� gx gy
ux uy

�����
In particular� given that V U� and V G� intersect transversely� � cannot

be zero at a point where u ! g ! 	� We may thus recognize the ideal
t� u�� ug� ��g� $ ��u� as the ideal of a subscheme of the special �ber C	�
supported at the eight points t ! U ! G ! 	 of intersection of the conic
U ! 	 and the quartic G ! 	 in the plane t ! 	 and having degree 
 at
each point� Since �� 
 ! ��� the �ber F �	 cannot be any smaller than this�
and so we must have equality� that is�

I �	 ! t� u�� ug� ��g� $ ��u��

In other words�

Proposition IV��	� The scheme F �	 is supported at the eight points t !
U ! G ! 	 of intersection of the conic V U� and the quartic V G� in the
plane V t�� At each point� it consists of a curvilinear scheme of degree 
�
tangent to� but not contained in� the conic V U��

One aspect of this answer is that any closed point of the reduced curve
C	�red could be a limit of �exes of nonsingular curves for a suitable family
of curves C� tending to C	� This is a general phenomenon� in fact� every
point of a multiple component of a curve is a limit of �exes of nearby
nonsingular curves�

The phenomenon described in this example is fairly general� The follow�
ing exercises give two generalizations�

Exercise IV���� Let K be as before an algebraically closed �eld of char�
acteristic zero and B ! A �

K ! SpecK�t�� Let F ! V U� be a nonsingular
conic� and D ! V G� and E ! V H� nonsingular plane curves of degrees d
and d�� respectively intersecting C transversely� such that F �D�E ! ��
and the points of E �F are not �exes of E� Consider the family � � C � B
of plane curves of degree d given by the equation F ! U�H $ tG ! 	�
that is� the scheme C ! ProjK�t��X�Y� Z��U�H$tG� � P�B � Describe the
limiting position of the �exes of the �ber C� over the point t � �� � B
as � goes to zero� In particular� show that of the 
dd � �� �exes of C��

 approach each of the �d points U ! G ! t ! 	� � approach each of the
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�d��� points U ! H ! t ! 	� while the remaining 
d���d��� approach
�exes of the curve H ! t ! 	�

Exercise IV���� With K and B as above� suppose now that F ! V U�
is a nonsingular plane curve of degree e and X ! V G� a nonsingular
plane curve of degree d ! �e intersecting F transversely� Consider the
family � � C � B of plane curves of degree d given by the equation
F ! U� $ tG ! 	� and once more describe the limiting position of the
�exes of the �ber C� as � goes to zero� In particular� show that of the

dd��� �exes of C�� 
 approach each of the de points U ! G ! t ! 	 and
� approach each of the 
ee� �� �exes of G ! t ! 	�

There is one case� other than that of a curve with multiple components�
in which a plane curve over a �eld of characteristic 	 may have a positive�
dimensional scheme of �exes� that of a curve C � P�K containing a line�
We may ask in this setting the analogous question� given a family of plane
curves specializing to one containing a line� for eample� with K and B
as above� the family � � C � B of plane curves of degree d given by the
equation LF $ tG ! 	 for L� F and G general polynomials of degrees ��
d�� and d respectively�where do the �exes of the general �ber of C � B
go The answer turns out to be in some ways more subtle than that in the
case of multiple components� we will not describe it here� for lack of some
necessary language� but will mention that as the reader may verify� the
location of the limiting �exes on the line V L� is not the intersection of
V L� with V G��

To conclude this section� here is an amusing aspect of the geometry of
�exes on plane cubics�

Exercise IV��� Consider a nonsingular plane cubic curve C � P�R over
the real numbers� Show that the scheme of �exes will consist� for some pair
of integers a and b with a$ �b ! �� of a points with residue �eld R and b
points with residue �eld C � Deduce in particular that C must have a real
�ex�

In fact� the number a in this problem is 
� For the pleasure of the reader
familiar with the classical theory of elliptic curves� we sketch the argument�
Part of it is simple� the exclusion of � and � follows from the existence of a
group law on the set of points of C with residue �eld R � in terms of which
the �exes with residue �eld R form a subgroup of the group Z�
��Z�
�
of the � �exes of C �R Spec C � To see that a ! 
� we observe that the
R �rational points of C form a compact real one�dimensional Lie group� and
hence is isomorphic to S��G where G is a �nite group� For degree reasons�
G can have cardinality at most ��

More generally� if K is any �eld and C � P�K a nonsingular plane cubic�
the number of �ex points p � C with residue �eld K will be 	� �� 
 or
�� This phenomenon is strictly limited to cubics� however� it follows from
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Harris ������ that for any d � � and any number � with 	 � � � 
dd� ���
� �! 
dd � �� � �� there exists a �eld K and a nonsingular plane curve
C � P�K of degree d whose scheme of �exes contains exactly � points with
residue �eld K�

In Chapter V we�ll discuss another object classically associated to a plane
curve C � P�S � its dual curve C� � P�S��� We�ll encounter many phenom�
ena analogous to those we have just discovered�

IV�� Blow�ups

Blowing up is a basic tool in classical algebraic geometry� It is used to
resolve singularities� to resolve the indeterminacy of rational maps� and
to relate birational varieties to one another� Saying that one variety is a
blow�up of another along a given subvariety expresses a relationship that is
simultaneously close enough to relate the structure of the two intimately�
and �exible enough that it is a very common ingredient in the expression
of maps between varieties� In this section� we will extend the de�nition to
the category of schemes� de�ning the notion of the blow�up of an arbitrary
Noetherian� scheme along an arbitrary closed subscheme�

Generalizing the de�nition of blow�ups in this way actually serves two
purposes� First there is the expected bene�t� blowing up schemes other
than varieties is useful for the same reason blowing up varieties is� that is�
for resolving singularities or relating two birational schemes for example�
we will blow up arithmetic schemes in Section IV������

In addition we will see that� even in the context of maps between varieties�
the language of schemes�speci�cally� being able to talk about blow�ups
of a variety X along possibly nonreduced subschemes Y � X�represents
a highly useful extension of the concept� For example� we will illustrate
this in Section IV���
 below� where we extend the classical description of
nonsingular quadric surfaces as blow�ups of the plane to quadric cones�
using this generalized notion of blowing up� Likewise� in Section IV���

we will see a naturally occurring map of varieties that turns out to be a
blow�up along a subscheme� These examples are in fact not special� when
we broaden the de�nition of �blow�up� in this way� it turns out that any
projective birational morphism of varieties is a blow�up# This is proved in
Hartshorne ������ Theorem II�������

IV���� De�nitions and Constructions

For the following� we will assume the reader is familiar with the basic notion
of blowing up in the classical context� that is� blowing up varieties along
nonsingular subvarieties� This material is amply covered in� among others�
Harris ������� Hartshorne ������ Chapter ��� and Shafarevich �������� In the
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simplest circumstances� for example� blowing up a reduced point in the
a�ne plane over an algebraically closed �eld K�a blow up map may be
described exactly as it is classically� We start by reviewing an example� the
blow�up of the plane at the origin� to see how the classical construction
of the blow�up via gluing may be carried out as well in the category of
schemes over a �eld� Generalizing this to the de�nition of the blow�up
BlY X�� X of an arbitrary schemeX along an arbitrary closed subscheme
Y � X is simply a matter of expressing this standard construction in a
su�ciently natural way� In the following subsection we will give several
characterizations of blow�ups in general� a de�nition� two constructions�
and a further description in some special cases� such as the blow�up of a
scheme along a regular subscheme De�nition IV�����

An Example� Blowing up the Plane�

Example IV���� We start with the blow�up Z of the origin in the a�ne
plane A �

K ! SpecK�x� y� over a �eld K� This can be most concretely
described as the union of two open sets� each isomorphic to A �

K � we let
U � ! SpecK�x�� y�� and U �� ! SpecK�x��� y���� and consider the maps

� � U � � A �

K and 
�� � U �� � A �
K dual to the ring homomorphisms


��� � K�x� y� �� K�x�� y��

x ��� x�

y ��� x�y�

and 
���� � K�x� y� �� K�x��� y���

x ��� x��y��

y ��� y���

The map 
� gives an isomorphism between the open subsets

U �x ! SpecK�x�� y�� x���� and Ux ! SpecK�x� y� x����

and similarly 
�� gives an isomorphism between the open subsets U ��y !

SpecK�x�� y�� �
y� � and Uy ! SpecK�x� y� y���� In particular� they give iso�

morphisms of the inverse images

U �xy ! SpecK�x�� y�� x���� y���� and U ��xy ! SpecK�x��� y��� x����� y�����

of the intersection Uxy ! Ux � Uy ! SpecK�x� y� x��� y���� We can thus
identify the open sets U �xy � U � and U ��xy � U ��� and so glue together U �

and U �� to obtain a scheme

Z ! U � � U �� ! SpecK�x�� y��
�

U �xy��U ��xy
SpecK�x��� y����

where the isomorphism U �xy �! U ��xy is given by the ring homormorphism

K�x�� y�� x���� y���� �� K�x��� y��� x����� y�����

x� ��� x��y��

y� ��� x�����

We call the union Z� with its structure morphism 
 � Z � A �
K � the blow�up

of A �
K at the origin� The inverse image E ! 
��	� 	� � Z of the origin
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is isomorphic to P�K this is called the exceptional divisor of the blow�up��
while 
 is an isomorphism everywhere else� that is� Z nE �! A �

K n f	� 	�g�

One way to think of this construction is to observe that the coordinate
rings of the open subsets of the blow�up are enlarged to include the ratios
y� ! y�x and x�� ! x�y respectively� This has a number of consequences� For
one thing� the pair of functions x� y on A �

K de�ne a map f � A �
K nf	� 	�g �

P�K on the complement of the origin� in classical language� this is the map
a� b� �� �a� b�� or in modern terms it is the map associated to the surjection
O  O � O given by f� g� �� xf $ yg� This map cannot be extended to
a regular map on all of A �

K � but if we compose f with the isomorphism
Z nE �! A �

K n f	� 	�g� we see it does extend to a regular map on all of Z�
This is because the ideal generated by the pullbacks of the� functions x
and y is locally principal on Z and generated by a nonzerodivisor�� so that
where x and y have common zeroes we can simply divide the homogeneous
vector �x� y� by their common factor to extend the map� Another e�ect of
the enlarged coordinate rings in the blow�up is to separate the lines through
the origin� That is� if L and L� are distinct lines through the origin in A �

K �
the preimages of L n f	� 	�g and L� n f	� 	�g have doisjoint closures� as
shown in the picture these are just the �bers of the map f��

By the same token� if we have a curve C � A �
K with a node at the origin�

the inverse image of the complement of the origin in C is nonsingular in Z�
meeting the exceptional divisor at two points�

De�nition of Blow�ups in General� We will use these observations as
starting points in generalizing the de�nition of a blow�up to that of an
arbitrary scheme along an arbitrary subscheme� The essential fact is that�
in the blow�up 
 � BlY X� � X of a scheme X along the subscheme
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Y � X� the inverse image of Y is locally principal� To formalize this� we
start with a de�nition�

De�nition IV���� Let X be any scheme� Y � X a subscheme� We say
that Y is an Cartier subscheme in X if it is locally the zero locus of a
single nonzerodivisor� that is� if for all p � X there is an a�ne neighborhood
U ! SpecA of p in X such that Y �U ! V f� � U for some nonzerodivisor
f � A� More generally� we say that Y is a regular subscheme if it is locally
the zero locus of a regular sequence of functions on X�

De�nition IV���� Let X be any scheme� Y � X a subscheme� The blow�
up of blow�up�along subschemeX along Y � denoted 
 � BlY X�� X� is the
morphism to X characterized by these properties�

�� The inverse image 
��Y � of Y is a Cartier subscheme in BlY X��

�� 
 � BlY X� � X is universal with respect to this property� that is� if
f � W � X is any morphism such that f��Y � is a Cartier subscheme
in Z� there is a unique morphism g � W � BlY X� such that f ! 
	g�

The inverse image E ! 
��Y � of Y in BlY X is called the exceptional
divisor of the blow�up� and Y the center of the blow�up�

It is clear that these properties uniquely characterize the blow�up 
 �
BlY X� � X of a scheme along a subscheme� It is less clear that the
blow�up exists� but we shall soon see that it does�

In the a�ne case the blow�up can be realized in a very simple way as
the closure of the graph of a morphism� and we describe this construction
�rst� We start by generalizing the construction of Example IV��� to the
blow�up at the origin of a�ne space over an arbitrary ring�

Example IV���� Let A be any ring and let A nA ! SpecA�x�� � � � � xn��
Consider the schemes

Ui ! SpecTi �! A nA�
where

Ti ! A
hxi
xi
� � � � �

xn
xi
� xi

i
is the subalgebra of T ! A�x�� x

��
� � � � � � xn� x

��
n � generated over A by the

functions xj�xi and xi� The rings Ti�xj and Tj�xi are equal as subrings
of T � so we have commuting isomorphisms

Ui�xj
�! Uj�xi �

Thus we may form a scheme Z that is the union of the Ui with these
open sets identi�ed� Note that the morphisms Ui � A nA corresponding to
the inclusions A�x�� � � � � xn� �� Ti agree on the overlap to give a natural
structure morphism 
 � Z � A nA�

This example shows many of the properties of the classical blow�up de�
scribed in Example IV����
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�� Let U ! A nA nV x�� � � � � xn� be the compelement of V x�� � � � � xn� the
�origin�� in A nA� We have a morphism

��x������xn� � U � Pn��A

given by the functions x�� � � � � xn�� or� more formally� by the surjection

On
U �� OU �

a�� � � � � an� ���
P

aixi�

We claim that Z is the closure in A nA �A Pn��A ! Pn��A of the graph of
�� To see this� we observe that Ui�xi � Z is the graph of the map

��xi�����xn�
��
�Ui�xi

� Ui�xi � Pn��A �xi ! SpecA
hx�
xi
� � � � �

xn
xi

i
�

and that the open sets Ui�xi are dense in Z�

�� The preimage E ! 
��V x�� � � � � xn� � Z of V x�� � � � � xn� � A nA
under the structure map 
 � Z � A nA is isomorphic to Pn��A � and


 � Z nE ��� A nA n V x�� � � � � xn�

is an isomorphism�


� Since x�� � � � � xn�Ti ! xi�Ti� the preimage E � Z of the origin
V x�� � � � � xn� � A nA is locally de�ned by a single equation�

Proposition IV��
� The morphism 
 � Z � A nA is the blow�up of A nA
along the subscheme V x�� � � � � xn��

Proof� We have already observed that Z � A nA satis�es condition �� of
De�nition IV���� It remains to show that if � � W � A nA is any morphism
such that ���V x�� � � � � xn� is Cartier� then � factors through 
� that is�
there exists a map � � W � Z with � ! 
 	 ��

We prove this �rst when W ! SpecR and R is a local ring� Consider
R as an algebra over A�x�� � � � � xn� via the map �� � A�x�� � � � � xn� � R�
Since the ideal x�� � � � � xn�R is principal� Nakayama�s Lemma Eisenbud
������ Corollary ����� implies that it is generated by one of the xi� More
concretely� if we write

x�� � � � � xn�R ! ���

we can write

� ! ��x� $ � � �$ �nxn

for some �i � R� and likewise xi ! i�� It follows that

� !
X
i

�ixi !
X
i

�ii��

from which we see that at least one of the i must be a unit in R� that is�
x�� � � � � xn�R ! �� ! xi� for some i�
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We can now write xj ! �jxi where �j ! j
��
i � for each j� and we

de�ned the desired map

� � W � Ui �� Z

as dual to the homomorphisms of rings

A
hx�
xi
� � � � �

xn
xi
� xi

i
�� R�

xi
xj

��� �j �

Now suppose that W is an arbitrary scheme� and � � W � A nA a morphism
with ���V x�� � � � � xn� Cartier� For each point w � W � the previous argu�
ment yields a map � � SpecOW�w � Z whose image lies in one of the a�ne
open subsets Ui �! A nA � Z covering Z� Such a map can be extended to
the Zariski open neighborhood of w � W on which the images ��xj�xi�
are regular� so we get a covering of W by open sets Wk and morphisms
�k � Wk � Z such that 
 	 �k ! �jWk

�
We will complete the argument by showing that the maps �k agree on

the overlaps Wi �Wj � and thus de�ne a morphism � on all of W �
Since the restriction of 
 to Z n E � A nA n V x�� � � � � xn� is an isomor�

phism� it will su�ce to show that the inverse image ���A nAnV x�� � � � � xn��
is dense in W � But by hypothesis� ���V x�� � � � � xn� is a Cartier divisor in
W � The following lemma thus completes the argument�

Lemma IV���� If X � Y is a Cartier subscheme of a scheme� then Y nX
is dense in Y as schemes� not just as topological spaces��

Proof� We may assume that Y is a�ne� say Y ! SpecA� and that X !
V f� for some nonzerodivisor f � A� To say that there is a proper closed
subscheme Y � containing Y nX is to say that the localization map A� Af

factors through A�IY ��� But since f is a nonzerodivisor� this localization
map is a monomorphism�

Exercise IV��	� a� Show that the conclusion of Lemma IV��� fails for

X ! V x� � Y ! SpecK�x� y��xy� y���

b� Show more generally that it characterizes Cartier subschemes among
all locally principal subschemes of Y �

c� Show that BlY ! � if and only if suppY ! suppX �

The construction of Proposition IV��� will yield all blow�ups of a�ne
schemes as soon as we understand how blow�ups behave on subschemes� or�
more generally� under pullbacks� This follows directly from the de�nition�

Proposition IV���� Let X be any scheme� Y � X a subscheme and

 � BlY X� � X the blow�up of X along Y� Let � � X � � X be any mor�
phism and set Y � ! ���Y � � X �� If W is the closure� in the �ber product
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X ��X BlY X� of the inverse image ���� X � n Y ��� then �� � W � X � is the
blow�up of X � along Y ��

This lemma is already interesting in the case X � ! X � where it asserts
that the inverse image of X n Y in BlY X is dense�

Proposition IV��� is most often applied in case X � � X is a closed sub�
scheme� In this case W is simply the closure in BlY X of the inverse image

��X � n X � � Y ��� it is called the strict transform� or proper transform�
of X � in BlY X � The full inverse image 
��X �� � BlY X is called the
total transform�� Thus we may say that� in the blow�up Blp A �

K � the proper
transforms of the lines through the origin p � A �

K are disjoint note that
the proper transforms of the lines map isomorphically to the lines them�
selves� as they should� since the origin is a Cartier subscheme on each�� and
that the blow�up of a nodal curve at a node is nonsingular at the points
lying over the node�

In case X � � X is an open subscheme� Proposition IV��� says simply
that the formation of blow�ups does commute with base change� that is�

��X �� �! BlX��Y X � � X �� But more is true� since 
��X � n Y � is dense�
there is a unique such isomorphism overX � As a consequence� if � � Z � X
is a morphism and suppose we have a cover of X by open sets U such that
���U �! BlU�Y U over X � then Z �! BlY X� In a phrase� blow�ups are
determined locally�

Proof of Proposition IV��	� We check �rst that the inverse image

E� ! ���� Y �� �W

of Y � is a Cartier subscheme ofW� It is certainly principal� the inverse image
E ! 
��Y � � BlY X is locally principal in BlY X� and E� �W is simply
its inverse image ���� E� under the projection �� � W � BlY X� Moreover�
since the associated primes of W are exactly the associated primes of X �

not containing the ideal of Y �� the local de�ning equation of E in BlY X
cannot pull back to a zero divisor on W�

Next� we have to verify that W has the universal property� Suppose T
is any scheme� and f � T � X � any morphism such that the inverse image
f��Y �� of Y � in T is a Cartier subscheme� In particular� since f��Y �� � T
is Cartier� no component or embedded component of T maps to Y �� thus
the closure in T of f��X � n Y �� is all of T�

We have to show that f lifts to a morphism g � T � W that is� there
exists a morphism g � T �W such that the composition �� 	g ! f�� We do
this in three steps� First� let h ! �	f � T � X be the composition of f with
the morphism � � X � � X � since the inverse image h��Y � ! f��Y �� is
Cartier� it follows by the universal property of the blow�up BlY X � X that
h lifts to a morphism "h � T � BlY X� Next� the pair of maps f � T � X �

and "h � T � BlY X give a map "g � T � X � �X BlY X whose composition
with the projection �� � X ��X BlY X � X � is f � Finally� since "g maps the
inverse image f��X � n Y �� to W� and the closure in T of f��X � n Y �� is
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all of T� it follows that the map "g � T � X � �X BlY X factors through the
inclusion of W in X � �X BlY X to give the desired map g � T �W�

We are now in a position to blow up any closed subscheme of any a�ne
scheme� If X ! SpecA and f�� � � � � fn � A� then f�� � � � � fn� de�nes a
morphism

��f������fn� � U ! X n V f�� � � � � fn� �� Pn��A �

more precisely� f�� � � � � fn� de�nes a map On
X � OX sending a�� � � � � an�

to
P

aifi� which is an epimorphism exactly on U �

Proposition IV���� Let X ! SpecA be an a�ne scheme� and let

Y ! V f�� � � � � fn� � X

be a closed subscheme� The blow�up of Y in X is the closure in X�APn��A !
Pn��A of the graph of the morphism

��f������fn� � X n Y � Pn��A �

Proof� Consider the embedding X �� A nA ! SpecA�x�� � � � � xn� given by
the ring homomorphism

A�x�� � � � � xn� �� A�

xi ��� fi�

Note that under this embedding we haveX�V x�� � � � � xn� ! Y � By Propo�
sition IV���� the blow�up of X along Y is the proper transform of X in the
blow�up Z of A nA along V x�� � � � � xn�� By Proposition IV���� on the other
hand� the blow�up Z of A nA along V x�� � � � � xn� is the closure of the graph
) of the map

��x������xn� � A
n
A n V x�� � � � � xn�� Pn��A �

Since the graph of ��f������fn� is simply the intersection of ) with the preim�
age of X � A nA� its closure is the proper transform of X � A nA in Z� and
the result follows�

In this proposition we built in the restriction that the subscheme Y � X
be de�ned by �nitely many functions fi� but this is really unnecessary�
The reader may check that everything works for in�nite sets though the
morphisms go to in�nite�dimensional projective spaces��

The Blowup as Proj� We have now proved the existence of the blow�up
of an a�ne scheme along a closed subscheme� We could at this point deduce
the existence of blow�ups in general by gluing� However� there is a more
elegant construction of blow�ups via global Proj� which accomplishes this
in one fell swoop�
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Theorem IV��� Let X be a scheme and Y � X a closed subscheme� Let
I ! IY�X � OX be the ideal sheaf of Y in X� If A is the sheaf of graded
OX�algebras

A !

�M
n�	

I n ! OX I I �  � � �

where the k�th summand is taken to be the k�th graded piece of A �� then
the scheme ProjA �� X is the blow�up of X along Y �

Remark� This construction often leads to notational confusion� if f �
OXU� is a regular function vanishing on Y � the symbol �f� could a priori
be used to denote either the section ofA	 ! OX or the section ofA� ! I �
two di�erent sections of A � To avoid this� we will often realize A as a
subsheaf of the sheaf

OX �t� !
�M
n�	

tnOX �

writing

A ! OX  tI  t�I �  � � � �
We will use this notation in the proof below�

Proof� The surjection of sheaves of graded OX �algebras SymI �� A in�
duced by the sheaf maps SymnI �� I n de�nes an embedding of ProjA �
as a closed subscheme in the projective scheme P ! ProjSymI ��� Writ�
ing 
 � ProjA �� X for the natural morphism� we �rst show that 
�I is
isomorphic to the invertible sheaf OP��� Indeed� 
�I is the shea��cation
of the graded module

I ��OX A ! I �OX� I �I t� I �I �t�� � � �
and the natural map � to

A �� ! OXt
�� I I �t � � �

sending I � I jtj to I j
�tj by multiplication induces a map of sheaves

�I � OP��� To show that this is an isomorphism on ProjA it su�ces to
show that � becomes an isomorphism after inverting an arbitrary element
ft � I t ! A�� The map � itself is obviously surjective� If

P
i fi � f �it

n �
I �OX I ntn goes to 	 under � then

P
i fif

�
i ! 	 in I n
�� Thus�X

i

fi � f �it
n

�
ft !

�X
i

fi � ff �it
n
�

�
t !

�X
i

ffi � f �it
n
�

�

!

�X
i

f � fif
�
it
n
�

�
!

�
f �

X
i

fif
�
i�t

n
�

�
! 	�

so
P

i fi � f �it
n becomes zero on inverting ft as required�
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Next suppose f � Z � X is a morphism� By Theorem III�
� the mor�
phisms � � Z � P over X are in one�to�one correspondence with quotients
� � f�I � L � where L is a line bundle on Z� It therefore su�ces to show
that the image of � is contained in ProjA � i� the corresponding � is an
isomorphism�

If � corresponds to a morphism � � Z � P then � is the pull�back
of the tautological map 
�I � � OP��� Since this map restricts to the
isomorphism � on ProjA �� it pulls back to an isomorphism along any map
that factors through ProjA � � P�

The image of the map � corresponding to � is the subscheme of

ProjSymI ��

that corresponds to the kernel of the composite homomorphism of OX �
algebras

SymI �� f�f� SymOX I �� f� SymOZ f
� SymI ��� f� SymOZ L ��

We claim that if � � f�I � is invertible� the natural map

Symnf
�I ��� f�I n�

is an isomorphism for every n� it follows that � factors through ProjA ��
Working locally on X and Z this reduces to the statement that if R� S

is a ring homomorphism and I � R is an ideal such that S �R I �! S� then
the natural surjection SymnS �R I�� S �R In is an isomorphism� Since
this can be checked locally� we may even assume that S is local� and we
may further localize R at the preimage of the maximal ideal of S� Since
tensor products commute with direct limits� we may further assume that I
is �nitely generated� From the fact that S �R I is generated by � element
over S it follows from Nakayama�s Lemma� that there is an element g � I
such that S �R I ! S �R g�� and another application of Nakayama�s
Lemma shows that I ! g�� The natural map SymnI� � In is thus an
isomorphism� and tensoring with S we obtain the desired result�

Blowing up gives us another way to interpret the projectivized tangent
cone to a scheme� which we will use later in this section�

Exercise IV���� Show that the exceptional divisor in the blow�up BlpX�
of a scheme X at a point p � X is the projectivized tangent cone PTCpX�
to X at p�

Blow�ups along Regular Subschemes� As we mentioned before the
statement of Theorem IV��
� the construction of a blow�up may not be as
explicit in practice as it appears� The reason is that� even given explicit
equations for a scheme X and a subscheme Y� it may not be obvious how
to express the Rees algebra

A !

