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Preface

Lie theory has its roots in the work of Sophus Lie, who studied certain trans-
formation groups that are now called Lie groups. His work led to the discovery
of Lie algebras. By now, both Lie groups and Lie algebras have become essen-
tial to many parts of mathematics and theoretical physics. In the meantime,
Lie algebras have become a central object of interest in their own right, not
least because of their description by the Serre relations, whose generalisations
have been very important.

This text aims to give a very basic algebraic introduction to Lie algebras.
We begin here by mentioning that “Lie” should be pronounced “lee”. The
only prerequisite is some linear algebra; we try throughout to be as simple as
possible, and make no attempt at full generality. We start with fundamental
concepts, including ideals and homomorphisms. A section on Lie algebras of
small dimension provides a useful source of examples. We then define solvable
and simple Lie algebras and give a rough strategy towards the classification of
the finite-dimensional complex Lie algebras. The next chapters discuss Engel’s
Theorem, Lie’s Theorem, and Cartan’s Criteria and introduce some represen-
tation theory.

We then describe the root space decomposition of a semisimple Lie alge-
bra and introduce Dynkin diagrams to classify the possible root systems. To
practice these ideas, we find the root space decompositions of the classical Lie
algebras. We then outline the remarkable classification of the finite-dimensional
simple Lie algebras over the complex numbers.

The final chapter is a survey on further directions. In the first part, we
introduce the universal enveloping algebra of a Lie algebra and look in more
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detail at representations of Lie algebras. We then look at the Serre relations
and their generalisations to Kac–Moody Lie algebras and quantum groups and
describe the Lie ring associated to a group. In fact, Dynkin diagrams and the
classification of the finite-dimensional complex semisimple Lie algebras have
had a far-reaching influence on modern mathematics; we end by giving an
illustration of this.

In Appendix A, we give a summary of the basic linear and bilinear alge-
bra we need. Some technical proofs are deferred to Appendices B, C, and D.
In Appendix E, we give answers to some selected exercises. We do, however,
encourage the reader to make a thorough unaided attempt at these exercises:
it is only when treated in this way that they will be of any benefit. Exercises
are marked † if an answer may be found in Appendix E and � if they are either
somewhat harder than average or go beyond the usual scope of the text.

University of Oxford Karin Erdmann
January 2006 Mark Wildon
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1
Introduction

We begin by defining Lie algebras and giving a collection of typical examples
to which we shall refer throughout this book. The remaining sections in this
chapter introduce the basic vocabulary of Lie algebras. The reader is reminded
that the prerequisite linear and bilinear algebra is summarised in Appendix A.

1.1 Definition of Lie Algebras

Let F be a field. A Lie algebra over F is an F -vector space L, together with a
bilinear map, the Lie bracket

L × L → L, (x, y) �→ [x, y],

satisfying the following properties:

[x, x] = 0 for all x ∈ L, (L1)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L. (L2)

The Lie bracket [x, y] is often referred to as the commutator of x and y.
Condition (L2) is known as the Jacobi identity. As the Lie bracket [−,−] is
bilinear, we have

0 = [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x].

Hence condition (L1) implies

[x, y] = −[y, x] for all x, y ∈ L. (L1′)
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If the field F does not have characteristic 2, then putting x = y in (L1′) shows
that (L1′) implies (L1).

Unless specifically stated otherwise, all Lie algebras in this book should be
taken to be finite-dimensional. (In Chapter 15, we give a brief introduction to
the more subtle theory of infinite-dimensional Lie algebras.)

Exercise 1.1

(i) Show that [v, 0] = 0 = [0, v] for all v ∈ L.

(ii) Suppose that x, y ∈ L satisfy [x, y] �= 0. Show that x and y are
linearly independent over F .

1.2 Some Examples

(1) Let F = R. The vector product (x, y) �→ x ∧ y defines the structure of
a Lie algebra on R3. We denote this Lie algebra by R3

∧. Explicitly, if
x = (x1, x2, x3) and y = (y1, y2, y3), then

x ∧ y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

Exercise 1.2

Convince yourself that ∧ is bilinear. Then check that the Jacobi identity
holds. Hint : If x · y denotes the dot product of the vectors x, y ∈ R3,
then

x ∧ (y ∧ z) = (x · z)y − (x · y)z for all x, y, z ∈ R3.

(2) Any vector space V has a Lie bracket defined by [x, y] = 0 for all x, y ∈ V .
This is the abelian Lie algebra structure on V . In particular, the field F

may be regarded as a 1-dimensional abelian Lie algebra.

(3) Suppose that V is a finite-dimensional vector space over F . Write gl(V ) for
the set of all linear maps from V to V . This is again a vector space over F ,
and it becomes a Lie algebra, known as the general linear algebra, if we
define the Lie bracket [−,−] by

[x, y] := x ◦ y − y ◦ x for x, y ∈ gl(V ),

where ◦ denotes the composition of maps.

Exercise 1.3

Check that the Jacobi identity holds. (This exercise is famous as one
that every mathematician should do at least once in her life.)
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(3′) Here is a matrix version. Write gl(n, F ) for the vector space of all n × n

matrices over F with the Lie bracket defined by

[x, y] := xy − yx,

where xy is the usual product of the matrices x and y.

As a vector space, gl(n, F ) has a basis consisting of the matrix units eij

for 1 ≤ i, j ≤ n. Here eij is the n × n matrix which has a 1 in the ij-th
position and all other entries are 0. We leave it as an exercise to check that

[eij , ekl] = δjkeil − δilekj ,

where δ is the Kronecker delta, defined by δij = 1 if i = j and δij = 0
otherwise. This formula can often be useful when calculating in gl(n, F ).

(4) Recall that the trace of a square matrix is the sum of its diagonal entries.
Let sl(n, F ) be the subspace of gl(n, F ) consisting of all matrices of trace 0.
For arbitrary square matrices x and y, the matrix xy − yx has trace 0,
so [x, y] = xy − yx defines a Lie algebra structure on sl(n, F ): properties
(L1) and (L2) are inherited from gl(n, F ). This Lie algebra is known as the
special linear algebra. As a vector space, sl(n, F ) has a basis consisting of
the eij for i �= j together with eii − ei+1,i+1 for 1 ≤ i < n.

(5) Let b(n, F ) be the upper triangular matrices in gl(n, F ). (A matrix x is
said to be upper triangular if xij = 0 whenever i > j.) This is a Lie algebra
with the same Lie bracket as gl(n, F ).

Similarly, let n(n, F ) be the strictly upper triangular matrices in gl(n, F ).
(A matrix x is said to be strictly upper triangular if xij = 0 whenever
i ≥ j.) Again this is a Lie algebra with the same Lie bracket as gl(n, F ).

Exercise 1.4

Check the assertions in (5).

1.3 Subalgebras and Ideals

The last two examples suggest that, given a Lie algebra L, we might define a
Lie subalgebra of L to be a vector subspace K ⊆ L such that

[x, y] ∈ K for all x, y ∈ K.

Lie subalgebras are easily seen to be Lie algebras in their own right. In Examples
(4) and (5) above we saw three Lie subalgebras of gl(n, F ).
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We also define an ideal of a Lie algebra L to be a subspace I of L such that

[x, y] ∈ I for all x ∈ L, y ∈ I.

By (L1′), [x, y] = −[y, x], so we do not need to distinguish between left and
right ideals. For example, sl(n, F ) is an ideal of gl(n, F ), and n(n, F ) is an ideal
of b(n, F ).

An ideal is always a subalgebra. On the other hand, a subalgebra need not be
an ideal. For example, b(n, F ) is a subalgebra of gl(n, F ), but provided n ≥ 2, it
is not an ideal. To see this, note that e11 ∈ b(n, F ) and e21 ∈ gl(n, F ). However,
[e21, e11] = e21 �∈ b(n, F ).

The Lie algebra L is itself an ideal of L. At the other extreme, {0} is an
ideal of L. We call these the trivial ideals of L. An important example of an
ideal which frequently is non-trivial is the centre of L, defined by

Z(L) := {x ∈ L : [x, y] = 0 for all y ∈ L} .

We know precisely when L = Z(L) as this is the case if and only if L is
abelian. On the other hand, it might take some work to decide whether or not
Z(L) = {0}.

Exercise 1.5

Find Z(L) when L = sl(2, F ). You should find that the answer depends
on the characteristic of F .

1.4 Homomorphisms

If L1 and L2 are Lie algebras over a field F , then we say that a map ϕ : L1 → L2

is a homomorphism if ϕ is a linear map and

ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ L1.

Notice that in this equation the first Lie bracket is taken in L1 and the second
Lie bracket is taken in L2. We say that ϕ is an isomorphism if ϕ is also bijective.

An extremely important homomorphism is the adjoint homomorphism . If L

is a Lie algebra, we define
ad : L → gl(L)

by (adx)(y) := [x, y] for x, y ∈ L. It follows from the bilinearity of the Lie
bracket that the map adx is linear for each x ∈ L. For the same reason, the
map x �→ adx is itself linear. So to show that ad is a homomorphism, all we
need to check is that

ad([x, y]) = adx ◦ ad y − ad y ◦ adx for all x, y ∈ L;
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this turns out to be equivalent to the Jacobi identity. The kernel of ad is the
centre of L.

Exercise 1.6

Show that if ϕ : L1 → L2 is a homomorphism, then the kernel of ϕ,
ker ϕ, is an ideal of L1, and the image of ϕ, imϕ, is a Lie subalgebra
of L2.

Remark 1.1

Whenever one has a mathematical object, such as a vector space, group, or Lie
algebra, one has attendant homomorphisms. Such maps are of interest precisely
because they are structure preserving — homo, same; morphos, shape. For
example, working with vector spaces, if we add two vectors, and then apply a
homomorphism of vector spaces (also known as a linear map), the result should
be the same as if we had first applied the homomorphism, and then added the
image vectors.

Given a class of mathematical objects one can (with some thought) work out
what the relevant homomorphisms should be. Studying these homomorphisms
gives one important information about the structures of the objects concerned.
A common aim is to classify all objects of a given type; from this point of view,
we regard isomorphic objects as essentially the same. For example, two vector
spaces over the same field are isomorphic if and only if they have the same
dimension.

1.5 Algebras

An algebra over a field F is a vector space A over F together with a bilinear
map,

A × A → A, (x, y) �→ xy.

We say that xy is the product of x and y. Usually one studies algebras where
the product satisfies some further properties. In particular, Lie algebras are
the algebras satisfying identities (L1) and (L2). (And in this case we write the
product xy as [x, y].)

The algebra A is said to be associative if

(xy)z = x(yz) for all x, y, z ∈ A

and unital if there is an element 1A in A such that 1Ax = x = x1A for all
non-zero elements of A.
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For example, gl(V ), the vector space of linear transformations of the vector
space V , has the structure of a unital associative algebra where the product is
given by the composition of maps. The identity transformation is the identity
element in this algebra. Likewise gl(n, F ), the set of n × n matrices over F , is
a unital associative algebra with respect to matrix multiplication.

Apart from Lie algebras, most algebras one meets tend to be both associa-
tive and unital. It is important not to get confused between these two types of
algebras. One way to emphasise the distinction, which we have adopted, is to
always write the product in a Lie algebra with square brackets.

Exercise 1.7

Let L be a Lie algebra. Show that the Lie bracket is associative, that is,
[x, [y, z]] = [[x, y], z] for all x, y, z ∈ L, if and only if for all a, b ∈ L the
commutator [a, b] lies in Z(L).

If A is an associative algebra over F , then we define a new bilinear opera-
tion [−,−] on A by

[a, b] := ab − ba for all a, b ∈ A.

Then A together with [−,−] is a Lie algebra; this is not hard to prove. The
Lie algebras gl(V ) and gl(n, F ) are special cases of this construction. In fact, if
you did Exercise 1.3, then you will already have proved that the product [−,−]
satisfies the Jacobi identity.

1.6 Derivations

Let A be an algebra over a field F . A derivation of A is an F -linear map
D : A → A such that

D(ab) = aD(b) + D(a)b for all a, b ∈ A.

Let Der A be the set of derivations of A. This set is closed under addition
and scalar multiplication and contains the zero map. Hence Der A is a vector
subspace of gl(A). Moreover, DerA is a Lie subalgebra of gl(A), for by part (i)
of the following exercise, if D and E are derivations then so is [D, E].

Exercise 1.8

Let D and E be derivations of an algebra A.

(i) Show that [D, E] = D ◦ E − E ◦ D is also a derivation.

(ii) Show that D ◦ E need not be a derivation. (The following example
may be helpful.)
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Example 1.2

(1) Let A = C∞R be the vector space of all infinitely differentiable functions
R → R. For f, g ∈ A, we define the product fg by pointwise multiplication:
(fg)(x) = f(x)g(x). With this definition, A is an associative algebra. The
usual derivative, Df = f ′, is a derivation of A since by the product rule

D(fg) = (fg)′ = f ′g + fg′ = (Df)g + f(Dg).

(2) Let L be a Lie algebra and let x ∈ L. The map adx : L → L is a derivation
of L since by the Jacobi identity

(adx)[y, z] = [x, [y, z]] = [[x, y], z] + [y, [x, z]] = [(adx)y, z] + [y, (adx)z]

for all y, z ∈ L.

1.7 Structure Constants

If L is a Lie algebra over a field F with basis (x1, . . . , xn), then [−,−] is com-
pletely determined by the products [xi, xj ]. We define scalars ak

ij ∈ F such
that

[xi, xj ] =
n∑

k=1

ak
ijxk.

The ak
ij are the structure constants of L with respect to this basis. We emphasise

that the ak
ij depend on the choice of basis of L: Different bases will in general

give different structure constants.
By (L1) and its corollary (L1′), [xi, xi] = 0 for all i and [xi, xj ] = −[xj , xi]

for all i and j. So it is sufficient to know the structure constants ak
ij for 1 ≤

i < j ≤ n.

Exercise 1.9

Let L1 and L2 be Lie algebras. Show that L1 is isomorphic to L2 if and
only if there is a basis B1 of L1 and a basis B2 of L2 such that the
structure constants of L1 with respect to B1 are equal to the structure
constants of L2 with respect to B2.

Exercise 1.10

Let L be a Lie algebra with basis (x1, . . . , xn). What condition does the
Jacobi identity impose on the structure constants ak

ij?
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EXERCISES

1.11.† Let L1 and L2 be two abelian Lie algebras. Show that L1 and L2

are isomorphic if and only if they have the same dimension.

1.12.† Find the structure constants of sl(2, F ) with respect to the basis
given by the matrices

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

1.13. Prove that sl(2,C) has no non-trivial ideals.

1.14.† Let L be the 3-dimensional complex Lie algebra with basis (x, y, z)
and Lie bracket defined by

[x, y] = z, [y, z] = x, [z, x] = y.

(Here L is the “complexification” of the 3-dimensional real Lie alge-
bra R3

∧.)

(i) Show that L is isomorphic to the Lie subalgebra of gl(3,C) con-
sisting of all 3 × 3 antisymmetric matrices with entries in C.

(ii) Find an explicit isomorphism sl(2,C) ∼= L.

1.15. Let S be an n × n matrix with entries in a field F . Define

glS(n, F ) = {x ∈ gl(n, F ) : xtS = −Sx}.

(i) Show that glS(n, F ) is a Lie subalgebra of gl(n, F ).

(ii) Find glS(2,R) if S =
(

0 1
0 0

)
.

(iii) Does there exist a matrix S such that glS(2,R) is equal to the
set of all diagonal matrices in gl(2,R)?

(iv) Find a matrix S such that glS(3,R) is isomorphic to the Lie
algebra R3

∧ defined in §1.2, Example 1.

Hint : Part (i) of Exercise 1.14 is relevant.

1.16.† Show, by giving an example, that if F is a field of characteristic 2,
there are algebras over F which satisfy (L1′) and (L2) but are not
Lie algebras.

1.17. Let V be an n-dimensional complex vector space and let L = gl(V ).
Suppose that x ∈ L is diagonalisable, with eigenvalues λ1, . . . , λn.
Show that adx ∈ gl(L) is also diagonalisable and that its eigenvalues
are λi − λj for 1 ≤ i, j ≤ n.
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1.18. Let L be a Lie algebra. We saw in §1.6, Example 1.2(2) that the
maps ad x : L → L are derivations of L; these are known as inner
derivations. Show that if IDerL is the set of inner derivations of L,
then IDer L is an ideal of DerL.

1.19. Let A be an algebra and let δ : A → A be a derivation. Prove that δ

satisfies the Leibniz rule

δn(xy) =
n∑

r=0

(
n

r

)
δr(x)δn−r(y) for all x, y ∈ A.



2
Ideals and Homomorphisms

In this chapter we explore some of the constructions in which ideals are involved.
We shall see that in the theory of Lie algebras ideals play a role similar to that
played by normal subgroups in the theory of groups. For example, we saw in
Exercise 1.6 that the kernel of a Lie algebra homomorphism is an ideal, just as
the kernel of a group homomorphism is a normal subgroup.

2.1 Constructions with Ideals

Suppose that I and J are ideals of a Lie algebra L. There are several ways we
can construct new ideals from I and J . First we shall show that I ∩ J is an
ideal of L. We know that I ∩ J is a subspace of L, so all we need check is that
if x ∈ L and y ∈ I ∩ J , then [x, y] ∈ I ∩ J : This follows at once as I and J are
ideals.

Exercise 2.1

Show that I + J is an ideal of L where

I + J := {x + y : x ∈ I, y ∈ J}.

We can also define a product of ideals. Let

[I, J ] := Span{[x, y] : x ∈ I, y ∈ J}.
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We claim that [I, J ] is an ideal of L. Firstly, it is by definition a subspace.
Secondly, if x ∈ I, y ∈ J , and u ∈ L, then the Jacobi identity gives

[u, [x, y]] = [x, [u, y]] + [[u, x], y].

Here [u, y] ∈ J as J is an ideal, so [x, [u, y]] ∈ [I, J ]. Similarly, [[u, x], y] ∈ [I, J ].
Therefore their sum belongs to [I, J ].