�M
n�	

tnI n
Y�X � OX �t�



	�� IV� Classical Constructions

in terms of explicit generators and relations� The generators are clear�
assuming we know locally generators of the ideal sheaf IY�X � it�s knowing
when we have found all the relations that may be tricky�� There is� however�
one circumstance in which the Rees algebra has a nice description� when
the subscheme Y � X is a regular subscheme� We will state the result �rst
in case Y has codimension two�

Proposition IV���� Let A be a Noetherian ring and x� y � A� let B be
the Rees algebra

B ! A�xt� yt� � A�t��

If x� y � A is a regular sequence� then

B �! A�X�Y ��yX � xY �

via the map X �� xt� Y �� yt�

Proof� First we invert x and set X � ! x��X � A�x����X�Y �� The element
yX � � Y � A�x����X�Y � ! A�x����X �� Y � generates the kernel of the map

A�x����X �� Y � �� A�x����t��

X � ��� t�

Y ��� yt�

Since yX � xY � ! yX � � Y � in the ring A�x����X�Y �� it su�ces to show
that x is a nonzerodivisor modulo yX �xY in A�X�Y �� Notice that� in the
other order� yX�xY is obviously a nonzerodivisor modulo x�it�s congru�
ent to yX � the product of two nonzerodivisors# In general� a permutation
of a regular sequence is not a regular sequence� but in this setting� as in
many others� it is� see Eisenbud ������ Section ������

In our case we may argue as follows� To show that x is a nonzerodivisor
modulo yX � xY we must show that

M �!
yX � xY � � x�

yX � xY �
! 	�

where yX � xY � � x� denotes the ideal ff � A�X�Y � j fx � yX � xY �g�
Note that yX � xY � yX modulo x� so x� yX�xY � is a regular sequence
in A�X�Y �� Further� yX � xY is clearly a nonzerodivisor to annihilate it�
a polynomial fX�Y � would have to have leading term in X annihilating
x� which is a nonzerodivisor by hypothesis�� It follows that the quotient M
is isomorphic to the �rst homology group of the Koszul complex

	 � A

� �x
yX�xY

�
� A� �yX�xY x�� A�

By the same argument� this group is isomorphic to

x� � yX � xY �

x�
�
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which is 	 since x� yX � xY is a regular sequence� For a more leisurely
treatment of this last argument� see Eisenbud ������� Section ������

The heart of the proof above is the statement that if I is generated by a
regular sequence of length �� then the Rees algebra

A I  I�  � � �
is isomorphic to the symmetric algebra

SymAI�

and this in turn is de�ned by the determinant of the �� � matrix�
x y
X Y

�
�

Similar statements are true for larger regular sequences�

Exercise IV���� If I ! x�� � � � � xn� � A is generated by a regular se�
quence� then

A I  I�  � � � �! A�X�� � � � � Xn��J

where J is generated by the �� � minors of the matrix�
x� � � � xn
X� � � � Xn

�
�

IV���� Some Classic Blow�Ups

Example IV���� Let K be a �eld� and consider the quadric cone

Q ! SpecK�x� y� z��xy � z�� � SpecK�x� y� z� ! A �
K �

Let p ! 	� 	� 	� � Q be the vertex of the cone Q� and let L be a line
through p lying on Q� for example L ! V x� z�� We would like to describe
the blow�ups of Q along both p and L�

We can do this directly� using either Theorem IV��
 or Proposition IV����
But perhaps the simplest way is to use Proposition IV���� To begin with� we
can verify by either Theorem IV��
 or Proposition IV��� that the blow�up
of A �

K at the origin p is the morphism


 � "A �

K ! ProjK�x� y� z��A�B�C��xB�yA� xC�zA� yC�zB�

�� SpecK�x� y� z� ! A �
K �

The exceptional divisor E ! 
��p� � "A �
K is indeed Cartier� for example�

we may write the open subset UA ! "A �
K n V A� as

UA ! SpecK�x� y� z��b� c��xb�y� xc�z� ! SpecK�x� b� c�

and in UA� the exceptional divisor E is the zero locus of the pullback of�
the function x� As in the case of the blow�up of the plane at the origin� the
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proper transforms "L of the lines L � A �
K through p are all disjoint in "A �

K �
and indeed the exceptional divisor E is a copy of P�K whose K�rational
points correspond bijectively to the set of these lines via the association
L �� "L � E�

Now� when we pull back the de�ning equation xy � z� of Q to A �
K � we

�nd that it factors� it is twice divisible by the de�ning equation of E� For
example� in UA�


�xy � z�� ! x�b� x�c� ! x�b� c���

We can express this globally as


��Q� ! V x� y� z��� � V AB � C��

and by Proposition IV��� we may conclude that the blow�up BlpQ of Q at

p is the restriction of 
 to the locus V AB � C�� � "A �
K � that is�

� � "Q ! ProjK�x� y� z��A�B�C��xB�yA� xC�zA� yC�zB� AB�C��

�� SpecK�x� y� z��xy � z�� ! Q�

We can picture "Q as the disjoint union of the proper transforms of the�
lines on Q passing through p�

E

�L

�Q

L

Q

Now� what about the blow�up BlLQ� Q of Q along L To begin with�
note that L is a Cartier subscheme of Q at every point of L except at p�
where it is not p is a singular point of Q� but a nonsingular point of L�� It
follows that the blow�up BlLQ� Q will be an isomorphism over Q n fpg�
but not an isomorphism� Also� since the inverse image ���L� � "Q of L
in the blow�up "Q ! BlpQ � Q of Q at the point p is Cartier� the map

� � "Q � Q must factor through the blow�up BlLQ � Q� It will by now
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not come as a surprise to the reader to learn that in fact� the two blow�ups
are the same# We leave the veri�cation as the following exercise�

Exercise IV��
� Show that the blow�up BlL A �
K of A �

K along the line L
may be realized as the map


 � BlL A �
K ! ProjK�x� y� z��A�B��xB � zA� �� SpecK�x� y� z� ! A �

K

We may visualize this as the disjoint union of the planes in A �
K containing

L�� Use this to describe the blow�up BlLQ � Q� and show that it is
isomorphic to BlpQ� Q as a Q�scheme�

Another surprisingly rich example is the blow�up of a quadric cone of
dimension 
�

Example IV���� Consider now the quadric hypersurface

X ! V xw � yz� � SpecK�x� y� z� w� ! A �
K �

X is the cone over the nonsingular quadric surface Q ! V xw � yz� �
ProjK�x� y� z� w� ! P�K � We want to consider blow�ups of X along three
subvarieties� the point p ! 	� 	� 	� 	�� the plane -� ! V x ! y ! 	� � X�
and the plane -� ! V x ! z ! 	� � X� What is interesting is that� while
all three blow�ups are isomorphisms over X n fpg� they are all distinct X�
schemes� also that the blow�ups Bl�� X and Bl�� X are isomorphic schemes�
but not isomorphic X�schemes�

To begin with� let 
 � "X � X be the blow�up of X at the point p� This
may be described along much the same lines as the blow�up of the quadric
surface at a point in the previous example� all the lines on X through the
point p are made disjoint� "X is nonsingular� and the exceptional divisor is
a nonsingular quadric surface naturally identi�ed with Q � P�K �

The blow�ups Xi of X along the planes -i are described in the following
exercise�

Exercise IV�	� Let 
� � X� ! Bl�� X � X be the blow�up of X along
the plane -�� Show the following assertions�

a� The scheme X� is nonsingular�

b� The map 
� is an isomorphism over X n fpg�
c� The �ber C ! 
��� p� of X� over the point p is isomorphic to P�K �

d� The exceptional divisor E ! 
��� -��� which is also the proper trans�
form of -� in X�� is isomorphic to the blow�up of -�

�! A �
K at the

point p�

e� More generally� the proper transforms "-��� of the planes

-��� ! V x��z� y��w�

spanned by the vertex p of X and the lines of one ruling of Q coincide
with their total transforms� they are isomorphic to the blow�ups of -���

at the point p� and intersect pairwise along the curve C�
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f� By contrast� the inverse images 
��� -���� of the planes

-��� ! V x��y� z��w�

spanned by the vertex p of X and the lines of the other ruling of Q
have two irreducible components� the proper transforms "-��� and the
curve C� In particular� they are not Cartier subschemes of X��� The
proper transforms "-��� map isomorphically to the planes -���� and are
disjoint in X�� thus we may try to visualize X� as the planes -��� made
disjoint�

cc

P

��

	�	�

����

�X

X�X�

X

�
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Since the inverse images of the planes -� and -� are Cartier subschemes
of "X they are of pure codimension one in the nonsingular scheme "X��
the blow�up "X ! BlpX � X factors through each of the blow�ups Xi !
Bl�i X � X � In fact�

Exercise IV��� a� Show that "X ! X� �X X� as X�schemes�

b� Show that the induced map �i � "X � Xi is simply the blow�up of Xi

along the curve C�

The schemesXi are certainly not isomorphic to each other asX�schemes�
since the inverse image of -� in X� is not Cartier and vice versa� though
they are isomorphic asK�schemes X has an automorphism exchanging the
planes -� and -��� Likewise� neither is isomorphic to "X as an X�scheme�
since the inverse images of both -� and -� are Cartier in "X�

Exercise IV��� Show that in fact X� and X� are not isomorphic to "X
even as K�schemes� Hint� one way is to show that Xi contains no two�
dimensional subscheme proper over K��

Exercise IV�� Here is an interesting way to realize all three of the blow�
ups described above� Identify A �

K with the a�ne space associated to the
vector space M of �� � matrices� or of linear maps A � V � W between a
pair of two�dimensional vector spaces over K�

M ! HomV�W � !

��
x y
z w

��
�

Let PV � be the projective space of one�dimensional quotients of V �� that
is� one�dimensional subspaces of V� and similarly let PW � be the projective
space of one�dimensional subspaces of W� Show that X and the blow�ups
X�� X� and "X are� respectively� the schemes associated to the varieties

X ! fA � V �W j rankA � �g � A �
K �

X� ! fA�L� j L � KerAg � A �
K � PV ��

X� ! fA�L�� j ImA � L�g � A �
K � PW �

"X ! fA�L�M� j L � KerA and ImA � L�g � A �
K � PV � � PW ��

In fact� the results of Example IV��� and Example IV��� apply not only
to quadric cones� but to schemes that look locally like them� This is the
content of the following exercises� which will require one further de�nition�

De�nition IV��� Let K be an algebraically closed �eld of characteristic
not equal to � and X any scheme over K� We say that a point p � X is an
ordinary double point if the formal completion of the local ring OX�p is

%OX�p �! K��x�� � � � � xn���x
�
� $ x�� $ � � �$ x�n��
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For example� an ordinary double point of a curve is what we have been
calling a node� More generally� an ordinary double point of an n�dimensional
scheme X may be characterized as any point such that the projectivized
tangent cone to X at p is a nonsingular quadric hypersurface in PTpX �!
PnK �

Exercise IV��� Suppose now that X has dimension � and p � X is
an ordinary double point� Let "X ! BlpX � X be the blow�up of X at
p� Show that the conclusions of Example IV��� apply as well to X � that
"X is nonsingular� that the exceptional divisor E � "X is a conic curve
in PTpX �! P�K � and that if C � X is any curve nonsingular at p then

BlC X �! "X as X�schemes�

Exercise IV��� Keeping the hypotheses of Exercise IV�
�� suppose now
that X has dimension 
 and p � X is an ordinary double point� Let
"X ! BlpX � X be the blow�up of X at p� Show that the conclusions

of Example IV��� apply as well to X � that "X is nonsingular� that the ex�
ceptional divisor E � "X is a nonsingular quadric surface Q � PTpX �! P�K �
and that if S � X is any surface nonsingular at p then the blow up BlS X
has �ber over p isomorphic to P�K and in particular is not isomorphic
to "X�� Show moreover that if S and S� � X are two such surfaces� the
blow�ups BlS X and BlS� X are isomorphic as X�schemes if and only if the
projectivized tangent planes PTpS and PTpS� � PTpX belong to the same
ruling of the quadric Q�

By way of language� for a three�dimensional scheme X with an ordinary
double point p � X� the schemes X � � X obtained locally around p� as
blow�ups of X along surfaces nonsingular at p are called small resolutions
of X at p� In general� a resolution of singularities � � X � � X�that is�
a birational morphsim such that X � is nonsingular� is called small if for
any subvariety ) � X the inverse image ���)� has dimension at most

dim���)�� � dim)� $ dimX�� �

�
�

The birational isomorphism between the two small resolutions of a three�
fold X with an ordinary double point is called a �op� see Clemens et al�
�������

Let X be a scheme and Y� Z � X a pair of subschemes� If we blow up X
�rst along one� then along the proper transform of the other� the order in
which we do it matters� We can now illustrate this with a simple example�
given in the form of a series of exercises�

Exercise IV��� Let K be a �eld and A �
K ! SpecK�x� y� z�� Let L and

M � A �
K be the lines V x� y� and V x� z� respectively� and N ! L �M !

V x� yz� their union� Describe the blow�up X ! BlN A �
K � A �

K � in partic�
ular� show that X has �ber isomorphic to P�K over every point of N� but
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that it is not nonsingular� it has an ordinary double point p lying over the
origin in A �

K �

Exercise IV�
� Keeping the notations of the preceeding problem� let
Y � A �

K be the blow�up of A �
K along the line L� "M � Y the proper

transform of M in Y and X � � Y the blow�up of Y along "M� Show
that the composite map X � � Y � A �

K factors through the blow�up
X ! BlN A �

K � A �
K � and that the induced map X � � X is one of the

small resolutions of the ordinary double point p � X�

Exercise IV��� Now let Z � A �
K be the blow�up of A �

K along the line
M� "L � Y the proper transform of L in Z and X �� � Z the blow�up of
Z along "L� Show that the composite map X �� � Y � X again factors
through the blow�up X � A �

K � and that the induced map X � � X is the
opposite small resolution of the ordinary double point p � X from X � � X�
To see directly that X � � X and X �� � X are not isomorphic X�schemes�
let N � and N �� be the closures of the inverse image of L n f	g in X � and
X ��� and compare the �bers of N � and N �� over 	 � A �

K �

IV���� Blow�ups along Nonreduced Schemes

Up to now� we have dealt only with examples of blow�ups BlY X � X in
which all three objects involved�the original scheme X� the subscheme
Y and the blow�up BlY X�are varieties� In the remaining two parts of
this section� we will consider the behavior of blow�ups in the more general
setting of schemes� giving examples �rst of blow�ups along non�reduced
subschemes of a scheme X� and then of blow�ups of arithmetic schemes�
We will start here by giving some examples of blow�ups of varieties along
nonreduced subschemes�

Blowing Up a Double Point� Let X ! A �
K ! SpecK�x� y�� and let

) � A �
K be the subscheme given by the ideal I ! x�� y�� The blow�up

Z ! Bl�A �
K� will be ProjA� where A is the ring

A ! K�x� y� I  I�  � � �
By Proposition IV���� we can also write Z as

Z ! ProjK�x� y��A�B��yA� x�B�

which is covered by the open sets

UA ! SpecK�x� y��b��y � x�b�

and

UB ! SpecK�x� y��a��ya� x��

where a ! A�B and b ! B�A�
We can see immediately some di�erences between this scheme and the

ordinary blow�up of A �
K at the origin� For one thing� though the �ber of
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each over the origin is isomorphic to A �
K � the scheme Z ! Bl�A �

K� is
singular at one point P the point a ! x ! y ! 	 in UB�� while the
ordinary blow�up is nonsingular�

We can see more if we express Z in terms of blow�ups with reduced
centers� Brie�y� the �recipe� for Z in classical language is this see �gure
below�� �rst� let Z� be the blow�up of A �

K at the origin� let E � Z� be
the exceptional divisor� that is� the inverse image of the origin� Let P be
the point of E lying on the proper transform of the x�axis� that is� the
closure of the preimage of the x�axis in Z� n E� Let Z� be the blow�up of
Z� at P � let F � Z� be the exceptional divisor of this blow up and by a
slight abuse of notation� E � Z� the proper transform of E in Z�� Then�
in classical language� Z ! Bl�A �

K� is obtained from Z� by blowing down
E� In other words�

Proposition IV��	� The blow�up Z � of Z ! Bl�A �
K� at its singular point

P is Z��

E

Z�

L

P

L

Z�

E

F

L�

Z
L�F

L

a singular point of Z

A
�

L�

L
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We see from this description that the lines through the origin in the plane
are not made disjoint� as they were in the case of the blow�up of A �

K at the
reduced origin� they are made disjoint in the �rst blow�up� but then meet
each other once more after we blow down E � Z�� On the other hand�
nonsingular curves through the origin tangent to the x�axis and having
di�erent curvatures are separated� after the �rst blow�up in this sequence
they meet transversely at the point P � they are then separated by the
second blow�up and are not a�ected by the blowing down�

Proof of Proposition IV���� By Exercise IV�
�� the blow�up of Z at its
singular point is the same as the blow�up of Z at the reduced scheme F
associated to the exceptional divisor of Z ! Bl�A �

K�� A �
K � This scheme

F is the total transform in Z of the reduced� origin in A �
K � as we see

directly from the equations�
On the other hand� we claim that Z� may be obtained by �rst blowing

up the reduced origin in A �
K to get Z�� and then blowing up the total

transform of ) in Z��the reverse of the previous process� To see this�
observe that by the equations the ideal of ) in Z� is the product of the
ideal of E � Z� and the ideal of the point P � since E is Cartier� it follows
that Bl�� Z� ! BlP Z��

With these remarks in place� it now su�ces to apply the following lemma�

Lemma IV���� Let X be a scheme and Y� and Y� � X closed subschemes�
If fi � Zi ! BlYi X � X be the blow�ups of X along Y� and Y�� then

Blf��
� �Y��

Z�
�! Blf��

� �Y��
Z�

as X�schemes�

Proof� Let W� ! Blf��
� �Y��

Z�� and let g� � W� � Z� be the blow�up

map� de�ne W� and g� analogously� Set hi ! fi 	 gi � Wi � X� Since
h��� Y�� ! g��� f��� Y��� �W� is Cartier� the structure map h� � W� � X
factors through Z�� that is� there is a map j� � W� � Z� such that h� !
f� 	 j�� Similarly� since j��� f��� Y��� ! h��� Y�� ! g��� f��� Y��� � W� is
also Cartier� the map j� � W� � Z� factors through W� ! Blf����Y�� Z��
inducing a map k� � W� � W� such that h� ! h� 	 k�� In the other
direction� we likewise obtain a map k� � W� � W�� Since W� has no
automorphisms as an X�scheme� k� 	 k� is the identity� and in particular
k� is an isomorphism�

Compare this lemma with Exercises IV�
� to IV�
�� where we saw that
if we replace �total transform� with �proper transform�� the order does
indeed matter�

Blowing Up Multiple Points� We will consider here a few more exam�
ples of blow�ups of the plane along subschemes supported at a point�
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Exercise IV���� For another example� let .� � A �
K be the subscheme

de�ned by the ideal y� x�� � K�x� y� and .� the subscheme de�ned by the
ideal y�� x�� � K�x� y�� Consider the blow�ups 
i � Zi ! Bl�iA �

K� � A �
K

of the plane at each of these two schemes� Show in that in each case the
scheme Zi is singular� the �ber 
��i P � over the origin P ! x� y� � A �

K is
isomorphic to P�K � Show also that in each case the blow�up map may be
factored into a sequence of three blow�ups followed by two contractions�
that is� there is a scheme Wi� obtained by blowing up A �

K successively
at three reduced points� and a map Wi � Zi that is constant on the
exceptional divisors of the �rst two blow�ups and is an isomorphism on
their complement� What is di�erent about the sequence of points blown up
in the two cases 

Not to give a false impression� we should remark that the �bers of blow�
ups� even of nonsingular varieties� need not be projective spaces� Of course�
given our assertion that any proper birational morphism is a blow�up� this
could hardly be the case�� The subject of the following exercises is a simple
example of other behavior�

Exercise IV��� Let A �
K ! SpecK�x� y� be the a�ne plane over an alge�

braically closed �eld K� and let ) � A �
K be the subscheme given by

) ! V x�� xy� y���

Let X be the blow�up X ! Bl�A �
K�� Show that X is given as

X ! ProjK�x� y��A�B�C��I

where I is the ideal

I ! yA�x�B� yB�xC� AC�xB���

Hint� blow up A �
K ! Spec�x� y� z� along the subscheme V z � xy� x�� y���

which is a regular subscheme� and consider the proper transform of the
plane V z��

Exercise IV���� Show that the scheme X of the preceding exercise is
nonsingular� with �ber over the origin x� y� � A �

K a union of two copies of
P�K meeting at one point� In fact�X is the scheme Z� of Proposition IV��	��

It is not the case that we have a one�to�one correspondence between ideals
and blow�ups� di�erent ideals may yield the same blow�up� Of course there
are many trivial examples of this� for example� any principal ideal yields
the trivial blow�up� Only slightly less trivially� let X be any Noetherian
scheme� ) � X any closed subscheme and I � OX its ideal sheaf� Let
)n be the subscheme of X de�ned by the ideal I n� It follows from the
de�nition via the universal property that the blow�ups Zn ! Bl�nX� are
all isomorphic� Here are some more interesting examples�
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Exercise IV���� Let A �
K ! SpecK�x� y� be the a�ne plane over an alge�

braically closed �eld K� Consider the subschemes )n � A �
K given by the

ideals

In ! xn
�� xn��y� xn��y�� � � � � xyn��� yn� ! x� y�n � xn
�� y��

In other words� In is the ideal of polynomials vanishing to order n at the
origin� and vanishing to one higher order along the x�axis�� Note that )�
is the scheme ) of Proposition IV��	�

Show that for n � � the schemes Xn are isomorphic to one another by
exhibiting ismorphisms 
n � X � Xn� where X ! Bl�A �

K� is the blow�up
described in Proposition IV��	�

The j�Function� Here is an example of a blow�up similar to the one we
have just described that arises very naturally� It involves the j�function of
a plane cubic curve� this is a topic we will not mention o�cially until the
very end of this book� but with which the reader may well be familiar� In
any event� we will assume some acquaintance with j in what follows�

We consider the �at� family E � A �
K ! SpecK�a� b� of plane cubic

curves given by the equation

y� ! x� $ ax$ b�

Now� when the curve Ca�b� given in A �
K ! SpecK�x� y� by the equation

y� ! x� $ ax$ b� is nonsingular� we associate to it the scalar

jCa�b� ! ����
�a�

�a� $ ��b�
�

As the reader may know� two such curves Ca�b and Ca��b� are isomorphic
if and only if the values of the j�function are the same� It is thus of some
interest to understand how the rational map from A �

K ! SpecK�a� b� to
A �
K ! SpecK�j� behaves� in other words� how the moduli of the curve

Ca�b behaves when it becomes singular� Most of the time this is clear� if
the point a� b� approaches any point of the curve �a� $ ��b� ! 	 other
than the origin Q ! a� b� � SpecK�a� b�� the value of jCa�b� approaches
in�nity� The question of what happens when Ca�b acquires a cusp is more
subtle� To put it another way� we have a morphism

j � A �
K n fQg �� P�K

a� b� ��� jCa�b�

and would like to understand the map in a neighborhood of Q�
The answer is not hard to �nd� the closure ) in A �

K � P�K of the graph
of the map j � A �

K n fQg � P�K is simply the blow�up


� � Z� ! Bl��A �
K�� A �

K

of the plane along the subscheme whose ideal is generated by the numerator
and denominator of the expression above for jCa�b�� We can also describe
it in terms of classical blow�ups as follows�
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Exercise IV���� Factor the projection )� A �
K into blow�ups and blow�

downs at reduced points� explicitly� show that the map j blows up the
origin� then the point of intersection of the exceptional divisor with the
proper transform of the x�axis� then the intersection of the two exceptional
divisors� �nally� it blows down the �rst two exceptional divisors�

From this description we can see many things� For example� consider a
pencil of cubics specializing to a cusp� that is� restrict the family above to
a line through the origin in the plane SpecK�a� b�� Equivalently� consider
for some pair ��  the family of curves Ct given by

y� ! x� $ �tx $ t�

The limiting value of jCt� as t approaches 	 is always j ! 	� in terms of
the moduli spaceM�� the curves approach the curve given by y� ! x�$��
independently of the slope ��� as long as  �! 	� Conversely� if we want
to describe families of plane cubics acquiring a cusp whose j�invariants
approach a value other than 	 or �� we have to �nd curves through the
origin in the plane SpecK�a� b� whose proper transform in the triple blow�
up W� of the plane� described in Exercise IV���� is separated from the �rst
two exceptional divisors�

In this case the j�function is so explicitly given that we hardly need
the geometric analysis� But the qualitative picture is very important� the
picture in general when a family a curves of any genus acquires a cusp is the
same� For example� if a pencil of plane curves acquires a cusp� the stable
limit will always have an elliptic tail of j�invariant either 	 or ��

IV���	 Blow�ups of Arithmetic Schemes

Since we have de�ned blow�ups so generally� we can use the construction to
relate various arithmetic schemes� as the following examples and exercises
illustrate�

We start by blowing up a reduced point in P�Z� we let P be the reduced
point P ! 
� X� � P�Z and consider the blow�up Z ! BlP P�Z� of P�Z at
P� This is straightforward� as before� the only problem is notational� Since
the scheme P�Z! ProjZ�X�Y � we are starting with is not a�ne� we cover
it by a�ne open sets UX ! SpecZ�y� �! A �

Z and UY ! SpecZ�x� �! A �
Z

where y ! Y�X and x ! X�Y� Since the point to be blown up lies in the
complement of UX � the inverse image of UX in Z is simply UX �

Next� we describe the blow�up of UY � To avoid confusion� we denote by
A and B the two generators 
 and x of the ideal I ! 
� x� of P � UY !
SpecZ�x�� we can then write the ring Z�x� I  I�  � � � as

�M
n�	

In ! Z�x���A�B��xA � 
B��
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We may describe Proj of this ring as the union of the two open subsets WA

and WB � The �rst is simpler� setting b ! B�A� we have

WA ! SpecZ�x��b��x� 
b� ! SpecZ�b� ! A �
Z�

so that the open set WA
�! A �

Z� but the map WA � UY �! A �
Z � P�Z is

not an isomorphism� rather� it�s the map SpecZ�b�� SpecZ�x� dual to the
ring map sending x to 
b�

As for the other open set� we have

WB ! SpecZ�x��a��ax � 
��

that is to say� WB is an a�ne plane conic� For primes p �! 
 the �ber of
WB over p� � SpecZ is the complement SpecZ�p��x� �x � of one point in
A �
Z��p� or equivalently� the complement of two points in P�Z��p��� The �ber

of WB over 
�� on the other hand� is the union of two copies of A �
Z����

meeting at a point�
We have seen that the blow�up Z is a union of three a�ne opens� two�

UX ! SpecZ�y� and WA ! SpecZ�b�� are each isomorphic to A �
Z� and the

third� WB � is a plane conic in A �
Z� The identi�cations among these sets are

simple to describe� For example� the open subset U�y ! SpecZ�y� �y �
�
� � �

SpecZ�y� is identi�ed with the open subset U�b!SpecZ�b� �b �
�
� �� SpecZ�b�

via the map dual to the ring isomorphism sending y to ��
b� this yields a
scheme

Z � ! UX �WA ! SpecZ�y�
�

SpecZ�y� �
y
� �� ��SpecZ�b�

�
b
� �� �

SpecZ�b�

whose �ber over p� � SpecZ for each prime p �! 
 is a copy of P�Z��p� in
fact� the inverse image of SpecZn f
�g ! SpecZ� �� � in Z � is isomorphic to
P�SpecZ� �� ��� and whose �ber over 
� is a disjoint union of two a�ne lines�

Finally� we glue in the third open set WB ! SpecZ�x��a��ax � 
�� via
the identi�cation of the complement of the single point 
� a� x� in WB

with the corresponding open subset of Z � this is the union of the im�
ages in Z � of the open subsets Uy ! SpecZ�y� �y � � UX ! SpecZ�y� and
Ub ! SpecZ�b� �b � � WB ! SpecZ�b��� This adds one �nal point� the two
components of the �ber of WB over 
�� each isomorphic to A �

Z����� are
each glued onto corresponding components of the �ber Z � over 
� to yield
two copies of P�Z���� meeting at one point� In sum� the �ber of Z over p� is
P�Z��p� for p �! 
� and two copies of P�Z���� meeting at one point for p ! 
�
as shown on the next page�

There is another way to represent this scheme� which avoids the need for
gluing constructions though we will need the description of the blow�up
via gluing to see that it really is the blow�up�� This is expressed in the
following result�

Proposition IV���� The blow�up Z ! BlP P�Z� of P�Z at the point P !

� X� is isomorphic to the plane conic

C ! ProjZ�S� T� U ��ST � 
U�� � P�Z! ProjZ�S� T� U ��
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�x�

���

WA � SpecZ�b� � SpecZ�x���

�x�

���

WB � SpecZ�a� x���ax� ��

�x�

���

P

UY � SpecZ�x�

�y�

���
UX � SpecZ�y�

P �X�

�Y �

���
SpecZ

map collapses �ber over ���
to the point P
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Proof� Having already described Z as the union of open sets as above� this is
easy� we simply exhibit isomorphisms of these open sets with corresponding
open subsets of C and check that they agree on the overlap� First�

UX ! SpecZ�y��� UT ! SpecZ
�
S

T
�
U

T

���
S

T
�


�
U

T

���
! SpecZ

�
U

T

�

via the isomorphism sending y to U�T � then

WA ! SpecZ�b��� US ! SpecZ
�
T

S
�
U

S

���
T

S
�


�
U

S

���
! SpecZ

�
U

S

�

via the isomorphism sending b to U�S� and �nally

WB ! SpecZ�a� x��ax� 
� �� UU ! SpecZ
�
S

U
�
T

U

���
S

U

T

U
� 


�

via the isomorphism sending a to S�U and x to T�U �

Exercise IV��
� Describe in similar terms the blow�up of P�Zat the nonre�
duced subscheme

) ! V �� X� � P�Z! ProjZ�X�Y �

Use this description to identify the blow�up with the conic in P�Z given by
ST � �U� in P�Z! ProjZ�S� T� U ��

In the case of the a�ne plane over a �eld� the blow�ups at the subschemes
of degree � supported at the origin all looked alike� because the automor�
phism group of A �

K acts transitively on nonzero tangent vectors� and hence
on subschemes of degree �� The analogous statement is not true for A �

Z�
however� As we saw in Section II����� there are two types of subschemes
of degree � supported at such a point� the vertical and the horizontal or�
more accurately� the non�vertical�� They may be distinguished by their co�
ordinate rings� which are Z�p��x��x�� and Z�p��� respectively� As the
following exercise shows in conjunction with the preceding exercise�� they
may also be distinguished by their blow�ups�

Exercise IV���� Consider the blow�up Z ! Bl�P�Z� of P�Z at the nonre�
duced subscheme

. ! V 
� X�� � P�Z! ProjZ�X�Y ��

Show that the �ber of Z over 
� � SpecZ has two components� one of
which is everywhere nonreduced� Use this to show in particular that Z is
not isomorphic to any conic in P�Z�

Exercise IV��	� Find a curve C � P�Z isomorphic to the scheme Z of the
preceding exercise�
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Hint� First represent Z as a subscheme of P�Z�P�Z� then embed P�Z�P�Z
in P�Z via the Segre embedding� One possible answer is

Z !
�
�a� b� c� d� � rank

�a
b

c

d


d

a

� � �
� � P�Z�

that is� the zero locus in P�Z ! ProjZ�a� b� c� d� of the � � � minors of the
matrix

�
a
b
c
d
�d
a

�
�

Here are some examples of blow�ups of arithmetic schemes of dimension
one� two of which we have already encountered� Recall to begin with that
an order in a number �eldK is a subring of the ring of integers in K having
quotient �eld K� In the following three exercises� we�ll see that the spectra
of orders in a given number �eld may be related by blowing up�

Exercise IV���� Let A ! SpecZ�
p

� and B ! SpecZ���

p

�� as de�

scribed in Section II����� Show that A is the blow�up of B at the point
��� ��

p

�� The blow�up along the subscheme ��� is trivial�� Similarly�

show that A is the blow�up of the scheme B� ! SpecZ��
p

� at the point

�� �
p

��

In the preceding examples� the normalization of the schemes B and B�

coincided with the blow up� as is appropriate for schemes we claim are
analogues of curves with a simple node and cusp respectively� To see a case
where this is not so� we naturally look for a curve with a �tacnode�� We
will study such a scheme in the following two exercises�

Exercise IV���� Let A and B be as in the preceding exercise� and let
C ! SpecZ����

p

�� so that we have morphisms

A �� B �� C�

Show that B is the blow�up of C at the reduced� point ��� ���
p

�� At

the same time� exhibit A as the blow�up of C at a nonreduced scheme
supported at this point�

Exercise IV��� To justify the analogies between B and C and curves
with a node and tacnode� consider the morphisms � � A� B and � � A� C
from A to each� Let P ! � $ 


p

� and Q ! � � 


p

� � A be the two

points lying over the singular points ��� ��
p

� of B and ��� ���

p

� of C�

Show that the image of the di�erentials

d�P � TP A� �� T������
p
��B�

and

d�Q � TQA� �� T������
p
��B�

do not coincide� but that the images of

d�P � TP A� �� T�������
p
��C�
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and

d�Q � TQA� �� T�������
p
��C�

do�

The remainder of this section consists of a project for the reader� using
several of the techniques we have developed for local analysis to distinguish
among arithmetic surfaces�

Example IV���� Consider the schemes

C� ! ProjZ�X�Y� Z��XY �
Z���

C� ! ProjZ�X�Y� Z��XY ���Z���

C� ! ProjZ�X�Y� Z��XY ��Z���

C� ! ProjZ�X�Y� Z��XY ���Z���

All four are plane conics� that is� they are the zero loci in P�Z of homo�
geneous quadratic polynomials� Moreover� the inverse images of the open
subset