A general element t of [I, J ] is a linear combination of brackets [x, y] with
x ∈ I, y ∈ J , say t =

∑
ci[xi, yi], where the ci are scalars and xi ∈ I and

yi ∈ J . Then, for any u ∈ L, we have

[u, t] =
[
u,
∑

ci[xi, yi]
]

=
∑

ci[u, [xi, yi]],

where [u, [xi, yi]] ∈ [I, J ] as shown above. Hence [u, t] ∈ [I, J ] and so [I, J ] is
an ideal of L.

Remark 2.1

It is necessary to define [I, J ] to be the span of the commutators of elements of
I and J rather than just the set of such commutators. See Exercise 2.14 below
for an example where the set of commutators is not itself an ideal.

An important example of this construction occurs when we take I = J = L.
We write L′ for [L, L]: Despite being an ideal of L, L′ is usually known as the
derived algebra of L′. The term commutator algebra is also sometimes used.

Exercise 2.2

Show that sl(2,C)′ = sl(2,C).

2.2 Quotient Algebras

If I is an ideal of the Lie algebra L, then I is in particular a subspace of L,
and so we may consider the cosets z + I = {z + x : x ∈ I} for z ∈ L and the
quotient vector space

L/I = {z + I : z ∈ L}.

We review the vector space structure of L/I in Appendix A. We claim that a
Lie bracket on L/I may be defined by

[w + I, z + I] := [w, z] + I for w, z ∈ L.

Here the bracket on the right-hand side is the Lie bracket in L. To be sure
that the Lie bracket on L/I is well-defined, we must check that [w, z] + I
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depends only on the cosets containing w and z and not on the particular coset
representatives w and z. Suppose w + I = w′ + I and z + I = z′ + I. Then
w − w′ ∈ I and z − z′ ∈ I. By bilinearity of the Lie bracket in L,

[w′, z′] = [w′ + (w − w′), z′ + (z − z′)]

= [w, z] + [w − w′, z′] + [w′, z − z′] + [w − w′, z − z′],

where the final three summands all belong to I. Therefore [w′ + I, z′ + I] =
[w, z] + I, as we needed. It now follows from part (i) of the exercise below that
L/I is a Lie algebra. It is called the quotient or factor algebra of L by I.

Exercise 2.3

(i) Show that the Lie bracket defined on L/I is bilinear and satisfies the
axioms (L1) and (L2).

(ii) Show that the linear transformation π : L → L/I which takes an
element z ∈ L to its coset z + I is a homomorphism of Lie algebras.

The reader will not be surprised to learn that there are isomorphism theo-
rems for Lie algebras just as there are for vector spaces and for groups.

Theorem 2.2 (Isomorphism theorems)

(a) Let ϕ : L1 → L2 be a homomorphism of Lie algebras. Then kerϕ is an
ideal of L1 and imϕ is a subalgebra of L2, and

L1/ ker ϕ ∼= im ϕ.

(b) If I and J are ideals of a Lie algebra, then (I + J)/J ∼= I/(I ∩ J).

(c) Suppose that I and J are ideals of a Lie algebra L such that I ⊆ J .
Then J/I is an ideal of L/I and (L/I)/(J/I) ∼= L/J .

Proof

That ker ϕ is an ideal of L1 and imϕ is a subalgebra of L2 were proved in
Exercise 1.6. All the isomorphisms we need are already known for vector spaces
and their subspaces (see Appendix A): By part (ii) of Exercise 2.3, they are
also homomorphisms of Lie algebras.

Parts (a), (b), and (c) of this theorem are known respectively as the first,
second, and third isomorphism theorems.



14 2. Ideals and Homomorphisms

Example 2.3

Recall that the trace of an n × n matrix is the sum of its diagonal entries. Fix
a field F and consider the linear map tr : gl(n, F ) → F which sends a matrix
to its trace. This is a Lie algebra homomorphism, for if x, y ∈ gl(n, F ) then

tr[x, y] = tr(xy − yx) = trxy − tr yx = 0,

so tr[x, y] = [trx, tr y] = 0. Here the first Lie bracket is taken in gl(n, F ) and
the second in the abelian Lie algebra F .

It is not hard to see that tr is surjective. Its kernel is sl(n, F ), the Lie algebra
of matrices with trace 0. Applying the first isomorphism theorem gives

gl(n, F )/sl(n, F ) ∼= F.

We can describe the elements of the factor Lie algebra explicitly: The coset
x + sln(F ) consists of those n × n matrices whose trace is tr x.

Exercise 2.4

Show that if L is a Lie algebra then L/Z(L) is isomorphic to a subalgebra
of gl(L).

2.3 Correspondence between Ideals

Suppose that I is an ideal of the Lie algebra L. There is a bijective corre-
spondence between the ideals of the factor algebra L/I and the ideals of L

that contain I. This correspondence is as follows. If J is an ideal of L contain-
ing I, then J/I is an ideal of L/I. Conversely, if K is an ideal of L/I, then
set J := {z ∈ L : z + I ∈ K}. One can readily check that J is an ideal of L and
that J contains K. These two maps are inverses of one another.

Example 2.4

Suppose that L is a Lie algebra and I is an ideal in L such that L/I is abelian.
In this case, the ideals of L/I are just the subspaces of L/I. By the ideal
correspondence, the ideals of L which contain I are exactly the subspaces of L

which contain I.
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EXERCISES

2.5.† Show that if z ∈ L′ then tr ad z = 0.

2.6. Suppose L1 and L2 are Lie algebras. Let L := {(x1, x2) : xi ∈ Li}
be the direct sum of their underlying vector spaces. Show that if we
define

[(x1, x2), (y1, y2)] := ([x1, y1], [x2, y2])

then L becomes a Lie algebra, the direct sum of L1 and L2. As for
vector spaces, we denote the direct sum of Lie algebras L1 and L2

by L = L1 ⊕ L2.

(i) Prove that gl(2,C) is isomorphic to the direct sum of sl(2,C)
with C, the 1-dimensional complex abelian Lie algebra.

(ii) Show that if L = L1 ⊕ L2 then Z(L) = Z(L1) ⊕ Z(L2) and L′ =
L′

1 ⊕ L′
2. Formulate a general version for a direct sum L1 ⊕ . . . ⊕ Lk.

(iii) Are the summands in the direct sum decomposition of a Lie
algebra uniquely determined? Hint : If you think the answer is yes,
now might be a good time to read §16.4 in Appendix A on the
“diagonal fallacy”. The next question looks at this point in more
detail.

2.7. Suppose that L = L1 ⊕ L2 is the direct sum of two Lie algebras.

(i) Show that {(x1, 0) : x1 ∈ L1} is an ideal of L isomorphic to L1

and that {(x2, 0) : x2 ∈ L1} is an ideal of L isomorphic to L2.
Show that the projections p1(x1, x2) = x1 and p2(x1, x2) = x2

are Lie algebra homomorphisms.

Now suppose that L1 and L2 do not have any non-trivial proper
ideals.

(ii) Let J be a proper ideal of L. Show that if J ∩ L1 = 0 and
J ∩ L2 = 0, then the projections p1 : J → L1 and p2 : J → L2

are isomorphisms.

(iii) Deduce that if L1 and L2 are not isomorphic as Lie algebras,
then L1 ⊕ L2 has only two non-trivial proper ideals.

(iv) Assume that the ground field is infinite. Show that if L1 ∼= L2

and L1 is 1-dimensional, then L1 ⊕ L2 has infinitely many dif-
ferent ideals.

2.8. Let L1 and L2 be Lie algebras, and let ϕ : L1 → L2 be a surjective
Lie algebra homomorphism. True or false:
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(a)† ϕ(L′
1) = L′

2;

(b) ϕ(Z(L1)) = Z(L2);

(c) if h ∈ L1 and adh is diagonalisable then adϕ(h) is diagonalis-
able.

What is different if ϕ is an isomorphism?

2.9. For each pair of the following Lie algebras over R, decide whether
or not they are isomorphic:

(i) the Lie algebra R3
∧ where the Lie bracket is given by the vector

product;

(ii) the upper triangular 2 × 2 matrices over R;

(iii) the strict upper triangular 3 × 3 matrices over R;

(iv) L = {x ∈ gl(3,R) : xt = −x}.

Hint : Use Exercises 1.15 and 2.8.

2.10. Let F be a field. Show that the derived algebra of gl(n, F ) is sl(n, F ).

2.11.† In Exercise 1.15, we defined the Lie algebra glS(n, F ) over a field F

where S is an n × n matrix with entries in F .

Suppose that T ∈ gl(n, F ) is another n × n matrix such that T =
P tSP for some invertible n × n matrix P ∈ gl(n, F ). (Equivalently,
the bilinear forms defined by S and T are congruent.) Show that the
Lie algebras glS(n, F ) and glT (n, F ) are isomorphic.

2.12. Let S be an n × n invertible matrix with entries in C. Show that if
x ∈ glS(n,C), then trx = 0.

2.13. Let I be an ideal of a Lie algebra L. Let B be the centraliser of I in
L; that is,

B = CL(I) = {x ∈ L : [x, a] = 0 for all a ∈ I}.

Show that B is an ideal of L. Now suppose that

(1) Z(I) = 0, and

(2) if D : I → I is a derivation, then D = adx for some x ∈ I.

Show that L = I ⊕ B.

2.14.†� Recall that if L is a Lie algebra, we defined L′ to be the subspace
spanned by the commutators [x, y] for x, y ∈ L. The purpose of this
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exercise, which may safely be skipped on first reading, is to show
that the set of commutators may not even be a vector space (and so
certainly not an ideal of L).

Let R[x, y] denote the ring of all real polynomials in two variables.
Let L be the set of all matrices of the form

A(f(x), g(y), h(x, y)) =

⎛
⎝0 f(x) h(x, y)

0 0 g(y)
0 0 0

⎞
⎠ .

(i) Prove that L is a Lie algebra with the usual commutator bracket.
(In contrast to all the Lie algebras seen so far, L is infinite-
dimensional.)

(ii) Prove that

[A(f1(x), g1(y), h1(x, y)), A(f2(x), g2(y), h2(x, y))] =

A(0, 0, f1(x)g2(y) − f2(x)g1(y)).

Hence describe L′.

(iii) Show that if h(x, y) = x2 + xy + y2, then A(0, 0, h(x, y)) is not
a commutator.



3
Low-Dimensional Lie Algebras

We would like to know how many essentially different (that is, non-isomorphic)
Lie algebras there are and what approaches we can use to classify them. To get
some feeling for these questions, we shall look at Lie algebras of dimensions 1,
2, and 3. Another reason for looking at these low-dimensional Lie algebras is
that they often occur as subalgebras of the larger Lie algebras we shall meet
later.

Abelian Lie algebras are easily understood: For any natural number n, there
is an abelian Lie algebra of dimension n (where for any two elements, the Lie
bracket is zero). We saw in Exercise 1.11 that any two abelian Lie algebras of
the same dimension over the same field are isomorphic, so we understand them
completely, and from now on we shall only consider non-abelian Lie algebras.

How can we get going? We know that Lie algebras of different dimensions
cannot be isomorphic. Moreover, if L is a non-abelian Lie algebra, then its
derived algebra L′ is non-zero and its centre Z(L) is a proper ideal. By Exercise
2.8, derived algebras and centres are preserved under isomorphism, so it seems
reasonable to use the dimension of L and properties of L′ and Z(L) as criteria
to organise our search.



20 3. Low-Dimensional Lie Algebras

3.1 Dimensions 1 and 2

Any 1-dimensional Lie algebra is abelian.
Suppose L is a non-abelian Lie algebra of dimension 2 over a field F . The

derived algebra of L cannot be more than 1-dimensional since if {x, y} is a
basis of L, then L′ is spanned by [x, y]. On the other hand, the derived algebra
must be non-zero, as otherwise L would be abelian.

Therefore L′ must be 1-dimensional. Take a non-zero element x ∈ L′ and
extend it in any way to a vector space basis {x, ỹ} of L. Then [x, ỹ] ∈ L′: This
element must be non-zero, as otherwise L would be abelian. So there is a non-
zero scalar α ∈ F such that [x, ỹ] = αx. This scalar factor does not contribute
anything to the structure of L, for if we replace ỹ with y := α−1ỹ, then we get

[x, y] = x.

We have shown that if a 2-dimensional non-abelian Lie algebra exists, then
it must have a basis {x, y} with the Lie bracket given by the equation above.
We should also check that defining the Lie bracket in this way really does give a
Lie algebra. In this case, this is straightforward (see Exercise 3.4 for one reason
why the Jacobi identity must hold) so we have proved the following theorem.

Theorem 3.1

Let F be any field. Up to isomorphism there is a unique two-dimensional non-
abelian Lie algebra over F . This Lie algebra has a basis {x, y} such that its Lie
bracket is described by [x, y] = x. The centre of this Lie algebra is 0. �

When we say the “Lie bracket is described by . . . ,” this implicitly includes
the information that [x, x] = 0 and [x, y] = −[y, x].

3.2 Dimension 3

If L is a non-abelian 3-dimensional Lie algebra over a field F , then we know
only that the derived algebra L′ is non-zero. It might have dimension 1 or 2 or
even 3. We also know that the centre Z(L) is a proper ideal of L. We organise
our search by relating L′ to Z(L).



3.2 Dimension 3 21

3.2.1 The Heisenberg Algebra

Assume first that L′ is 1-dimensional and that L′ is contained in Z(L). We shall
show that there is a unique such Lie algebra, and that it has a basis f, g, z,

where [f, g] = z and z lies in Z(L). This Lie algebra is known as the Heisenberg
algebra.

Take any f, g ∈ L such that [f, g] is non-zero; as we have assumed that L′

is 1-dimensional, the commutator [f, g] spans L′. We have also assumed that
L′ is contained in the centre of L, so we know that [f, g] commutes with all
elements of L. Now set

z := [f, g].

We leave it as an exercise for the reader to check that f, g, z are linearly inde-
pendent and therefore form a basis of L. As before, all other Lie brackets are
already fixed. In this case, to confirm that this really defines a Lie algebra, we
observe that the Lie algebra of strictly upper triangular 3 × 3 matrices over F

has this form if one takes the basis

{e12, e23, e13}.

Moreover, we see that L′ is in fact equal to the centre Z(L).

3.2.2 Another Lie Algebra where dim L′ = 1

The remaining case occurs when L′ is 1-dimensional and L′ is not contained
in the centre of L. We can use the direct sum construction introduced in Ex-
ercise 2.6 to give one such Lie algebra. Namely, take L = L1 ⊕ L2, where L1

is 2-dimensional and non-abelian (that is, the algebra which we found in §3.1)
and L2 is 1-dimensional. By Exercise 2.6,

L′ = L′
1 ⊕ L′

2 = L′
1

and hence L′ is 1-dimensional. Moreover, Z(L) = Z(L1) ⊕ Z(L2) = L2 and
therefore L′ is not contained in L2.

Perhaps surprisingly, there are no other Lie algebras with this property. We
shall now prove the following theorem.

Theorem 3.2

Let F be any field. There is a unique 3-dimensional Lie algebra over F such
that L′ is 1-dimensional and L′ is not contained in Z(L). This Lie algebra is the
direct sum of the 2-dimensional non-abelian Lie algebra with the 1-dimensional
Lie algebra.
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Proof

We start by picking some non-zero element x ∈ L′. Since x is not central, there
must be some y ∈ L with [x, y] �= 0. By Exercise 1.1, x, y are linearly indepen-
dent. Since x spans L′, we know that [x, y] is a multiple of x. By replacing y

with a scalar multiple of itself, we may arrange that [x, y] = x. (Alternatively,
we could argue that the subalgebra of L generated by x, y is a 2-dimensional
non-abelian Lie algebra, so by Theorem 3.2 we may assume that [x, y] = x.)

We extend {x, y} to a basis of L, say by w. Since x spans L′, there exist
scalars a, b such that

[x, w] = ax, [y, w] = bx.

We claim that L contains a non-zero central element z which is not in the span
of x and y.

For z = λx + µy + νw ∈ L, we calculate that

[x, w] = [x, λx + µy + νw] = µx + νax,

[y, w] = [y, λx + µy + νw] = −λx + νbx.

Hence, if we take λ = b, µ = −a, and ν = 1 then [x, z] = [y, z] = 0 and z is not
in the space spanned by x and y. Hence L = Span {x, y} ⊕ Span {z} is a direct
sum of Lie algebras of the required form.

3.2.3 Lie Algebras with a 2-Dimensional Derived Algebra

Suppose that dimL = 3 and dimL′ = 2. We shall see that, over C at least,
there are infinitely many non-isomorphic such Lie algebras.

Take a basis of L′, say {y, z}, and extend it to a basis of L, say by x. To
understand the Lie algebra L, we need to understand the structure of L′ as a
Lie algebra in its own right and how the linear map adx : L → L acts on L′.
Luckily, this is not too difficult.

Lemma 3.3

(a) The derived algebra L′ is abelian.

(b) The linear map adx : L′ → L′ is an isomorphism.
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Proof

For part (a), it suffices to show that [y, z] = 0. We know that [y, z] lies in L′,
so there are scalars α and β such that

[y, z] = αy + βz.

Write the matrix of ad y with respect to the basis x, y, z. It has the form⎛
⎝0 0 0

� 0 α

� 0 β

⎞
⎠ ,

where � denotes a coefficient we have no need to name explicitly. We see that
tr(ad y) = β. As y ∈ L′, Exercise 2.5 implies that β = 0. Similarly, by consid-
ering a matrix for ad z, we get α = 0. This proves that [y, z] = 0.

Now for part (b). The derived algebra L′ is spanned by [x, y], [x, z], and
[y, z]. However [y, z] = 0, so as L′ is 2-dimensional, we deduce that {[x, y], [x, z]}
is a basis of L′. Thus the image of adx is 2-dimensional, and adx : L′ → L′ is
an isomorphism.

We shall now try to classify the complex Lie algebras of this form.

Case 1 : There is some x �∈ L′ such that adx : L′ → L′ is diagonalisable.
In this case, we may assume that y, z are eigenvectors of ad x; the associated
eigenvalues must be non-zero by part (b) of the lemma.