S ! SpecZ� �� � ! SpecZ n f
�g � SpecZ

in all four are isomorphic� via powers of� the automorphism of the ring
Z� �� � X� Y� Z� given by X�Y� Z� �� 
X�Y� Z�� In particular� each has �ber

over p� a nonsingular conic in P�Z��p� for p �! 
� Finally� in each case the

�ber over 
� is a union of two lines in P�Z�����

We claim� however� that no two of these schemes are isomorphic� and we
will prove this as an illustration of the various techniques developed over
the course of this section� The key is the local structure of each scheme
around the point 
� X� Y � which we will� by a slight abuse of notation�
call P in each of the four schemes Ci�� We start as follows�

Exercise IV���� Show that C� is nonsingular� while C�� C� and C� each
have P as a unique singular point�

Thus� C� cannot be isomorphic to any of the others� and for any two of the
others to be isomorphic� a neighborhood of P in each must be isomorphic�

Now� we cannot use the dimension of the tangent space to Ci at P to
further distinguish among these� TP C�� is two�dimensional since C� is
nonsingular� after all�� and dimTP Ci� ! 
 for each of i ! �� 
 and �� But
the tangent cone does provide a useful tool here�

Exercise IV���� Show that the projective tangent cone to C� at P is a
nonsingular plane conic� while the tangent cones to C� and C� at P are
each a union of two distinct lines in P�Z�����

Thus C� cannot be isomorphic to any of the others� Finally� how do we
distinguish C� and C� Blowing up provides the answer�

Exercise IV���� Let "C� ! BlP C�� be the blow�up of C� at P� and "C�

the blow�up of C� at P� Show that "C� is nonsingular� while "C� is not�
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For the reader who wishes to pursue this further� the techniques we have
are in fact su�cient to prove the following statement�

Exercise IV��
� For any positive integer n� let

Cn ! ProjZ�X�Y� Z��XY � 
nZ���

Show that for any n �! m� the schemes Cn and Cm are not isomorphic�
Hint� the number of blow�ups required to resolve the singularity of each

is bn� c� and we can distinguish between n even and n odd by the tangent
cone at the singular point before the last blow�up�

In fact� the above analysis shows something more than is claimed� we see
that the local rings OCn�p equivalently� the local schemes SpecOCn�p� are
not isomorphic to one another pairwise�

IV���� Project� Quadric and Cubic Surfaces as Blow�ups

It is a classical fact that a nonsingular quadric surfaceQ � P�C is isomorphic
to the surface obtained by blowing up two points in the plane P�C and
blowing down the line joining them� in other words� the blow�up of Q at
a point is isomorphic to the blow�up of P�C at two points� This description
arises naturally if we consider the graph ) of the rational map Q � P�C
given by projection from a point on Q�� It is likewise well�known� if less
readily seen� that a nonsingular cubic surface S � P�C is isomorphic to the
blow�up of the plane at six points� no three collinear and not all six on a
conic�

In the following series of exercises� we will see how to use our notion of
blow�ups along arbitrary subschemes of the plane to extend this description
of smooth quadric and cubic surfaces to some singular ones� We start with
the case of quadric surfaces� Here we ask� what do we get if� instead of
blowing up two points and blowing down the line joining them� we blow up
a nonreduced scheme ) � P�K of degree � and dimension 	� and blow down
the unique line containing it The answer is expressed in the following�

Exercise IV���� Let K be an algebraically closed �eld� Q � P�K an irre�
ducible quadric� and p � Q any nonsingular closed point� Show that the
blow�up of Q at p is isomorphic to the blow�up of the plane P�K at a sub�
scheme ) � P�K of dimension zero and degree �� with ) reduced if and only
if Q is nonsingular�

The situation over non�algebraically closed �elds is illustrated in the
following two exercises�

Exercise IV��	� Let P�R ! ProjR �X�Y� Z�W � be projective 
�space over
the real numbers� and consider the two quadric surfaces Q�� Q� � P�R given
as the zero loci

Q� ! V X� $ Y � � Z� �W �� and Q� ! V X� $ Y � $ Z� �W ���
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Show that the blow�up of Qi at any closed point with residue �eld R is
isomorphic to the blow�up of the plane P�R at a subscheme )i � P�R of
dimension zero and degree �� with

)� �! SpecR � R � and )� �! SpecC ��

In other words� )� consists of two points with residue �eld R and )� of one
point with residue �eld C �

We will return to this in Exercise IV��	 below�

Exercise IV���� More generally� let K be any �eld� Q � P�K a nonsin�
gular quadric� and p � Q any point with residue �eld K� Show that the
blow�up of Q at p is isomorphic to the blow�up of the plane P�K at a sub�
scheme ) � P�K of dimension zero and degree �� Show moreover that ) will
consist of two points with residue �eld K if and only if Q contains a line
L �! P�K � Q � P�K � and that in this case Q �! P�K �K P�K �

We turn our attention next to cubic surfaces� As in the case of quadrics�
we ask� if any nonsingular cubic surface S � P�K over an algebraically closed
�eld K is isomorphic to the blow�up of the plane P�K at six points� Indeed�
if ) � P�K is a collection of six points� no three collinear and not all six on
a conic� there will be a four�dimensional vector space of cubics vanishing
on )� This gives a morphism

P�K n )� P�K �
and by Proposition IV��� the blow�up S ! Bl� P�K of P� at ) is the closure
in P�K �K P�K of the graph of this morphism� The surface S � P�K �K P�K
projects isomorphically to P�K � and its image is a smooth cubic surface�
conversely� every smooth cubic S � P�K may be obtained in this way�

What happens when the points of ) come together A complete answer
is naturally more complicated here� we will simply sketch some of the pos�
sibilities� A prerequisite for the following exercises is familiarity with the
classical theory of smooth cubic surfaces� see for example Gri�ths and
Harris ������ or Mumford �������

We assume throughout that K is an algebraically closed �eld�

Exercise IV���� Let ) � P�K be any subscheme of degree � consisting of
four reduced points and one double point� with ) not contained in a conic
and no subscheme of ) of degree 
 contained in a line� Show that the blow�
up Bl� P�K is isomorphic to a cubic surface with one ordinary double point
de�ned in Section IV������ and conversely that any cubic surface with one
ordinary double point may be realized in this way� Use the description
of the blow�up in Proposition IV��	�� How many lines does such a cubic
surface contain 

Exercise IV��� This time let ) � P�K be any subscheme of degree �
consisting of three reduced points and one curvilinear triple point� again
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with ) not contained in a conic and no subscheme of ) of degree 
 contained
in a line� Show that the blow�up Bl� P�K is isomorphic to a cubic surface
with one double point� but this time the double point is not ordinary� What
is the tangent cone at the double point � How many lines does such a cubic
surface contain 

Exercise IV���� For an example of a cubic surface with only one line�
let ) � P�K be any curvilinear subscheme of degree � supported at a single
point� Suppose that the unique� subscheme of ) of degree 
 is contained in
a line� but the subscheme of degree � is not� Show that the blow�up Bl� P�K
is isomorphic to a cubic surface that contains a unique line�

IV�� Fano schemes

IV���� De�nitions

In classical geometry� one way to study a projective variety X � PnK is via
its relation to linear subspaces of PnK � Thus� a number of subvarieties of the
Grassmannians G Kk� n� are associated to such a variety� For example� we
can associate to X � PnK the loci in G Kk� n� of linear spaces that meet X �
of tangent spaces to X � of secants to X � or of linear spaces contained in X�
All of these subvarieties can now be rede�ned as subschemes of G Sk� n�
associated to a subscheme X � PnS � and as such they are endowed with a
richer structure that re�ects the geometry of X� Even if we start with a
varietyX � PnK over an algebraically closed �eldK� the schemes associated
to it in this way may be nonreduced�

In this section we will de�ne and study the scheme FkX� � G Sk� n�
parametrizing linear spaces of dimension k contained in a scheme X �
PnS � this is called the k�th Fano scheme of X� We will try in particular
to indicate how and when a nonreduced scheme structure may arise� and
how it allows us to extend many classical theorems about Fano varieties�
For example� we�ll see that� if K is any �eld and X � P�K is any cubic
surface not swept out by lines� the Fano scheme of lines on X will have
degree exactly �� over K� though the set of lines contained in X will have
cardinality �� only if X is nonsingular� and even then may not if K is
not algebraically closed� More generally� we will see that in many cases the
family of Fano schemes associated to a �at family of varietiesX � PnB � B
is itself �at overB� and so we will be able to make statements about number
and degree in greater generality�

In this chapter we will de�ne Fano schemes by giving their de�ning ideals�
which are the same ideals that were classically used to de�ne the Fano
variety� the only di�erence is that we no longer throw away information by
passing to their radicals� However� we will see in Chapter VI that there is a
more intrinsic de�nition of Fano schemes FkX� using the functor of points�



IV�� Fano schemes 	��

and this de�nition gives us in turn a characterization of various aspects of
their geometry e�g�� their tangent spaces� that is more directly related to
the geometry of the schemes X� These descriptions are very useful even in
case both X and FkX� are varieties�

Let S be any scheme� and let X � PnS be any subscheme of projective
space over S� let k � n be any positive integer� The Fano scheme FkX� �
G ! G Sk� n� of X is a scheme parametrizing the linear subspaces of
dimension k in PnS lying on X� As always� the word �parametrize� has a
precise meaning� which we will discuss further in Section VI���� below�� We
de�ne the FkX� �rst in case the base scheme S ! SpecR is a�ne� We will
describe them in terms of the description given in Section III���� of G as

the union of a�ne spaces WI
�! A �k
���n�k�

S �
Recall that in this construction we let

W ! SpecR�� � � � xi�j � � � �� �! A �k
���n
��
S

which we think of as the a�ne space associated to the vector space of
k $ �� � n $ �� matrices�� and for each multi�index I ! i	� � � � � ik� �
f	� �� � � � � ng let WI

�! A �k
���n�k�
S � W be the closed subscheme given by

the ideal � � � � xi��j� � ����� � � �� which we think of as the a�ne space asso�
ciated to the subspace of matrixes whose I�th submatrix is the identity��
Now� suppose that GZ	� � � � � Zn� � IX� is any homogeneous polynomial
in the ideal of X� Applying it to a general linear combination of the rows
of a k $ ��� n$ �� matrix� we obtain a polynomial

HGu� x� ! G
�X

uix	�i�
X

uix��i� � � � �
X

uixk�i

�
which we may write out as a linear combination of the monomials uJ !
uj�	 u

j�
� � � �ujkk in the variables u	� � � � � uk�

HGu� x� !
X

HG�Jx� � uJ �
The coe�cient polynomials HG�Jx� are then polynomials in the variables
xi�j � restricting to the subscheme WI

�! A �k
���n�k�
S � W they are like�

wise regular functions there� We de�ne the Fano scheme FkX� to be the
subscheme of G given� in each open subset WI � by the ideal generated
by the polynomials HG�Jx�� where G ranges over all elements of the ideal
IX� � R�Z	� � � � � Zn� and J indexes monomials of degree d in the variables
u	� � � � � uk�

Alternatively� for any k $ ���tuple c ! c	� � � � � ck� of elements of R� we
may de�ne a polynomial HG�cx� by

HG�cx� ! G
�X

cix	�i�
X

cix��i� � � � �
X

cixk�i

�
and take the Fano scheme FkX� to be the subscheme of G given in WI

by the ideal generated by the polynomials HG�cx�� where G ranges over
IX� � R�Z	� � � � � Zn� and c ranges over Rn
��
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To complete this de�nition we would have to check a number of things�
that these subschemes of WI agree on the overlaps of the WI � and that the
subscheme FkX� � G they de�ne does not depend on choice of coordinates
this is easier if we adopt the second way of generating the ideal of FkX��
WI � but then of course we have to show the two ways yield the same ideal��
Finally� we should check that the construction is natural� that is� if T � S
is any morphism and XT ! X�S T � PnT � then the Fano scheme FkXT � !
FkX��S T � G Sk� n��S T ! G T k� n�� This last condition in particular
ensures that� given a projective scheme X � PnS over an arbitrary possibly
nona�ne� base S� we can de�ne the Fano scheme FkX� � G Sk� n� by
restricting to a�ne open subschemes of S and gluing the results� All of these
assertions can either be veri�ed directly from the de�nitions� but they will
follow more readily from the intrinsic characterization of the Grassmannian
and of Fano schemes to be given in Section VI���� below�

IV���� Lines on Quadrics

To illustrate the de�nition of Fano schemes� we will consider a simple case�
the lines on the quadric surface Q ! V X�$Y �$Z�$W �� � P�K over an
algebraically closed �eld K� For convenience� we assume the characteristic
ofK is not � the situation is the same in characteristic � as long as we stick
to smooth quadrics�� Even in this case� we will see some very interesting
phenomena� and we will consider some examples over non�algebraically
closed �elds as well�

Lines on a Smooth Quadric over an Algebraically Closed Field�

As suggested above� we will �rst write down equations for F�Q� in an
open subset WI � G ! G K�� 
�� in this case� symmetry will do the rest�
For example� take WX�Y ! W��� the subset of G corresponding to lines
skew to the line X ! Y ! 	� we may identify this with the a�ne space
A �
K ! SpecK�a� b� c� d� associated to the space of matrices of the form�

� 	 a b
	 � c d

�
�IV���

We then write the restriction H of the polynomial GX�Y� Z�W � ! X� $
Y � $ Z� $W �� to a linear combination u	�� 	� a� b� $ u�	� �� c� d� of the
rows of this matrix as

HGu	� u�� ! Gu	� u�� u	a$ u�c� u	b$ u�d�

! u�	 $ u�� $ u	a$ u�c�
� $ u	b$ u�d�

�

! � $ a� $ b��u�	 $ �ac$ bd�u	u� $ � $ c� $ d��u���

The Fano scheme F�Q� in WX�Y
�! A �

K is de�ned to be the zero locus of
the coe�cients of HG� viewed as a polynomial in u	 and u�� that is�

F�Q� �WX�Y ! V � $ a� $ b�� ac$ bd� � $ c� $ d�� � SpecK�a� b� c� d��
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It is not hard to describe the subscheme of A �
K de�ned by these equations�

It is reducible� with one irreducible� component lying in the plane a !
d� b ! �c and the other in the plane a ! �d� b ! c� Each component is
isomorphic via the projection to the plane conic SpecK�c� d��c�$d�$�� �
A�
K ! SpecK�c� d��
We can use this to write down the equations of F�Q� in homogeneous

coordinates on G � P�K � To do this� recall �rst that the homogeneous
coordinates on P�K correspond to the � � � minors of a � � � matrix� we
will label them accordingly /XY � /XZ � /XW � /Y Z � /YW and /ZW � The
open subset WX�Y � G is the intersection of G with the a�ne open subset
/XY �! 	� and the coordinate functions a� b� c and d above on WX�Y

�! A �
K

are the restrictions of the ratios

a ! �/Y Z�/XY �

c ! /XZ�/XY �

b ! �/YW �/XY �

d ! /XW �/XY �

Also�

ad� bc ! /ZW �/XY �

from which we can deduce the de�ning equation of G � P�K �

G ! V /ZW/XY $/Y Z/XW �/XZ/YW ��

Now� from the equations of F�Q� �WX�Y above� we can see that the
Fano scheme F�Q� is contained in

V /�
XY $/�

Y Z $/�
YW � /Y Z/XZ $/YW/XW � /�

XY $/�
XZ $/�

XW ��

Carrying out the same procedure in the other �ve a�ne open subsets of
P� as well yields a complete set of de�ning equations for F�Q� � P�� This
is easy because of the symmetry of the equations� we conclude that F�Q�
has the expression

V
�
/�
Y Z�/�

XW � /Y Z$/XW �/YW$/XZ�� /Y Z$/XW �/ZW�/XY ��

/�
YW�/�

XZ � /YW�/XZ�/Y Z�/XW �� /YW�/XZ�/ZW�/XY ��

/�
ZW�/�

XY � /ZW$/XY �/Y Z�/XW �� /ZW$/XY �/Y W$/XZ��

/�
XY$/�

Y Z$/�
YW � /�

XY$/�
XZ$/�

XW

�
�

It may be easier to understand this if we organize it a little better� the
way to do this is suggested by the description above of F�Q��WX�Y � Let
-� and -�

�! P�K � P�K be the disjoint ��planes de�ned by the equations

-� ! V
�
/Y Z $/XW � /YW �/XZ � /ZW $/XY

�
and

-� ! V
�
/Y Z �/XW � /YW $/XZ � /ZW �/XY

�
�

Then we have� simply

F�Q� ! -� � -�� � G � P�
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as schemes� Each of the planes -i intersects G in a nonsingular plane
conic Ci� so we see that F�Q� is simply the union of two conics lying in
complementary planes� In particular� F�Q� is simply the closure of the
two a�ne conics in F�Q��WX�Y above�� This corresponds to the classical
picture of the two rulings of a quadric surface�

��

C�

��

C�

Lines on a Quadric Cone� Next� let us consider what happens to the
Fano scheme of lines on a quadric as it varies� and in particular as it degen�
erates to a singular quadric� Let the base of our family be B ! SpecK�t� �!
A �
K � and consider �rst the family of quadrics Q � P�B given by

Q ! V tX� $ Y � $ Z� $W �� � ProjK�t��X�Y� Z�W � ! P�B �

We will denote by Q� � P�K the �ber ofQ over the point t��� � B ! A �
K �

The Fano scheme F�Q� is likewise a subscheme of G B�� 
�� whose �ber
over t� �� � B ! A �

K is the Fano scheme F�Q�� � G K�� 
� of lines on
the quadric Q� � P�K �

As before� take WX�Y the subset of G B�� 
� corresponding to lines skew
to the line X ! Y ! 	 and identify this with the a�ne space A �

B !
SpecK�t��a� b� c� d� associated to the space of matrices of the form IV���

Write the restriction H of the polynomial GX�Y� Z�W � ! tX� $ Y � $
Z� $W �� to a linear combination of the rows of this matrix as

HGa� x� ! Gu	� u�� u	a$ u�c� u	b$ u�d�

! tu�	 $ u�� $ u	a$ u�c�
� $ u	b$ u�d�

�

! t$ a� $ b��u�	 $ �ac$ bd�u	u� $ � $ c� $ d��u���

The Fano scheme F�Q� in WX�Y
�! A � is the zero locus of the coe�cients�

that is�

F�Q� �WX�Y ! V t$ a� $ b�� ac$ bd� � $ c� $ d�� � SpecK�t��a� b� c� d��

For any �xed nonzero scalar � �! 	 � K the �ber of F�Q� �WX�Y over
t��� is a subscheme of A �

K isomorphic to the scheme F�Q��WX�Y � A �
K
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described above necessarily so� since Q� is projectively equivalent to Q
by an automorphism of P�K whose action on G K�� 
� �xes WX�Y �� It is
reducible� with one component lying in the plane a !

p
� d� b ! �p� c and

the other in the plane a ! �p� d� b ! p
� c� Each component is isomorphic

via the projection to the plane conic SpecK�c� d��c� $ d� $ �� � A�
K !

SpecK�c� d��
Now consider the �ber of F�Q��WX�Y over t�� that is� the open subset

F�Q	� �WX�Y of the Fano scheme F�Q	� of the quadric cone Q	� This
has equation

F�Q	� �WX�Y ! V a� $ b�� ac$ bd� � $ c� $ d�� � A �
K �

It is not hard to see that the support of F�Q	� �WX�Y is a single plane
conic� lying in the plane a ! b ! 	 and given there by the equation c� $
d� $ � ! 	� But F�Q	� is not reduced# Rather� at each point the tangent
space is ��dimensional� spanned by the tangent line to the reduced conic
c� $ d� $� ! 	 in the plane a ! b ! 	 and by another vector lying outside
this plane�

�

C

The same picture holds when we consider the entire Fano scheme F�Q� �
G B�� 
� and its �bers F�Q�� � G K�� 
� over t��� � B� Let -��� and
-��� �! P�K � P�K be the disjoint ��planes de�ned by the equations

-� ! V
�
/Y Z $

p
�/XW � /YW �p�/XZ � /ZW $

p
�/XY

�
and

-� ! V
�
/Y Z �p�/XW � /YW $

p
�/XZ � /ZW �p�/XY

�
�

Then� for � �! 	�

F�Q�� ! -��� � -���� � G K�� 
� � P�K
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as schemes� As before� each of the planes -i�� intersects G K�� 
� in a
nonsingular plane conic Ci��� But now as � approaches 	� the two planes
-i�� have the same limiting position� the plane

- ! V /Y Z �/YW �/ZW ��

As the following exercise will show� the �at limit -	� of the schemes
-�� ! -��� � -��� is a scheme supported on the plane -� but hav�
ing multiplicity ��

Exercise IV���� Show that the schemes -�� ! -��� � -��� and -	�
do form a �at family for � �! 	� that is� there is a scheme

L � � P�B� ! ProjK�t� t����/XY �/XZ �/XW �/Y Z �/YW �/ZW �

�at over B� ! B n f	g ! SpecK�t� t���� whose �ber over t � �� � B� is
-��� Find the equations of L in P�B� � �nd the equations of the closure L
of L � in PnB � and thereby of the limit -	� of the schemes -��� Finally�
show that the limit of the Fano schemes F�Q�� is indeed the Fano scheme
F�Q	� of Q	�

Exercise IV���� Show that F�Q	� � P�K is not contained in a hyper�
plane�

Exercise IV���� Let Q � P�K be a cone over a nonsingular quadric�
F�Q� � G K�� 
� � P�K its Fano scheme of lines� Show that F�Q� is
isomorphic to a double line on a quadric surface� that is� the double line
X� as described in Section III�
���

We�ll be able to see the fact that the Fano scheme of a quadric cone is
nonreduced more directly in terms of the characterization of F�Q� given
in Section VI���
�

If we let L ! Kt� be the function �eld of the base B of our family�
QL � P�L the �ber of Q over the generic point SpecL � B of our base and
F�QL� � G L�� 
� the Fano scheme of QL� F�QL� will not be a union
of two conics� If we pull it back to the quadratic extension L� ! L

p
�� of

L�that is� take the �ber product F�QL��SpecL SpecL��the scheme we
obtain is a union of two conics over SpecL� but F�QL� itself is irreducible�
This is a nice example of a scheme arising in a purely geometric context
that is reducible but not absolutely irreducible�

A Quadric Degenerating to Two Planes� Consider now a family of
quadricsQ � B whose general member is smooth� specializing to a quadric
Q	 consisting of the union of two planes� What is fascinating about this
case is not the Fano scheme F�Q	��after all� since Q	 is a union of two
planes� the locus of lines lying on it is pretty simple�but the geometry
of the family� In our main example the Fano scheme F�Q� � G B�� 
� is
not �at over B and indeed the restriction of the family to the open subset
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B� ! B n f	g has no �at limit at 	�� in other examples a �at limit exists
but depends on the particular family and not just on Q	�

All this is easier to do than to say� To begin with� let B ! SpecK�s� t� �!
A �
K � and consider the family Q � P�B � B given by

Q ! V sX� $ tY � $ Z� $W �� � ProjK�s� t��X�Y� Z�W �

and let Q��� � P�K be the �ber of Q over the point s��� t��� � B� Let
F�Q� � G B�� 
� be the Fano scheme of Q�

Even without writing down equations� we can see that F�Q� is not �at
over B� the �bers F�Q���� of F�Q� over B are all one�dimensional� except
for the one �ber F�Q	�	�� which is visibly two�dimensional� having support
the union of two planes� To see more� we write the equations� As before�
we start with the equations of F�Q� in the open subset WX�Y of G B�� 
��
we have

F�Q��WX�Y ! V t$a�$b�� ac$bd� s$c�$d�� � SpecK�s� t��a� b� c� d��

The �ber of F�Q� over the origin s� t� � B is given in WX�Y by

F�Q	�	��WX�Y ! V a�$b�� ac$bd� c�$d�� � A �
K �

We may also describe this as the union of the two planes )� and )� � A �
K

given by

)� ! V a$
p��b� c�p��d��

)� ! V a�p��b� c$
p��d��

Exercise IV��
� Show that the Fano scheme F�Q	�	� of a quadric of rank
� is reduced�

Let us consider now subfamilies of this two�parameter family� To start
with� let us �x two nonzero scalars � and  � K� and consider the restric�
tion of our family to the line V s � �t� through the origin in B ! A �

K

with slope ��� that is� the family Q��� with base B� ! SpecK�u� given
by

Q��� ! V �uX� $ uY � $ Z� $W �� � ProjK�u��X�Y� Z�W �

Again� the Fano scheme F�Q���� is not �at over B�� for the same reason�
What is di�erent here is that the Fano scheme over the complement of
the origin in B� does have a �at limit� In fact� F�Q���� is reducible� with
F�Q	�	� one component� and if we remove that component what is left is
�at� To see this� we write the equations of F�Q���� in the open subset
WX�Y of G B�� 
��

F�Q�����WX�Y ! V �u$a�$b�� ac$bd� u$c�$d��

� SpecK��� ��a� b� c� d��

Let 0�� � A �
K be the ��plane given by

0�� ! V a��d� b$�c�
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and let 1�� be the disjoint union of 0�� and 0���� What we see from
these equations is that� for every � �! 	 � K� the �ber of F�Q���� over

u��� � B� is contained in the scheme 1
p
�� �� independently of �� and

is cut out on 1
p
�� � by the one further equation u $ c� $ d� ! 	� It

follows that the �at limit of the Fano schemes F�Q�u��u� as u approaches

	 is the intersection of 1
p
�� � with the union V c� $ d�� of the two

hyperplanes V c $
p�� d� and V c � p�� d�� This is the union of four

lines�
To interpret this geometrically� note that the �rst of these lines is simply

the subscheme of the Grassmannian G K�� 
� of lines lying in the plane
H� ! V Z $

p��W � and passing through the point

P� ! �
p��

p
� �p�� 	� 	��

the second is the subscheme of lines lying in the plane H� and passing
through the point P� ! �

p��
p
�
p
�� 	� 	�� the third the subscheme of

lines lying in the plane H� ! V Z � p��W � and passing through the
point P�� and the last the subscheme of lines lying in the plane H� and
passing through the point P�� Note that the points P� and P� here may
be characterized as the intersection of the double line M ! H� �H� of the
quadric Q	 with the other quadrics Q����� in the pencil�

The �at limits of the families Q��� vary as the ratio �� varies� In par�
ticular� their union is dense in F�Q	�	�� This shows that the Fano scheme
F�Q� � B of the whole family is irreducible� and hence that the restric�
tion of F�Q� to the complement of the origin s� t� � B does not have a
�at limit�

Exercise IV���� Consider the one�parameter family of quadrics tending
to a double plane with equation

Q ! V tX� $ tY � $ tZ� $W �� � P�B �
What is the �at limit of the Fano schemes F�Qt� 
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More Examples� To see how the Fano scheme of lines on a quadric over
a non�algebraically closed �eld may behave� we consider the example of
quadrics over the real numbers�

Exercise IV��	� Consider the quadrics Q�� Q� and Q� in P�R given by
the equations

Q� ! V X� $ Y � � Z� �W ���

Q� ! V X� $ Y � $ Z� �W ���

Q� ! V X� $ Y � $ Z� $W ���

Show that the Fano scheme F�Q�� is the union of two copies of P�R� while
the Fano scheme of lines on Q� is irreducible but not absolutely irreducible�
Finally� show that the Fano scheme F�Q�� is the union of two copies of a
plane conic not isomorphic to P�R�

Here�s an example over a function �eld�

Exercise IV���� Let B ! P�K be the projective space that parametrizes
quadric surfaces in P�K � and L its function �eld� Let QB � P�B be the
universal quadric surface over B� Let QL � P�L be the �ber of Q over the
generic point SpecL of B� and FL ! F�QL� � G L�� 
� its Fano scheme of
lines� Describe FL� In particular� show that it behaves di�erently from the
examples above� in that is isomorphic to two copies of P�M over a quartic
extensionM of L� but not over any quadratic extension of L� In fact� there
is a quadratic extension L� of L over which FL becomes reducible� but the
components of FL�LSpecL

� are forms of P�L� in the sense of Section IV����
but not isomorphic to P�L� ��

Finally� here is an arithemetic analogue�

Exercise IV���� Consider the quadrics Q�� Q� and Q� � P�Z given by

Q� ! V �X� $ �Y � $ Z� $W ��

Q� ! V �X� $ ��Y � $ Z� $W ��

Q� ! V �X� $ ��Y � $ Z� $W ���

Describe the Fano scheme F�Qi� � G Z�� 
� in each case� In particular�
describe the component of F�Qi� dominating SpecZ� and its intersection
with the �ber G Z������ 
� of G Z�� 
� over the point �� � SpecZ�

IV���� Lines on Cubic Surfaces

In the following series of exercises� we will develop some interesting facts
about the Fano scheme F�S� parametrizing the lines on a cubic surface S �
P�K � To begin with� the following two exercises establish that all nonsingular
cubics contain the same number of lines without deriving the number ����
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Exercise IV��� Let K be a �eld� S � P�K a nonsingular cubic surface�
and F ! F�S� � G K�� 
� the Fano scheme of lines on S� Show that F is
reduced�
Hint � Take L � F�S� the line given by X ! Y ! 	� and write the cubic
polynomial de�ning S as XQZ�W � $ Y P Z�W � modulo X�Y ��� show
that the condition that the tangent space T�L�F�S� be positive�dimensional
is that P and Q have a common zero along L� Compare this to the dis�
cussion in Section VI���
��

Exercise IV���� Let P��K be the projective space parametrizing cubic sur�
faces in P�K � and U � P��K the open subset corresponding to cubics hav�
ing only �nitely many lines that is� other than cones and scrolls�� Let
SU � P�U be the universal cubic in projective 
�space over U� and FU !
F�SU � � G U �� 
� be its Fano scheme of lines� Show that the projection
map � � FU � U is �at�
Hint� Use the fact that the Fano scheme F�S� of lines on a cubic surface

S � P�K is a local complete intersection� together with Proposition II�
��

In fact� neither of the statements of the two preceding exercises is com�
pletely general� that is� for some d and n the Fano variety F�X� of lines on
a hypersurface X � PnK of degree d may be singular and even nonreduced
for X nonsingular� and the dimension dimF�X� may jump as X varies�
so that the universal Fano scheme F need not be �at� We will be able to
exhibit examples of these behaviors once we have developed a description
of tangent spaces to Fano schemes in Chapter VI�

We now consider what happens when our cubic surface becomes singular�
There are essentially two cases to consider� In some sense the simpler case
is when S has only isolated double points� in this case as we will see�
the Fano scheme F�S� is still 	�dimensional of degree ��� and �ts into a
�at family with the Fano schemes of nonsingular cubics that is� in terms
of Exercise IV��� above� if we let U � � P��K be the larger open subset of
cubics having at most isolated double points as singularities� and de�ne
SU � � P�U � and FU � � G U ��� 
� accordingly� then FU � � U � is still �at��
On the other hand� when S is a cone or has positive�dimensional singular
locus� for example� when S is reducible�F�S� will become positive�
dimensional� and a further question arises� what may be the �at limit of
the Fano schemes F�S�� � G �� 
� as S� approaches S 

We start with some examples of cubic surfaces having isolated double
points� For this it may be useful to recall the description of such surfaces
in Exercise IV��� above� or in Gri�ths and Harris �������

Exercise IV���� Let K be an algebraically closed �eld� and S � P�K a
cubic surface having an ordinary double point P that is� the projectivized
tangent cone to S at P is a nonsingular conic�� Show that the Fano scheme
F�S� consists of six nonreduced points each of multiplicity �� correspond�
ing to lines on S through P� and �� reduced points�
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Exercise IV���� Now suppose that S has two ordinary double points P
and Q� Show that the scheme F�S� consists of one point of multiplicity ��
supported at the point �PQ� corresponding to the line PQ joining P and Q�
eight points of multiplicity � corresponding to lines through P or Q other
than PQ� and � reduced points� What is the scheme structure of the point
�PQ� 

Exercise IV���� Now say that S has again just one double point P �
but suppose now that P is what is called an A� singularity � that is� the
completion of the local ring OS�P with respect to the maximal ideal is
%OS�P �! K��x� y� z���xy � z�� in particular� the tangent cone is a conic
of rank �� as in Exercise IV��
�� Show that the scheme F�S� consists of
six points of multiplicity 
� corresponding to lines on S through P� and
� reduced points� Again� what is the scheme structure of the points of
multiplicity 
 

In case S is reducible or a cone� the Fano scheme of lines on S is usually
pretty obvious� what is of interest is� as we said� the �at limits of the Fano
schemes of nearby nonsingular cubics� We consider� in each of the following
problems� the same set�up� we take S	 a reducible cubic or a cone� choose
S a general cubic� and let fS�g��P� be the pencil of cubic surfaces that
they span� In each case� we ask what will be the �at limit� as � tends to 	�
of the Fano schemes F�S���

Exercise IV��
� Take S	 the union of a nonsingular quadric Q and a
plane H� meeting along a nonsingular conic curve C� Let fP�� � � � � P�g !
C�S be the base points of the pencil lying on C� Show that the �at limit� as
� tends to 	� of the Fano schemes F�S�� is reduced of degree ��� consisting
of the �� lines on Q containing one of the points Pi and the �� lines on H
containing � of the points Pi�

Exercise IV���� Now take S	 the union of three planes H�� H�� H� in
general position� Again� what is the �at limit� as � tends to 	� of the Fano
schemes F�S�� 

Exercise IV�
	� The same problem� but now take S	 the cone over a
nonsingular plane cubic curve�

Finally� an amusing one on the lines� on the universal cubic�

Exercise IV�
�� Let B ! P��K be the projective space parametrizing cubic
surfaces in P�K � L the function �eld of B� SB � P�B the universal cubic in
projective 
�space over K� and SL the �ber of S over the generic point
SpecL of B� Let FL ! F�SL� � G L�� 
� be its Fano scheme of lines�
Show that FL consists of one reduced point� whose residue �eld is a degree
�� extension of L�
Hint� this follows from the fact that the universal Fano variety F !