Suppose that [x, y] = λy. We may assume that λ = 1, for if we scale x

by λ−1, we have [λ−1x, y] = y. With respect to the basis {y, z} of L′, the linear
map ad x : L′ → L′ has matrix (

1 0
0 µ

)

for some non-zero µ ∈ C.
In Exercise 3.1 below, you are asked to check that these data do define a

Lie algebra having the properties with which we started. Call this algebra Lµ.
Now we have to decide when two such Lie algebras are isomorphic. In Exercise
3.2, you are asked to prove that Lµ is isomorphic to Lν if and only if either
µ = ν or µ = ν−1. For a solution, see Appendix E. Thus there is an infinite
family of non-isomorphic such Lie algebras.

Case 2 : For all x �∈ L′, the linear map adx is not diagonalisable. Take
any x �∈ L′. As we work over C, adx : L′ → L′ must have an eigenvector,
say y ∈ L′. As before, by scaling x we may assume that [x, y] = y. Extend y
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to a basis {y, z} of L′. We have [x, z] = λy + µz where λ �= 0 (otherwise adx

would be diagonalisable). By scaling z, we may arrange that λ = 1.
The matrix of adx acting on L′ therefore has the form:

A =
(

1 1
0 µ

)
.

We assumed that A is not diagonalisable, and therefore it cannot have two
distinct eigenvalues. It follows that µ = 1.

Again this completely determines a Lie algebra having the properties with
which we started. Up to isomorphism, we get just one such algebra.

3.2.4 Lie Algebras where L′ = L

Suppose that L is a complex Lie algebra of dimension 3 such that L = L′.
We already know one example, namely L = sl(2,C). We shall show that up to
isomorphism it is the only one.

Step 1 : Let x ∈ L be non-zero. We claim that adx has rank 2. Extend x

to a basis of L, say {x, y, z}. Then L′ is spanned by {[x, y], [x, z], [y, z]}. But
L′ = L, so this set must be linearly independent, and hence the image of ad x

has a basis {[x, y], [x, z]} of size 2, as required.

Step 2 : We claim that there is some h ∈ L such that adh : L → L has an
eigenvector with a non-zero eigenvalue. Choose any non-zero x ∈ L. If adx has
a non-zero eigenvalue, then we may take h = x. If adx : L → L has no non-zero
eigenvalues, then, as it has rank 2, its Jordan canonical form (see Appendix A)
must be ⎛

⎝0 1 0
0 0 1
0 0 0

⎞
⎠ .

This matrix indicates there is a basis of L extending {x}, say {x, y, z}, such that
[x, y] = x and [x, z] = y. So ad y has x as an eigenvector with eigenvalue −1,
and we may take h = y.

Step 3 : By the previous step, we may find h, x ∈ L such that [h, x] = αx �= 0.
Since h ∈ L and L = L′, we know from Exercise 2.5 that ad h has trace zero.
It follows that adh must have three distinct eigenvalues α, 0,−α. If y is an
eigenvector for adh with eigenvalue −α, then {h, x, y} is a basis of L. In this
basis, ad h is represented by a diagonal matrix.

Step 4 : To fully describe the structure of L, we need to determine [x, y].
Note that

[h, [x, y]] = [[h, x], y] + [x, [h, y]] = α[x, y] + (−α)[x, y] = 0.
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We now make two applications of step 1. Firstly, ker adh = Span {h}, so [x, y] =
λh for some λ ∈ L. Secondly, λ �= 0, as otherwise ker ad x is 2-dimensional. By
replacing x with λ−1x we may assume that λ = 1.

How many such non-isomorphic algebras are there? If we replace h by a
non-zero multiple of itself, then we can get any non-zero value for α that we
like. In particular, we may take α = 2, in which case the structure constants
of L with respect to the basis {x, y, h} will agree with the structure constants
of sl(2,C) found in Exercise 1.12. Therefore L ∼= sl(2,C). This shows that there
is one and only one 3-dimensional complex Lie algebra with L′ = L.

EXERCISES

3.1. Let V be a vector space over a field F and let ϕ be an endomorphism
of V . Let L have underlying vector space V ⊕ Span{x}. Show that
if we define the Lie bracket on L by [y, z] = 0 and [x, y] = ϕ(y) for
y, z ∈ V , then L is a Lie algebra and dimL′ = rankϕ. (For a more
general construction, see Exercise 3.9 below.)

3.2.† With the notation of §3.2.3, show that the Lie algebra Lµ is isomor-
phic to Lν if and only if either µ = ν or µ = ν−1.

3.3. Find out where each of the following 3-dimensional complex Lie al-
gebras appears in our classification:

(i) glS(3,C), where S =

⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠;

(ii) the Lie subalgebra of gl(3,C) spanned by the matrices

u =

⎛
⎝λ 0 0

0 µ 0
0 0 ν

⎞
⎠ , v =

⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠ , w =

⎛
⎝0 0 0

0 0 1
0 0 0

⎞
⎠ ,

where λ, µ, ν are fixed complex numbers;

(iii)

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

0 a b 0
0 0 c 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ : a, b, c ∈ C

⎫⎪⎪⎬
⎪⎪⎭;

(iv)

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

0 0 a b

0 0 0 c

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ : a, b, c ∈ C

⎫⎪⎪⎬
⎪⎪⎭.
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3.4. Suppose L is a vector space with basis x, y and that a bilinear oper-
ation [−,−] on L is defined such that [u, u] = 0 for all u ∈ L. Show
that the Jacobi identity holds and hence L is a Lie algebra.

3.5. Show that over R the Lie algebras sl(2,R) and R3
∧ are not isomor-

phic. Hint : Prove that there is no non-zero x ∈ R3
∧ such that the

map ad x is diagonalisable.

3.6.† Show that over R there are exactly two non-isomorphic 3-dimensional
Lie algebras with L′ = L.

3.7. Let L be a non-abelian Lie algebra. Show that dimZ(L) ≤ dimL − 2.

3.8.� Let L be the 3-dimensional Heisenberg Lie algebra defined over
a field F . Show that DerL is 6-dimensional. Identify the inner
derivations (as defined in Exercise 1.18) and show that the quotient
Der L/ IDer L is isomorphic to gl(2, F ).

3.9. Suppose that I is an ideal of a Lie algebra L and that there is a
subalgebra S of L such that L = S ⊕ I.

(i) Show that the map θ : S → gl(I) defined by θ(s)x = [s, x] is a
Lie algebra homomorphism from S into Der I.

We say that L is a semidirect product of I by S. (The reader may
have seen the analogous construction for groups.)

(ii) Show conversely that given Lie algebras S and I and a Lie algebra
homomorphism θ : S → Der I, the vector space S ⊕ I may be made
into a Lie algebra by defining

[(s1, x1), (s2, x2)] = ([s1, s2], [x1, x2] + θ(s1)x2 − θ(s2)x1)

for s1, s2 ∈ S, and x1, x2 ∈ I, and that this Lie algebra is a semidi-
rect product of I by S. (The direct sum construction introduced in
Exercise 2.6 is the special case where θ(s) = 0 for all s ∈ S.)

(iii) Show that the Lie algebras in Exercise 3.1 may be constructed
as semidirect products.

(iv)� Investigate necessary and sufficient conditions for two semidi-
rect products to be isomorphic.

3.10.� Find, up to isomorphism, all Lie algebras with a 1-dimensional de-
rived algebra.
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Solvable Lie Algebras and a Rough

Classification

Abelian Lie algebras are easily understood. There is a sense in which some of
the low-dimensional Lie algebras we studied in Chapter 3 are close to being
abelian. For example, the 3-dimensional Heisenberg algebra discussed in §3.2.1
has a 1-dimensional centre. The quotient algebra modulo this ideal is also
abelian. We ask when something similar might hold more generally. That is, to
what extent can we “approximate” a Lie algebra by abelian Lie algebras?

4.1 Solvable Lie Algebras

To start, we take an ideal I of a Lie algebra L and ask when the factor algebra
L/I is abelian. The following lemma provides the answer.

Lemma 4.1

Suppose that I is an ideal of L. Then L/I is abelian if and only if I contains
the derived algebra L′.
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Proof

The algebra L/I is abelian if and only if for all x, y ∈ L we have

[x + I, y + I] = [x, y] + I = I

or, equivalently, for all x, y ∈ L we have [x, y] ∈ I. Since I is a subspace of L,
this holds if and only if the space spanned by the brackets [x, y] is contained
in I; that is, L′ ⊆ I.

This lemma tells us that the derived algebra L′ is the smallest ideal of L

with an abelian quotient. By the same argument, the derived algebra L′ itself
has a smallest ideal whose quotient is abelian, namely the derived algebra of
L′, which we denote L(2), and so on. We define the derived series of L to be
the series with terms

L(1) = L′ and L(k) = [L(k−1), L(k−1)] for k ≥ 2.

Then L ⊇ L(1) ⊇ L(2) ⊇ . . ..
As the product of ideals is an ideal, L(k) is an ideal of L (and not just an

ideal of L(k−1)).

Definition 4.2

The Lie algebra L is said to be solvable if for some m ≥ 1 we have L(m) = 0.

The Heisenberg algebra is solvable. Similarly, the algebra of upper triangular
matrices is solvable (see Exercise 4.5 below). Furthermore, the classification of
2-dimensional Lie algebras in §3.1 shows that any 2-dimensional Lie algebra is
solvable. On the other hand, if L = sl(2,C), then we have seen in Exercise 2.2
that L = L′ and therefore L(m) = L for all m ≥ 1, so sl(2,C) is not solvable.

If L is solvable, then the derived series of L provides us with an “approxi-
mation” of L by a finite series of ideals with abelian quotients. This also works
the other way around.

Lemma 4.3

If L is a Lie algebra with ideals

L = I0 ⊇ I1 ⊇ . . . ⊇ Im−1 ⊇ Im = 0

such that Ik−1/Ik is abelian for 1 ≤ k ≤ m, then L is solvable.
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Proof

We shall show that L(k) is contained in Ik for k between 1 and m. Putting
k = m will then give L(m) = 0.

Since L/I1 is abelian, we have from Lemma 4.1 that L′ ⊆ I1. For the
inductive step, we suppose that L(k−1) ⊆ Ik−1, where k ≥ 2. The Lie algebra
Ik−1/Ik is abelian. Therefore by Lemma 4.1, this time applied to the Lie algebra
Ik−1, we have [Ik−1, Ik−1] ⊆ Ik. But L(k−1) is contained in Ik−1 by our inductive
hypothesis, so we deduce that

L(k) = [L(k−1), L(k−1)] ⊆ [Ik−1, Ik−1],

and hence L(k) ⊆ Ik.

This proof shows that if L(k) is non-zero then Ik is also non-zero. Hence
the derived series may be thought of as the fastest descending series whose
successive quotients are abelian.

Lie algebra homomorphisms are linear maps that preserve Lie brackets, and
so one would expect that they preserve the derived series.

Exercise 4.1

Suppose that ϕ : L1 → L2 is a surjective homomorphism of Lie algebras.
Show that

ϕ(L(k)
1 ) = (L2)(k).

This exercise suggests that the property of being solvable should be inher-
ited by various constructions.

Lemma 4.4

Let L be a Lie algebra.

(a) If L is solvable, then every subalgebra and every homomorphic image of L

are solvable.

(b) Suppose that L has an ideal I such that I and L/I are solvable. Then L is
solvable.

(c) If I and J are solvable ideals of L, then I + J is a solvable ideal of L.

Proof

(a) If L1 is a subalgebra of L, then for each k it is clear that L
(k)
1 ⊆ L(k), so if

L(m) = 0, then also L
(m)
1 = 0. For the second part, apply Exercise 4.1.
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(b) We have (L/I)(k) =
(
L(k) + I

)
/I. (Either apply the previous exercise to

the canonical homomorphism L → L/I or prove this directly by induction
on k.) If L/I, is solvable then for some m ≥ 1 we have (L/I)(m) = 0; that
is, L(m) + I = I and therefore L(m) ⊆ I. If I is also solvable, then I(k) = 0
for some k ≥ 1 and hence (L(m))(k) ⊆ I(k) = 0. Now one can convince
oneself that by definition

(L(m))(k) = L(m+k).

(c) By the second isomorphism theorem (I + J)/I ∼= J/I ∩ J , so it is solvable
by Lemma 4.4(a). Since I is also solvable, part (b) of this lemma implies
that I + J is solvable.

Corollary 4.5

Let L be a finite-dimensional Lie algebra. There is a unique solvable ideal of L

containing every solvable ideal of L.

Proof

Let R be a solvable ideal of largest possible dimension. Suppose that I is any
solvable ideal. By Lemma 4.4(c), we know that R + I is a solvable ideal. Now
R ⊆ R + I and hence dimR ≤ dim(R + I). We chose R of maximal possible
dimension and therefore we must have dimR = dim(R+I) and hence R = R+I,
so I is contained in R.

This largest solvable ideal is said to be the radical of L and is denoted
radL. The radical will turn out to be an essential tool in helping to describe
the finite-dimensional Lie algebras. It also suggests the following definition.

Definition 4.6

A non-zero Lie algebra L is said to be semisimple if it has no non-zero solvable
ideals or equivalently if radL = 0.

For example, by Exercise 1.13, sl(2,C) is semisimple. The reason for the
word “semisimple” is revealed in §4.3 below.

Lemma 4.7

If L is a Lie algebra, then the factor algebra L/radL is semisimple.
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Proof

Let J̄ be a solvable ideal of L/radL. By the ideal correspondence, there is
an ideal J of L containing radL such that J̄ = J/radL. By definition, radL

is solvable, and J/radL = J̄ is solvable by hypothesis. Therefore Lemma 4.4
implies that J is solvable. But then J is contained in rad(L); that is, J̄ = 0.

4.2 Nilpotent Lie Algebras

We define the lower central series of a Lie algebra L to be the series with terms

L1 = L′ and Lk = [L, Lk−1] for k ≥ 2.

Then L ⊇ L1 ⊇ L2 ⊇ . . .. As the product of ideals is an ideal, Lk is even an
ideal of L (and not just an ideal of Lk−1). The reason for the name “central
series” comes from the fact that Lk/Lk+1 is contained in the centre of L/Lk+1.

Definition 4.8

The Lie algebra L is said to be nilpotent if for some m ≥ 1 we have Lm = 0.

The Lie algebra n(n, F ) of strict upper triangular matrices over a field F

is nilpotent (see Exercise 4.4). Furthermore, any nilpotent Lie algebra is solv-
able. To see this, show by induction on k that L(k) ⊆ Lk. There are solvable
Lie algebras which are not nilpotent; the standard example is the Lie algebra
b(n, F ) of upper triangular matrices over a field F for n ≥ 2 (see Exercise 4.5).
Another is the two-dimensional non-abelian Lie algebra (see §3.1).

Lemma 4.9

Let L be a Lie algebra.

(a) If L is nilpotent, then any Lie subalgebra of L is nilpotent.

(b) If L/Z(L) is nilpotent, then L is nilpotent.

Proof

Part (a) is clear from the definition. By induction, or by a variation of Ex-
ercise 4.1, one can show that (L/Z(L))k is equal to

(
Lk + Z(L)

)
/Z(L). So if

(L/Z(L))m is zero, then Lm is contained in Z(L) and therefore Lm+1 = 0.
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Remark 4.10

The analogue of Lemma 4.4(b) does not hold; that is, if I is any ideal of a
Lie algebra L, then it is possible that both L/I and I are nilpotent but L is
not. An example is given by the 2-dimensional non-abelian Lie algebra. This
perhaps suggests that solvability is more fundamental to the structure of Lie
algebras than nilpotency.

4.3 A Look Ahead

The previous section suggests that we might have a chance to understand all
finite-dimensional Lie algebras. The radical radL of any Lie algebra L is solv-
able, and L/radL is semisimple, so to understand L it is necessary to under-
stand

(i) an arbitrary solvable Lie algebra and

(ii) an arbitrary semisimple Lie algebra.

Working over C, an answer to (i) was found by Lie, who proved (in essence)
that every solvable Lie algebra appears as a subalgebra of a Lie algebras of
upper triangular matrices. We give a precise statement of Lie’s Theorem in §6.4
below.

For (ii) we shall show that every semisimple Lie algebra is a direct sum of
simple Lie algebras.

Definition 4.11

The Lie algebra L is simple if it has no ideals other than 0 and L and it is not
abelian.

The restriction that a simple Lie algebra may not be abelian removes only
the 1-dimensional abelian Lie algebra. Without this restriction, this Lie algebra
would be simple but not semisimple: This is obviously undesirable.

We then need to find all simple Lie algebras over C. This is a major theorem;
the proof is based on work by Killing, Engel, and Cartan. We shall eventually
prove most of the following theorem.
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Theorem 4.12 (Simple Lie algebras)

With five exceptions, every finite-dimensional simple Lie algebra over C is
isomorphic to one of the classical Lie algebras:

sl(n,C), so(n,C), sp(2n,C).

The five exceptional Lie algebras are known as e6, e7, e8, f4, and g2.

We have already introduced the family of special linear Lie algebras,
sl(n,C). The remaining families can be defined as certain subalgebras of
gl(n,C) using the construction introduced in Exercise 1.15. Recall that if
S ∈ gl(n,C), then we defined a Lie subalgebra of gl(n,C) by

glS(n,C) :=
{
x ∈ gl(n,C) : xtS = −Sx

}
.

Assume first of all that n = 2�. Take S to be the matrix with � × � blocks:

S =
(

0 I�

I� 0

)
.

We define so(2�,C) = glS(2�,C). When n = 2� + 1, we take

S =

⎛
⎝1 0 0

0 0 I�

0 I� 0

⎞
⎠

and define so(2� + 1,C) = glS(2� + 1,C). These Lie algebras are known as the
orthogonal Lie algebras.

The Lie algebras sp(n,C) are only defined for even n. If n = 2�, we take

S =
(

0 I�

−I� 0

)

and define sp(2�,C) = glS(2�,C). These Lie algebras are known as the sym-
plectic Lie algebras.

It follows from Exercise 2.12 that so(n,C) and sp(n,C) are subalgebras of
sl(n,C). (This also follows from the explicit bases given in Chapter 12.)

We postpone discussion of the exceptional Lie algebras until Chapter 14.

Exercise 4.2

Let x ∈ gl(2�,C). Show that A belongs to sp(2�,C) if and only if it is of
the form

x =
(

m p

q −mt

)
,

where p and q are symmetric. Hence find the dimension of sp(2�,C). (See
Exercise 12.1 for the other families.)



34 4. Solvable Lie Algebras and a Rough Classification

EXERCISES

4.3. Use Lemma 4.4 to show that if L is a Lie algebra then L is solvable
if and only if adL is a solvable subalgebra of gl(L). Show that this
result also holds if we replace “solvable” with “nilpotent.”

4.4. Let L = n(n, F ), the Lie algebra of strictly upper triangular n × n

matrices over a field F . Show that Lk has a basis consisting of all
the matrix units eij with j − i > k. Hence show that L is nilpotent.
What is the smallest m such that Lm = 0?

4.5. Let L = b(n, F ) be the Lie algebra of upper triangular n×n matrices
over a field F .

(i) Show that L′ = n(n, F ).

(ii) More generally, show that L(k) has a basis consisting of all the
matrix units eij with j − i ≥ 2k−1. (The commutator formula
for the eij given in §1.2 will be helpful.)

(iii) Hence show that L is solvable. What is the smallest m such
that L(m) = 0?

(iv) Show that if n ≥ 2 then L is not nilpotent.

4.6. Show that a Lie algebra is semisimple if and only if it has no non-
zero abelian ideals. (This was the original definition of semisimplicity
given by Wilhelm Killing.)

4.7. Prove directly that sl(n,C) is a simple Lie algebra for n ≥ 2.

4.8.† Let L be a Lie algebra over a field F such that [[a, b], b] = 0 for all
a, b ∈ L, (or equivalently, (ad b)2 = 0 for all b ∈ L).

(i) Suppose the characteristic of F is not 3. Show that then L3 = 0.

(ii)� Show that if F has characteristic 3 then L4 = 0. Hint : show
first that the Lie brackets [[x, y], z] are alternating; that is,

[[x, y], z] = −[[y, x], z], [[x, y], z] = −[[x, z], y]

for all x, y, z ∈ L.

4.9.� The purpose of this exercise is to give some idea why the families
of Lie algebras are given the names that we have used. We shall
not need to refer to this exercise later; some basic group theory is
needed.
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We begin with the Lie algebra sl(n,C). Recall that the n × n ma-
trices with determinant 1 form a group under matrix multiplication,
denoted SL(n,C). Let I denote the n × n identity matrix. We ask:
when is I + εX ∈ SL(n,C) for X an n × n matrix?

(i) Show that det(I + εX) is a polynomial in ε of degree n with the
first two terms

det(I + εX) = 1 + (trX)ε + . . . .

If we neglect all powers of ε except 1 and ε, then we obtain the
statement

I + εX ∈ SL(n,C) ⇐⇒ X ∈ sl(n,C).

This could have been taken as the definition of sl(n,C). (This is
despite the fact that, interpreted literally, it is false!)

(ii) (a) Let S be an n × n matrix. Let (−,−) denote the complex
bilinear form with matrix S. Show that if we let GS(n,C) be
the set of invertible matrices A such that (Av, Av) = (v, v)
for all v ∈ Cn, then GS(n,C) is a group.

(b) Show that if we perform the construction in part (i) with
GS(n,C) in place of SL(n,C), we obtain glS(n,C).

(iii) (a) An invertible matrix A is customarily said to be orthogonal
if AtA = AAt = I; that is, if A−1 = At. Show that the set of
n×n orthogonal matrices with coefficients in C is the group
GI(n,C) and that the associated Lie algebra, gI(n,C), is
the space of all anti-symmetric matrices.

(b) Prove that gI(n,C) ∼= so(n,C). Hint : Use Exercise 2.11.
(The reason for not taking this as the definition of so(n,C)
will emerge.)

(iv) A bilinear form (see Appendix A) on a vector space v is said to
be symplectic if (v, v) = 0 for all v ∈ V . Show that

S =
(

0 I�

−I� 0

)

is the matrix of a non-degenerate symplectic bilinear form on a
2�-dimensional space. The associated Lie algebra is glS(2�,C) =
sp(2�,C).
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The reader is entitled to feel rather suspicious about our cavalier
treatment of the powers of ε. A rigorous and more general treatment
is given in books on matrix groups and Lie groups, such as Matrix
Groups by Baker [3] in the SUMS series. We shall not attempt to go
any further in this direction.

4.10.� Let F be a field. Exercise 2.11 shows that if S, T ∈ gl(n, F ) are
congruent matrices (that is, there exists an invertible matrix P such
that T = P tSP ), then glS(n, F ) ∼= glT (n, F ). Does the converse hold
when F = C? For a challenge, think about other fields.
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Subalgebras of gl(V )

Many Lie algebras occur naturally as subalgebras of the Lie algebras of linear
transformations of vector spaces. Even more are easily seen to be isomorphic
to such subalgebras. Given such a Lie algebra, one can profitably use linear
algebra to study its properties.

Throughout this chapter, we let V denote an n-dimensional vector space
over a field F . We consider some elementary facts concerning linear maps and
Lie subalgebras of gl(V ) which are needed for the theorems to come.

5.1 Nilpotent Maps

Let L be a Lie subalgebra of gl(V ). We may regard elements of L as linear
transformations of V , so in addition to the Lie bracket we can also exploit
compositions xy of linear maps for x, y ∈ L. Care must be taken, however,
as in general this composition will not belong to L. Suppose that x ∈ L is a
nilpotent map; that is, xr = 0 for some r ≥ 1. What does this tell us about x

as an element of the Lie algebra?

Lemma 5.1

Let x ∈ L. If the linear map x : V → V is nilpotent, then adx : L → L is also
nilpotent.
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Proof

To see this, take y ∈ L and expand (adx)m(y) = [x, [x, . . . [x, y] . . .]]. Every
term in the resulting sum is of the form xjyxm−j for some j between 0 and m.
For example, (adx)2y = x2y−2xyx+yx2. Suppose that xr = 0 and let m ≥ 2r.
Either j ≥ r, in which case xj = 0, or m − j ≥ r, in which case xm−j = 0. It
follows that (adx)2r = 0.

This lemma can be regarded as a companion result to Exercise 1.17, which
asked you to show that if L = gl(V ) and x : V → V is diagonalisable, then
adx : L → L is also diagonalisable.

5.2 Weights

In linear algebra, one is often interested in the eigenvalues and eigenvectors
of a fixed linear map. We now generalise these notions to families of linear
maps. Let A be a subalgebra of gl(V ). It seems reasonable to say that v ∈ V

is an eigenvector for A if v is an eigenvector for every element of A; that is,
a(v) ∈ Span {v} for every a ∈ A.

Example 5.2

Let A = d(n, F ), the Lie subalgebra of gl(n, F ) consisting of diagonal matrices.
Let {e1, . . . , en} be the standard basis of Fn. Then each ei is an eigenvector
for A.

It is not so obvious how we should generalise eigenvalues. Consider the
example above. Let a be the diagonal matrix with entries (α1, . . . , αn). The
eigenvalue of a on ei is αi, but this varies as a runs through the elements
of A, so we must be prepared to let different elements of A act with different
eigenvalues. We can specify the eigenvalues of elements of A by giving a function
λ : A → F . The corresponding eigenspace is then

Vλ := {v ∈ V : a(v) = λ(a)v for all a ∈ A} .

Exercise 5.1

(i) Check that the eigenspaces Vλ defined above are vector subspaces
of V .
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(ii) Using the notation above, define εi : A → F by εi(a) = αi. Show
that Vεi

= Span {ei} and that V decomposes as a direct sum of
the Vεi

for 1 ≤ i ≤ n.

The reader may already have realised that not every function A → F can
have a non-zero eigenspace. Suppose that Vλ is a non-zero eigenspace for the
function λ : A → F . Let v ∈ Vλ be non-zero, let a, b ∈ A, and let α, β ∈ F .
Then

(αa + βb)v = α(av) + β(bv) = αλ(a)v + βλ(b)v = (αλ(a) + βλ(b))v,

so the eigenvalue of αa+βb on v is αλ(a)+βλ(b). In other words, λ(αa+βb) =
αλ(a) + βλ(b). Thus λ is linear and so λ ∈ A�, the dual space of linear maps
from A to F .

We now introduce the standard terminology.

Definition 5.3

A weight for a Lie subalgebra A of gl(V ) is a linear map λ : A → F such that

Vλ := {v ∈ V : a(v) = λ(a)v for all a ∈ A}
is a non-zero subspace of V .

The vector space Vλ is the weight space associated to the weight λ. Thus Vλ

is non-zero if and only if V contains a common eigenvector for the elements
of A, with the eigenvalues of elements of A given by the function λ.

Exercise 5.2

Let A = b(n, F ) be the Lie subalgebra of gl(n, F ) consisting of upper
triangular matrices. Show that e1 is an eigenvector for A. Find the cor-
responding weight and determine its weight space.

5.3 The Invariance Lemma

In linear algebra, one shows that if a, b : V → V are commuting linear trans-
formations and W is the kernel of a, then W is b-invariant. That is, b maps
W into W . The proof is very easy: If w ∈ W , then a(bw) = b(aw) = 0 and so
bw ∈ W . This result has a generalisation to Lie subalgebras of gl(V ) as follows.
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Lemma 5.4

Suppose that A is an ideal of a Lie subalgebra L of gl(V ). Let

W = {v ∈ V : a(v) = 0 for all a ∈ A}.

Then W is an L-invariant subspace of V .

Proof

Take w ∈ W and y ∈ L. We must show that a(yw) = 0 for all a ∈ A. But
ay = ya + [a, y], where [a, y] ∈ A as A is an ideal, so

a(yw) = y(aw) + [a, y](w) = 0.

The technique used here of replacing ay with ya+[a, y] is frequently useful.
We shall have recourse to it many times below.

Exercise 5.3

Show that Lemma 5.4 really does generalise the result mentioned in the
first paragraph of this section.

This has dealt with zero eigenvalues. More generally, one can prove that if
a, b : V → V are commuting linear maps, λ ∈ F , and Vλ is the λ-eigenspace
of a (that is, Vλ = {v ∈ V : av = λv}), then Vλ is invariant under b.

This fact too has a generalisation to Lie algebras. As before, we shall replace
the linear map a by an ideal A ⊆ gl(V ). The subspace considered in Lemma
5.4 may be viewed as the 0-weight space for A. In our generalisation, we allow
an arbitrary weight.

Lemma 5.5 (Invariance Lemma)

Assume that F has characteristic zero. Let L be a Lie subalgebra of gl(V ) and
let A be an ideal of L. Let λ : A → F be a weight of A. The associated weight
space

Vλ = {v ∈ V : av = λ(a)v for all a ∈ A}
is an L-invariant subspace of V .

Proof

We must show that if y ∈ L and w ∈ Vλ, then y(w) is an eigenvector for every
element of A, with the eigenvalue of a ∈ A given by λ(a).
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For a ∈ A, we have

a(yw) = y(aw) + [a, y](w) = λ(a)yw + λ([a, y])w.

Note that [a, y] ∈ A as A is an ideal. Therefore all we need show is that the
eigenvalue of the commutator [a, y] on Vλ is zero.

Consider U = Span
{
w, y(w), y2(w), . . . ,

}
. This is a finite-dimensional sub-

space of V . Let m be the least number such that the vectors w, y(w), . . . , ym(w)
are linearly dependent. It is a straightforward exercise in linear algebra to show
that U is m-dimensional and has as a basis

w, y(w), . . . , ym−1(w).

We claim that if z ∈ A, then z maps U into itself. In fact, we shall show
that with respect to the basis above, z has an upper triangular matrix with
diagonal entries equal to λ(z):⎛

⎜⎜⎜⎝
λ(z) � . . . �

0 λ(z) . . . �
...

...
. . .

...
0 0 . . . λ(z)

⎞
⎟⎟⎟⎠ .

We work by induction on the number of the column. First of all, zw = λ(z)w.
This gives the first column of the matrix. Next, since [z, y] ∈ A, we have

z(yw) = y(zw) + [z, y]w = λ(z)y(w) + λ([z, y])w

giving the second column.
For column r, we have

z(yr(w)) = zy(yr−1w) = (yz + [z, y])yr−1w.

By the inductive hypothesis, we can say that

z(yr−1w) = λ(z)yr−1w + u

for some u in the span of {yjw : j < r − 1}. Substituting this gives

yz(yr−1w) = λ(z)yrw + yu,

and yu belongs to the span of the {yjw : j < r}. Furthermore, since [z, y] ∈ A,
we get by induction that

[z, y]yr−1w = v

for some v in the span of {yjw : j ≤ r − 1}. Combining the last two results
shows that column r is as stated.
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Now take z = [a, y]. We have just shown that the trace of the matrix of z

acting on U is mλ(z). On the other hand, by the previous paragraph, U is
invariant under the action of a ∈ A, and U is y-invariant by construction. So
the trace of z on U is the trace of ay−ya, also viewed as a linear transformation
of U , and this is obviously 0. Therefore

mλ([a, y]) = 0.

As F has characteristic zero, it follows that λ([a, y]) = 0.

Remark 5.6

This proof would be much easier if it were true that the linear maps yr belonged
to the Lie algebra L. Unfortunately, this is not true in general.

5.4 An Application of the Invariance Lemma

The following proposition shows how the Invariance Lemma may be applied in
practice.

Proposition 5.7

Let x, y : V → V be linear maps from a complex vector space V to itself.
Suppose that x and y both commute with [x, y]. Then [x, y] is a nilpotent map.

Proof

Since we are working over the complex numbers, it is enough to show that if λ

is an eigenvalue of the linear map [x, y], then λ = 0.
Let λ be an eigenvalue. Let W = {v ∈ V : [x, y]v = λv} be the corre-

sponding eigenspace of [x, y]; this is a non-zero subspace of V . Let L be the
Lie subalgebra of gl(V ) spanned by x, y, and [x, y]. As Span {[x, y]} is an ideal
of L, the Invariance Lemma implies that W is invariant under x and y.

Pick a basis of W and let X and Y be the matrices of x and y with respect
to this basis. The commutator [x, y] has matrix XY − Y X in its action on W .
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But every element of W is an eigenvector of [x, y] with eigenvalue λ, so

XY − Y X =

⎛
⎜⎜⎜⎝

λ 0 . . . 0
0 λ . . . 0
...

...
. . .

...
0 0 . . . 0 λ

⎞
⎟⎟⎟⎠ .

Now taking traces gives

0 = tr(XY − Y X) = λ dimW

and so λ = 0.

For another approach, see Exercise 5.5 below. The proposition is also a
corollary of Lie’s Theorem: See Exercise 6.6 in the next chapter.

EXERCISES

5.4. (i) Let L be a Lie subalgebra of gl(V ). Suppose that there is a
basis of V such that, with respect to this basis, every x ∈ L is
represented by a strictly upper triangular matrix. Show that L

is isomorphic to a Lie subalgebra of n(n, F ) and hence that L is
nilpotent.

(ii) Prove a result analogous to (i) in the case where there is a ba-
sis of V such that with respect to this basis every x in L is
represented by an upper triangular matrix.

5.5.� This exercise gives an alternative approach to Proposition 5.7. Recall
that V is a complex vector space and x, y ∈ gl(V ) are linear maps
such that [x, y] commutes with both x and y.

(i) Let z = [x, y]. Show that tr zm = 0 for all m ≥ 1.

(ii) Let λ1, . . . , λn be the eigenvalues of [x, y]. Show that λi = 0 for
all i, and deduce that [x, y] is nilpotent. Hint : Use the Vander-
monde determinant.

5.6. Let L be a Lie algebra and let A be a subalgebra of L. The normaliser
of A, denoted NL(A), is defined by

NL(A) = {x ∈ L : [x, a] ∈ A for all a ∈ A} .

(i) Prove that NL(A) is a subalgebra of L and that NL(A) con-
tains A. Show moreover that NL(A) is the largest subalgebra of
L in which A is an ideal.
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(ii) Let L = gl(n,C) and let A be the subalgebra of L consisting of
all diagonal matrices. Show that NL(A) = A.

Hint: While this can be proved directly, it follows very quickly
from the ideas in this chapter. By the Invariance Lemma, any
weight space for A is NL(A)-invariant. How does this restrict
the possible matrices of elements of NL(A)?

5.7. Show that if a, y ∈ gl(V ) are linear maps, then for any m ≥ 1

aym = yma +
m∑

k=1

(
m

k

)
ym−kak

where a1 = [a, y], a2 = [a1, y] = [[a, y], y], and generally ak =
[ak−1, y]. Deduce that

ad ym =
m∑

k=1

(−1)k+1
(

m

k

)
ym−k(ad y)k.

In this formula, the power ym−k acts on gl(V ) as the linear map
which sends x ∈ gl(V ) to xym−k.
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Engel’s Theorem and Lie’s Theorem

A useful result in linear algebra states that if V is a finite-dimensional vector
space and x : V → V is a nilpotent linear map, then there is a basis of V in
which x is represented by a strictly upper triangular matrix.

To understand Lie algebras, we need a much more general version of this
result. Instead of considering a single linear transformation, we consider a Lie
subalgebra L of gl(V ). We would like to know when there is a basis of V in
which every element of L is represented by a strictly upper triangular matrix.

As a strictly upper triangular matrix is nilpotent, if such a basis exists
then every element of L must be a nilpotent map. Surprisingly, this obvious
necessary condition is also sufficient; this result is known as Engel’s Theorem.