F�S � � G B�� 
� ! P��K �K G K�� 
� is irreducible� which in turn follows
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from the fact that projection on the second factor expresses F as a P��K �
bundle over G K�� 
��

Exercise IV�
�� Consider now nonsingular cubic surfaces S � P�R over
the real numbers� As we have seen� the Fano scheme F�SC � � G C �� 
�
of SC ! S �SpecR Spec C consists of �� reduced points� It follows that�
for some pair of integers a and b with a $ �b ! ��� F�S� � G R�� 
� will
consist of a reduced points with residue �eld R and b reduced points with
residue �eld C � Show that a can be 
� �� �� or ��� and that no other values
are possible� See Segre ��������

IV�� Forms

Let S be any scheme andX any scheme over S� We say that a scheme Y over
S is a form of X if for every point p � S there exists an open neighborhood
U of p in S and a �at surjective morphism T � U of schemes such that
Y �S T �! X �S T as T �schemes�

To begin with a classic example� consider the conic in the real projective
plane P�R given by the equation X� $ Y � $ Z� ! 	� that is� the curve
C ! ProjR �X�Y� Z��X�$Y �$Z��� The curve C has no points de�ned over
R�that is� no points with residue �eld R�and so cannot be isomorphic to
the projective line P�R� However� the result of extending the ground �eld to
the algebraic closure C of R is C �SpecR Spec C �! Proj C �X�Y� Z��X� $
Y � $ Z�� �! P�C � Thus C is a form of P�R over SpecR � or� more succinctly�
an R �form of the projective line�

As a second example� the reader might check that the �eld extension
SpecQ �x��x� $ �� over SpecQ is a form of the scheme consisting of two
distinct points� while SpecZ����x��x� $�� over SpecZ��� is a form of a
double point�

In number theory it is of interest to see how the set of rational points
may vary in a family of forms of a given curve� To give a particular case�
for any t � Q the set of rational solutions x� y� of what is called Pell�s
equation�

ty� ! x� � ��

is the set of Q �rational points on the curve Ct ! SpecQ �x� y��ty��x�$���
These curves Ct are forms of P� over SpecQ � Likewise� the curves Et !
SpecQ �x� y��ty� � x� $ �� all have j�invariant 	� and thus are all forms
of the curve E� � P�Q given by y� ! x� � � see Section IV���
 above and
Section VI���� below�� but have varying arithmetic properties�

In each of these cases� it is easy to see that the curves given are forms of
each other�the curves Et �SpecQ SpecQ �

p
t� and E� �SpecQ SpecQ �

p
t�

are visibly isomorphic�and less obvious but not hard to see that they are
not all isomorphic� In fact the naive guess�that Et �! E� if and only if
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t � Q ���� that is� t is the square of a nonzero rational number�is correct�
but it is a nontrivial exercise to prove this��

The set of isomorphism classes of S�forms of projective space Pn� for all
n� is in a natural way a group� called the Brauer group of S or� in case
S ! SpecK is the spectrum of a �eld� the Brauer group ofK�� with the true
projective space PnS the identity element� This group may be computed with
Galois cohomology� see Serre ������� Here is a construction of the Brauer
group related to number theory�

Let K be a �eld� and let A be an n�dimensional Azumaya algebra over
K�that is� A is an algebra which has dimension n as a vector space� has
no nontrivial ��sided ideals� and has center exactly K� For example� the
algebra MdK� consisting of all d� d matrices over K is a d��dimensional
Azumaya algebra� It follows from the Wedderburn structure theorems that
if A is an n�dimensional Azumaya algebra over K then n is a square� say
n ! d�� and K � A �! MdK� �! K �MdK� in this sense A is a form of
MdK���

Identifying MdK� with the endomorphism algebra of a d�dimensional
vector space V over K� it is easy to see that the left ideals of MdK� each
have the form

fa �MdK� j Ima� �Wg

for some subspace W � V� The vector space dimension of the left ideal is
then dimV � dimW �� In particular� the left ideals of dimension equal to
dd � �� correspond to the hyperplanes in V� that is� the points of PV ��
The subscheme of the Grassmannian of dd� ���planes in MdK� that are
closed under multiplication by MdK�� that is� are ideals� is isomorphic
to PdK� in this way�

At the other extreme� there are in general� Azumaya algebras A that are
division algebras over K�that is� algebras with no left ideals at all� But
we can still form the scheme of left ideals of A� Of course we must specify
it by equations� not as a point set# Let G be the Grassmannian of dd� ���
dimensional subspaces of the vector space A� If S � AG is the universal
bundle then the subscheme of G that we want is the largest subscheme X
such that the restriction to X of the composite map of vector bundles

S �AG � AG �AG
multiplication� A � A�S

on G is zero this is locally a subscheme de�ned by the dd���d��d entries
in a matrix representing the composite map�� Extending the ground �eld�
we �nd thatXK is the Grassmannian of dd��� dimensional ideals ofK�A�
that is� projective space# Conversely� it can be shown that every form of
projective space over K occurs in this way and that the correspondence
between isomorphism classes of forms and Azumaya algebras is one�to�one�
For all this see Serre ������ and Cassels and Fr'ohlich �������
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Exercise IV�
� Let A be the quaternion algebra over R � that is� the
algebra with basis �� i� j� k and multiplication i� ! j� ! k� ! ��� ij !
�ji ! k� Check that its center is R � and that it is a division algebra and
thus an Azumaya algebra over R �� Compute the equations of the scheme
of ��dimensional left ideals of A in terms of Pl'ucker coordinates on the
Grassmannian of lines in PA� �! P�R� Show directly that this is a form of
P��

Here is still another way in which a form of P� arises� on which the
reader can try his hand� Let K be an algebraically closed �eld� and let
B ! P�K be the projective space parametrizing conic curves in P�K � Let
U � B be the open subset corresponding to nonsingular plane conics� and
let CU � P�U ! U �SpecK P�K be restriction to U of the universal conic
curve C � P�B over B as described in Section III����� Similarly� let L be
the function �eld of B or equivalently of U�� SpecL the generic point of
B� and CL � P�L the �ber of the universal conic C over SpecL� We have�

Proposition IV�
�� CU is a nontrivial form of P�U over U and CL a
nontrivial form of P�L over L�

The point is that� although every smooth conic plane curve in P�K is
rational� there is no way of choosing a rational parametrization of each
smooth conic consistently over a Zariski open subset of U�

Proof� To establish our claims� it will be enough to show two things� that
CU is a form of P� over U� and that CL ��! P�L� To see the �rst� �x a line
M � P�K and let

V ! CU n CU � U �M�� � U � P�K �
We claim that the pullback

CV ! V �U CU � U � P�K � P�K
is isomorphic to the product V �M �! P�V as V �schemes� The point is� the
family CV � V has naturally a section�the diagonal�and the presence
of a distinguished point on each �ber of CV � V allows us parametrize
that �ber by projecting from that point onto M� Explicitly� away from the
diagonal in CV we can de�ne a map 
 � CV � V �M by


 � C� p � q� ��� C� p � p� q �M �

Exercise IV�
�� Show that

a� 
 is a morphism of schemes�

b� 
 extends to a morphism on all of CV sending a point C� p� p� on the
diagonal in CV to the point of intersection with M of the tangent line
at p to the �ber of CV over C� p� � V ��

c� 
 � CV � V �M is an isomorphism�
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For the second part� observe that if CL were isomorphic to P�L� it would
have an L�rational point�that is� a pair of rational functions F a� b� c� d� e�
and Ga� b� c� d� e� � Ka� b� c� d� e� such that

� $ aF � $ bG� $ cF $ dG$ eFG ! 	�

We can assume after possibly a change of variables on our original P�K�
that the denominators of F and G are not in the ideal c� d� e�� so that
restricting to the locus c ! d ! e ! 	 we get four polynomials fa� b��
ga� b�� ha� b� and ja� b� such that

� $ a �
�
fa� b�

ha� b�

��
$ b �

�
ga� b�

ja� b�

��
! 	�

or� in other words�

ha� b��ja� b�� $ a � fa� b��ja� b�� $ b � ga� b��ha� b�� ! 	�

Now we simply ask what the degree of each term in this equation is� �rst
as a polynomial in a and then in b� and thus derive a contradiction�

Exercise IV�
�� Let K be any �eld� Show that any form X of P�K over
SpecK is isomorphic to a plane conic C � P�K � Conclude in particular that
a form X of P�K over SpecK is isomorphic to P�K if any only if it has a
point with residue �eld K�

Exercise IV�
�� Using the preceding exercise� show that a form X of P�K
over a �eld K is isomorphic to P�K if any only if it has a zero�dimensional
subscheme ) � X of odd degree� that is� such that the coordinate ring of
) has odd dimension as a vector space over K�

Exercise IV�

� Show that there are no nontrivial forms of A �
K over

SpecK� that is� any form of A �
K over SpecK is isomorphic to A �

K �

Exercise IV�
�� Show by example that the conclusions of the three pre�
ceding exercises are all false if we do not specify S ! SpecK� that is� if we
consider forms X of P�S and A �

S over a general scheme S� To �nd coun�
terexamples� it is enough to take S ! P�K a projective line over a �eld and
consider the blow�up of the a�ne plane A �

K at the origin��

Another generalization of the irrationality of the universal conic�this
time asserting that the universal rational normal curve of degree d is ratio�
nal if and only if d is odd�will be discussed in Exercise VI�
��

For another example of a form of projective space arising in a geometric
context� see Exercise IV��� above�
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Local Constructions

V�� Images

In this section we will be concerned with a basic notion� the image of a
morphism in the category of schemes� As we will see� there are two fun�
damental properties that we would like the notion of image to have� the
push�pull property and invariance under base change� but the two are in�
compatible� We will give accordingly two de�nitions� one straightforward
and one less so� each of which is useful in certain situations�

V���� The Image of a Morphism of Schemes

Suppose 
 � X � Y is a morphism of schemes� The set�theoretic image of

 is de�ned in the obvious way� it is the subset of Y consisting of those
points y � Y such that there is a point x � X with 
x� ! y� The image
may or may not be a closed subset� for example� if X is the scheme de�ned
by the ideal xy � �� � K�x� y� in A �

K ! SpecK�x� y�� then the image of
the projection of X to the a�ne line A �

K ! SpecK�x� is the complement
of the origin� an open set� In a certain sense this is because we �forgot�
some of the points of the source scheme� if we extend this morphism to
a morphism from the closure of X in A �

K �K P�K � the image becomes the
whole projective line�

These two examples turn out to be typical� The situation is summed up
in the following theorem� To state it� recall that a subset V of a topological
space is constructible if it is a �nite union of locally closed subsets Vi�
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Theorem V��� If the morphism of Noetherian schemes 
 � X � Y is
of �nite type� the set�theoretic image of 
 is constructible in Y� If the
morphism 
 is projective� the set�theoretic image of 
 is closed�

The �rst of these statements is due to Chevalley� Note the necessity of
the hypothesis that 
 is of �nite type� the morphism

SpecK�x�� � � � � xn��x������xn� �� SpecK�x�� � � � � xn��

coming from the inclusion of the polynomial ring in its localization� does
not have constructible image for any n� The second statement� which is
quite old� is generally called the Main Theorem of Elimination Theory� The
de�nition of properness� which is a strengthening of the conclusion of the
theorem� was essentially made to express this property see Section III����
The proof of Theorem V�� is exactly the same as in the classical case of
varieties� see for example Harris ������ or Hartshorne ������� We will not
repeat it here�

More novel is the fact that the closure of the image has a natural scheme
structure� and this is the fact that we shall explore in this section�

Suppose now we wish to de�ne the image of a morphism 
 � X � Y
as a scheme� What we would like ideally� though� as we shall see� this
is impossible� is to take 
X� to be the smallest subscheme of Y whose
inverse image is all of X� In other words� we would characterize 
X� by
the push�pull property � for every subscheme Z � Y�

Z � 
X� �� 
��Z� ! X�

As it happens� though� no such subscheme of Y need exist� as shown by
the example of the morphism


 � X ! A �
K �� Y ! A �

K

de�ned by the ring homomorphism 
� � K�x� y� � K�s� t� taking x to s
and y to st�
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For any � � K� let Y� be the complement in Y of the point 	� ��� For
� �! 	� the inverse image of Y� is all of X � Thus� if there were a subscheme

X� � Y satisfying the push�pull property above with Z ! Y � the support
of 
X� would be contained in the set I !

T
� ��	 Y�� which is the union of

the point 	� 	� and the complement of the x�axis� On the other hand� from

��
X� ! X it would follow that the support of 
X� contained I � and
hence that supp
X� ! I � But I is not a locally closed subset of Y � and
so is not the support of any subscheme of Y �

We are� however� close to what we want� there does exist a smallest closed
subscheme of Y whose inverse image is all of X� and this subscheme does
satisfy the push�pull property with respect to closed subschemes Z � Y�

De�nition V��� If 
 � X � Y is a morphism of �nite type� then the
scheme�theoretic image� written (
X�� is the closed subscheme of Y whose
sheaf of ideals is the sheaf of regular functions on open subsets of Y that
pull back to 	 under 
�� that is�

(
X� ! V
�
Ker
� � OY � 
�OX �

� � Y�

We say that 
 is dominant if (
X� ! Y� or equivalently if the pullback
map 
� is a monomorphism�

This condition that a morphism be dominant is not just a condition
on the underlying map of topological spaces� for example� the inclusion

 � SpecK �� SpecK������� is a surjection on underlying sets� but the
image is a proper closed subscheme� the pullback map 
� is not injective�
and the map is not dominant�

Proposition V�� If 
 � X � Y is a morphism of schemes� the closure
of the set�theoretic image is (
x�red�

Proof� We may reduce at once to the a�ne case� and prove that if 
� �
B � A is a ring homomorphism then the intersection J of all the primes Q
of B that may be written in the form Q ! 
����P � for some prime P of
A is the radical of Ker
�� see Section I������ Let I � A be the nilradical
of A� We have

J !
�

P�A prime


����P � ! 
����I��

Thus if f � J then 
�f� � I is nilpotent� and f � radKer
��� The
opposite inequality is immediate�

It is sometimes convenient to work in an apparently more general case�
If 
 � X � Y is any morphism and X � � X a closed subscheme� then we
de�ne the scheme�theoretic image (
X �� of X � to be the subscheme de�ned
by the sheaf of ideals I with

IU� ! ff � OY U� j 
�f� � IX�
��U�g�
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This �generalization� actually describes a special case� since (
X �� is the
scheme�theoretic image of the composite morphism X � � X � Y�

If the two schemes X and Y are a�ne and the map 
 is dominant� then
the ideal describing the image of a subscheme X � � X is obtained in a
particularly simple way� we may think of AY � as a subring of AX�� and
(
X �� is the subscheme of Y de�ned by IX� � AY �� We shall be mostly
concerned with this case� since it already contains all the new phenomena�

As an example consider the linear projection on the �rst coordinate


 � X ! A �
K ! SpecK�x� y� �� Y ! A �

K ! SpecK�x�

LetX � andX �� be the abstractly isomorphic� zero�dimensional subschemes
given by the ideals I � ! x� y�� and I �� ! x�� y�� The image of X � is the
reduced scheme de�ned by x� y�� �K�x� ! x�� while the image of X �� is
given by x�� y��K�x� ! x��� More generally� the image of the �fat point�
V x�� xy� y�� � A �

K is the double point V x�� � A �
K � and the image of the

double point V x�� xy� y�� �x$y� � A �
K is the double point V x�� � A �

K

for  �! 	� but the reduced point V x� for ��� � ! ��� 	��We see from this
example that the scheme structure of the image depends on the relation of
the subscheme to the �bers of the morphism 
�

Exercise V��� Consider now a �family� of such projections of double
points� take B ! SpecK�t� ! A �

K and consider the morphism


 � X ! A �
B ! SpecK�x� y� t� �� Y ! A �

B ! SpecK�x� t��

Let X � � X be the double line

X � ! V x�� xy� y�� x$ty� � A �
B

as described in Section II�
��� Show that the scheme�theoretic image (
X�
of X � is the double line V x�� � Y� even though the �ber of X � over the
origin t� � B has image the reduced point V x� in the �ber of Y over
t�� This is in fact the source of some interesting complications� as we will
explain in the following section�
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Exercise V��� Show that if 
 � X � Y is a morphism and X � � X is a
reduced subscheme� then (
X �� is reduced� Hint� Reduce to the statement
that the preimage of a radical ideal under a ring homomomorphism is again
radical��

V���� Universal Formulas

Is there a �formula� for the closure of the image of a map� and if so� what
is it This question� in a somewhat di�erent language� occupied a large
number of mathematicians in the past� and the theory is correspondingly
rich� In many special cases beautiful and useful formulas were found for
the set�theoretic image� the equations they give are usually referred to as
resultants� a notion we will discuss below� The scheme�theoretic image is
signi�cantly more complicated� with a reasonable interpretation of the basic
question there can be no formula for the scheme theoretic image# We shall
next explain this fact and the opportunities to which it gives rise� We shall
keep the discussion informal� but it can be formalized using the notion of
family of schemes given in Section II�
���

Consider a consequence that a universal formula would have� it would
be preserved by base change� or� put more informally� it would specialize
on substitution of variables� Some examples will make this clear�

Example V��� See �gure on the next page�� To begin with� let K be
an algebraically closed �eld� set B ! SpecK�t� ! A �

K � and consider the
projection map


 � A �
B ! SpecK�t� x� y�� A �

B ! SpecK�t� x�

de�ned by the inclusion K�t� x� � K�t� x� y�� We regard this map infor�
mally as a trivial� family of projection maps A �

K ! SpecK�x� y�� A �
K !

SpecK�x� parametrized by t � K� Consider �rst the closed subscheme
X � A �

B ! A �
K given as the union of the two disjoint lines V y� x� and

V y��� x$t�� that is�

X ! V y��y� yx$yt� yx�x� x�$ tx��

We will think of X as a family of pairs of points in the x� y��plane� param�
etrized by t� and each with its projection onto the x�axis� for each scalar
a � K we let Xa � A �

K be the �ber of X over the point t � a� � B�
Ya �! A �

K the �ber of A �
B over t � a� and 
a � Xa � Ya the restriction of


 to Xa�
For each scalar value a �! 	 � K the set�theoretic image 
Xa� is the

union of the two points x ! 	 and x ! �a� for a ! 	 it is simply the origin
x ! 	� The scheme�theoretic image (
Xa� is the subscheme of SpecK�x�
de�ned by the ideal Ia �! K�x��y��y� yx$ay� yx�x� x�$ax�� Since

K�x� y��y��y� yx$ay� yx�x� x�$ax� ! K�x� y��y��y� x$ay��
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Xa
X�

���Xa� � ���X�a
���X�� �� ���X��

we see that

Ia ! Ker
�
K�x�� K�x� y��y� � y� x$ ay�

�
!

�
x� $ ax� if a �! 	�
x� if a ! 	�

Thus the scheme�theoretic image (
Xa� is the union of two reduced points
for a �! 	 and a single reduced point for a ! 	�

The important thing about this example is that the scheme�theoretic
images (
Xa� do not �t into any family of schemes# That is� there is no
polynomial ft� x� �giving a formula for the scheme�theoretic image� in the
sense that for each a � K the scheme�theoretic image (
Xa� is de�ned by
the ideal fa� x� ! 	� Indeed� for a �! 	 the scheme (
Xa� is de�ned by
the ideal x� $ ax�� so we would have to have ft� x� ! gt� x�x� $ tx� for
some polynomial gt� x�� Since ga� x� �! 	 for all x when a �! 	� we must
have gt� x� ! gt�� a polynomial of one variable vanishing at most when
t ! 	� If now g	� ! 	 then f	� a� would describe the whole line� while if
g	� �! 	 then f	� a� would describe a double point� and neither of these
options is the scheme�theoretic image (
Xa��

Perhaps the best we can do in this example is to take the scheme�theoretic
image of the whole family� (
X� � SpecK�x� t�� This image is de�ned by
the ideal K�t� x��y��y� yx$yt� yx�x� x�$ tx�� To compute this inter�
section� one shows that the localization map

K�t� x� y��y� � y� yx$ yt� yx� x� x� $ tx�

� K�t� t��� x� y��y� � y� yx$ yt� yx� x� x� $ tx�

! K�t� t��� x��x� $ tx�

is a monomorphism� and it follows at once that the intersection is x�$tx��
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We thus see that the scheme�theoretic image (
X	� of the �ber of X
over the origin t� � B is properly contained in the �ber (
X�	 of the
scheme�theoretic image (
X� over the origin� In particular� the �ber of any
closed subscheme of A �

B containing (
Xa� for a �! 	 will properly contain
(
X	�� so that the scheme�theoretic images (
Xa� cannot form a family in
any sense� The equation x� $ tx of the scheme�theoretic image (
X� gives
the �correct� de�ning ideal for (
Xa� when we specialize t to any a �! 	�
while for a ! 	 it gives an ideal de�ning a scheme a little larger than (
X	��
This choice of �approximation� for a de�ning equation of scheme�theoretic
images is a resultant� in a sense that we shall describe�

Example V��� See �gure below�� To see an example of the same phe�
nomenon involving nonreduced schemes� let K� B ! SpecK�t� ! A �

K � and


 � A �
B ! SpecK�t� x� y�� A �

B ! SpecK�t� x�

be as before� and consider the closed subscheme X � A �
B ! A �

K given by

X ! V x�� xy� y���V ty$x� ! V ty$x� y���

Viewed as a subscheme of A �
B ! A �

K � it is the intersection of the �rst
order in�nitesimal neighborhood of the t�axis with a helical surface winding
around the axis� it is a double line supported on the t�axis� As before� we
will think of X as a family of double points in the plane� each with its
projection onto the y�axis� for each scalar a � K we let Xa � A�

K be the
�ber of X over the point t� a� � B� Ya �! A �

K the �ber of A �
B over t�a�

and 
a � Xa � Ya the restriction of 
 to Xa�

���Xa� � ���X�a
���X�� �� ���X��

X�

Xa
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For each scalar value t ! a � K the set�theoretic image 
Xa� is the
point x ! 	� The scheme�theoretic image (
Xa� is de�ned by Ia �! K�x��
ay $ x� y��� Since

K�x� y��ay $ x� y�� !

�
K�x��x�� if a �! 	�
K�x� y��x� y�� if a ! 	�

we see that

Ia ! Ker
�
K�x�� K�x� y��ay$x� y��

�
!

�
x�� if a �! 	�
x� if a ! 	�

Thus the scheme�theoretic image (
Xa� is a double point for a �! 	 and a
simple point for a ! 	�

Just as in the previous example� we see that the scheme�theoretic images
(
Xa� cannot be the �bers of any closed subscheme of A �

B overB� In partic�
ular� the scheme�theoretic image of the whole family� (
X� � SpecK�x� t�
is de�ned by the idealK�t� x��ty$x� y��� which is readily seen to be simply
x�� as before� this follows from the fact that the localization map

K�t� x� y��ty$x� y��� K�t� t��� x� y��ty$x� y�� ! K�t� t��� x��x��

is a monomorphism�� We thus see that the scheme�theoretic image (
X	�
of the �ber of X over the origin t� � B is properly contained in the
�ber (
X�	 of the scheme�theoretic image (
X� over the origin� so that
the �ber of any closed subscheme of A �

B containing (
Xa� for a �! 	 will
properly contain (
X	�� Once again it follows that the scheme�theoretic
images (
Xa� cannot form a family of schemes�

Note also that as before the equation x� of the scheme�theoretic image
(
X� gives the �correct� de�ning ideal for (
Xa� for every a �! 	� while for
a ! 	 it gives an ideal de�ning a scheme a little larger than (
X	�� again�
the equation x� of the �ber (
X�a is an example of a resultant�

We may generalize the phenomena that we have just seen by saying that
for any family of morphisms

X

 � Y

B
�

�

with parameter space B and closed point b � B� we have an inclusion

(
Xb� � (
X�b�

but this inclusion need not be an equality� in other words� the �ber of
the image may properly contain the image of the �ber� This is sometimes
expressed by saying that the scheme�theoretic image does not necessarily
commute with base change� The base change in question is pullback via
the inclusion fbg �� B� though the same issues arise for any morphism
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B� � B�� Note by contrast that the set�theoretic image does commute
with base change� this is just set�theory� A still more general form of this
statement is expressed by the following result�

Proposition V�
� If

X � ! X�Y Y
� ��� X

Y �


�
�

�
� Y



�

is a pull�back diagram of morphisms of schemes� then (
�X �� � ��� (
X��
If the morphism 
 is �nite� these two schemes have the same underlying
set� the closure 
�X �� of the set theoretic image� In particular� when 
 is
�nite the set�theoretic image is closed� If � is �at� then (
�X �� ! ��� (
X��

Note that� in the previous case� Y � ! Yb was the �ber of a morphism
Y � B� but we need not assume that in general�

Proof� We reduce at once to the a�ne case� and consider this diagram of
coordinate rings�

A� ! A�BB
� ����

A

B�


��
�

�
��

B


�
�

In this setting the �rst assertion becomes the inequality

Ker
��� � ��Ker
���B��

which is immediate from the commutativity of the diagram�
The second statement of the proposition becomes in this a�ne case the

assertion that� if A is a �nite B�module� then the radicals of the ide�
als Ker
��� and ��Ker
���B� are equal� Given the inequality above�
and the fact that the radical of an ideal is the intersection of the primes
containing it� we must show that if P � is a prime ideal of B� containing
��Ker
���B� then P � � Ker
����

The preimage P ! �����P � of P � in B contains Ker
��� so we have
A�BBP �! 	� Since A is a �nitely generatedB�module� Nakayama�s Lemma
Eisenbud ������ Section ���� shows that A �B BP �PP �! 	� Since the unit
element of B maps to the unit element of A and BP �PP is a �eld� we see
that the induced map BP �PP � A �B BP �PP is a monomorphism� Now
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consider the diagram

A�B B���B�P ��P
�
P � ! A�B BP �PP �BP �PP B�P ��P

�
P �
� A�B BP �PP

B�P ��P
�
P �

�

� BP �PP

�

obtained by localizing and factoring out P � and P� Since BP �PP is a �eld
and the right�hand vertical arrow is a monomorphism� the left�hand vertical
arrow is also a monomorphism every module is �at over a �eld#�� It follows
that the kernel of 
�� is contained in P � as required�

The closedness of the set�theoretic image of 
 when 
 is �nite follows
if we take Y � to be a point of Y in the closure of the set�theoretic image
and thus in the scheme� theoretic image� and pull back via the inclusion
morphism of this point�

For the last statement� suppose that � is �at� that is� B� is a �at B�
module� Tensoring B� with the exact sequence

	 �� Ker
�� �� B �� Im
�� �� 	

and the inclusion Im
�� �� A gives back an exact sequence and an inclu�
sion� and we see in particular that Ker
���B�� which is the image of

B� �B Ker
�� B� �B B ! B�

is the kernel of 
�� as required�

The second �equality�� statement of the proposition fails in general� for
example in the �ber product diagram of a�ne schemes corresponding to
the diagram of rings

	 � Kt�

K

�

�	� t
K�t�

�

However� the equality statement does hold whenever the map 
 is projec�
tive� the proof� which would take us too far a�eld� may be reduced again
to Nakayama�s Lemma using the deep fact that� when 
 is projective�

�OX � is a �nite OY �module� see Hartshorne ������� Corollary II����	�

Despite the nonexistence of a universal formula for the scheme�theoretic
image� there are� as we have mentioned� many formulas giving equations
that de�ne it set�theoretically� and each of them gives a scheme containing
the scheme�theoretic image� as one sees from the previous proposition� One
way to produce such a formula is to choose a universal model� a family of
morphisms parametrized by a scheme B� say

X	
���� Y	

��� B
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such that the morphisms we are interested in occur as pullbacks� say

X ! �
	�
��b�

��� Y ! ���b��

with morphism 
 the restriction of 
	� We then take the actual scheme�
theoretic image of 
	 and restrict it to Y� We call the de�ning equations
of the scheme�theoretic image of 
	 resultants� By Proposition V��� these
equations de�ne a scheme in Y containing the scheme�theoretic image� and
in some cases� such as when 
	 is �nite� they de�ne a scheme that has the
closure of the set�theoretic image as underlying set�

It turns out that resultants are often conveniently described as determi�
nants� Before coming to this� we explain a general context in which these
determinants arise�

V���� Fitting Ideals and Fitting Images

There is� at least in a restricted context� an alternative notion of the image
of a morphism 
 � X � Y of schemes� which we will call the Fitting image
and denote by 
FittX�� This has the virtue that it does commute with
base change� but the defect that since� as we will see below� the Fitting
image 
FittX� may properly contain the scheme�theoretic image (
X�� it
does not have the push�pull property�

Fitting Ideals� To set this up� we need the sheaf�theoretic version of
Fitting�s lemma� Let X be a scheme� let F be a coherent sheaf on X� and
let

E�
��� E	 �� F �� 	

be an exact sequence with E	 �! On
X and E� �! Om

X free sheaves� Here
we allow m to be in�nite�� For any integer l� we de�ne the ideal of l � l
minors of 1 to be the sheaf Il1� � OX of ideals generated by the l � l
minors of a matrix representative of 1� This is independent of the choice
of isomorphisms E	 �! On

X and E� �! Om
X � and can also be de�ned when

E� and E	 are merely quasicoherent� since it can also be described as the
image of the natural map

l�
E� �

l�
E �	 �� OX

induced by 1� The key fact about the ideals Il1� is Fitting�s Lemma� See
Eisenbud ������ page ���� for a proof�

Lemma V�� Fitting�s Lemma�� If

E
��� On

X �� F �� 	

and

E � ���� On�
X �� F �� 	
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are exact sequences� then for each k � Z
In�k�� ! In��k����

In view of the lemma� we may make the following de�nition�

De�nition V��	� The k�th Fitting ideal FittkF of the sheaf F is the
ideal given locally as In�k1� for any presentation of F as above� The
zero locus V FittkF � � X will be called the k�th Fitting scheme of F�

It is instructive to compare the geometry of the zeroth Fitting ideal with
the more naive notion of the support of a sheaf F� Brie�y� for any coherent
sheaf F on a scheme X we de�ne the annihilator annF � OX by taking
annF �U� � OXU� to be the annihilator of F U� as an OXU��module
for each open set U � X� We de�ne the support of F� denoted suppF ��
to be the zero locus V annF � � X of the annihilator as a subscheme of X�

Note that �support� is used in two di�erent senses� the support of a
scheme is its underlying set or topological space� while the support of a
sheaf is a scheme� In those cases where we wish to refer to the underlying
set of the support of a sheaf F �that is� suppsuppF ��we will call it
simply the �set�theoretic support���

For any coherent sheaf F on a scheme X we have

Fitt	F � �F ! 	�

so that Fitt	F � annF � In the other direction� ifF admits a presentation

On
X �� F �� 	

then Fitt	F � annF �n� See for example Eisenbud ������ Proposition
�	��� for both these inequalities� It follows from the �rst of these properties
that

V Fitt	F � � suppF �

that is� the zeroth Fitting scheme contains the support of F � and from the
second that the underlying sets of the subschemes V Fitt	F � and suppF
are equal� that is� ��V Fitt	F �

�� ! jsuppF j �
The di�erence lies in the scheme structure� the zeroth Fitting ideal may

be properly contained in the annihilator of F� and the zeroth Fitting
scheme correspondingly may properly contain the support of F�

For example� consider the scheme X ! A �
K ! SpecK�x�� with sub�

schemes Y ! V x� and Z ! V x��� The sheaves

F ! OZ and G ! OY OY
each have length �� but the support of F is Z� while the support of G is
the smaller scheme Y� By contrast� we see that the zeroth Fitting schemes
are equal�

V Fitt	F � ! V Fitt	 G � ! Z�
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Exercise V���� a� If X is any scheme� Y � X a subscheme� the zeroth
Fitting ideal Fitt	OY of the structure sheaf of Y is simply the ideal
sheaf IY of Y� and the 	th Fitting scheme correspondingly is Y itself�

b� Show that the zeroth Fitting ideal of a direct sum is the product of the
zeroth Fitting ideals of the summands� that is� for any pair of coherent
sheaves F and G on X�

Fitt	F  G � ! Fitt	F � Fitt	 G �
Show by example that this is not true if F  G is replaced by an
arbitrary extension of F by G� that is� a sheaf H such that there
exists an exact sequence

	 �� F �� H �� G �� 	�

c� Deduce from the �rst two parts of this exercise that if X is a regular
one�dimensional scheme for example� X ! A �

K or X ! SpecZ� and
F is any sheaf whose set�theoretic support is a closed point p � X�
then

Fitt	F ! m
l
p�

where l is the length of F�

Fitting Images� Suppose now that 
 � X � Y is a �nite morphism of
schemes� The direct image 
�OX is then a coherent sheaf on Y� and by our
de�nition the scheme�theoretic image (
X� is the support supp
�OX ��
of this sheaf� Taking the zeroth Fitting scheme instead of the support gives
us the promised alternative de�nition of image that commutes with base
change�

De�nition V���� For any �nite morphism 
 � X � Y of schemes� the
Fitting image of 
 is the zeroth Fitting scheme of the direct image 
�OX��
that is�


FittX� ! V Fitt	 
�OX ���

For any closed subscheme Z � X� we will likewise de�ne the Fitting image

FittZ� to be the Fitting image of 
 restricted to Z� that is� the zeroth
Fitting scheme of the direct image 
�OZ�

Exercise V��� Consider Examples V�� and V��� In each case� show that
the Fitting image of the �ber X	 of X over the origin is a double point�
not a reduced point� so that we have


FittX	� ! 
FittX�	�

Exercise V���� Consider the projection and inclusion morphisms

X ! SpecK������
��� SpecK

��� SpecK�t��

Show that

�Fitt
FittX�� � � 	 
�FittX��
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V�� Resultants

V���� De�nition of the Resultant

The oldest�and still one of the most important�applications of the ideas
we have introduced in the last two subsections is the resultant of two poly�
nomials in one variable� To de�ne this� say we are given two polynomials

fx� ! a	x
m $ � � �$ am�

gx� ! b	x
n $ � � �$ bn�

with coe�cients ai� bi in a �eld K� The goal was to describe the condition
on the coe�cients ai� bi for the two polynomials to have a common factor�
that is� a common root in the algebraic closure of K� In applications it is
also natural to look at families of polynomials� That is� we may take the
coe�cients ai� bi to be regular functions on a base scheme B� so that we
think of f and g as �families of polynomials in one variable parametrized
by B�� and we wish to describe the locus in B over which f and g have a
common factor� More precisely� we want to describe the image in B�in
whichever sense#�of the scheme V f� g� � A �

B �

There are� roughly speaking� four ways to interpret this problem� we
could ask formulas� in terms of the ai�s and bi�s� for functions generating
the ideal of

�� the reduced image of V f� g�� that is� the reduced scheme associated
to the scheme�theoretic image�

�� the scheme�theoretic image of V f� g��


� the Fitting image of V f� g�� or

�� the pullback of the image from a suitable universal family�

As shown by examples such as V�� and V�� above� no such formula can
exist for the images in the �rst two senses� We shall begin by describing
the classical approach� and ultimately show that for the correct choice
of �universal family�� it coincides with the third and fourth options� and
commutes with base change�

To carry out the classical approach� we begin by choosing a universal
family� We will work not over a �eld but over an arbitrary ring S� Let A
be the polynomial ring

A ! S�a	� � � � � am� b	 � � � � bn��

With f and g de�ned as above� we set

X �! V f� g� � A �
A

and let


 � X � A �
A ! SpecA�S A �

S �� SpecA !� Y�
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Since X is de�ned by two polynomials� we might expect it to have codi�
mension � in A �

A� In this case� assuming that the map is �generically �nite�
that is� �nite over some open set� its image would have codimension � in
SpecA� In the classical situation� where S is �eld� A has unique factoriza�
tion� so the closure of the image would be described by one equation� called
the resultant of f and g�

It turns out that the conclusion of this suggestive argument is correct�
We will see in due course that the scheme�theoretic image (
X� of 
 is
reduced� and coincides with the Fitting image� so that in the case of this
universal family there is no ambiguity about what is meant by the image
of X�

Perhaps the most direct way to write down this equation is the following�
Consider the ring "A � A�a��	 � b��	 � de�ned as

"A ! A
ha�
a	
� � � � �

am
a	

�
b�
b	
� � � � �

bn
b	

i
�

Let

B ! "A���� � � � � �m� �� � � � � n��I�

where I is the ideal generated by the m$ n elements

���i�i��� ai
a	

and ���i�i�� bi
b	
�

�i being the i�th elementary symmetric function� We may describe B intu�
itively as the ring obtained from A by adjoining the roots of the polynomials
f and g� Note that "A � B because the elementary symmetric functions are
algebraically independent�

The expression

R !
Y
i�j

�i � j�

is a symmetric function in the �i and separately in the j � Since ���iai�a	
is the i�th elementary symmetric function in the �i� and similarly for
���jbj�b	 and the j � the function R can be written as a polynomial

in the ratios ai�a	 and bj�b	� and thus R is an element of "A� Each �i
occurs n times in R and once in an elementary symmetric function� and
similarly for the �s� so R will be bihomogeneous of degrees n�m in the
ai�a	 and bj�b	 respectively� Thus

Rm�nf� g� �! an	 b
m
	 R ! an	 b

m
	

Y
i�j

�i � j��

is in A� it is a bihomogeneous polynomial� of degree n in the ai and of
degree m in the bj � called the resultant of f and g�

In general� if f	 and g	 are polynomial of degrees m and n over an S�
algebra S	� we write Rm�nf	� g	� � S	 for the result of substituting the
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coe�cients of f	 and g	 into Rm�nf� g�� that is� the image of Rm�nf� g�
under the homomomorphism

A ! S�a	� � � � � am� b	� � � � � bn�� S	

sending the ai and bj to the coe�cients of f and g� We call Rm�nf	� g	�
the resultant of f	 and g	� When we view S	 as an algebra over di�erent
rings S� the resultant does not depend on S� in particular� we would have
obtained the same result for any S	 by taking S ! Z� Thus� for each
m and n� we can speak of �the resultant� as an element Rm�n of the ring
Z�a	� � � � � am� b	� � � � � bn�� and �the resultant of two polynomials� f� g � S�x�
as the image of Rm�n under the corresponding homomomorphism

Z�a	� � � � � am� b	� � � � � bn�� S�

If the leading coe�cients of f	 and g	 do not vanish� that is� if these
polynomials really have the stated degrees� then Rm�nf	� g	� ! 	 if and
only if f	 and g	 have a common factor� and the classical goal is ful�lled�
We shall see that this even works if at most one of the leading coe�cients
vanish� but it turns out that Rm�nf� g� is contained in the ideal a	� b	��
and thus vanishes identically on pairs of polynomials where both these
coe�cients are 	� In fact� the map 
 is not �nite in this case� since over the
origin in A m
n
�

S the �ber is the a�ne line� and the set�theoretic image of
X is not closed�

V���� Sylvester�s Determinant

We will next relate the zero locus of the resultant of two polynomials to
the Fitting image of their common zero locus� We start by computing the
equation of the Fitting image 
FittX� where de�ned� To do this� let S be
any ring and f� g � S�x� two polynomials� of degrees m and n respectively�
In order to de�ne the Fitting image of X ! V f� g� � A �

S under the
projection map � � A �

S � SpecS� we must assume that this map is �nite�
or equivalently that the ideal f� g� � S�x� contains a monic polynomial�
see Eisenbud ������ Proposition ����� For simplicity� we assume that f itself
is monic�

To compute the ideal Fitt	 ��OX� de�ning the Fitting image of X� we
�rst realize ��OX � as the S�module S�x��f� g�� This module is the cokernel
of the map

S�x� S�x�
�f�g��� S�x�

and the source and target may both be regarded as in�nitely generated�
free S�modules� But in order to compute the Fitting ideal we need a �nite
presentation� Since we have assumed that f is monic of degree m� the S�
submodule

S�x��m ! S  Sx Sx�  � � �  Sxm�� � S�x�
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maps onto S�x��f� g�� and since S�x��m is isomorphic as S�module to the
S�algebra S�x��f�� we can also realize the module S�x��f� g� as the cok�
ernel of the map induced by multiplication by g�

G � Sm �! S�x��m �! S�x��f�
�g�� S�x��f� �! S�x��m �! Sm�

Thus the Fitting ideal Fitt	 ��OX � is generated by the determinant of an
m�m matrix representative of the map G � Sm � Sm�

Now� it is not hard to write down such a matrix representative of G
explicitly� and thus to give an explicit formula for the Fitting image� But
if we use the freedom we have to compute the Fitting ideal from any free
presentation� we can get a picture that preserves more of the symmetry
between f and g�

To carry this out� consider the free module

S�x��m
n ! S  Sx � � �  Sxm
n�� �! Sm
n�

It clearly maps onto S�x��f� g�� and the kernel of this map is the set of
polynomials h � S�x� of degree at mostm$n�� that lie in the ideal f� g� �
S�x�� We claim that any such h � S�x��m
n � f� g� can be expressed as a
linear combination

h ! a � f $ b � g
for some polynomials a of degree at most n � � and b of degree at most
m� �� To see this� note to start with that we must have

h ! a� � f $ b� � g
for some a�� b� � S�x�� Now� since f is monic of degree m� we can divide b�

by f and write

b� ! qf $ b

where b is a polynomial of degree at most m� �� Adding the expression

	 ! qg� � f � qf� � g
to the expression above� we get another expression for h�

h ! a� $ qg� � f $ b � g�
Set a ! a� $ qg� Since the degrees of h and bg are both at most m$ n� ��
the degree of af must be at most m$n�� as well� and since f is monic of
degree m it follows that a must have degree at most n� �� as we claimed�

It follows that the module S�x��f� g� is the cokernel of the map

S�x��n  S�x��m �� S�x��m
n

a� b� ��� af $ bg�
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It is easy to write down a matrix representative of this map� With respect
to the obvious bases for source and target it is the Sylvester matrix

Syl�m�n�f� g� !

�
BBBBBBBBBBBBBB�

a	 a� � � � � � � am�� am 	 � � � 	
	 a	 a� � � � � � � am�� am � � � 	
���

� � �
� � �

� � �
� � �

� � �

	 � � � 	 a	 a� � � � � � � am�� am
b	 b� � � � bn�� bn 	 � � � � � � 	
	 b	 b� � � � bn�� bn � � � � � � 	
���

� � �
� � �

� � �
� � �

� � �
���

� � �
� � �

� � �
� � �

� � �

	 � � � 	 b	 b� � � � bn�� bn

�
CCCCCCCCCCCCCCA

�

where there are n rows of a�s and m rows of b�s�

The next result shows that the zero locus of the resultant does in fact
coincide with the Fitting image for the universal family of pairs of polyno�
mials above�

Theorem V���� Let

A ! Z�a	� � � � � am� b	� � � � � bn��
and let

f ! a	x
m $ � � �$ am

and

g ! b	x
n $ � � �$ bn � A�x�

be the generic polynomials in one variable of degrees m and n� Let 
 �
A �
A � SpecA be the projection map� The scheme�theoretic image of X !

V f� g� � A �
A under 
 has de�ning ideal generated by Rm�nf� g�� which is

equal to the Sylvester determinant detSylm�nf� g���

Proof� To simplify notation� set R� ! detSylm�nf� g�� � A� and set R !
Rm�nf� g�� In algebraic language� we must show that R is equal to R� and
generates the ideal A � f� g�A�x��

First� we show that R� � f� g�A�x�� If we do column operations on
Sylm�nf� g�� adding xm
n�t times the t�th column to the last for t !
�� � � � �m $ n � � then since the number of columns is m $ n� we get a
new matrix with the same determinant R�� But the last column of the new
matrix is �

BBBBBBB�

xn��f
���
f

xm��g
���
g

�
CCCCCCCA
�
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so the determinant is in f� g�A�x� as required�
Next suppose that P � A lies in f� g�A�x�� we shall show that P is

divisible by R in A� Note that f and g are bihomogeneous� they are homo�
geneous separately in the ai and the bj � It follows that the bihomogeneous
components of any polynomial in f� g� are again in f� g�� so we may as�
sume that P is bihomogeneous� say of bidegree d� e�� Note that R� is itself
bihomogeneous of bidegree n�m���

To analyze the situation we embed A in a larger polynomial ring� Let
B	 ! Z���� � � � � �m� �� � � � � n� and let B ! B	�a	� b	�� We map A to B by
sending the ai to the coe�cients of the polynomial

f � ! a	
Qm
j��x � �j��

and sending the bi to the coe�cients of g� ! b	
Qn
j��x � j�� The co�

e�cients of f � are �a	�i��� where �i is the i�th elementary symmetric
function� and similarly for g�� Since a	� b	 and the elementary symmetric
functions of the �i and j are algebraically independent� the same is true
for

a	� a	����� � � � � a	�m��� b	� b	���� � � � � b	�m��

so the map A � B is indeed an embedding� Recall that R was de�ned as
the element an	 b

m
	

Q
i�j�i�j� � B� which happens to lie in the subring A�

We now return to the polynomial P � A � f� g�A�x�� Since P is biho�
mogeneous in the ai ! �a	�i�� and the bj ! �a	�j� of bidegree d� e�
we may write P ! ad	b

e
	h for some h � B	� Since the elementary symmetric

function �i�� is a linear polynomial in each �i� and similarly for the j �
we see that h has degree � d in each �i and � e in each j �

For given indices i� j� let L be the quotient �eld of the domain B��i�j��
Let (P be the image of P in L� Since f and g have a common root in L� the
constant polynomial (P � f� g�L�x� has this root too� so (P ! 	� thus P is
divisible by �i�j in B� and it follows that h is divisible by �i�j in B	�
Thus h is divisible by

Q
i�j�i � j�� In particular� we see that d � m and

e � n� and thus P ! ad	b
e
	h is divisible by R in B� we write P ! RQ in B�

If h is any polynomial function of the ��s and �s that is separately
symmetric in the ��s and in the �s� of degree � u in each �i and degree
� v in each j � then because the elementary symmetric functions generate
the ring of all symmetric functions� h is actually a polynomial function in
the coe�cients ai�a	 and bj�b	� of degree � u in the �rst variables and
degree � v in the second� The polynomial ad	b

e
	h is thus in A for any d� e

larger than the degree of h in � and the degree of h in � respectively�
Because of the form of P and R� we may write Q ! ad�m	 be�n	 q for some

polynomial q � B	 of degree � d �m in each �i and � e� n in each j �
Further� q is symmetric in the �i and in the j separately� so Q may be
written as a polynomial in the �i�� and �j� of degree � d � m and
� e � n in the two sets of variables� By the remark above� Q � A� as
required�
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If we take P ! R�� then we see that R divides R� in A� but since both
have the same degree� they are equal up to a sign� Evaluating both sides
at the pair of polynomials fx� ! xm and gx� ! xn shows that they are in
fact equal�� In particular� R is in A� f� g�A�x�� so by what we have shown
R generates this ideal� and we are done�

We cannot apply Proposition V�� directly to the situation of Theo�
rem V��� because� as we have already noted� the map V f� g�� SpecA is
not �nite� However� if we �rst restrict to an open subset of A over which it
is �nite� then all is well�

Corollary V���� Let B ! Z�a	� � � � � am� b	� � � � � bn��a��	 �� and let

f ! a	x
m $ � � �$ am and g ! b	x

n $ � � �$ bn � B�x�

be the generic polynomials in one variable of degrees m and n such that f
has a unit leading coe�cient� The projection map 
 � V f� g� � SpecB is
�nite� The scheme�theoretic image of V f� g� � A �

B under 
 has de�ning
ideal generated by Rm�nf� g�� Thus if f	� g	 are any two polynomials of
degrees m�n over an algebraically closed �eld L� one of which has unit
leading coe�cient� then f	 and g	 have a common root in L if and only if
Rm�nf	� g	� ! 	�

Proof� With A as in Theorem V���� the ring B is a �at A�algebra� so
by Proposition V�� the �rst statement of the corollary follows from the
corresponding statement in Theorem V���� To see the �niteness� note that
B�x��f� is already �nite over B� since it is generated as a module by ��
x� � � � � xm��� Thus �niteness holds for the factor ring B�x��f� g� whose
spectrum is V f� g��

Because V f� g� is �nite over SpecB we may apply the set�theoretic part
of Proposition V��� and the last statement of the corollary follows in the
situation where f has unit leading coe�cient� the case where g has unit
leading coe�cient would follow by a similar argument�

Corollary V���� Let S be a ring and suppose that f� g � S�x� are polyno�
mials in one variable over S� If fx� ! a	

Qm
i��x� �i� factors completely

over S� then

Rm�nf� g� ! an	

mY
i��

g�i��

Proof� The resultant is the specialization from the ring over which the
generic polynomials f� g are de�ned and factor� of the expression

an	 b
m
	

Y
i�j

�i � j� ! an	
Y
i

g�i��
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Exercise V��
� The fact that the resultant is 	 if both f and g have van�
ishing leading coe�cient may seem at �rst an unfortunate anomaly� but this
aspect disappears if we �compactify� the a�ne line as the projective line
over A strictly speaking this is the relative compacti�cation over SpecA��
If we watch what happens to the roots of the polynomial f as the leading
coe�cient of f goes to 	� we see that at least one of them moves to ��
that is� if we homogenize and regard f as de�ning a subset of m points
the projective line� then the limiting position of this zero set contains the
point �� Thus it is reasonable that if the leading coe�cients of both f
and g are 	� then as polynomials of degree m and n� they share � as
a common root� Prove that if F ! a	x

m $ a�x
m��y $ � � � $ amy

m and
G ! b	x

n $ � � �$ bny
n are the generic homogeneous forms of degrees m�n

over A ! Z�a	� � � � � am� b	� � � � � bn�� then the image scheme of V F�G� � P�A
under the natural projection to SpecA has de�ning ideal generated by the
resultant Rm�nF�G� �! Rm�nF x� ��� Gx� ���� Show that if F	� G	 are
nonzero homogeneous forms of degrees m�n over any �eld L� then F	 and
G	 have a common zero in P�L if and only if Rm�nF	� G	� ! 	�

Exercise V���� Show that in Theorem V��� the ring of integers can be
replaced by any commutative ring K as follows� let A be the polynomial
ring over the integers as in the theorem� and let B ! A�ZK�
a� Show that it is enough to prove that the sequence

	� Rm�nf� g��� A� A�Rm�nf� g��� 	

remains exact when we tensor over Z with K�

b� Show that for each prime p the abelian group A�Rm�nf� g�� has no
p�torsion� You might use the fact that Rm�nf� g�� regarded as a poly�
nomial in am� bn over a smaller polynomial ring� has �leading term�
anmb

m
n in a suitable sense�� Use the result of b� to prove a��

Exercise V��	� The resultant computation above seems quite special� but
it can be used to compute the set�theoretic� image of an arbitrary �nite
map 
 � X � Y� Pass to an a�ne cover and suppose that Y ! SpecA�

for some ring A�� while X ! SpecA��x�� � � � � xd��I� Reduce by induction to
the case d ! �� Let f�� � � � � fe be generators of I � suppose the maximum
of their degrees in x� is n� Show that I contains a monic polynomial f of
degree m� say� Let t�� � � � � te be new indeterminates� and let g !

P
i tifi �

A��t�� � � � � te�� Let R ! Rm�nf� g� be the resultant� and let J be the ideal
generated by the coe�cients in A� of the monomials in t occurring in R�
Show that J de�nes the image of 
 set�theoretically� and is contained in
the ideal de�ning the scheme�theoretic image� In practice people do not
usually compute the image this way� but rather using the technique of
Gr'obner bases� which� unlike resultants� actually computes the whole ideal
of the scheme�theoretic image� see Cox et al� ������ Section ���� or Eisenbud
������ Chapter ��� for this method��
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V�� Singular Schemes and Discriminants

V���� De�nitions

In this section we will take up the smooth and singluar points of a morphism
of schemes� To motivate our de�nition� consider a map f � M � N of
di�erentiable manifolds� and assume that dimM � dimN � The simplest
behavior of such a map occurs at points x �M where the di�erential Dfx
is surjective� restricted to a suitable neighborhood U of such a point x� the
map f looks like the projection onto one factor of a product� and we say
that x is a smooth point of f �

In the category of schemes� the Zariski open sets are too large to per�
mit product structures� and as we shall see� there are also complications
arising from the fact that points may have di�erent residue �leds� It is still
possible to de�ne smoothness of a morphism of schemes in terms of local
product structure� see for example Altman and Kleiman ����	��but in
the present context it will make more sense to adopt a characterization of
smooth and singular points that generalizes the di�erential characterization
for manifolds�

To carry this out we introduce the module of K'ahler di�erentials of a
homomomorphism of rings� and its global version� the relative cotangent
sheaf of a morphism of schemes� If � � A� B is a map of rings� we de�ne
.B�A� the module of A�linear K�ahler di�erentials� to be the free B�module
generated by symbols db for all b � B� modulo the relations

db�b�� ! b� db� $ b� db� for all b�� b� � B

and

d�a ! 	 for all a � A�

These relations ensure that the map

B �� .B�A�

b ��� db�

is an A�linear derivation� in fact� it is the universal A�linear derivation in a
suitable sense� See Eisenbud ������ for details�� It is easy to deduce from
this� for example� that if B ! A�x�� � � � � xn��f�� � � � � fn� then .B�A in the
cokernel of the Jacobian matrix �

�fi
�xj

�
�

To globalize� let 
 � X � Y be a morphism of schemes� We de�ne the
relative cotangent sheaf of 
 � X � Y� written .X�Y � to be the sheaf whose
value on an open a�ne subset U of X mapping to an open a�ne subset
V of Y is the module of OY V ��linear K'ahler di�erentials of OXU�� The
collection of open sets in X just speci�ed forms a base B for the open sets
ofX� The axioms for aB�sheaf see Section I���
� are easily checked�they
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amount to the statment that the construction of modules of di�erentials is
compatible with localization�so the data just given really does de�ne a
sheaf�

The relative dimension of a morphism 
 � X � Y of schemes at a point
x � X is de�ned to be the di�erence dimX� x�� dimY� 
x���

De�nition V���� Let 
 � X � Y be a morphism of Noetherian schemes�
and suppose that 
 is �at� of �nite type� and has constant relative codimen�
sion d� We de�ne the singular scheme sing
 � X of 
 to be the subscheme
of X de�ned by the d�th Fitting ideal of the relative cotangent sheaf of 
�
that is�

sing
 ! V Fittd.X�Y � � X�

In case the morphism 
jsing� � sing
 � Y is �nite� we de�ne the dis�
criminant scheme ,
� � Y to be the Fitting image of sing
 in Y� that
is�

,
� ! V Fitt	
�Osing��� � Y�

To understand this de�nition� we �rst return to the most classical case�
that of a map 
 � X � Y of irreducible� nonsingular varieties over an
algebraically closed �eld� In this case the condition of constant relative
dimension is automatic� while �atness translates into the condition that
the dimension of the �bers 
��y� is constant� and equal to the relative
dimension�

The notion of a singular scheme being a local one� we may pass to the
a�ne case and assume that Y ! SpecA and write

X ! SpecA�x�� � � � � xn��f�� � � � � fm��

As we noted� in this case the module of A�linear K'ahler di�erentials .X�Y

is the cokernel of the n�m Jacobian matrix�
B�
�f���x� � � � �fm��x�

���
���

�f���xn � � � �fm��xn

�
CA �

Thus the support of the scheme sing
 consists exactly of those points
x � X where the rank of the Jacobian matrix is less than n� d�in other
words� the locus where the di�erential D
 of the map fails to be surjective�
just as in the classical de�nition�

However� the scheme�theoretic setting presents many new phenomena�
For example� consider a �nite extension of �elds K �� K �� and let


 � X ! SpecK � ��� Y ! SpecK

be the corresponding morphism of one�point schemes� Here the relative
dimension is zero� so the map 
 is singular if and only if .X�Y �! 	� by a
classical result in �eld theory� this is the case if and only if the extension
K �� K � is not separable�
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V���� Discriminants

We now want to consider in more detail the case of a morphism 
 � X �
Y where the singular scheme sing
 is �nite over Y � and to describe the
discriminant scheme ,
� � Y associated to such a map� We will focus
primarily but not exclusively� on the case whereX is a closed subscheme of
A �
Y � given as the zero locus of a single polynomial fx� whose coe�cients are

regular functions on Y � this will lead us to the de�nition of the discriminant
of a polynomial in one discriminant�of a polynomialvariable� In this setting�
by analogy with the discussion of resultants in the preceding section� we
may view the problem of de�ning the discriminant scheme as that of giving
formulas for the equations de�ning the set of points y ! �p� � Y ! SpecA
over which the polynomial f has repeated factors� that is� such that the
reduction (f � A�p�x� of f � A�x� mod p has multiple roots in the algebraic
closure of �y�� As in the discussion of resultants� we will have both the
general de�nition above using Fitting ideals� and in the restricted case
X ! SpecA�x��f�� a more classical notion of discriminant de�ned in e�ect
as the pullback of the reduced� branch scheme of a suitable �universal
family� of polynomials� and we will ultimately show that they coincide
where the latter is de�ned�

To set up the classical construction� we need �rst of all to de�ne our
universal branched cover� Let

A ! Z�a	� � � � � am��

and let

f ! a	x
m $ � � �$ am � A�x�

be the generic polynomial in one variable of degree m� Extending our poly�
nomial ring� we de�ne

B	 ! Z���� � � � � �m� and B ! B	�a	�

and map A to B by sending ai to the i�th coe�cient of the polynomial f !
a	
Q
ix� �i�� which is �a	�i��� As in the proof of Theorem V���� these

coe�cients are algebraically independent� and we regard A as a subring
of B�

In B we may form the polynomial

D� !
Y
i�j

�i � �j��

This polynomial vanishes when two of the roots of f are equal� but it is not
a solution of our problem because it is not a polynomial in A� For one thing�
it is not invariant under permutations of the roots� But it is easy to see
that if � is a permutation of the roots� D� applied to the permuted roots is
equal to sgn��D�� where sgn�� ! �� is the sign of the permutation� Thus
D�
� is invariant under under permutations of the roots� and is expressible

as a polynomial in the symmetric functions �i�� ! ai�a	� Each �i occurs
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to degree � m� � in D�� and thus to degree � �m� � in D�
�� from which

we see that

Dmf� ! a�m��	 D�
� ! a�m��	

Y
i�j

�i � �j�
�

de�nes an element of A� The polynomial Dmf� is called the discriminant
of f �

Proposition V���� With notation as above� we have

Dmf� !
���m�m�����

a	
Rm�m��f� f ���

If f	 � L�x� is a monic polnomial of degree m in one variable over a �eld
L� then Dmf	� ! 	 if and only if f	 has a multiple root in the algebraic
closure of L�

Proof� Applying Corollary V��� to the ring B de�ned above we see that

Rm�m��f� f �� ! am��	

mY
i��

f ��i��

But

f �x� !
mX
j��

fx��x � �j��

so

f ��i� ! a	
Y
j ��i

�i � �j�

and

Rm�m��f� f �� ! am��	

mY
i��

f ��i� ! a�m��	

Y
j ��i

�i � �j�

! ���m�m�����a�m��	

Y
i�j

�i � �j�
�

! ���m�m�����a	Dmf��

whence the formula for Dmf�� The second statement of the corollary fol�
lows from the fact that the resultant of a monic polynomial and another
polynomial over a �eld vanishes if and only if the two have a common root�
and the usual computation that shows� over a �eld� that a polynomial fx�
and its derivative have a common root if and only if f has a multiple
root�

As a corollary of this proposition� we have the promised identity be�
tween the classical and modern de�nitions� in the restricted case X !
SpecA�x��f��
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Corollary V��� Let A be any ring� f � A�x� a monic polynomial of
degree m with coe�cients in A� and 
 � X ! SpecA�x��f�� Y ! SpecA
the corresponding morphism� The discriminant scheme of 
 is the zero
locus of the discriminant of f � that is�

,
� ! V Dmf�� � Y�

For example� if B ! Z��� is an order in a number �eld� and

fx� ! xn $ an��xn�� $ � � �$ a	 � Z�x�
is the irreducible monic polynomial satis�ed by �� the discriminant of f is
the de�ning equation of the discriminant scheme of the morphism

SpecB � SpecZ�

Exercise V���� Show that the singular scheme of this morphism is the
di�erent of f � as de�ned for example in Lang �������

Exercise V���� Consider the orders A ! Z�
p

 �� B ! Z���

p

 �� C !