It is also natural to ask the related question: When is there a basis of V

in which every element of L is represented by an upper triangular matrix? If
there is such a basis, then L is isomorphic to a subalgebra of a Lie algebra of
upper triangular matrices, and so L is solvable. Over C at least, this necessary
condition is also sufficient. We prove this result, Lie’s Theorem, in §6.4 below.
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6.1 Engel’s Theorem

Theorem 6.1 (Engel’s Theorem)

Let V be a vector space. Suppose that L is a Lie subalgebra of gl(V ) such
that every element of L is a nilpotent linear transformation of V . Then there
is a basis of V in which every element of L is represented by a strictly upper
triangular matrix.

To prove Engel’s Theorem, we adapt the strategy used to prove the analo-
gous result for a single nilpotent linear transformation. The proof of this result
is outlined in the following exercise.

Exercise 6.1

Let V be an n-dimensional vector space where n ≥ 1, and let x : V → V

be a nilpotent linear map.

(i) Show that there is a non-zero vector v ∈ V such that xv = 0.

(ii) Let U = Span {v}. Show that x induces a nilpotent linear transfor-
mation x̄ : V/U → V/W . By induction, we know that there is a
basis {v1 + U . . . vn−1 + U} of V/U in which x̄ has a strictly upper
triangular matrix. Prove that {v, v1, . . . , vn−1} is a basis of V and
that the matrix of x in this basis is strictly upper triangular.

The crucial step in the proof of Engel’s Theorem is the analogue of part (i):
We must find a non-zero vector v ∈ V that lies in the kernel of every x ∈ L.

Proposition 6.2

Suppose that L is a Lie subalgebra of gl(V ), where V is non-zero, such that
every element of L is a nilpotent linear transformation. Then there is some
non-zero v ∈ V such that xv = 0 for all x ∈ L.

Proof

We proceed by induction on dimL. If dimL = 1, then L is spanned by a single
nilpotent linear transformation, say z. By part (i) of the previous exercise there
is some non-zero v ∈ V such that zv = 0. An arbitrary element of L is a scalar
multiple of z, so v lies in the kernel of every element of L. Now suppose that
dim(L) > 1.
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Step 1 : Take a maximal Lie subalgebra A of L. We claim that A is an ideal
of L and that dimA = dimL−1. Consider the quotient vector space L̄ = L/A.
We define a linear map

ϕ : A → gl(L̄)

by letting ϕ(a) act on L̄ as

ϕ(a)(x + A) = [a, x] + A.

This is well-defined, for if x ∈ A then [a, x] ∈ A. Moreover, ϕ is a Lie homo-
morphism, for if a, b ∈ A then

[ϕ(a), ϕ(b)](x + A) = ϕ(a)([b, x] + A) − ϕ(b)([a, x] + A)

= ([a, [b, x]] + A) − ([b, [a, x]] + A)

= [a, [b, x]] − [b, [a, x]] + A

= [[a, b], x] + A

by the Jacobi identity. The last term is equal to ϕ([a, b])(x + A), as required.
So ϕ(A) is a Lie subalgebra of gl(L̄) and dimϕ(A) < dimL. To apply the

inductive hypothesis, we need to know that ϕ(a) is a nilpotent linear trans-
formation of L̄. But ϕ(a) is induced by ad a; by Lemma 5.1, we know that
ad a : L → L is nilpotent and therefore ϕ(a) is as well.

By the inductive hypothesis, there is some non-zero element y+A ∈ L̄ such
that ϕ(a)(y + A) = [a, y] + A = 0 for all a ∈ A. That is, [a, y] ∈ A for all
a ∈ A. Set Ã := A ⊕ Span{y}. This is a Lie subalgebra of L containing A. By
maximality, Ã must be equal to L. Therefore L = A ⊕ Span {y}. As A is an
ideal in Ã, it follows that A is an ideal of L.

Step 2 : We now apply the inductive hypothesis to A ⊆ gl(V ). This gives us
a non-zero w ∈ V such that a(w) = 0 for all a ∈ A. Hence

W = {v ∈ V : a(v) = 0 for all a ∈ A}
is a non-zero subspace of V .

By Lemma 5.4, W is invariant under L, so in particular y(W ) ⊆ W . Since y

is nilpotent, the restriction of y to W is also nilpotent. Hence there is some
non-zero vector v ∈ W such that y(v) = 0. We may write any x ∈ L in the
form x = a + βy for some a ∈ A and some β ∈ F . Doing this, we have

x(v) = a(v) + βy(v) = 0.

This shows that v is a non-zero vector in the kernel of every element of L.
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6.2 Proof of Engel’s Theorem

The remainder of the proof is closely analogous to part (ii) of Exercise 6.1. We
use induction on dimV . If V = {0}, then there is nothing to do, so we assume
that dimV ≥ 1.

By Proposition 6.2, there is a non-zero vector v ∈ V such that x(v) = 0 for
all x ∈ L. Let U = Span{v} and let V̄ be the quotient vector space V/U . Any
x ∈ L induces a linear transformation x̄ of V̄ . The map L → gl(V̄ ) given by
x �→ x̄ is easily checked to be a Lie algebra homomorphism.

The image of L under this homomorphism is a subalgebra of gl(V̄ ) which
satisfies the hypothesis of Engel’s Theorem. Moreover, dim(V̄ ) = n − 1, so by
the inductive hypothesis there is a basis of V̄ such that with respect to this
basis all x̄ are strictly upper triangular. If this basis is {vi +U : 1 ≤ i ≤ n−1},
then {v, v1, . . . , vn−1} is a basis for V . As x(v) = 0 for each x ∈ L, the matrices
of elements of L with respect to this basis are strictly upper triangular. �

6.3 Another Point of View

We now give another way to think about Engel’s Theorem that does not rely
on L being given to us as a subalgebra of some gl(V ). Recall that a Lie algebra
is said to be nilpotent if for some m ≥ 1 we have Lm = 0 or, equivalently, if
for all x0, x1, . . . , xm ∈ V we have

[x0, [x1, . . . , [xm−1, xm] . . .]] = 0.

Theorem 6.3 (Engel’s Theorem, second version)

A Lie algebra L is nilpotent if and only if for all x ∈ L the linear map adx :
L → L is nilpotent.

Proof

We begin by proving the easier “only if” direction. Note that L is nilpotent if
and only if there is some m ≥ 1 such that

adx0 ◦ adx1 . . . ◦ adxm−1 = 0

for all x0, x1, . . . , xm−1 ∈ L, so with this m we have (ad x)m = 0 for all x ∈ X

and so every ad x is nilpotent.
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We now prove the “if” direction. Let L̃ = adL denote the image of L under
the adjoint homomorphism, ad : L → gl(L). By hypothesis, every element of L̄

is a nilpotent linear transformation of L, so by Engel’s Theorem, in its original
version, there is a basis of L in which every adx is strictly upper triangular.
It now follows from Exercise 5.4 that L̄ is nilpotent. Finally, Lemma 4.9(b)
implies that L is nilpotent.

Remark 6.4 (A trap in Engel’s Theorem)

It is very tempting to assume that a Lie subalgebra of L of gl(V ) is nilpotent
if and only if there is a basis of V such that the elements of L are represented
by strictly upper triangular matrices.

However, the “only if” direction is false. For example, any 1-dimensional Lie
algebra is (trivially) nilpotent. Let I denote the identity map in gl(V ). The Lie
subalgebra Span {I} of gl(V ) is therefore nilpotent. In any basis of V , the map
I is represented by the identity matrix, which is certainly not strictly upper
triangular.

Engel’s Theorem has many applications, both in the proofs to come, and
in more general linear algebra. We give a few such applications in the exercises
at the end of this chapter.

6.4 Lie’s Theorem

Let L be a Lie subalgebra of gl(V ). We would now like to understand when
there is a basis of V such that the elements of L are all represented by upper
triangular matrices. The answer is given below in Lie’s Theorem.

Theorem 6.5 (Lie’s Theorem)

Let V be an n-dimensional complex vector space and let L be a solvable Lie
subalgebra of gl(V ). Then there is a basis of V in which every element of L is
represented by an upper triangular matrix.

The following exercise outlines a proof of the corresponding result for a
single linear transformation.
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Exercise 6.2

Let V be an n-dimensional complex vector space where n ≥ 1 and let
x : V → V be a linear map.

(i) Show that x has an eigenvector v ∈ V .

(ii) Let U = Span {v}. Show that x induces a linear transformation
x̄ : V/U → V/U . By induction, we know that there is a basis
{v1 + U . . . vn−1 + U} of V/U such that x̄ has an upper triangu-
lar matrix. Prove that {v, v1, . . . , vn−1} is a basis of V and that the
matrix of x in this basis is upper triangular.

As in the proof of Engel’s Theorem, the main step is the generalisation of
part (i).

Proposition 6.6

Let V be a non-zero complex vector space. Suppose that L is a solvable Lie
subalgebra of gl(V ). Then there is some non-zero v ∈ V which is a simultaneous
eigenvector for all x ∈ L.

Proof

This looks similar to Proposition 6.2, but this time we need the full power of
the Invariance Lemma, as non-zero eigenvalues are not quite as convenient as
zero eigenvalues for calculations.

As before, we use induction on dim(L). If dim(L) = 1, the result for a single
linear transformation gives us all we need, so we may assume that dim(L) > 1.
Since L is solvable, we know that L′ is properly contained in L. Choose a
subspace A of L which contains L′ and is such that L = A ⊕ Span{z} for some
0 �= z ∈ L.

By Lemma 4.1 and Example 2.4, A is an ideal of L, and by Lemma 4.4(a)
(which says that a subalgebra of a solvable algebra is solvable) A is solvable.
We may now apply the inductive hypothesis to obtain a vector w ∈ V which is
a simultaneous eigenvector for all a ∈ A. Let λ : A → C be the corresponding
weight, so a(w) = λ(a)w for all a ∈ A. Let Vλ be the weight space corresponding
to λ:

Vλ = {v ∈ V : a(v) = λ(a)v for all a ∈ A}.

This eigenspace is non-zero, as it contains w. By the Invariance Lemma (Lemma
5.5), the space Vλ is L-invariant. Hence there is some non-zero v ∈ Vλ which is
an eigenvector for z.
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We claim that v is a simultaneous eigenvector for all x ∈ L. Any x ∈ L may
be written in the form x = a + βz for some a ∈ A and β ∈ C. We have

x(v) = a(v) + βz(v) = λ(x)v + βµv

where µ is the eigenvalue of z corresponding to v. This completes the proof.

The remainder of the proof of Lie’s Theorem is completely analogous to the
proof of Engel’s Theorem given in §6.2, so we leave this to the reader.

Remark 6.7 (Generalisations of Lie’s Theorem)

One might ask whether Lie’s theorem holds for more general fields. As the
eigenvalues of a matrix in upper triangular form are its diagonal entries, we will
certainly need the field to contain the eigenvalues of all the elements of gl(L).
The simplest way to achieve this is to require that our field be algebraically
closed.

The example in Exercise 6.4 below shows that we also need our field to have
characteristic zero. This is perhaps more surprising. We used this assumption
in the last step of the proof of the Invariance Lemma when we deduced from
m tr([x, y]) = 0 that tr([x, y]) = 0. (This would of course be inadmissible if the
characteristic of the field divided m.)

EXERCISES

6.3. Let L be a complex Lie algebra. Show that L is nilpotent if and only
if every 2-dimensional subalgebra of L is abelian. (Use the second
version of Engel’s Theorem.)

6.4. Let p be prime and let F be a field of characteristic p. Consider the
following p × p matrices:

x =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠, y =

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . p−2 0
0 0 . . . 0 p−1

⎞
⎟⎟⎟⎟⎟⎠ .

Check that [x, y] = x. Deduce that x and y span a 2-dimensional
solvable subalgebra L of gl(p, F ). Show that x and y have no com-
mon eigenvector, and so the conclusions of Proposition 6.6 and Lie’s
Theorem fail. Show that the conclusion of part (i) of the previous
exercise also fails.
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6.5.† (i) Let L be a solvable Lie subalgebra of gl(V ), where V is a com-
plex vector space. Show that every element of L′ is a nilpotent
endomorphism of V .

(ii) Let L be a complex Lie algebra. Show that L is solvable if and
only if L′ is nilpotent.

6.6. Use Lie’s Theorem to give another proof of Proposition 5.7.



7
Some Representation Theory

7.1 Definitions

In this chapter, we introduce the reader to representations of Lie algebras. Our
aim is to examine the ways in which an abstract Lie algebra can be viewed,
concretely, as a subalgebra of the endomorphism algebra of a finite-dimensional
vector space. Representations are defined as follows.

Definition 7.1

Let L be a Lie algebra over a field F . A representation of L is a Lie algebra
homomorphism

ϕ : L → gl(V )

where V is a finite-dimensional vector space over F . For brevity, we will some-
times omit mention of the homomorphism and just say that V is a representa-
tion of L.

As well as being of intrinsic interest, representations of Lie algebras arise
frequently in applications of Lie theory to other areas of mathematics and
physics. Moreover, we shall see that representations provide a very good way
to understand the structure of Lie algebras.

If V is a representation of a Lie algebra L over a field F , then we can fix
a basis of V and write the linear transformations of V afforded by elements
of L as matrices. Alternatively, we can specify a representation by giving a
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homomorphism L → gl(n, F ). In this setup, a representation is sometimes
called a matrix representation.

Suppose that ϕ : L → gl(V ) is a representation. By Exercise 1.6, the image
of ϕ is a Lie subalgebra of gl(V ) and the kernel of ϕ is an ideal of L. By working
with ϕ(L), we will in general lose some information about L. If, however, the
kernel is zero, or equivalently the map ϕ is one-to-one, then no information is
lost. In this case, the representation is said to be faithful.

7.2 Examples of Representations

(1) We have already encountered the adjoint map

ad : L → gl(L), (adx)y = [x, y].

This is a Lie homomorphism (see §1.4) so ad provides a representation of L,
with V = L. This representation is known as the adjoint representation.
It occurs very often and encapsulates much of the structure of L. We saw
in §1.4 that the kernel of the adjoint representation is Z(L). Hence the
adjoint representation is faithful precisely when the centre of L is zero. For
example, this happens when L = sl(2,C).

Exercise 7.1

Consider the adjoint representation of sl(2,C). Show that with re-
spect to the basis (h, e, f) given in Exercise 1.12, adh has matrix⎛

⎝0 0 0
0 2 0
0 0 −2

⎞
⎠ .

Find the matrices representing ad e and ad f .

(2) Suppose that L is a Lie subalgebra of gl(V ). The inclusion map L → gl(V )
is trivially a Lie algebra homomorphism; for example, because it is the
restriction to of the identity map on gl(V ) to L. The corresponding repre-
sentation is known as the natural representation of L.

We have seen several such representations, mostly in the form of matrices,
for example, sl(n,C), or the upper triangular matrices b(n,C). The Lie
algebras considered in Exercise 3.3 all have natural representations. The
natural representation is always faithful.
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(3) Every Lie algebra has a trivial representation. To define this representa-
tion, take V = F and and define ϕ(x) = 0 for all x ∈ L. This representation
is never faithful for non-zero L.

(4) The Lie algebra R3
∧ introduced in §1.2 has a trivial centre, and so its adjoint

representation is a 3-dimensional faithful representation. In Exercise 1.15
you were asked to show that R3

∧ is isomorphic to a subalgebra of gl(R3); this
gives another 3-dimensional representation. In fact, these representations
are in a sense the same; we make this sense more precise in §7.6 below.

7.3 Modules for Lie Algebras

Definition 7.2

Suppose that L is a Lie algebra over a field F . A Lie module for L, or alter-
natively an L-module, is a finite-dimensional F -vector space V together with a
map

L × V → V (x, v) �→ x · v

satisfying the conditions

(λx + µy) · v = λ(x · v) + µ(y · v), (M1)

x · (λv + µw) = λ(x · v) + µ(x · w), (M2)

[x, y] · v = x · (y · v) − y · (x · v), (M3)

for all x, y ∈ L, v, w ∈ V , and λ, µ ∈ F .

For example, if V is a vector space and L is a Lie subalgebra of gl(V ), then
one can readily verify that V is an L-module, where x · v is the image of v

under the linear map x.
Note that (M1) and (M2) are equivalent to saying that the map (x, v) �→ x·v

is bilinear. Condition (M2) implies that for each x ∈ L the map v �→ x · v is
a linear endomorphism of V , so elements of L act on V by linear maps. The
significance of (M3) will be revealed shortly.

Lie modules and representations are two different ways to describe the same
structures. Given a representation ϕ : L → gl(V ), we may make V an L-module
by defining

x · v := ϕ(x)(v) for x ∈ L, v ∈ V .

To show that this works, we must check that the axioms for an L-module are
satisfied.
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(M1) We have

(λx + µy) · v = ϕ(λx + µy)(v) = (λϕ(x) + µϕ(y))(v)

as ϕ is linear. By the definition of addition and scalar multiplication of
linear maps, this is λϕ(x)(v) + µϕ(y)(v) = λ(x · v) + µ(y · v).

(M2) Condition M2 is similarly verified:

x·(λv+µw) = ϕ(x)(λv+µw) = λϕ(x)(v)+µϕ(x)(w) = λ(x·v)+µ(x·w).

(M3) By our definition and because ϕ is a Lie homomorphism, we have

[x, y] · v = ϕ([x, y])(v) = [ϕ(x), ϕ(y)](v).

As the Lie bracket in gl(V ) is the commutator of linear maps, this equals

ϕ(x)
(
ϕ(y)(v)

)− ϕ(y)
(
ϕ(x)(v)

)
= x · (y · v) − y · (x · v).

Conversely, if V is an L-module, then we can regard V as a representation
of L. Namely, define

ϕ : L → gl(V )

by letting ϕ(x) be the linear map v �→ x · v.

Exercise 7.2

Check that ϕ is a Lie algebra homomorphism.

Remark 7.3

It would be reasonable to ask at this point why we have introduced both rep-
resentations and L-modules. The reason is that both approaches have their
advantages, and sometimes one approach seems more natural than the other.
For modules, the notation is easier, and some of the concepts can appear more
natural. On the other hand, having an explicit homomorphism to work with
can be helpful when we are more interested in the Lie algebra than in the vector
space on which it acts.

A similar situation arises when we have a group acting on a set. Here one
can choose between the equivalent languages of G-actions and permutation
representations. Again, both have their advantages.
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7.4 Submodules and Factor Modules

Suppose that V is a Lie module for the Lie algebra L. A submodule of V

is a subspace W of V which is invariant under the action of L. That is, for
each x ∈ L and for each w ∈ W , we have x · w ∈ W . In the language of
representations, submodules are known as subrepresentations.

Example 7.4

Let L be a Lie algebra. We may make L into an L-module via the adjoint
representation. The submodules of L are exactly the ideals of L. (You are
asked to check this in Exercise 7.5 below.)

Example 7.5

Let L = b(n, F ) be the Lie algebra of n×n upper triangular matrices and let V

be the natural L-module, so by definition V = Fn and the action of L is given
by applying matrices to column vectors.

Let e1, . . . , en be the standard basis of Fn. For 1 ≤ r ≤ n, let Wr =
Span{e1, . . . , er}. Exercise 7.6 below asks you to show that Wr is a submodule
of V .

Example 7.6

Let L be a solvable Lie algebra. Suppose that ϕ : L → gl(V ) is a representation
of L. As ϕ is a homomorphism, im ϕ is a solvable subalgebra of gl(V ). Propo-
sition 6.6 (the main step in the proof of Lie’s Theorem) implies that V has a
1-dimensional subrepresentation.

Suppose that W is a submodule of the L-module V . We can give the quotient
vector space W/V the structure of an L-module by setting

x · (v + W ) := (x · v) + W for x ∈ L and v ∈ V .

We call this module the quotient or factor module V/W .
As usual, we must first check that the action of L is well-defined. Suppose

that v+W = v′+W . Then (x·v)+W −(x·v′)+W = x·(v−v′)+W = 0+W as
v −v′ ∈ W and W is L-invariant. We should also check that the action satisfies
the three conditions (M1), (M2) and (M3). We leave this to the reader. She
will see that each property follows easily from the corresponding property of
the L-module V .
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Example 7.7

Suppose that I is an ideal of the Lie algebra L. We have seen that I is a submod-
ule of L when L is considered as an L-module via the adjoint representation.
The factor module L/I becomes an L-module via

x · (y + I) := (adx)(y) + I = [x, y] + I.

We can interpret this in a different way. We know that L/I is also a Lie algebra
(see §2.2), with the Lie bracket given by

[x + I, y + I] = [x, y] + I.

So, regarded as an L/I-module, the factor module L/I is the adjoint represen-
tation of L/I on itself.

Example 7.8

Let L = b(n, F ) and V = Fn as in Example 7.5 above. Fix r between 1 and n

and let W = Vr be the r-dimensional submodule defined in the example.
Let x ∈ L have matrix X with respect to the standard basis. The matrix

for the action of x on W with respect to the basis e1, . . . , er is obtained by
taking the upper left r × r block of X. Moreover, the matrix for the action of x

on the quotient space V/W with respect to the basis er+1 + W, . . . , en + W is
obtained by taking the lower right n − r × n − r block of A:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1r

0 a22 . . . a2r

...
...

. . .
...

0 0 . . . arr

�

0

ar r+1 . . . arn

...
. . .

...
0 . . . ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As usual, � marks a block of unimportant entries.

7.5 Irreducible and Indecomposable Modules

The Lie module V is said to be irreducible, or simple, if it is non-zero and it
has no submodules other than {0} and V .
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Suppose that V is a non-zero L-module. We may find an irreducible sub-
module S of V by taking any non-zero submodule of V of minimal dimension.
(If V is irreducible, then we just take V itself.) The quotient module V/S will
itself have an irreducible submodule, S′ and so on. In a sense V is made up of
the simple modules S, S′, . . .. One says that irreducible modules are the building
blocks for all finite-dimensional modules.

Example 7.9

(1) If V is 1-dimensional, then V is irreducible. For example, the trivial repre-
sentation is always irreducible.

(2) If L is a simple Lie algebra, then L viewed as an L-module via the ad-
joint representation is irreducible. For example sl(2,C) is irreducible as an
sl(2,C)-module.

(3) If L is a complex solvable Lie algebra then it follows from Example 7.6 that
all the irreducible representations of L are 1-dimensional.

Given a module V , how can one determine whether or not it is irreducible?
One useful criterion is given in the following exercise.

Exercise 7.3

Show that V is irreducible if and only if for any non-zero v ∈ V the
submodule generated by v contains all elements of V . The submodule
generated by v is defined to be the subspace of V spanned by all elements
of the form

x1 · (x2 · . . . · (xm · v) . . .),

where x1, . . . , xm ∈ L.

Another criterion that is sometimes useful is given in Exercise 7.13 at the
end of this chapter.

If V is an L-module such that V = U ⊕ W , where both U and W are
L-submodules of V , we say that V is the direct sum of the L-module U and
W . The module V is said to be indecomposable if there are no non-zero sub-
modules U and W such that V = U ⊕ W . Clearly an irreducible module is
indecomposable. The converse does not usually hold: See the second example
below.

The L-module V is completely reducible if it can be written as a direct sum
of irreducible L-modules; that is, V = S1 ⊕ S2 ⊕ . . . ⊕ Sk, where each Si is an
irreducible L-module.
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Example 7.10

(1) Let F be a field and let L = d(n, F ) be the subalgebra of gl(n, F ) consisting
of diagonal matrices. The natural module V = Fn is completely reducible.
If Si = Span {ei}, then Si is a 1-dimensional simple submodule of V and
V = S1 ⊕ . . . ⊕ Sn. As the Si are the weight spaces for L, we can view this
as a reformulation of Example 5.2 in Chapter 5.

(2) If L = b(n, F ) where F is a field, then the natural module V = Fn is
indecomposable: See Exercise 7.6 below. Note, however, that provided n ≥
2, V is not irreducible since Span {e1} is a non-trivial submodule. So V is
not completely reducible.

7.6 Homomorphisms

Let L be a Lie algebra and let V and W be L-modules. An L-module homo-
morphism or Lie homomorphism from V to W is a linear map θ : V → W such
that

θ(x · v) = x · θ(w) for all v ∈ V, w ∈ W , and x ∈ L.

An isomorphism is a bijective L-module homomorphism.
Let ϕV : L → gl(V ) and ϕW : L → gl(W ) be the representations cor-

responding to V and W . In the language of representations, the condition
becomes

θ ◦ ϕV = ϕW ◦ θ.

Homomorphisms are in particular linear maps, so we can talk about the kernel
and image of an L-module homomorphism. And as expected there are the
following isomorphism theorems for L-modules.

Theorem 7.11 (Isomorphism Theorems)

(a) Let θ : V → W be a homomorphism of L-modules. Then ker θ is an L-
submodule of V and im θ is an L-submodule of W , and there is an isomor-
phism of L-modules,

V/ ker θ ∼= im θ.

(b) If U and W are submodules of V , then U + W and U ∩ W are submodules
of V and (U + W )/W ∼= U/U ∩ W.

(c) If U and W are submodules of V such that U ⊆ W , then W/U is a
submodule of V/U and the factor module (V/U)/(W/U) is isomorphic
to V/U .
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Exercise 7.4

Prove the isomorphism theorems for modules by adapting the argument
used to prove the corresponding theorems for Lie algebras (see Theo-
rem 2.2).

Finally, if U is a submodule of V , then there is a bijective correspondence
between the submodules of V/U and the submodules of V containing U . Again
this is precisely analogous to the corresponding result for Lie algebras, given
in §2.3.

Example 7.12

Let L be the 1-dimensional abelian Lie algebra spanned, say, by x. We may
define a representation of L on a vector space V by mapping x to any element of
gl(V ). Let W be another vector space. The representations of L corresponding
to linear maps f : V → V and g : W → W are isomorphic if and only if there
is a vector space isomorphism θ : V → W such that θf = gθ, or equivalently
θfθ−1 = g. Thus the representations are isomorphic if and only if there are
bases of V and W in which f and g are represented by the same matrix.

For example, the 2-dimensional matrix representations defined by

x �→
(

3 −2
1 0

)
and x �→

(
1 0
0 2

)

are isomorphic because the two matrices are conjugate (as may be checked by
diagonalising the first). For a more substantial example, see Exercise 7.9.

7.7 Schur’s Lemma

One of the best ways to understand the structure of a module for a Lie algebra
is to look at the homomorphisms between it and other modules. It is natural
to begin by looking at the homomorphisms between irreducible modules.

Suppose that S and T are irreducible Lie modules and that θ : S → T is a
non-zero module homomorphism. Then im θ is a non-zero submodule of T , so
im θ = T . Similarly, ker θ is a proper submodule of S, so ker θ = 0. It follows
that θ is an isomorphism from S to T , so there are no non-zero homomorphisms
between non-isomorphic irreducible modules.

Now we consider the homomorphism from an irreducible module to itself.
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Lemma 7.13 (Schur’s Lemma)

Let L be a complex Lie algebra and let S be a finite-dimensional irreducible
L-module. A map θ : S → S is an L-module homomorphism if and only if θ

is a scalar multiple of the identity transformation; that is, θ = λ1V for some
λ ∈ C

Proof

The “if” direction should be clear. For the “only if” direction, suppose that
θ : S → S is an L-module homomorphism. Then θ is, in particular, a linear
map of a complex vector space, and so it must have an eigenvalue, say λ. Now
θ−λ1V is also an L-module homomorphism. The kernel of this map contains a
λ-eigenvector for θ, and so it is a non-zero submodule of S. As S is irreducible,
S = ker(θ − λ1V ); that is, θ = λ1V .

Schur’s Lemma has many applications, for example the following.

Lemma 7.14

Let L be a complex Lie algebra and let V be an irreducible L-module. If
z ∈ Z(L), then z acts by scalar multiplication on V ; that is, there is some
λ ∈ C such that z · v = λv for all v ∈ V .

Proof

The map v �→ z · v is an L-module homomorphism, for if x ∈ L then

z · (x · v) = x · (z · v) + [z, x] · v = x · (z · v)

since [z, x] = 0. Now apply Schur’s Lemma.

A corollary of the previous lemma is that the simple modules for an Abelian
Lie algebra over C are 1-dimensional. We deduce this as follows. Suppose that
V is a simple module for the abelian Lie algebra L. By this lemma, every
element of L acts by scalar multiplication on V , so any non-zero v ∈ V spans
a 1-dimensional submodule of V . As V is irreducible, this submodule must be
all of V .

Remark 7.15

In Chapters 5 and 6, we worked with the hypothesis that a Lie algebra L was a
subalgebra of gl(V ) for some vector space V . In other words, we were assuming
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that L had a faithful representation on V . Although we shall not prove it in
this book, it is a theorem (Ado’s Theorem) that every Lie algebra has a faithful
representation.

If L is a Lie algebra and ϕ : L → gl(V ) is a representation (not necessarily
faithful), then we can apply the results of Chapters 5 and 6 to the subalgebra
im ϕ ⊆ gl(V ). In particular, it makes sense to talk about weights and weight
spaces for L.

EXERCISES

7.5. Let L be a finite-dimensional Lie algebra. Let V be L with the L-
module structure on V given by the adjoint representation of L.
Show that the submodules of V are precisely the ideals of L.

7.6. Let F be a field and let L = b(n, F ) and V = Fn.

(i) Check that V is an L-module, where the structure is given by the
natural representation; that is, by applying matrices to column
vectors.

(ii) Let e1, . . . , en be the standard basis of Fn. For 1 ≤ r ≤ n, let
Wr = Span{e1, . . . , er}. Prove that Wr is a submodule of V .

(iii) Show that every submodule of V is equal to one of the Wr.
Deduce that each Wr is indecomposable and that if n ≥ 2 then
V is not completely reducible as an L-module.

7.7. This exercise generalises the remarks made in Example 7.8. Let L

be a Lie algebra, and let V be a finite-dimensional L-module with a
submodule W of dimension m. By taking a basis of V which contains
a basis of W , show that V has a basis in which the action of every
x ∈ L is represented by a “block matrix”(

X1 X2

0 X3

)
,

where X1 is a square matrix of size m × m. Show that X1 is the
matrix of x restricted to W and that X3 represents the action of x

on the factor module V/W .

7.8.† Let L be the Heisenberg algebra with basis f, g, z such that [f, g] = z

and z is central. Show that L does not have a faithful finite-
dimensional irreducible representation.
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7.9.† Let L be the 2-dimensional complex non-abelian Lie algebra found
in §3.1. We showed that L has a basis x, y such that [x, y] = x. Check
that we may define a representation of L on C2 by setting

ϕ(x) =
(

0 1
0 0

)
, ϕ(y) =

(−1 1
0 0

)
.

Show that this representation is isomorphic to the adjoint represen-
tation of L on itself.

7.10.� We now attempt to classify all 2-dimensional complex representa-
tions of the two-dimensional non-abelian Lie algebra L. (The nota-
tion is as in the previous exercise.)

(i) Suppose that V is a 2-dimensional representation of L which is
not faithful. Show that then x acts as zero on V and that V is
completely described by the action of y. Deduce that there are
as many such representations as there are similarity classes of
2 × 2 complex matrices.

(ii) Suppose that V is a faithful two-dimensional representation of
L. We know from Example 7.9(3) that V has a 1-dimensional
irreducible submodule spanned, say, by v. Extend v to a basis
of V , say by w.

(a) Show that the matrix of x with respect to this basis is of the
form (

0 b

0 0

)
,

where b is non-zero. By replacing v with bv we may assume
from now on that b = 1.

(b) Show that the matrix of y with respect to the basis bv, w is
of the form (

λ c

0 µ

)
,

where µ − λ = 1.

(c) Conversely, check that letting y act as such a matrix really
does define a 2-dimensional faithful representation of L.

(d) Show that if λ is non-zero then there is a basis of V extend-
ing v in which y is represented by a diagonal matrix. Hence
show that two representations in which y does not kill the
submodule x(V ) are isomorphic if and only if the matrices
representing y have the same trace.
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(e) Classify up to isomorphism all representations in which y

acts as zero on the submodule x(V ).

(iii) If V is a 2-dimensional module for L, then so is its dual mod-
ule V � (dual modules are defined in Exercise 7.12 below). Where
does it appear in the classification?

7.11. Let L be a Lie algebra over a field F . Suppose that ϕ : L → gl(1, F )
is a 1-dimensional representation of L. Show that ϕ(L′) = 0.

Show that any representation of L/L′ can be viewed as a represen-
tation of L on which L′ acts trivially.

When F = C, show that if L′ �= L then L has infinitely many
non-isomorphic 1-dimensional modules, but if L′ = L then the only
1-dimensional representation of L is the trivial representation.

7.12. Direct sums are not the only way in which we can construct new
modules from old.

(i) Let V be a module for the Lie algebra L. Show that we may
make the dual space V � into an L-module by defining

(x · θ)(v) = −θ(x · v) for x ∈ L, θ ∈ V �, v ∈ V .

Show that the adjoint representation of R3
∧ is self-dual. Prove

more generally that V is isomorphic to V � if and only if there is
a basis of V in which the matrices representing the action of L

are all skew-symmetric.

(iii) Let V and W be L-modules. Show that Hom(V, W ), the vector
space of linear maps from V to W , may be made into an L-
module by defining

(x · θ)(v) = x · (θ(v)) − θ(x · v)

for x ∈ L, θ ∈ Hom(V, W ), and v ∈ V . Show that the linear
map θ ∈ Hom(V, W ) is an L-module homomorphism if and only
if x · θ = 0 for all x ∈ L.

7.13.† Let L be a Lie algebra and let A be an abelian subalgebra of L.
Suppose that the L-module V decomposes as a direct sum of weight
spaces for A. Show that any L-submodule of V has a basis of common
eigenvectors for A.

(This exercise gives a partial converse to the Invariance Lemma
(Lemma 5.5). Recall that this lemma states that if A is an ideal
of L, then any weight space for A is L-invariant.)



8
Representations of sl(2,C)

In this chapter, we study the finite-dimensional irreducible representations of
sl(2,C). In doing this, we shall see, in a stripped-down form, many of the ideas
needed to study representations of an arbitrary semisimple Lie algebra. Later
we will see that representations of sl(2,C) control a large part of the structure
of all semisimple Lie algebras.

We shall use the basis of sl(2,C) introduced in Exercise 1.12 throughout
this chapter. Recall that we set

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

8.1 The Modules Vd

We begin by constructing a family of irreducible representations of sl(2,C).
Consider the vector space C[X, Y ] of polynomials in two variables X, Y

with complex coefficients. For each integer d ≥ 0, let Vd be the subspace of
homogeneous polynomials in X and Y of degree d. So V0 is the 1-dimensional
vector space of constant polynomials, and for d ≥ 1, the space Vd has as a
basis the monomials Xd, Xd−1Y, . . . , XY d−1, Y d. This basis shows that Vd has
dimension d + 1 as a C-vector space.

We now make Vd into an sl(2,C)-module by specifying a Lie algebra ho-
momorphism ϕ : sl(2,C) → gl(Vd). Since sl(2,C) is linearly spanned by the
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matrices e, f , h, the map ϕ will be determined once we have specified ϕ(e),
ϕ(f), ϕ(h).

We let
ϕ(e) := X

∂

∂Y
;

that is, ϕ(e) is the linear map which first differentiates a polynomial with
respect to Y and then multiplies it with X. This preserves the degrees of
polynomials and so maps Vd into Vd. Similarly, we let

ϕ(f) := Y
∂

∂X
.

Finally, we let

ϕ(h) := X
∂

∂X
− Y

∂

∂Y
.

Notice that
ϕ(h)(XaY b) = (a − b)XaY b,

so h acts diagonally on Vd with respect to our chosen basis.

Theorem 8.1

With these definitions, ϕ is a representation of sl(2,C).

Proof

By construction, ϕ is linear. Thus, all we have to check is that ϕ preserves
Lie brackets. By linearity, it is enough to check this on the basis elements of
sl(2,C), so there are just three equations we need to verify.