Z��
p

 �� and D ! Z����

p

 �� discussed in Section II���� and Exercise IV����

What are the discriminant schemes of the morphisms SpecA�Z� SpecB�
Z� SpecC � Z� and SpecD � Z How does this relate to the pictures of
these schemes drawn previously 

V���� Examples

To illustrate our de�nition of the discriminant scheme of a morphism� we
will calculate it in a number of speci�c examples� For all of the following
morphisms 
 � X � Y� the target space will be the a�ne line Y ! SpecK�t�
over a �eld K of characteristic zero� For all but the last example� the
morphism 
 will be �nite� and for all but the last two�X will be a subscheme
of the a�ne line A �

Y ! SpecK�t��x�� �nite and �at over Y� Speci�cally� we
take


 � X ! SpecK�t� x��f�� Y ! SpecK�t��

where

fx� ! xk $ ak��t�xk�� $ � � �$ a�t�x $ a	t�

is a monic polynomial in x with coe�cients in K�t�� In all the cases we
consider the discriminant scheme� being a subscheme of A �

K supported at
the origin� is determined by its degree�

Example V���� We start with the example fx� ! xk � tm� that is� the
map


k�m � X ! Xk�m ! SpecK�t� x��xk � tm�� Y ! SpecK�t��

We will denote the degree of the discriminant scheme of this map by �k�m
and calculate it in three ways�
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Note before we start that if

�� � Y ! SpecK�t� �� Y ! SpecK�t�

is the map given by t �� t�� we have a �ber product diagram

Xk��m
� Xk�m

Y


k��m
�

��
� Y


k�m
�

so that� by the invariance of the discriminant scheme under pullback�

�k��m ! � � �k�m
for any � and m�

For our �rst calculation of �k�m� we use the de�nition of the discriminant
of the polynomial fx� as the resultant of f and f � and apply Sylvester�s
determinant� Thus� for example� in case k ! � the discriminant is

���m !

������
� 	 tm

� 	 	
	 � 	

������ ! �tm�

so that the characteristic of K being 	� ���m ! m� More generally� for
arbitrary k we have ak�� ! � � � ! a� ! 	 and a	 ! �tm� Therefore

�k�m !

�����������������������

� 	 � � � 	 	 	 �tm 	 � � � 	 	
	 � � � � 	 	 	 	 �tm � � � 	 	
���

���
� � �

���
���

���
���

���
� � �

���
���

	 	 � � � � 	 	 	 	 � � � �tm 	
	 	 � � � 	 � 	 	 	 � � � 	 �tm
k 	 � � � 	 	 	 	 	 � � � 	 	
	 k � � � 	 	 	 	 	 � � � 	 	
���

���
� � �

���
���

���
���

���
� � �

���
���

	 	 � � � k 	 	 	 	 � � � 	 	
	 	 � � � 	 k 	 	 	 � � � 	 	
	 	 � � � 	 	 k 	 	 � � � 	 	

�����������������������
! ���k��kk � tm�k����

and hence

�k�m ! mk � ���

A second way to calculate �k�m is to use the expression of the discriminant
as the product of the pairwise di�erences of the roots of a polynomial� To
start� suppose that k divides m� say m ! kl� and suppose also that K
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contains a primitive l�th root of unity �� Then we can factor

fx� ! xk � tkl !

k��Y
i�	

x� �itl��

The discriminant of f is then the product

,f� !
Y

	i�jk��
�jtl � �itl�� !

Y
	i�jk��

�j � �i�t�l�

which vanishes to order �k�m ! kk � ��l ! mk � �� at the origin� Thus
�k�m ! mk � �� whenever kjm� and by the formula �k��m ! � � �k�m
established above it follows that �k�m ! mk � �� for all k and m�

Exercise V���� The last argument uses the presence in our �eld K of all
the l�th roots of unity� Use a base change argument bearing in mind the
de�nition of degree#� to extend the result to any �eld K of characteristic
not dividing l�

Finally� we can describe the discriminant scheme of 
 ! 
k�m directly
from the de�nition� To begin with� the sheaf of relative di�erentials of the
map 
 is

.X�Y ! OXfdxg�kxk��dx��

where OXfdxg denotes the free OX �module with generator dx� The reso�
lution of .X�Y is thus

	 �� OX
��� OX �� .X�Y �� 	

where the map � is multiplication by xk��� The zeroth Fitting ideal of
.X�Y is accordingly generated by the �� � minor of the matrix xk���� so
that the singular locus of the map 
k�m is

sing
 ! V Fitt	.X�Y � ! V xk��� � X

and Osing� �! .X�Y as sheaves of OX �modules�
To resolve the pushforward of the structure sheaf of sing
� we can thus

push forward the exact sequence above� The pushforward 
�OX is the
locally free OY �module generated by the elements �	 ! �� �� ! x� � � � �
�k�� ! xk��� Multiplication by xk�� takes the �rst generator �	 ! � to
the last one �k�� ! xk��� the second generator �� ! x to xk ! tm�	� the
third generator �� ! x� to xk
� ! tm��� and so on� The resolution of the
pushforward 
�Osing� is thus

	 �� O	kY

����� O	kY �� 
�Osing� �� 	
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where the map 
�� is given by the matrix


�� !

�
BBBBBB�

	 tm 	 � � � 	 	
	 	 tm � � � 	 	
	 	 	 � � � 	 	
���

���
���

� � �
���

���
	 	 	 � � � 	 tm

� 	 	 � � � 	 	

�
CCCCCCA
�

The discriminant scheme of 
 ! 
k�m is the zero locus of the determinant
���k��tm�k��� of this matrix� and so we see once again that �k�m ! m�
k � ���

Note that in this setting the discriminant scheme measures not only the
number of sheets in a branched cover that come together that is� the
nonreducedness of the special �ber� as measured by the �k � �� factor
in the expression �k�m ! mk � ���� but also how fast they are coming
together the �m� factor�� Thus� while in all the examples of the form
X ! SpecK�t� x��x�� tm�� Y ! SpecK�t� the �ber over the origin in Y
is the same double point� the discriminant has di�erent degrees depending
on the speed with which the two points x ! �ptm approach each other as
t approaches 	�

Here is an arithmetic analogue of this�

Exercise V��
� Reinterpret the results of Exercise V��� in light of the
calculation in Example V��� of the discriminant of a general projection of
a node� cusp and tacnode�

We will also see applications of Example V��� in the discussion of dual
curves Section V������

Although the examples we have seen so far may seem special� we can use
any of the three approaches to describe the discriminant of any �nite �at
morphism 
 � X � Y where Y is nonsingular and one�dimensional and X
is locally embeddable in A �

Y � that is� for any point p � X the local ring OX�p
is of the form OY���p��x��f�� For example� following the second approach
we may make a base change Y � � Y so that the polynomial f factors
completely into linear factors over OY that is� the pullback X � ! X�Y Y

�

is a union of k irreducible components Xi� each mapping isomorphically
to Y �� The discriminant of the pullback morphism 
� � X � � Y � will then
be given by the product of the pairwise di�erences of the factors of f � so
that its degree will be the sum of the degrees of the pairwise intersections
Xi �Xj � and the degree of the discriminant of 
 at each point y � Y will
be simply the sum of the degrees of the discriminant scheme of 
� at the
points y� of Y � lying over y� each divided by the order of rami�cation of
Y � � Y at that point�

Our next example� accordingly� will be the simplest example of a mor�
phism X � Y such that X is not locally embeddable in A �

Y �
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Example V���� Take Y ! A �
K ! SpecK�t� as before� and take X the

union of three copies of A �
K meeting at one point with three�dimensional

Zariski tangent space� the map 
 will map each component of X isomor�
phically to Y� We may realize X as the union of the three coordinate axes
in A �

K ! SpecK�x� y� z�� and take 
 � X � Y the restriction to X of the
projection map A �

K � A �
K given by t �� x$ y $ z� that is� we set

X ! SpecK�t��x� y� z��xy� xz� yz� t�x�y�z� �� Y ! SpecK�t��

We can simplify the expression for X at the expense of some symmetry�
writing

X ! SpecK�t��x� y��xy� xt�x�y�� yt�x�y���
The sheaf .X�Y is then given as

.X�Y ! OXfdx� dyg�ydx$xdy� t��x�dx�xdy� �ydx$t��y�dy�

Since there are two generators and three relations� the resolution of .X�Y

takes the form

O	�X
��� O	�X �� .X�Y �� 	�

where the map � is given by the matrix

� !

�
y t� �x �y
x �x t� �y

�
�

In terms of the original description X ! SpecK�x� y� z��xy� xz� yz� of X�
the �� � minors of this matrix are

�xy � xt � �x� ! x��

yt� �y� $ xy ! �y�� and

t� �x�t� �y�� xy ! �x� � y� $ z��

so that the zeroth Fitting ideal Fitt	 .X�Y is simply the square x�� y�� z��
of the maximal ideal of the origin inX� The singular locus sing
 of the map

 is thus the �rst�order neighborhood of the origin in A �

K � in particular�
it has degree �� For any sheaf F on Y supported at the origin in A �

K �
the zeroth Fitting ideal will be simply tm� where m is the vector space
dimension of )F �� The degree of the discriminant is thus equal to the
degree � of the singular locus�

It is also easy to describe the direct image 
�Osing��� directly� since the
�ber of the projection sing
 � Y over the origin has degree 
� we must
have


�Osing�� ! OY �t�� OY �t��
	��

and we can calculate the zeroth Fitting ideal Fitt	
�Osing�� accordingly�

If X had consisted of three coplanar lines meeting at a point� say� if
we took 
 � X ! SpecK�t� x��x� � t�� � Y ! SpecK�t�� then by the
calculation made previously we would have deg,
�� ! �� while in the
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spatial case we have deg,
�� ! �� This di�erence is what underlies the
example in Section II�
�� whose general �ber is isomorphic to the three co�
ordinate lines in A �

K and whose special �ber is supported on three coplanar
lines� the jump in the discriminant� in a sense� forces the appearance of the
embedded point in the �at limit� We saw the same phenomenon emerge
when we considered Hilbert polynomials in Sections III�
�� and III�
���

Our last examples will be in the form of exercises� In them we consider
the simplest cases of a morphism 
 � X � Y of relative dimension one�
such that the singular locus sing
 is �nite over Y�

Exercise V�	� Let K be a �eld of characteristic 	� let Y ! SpecK�t� !
A �
K � and let 
 � X � Y be the family of curves


 � X ! SpecK�t��x� y��xy � tm� � A �
Y �� Y�

Show that the discriminant scheme ,
� ! V tm� � Y�

In the preceding exercise� the singular curves of the families considered
have the simplest possible curve singularity� called a node� To generalize it�
we need �rst of all to make a de�nition�

De�nition V��� Let C � SpecK be a curve over an algebraically closed
�eld K and p � C a closed point of C� We will say that p is a node� cusp or
tacnode of C if the formal completion %O of the local ring OC�p with respect
to its maximal ideal is isomorphic to K��x� y���y� � x��� K��x� y���y� � x��
or K��x� y���y� � x�� respectively�

These singularities may also be characterized geometrically� a node� for
example� is a point of C at which two smooth branches cross transversely�
a tacnode is one where two smooth branches are simply tangent� that is�
intersecting in a scheme of degree �� In the case of a plane curve C � P�K �
we will say that a node or tacnode p of C is ordinary if neither branch indi�
vidually has intersection multiplicity 
 or more with its projective tangent
line� The reader may verify that if p � C is a cusp� this will always be the
case��

Exercise V��� Let K and Y be as in Exercise V�
	� and �nd the dis�
criminant scheme ,
� � Y for the following families 
 � X � Y of curves�

a� a family acquiring a cusp�


 � X ! SpecK�t��x� y��y� � x� � tm� � A �
Y �� Y�

b� a family acquiring a tacnode�


 � X ! SpecK�t��x� y��y� � x� � tm� � A �
Y �� Y�

c� a family acquiring an ordinary k�fold point�


 � X ! SpecK�t��x� y��xk $ yk � tm� � A �
Y �� Y�
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V�� Dual Curves

V�	�� De�nitions

We consider now another object associated to a plane curve C � P�S � its
dual curve C�� a subscheme of the dual projective plane P�S�� as de�ned
in Section III���
� In classical algebraic geometry� the de�nition is simple
enough� for K an algebraically closed �eld and C � P�K nonsingular of
degree d � �� the dual curve is de�ned to be the set of projective tangent
lines TpC to C� regarded as points of the dual projective plane P�K��� More
generally� for a curve C without multiple components and containing no
lines the dual curve is de�ned to be the closure of the locus of tangent lines
TpC to C at nonsingular points p of C� In the following� we will refer to
this locus as the �classical dual���

As in the case of �exes Section IV���� what we will do here is to propose
a natural set of de�ning equations for C�� which will yield a de�nition of
the dual C� � P�S�� of a plane curve C � P�S over an arbitrary scheme
S� Also as in the case of �exes� C� will be a closed subscheme of P�S���
�at over S over the open subset of S where it does not contain the �ber of
P�S��� and invariant under base change� Our de�nition will agree with the
classical de�nition for nonsingular plane curves over �elds of characteristic
zero� but not for singular ones� if p is an isolated singular point of a plane
curve C � P�K � the line in P�K�� dual to p will be a component of C� in our
de�nition� though it is not part of the classical dual� Again� this is necessary
if we want the duals of a family of plane curves to form a closed family� if
we want to recover information about the classical dual� we simply discard
the extra components� The need for characteristic zero will be explained
below��

To make our de�nition� we have �rst to introduce one auxiliary object�
Recall from Section III���� that in the product P�S �S P�S�� we have the
universal line &� whose �ber over each point l � P�S�� is the corresponding
line l � P�S � in terms of homogeneous coordinatesX�Y� Z on P�S and A�B�C
on P�S���

& ! V AX $BY $ CZ� � P�S �S P�S���

Now let C � P�S be any plane curve� and assume for the moment that C
contains no lines that is� there is no point s � S and line l � P��s� in the

�ber of P�S over s contained in C� this is stronger than supposing that the
equation of C does not have a linear factor�� We de�ne the universal line
section )C of C to be the intersection

)C ! ���� C� � & � P�S �S� P�S���

By our hypothesis that C contains no lines� the map �� � )C � P�S�� will
be �nite and hence �at� of degree d� and we de�ne the dual curve C� �
P�S�� of C to be the discriminant scheme of this map� as in De�nition V����
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Finally� if C does contain lines� we simply de�ne C� to be the closure in
P�S�� of the discriminant scheme of the restriction of �� to the open subset
of P�S�� where it is �nite�

A few introductory remarks are in order� To begin with� C� is by de��
nition a closed subscheme of P�S��� and its formation commutes with base
change� if S� � S is any morphism and C � ! S� �S C � P�S� � then we will
have also

)C� ! S� �S )C � P�S� �S P�S����

and hence C �� ! S� �S C
�� In particular� for any point s � S� the �ber C�s

of C� over s will be the dual of the �ber Cs � P��s� of C over s�
The support of C� is easy to describe� by the de�nition of the discrimi�

nant scheme of a �nite morphism� it is the set of lines l � P�S�� such that
the intersection of the corresponding line l � P�S with C is singular over
�l�� This means either l � C is nonreduced� or� in case �l� has charac�
teristic p � 	 and is not algebraically closed�has a point whose residue
�eld in an inseparable extension of �l��� In particular� as we indicated� if
p � C � P�K is any singular point� the line in P�K�� dual to p�that is�
the locus of lines in P�K passing through p�will be contained in C��

Finally� we remark that the �dual curve� need not be a curve# If C � P�S
is nonreduced�that is� it has a multiple component� then the dual C�

will be all of P�S��� Even if C � P�S is nonsingular and reduced it may have
nonreduced �bers Cs over some points of S� For example� the �ber of the
curve C ! V X� $ Y � $ Z�� � P�Z over �� � SpecZ is a double line� In
such cases the dual C� will contain the corresponding �bers of P�S��� and
so will not be a �plane curve� as we have de�ned it�

Exercise V�� Verify that the dual C� of the plane curve

C ! V X� $ Y � $ Z�� � P�Z
mentioned above is� by our de�nition� the subscheme

C� ! V �A� $ �B� $ �C�� � P�Z���

so is not a plane curve in P�Z���

In the example of Exercise V�

� our de�nition seems at �rst willfully
perverse� why shouldn�t we take the dual to be the zero locus of A�$B�$C�

instead Indeed� as long as the base S is nonsingular of dimension one as in
the exercise� any �bers of P�S�� � S contained in C� will be components of
C�� we can discard them to arrive at a scheme "C� �at over S� But we will see
below how to construct examples of curves C � P�S with nonreduced �bers
Cs over isolated points s � S where this simply cannot be avoided� the �ber
P��s��� of P�S�� over s will be contained in the closure of C� � P�Snfsg���
If we want the de�nition to behave well with respect to base change� this
means the dual of Cs has to be all of P��s����
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Exercise V��� Let K be a �eld� and C � P�K a curve� smooth over
K� Show that the dual C� is reduced� unless every tangent line to C is
multiply tangent� that is� has intersection multiplicity 
 or more with C�
or is tangent to C at more than one point�

In fact� if the characteristic of K is zero it cannot happen that every
tangent line is multiply tangent see for example Harris ������ Proposition
���
��� so the dual of any nonsingular plane curve will be reduced� But
there are examples of plane curves over �elds of �nite characteristic such
that every point is a �ex� and other examples where every tangent line is
tangent at several points� In such a case� our de�nition yields a nonreduced
dual curve C��

Exercise V��� Let K be any �eld of characteristic zero� and C � P�K a
curve of degree d having no multiple components� Show that the dual curve
C� � P�K�� is a plane curve of degree exactly dd � ���

Hint� Use the formula given in Proposition V��� for the discriminant to
describe the intersection of C� with a general line in P�K����

V�	�� Duals of Singular Curves

In case C � P�K has isolated singular points� as we said� our de�nition
diverges from the classical� any line l ! p� � P�K passing through a singular
point of C will correspond to a point in the support of the dual curve C��
What is the multiplicity of this component The following exercise gives
the answer in some cases� and derives as a consequence one of the classical
Pl'ucker formulas see Coolidge ���
����

Exercise V��� Using Example V��� on discriminants� show that if p � C
is a node� cusp� tacnode or ordinary triple point� then the line in p� � P�K��

dual to p appears with multiplicity �� 
� � or � respectively in C�� Deduce
the Pl'ucker formula for the degree d� of the classical dual of an irreducible
plane curve C � P�K over a �eld of characteristic zero of degree d� having
as singularities � nodes� � cusps� � tacnodes and 	 ordinary triple points�

d� ! dd� ��� �� � 
�� ��� �	�

Note that the same count is valid if C is reducible� as long as no component
of C is a line�� Find a curve singularity p � C for which p� appears with
multiplicity � in the dual curve C��

V�	�� Curves with Multiple Components

As in the case of �exes Section IV���� a very di�erent sort of question
emerges when we consider curves with multiple components� Here� as we
have said� the de�nition of the dual curve C� yields not a curve in P�K���
but rather the whole dual plane P�K��� But we can consider a family of
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generically nonsingular curves specializing to a multiple curve and ask� in
such a family� where do the tangent lines go 

We will illustrate this problem with the same sort of curve as we used
in Section IV��� but we will start with a simpler example� instead of a
family of quartics specializing to a double conic we will consider a family of
conics degenerating to a double line� To set it up� let K be an algebraically
closed �eld of characteristic zero� and set S ! SpecK�t�� Let LX�Y� Z� and
QX�Y� Z� � K�X�Y� Z� be homogeneous polynomials of degrees � and �
respectively� and assume that their zero loci in P�K intersect transversely�
that is� that V Q�L� � P�K is reduced� Consider the curve C � P�S given
by

� � C ! ProjK�t���X�Y� Z��LX�Y� Z�� $ tQX�Y� Z��

� ProjK�t���X�Y� Z� ! P�S � S�

Let C � � P�S�� be the dual of the curve C � P�S � As with the scheme of
�exes of the curve C� the scheme C � will have two components� one� the
�ber of P�S�� over the origin t� � S� and the other the closure C � of the
inverse image in C � of the punctured line T ! SpecK�t� t��� ! Snft�g � S
equivalently� the closure of the dual of the curve C�P�T � P�T �� The scheme
C � will be �at over all of S� with �ber over a point t� �� � S other than
the origin the dual C��

� of the curve C� ! V F $ �G� � P�K � it will
therefore have as �ber over the origin a scheme C �	 � P�K of dimension
� and degree �� which we will call the �limiting position� of the duals of
the nearby nonsingular curves C� as � approaches zero� Once more� we
can translate the naive question� �where do the tangent lines to a conic go
when the conic degenerates into a double line � into the precise problem�
determine the support of the �at limit C �	� The answer is expressed in the
following

Proposition V��� The �ber C �	 of C � over the origin t� � S consists
of the union of the two lines dual to the two points t ! L ! Q ! 	 of
intersection of the line L ! 	 and the conic Q ! 	 in the plane t ! 	�

Proof� We will do this by explicit calculation� To begin with� since the
characteristic of K is not �� we can choose a�ne coordinates x� y� on the
plane so that the line V L� is the x�axis y ! 	� and the conic V Q� if it
is nonsingular� the zero locus of y� � x� $ �� The equation of the curve
C � P�S is then

C ! V y� $ ty� � x� $ ���

and after replacing the coordinate t on S ! A �
K with the coordinate u !

t��� t� in a neighborhood of the origin and multiplying through by �� t�
we may rewrite this as

C ! V y� � tx� � ���
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note that if V Q� were singular� we could have taken this as the equation
of C originally�� Now� we can express any line in P�K not passing through
the point �	� �� 	� that is� the point at in�nity on the y�axis� as the zero
locus of an equation

y � ax� b�

a and b are then a�ne coordinates on the corresponding subset A �
K �

P�K��� The equations of the universal line section )C of C in the open
subset A �

K � A �
K � P�K � P�K�� are then

)C ! V y � ax� b� y� � tx� � ��� � SpecK�a� b� x� y�

! V ax$ b�� � tx� � ��� � SpecK�a� b� x��

Now� we may expand out the equation of )C as

ax$ b�� � tx� � �� ! a� � t�x� $ �abx$ b� $ t��

from which we see that the equation of the dual curve C � is

�ab�� � �a� � t�b� $ t� ! ��ta� $ �tb� $ �t� ! ��ta� � b� � t��

This has� as expected� two components� the entire �ber of P�S over the
origin� and the curve C � given as the zero locus

C � ! V a� � b� � t� � P�S �

The intersection of this second component with the �ber of P�S over the
origin is then

C �	 ! V a� � b�� ! V a$ b� � V a� b� � P�K �

In other words� it is the union of the two lines in P�K�� dual to the points
�� 	� and ��� 	� of intersection of the line y� and the conic x� � � in the
plane�

In fact� we can see this result from the real picture� if we draw the family
of conics y� ! tx���� specializing to the double line y ! 	� we see readily
that every line through either of the points ��� 	� is a limit of tangent
lines to the curves y� ! tx� � �� for small values of t� we may also write
this family of tangent lines directly� For example� the line y $ x $ � ! 	
through the point ��� 	� is the limit of the line

y $ x$
p
�� t ! 	�

which is tangent to the curve y� ! tx����� It is also clear from the picture
that any line meeting the x�axis in a point other than ��� 	� other than
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the x�axis itself� will be transverse to the curve y� ! tx� � �� for small t�

The same sort of phenomena occur with arithmetic schemes� In fact� we
have already seen an example� the conic C ! V X� $ Y � $ Z�� � P�Z�
which we may view as a family of conics over S ! SpecZ� specializing from
a nonsingular conic over the generic point of SpecZ to a double line over
the point �� � SpecZ� Here the function � on SpecZ plays the role of
the variable t� we can take LX�Y� Z� ! X $ Y $ Z and QX�Y� Z� !
�XY � Y Z � XZ to arrive at the curve C ! V L� $ �Q�� The only
di�erence here is that �bers L��� and Q��� over �� in the conic Q and the
line L do not intersect in two points� but rather meet in a single point with
residue �eld F �� The result is expressed in the

Exercise V�
� Show that the limit of the duals of the �bers of C over
SpecZ n f��g is the line in P�F��

� corresponding to the one point of inter�
section of L��� and Q��� in P�F� �

If you are curious about the duals of the quartic curves in the family
specializing to a double conic� here is the situation�

Exercise V��� Let K be an algebraically closed �eld of characteristic
zero� and set S ! SpecK�t�� Let QX�Y� Z� andGX�Y� Z� � K�X�Y� Z� be
a homogeneous quadric polynomial and a homogeneous quartic polynomial
respectively such that the curves V Q� and V G� intersect transversely� and
C � P�S the curve given by

� � C ! ProjK�t��X�Y� Z��QX�Y� Z�� $ tGX�Y� Z��

� ProjK�t��X�Y� Z� ! P�S � S�
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Let C � � P�S�� be the dual of the curve C � P�S � and C � the closure
of the inverse image in C � of the punctured line T ! SpecK�t� t��� ! S n
ft�g � S equivalently� the closure of the dual of the curve C �P�T � P�T ��
Show that the �ber C �	 of C � over the origin t� � S consists of the union
of the dual of the plane conic t ! Q ! 	 with multiplicity � with the union
of the eight lines dual to the eight points t ! Q ! G ! 	 of intersection of
the conic Q ! 	 and the quartic G ! 	 in the plane t ! 	�

The general situation is this�

Exercise V��	� Let m� e and d ! me be positive integers� Let F !
F X�Y� Z� and G ! GX�Y� Z� � K�X�Y� Z� be respectively the equa�
tions of nonsingular plane curves of degrees e and d meeting transversely�
let B ! SpecK�t� and consider the family of curves C ! V Fm$tG� � P�B �
Show that the �at limit of the duals of the curves Ct as t approaches 	 is
the union of the dual of the curve V F �� taken with multiplicity m� and
the duals of the points F ! G ! 	 of the plane curves� each taken with
multiplicity m� ��

There is no ambiguity in specifying a plane curve ) as its support �with
multiplicity m�� this can only mean the scheme V Fm�� where )red !
V F ��

V�	 Double Point Loci

Let 
 � X � Y be a morphism of varieties� The double point locus of 
 was
classically de�ned to be the closure in X�X of the locus of pairs of distinct
points p� q � X with common image 
p� ! 
q� � Y� In this section we
will give a scheme�theoretic de�nition that� as we will see� captures more
of the geometry of the map�

For the following� we will let 
 � X � Y be a separated morphism of
schemes� As we saw in Chapter III� the separated hypothesis means that
the diagonal ,X is a closed subscheme of the �ber product X �Y X� and
is satis�ed for all a�ne and projective schemes�

De�nition V���� The double point scheme D� of a separated morphism

 � X � Y is the scheme

D� ! V annI�X
� � X �Y X

associated to the ideal annI�X
� OX�YX of functions f with fI�X

! 	�

To understand this de�nition� recall that if 
 � X � Y is a morphism
of S�schemes in the examples below S will be SpecK or SpecZ� and
Y � S is separated� then the �ber product X �Y X is a closed subscheme
of X �S X � it is the scheme�theoretic� inverse image

X �Y X ! 
� 
���,Y �
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where ,Y � Y �S Y is the diagonal� Note that we have a �ber square

X �Y X � Y

X �S X
�

� Y �S Y �

,
�

that is� X �Y X is the �bered product of X �S X and Y over Y �S Y ��
Now� away from the diagonal� the double point scheme D� is simply the
�ber product X �Y X � in particular� the closed points of its support away
from the diagonal are simply the pairs of distinct points p� q � X such
that 
p� ! 
q�� In this sense it generalizes the classical double point
locus� though it may have nontrivial scheme structure even in case 
 is
a morphism of varieties� In addition� as our examples will show� it may
have components supported on the diagonal ,X � X �S X�that is� its
support may properly contain the double point locus�and may even be
nonempty in cases where the classical double point locus is empty�

Example V���� Consider the maps from X ! A �
K ! SpecK�t� to Y !