(1) We begin by showing [ϕ(e), ϕ(f)] = ϕ([e, f ]) = ϕ(h). If we apply the left-
hand side to a basis vector XaY b with a, b ≥ 1 and a + b = d, we get

[ϕ(e), ϕ(f)](XaY b) = ϕ(e)
(
ϕ(f)(XaY b)

)− ϕ(f)
(
ϕ(e)(XaY b)

)
= ϕ(e)

(
aXa−1Y b+1)− ϕ(f)

(
bXa+1Y b−1)

= a(b + 1)XaY b − b(a + 1)XaY b

= (a − b)XaY b.

This is the same as ϕ(h)(XaY b). We check separately the action on Xd,

[ϕ(e), ϕ(f)](Xd) = ϕ(e)
(
ϕ(f)(Xd)

)− ϕ(f)
(
ϕ(e)(Xd)

)
= ϕ(e)

(
dXd−1Y

)− ϕ(f)(0) = dXd,

which is the same as ϕ(h)(Xd). Similarly, one checks the action on Y d, so
[ϕ(e), ϕ(f)] and ϕ(h) agree on a basis of Vd and so are the same linear map.



8.1 The Modules Vd 69

(2) We also need [ϕ(h), ϕ(e)] = ϕ([h, e]) = ϕ(2e) = 2ϕ(e). Again we can prove
this by applying the maps to basis vectors of Vd. For b ≥ 1, we get

[ϕ(h), ϕ(e)](XaY b) = ϕ(h)
(
ϕ(e)(XaY b)

)− ϕ(e)
(
ϕ(h)(XaY b)

)
= ϕ(h)

(
bXa+1Y b−1)− ϕ(e)

(
(a − b)XaY b

)
= b ((a + 1) − (b − 1)) Xa+1Y b−1 − (a − b)bXa+1Y b−1

= 2bXa+1Y b−1.

This is the same as 2ϕ(e)(XaY b). If b = 0 and a = d, then a separate
verification is needed. We leave this to the reader.

(3) Similarly, one can check that [ϕ(h), ϕ(f)] = −2ϕ(f). Again, we leave this
to the reader.

8.1.1 Matrix Interpretation

It can be useful to know the matrices that correspond to the action of e, f, h

on Vd; these give the matrix representation corresponding to ϕ.
As usual, we take the basis Xd, Xd−1Y, . . . , Y d of Vd. The calculations in

the proof of Theorem 8.1 show that the matrix of ϕ(e) with respect to this
basis is ⎛

⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . d

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠ ,

the matrix of ϕ(f) is ⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0
d 0 . . . 0 0
0 d − 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

and ϕ(h) is diagonal: ⎛
⎜⎜⎜⎜⎜⎝

d 0 . . . 0 0
0 d − 2 . . . 0 0
...

...
. . .

...
...

0 0 . . . −d + 2 0
0 0 . . . 0 −d

⎞
⎟⎟⎟⎟⎟⎠ .
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where the diagonal entries are the numbers d − 2k, where k = 0, 1, . . . , d. By
explicitly computing the commutators of these matrices, we can give another
(but equivalent) way to prove that ϕ is a representation of sl(2,C).

Another way to represent the action of h, e, f is to draw a diagram like

•
d

��

0

��

−d

•
d−1

��

1

��

−d+2

2

�� . . .

3
�� •

2
��

d−2

��

d−4

•
1

��

d−1

��

d−2

•
0

��

d

��

d

Y d XY d−1 . . . Xd−2Y Xd−1Y Xd

where loops represent the action of h, arrows to the right represent the action
of e, and arrows to the left represent the action of f .

8.1.2 Irreducibility

One virtue of the diagram above is that it makes it almost obvious that the
sl(2,C)-submodule of Vd generated by any particular basis element XaY b con-
tains all the basis elements and so is all of Vd.

Exercise 8.1

Check this assertion.

A possible disadvantage of our diagram is that it may blind us to the exis-
tence of the many other vectors in Vd, which, while linear combinations of the
basis vectors, are not basis vectors themselves.

Theorem 8.2

The sl(2,C)-module Vd is irreducible.

Proof

Suppose U is a non-zero sl(2,C)-submodule of Vd. Then h ·u ∈ U for all u ∈ U .
Since h acts diagonalisably on Vd, it also acts diagonalisably on U , so there
is an eigenvector of h which lies in U . We have seen that all eigenspaces of h

on Vd are one-dimensional, and each eigenspace is spanned by some monomial
XaY b, so the submodule U must contain some monomial, and by the exercise
above, U contains a basis for Vd. Hence U = Vd.
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8.2 Classifying the Irreducible sl(2, C)-Modules

It is clear that for different d the sl(2,C)-modules Vd cannot be isomorphic,
as they have different dimensions. In this section, we prove that any finite-
dimensional irreducible sl(2,C)-module is isomorphic to one of the Vd. Our
strategy will be to look at the eigenvectors and eigenvalues of h. For brevity,
we shall write e2 · v rather than e · (e · v), and so on.

Lemma 8.3

Suppose that V is an sl(2,C)-module and v ∈ V is an eigenvector of h with
eigenvalue λ.

(i) Either e · v = 0 or e · v is an eigenvector of h with eigenvalue λ + 2.

(ii) Either f · v = 0 or f · v is an eigenvector of h with eigenvalue λ − 2.

Proof

As V is a representation of sl(2,C), we have

h · (e · v) = e · (h · v) + [h, e] · v = e · (λv) + 2e · v = (λ + 2)e · v.

The calculation for f · v is similar.

Lemma 8.4

Let V be a finite-dimensional sl(2,C)-module. Then V contains an eigenvec-
tor w for h such that e · w = 0.

Proof

As we work over C, the linear map h : V → V has at least one eigenvalue and
so at least one eigenvector. Let h · v = λv. Consider the vectors

v, e · v, e2 · v, . . . .

If they are non-zero, then by Lemma 8.3 they form an infinite sequence of h-
eigenvectors with distinct eigenvalues. Eigenvectors with different eigenvalues
are linearly independent, so V would contain infinitely many linearly indepen-
dent vectors, a contradiction.

Therefore there exists k ≥ 0 such that ek · v �= 0 and ek+1 · v = 0. If we set
w = ek · v, then h · w = (λ + 2k)w and e · w = 0.
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We are now ready to prove our main result.

Theorem 8.5

If V is a finite-dimensional irreducible sl(2,C)-module, then V is isomorphic
to one of the Vd.

Proof

By Lemma 8.4, V has an h-eigenvector w such that e · w = 0. Suppose that
h · w = λw. Consider the sequence of vectors

w, f · w, f2 · w, . . . .

By the proof of Lemma 8.4, there exists d ≥ 0 such that fd · w �= 0 and
fd+1 · w = 0.

Step 1: We claim that the vectors w, f · w, . . . , fd · w form a basis for a
submodule of V . They are linearly independent because, by Lemma 8.3, they
are eigenvectors for h with distinct eigenvalues. By construction, the span of
w, f · w, . . . , fd · w is invariant under h and f . To show that it is invariant
under e, we shall prove by induction on k that

e · (fk · w) ∈ Span{f j · w : 0 ≤ j < k}.

If k = 0, then we know that e · w = 0. For the inductive step, note that

e · (fk · w) = (fe + h) · (fk−1 · w).

By the inductive hypothesis, e·(fk−1 ·w) is in the span of the f j ·w for j < k−1
and therefore fefk−1 ·w is in the span of all f j ·w for j < k. Moreover hfk−1 ·w
is a scalar multiple of fk−1 · w. This gives the inductive step.

Now, since V is irreducible, the submodule spanned by the fk · w for 0 ≤
k ≤ d is equal to V .

Step 2: In this step, we shall show that λ = d. The matrix of h with respect
to the basis w, f · w, . . . , fd · w of V is diagonal, with trace

λ + (λ − 2) + . . . + (λ − 2d) = (d + 1)λ − (d + 1)d.

Since [e, f ] = h, the matrix of h is equal to the commutator of the matrices of
e and f , so it has trace zero and λ = d.
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Step 3: To finish, we produce an explicit isomorphism V ∼= Vd. As we have
seen, V has basis {w, f · w, . . . , fd · w}. Furthermore, Vd has basis

{Xd, f · Xd, . . . , fd · Xd},

where fk ·Xd is a scalar multiple of Xd−kY k. Moreover, the eigenvalue of h on
fk · w is the same as the eigenvalue of h on fk · Xd. Clearly, to have a homo-
morphism, we must have a map which takes h-eigenvectors to h-eigenvectors
for the same eigenvalue. So we may set

ψ(w) = Xd

and then we must define ψ by

ψ(fk · w) := fk · Xd.

This defines a vector space isomorphism, which commutes with the actions of
f and h. To show that it also commutes with the action of e, we use induction
on k and a method similar to Step 1. Explicitly, for k = 0 we have ψ(e · w) = 0
and eψ(w) = e · Xd = 0. For the inductive step,

ψ(efk · w) = ψ((fe + h) · (fk−1 · w)) = f · ψ(efk−1 · w) + h · ψ(fk−1 · w)

using that ψ commutes with f and h. We use the inductive hypothesis to take
e out and obtain that the expression can be written as

(fe + h) · ψ(fk−1 · w) = ef · ψ(fk−1 · w) = e · ψ(fk · w).

Corollary 8.6

If V is a finite-dimensional representation of sl(2,C) and w ∈ V is an h-
eigenvector such that e ·w = 0, then h ·w = dw for some non-negative integer d

and the submodule of V generated by w is isomorphic to Vd.

Proof

Step 1 in the previous proof shows that for some d ≥ 0 the vectors w, f ·
w, . . . , fd ·w span a submodule of V . Now apply steps 2 and 3 to this submodule
to get the required conclusions.

A vector v of the type considered in this corollary is known as a highest-
weight vector. If d is the associated eigenvalue of h, then d is said to be a highest
weight. (See §15.1 for a more general setting.)
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8.3 Weyl’s Theorem

In Exercise 7.6, we gave an example of a module for a Lie algebra that was not
completely reducible; that is, it could not be written as a direct sum of irre-
ducible submodules. Finite-dimensional representations of complex semisimple
Lie algebras however are much better behaved.

Theorem 8.7 (Weyl’s Theorem)

Let L be a complex semisimple Lie algebra. Every finite-dimensional represen-
tation of L is completely reducible.

The proof of Weyl’s Theorem is fairly long, so we defer it to Appendix C.
Weyl’s Theorem tells us that to understand the finite-dimensional representa-
tions of a semisimple Lie algebra it is sufficient to understand its irreducible
representations. We give an introduction to this topic in §15.1.

In the main part of this book, we shall only need to apply Weyl’s Theorem
to representations of sl(2,C), in which case a somewhat easier proof, exploiting
properties of highest-weight vectors, is possible. Exercise 8.6 in this chapter
does the groundwork, and the proof is finished in Exercise 9.15. (Both of these
exercises have solutions in Appendix E.)

EXERCISES

8.2. Find explicit isomorphisms between

(i) the trivial representation of sl(2,C) and V0;

(ii) the natural representation of sl(2,C) and V1;

(iii) the adjoint representation of sl(2,C) and V2.

8.3. Show that the subalgebra of sl(3,C) consisting of matrices of the
form ⎛

⎝� � 0
� � 0
0 0 0

⎞
⎠

is isomorphic to sl(2,C). We may therefore regard sl(3,C) as a mod-
ule for sl(2,C), with the action given by x · y = [x, y] for x ∈ sl(2,C)
and y ∈ sl(3,C). Show that as an sl(2,C)-module

sl(3,C) ∼= V2 ⊕ V1 ⊕ V1 ⊕ V0.
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8.4. Suppose that V is a finite-dimensional module for sl(2,C). Show, by
using Weyl’s Theorem and the classification of irreducible represen-
tations in this chapter, that V is determined up to isomorphism by
the eigenvalues of h. In particular, prove that if V is the direct sum
of k irreducible modules, then

k = dimW0 + dimW1,

where Wr = {w ∈ W : h · w = rw}.

8.5. Let V be an sl(2,C)-module, not necessarily finite-dimensional. Sup-
pose w ∈ V is a highest-weight vector of weight λ; that is, e · w = 0
and h · w = λw for some λ ∈ C, and w �= 0. Show that

(i) for k = 1, 2, . . . we have e · (fk · w) = k(λ − k + 1)fk−1 · w, and

(ii) ekfk · w = (k!)2
(
λ
k

)
w.

Deduce that if
(
λ
k

) �= 0 then the set of all f j · w for 0 ≤ j ≤ k

is linearly independent. Hence show that if V is finite-dimensional,
then λ must be a non-negative integer.

8.6.† Let M be a finite-dimensional L-module. Define a linear map c :
M −→ M by

c(v) =
(

ef + fe +
1
2
h2
)

· v for v ∈ V .

(i) Show that c is a homomorphism of sl(2,C)-modules. Hint : For
example, to show that c commutes with the action of e, show
that (efe + fe2 + 1

2h2e) · v and (e2f + efe + 1
2eh2) · v are both

equal to (2efe + 1
2heh) · v.

(ii) By Schur’s Lemma, c must act as a scalar, say λd, on the ir-
reducible module Vd. Show that λd = 1

2d(d + 2), and deduce
that d is determined by λd.

(iii) Let λ1, . . . , λr be the distinct eigenvalues of c acting on M . Let
the primary decomposition of M be

M =
r⊕

i=1

ker(c − λi1M )mi .

Show that the summands are sl(2,C)-submodules.

So, to express the module as a direct sum of simple modules, we
therefore may assume that M has just one generalised eigenspace,
where c has, say, eigenvalue λ.
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(iv) Let U be an irreducible submodule of M . Suppose that U is
isomorphic to Vd. Show by considering the action of c on Vd

that λ = 1
2d(d + 2) and hence that any irreducible submodule

of M is isomorphic to Vd.

(v) Show more generally that if N is a submodule of M , then any
irreducible submodule of M/N is isomorphic to Vd.

The linear map c is known as the Casimir operator. The following
exercise gives an indication of how it was first discovered; it will
appear again in the proof of Weyl’s Theorem (see Appendix B).

8.7. Exercise 1.14 gives a way to embed the real Lie algebra R3
∧ into

sl(2,C). With the given solution, we would take

ψ(x) =
(

0 1/2
−1/2 0

)
, ψ(y) =

(
0 −i/2

−i/2 0

)
, ψ(z) =

(−i/2 0
0 i/2

)

Check that ψ(x)2 + ψ(y)2 + ψ(z)2 = −3/4I, where I is the 2 × 2
identity matrix. By expressing x, y, z in terms of e, f , h, recover the
description of the Casimir operator given above.

The interested reader might like to look up “angular momentum” or
“Pauli matrices” in a book on quantum mechanics to see the physical
interpretation of the Casimir operator.
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Cartan’s Criteria

How can one decide whether a complex Lie algebra is semisimple? Working
straight from the definition, one would have to test every single ideal for solv-
ability, seemingly a daunting task. In this chapter, we describe a practical way
to decide whether a Lie algebra is semisimple or, at the other extreme, solvable,
by looking at the traces of linear maps.

We have already seen examples of the usefulness of taking traces. For ex-
ample, we made an essential use of the trace map when proving the Invariance
Lemma (Lemma 5.5). An important identity satisfied by trace is

tr ([a, b]c) = tr (a[b, c])

for linear transformations a, b, c of a vector space. This holds because tr b(ac) =
tr(ac)b; we shall see its usefulness in the course of this chapter. Furthermore,
note that a nilpotent linear transformation has trace zero.

From now on, we work entirely over the complex numbers.

9.1 Jordan Decomposition

Working over the complex numbers allows us to consider the Jordan normal
form of linear transformations. We use this to define for each linear transforma-
tion x of a complex vector space V a unique Jordan decomposition. The Jordan
decomposition of x is the unique expression of x as a sum x = d + n where
d : V → V is diagonalisable, n : V → V is nilpotent, and d and n commute.
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Very often, a diagonalisable linear map of a complex vector space is also called
semisimple.

We review the Jordan normal form and prove the existence and uniqueness
of the Jordan decomposition in Appendix A. The lemma below is also proved
in this Appendix; see §16.6.

Lemma 9.1

Let x be a linear transformation of the complex vector space V . Suppose that x

has Jordan decomposition x = d + n, where d is diagonalisable, n is nilpotent,
and d and n commute.

(a) There is a polynomial p(X) ∈ C[X] such that p(x) = d.

(b) Fix a basis of V in which d is diagonal. Let d̄ be the linear map whose
matrix with respect to this basis is the complex conjugate of the matrix
of d. There is a polynomial q(X) ∈ C[X] such that q(x) = d̄.

Using Jordan decomposition, we can give a concise reinterpretation of two
earlier results (see Exercise 1.17 and Lemma 5.1).

Exercise 9.1

Let V be a vector space, and suppose that x ∈ gl(V ) has Jordan decom-
position d+n. Show that adx : gl(V ) → gl(V ) has Jordan decomposition
ad d + adn.

9.2 Testing for Solvability

Let V be a complex vector space and let L be a Lie subalgebra of gl(V ). Why
might it be reasonable to expect solvability to be visible from the traces of the
elements of L? The following exercise (which repeats part of Exercise 6.5) gives
one indication.

Exercise 9.2

Suppose that L is solvable. Use Lie’s Theorem to show that there is a
basis of V in which every element of L′ is represented by a strictly upper
triangular matrix. Conclude that trxy = 0 for all x ∈ L and y ∈ L′.

Thus we have a necessary condition, in terms of traces, for L to be solvable.
Remarkably, this condition is also sufficient. Before proving this, we give a small
example.
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Example 9.2

Let L be the 2-dimensional non-abelian Lie algebra with basis x, y such that
[x, y] = x, which we constructed in §3.1. In this basis we have

adx =
(

0 1
0 0

)
, ad y =

(−1 0
0 0

)
.

As expected, tr ad x = 0.

Proposition 9.3

Let V be a complex vector space and let L be a Lie subalgebra of gl(V ). If
trxy = 0 for all x, y ∈ L, then L is solvable.