A �
K ! SpecK�x� y� given by polynomials of degree 
� mappingX onto plane

cubic curves with a node or a cusp� Speci�cally� consider for each value of
the parameter � the map 
� � X � Y given by the ring homomorphism


�� � K�x� y� �� K�t�

x ��� t� � �

y ��� t� � �t�

The image of 
� is the plane curve C� with equation y� ! x�x$ ���

� � 	 � � �
�

� � �
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The �ber product X �Y X is the spectrum SpecR of the algebra

R ! K�t���K�x�y� K�t��

! K�t�� t���
�
t�� � ��� t�� � ��� t�� � �t��� t�� � �t��

�
! K�t�� t���

�
t� � t��t� $ t�� t

�
� � ��

�
�

By our de�nition� then� the double point scheme D� of 
 ! 
� is given by

D� ! V
�
annt� � t���t� � t��t� $ t�� t

�
� � ����

�
! V t� $ t�� t

�
� � ��� � SpecK�t�� t�� ! X �K X�

Assuming that the characteristic of K is not �� for � �! 	� D� consists of

the two reduced points 
p
���p�� and �p��p��� For � ! 	� on the other

hand� D� is a double point supported at the origin� Note that D�� is the
�at limit of the schemes D�� for � �! 	 as � approaches 	��

To see the di�erence between the classical and modern approaches� ob�
serve that for � �! 	 the scheme X �Y X � as pictured in the �gure below�
is reduced� hence the double point scheme is reduced as well and coincides
with the classical double point locus� For � ! 	� however� they di�er� the
scheme X �Y X consists of the diagonal in X �K X� plus an embedded
point supported at the origin� In the classical language� we see only the
reduced scheme associated to X �Y X� and so miss the embedded point�
thus the double point locus of 
	 is empty� Scheme theory� by contrast�
does see the nonreduced structure of X �Y X and as a result the double
point scheme of 
	 is nonempty� re�ecting the fact that 
	 fails to be an
immersion at t ! 	�

� �� � � � �

t� t�

t� t�

To make somewhat more precise the remark above that the nonempti�
ness of the double point scheme of 
	 re�ects the fact that 
	 is not an
immersion� we have the following two exercises�

Exercise V��� Let 
 � X � Y be a �nite map of nonsingular varieties
over an algebraically closed �eldK of characteristic zero� and D� its double
point scheme� Show that

supp D� �,X� ! fp� p� � Kerd
p� �! 	g � X �K X�
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Exercise V���� Let 
 � X � Y again be a �nite map of irreducible vari�
eties and D� its double point scheme� Using Harris ������ Theorem ������
we see that in fact 
 is an embedding if and only if D� ! �� that is� if and
only if


� 
���,Y � ! ,X

as schemes which is to say� X � X �Y X is an isomorphism��

Here is an exercise showing that the same geometric ideas apply as well
in the context of arithmetic schemes� the schemes in question are spectra
of rings of integers in number �elds they were �rst introduced in Sec�
tion II������ but as we will see they behave very much like the curves de�
scribed in the example above�

Exercise V���� Consider the maps


 � SpecZ���
p

� �� A �

Z

and

� � SpecZ��
p

� �� A �

Z

associated to the maps Z�t� � Z���
p

� and Z�t� � Z��

p

�� Describe the

double point scheme of each map� and in particular recon�rm the assertion
of Exercise II�
� that the singularity of the former is a node� while that of
the latter is a cusp�

Finally� we point out also that nonreduced structures on the double point
locus arise naturally even away from the diagonal in X�X� for example for
maps 
 that are immersions� For example� consider the case where Y is a
curve and 
 � X � Y its normalization� Suppose that two points P�Q � X
map to the same point R of the image curve Y ! 
X��

Exercise V���� Show that if R is a node� the double point scheme will
be reduced at the point P�Q� � X �X� By contrast� show that if R is a
tacnode that is� Y has two smooth branches at R� simply tangent to one
another� D� will be nonreduced at the point P�Q� � X � X� Can you
describe the scheme structure 



This is page ��	
Printer� Opaque this



This is page ���
Printer� Opaque this

VI

Schemes and Functors

At the end of the �rst chapter of this book we discussed a way of embedding
the category of schemes into the larger category of contravariant functors
F from the category of schemes to the category of sets�

This embedding is useful in at least three ways�

�� The e�ect of some basic constructions� such as products� is much easier
to describe on functors of points than on schemes�

�� In trying to construct a certain scheme� it is often easy to construct
the functor that would be the functor of points of that scheme� if
the scheme existed� the construction problem is then reduced to the
problem of proving that the functor is representable and the use of
Yoneda�s Lemma VI���� The process is exactly analogous to the use
of distributions in analysis� there� when trying to prove the existence
of a nice function solving a given di�erential equation� one �rst proves
the existence of a solution that is a distribution� and then is left with
the possibly more tractable� regularity problem of proving that the
distribution is represented by integration against a function�


� Many aspects of the geometry of schemes can be extended to the cat�
egory of functors� so that it is sometimes useful to forget about repre�
senting a functor and work in that category or some suitable subcat�
egory� directly�

In this chapter we illustrate these points� �rst with some basic construc�
tions� and then with some examples coming from the desire to parametrize
families of schemes� We shall see in Section VI���� that some of these lead
to functions that are not actually schemes� though they are rather close�
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VI�� The Functor of Points

We start where we left o� at the end of Chapter I� Recall that the functor
of points of a scheme X is the functor

hX � schemes�
 � sets�

where schemes�
 and sets� represent the category of schemes with the
arrows reversed and the category of sets� hX takes each scheme Y to the
set

hXY � ! MorY�X�

and each morphism f � Y � Z to the map of sets

hXZ�� hXY �

de�ned by sending an element g � hXZ� ! MorZ�X� to the composition
g 	 f � MorY�X�� We say that a functor F � schemes�
 � sets� is
representable if it is of the form hX for some schemeX� By Yoneda�s Lemma
below� X is unique if it exists� in this case we say that X represents F�
The set hXY � is called the set of Y �valued points of X if Y ! SpecT is
a�ne� we will often write hXT � instead of hXSpecT � and call it the set
of T �valued points of X��

Recall also that this construction de�nes a functor

h � schemes�� Funschemes�
� sets��

where morphisms in the category of functors are natural transformations��
sending

X �� hX

and associating to a morphism f � X � X � the natural transformation
hX � hX� that for any scheme Y sends g � hXY � ! MorY�X� to the
composition f 	 g � hX�Y � ! MorY�X ���

In order for this notion to be of any use at all� a crucial �rst fact is that
the functor of points hX really does determine the scheme X� This follows
from a basic categorical fact�

Lemma VI�� Yoneda�s Lemma�� Let C be a category and let X�X � be
objects of C�

a� If F is any contravariant functor from C to the category of sets� the
natural transformations from Mor�� X� to F are in natural correspon�
dence with the elements of F X��

b� If the functors Mor�� X� and Mor�� X �� from C to the category of
sets are isomorphic� then X � X �� More generally� the maps of functors
from Mor�� X� to Mor�� X �� are the same as maps from X to X ��
that is� the functor

h � C � FunC 
� sets��
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sending X to hX is an equivalence of C with a full subcategory of the
category of functors�

Proof� For part a�� the correspondence sends � � Mor�� X� � F to the
element ��X �� where �X � X � X is the identity map� The inverse takes
p � F X� to the map � sending an element f � MorY�X� to F f�p� �
F Y �� As for part b�� we can apply the statement of part a� to the functor
F ! Mor�� Y ��

The following improvement of Lemma VI�� shows that it is enough to
look at the functor of points restricted to the category of a�ne schemes� or�
equivalently� to the category rings�
� the category of commutative rings
with the arrows reversed� and the same thing works in the relative setting�

Proposition VI��� If R is a commutative ring� a scheme over R is de�
termined by the restriction of its functor of points to a�ne schemes over
R� in fact

h � R�schemes�� FunR�algebras�� sets��

is an equivalence of the category of R�schemes with a full subcategory of
the category of functors�

Of course� a contravariant functor on the category of a�ne schemes is
the same as a covariant functor on the category of rings� so given this
result� we will generally think of our contravariant representable functors
hX � schemes�
 � sets� as covariant functors on R�algebras� If we need
to make a distinction� we will denote by h�X � rings� � sets� the functor
de�ned by h�XA� ! hXSpecA� for any R�algebra A��

Proof� This is really just the statement that schemes are built up out of
a�ne schemes� Let S ! SpecR� Write hX for the functor MorS�� X� re�
stricted to the category of a�ne schemes over S� It is enough to show that
any natural transformation 
 � hX � hX� comes from a unique morphism
f over S from X to X �� To construct f from 
� let fUag be an a�ne
cover of X� and apply 
 to the inclusion maps Ua � X to get morphisms
Ua � X �� These morphisms satisfy the compatibility conditions necessary
to de�ne the desired morphism f � Uniqueness comes down to the obser�
vation that two morphisms from X to X � that di�er are already di�erent
when restricted to one of the Ua�

Exercise VI�� Suppose that X is like virtually all schemes of interest
to us� locally Noetherian�that is� covered by spectra of Noetherian rings�
Prove that X is determined by the restriction of hX to the category of
Noetherian rings�
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VI���� Open and Closed Subfunctors

One reason that thinking of schemes as functors is useful is that it is pos�
sible to extend some of the basic notions from the geometry of schemes to
functors� We will consider some examples�

We �rst show how to de�ne an open subfunctor of a functor

F � Funrings�� sets���

We say that a map � � G� F of functors from a category C to the category
of sets is injective if for every object X the induced map of sets GX� �
F X� is injective this corresponds to the standard categorical notion� but
we will not need this fact�� In this case we will say that � � G � F is a
subfunctor of F� For example� if U � X is a subscheme� the functor hU
will be a subfunctor of hX �

We want to de�ne an open subfunctor of a functor F to be a subfunctor
that� when restricted to a representable subfunctor hX � F � is of the form
hU � hX for an open subscheme U � X � To carry this out� we need to
introduce the notion of a �bered product of functors�

De�nition VI��� If A� B� and C are functors from some category C to
the category of sets and if f � A � C and g � B � C are morphisms of
functors� the �bered product A�CB is the functor from C to sets� de�ned
by setting� for any object Z of C�

A�C B�Z� ! fa� b� � AZ��BZ� j fa� ! fb� in CZ�g�
and de�ned on morphisms of C in the obvious way�

De�nition VI��� A subfunctor � � G � F in Funrings�� sets�� is an
open subfunctor if� for each map � � hSpecR � F from the functor repre�
sented by an a�ne scheme SpecR that is� each � � F R��� the �bered
product

G�
� hSpecR

G
� � � F

�
�

of functors yields a map G� � hSpecR isomorphic to the injection from the
functor represented by some open subcheme of SpecR�

Exercise VI��� Let X ! SpecR be an a�ne scheme� Show that the open
subfunctors of hX are exactly the functors of the form

F T � ! f
 � hXT � j 
�I�T ! Tg�
for some ideal I � R�

Exercise VI��� Let X be a scheme over the �eld K� De�ne a functor
F � schemes�K�
 � sets� as follows� for each K�scheme Y� let F Y � be
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the set of closed subschemes Z � X�K Y �at over Y and such that all the
�bers of Z over closed points of Y are subschemes of degree � of X� Let G
be the subfunctor of F obtained by adding the requirement that the �bers
of Z over closed points of Y are reduced� Show that G � F is open�

To de�ne closed functors� we proceed similarly� A subfunctor � � G� F
in Funrings�� sets�� is closed if for each map � � hSpecR � F the �bered
product of � and � is a subfunctor of hSpecR isomorphic to the functor
represented by a closed subcheme of SpecR�

Exercise VI�
� Let X ! SpecR be an a�ne scheme� Show that the open
and closed subfunctors of hSpecR are precisely those represented by open
and closed subschemes of SpecR� The same is true� and only a little harder�
for arbitrary schemes��

As usual� a little caution is necessary when using these notions� For
example�

Exercise VI��� Given any subfunctor G � F from a category C to the
category of sets� we may de�ne the complement F nG to be the subfunctor
C �� F C� n GC�� Enumerate the open and closed subfunctors of the
functor hSpecK�t� on the category of K�schemes� with K a �eld� and thus
show that the complement of an open subfunctor need not be a closed
subfunctor�

Exercise VI��	� Let X be a scheme over the �eld K� De�ne the functor
F � scheme�K�
 � sets� as in Exercise VI��� and de�ne a subfunctor H
of F by letting HY �� for eachK�scheme Y� be the set of closed subschemes
Z � X � Y �at over Y and such that all the �bers of Z over closed points
of Y are subschemes of degree � of X supported at a single point of X�
Show that H is not in general a closed subfunctor of F�

We will also use the notion of an open covering of a functor� This is a
collection of open subfunctors that yields an open covering of a scheme
whenever we pull back to a representable functor� More precisely� let F �
schemes� � sets� be a functor� Consider a collection fGi � Fg of open
subfunctors of F � For each map hx � F from a representable functor
hX to F � there are open subschemes Ui � X such that the �ber product
hX �F Gi of hX and Gi is hUi � We say that the collection fGi � Fg is
an open covering if� for any such map hX � F � the corresponding open
subschemes Ui � X cover X�

One warning� if fGi � Fg is an open covering of F � it is not necessarily
the case that F T � !

S
GiT � for all schemes T � For example� consider

F ! hSpecZ� G� ! hSpecZ���p�� G� ! hSpecZ���q��

where p and q are distinct primes� Then fGi � Fg is an open covering� but
F SpecZ� consists of one point the identity map�� whereas GiSpecZ� !
� for i ! �� ��� However� it is the case that an open covering fGi � Fg
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yields a covering F T � !
S
GiT � for su�ciently local �at schemes T � For

example�

Exercise VI���� Let fGi � Fg be a collection of open subfunctors of a
functor F � schemes� � sets�� Show that this is an open covering if and
only if F SpecK� !

S
GiSpecK� for all �elds K�

VI���� K�Rational Points

If X is a scheme over a �eld K� the K�valued points of X over K are maps
SpecK � X whose composition with the natural map X � SpecK is the
identity� We claim that such maps correspond exactly to closed points p of
X that are rational over K or K�rational� in the sense that the residue
class �eld �p� is K via the inclusion map of K into the local ring of X
at p�� Indeed� since SpecK has no nontrivial open coverings� a map from
SpecK into X is a map into some a�ne open subscheme SpecT of X� and
such a morphism is determined by a K�algebra map T � K�that is� by a
maximal ideal of T with residue class �eld K� Conversely� we may reverse
the construction and see that any K�rational closed point p gives rise to a
unique morphism SpecK � Xo f K�schemes�

We reiterate the warning about working in the category of S�schemes
rather than the category of all schemes� where applicable� For example�
when working with complex varieties� one would expect hSpecC Spec C � to
be a single point the identity map��and this is true in the category of
C �schemes� But in the category of schemes� this set is very large#

Exercise VI���� Let X ! Spec C � considered as an abstract scheme� that
is� a scheme over Z� Describe the set hXSpec C � of all C �valued points of
Spec C �

VI���� Tangent Spaces to a Functor

Sometimes it is much easier to compute geometric information about a
scheme if one knows its functor of points than if one knows its equations#
A typical example occurs with the Zariski tangent space� We will see this
applied in Section VI���
��

We will work with schemes over a �xed �eld K� and all morphisms will
be morphisms over K�

Recall that if X is a scheme� then for any K�rational point p � X the
Zariski tangent space to X at p is HomKm�m�� K�� where m ! mX�p is
the maximal ideal in the local ring of X at p and K ! �p� ! OX�p�mX�p

is the residue �eld of X at p� Now let X be a scheme over K� Let X be the
a�ne scheme SpecK�������� We claim that a K��������valued point of X
is the same as a K�rational closed point p of X together with an element
of the Zariski tangent space to X at p�
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To check this assertion� note �rst that because of the inclusion map
� � SpecK � SpecK������� induced by the algebra map K������� � K�
a morphism SpecK������� � X determines a morphism SpecK � X
and thus a closed� K�rational point p of X� An extension of such a mor�
phism SpecK � X consists of a lifting of the K�algebra homomorphism
OX�p � �p� ! K to a local� homomorphism OX�p � K�������� Such a
homomorphism induces a map from the maximal ideal mX�p to the maxi�
mal ideal �� of K�������� and since ��� ! 	� this map factors through a
map t � mX�p�m

�
X�p � �� �! K� The map t is an element of mX�p�m

�
X�p�

��
the Zariski tangent space to X at p�

Conversely� given a K�rational point p � X and t � mX�p�m
�
X�p � �� �!

K we may construct a map OX�p � K������� from the map � � OX�p �
�p� ! K corresponding to p� as follows� � and the K�algebra structure
map K � OX�p de�ne a K�vector space splitting of OX�p�m�

X�p into K 
mX�p�m

�
X�p� and we use the identity map onK and the map t on mX�p�m

�
X�p

to de�ne a map

OX�p�m
�
X�p � K��������

which by composition with the projection gives a map OX�p � K��������
This map determines the desired morphism of schemes SpecK��������X�

In Section VI���� we will see how this characterization of tangent vectors
to a scheme may be used to give an intrinsic description of tangent vectors
to projective space� completing the discussion in Section III�����

If now F is a functor from the category of K�algebras to sets� and
p � F K�� we may de�ne the tangent space TpF to F at p to be the �ber
over p in F K��������� F K�� One objection that may be raised to this
de�nition is that it gives us the tangent space as a set� rather than as a
vector space over K� One can at least de�ne multiplication by elements of
K� if a � K� then the map � �� a� induces an endomorphism of the algebra
K������� making the diagram

� � a�

K������� � K�������

K
�

�

commute� and this induces a map TpF � TpF� which is the desired mul�
tiplication by a� To make TpF a vector space� we now need to de�ne an
addition map TpF � TpF � TpF� In general� there seems to be no way to
do this� but for those functors F that� like representable functors� preserve
�bered products� we can�

To do this� consider the scheme SpecK���� �������� ����� �that is� the
closed subscheme of the plane given by the square of the maximal ideal
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of a point� The commutative diagram

K���������

K���� �������� �����

�

K

�

K�����������

�

�

given by the projections expresses K���� �������� ����� as the �bered product
over K of K��������� and K������������ On the other hand� there is a third
map� � � K���� �������� ����� � K�������� that takes both �� and ��� to ��
Thus if the functor F preserves �bered products in the category of algebras�
or even just the �bered product given above� we can form the diagram

F �K�
����
�����F �K�F �K�
�����
����� �� F �K�
�� 
�����
�� 
�����
F ���� F �K�
���
���

F �K�
� ��

and taking �bers over p � F K�� we get the desired addition map�

Exercise VI��� Verify that these maps make TpF into a K�vector space�
and that this is the old vector space structure in the case where F is a
representable functor�

VI���	 Group Schemes

It is extremely easy to specify extra structure on a scheme by specifying it
on the functor� For example� we may de�ne a group scheme as a scheme G
and a factorization of the functor hGrings� � sets� through the forget�
ful functor groups�� sets�� that is� a group scheme is a scheme and a
natural way of regarding MorX�G� as a group for each X�

By Yoneda�s Lemma VI���� this is the same thing as giving maps

G�G� G� G� G and SpecK � G

representing the multiplication� inverse� and identity element� respectively�
and satisfying the usual laws associativity and so on�� but is often much
simpler� For example� GLn can be de�ned as the a�ne scheme of invertible
integral n� n matrices�

SpecZ�xij ��detxij�����
but one usually thinks of it as a functor that associates to every ring T the
group GLnT �� The interesting point here is just that this family of groups
already speci�es the structure of a scheme and the additional structure
maps#
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VI�� Characterization of a Space by its Functor of
Points

It is often much easier� and sometimes more illuminating� to describe the
functor of points of an interesting scheme than to give a direct construction
of it� whether by gluing or by explicit equations in a�ne or projective
space� Typical examples come from the Hilbert scheme and other moduli
problems� where one wants a natural space whose points represent some
geometric objects� However� the point of view is also useful in discussing
much simpler objects� such as �bered products� or projective space itself�

The basic idea in any case is to �rst de�ne a functor from the category
of schemes to the category of sets� and then to prove an existence theorem
asserting that there is a scheme of which it is the functor of points� Of
course� to carry this procedure out an essential ingredient is a local and
readily veri�able� criterion for a functor to be representable� and we start
by giving such a criterion�

VI���� Characterization of Schemes among Functors

To the extent that we want to de�ne and*or construct schemes �rst as
functors� we run into a fundamental problem� that of determining when a
functor comes from a scheme� Here is one characterization�

We say that F � rings� � sets� is a sheaf in the Zariski topology if for
each ring R and each open covering of X ! SpecR by distinguished open
a�nes Ui ! SpecRfi the functor F satis�es the sheaf axiom for the open
covering

S
Ui ! X� That is� for every collection of elements �i � F Rfi�

such that �i and �j map to the same element in F Rfifj �� there is a unique
element � � F R� mapping to each of the �i�

This is a reasonably easy property to check in practice� It is in fact
enough to guarantee that F comes from a scheme if we know already that
F is covered by a�ne schemes in the following sense� The reader may prove
the following theorem�

Theorem VI���� A functor F � rings� � sets� is of the form hY for
some scheme Y if and only if

	� F is a sheaf in the Zariski topology� and

�� there exist rings Ri and elements �i � F Ri��that is� by Lemma VI�	�
maps

�i � hRi � F

such that� for every �eld K� F K� is the union of the images of hRiK�
under the maps �i�

As an easy application� one can use the theorem to show the existence of
�bered products� The construction of �bered products in the category of
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schemes� which was explained in Chapter I� is of fundamental importance�
but it is surprisingly clumsy� Using the functorial point of view� we can
at least describe the �bered product of two schemes by giving its functor
of points directly� If X � S and Y � S are morphisms of schemes� the
�bered product X�SY is determined by saying that it is the scheme whose
functor of points is the �bered product of functors hX�hS hY � Its existence
is established in the following exercise�

Exercise VI���� a� Show that if f � A � C and g � B � C are mor�
phisms of functors all of which are sheaves in the Zariski topology� the
�bered product A�C B is a sheaf in the Zariski topology�

b� Use the open covering of the �bered product suggested in Chapter I
and the above theorem to prove the existence of �bered products in
the category of schemes�

The next example gives a di�erent way of looking at maps to projec�
tive spaces� Theorem III�
� may be translated immediately into our new
language�

Theorem VI���� If Y ! PnZ� then

hY X� !

�
locally free subsheaves F � On
�

X

that locally are summands of rank n

�

!
finvertible sheaves P on X with an epimorphism On
�

X � Pg
funits of OXX� acting as automorphisms of Pg �

By way of an application� we will combine this description of maps to
projective space with the characterization in Section VI���
 of tangent vec�
tors to a scheme X as maps of SpecK������� to X to compute the Zariski
tangent spaces to PnK at K�valued points� By what we have just said� a
K�valued point of PnK is a rank n summand F � Kn
�� let L be the quo�
tient L ! Kn
��F� The Zariski tangent space T at this point is the set of
all summands F � � K��������n
� that restrict to F modulo �� We claim
that there is a natural isomorphism

T �! HomKF�L��

To produce it� choose a splitting Kn
� ! F  L and a basis ei of F� Any
summand F � of K��������n
� that reduces mod � to F has a basis of the
form fei $ �si $ �tig with si in F and ti in L� say� We associate to K � the
map � � F � L sending ei to ti� Conversely� given any map �� we may
de�ne F � to be the module spanned by the elements ei $ ��ei��

Exercise VI���� Check that these de�nitions are independent of all the
choices made�

Finally� Theorem VI��� can also be used to prove the existence of the
Grassmannian scheme from its functorial description�
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Exercise VI��
� For 	 � k � n� let

g ! gk� n� � rings�� sets�

be the Grassmannian functor� that is� the functor given by

gT � ! frank k direct summands of Tng�
Prove that this is the functor of points of a closed subscheme GZk� n� of
projective space PrZ� called the Grassmannian of k�planes in n�space� as
follows�

First� let r !
�
n
k

� � �� and let PrZ ! ProjZ�� � � XI � � �� be the projective
space with homogeneous coordinates XI corresponding to the subsets of
cardinality n� k in f�� �� � � � � ng� De�ne a natural transformation g � hPr

Z

of functors by sending a summand M � Tn to
VkM � Vk Tn� Cover PrZ

by the usual open a�ne subschemes UI �! A rZ� show that these subschemes
are represented by the subfunctors

UIT � !

�
rank r summands of T r
� such that the I�th
basis vector of T r
� generates the cokernel

�
and that the intersection �ber product� of UI and g is the functor

UI � g�T � !

�
rank k summands M of Tn such that the basis
vectors ei� � � � � � ein�k �Tn generate the cokernel

�
�

Check that the intersection UI �g is represented by an a�ne scheme� Show
that g is a sheaf in the Zariski topology� and conclude that g is represented
by a scheme�

Note once more that we do not have gT � !
S
UI � g�T �� except on

local rings�

Exercise VI���� Show that this de�nition of the Grassmannian coincides
with the one given in Section III�����

Exercise VI��	� For a �eld K� give an analogous de�nition of the Grass�
mannian GKk� n�� and show that it coincides with the product GZk� n��
SpecK�

We will see other examples of the use of this theorem in the next section�
The functorial point of view is developed in far greater depth and detail in
Demazure and Gabriel ����	�� to which the interested reader is referred for
more information�

One of the principal goals in Grothendieck�s work on schemes was to
�nd a characterization of scheme�functors by weak general properties that
could often be checked in practice and so lead to many existence theorems
in algebraic geometry like Brown�s theorem in the homotopy category� see
Spanier ������ Chapter ������ It seemed at �rst that this program would
fail completely and that scheme�functors were really quite special� see Hi�
ronaka ������� for instance� Artin� however� discovered an extraordinary
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approximation theorem exhibiting a category of functors F only �a little�
larger than the scheme�functors that can indeed be characterized by weak
general properties� Geometrically speaking� the functors F are like spaces
obtained by dividing a�nes by ��etale equivalence relations� and then glu�
ing� He calls them algebraic spaces for a typical occasion where they arise�
see Section VI������ For details� see Artin ������ and Knutson �������

VI���� Parameter Spaces

The Hilbert Scheme� Probably the one area where the notion of the
functor of points has had the most impact is in the construction and de�
scription of parameter spaces� We have already mentioned in Section III�
�
�
for example� that the subschemes of a projective space PnK over a �eld K
having a given Hilbert polynomial P form a scheme� which we will callHP �
It seems surprising that such a statement has an unambiguous meaning�
While it is intuitively plausible that the set of such objects might form the
points of a variety� couldn�t they form a variety in several di�erent ways 
And in what sense do they form a scheme 

The answers are obtained by making precise what properties we want
the correspondence between the set of subschemes and the set of points of
HP to have� Speci�cally� note that if X � PnK �B � B is any �at family
of subschemes of PnK with Hilbert polynomial P� we get a map from the
points of B with residue �eld K to the points of HP with residue �eld K�
sending a point b � B to the point of HP corresponding to the �ber Xb

of HP over b� It is natural to ask that this map come from a regular map
B �HP � Carrying this a little further� we want HP to have the property
that for any scheme B over K� the set of �at families of subscheme of PnK
with Hilbert polynomial P parametrized by B is naturally identi�ed with
the set of maps from B toHP � Finally� since the problem of parametrizing
subschemes of PnK with a given Hilbert polynomial should be in some sense
the same for all K� we would like to do this over SpecZ�that is as in
the case of the Grassmannian� which is indeed a special case of a Hilbert
scheme� de�ne for each P a single objectHP over SpecZ such that for any
K the product HP � SpecK parametrizes subschemes of PnK with Hilbert
polynomial P�

To say this a little di�erently� we make the following de�nition�

De�nition VI���� The Hilbert functor hP �called the �functor of �at
families of schemes in PnZ with Hilbert polynomial P�� is the functor

hP � schemes�
 � sets�

that associates to any B the set of subschemes X � PnB �at over B whose
�bers over points of B have Hilbert polynomial P�

We then want to take the Hilbert scheme HP to be the scheme that
represents hP � in other words� the scheme whose functor of points is hP �
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By Yoneda�s Lemma VI���� this determines the scheme HP � if one such
exists� the key theorem is thus the following�

Theorem VI���� There exists a scheme HP whose functor of points is
the functor hP �

Note that for any scheme S we can make an analogous de�nition of a
functor hP�S � S�schemes�
 � sets� on the category of S�schemes� and
that if HP is the scheme representing the functor hP as above� then hP�S
is represented by the S�scheme HP � S�

In fact� it turns out thatHP �SpecK is often a scheme that is genuinely
not a variety� We will describe� in Exercises VI�
� through VI�
�� a famous
example of Mumford ������ of a Hilbert scheme that is nonreduced even at
points corresponding to nonsingular� irreducible projective varieties�

The statement of Theorem VI��� has another interpretation that is often
useful� saying that the functor hP is representable is the same thing as
saying that there exists a universal family �that is� a scheme H and a
subscheme X � PnZ�H �at over H with Hilbert polynomial P �such
that any subscheme Y � PnZ�B �at over B with Hilbert polynomial P is
equal to the �ber product Y !X �H B � PnZ�B for a unique morphism
B � H � Clearly� if a universal family X � PnZ� H exists� then H
represents the functor hP � Conversely� if a scheme H represents hP � then
the subscheme X � PnZ�H associated to the identity map is universal
in the above sense�

We will not give a proof of Theorem VI��� but will indicate how it may
be approached� for more details we refer the reader to Mumford ������ or
Koll�ar �������

The idea is easy to summarize� reducing to the case of a subscheme
X of projective space PnB over a base of the form B ! SpecR with R
a local ring� such a scheme X is determined by its ideal IX� � S !
R�X	� � � � � Xn�� which in turn is determined for m su�ciently large in a
sense depending only on P � by its degree m piece IX�m � Sm� Setting
M !

�
m
n
n

�
and q ! P m�� this in turn corresponds to a point in the

Grassmannian GBq�M� parametrizing summands of codimension P m�
in the free R�module Sm �! RM� In this way HP�B becomes a subscheme
of the Grassmannian GBq�M� of such planes�

The key point is that we can choose a single m that has this property
uniformly for every subscheme X with Hilbert polynomial P � that is� that
for every P� there is an m	 such that if m � m	 and X is a subscheme of
PnK with Hilbert polynomial P� then IX�l�m is generated by IX�m� and
the codimension of IX�m in Sm is PX m�� Examining our proof that the
Hilbert polynomial is a polynomial� we see that to prove this it is enough to
show that the degrees of the generators of the free modules in the minimal
free resolution of IX� can be bounded in terms of the Hilbert polynomial
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of X� This is done by using the idea of Castelnuovo regularity of X � a more
complete description would take us too far a�eld�

We thus have� for every �at family X � PnB over a base B ! SpecR�
that is� an element of hP SpecR��a summand of corank q in RM �that
is� an element of the set gq�M�R�� where g ! gq�M� is the Grassmannian
functor as de�ned in Exercise VI���� This association extends to a natural
transformation of functors from h�P to gq�M�� where h�P � rings�� sets�
is the functor h�P R� ! hP SpecR�� and hence to a natural transformation
from the Hilbert functor hP to the functor respresented by the Grassman�
nian G ! GZq�M��

To �nish the argument� one must show that there exists a subscheme
HP � G such that a morphism 
 � B � G comes in this way from a �at
family X � PnB with Hilbert polynomial P if and only if 
 factors through
HP � We will content ourselves here with describing the equations of HP

as a closed subscheme of G� Let Y be the universal subbundle on G� We
have multiplication maps

multk � Y � Sk � Sk
m�

where S ! Z�X	� � � � � Xn�� and we can take HP to be the �determinantal�
subscheme of GZq�M� de�ned by the conditions that

rankmultk� � dimSk
m � P m$ k�

for all k � 	� It is immediate that the desired maps 
 all factor through this
subscheme� Given any point p in this subscheme� one shows that because
m has been chosen so large� the ideal generated by the corresponding linear
subspace of Sm de�nes a scheme with Hilbert polynomial P� This gives us a
�tautological family� on HP of schemes with Hilbert polynomial P� Given
any map 
 from a scheme B into HP � one can �pull back� this family by
using the �bered product to get a family over B� and the map 
 will be
associated to this family� Once all this is veri�ed� the description of HP by
its functor of points ensures that HP does not depend on the choice of m�

Examples of Hilbert Schemes� We will mention� largely in the form of
exercises� some examples of Hilbert schemes� To begin with� the Grassman�
nian G Sk� n� is a Hilbert scheme� it parametrizes subschemes X of degree
� and dimension k speci�cally� with Hilbert polynomial P m� !

�
m
k
k

��
in the projective space PnS � The following exercise deals with the simplest
special case of this� but the general statement and proof� di�ers only nu�
merically�

Exercise VI��� Let P m� ! m$ � be the Hilbert polynomial of a line�
Show that the Hilbert scheme of subschemes of P�Zwith Hilbert polynomial
P is the Grassmannian introduced in Exercise VI��	�

Another very straightforward example is hypersurfaces� It is a standard
observation that the set of hypersurfaces of degree d in projective space
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PnK over a �eld K may be identi�ed with the points of the projective space
of homogeneous polynomials of degree d in n $ � variables� In fact� this
projective space turns out to be the Hilbert scheme of such hypersurfaces�
As in the preceding example� the following exercise deals with one typical
example�

Exercise VI���� Let P m� ! �m$� be the Hilbert polynomial of a conic
curve� Show that the Hilbert schemeHP of subschemes of P�Zwith Hilbert
polynomial P is P�Z�

Beyond these examples� the geometry of Hilbert schemes is much less
well known� Even the Hilbert schemes parametrizing zero�dimensional sub�
schemes of projective space PnK over a �eld remain mysterious� Iarrobino
������� for example� has shown contrary to naive expectations� that such
Hilbert schemes are not in general irreducible� In the case of P�K � they are in
fact irreducible and nonsingular� but their global geometry presents many
problems� see� for example� Collino ������� One case where we can actually
give a description is the following exercise�

Exercise VI���� Let P be the constant polynomial �� Show that the
Hilbert scheme HP parametrizing subschemes of P�Z with Hilbert poly�
nomial P may be obtained by blowing up the product P�Z� P�Z along the
diagonal and then taking the quotient by the involution exchanging factors�

In the general setting our knowledge of Hilbert schemes is minimal� For
example� in the case of curves in projective 
�space P�K over a �eld K�
the simplest example of a Hilbert scheme parametrizing schemes that are
pure positive�dimensional but not hypersurfaces�we do not have even a
guess as to the number of components of HP � their dimension� or their
smoothness or singularity� For a discussion of this case� see Harris and
Eisenbud �������

Variations on the Hilbert Scheme Construction� We have de�ned
the Hilbert scheme parametrizing subschemes of projective space with given
Hilbert polynomial P� In fact� with very little additional e�ort we can
generalize this substantially�

The �rst thing to notice is that if X � PnS is any closed subscheme� we
can de�ne a functor

hP�X � S � schemes�
 �� sets�

by associating to any S�scheme B the set of �at families of subschemes of
X with Hilbert polynomial P over B� that is�

hP�XB� !

�
X �B�SX �B�S PnS ! PnB � �at
over B� with Hilbert polynomial P

�
�

The key fact� which is not hard to establish� is the following�

Exercise VI���� Show that hP�X is a closed subfunctor of hP �
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It follows that there exists a closed subscheme HP�X �HP whose func�
tor of points is hP�X � this scheme is what we call the Hilbert scheme of
subschemes of X with Hilbert polynomial P�

As an important example� if we take P m� !
�
k
m
k

�
to be the Hilbert

polynomial of a k�plane� we will see in Section VI���
 below that the scheme
HP�X we arrive at is the Fano scheme FkX� of k�planes on X� as de�ned in
Section IV�
� Nor is this just an idle observation� apart from giving a more
natural de�nition� this characterization of the Fano schemes will allow us
to determine their tangent spaces�

Now suppose we are given two projective S�schemes X � PmS and Y �
PnS � We may embed the product X �S Y in projective space via the Segre
map

X �S Y �� PmS �S PnS �� PNS �

where N ! m$��n$����� We thus have Hilbert schemes parametrizing
subschemes of a product X �S Y�

This in turn allows us to parametrize morphisms from X to Y� by con�
sidering their graphs as subschemes of the product� The two things we need
to check are that

�� the condition on a subscheme Z � X �S Y that the projection map
�X � Z � X be an isomorphism is an open condition on the Hilbert
scheme of subschemes of X �S Y � and

�� the Hilbert polynomials of the graphs )� of morphisms 
 � X � Y
of bounded projective degree are bounded� See Harris ������ for a
de�nition of �projective degree���

Given this� we see that there are quasiprojective schemes parametrizing
the morphisms of given degree from X to Y� and similarly a quasiprojective
scheme IsomX�Y � parametrizing isomorphisms from X to Y� Again� by
�parametrize� we mean represent the functor

isomX�Y � S � schemes�
 �� sets�

given by

isomX�Y B� ! fisomorphisms 
 � B �S X � B �S Y as B�schemesg �
We should mention one further generalization of the construction of the

Hilbert scheme that is very useful in practice� This is the relative Hilbert
scheme� which parametrizes subschemes of members of a �at family of
schemes�

To set this up� let S be a scheme over a �eldK� and suppose thatX � PnS
is any scheme �at over S� We can then consider the functor

hP�X�S � K � schemes�
 �� sets�
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that associates to any K�scheme B the set of �at families over B of sub�
schemes of �bers of X over S�that is�

hP�X�SB� !

�
pairs ��&� such that � � B � S and & � B �S X � PnB

is �at over B with Hilbert polynomial P

�
�

Once more� we can adapt our basic construction to show that hP�X�SB�
is represented by a K�scheme HP�X�S �

Finally� we can apply the relative Hilbert scheme construction to a pair
of �at families to parametrize morphisms between members of two families#
Thus� if X � S and Y � S are any �at families� we have a quasiprojective
scheme Mord�X�S�Y�S parametrizing morphisms of given degree from �bers
of X over S to corresponding �bers of Y � S� and similarly a scheme
parametrizing isomorphisms�

Note that if X � S and Y � T are families with possibly di�erent
bases� we can parametrize morphisms from �bers of X�S to �bers of Y�T
by pulling both back to families over the product S � T and performing
this construction there�

As an application of this construction� we have�

Exercise VI���� Fix two integers g� h � �� Show that there is a number
Ng� h� such that for any nonsingular curves C and C � of genera g and h
respectively� the number of maps from C to C � is less than Ng� h��

More generally�

Exercise VI��
� Let X � PmS and Y � PnT be schemes �at over the
K�schemes S and T � and suppose that for any pair of closed points s �
S and t � T the number nds� t� of morphisms of degree d between the
corresponding �bers Xs and Yt is �nite� Show that� for �xed d� nds� t� is
bounded as s and t vary�

VI���� Tangent Spaces to Schemes in Terms of Their
Functors of Points

Tangent Spaces to Hilbert Schemes� One facet of the Hilbert scheme
that is best described in terms of its functor of points is its tangent space
at a point� We �rst introduce the notion of a �rst�order deformation� if Y
is any scheme and X � Y a closed subscheme� a �rst�order deformation of
X in Y is de�ned to be a �at family X � Y � SpecK������� such that
the �ber of X over the reduced point SpecK � SpecK������� is X� It
then follows� via the characterization of tangent vectors to schemes given in
Section VI���
� that the tangent space to the Hilbert scheme HP at a point
�X � is the space of �rst�order deformations in PnK of X � and more generally�
if Y � PnK is a projective scheme� the tangent space to the Hilbert scheme
H Y

P at a point �X � is the space of �rst�order deformations of X in Y�
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This is especially useful since the space of �rst�order deformations may
often be calculated� even in circumstances where we have no hope of writing
down the equations ofHP � To do this� we introduce the normal sheaf NX�Y

to a closed subscheme X of a scheme Y � this is de�ned to be the sheaf

NX�Y ! HomOX J�J ��OX� ! HomOY J�OX �

whereJ !JX�Y is the ideal sheaf of X in Y� We then have the following
basic theorem�

Theorem VI���� Given a closed subscheme X of a scheme Y� the space
of �rst�order deformations of X in Y is the space of global sections of its
normal sheaf NX�Y �

Proof� To begin with� letX � Y �SpecK������� be any subscheme whose
intersection with the �ber Y �! Y � SpecK � Y � SpecK������� is X do
not assumeX is �at�� Let U � Y be any a�ne open subset� V ! X�U the
corresponding a�ne open subset of X� and V !X � U �SpecK���������
Let A ! OY U� be the coordinate ring of U and I ! IV � the ideal of V
in A� so that the restriction to V of the sheaf NX�Y is the sheaf associated
to the A�module HomI� A�I��

The coordinate ring of U � SpecK������� is A�K�������� we write an
element of this ring as f $ �g� with f and g � AU�� In particular� we may
write the ideal IV � of V as

IV � ! f�$�g�� f�$�g�� � � � � fk$�gk�

where by hypothesis the elements fi � A generate the ideal I� We claim
now that there exists an A�module homomorphism 
 � I � A�I carrying
fi to gi if and only if V � SpecK������� is �at note that if 
 exists�
it is unique�� The theorem follows immediately from this claim� in one
direction� if the family X � SpecK������� is �at� then by uniqueness
the homomorphisms 
 patch together to give a section of the sheaf NX�Y �
while given a global section of NX�Y we can simply take X to be given
locally by the ideal

ff $ � � 
f� � f � IV �g
To prove the claim� note �rst that a K��������module M is �at if and

only if when we tensor the exact sequence of K��������modules

	� ��� K�������� K � 	

by M� it remains exact� Applying this to the coordinate ring B ! OX V �
of V � we see that V will be �at over SpecK������� if and only if the map

���B � B

is injective� that is� if and only if� for any f � A�

� � f � IV �� f � IV �
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Suppose now that f � A and � � f � IV �� We can then write

� � f !
X

ai $ �bi� � fi $ �gi� !
X

aifi $ � �
X

aigi $ bifi�

We know that the �rst term on the right is zero� since the other two terms
in the equality are divisible by �� Now� if there exists a homomorphism

 � I � A�I of A�modules such that 
fi� ! gi� then we can writeX

ai � gi !
X

ai � 
fi� ! 

�X

aifi

�
! 	

so the existence of a module map 
 carrying fi to gi implies that the family
V is �at�

Conversely� suppose that V � SpecK������� is �at� Then for any col�
lection of ai � A such that

P
aifi ! 	� we have

� �
X

ai � gi !
X

ai � fi $ �gi� � IV � !�
X

ai � gi � IV ��

We can thus de�ne an A�module map 
 � I � A�I by sending� for any
a�� � � � � ak � A� the element

P
aifi � I to the element

P
aigi � A�I � by

the last calculation this will be well de�ned�

One trivial but useful consequence of this theorem is the following�

Corollary VI�	� The dimension of any irreducible component & of the
Hilbert scheme is at most the dimension of the space of sections of the
normal sheaf of any scheme X with �X � � &�

In fact� this a priori estimate for the dimension of a component of the
Hilbert scheme gives the right answer more often than not� especially when
applied to a general point �X � of a component of HP � The following exer�
cises give examples of this�

Exercise VI��� Let & be the component of the Hilbert scheme whose
general member is a complete intersection X � PnK of k hypersurfaces of
degree d� Calculate the dimension of the space of global sections of NX

and show that this is equal to the dimension of &�

Exercise VI��� Generalize the preceding exercise to the case of the com�
ponent of the Hilbert scheme whose general member is a complete inter�
section X � PnK of hypersurfaces of degrees d�� � � � � dk� This can get com�
plicated� you may want to stick to the case k ! �� which is enough to see
how it goes��

Exercise VI�� Let P m� be the polynomial 
m $ � and let & be the
component of the Hilbert scheme HP of subschemes of P�K whose general
member is a twisted cubic curve C� Show that the dimension of & is ���
and that this is equal to the dimension of the space of sections of NC �
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Exercise VI��� By way of warning� the component & of the preceding
exercise is not the only component of the Hilbert scheme� there is another
component &� whose general member is the disjoint� union of a plane cubic
curve and a point� These two intersect in the locus of schemes C � P�K such
that C is the union of a plane curve C	 and the double point that is� the
scheme given by the square of the maximal ideal of a point� supported at
a singular point of C	� At a point of their intersection HP is singular� and
its tangent space will be strictly larger than the dimension of either & or
&�� Verify this�

It is not always the case� however� that the dimension of a component of
the Hilbert scheme is equal to the dimension of the space of sections of the
normal sheaf of a general member� there are examples of Hilbert schemes
that are nonreduced along whole components� even when the general points
of those components correspond to nonsingular� irreducible varieties� The
�rst example of this is due to Mumford ������� the following series of exer�
cises describes it�

Mumford�s example deals with curves of degree �� and genus �� in pro�
jective 
�space P�K over a �eldK� There are as we shall see� several compo�
nents of the Hilbert scheme parametrizing such curves� we will be concerned
with the component whose general member lies on a nonsingular cubic sur�
face� By way of notation� let P m� ! ��m� �
 be the Hilbert polynomial
of a curve of degree �� and genus ��� and let H be the Hilbert scheme
parametrizing subschemes of P�K with this Hilbert polynomial� We will de�
note by & the subset ofH corresponding to nonsingular curves C � P�K of
degree �� and genus �� that are contained in a nonsingular cubic surface S
and linearly equivalent on S to �H$�L� where H is the hyperplane divisor
and L a line on S�

Exercise VI��� Show that & is a constructible subset of H and that its
closure (& in H has dimension ���

Not all curves of degree �� and genus �� in P�K have to lie on cubic
surfaces� Thus� it is not a priori clear that the subvariety (& � H is an
irreducible component of H � the curves C parametrized by (& could be
specializations of other curves not lying on cubics� To see that this is not
in fact the case� we make another dimension count�

Exercise VI��� Let C be a nonsingular� irreducible curve of degree ��
and genus �� in P�K � and assume that C does not lie on a cubic surface�
Show that it must lie on two quartic surfaces T� T � not having a common
component� and that the residual intersection of T and T � that is� the
union of the irreducible components of T � T � other than C� is a curve of
degree �� By analyzing what this residual intersection may look like� show
that the set of such curves C is a constructible subset of H whose closure
has dimension at most ��� Deduce that the subvariety (& of Exercise VI�
�
is indeed an irreducible component of H �
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Exercise VI��� Now let C be a nonsingular curve of degree �� and genus
�� lying on a nonsingular cubic surface S � P�K � Using the exact sequence

	� NC�S � NC�P�
K
� NS�P�

K
�OC � 	

where for any pair of schemes X � Y we write NX�Y for the normal
sheaf HomJX�Y �OX� of X in Y �� show that the dimension of the space
of sections of the normal sheaf NC�P�

K
is ��� Deduce that H is nowhere

reduced along (&�

Finally� here is an amusing fact about the Hilbert scheme of rational
normal curves� generalizing a calculation we made in Section IV���

Exercise VI�
� Let K be a �eld� For any r� let P m� be the polyno�
mial rm $ �� and let & be the open subset of the Hilbert scheme HP of
subschemes of PrK parametrizing rational normal curves of degree r� check
that & is irreducible of dimenion r� $�r� 
� Let C � &�PrK � & be the
universal curve over &� Let L be the function �eld of &� and CL the �ber
of C over the generic point SpecL of &� Show that CL �! P�L if and only if
r is odd�

Tangent Spaces to Fano Schemes� One particularly nice example of
schemes that are in many ways best characterized by their functor of points
are the Fano schemes FkX� � G Sk� n� of a scheme X � PnS described
in Section IV�
� We will see� for example� how the description given in
Section VI���
 of the tangent spaces to a functor allows us to compute the
Zariski tangent spaces to a Fano scheme much more readily that we could
from the explicit equations introduced in Section IV�
� this will in turn
allow us to say in many cases whether a linear space - � X corresponds to
a nonsingular or a singular point of FkX�� For the following discussion� we
will introduce some notation� for a plane W � Kn
� and the corresponding
linear subspace ) � PnK � we�ll write ) ! �W � and W ! ")��

The characterization of Fano schemes is straightforward� we may de�
�ne the Fano scheme FkX� of a subscheme X � PnS to be simply the
Hilbert schemeHP�X of subschemes of X with Hilbert polynomial P m� !�
k
m
k

�
�that is� the functor

fkX� � S � schemes�
 �� sets�

that associates to any S�scheme B the set of families of k�planes contained
in X �S B� that is�

fkX�B� !

�
& � B �S X � B � PnS ! PnB � �at over B�
such that &b�Pn�b� is a k�plane for all b�B

�
�

We then have�

Proposition VI��� The functor fkX� is represented by the Fano scheme
FkX� introduced in Section IV���
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Proof� To establish this� we have to exhibit an isomorphism of functors

fkX�B� �� MorSB�FkX���

that is� for any S�scheme B a natural bijection between two sets� the set
of families & � B �S X � B � PnS ! PnB of k�planes contained in X
and morphisms from B to FkX� as S�schemes� In fact� the serious work
has already been done� the de�nition of the map and the proof that it
is a bijection are not hard� given that we have already characterized the
Grassmannian G Sk� n� as the scheme representing the functor of families
of k�planes in PnS �

The point is� we already have an isomorphism of functors

gSn$�� k$�� �� MorSB�GSk$�� n$���

where gSn$�� k$�� is the Grassmannian functor introduced in Section
VI����� here in the category of S�schemes� That is� we associate to any
family & � B � PnS ! PnB � �at over B with k�plane �bers� a morphism

 � B � G Sk� n� over S� Now all we need to check is that the subset
fkX�B� � gn$�� k$��B� is carried into the subset MorSB�FkX�� �
MorSB� GSk$�� n$���� that is� that

& � B �S X � B � PnS �� 
B� � FkX� � GSk$�� n$���

This is immediate� given the description in Section IV�
 of the de�ning
equations of FkX��

As promised� the characterization of the Fano scheme by its functor of
points allows us to determine its tangent spaces readily� and in particular
to give us criteria for the smoothness and*or singularity of Fano schemes�

For the following� then� K will be an algebraically closed �eld� X � PnK
will be an arbitrary projective scheme over K� FkX� � GKk$�� n$��
the Fano scheme of k�planes contained in X and - � FkX� a K�valued
point of FkX�� Write , for the scheme SpecK������� and 	 � , for the
reduced point ,red

�! SpecK � ,� According to our characterization of
FkX� as the scheme representing the functor of families of k�planes on X�
the tangent space to FkX� at the point - will be

T�FkX�� !

�
subschemes & � ,�K X �at over ,

such that & � 	�K X� ! -

�
�

We will now see how to describe this as a subspace of

T�GKk $ �� n$ ��� ! Hom"-�Kn
��"-��

Probably the fastest way to do this is simply to observe that a �rst�order
deformation of a plane - � PnK �that is� a subscheme & � , �K PnK
�at over , and such that & � 	�K X� ! -� is the union of its tangent
vectors� viewed as subschemes of & isomorphic to ,� In other words� &
will be contained in a subscheme ,�K X � ,�K PnK if and only if every
tangent vector to & is a tangent vector to ,�K X�
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Now� suppose that the �rst�order deformation & of a plane - corresponds
to a homomorphism 
 � "-� Kn
��"-� The tangent vectors to & at a point
p more properly� 	�K fpg� will then be the tangent vectors to ,�K PnK
corresponding to homomorphisms � � "p� Kn
��"p such that

�"p� � 
"-��

Similary� to say that the tangent vector corresponding to such a homomor�
phism � is tangent to ,�K X is to say that

�"p� ��TpX $ "-�

Thus� to say that the tangent vector to the Grassmannian associated to
the homomorphism 
 lies in the tangent space to the Fano scheme FkX�
at - is to say that the image of 
 is contained in the tangent space to X
at each point� i�e��

T�FkX�� !

�

 � Hom"p�Kn
��"-� such that


v� � �TpX $ "- for all v � "-

�
�

As an application� consider the simplest possible case� the Fano scheme
F�S� � G K�� 
� ! GK�� �� of lines on a surface S � P�K � Let L � S
be a line� which we will assume is not contained in the singular locus of S
if it is� the Fano scheme F�S� will have four�dimensional tangent space
at L�in other words� it will be very singular#�� To a general point p � L�

then� we may associate the projective tangent space gTpS� which will be a
plane in P�K containing L� thus we get a rational� map

� � L �� PK��"L� �! P�K �
This map is given by the partial derivatives of the de�ning polynomial of S�
so that if S is nonsingular along L�in other words� if these partials have
no common zeroes� the degree of � will be d � �� If S has any singular
points on L� conversely� it will be less�

In fact� the degree of the map � is precisely what determines the di�
mension of the tangent space to F�S� at L� This is simple to see� if

 � "L� K��"L is any homomorphism� the induced map

(
 � L �� PK��"L� �! P�K
p ��� �
"p� $ "L�

will have degree � if 
 has rank � and degree 	 if 
 has rank �� Thus�
if � has degree deg�� � �� the tangent space to F�S� at L will be zero�
dimensional� if � has degree � it will be one�dimensional� and if � is constant
it will be two�dimensional� We get the following corollaries�

� The Fano scheme of lines on a nonsingular quadric surface in P�K is
nonsingular� while the Fano scheme of lines on a quadric cone is every�
where nonreduced�
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� More generally� the Fano scheme of the cone in P�K over any plane
curve is nonreduced�

� The Fano scheme of lines on a nonsingular surface of degree d � 
 in
P�K consists of isolated reduced points�

There is a further corollary dependent on a further fact about Fano
schemes of hypersurfaces� if X � PnB is any hypersurface of degree d�that
is� a closed subscheme of PnB � �at over S� whose �ber over each point b � B
is a hypersurface of degree d in Pn�b��then the Fano scheme FkX� �
GBk $ �� n$ �� of k�planes on X is �at over the open subset of B where
it has the expected �ber dimension k $ ��n � k� � �k
dk �� Since FkX�
may be described as the zero locus of a section of a locally free sheaf on
GBk n�� this is a generalization of the fact that complete intersections are
�at� but it is beyond the scope of this book� Given it� however� we have the
following consequence�

� All cubic surfaces that contain only �nitely many lines contain the
same number of lines� properly counted� that is� their Fano schemes all
have degree ���

In general� our description of the tangent spaces to the Fano scheme
FkX� allows us to determine the dimension of FkX� at a point - in
terms of the normal bundle to the plane - � X� but it is rare that this will
be determined by the singularities of X along -� In fact� as soon as we get
to hypersurfaces X � PnK with n � �� we see examples to the contrary�

Exercise VI��	� Use this characterization of the tangent spaces to Fano
schemes to give an example of a nonsingular hypersurface X � PnK such
that the Fano scheme F�X� of lines on X is singular�

VI���	 Moduli Spaces

A similar situation arises when we want to construct a moduli space of
geometric objects� For example� we would like to identify the set of non�
singular� projective curves of genus g over a �eld K with the set of closed
points of a �moduli scheme� Mg� To avoid unnecessary complication� we
restrict to the case charK� ! 	� Again� the way to express what we want
is to introduce the functor of nonsingular curves of genus g� this is the
functor

M fun
g � K � schemes�
 � sets�

that assigns to any scheme B over K the set of �at morphisms � �X � B
whose �bers are nonsingular curves of genus g� up to isomorphismX �!X �

as B�schemes� We de�neMg to be the scheme if any� that represents the
functorM fun

g �
Since schemes are uniquely determined by their functors of points� the

only di�culty with the �de�nitions� above is whether such schemes exist�
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that is� whether the given functors are representable� The answer in the case
of HP is yes� and indeed� as we have pointed out� the characterization of
HP as the scheme that represents the functor hP is crucial to the proof of
existence�

However� in the case of Mg � the answer is no# For example� even in the
case of nonsingular curves of genus � over C there does not exist a moduli
spaceM� in this sense� To see this� it su�ces to show that there does not
exist a universal family� in other words� a �at morphism � � C � M of
schemes with �ber nonsingular curves of genus � such that for every family
Y � B of nonsingular curves of genus � there are unique maps 
 � B �M
and 0 � Y � C forming a �ber product diagram�

Y
0 � C

B

�
� 
 � M

�
�

In fact� there does not even exist a tautological family�that is� a morphism
C � M and a bijection between the closed points of M and the set of
isomorphism classes of nonsingular curves of genus � such that the �ber
over each point p � M is in the isomorphism class corresponding to the
point p� We will exhibit two kinds of obstructions to the existence of a
universal family� one local and one global�

For the local obstruction� recall that curves of genus � over C are classi�ed
by their j�invariant � we can write any such curve as the plane cubic

y� ! xx � ��x� ��

for some complex � �! 	� �� and two such curves C� and C�� will be iso�
morphic if and only if their j�invariants j�� and j��� are equal� where

j�� ! ��� � �
� � �$ ���

�� �� ���
�

see Silverman ������ Chapter III� Proposition ����� for example� It can be
shown that given a family X � B of nonsingular curves of genus � with
nonsingular base B� the function j is a regular function on B� and locally
around any point b � B� � can be de�ned as a regular function� too though
it is not unique�� It follows that if there did exist a tautological family� there
would have to exist one with base the a�ne line A �

C with coordinate j� But
no such family can exist� because at the point j ! 	 the function �� �
�$� would vanish� and thus j would vanish triply� Less obviously� because
j���� ! 	� it also follows that j can only assume the value ���� with even
multiplicity� Note that the values j ! 	 and ���� correspond to the elliptic
curves with �extra automorphisms��that is� whose automorphism groups
contain the automorphism group of a general elliptic curve as subgroups of
index 
 and �� respectively��
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Turning to the global obstruction� even if a tautological family exists over
a varietyM whose points correspond to isomorphism classes of curves� such
a family may not be universal� that is� it may not induce a bijection between
families over a base B and maps of B to M� For example� if we simply
exclude the curves of j�invariant 	 and �����that is� consider the functor
of families of nonsingular curves of genus � not isomorphic to C	 or C���� �
we might hope that the punctured j�line M ! A �

C � f	� ����g would be a
moduli space� and indeed� a tautological family does exist over this open
subset of A �� It is not universal� however� for example� for any �xed �� let
B� be any variety with �xed�point�free involution 	 � and consider the family
over B ! B��h	i formed by taking the quotient of the product E � B by
the involution

� � x� y�� p� �� x��y�� 	p��
This is a family all of whose �bers are isomorphic to C�� and so it can only
come from the constant map B �M � but it can be shown that the family
itself is not trivial�

It is the presence of automorphisms of C� that is responsible for this phe�
nomenon� Indeed� an analogous argument shows that we can never have a
moduli space for schemes modulo isomorphism when some of the objects
to be parametrized admit automorphisms� This explains also the discrep�
ancy between the notions of tautological and universal family� in the case
of the Hilbert scheme H parametrizing subschemes of PnK if two families
X � X � � PnK �K B over a variety B correspond to the same map B �H
it follows that they are equal �ber by �ber and hence equal� By contrast�
in the case of a moduli space� it would follow only that they are isomorphic
�ber by �ber� if the �bers admitted automorphisms� those isomorphisms
would not be unique and so might not �t together to give an isomorphism
X �!X ��

How do we deal with these di�culties The most naive and least sat�
isfactory� way is simply to exclude all schemes with automorphisms from
consideration when trying to construct a moduli space� This works in some
contexts� for example� since the family of curves of genus g with automor�
phisms has in a suitable sense codimension g � � among all curves� if we
are concerned in particular with the divisor theory of the moduli space of
curves of genus g � �� we can a�ord to look just at the moduli space M 	

g

of automorphism�free nonsingular curves of genus g� which does exist�
There are two more serious approaches� both of which are in active use�

The �rst is to take Mg to be the scheme whose functor of points �most
closely approximates�M fun

g � It turns out that there is such a thing� called
a coarse moduli space� and that it has nice properties� for example� the
value of its functor of points at an algebraically closed �eld K is really the
set of isomorphism classes of nonsingular curves over it� The second way
out is to enlarge the category of schemes in a di�erent way� to the category
of algebraic stacks� A discussion of this would take us too far� so we�ll just
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refer the reader to Vistoli ������ Appendix� for a short treatment and to
Behrend et al� �� ����� for a full treatment� see also Mumford ������ for
an introduction to the functorial point of view on moduli spaces�
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