Proof

We shall show that every x ∈ L′ is a nilpotent linear map. It will then follow
from Engel’s Theorem (Theorem 6.1) that L′ is nilpotent, and so, by the ‘if’
part of Exercise 6.5(ii), L is solvable.

Let x ∈ L′ have Jordan decomposition x = d+n, where d is diagonalisable,
n is nilpotent, and d and n commute. We may fix a basis of V in which d is
diagonal and n is strictly upper triangular. Suppose that d has diagonal entries
λ1, . . . , λm. Since our aim is to show that d = 0, it will suffice to show that

m∑
i=1

λiλ̄i = 0.

The matrix of d̄ is diagonal, with diagonal entries λ̄i for 1 ≤ i ≤ m. A
simple computation shows that

tr d̄x =
m∑

i=1

λiλ̄i.

Now, as x ∈ L′, we may express x as a linear combination of commutators
[y, z] with y, z ∈ L, so we need to show that tr(d̄[y, z]) = 0. By the identity
mentioned at the start of this chapter, this is equivalent to

tr([d̄, y]z) = 0.

This will hold by our hypothesis, provided we can show that [d̄, y] ∈ L. In other
words, we must show that ad d̄ maps L into L.

By Exercise 9.1, the Jordan decomposition of adx is ad d + adn. There-
fore, by part (b) of Lemma 9.1, there is a polynomial p(X) ∈ C[X] such that
p(adx) = ad d = ad d̄. Now adx maps L into itself, so p(adx) does also.
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To apply this proposition to an abstract Lie algebra L, we need a way to
regard L as a subalgebra of some gl(V ). The adjoint representation of L is
well-suited to this purpose, as L is solvable if and only if adL is solvable.

Theorem 9.4

Let L be a complex Lie algebra. Then L is solvable if and only if tr(adx◦ad y) =
0 for all x ∈ L and all y ∈ L′.

Proof

Suppose that L is solvable. Then adL ⊆ gl(L) is a solvable subalgebra of gl(L),
so the result now follows from Exercise 9.2.

Conversely, if tr(adx ◦ ad y) = 0 for all x ∈ L and all y ∈ L′, then Propo-
sition 9.3 implies that adL′ is solvable. So L′ is solvable, and hence L is solv-
able.

9.3 The Killing Form

Definition 9.5

Let L be a complex Lie algebra. The Killing form on L is the symmetric bilinear
form defined by

κ(x, y) := tr(adx ◦ ad y) for x, y ∈ L.

The Killing form is bilinear because ad is linear, the composition of maps
is bilinear, and tr is linear. (The reader may wish to write out a more careful
proof of this.) It is symmetric because tr ab = tr ba for linear maps a and b.
Another very important property of the Killing form is its associativity, which
states that for all x, y, z ∈ L we have

κ([x, y], z) = κ(x, [y, z]).

This follows from the identity for trace mentioned at the start of this chapter.
Using the Killing form, we can state Theorem 9.4 as follows.

Theorem 9.6 (Cartan’s First Criterion)

The complex Lie algebra L is solvable if and only if κ(x, y) = 0 for all x ∈ L

and y ∈ L′. �
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Example 9.7

Let L be the 2-dimensional non-abelian Lie algebra with basis x, y such that
[x, y] = x. The matrices computed in Example 9.2 show that κ(x, x) = κ(x, y) =
κ(y, x) = 0 and κ(y, y) = 1. The matrix of κ in the basis x, y is therefore(

0 0
0 1

)
.

The Killing form is compatible with restriction to ideals. Suppose that L is
a Lie algebra and I is an ideal of L. We write κ for the Killing form on L and
κI for the Killing form on I, considered as a Lie algebra in its own right.

Lemma 9.8

If x, y ∈ I, then κI(x, y) = κ(x, y).

Proof

Take a basis for I and extend it to a basis of L. If x ∈ I, then adx maps L into
I, so the matrix of adx in this basis is of the form(

Ax Bx

0 0

)
,

where Ax is the matrix of adx restricted to I.
If y ∈ I, then adx ◦ ad y has matrix(

AxAy AxBy

0 0

)
,

where Ax ◦ Ay is the matrix of adx ◦ ad y restricted to I. Only the block AxAy

contributes to the trace of this matrix, so

κ(x, y) = tr(AxBx) = κI(x, y).

9.4 Testing for Semisimplicity

Recall that a Lie algebra is said to be semisimple if its radical is zero; that is, if
it has no non-zero solvable ideals. Since we can detect solvability by using the
Killing form, it is perhaps not too surprising that we can also use the Killing
form to decide whether or not a Lie algebra is semisimple.
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We begin by recalling a small part of the general theory of bilinear forms;
for more details, see Appendix A. Let β be a symmetric bilinear form on a
finite-dimensional complex vector space V . If S is a subset of V , we define the
perpendicular space to S by

S⊥ = {x ∈ V : β(x, s) = 0 for all s ∈ S}.

This is a vector subspace of V . We say that β is non-degenerate if V ⊥ = 0;
that is, there is no non-zero vector v ∈ V such that β(v, x) = 0 for all x ∈ V .

If β is non-degenerate and W is a vector subspace of V , then

dimW + dimW⊥ = dimV.

Note that even if β is non-degenerate it is possible that dimW ∩ dimW⊥ �= 0.
For example, if κ is the Killing form of sl(2,C), then κ(e, e) = 0. (You are asked
to compute the Killing form of sl(2,C) in Exercise 9.4 below.)

Now we specialise to the case where L is a Lie algebra and κ is its Killing
form, so perpendicular spaces are taken with respect to κ. We begin with a
simple observation which requires the associativity of κ.

Exercise 9.3

Suppose that I is an ideal of L. Show that I⊥ is an ideal of L.

By this exercise, L⊥ is an ideal of L. If x ∈ L⊥ and y ∈ (
L⊥)′, then, as

in particular y ∈ L, we have κ(x, y) = 0. Hence it follows from Cartan’s First
Criterion that L⊥ is a solvable ideal of L. Therefore, if L is semisimple, then
L⊥ = 0 and κ is non-degenerate.

Again the converse also holds.

Theorem 9.9 (Cartan’s Second Criterion)

The complex Lie algebra L is semisimple if and only if the Killing form κ of L

is non-degenerate.

Proof

We have just proved the “only if” direction. Suppose that L is not semisimple,
so rad L is non-zero. By Exercise 4.6, L has a non-zero abelian ideal, say A.
Take a non-zero element a ∈ A, and let x ∈ L. The composite map

ad a ◦ adx ◦ ad a

sends L to zero, as the image of ad x ◦ ad a is contained in the abelian ideal A.
Hence (ad a ◦ adx)2 = 0. Nilpotent maps have trace 0, so κ(a, x) = 0. This
holds for all x ∈ L, so a is a non-zero element in L⊥. Thus κ is degenerate.



9.4 Testing for Semisimplicity 83

It is possible that L⊥ is properly contained in radL. For example, Exer-
cise 9.2 shows that this is the case if L is the 2-dimensional non-abelian Lie
algebra.

Cartan’s Second Criterion is an extremely powerful characterisation of
semisimplicity. In our first application, we shall show that a semisimple Lie
algebra is a direct sum of simple Lie algebras; this finally justifies the name
semisimple which we have been using. The following lemma contains the main
idea needed.

Lemma 9.10

If I is a non-trivial proper ideal in a complex semisimple Lie algebra L, then
L = I ⊕ I⊥. The ideal I is a semisimple Lie algebra in its own right.

Proof

As usual, let κ denote the Killing form on L. The restriction of κ to I ∩ I⊥

is identically 0, so by Cartan’s First Criterion, I ∩ I⊥ = 0. It now follows by
dimension counting that L = I ⊕ I⊥.

We shall show that I is semisimple using Cartan’s Second Criterion. Suppose
that I has a non-zero solvable ideal. By the “only if” direction of Cartan’s
Second Criterion, the Killing form on I is degenerate. We have seen that the
Killing form on I is given by restricting the Killing form on L, so there exists
a ∈ I such that κ(a, x) = 0 for all x ∈ I. But as a ∈ I, κ(a, y) = 0 for all y ∈ I⊥

as well. Since L = I ⊕ I⊥, this shows that κ is degenerate, a contradiction.

We can now prove the following theorem.

Theorem 9.11

Let L be a complex Lie algebra. Then L is semisimple if and only if there are
simple ideals L1, . . . , Lr of L such that L = L1 ⊕ L2 ⊕ . . . ⊕ Lr.

Proof

We begin with the “only if” direction, working by induction on dimL. Let I be
an ideal in L of the smallest possible non-zero dimension. If I = L, we are done.
Otherwise I is a proper simple ideal of L. (It cannot be abelian as by hypothesis
L has no non-zero abelian ideals.) By the preceding lemma, L = I ⊕I⊥, where,
as an ideal of L, I⊥ is a semisimple Lie algebra of smaller dimension than L.
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So, by induction, I⊥ is a direct sum of simple ideals,

I⊥ = L2 ⊕ . . . , Lr.

Each Li is also an ideal of L, as [I, Li] ⊆ I ∩ Li = 0, so putting L1 = I we get
the required decomposition.

Now for the “if” direction. Suppose that L = L1 ⊕ . . . ⊕ Lr, where the Lr

are simple ideals. Let I = radL; our aim is to show that I = 0. For each ideal
Li, [I, Li] ⊆ I ∩ Li is a solvable ideal of Li. But the Li are simple, so

[I, L] ⊆ [I, L1] ⊕ . . . ⊕ [I, Lr] = 0.

This shows that I is contained in Z(L). But by Exercise 2.6(ii)

Z(L) = Z(L1) ⊕ . . . ⊕ Z(Lr).

We know that Z(L1) = . . . = Z(Lr) = 0 as the Li are simple ideals, so Z(L) = 0
and I = 0.

Using very similar ideas, we can prove the following.

Lemma 9.12

If L is a semisimple Lie algebra and I is an ideal of L, then L/I is semisimple.

Proof

We have seen that L = I ⊕ I⊥, so L/I is isomorphic to I⊥, which we have seen
is a semisimple Lie algebra in its own right.

9.5 Derivations of Semisimple Lie Algebras

In our next application of Cartan’s Second Criterion, we show that the only
derivations of a complex semisimple Lie algebra are those of the form ad x for
x ∈ L. More precisely, we have the following.

Proposition 9.13

If L is a finite-dimensional complex semisimple Lie algebra, then adL = Der L.
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Proof

We showed in Example 1.2 that for each x ∈ L the linear map adx is a deriva-
tion of L, so ad is a Lie algebra homomorphism from L to Der L. Moreover, if
δ is a derivation of L and x, y ∈ L, then

[δ, adx]y = δ[x, y] − adx(δy)

= [δx, y] + [x, δy] − [x, δy]

= ad(δx)y.

Thus the image of ad : L → Der L is an ideal of Der L. This much is true for
any Lie algebra.

Now we bring in our assumption that L is complex and semisimple. First,
note that ad : L → Der L is one-to-one, as ker ad = Z(L) = 0, so the Lie
algebra M := adL is isomorphic to L and therefore it is semisimple as well.

To show that M = Der L, we exploit the Killing form on the Lie algebra
Der L. We have

dimM + dimM⊥ = dim DerL,

so our aim is to show that dimM⊥ = 0. As M is an ideal of DerL, the Killing
form κM of M is the restriction of the Killing form on DerL. By Cartan’s Sec-
ond Criterion, κM is non-degenerate, so M⊥ ∩M = 0 and hence [M⊥, M ] = 0.
Thus, if δ ∈ M⊥ and adx ∈ M , then [δ, adx] = 0. But we saw above that

[δ, adx] = ad(δx),

so, for all x ∈ L, we have δ(x) = 0; in other words, δ = 0.

In Exercise 9.17, this proposition is used to give an alternative proof that
a semisimple Lie algebra is a direct sum of semisimple Lie algebras. Another
important application occurs in the following section.

9.6 Abstract Jordan Decomposition

Given a representation ϕ : L → gl(V ) of a Lie algebra L, we may consider the
Jordan decomposition of the linear maps ϕ(x) for x ∈ L.

For a general Lie algebra there is not much that can be said about this
decomposition without knowing more about the representation ϕ. For example,
if L is the 1-dimensional abelian Lie algebra, spanned, say by x, then we may
define a representation of L on a vector space V by mapping x to any element
of gl(V ). So the Jordan decomposition of ϕ(x) is essentially arbitrary.
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However, representations of a complex semisimple Lie algebra are much
better behaved. To demonstrate this, we use derivations to define a Jordan
decomposition for elements of an arbitrary complex semisimple Lie algebra.
We need the following proposition.

Proposition 9.14

Let L be a complex Lie algebra. Suppose that δ is a derivation of L with Jordan
decomposition δ = σ + ν, where σ is diagonalisable and ν is nilpotent. Then σ

and ν are also derivations of L.

Proof

For λ ∈ C, let

Lλ = {x ∈ L : (δ − λ1L)mx = 0 for some m ≥ 1}
be the generalised eigenspace of δ corresponding to λ. Note that if λ is not
an eigenvalue of δ, then Lλ = 0. By the Primary Decomposition Theorem, L

decomposes as a direct sum of generalised eigenspaces, L =
⊕

λ Lλ, where the
sum runs over the eigenvalues of δ. In Exercise 9.8 below, you are asked to
show that

[Lλ, Lµ] ⊆ Lλ+µ.

We shall use this to show that σ and ν are derivations.
As σ acts diagonalisably, the λ-eigenspace of σ is Lλ. Take x ∈ Lλ and

y ∈ Lµ. Then, by the above, [x, y] ∈ Lλ+µ, so

σ([x, y]) = (λ + µ)[x, y],

which is the same as

[σ(x), y] + [x, σ(y)] = [λx, y] + [x, µy].

Thus σ is a derivation, and so δ − σ = ν is also a derivation.

Theorem 9.15

Let L be a complex semisimple Lie algebra. Each x ∈ L can be written uniquely
as x = d + n, where d, n ∈ L are such that ad d is diagonalisable, adn is
nilpotent, and [d, n] = 0. Furthermore, if y ∈ L commutes with x, then [d, y] = 0
and [n, y] = 0.
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Proof

Let ad x = σ + ν where σ ∈ gl(L) is diagonalisable, ν ∈ gl(L) is nilpotent, and
[σ, ν] = 0. By Proposition 9.14, we know that σ and ν are derivations of the
semisimple Lie algebra L. In Proposition 9.13, we saw that adL = Der L, so
there exist d, n ∈ L such that ad d = σ and adn = ν. As ad is injective and

adx = σ + ν = ad d + adn = ad(d + n),

we get that x = d + n. Moreover, ad[d, n] = [ad d, adn] = 0 so [d, n] = 0. The
uniqueness of d and n follows from the uniqueness of the Jordan decomposition
of adx.

Suppose that y ∈ L and that (adx)y = 0. By Lemma 9.1, σ and ν may be
expressed as polynomials in ad x. Let

ν = c01L + c1 adx + . . . + cr(adx)r.

Applying ν to y, we see that ν(y) = c0y. But ν is nilpotent and ν(x) = c0x, so
c0 = 0. Thus ν(y) = 0 and so σ(y) = (adx − ν)y = 0 also.

We say that x has abstract Jordan decomposition x = d + n. If n = 0, then
we say that x is semisimple.

There is a potential ambiguity in the terms “Jordan decomposition” and
“semisimple” which arises when L ⊆ gl(V ) is a semisimple Lie algebra. In this
case, as well as the abstract Jordan decomposition just defined, we may also
consider the usual Jordan decomposition, given by taking an element of L and
regarding it as a linear map on V . It is an important property of the abstract
Jordan decomposition that the two decompositions agree; in particular, an
element of L is diagonalisable if and only if it is semisimple.

Take x ∈ L. Suppose that the usual Jordan decomposition of x, as an
element of gl(V ), is d + n. By Exercise 9.1, the Jordan decomposition of the
map ad x : L → L is ad d + adn, so by definition d + n is also the abstract
Jordan decomposition of x.

We are now ready to prove the main result about the abstract Jordan
decomposition.

Theorem 9.16

Let L be a semisimple Lie algebra and let θ : L → gl(V ) be a representation
of L. Suppose that x ∈ L has abstract Jordan decomposition x = d + n. Then
the Jordan decomposition of θ(x) ∈ gl(V ) is θ(x) = θ(d) + θ(n).
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Proof

By Lemma 9.12, im θ ∼= L/ ker θ is a semisimple Lie algebra. It therefore makes
sense to talk about the abstract Jordan decomposition of elements of im θ.

Let x ∈ L have abstract Jordan decomposition d+n. It follows from Exercise
9.16 below that the abstract Jordan decomposition of θ(x), considered as an
element of im θ, is θ(d) + θ(n). By the remarks above, this is also the Jordan
decomposition of θ(x), considered as an element of gl(V ).

The last theorem is a very powerful result, which we shall apply several
times in the next chapter. For another application, see Exercise 9.15 below.

EXERCISES

9.4.† (i) Compute the Killing form of sl(2,C). This is a symmetric bilin-
ear form on a 3-dimensional vector space, so you should expect
it to be described by a symmetric 3 × 3 matrix. Check that the
Killing form is non-degenerate.

(ii) Is the Killing form of gl(2,C) non-degenerate?

9.5. Suppose that L is a nilpotent Lie algebra over a field F . Show by
using the ideals Lm, or otherwise, that the Killing form of L is iden-
tically zero. Does the converse hold? (The following exercise may be
helpful.)

9.6.† For each of the 3-dimensional complex Lie algebras studied in Chap-
ter 3, find its Killing form with respect to a convenient basis.

9.7. Let L = gl(n,C). Show that the Killing form of L is given by

κ(a, b) = 2n tr(ab) − 2(tr a)(tr b).

For instance, start with (ad b)ers, apply ad a, and then express the
result in terms of the basis and find the coefficient of ers. Hence
prove that if n ≥ 2 then sl(n,C) is semisimple.

9.8. Let δ be a derivation of a Lie algebra L. Show that if λ, µ ∈ C and
x, y ∈ L, then

(δ − (λ + µ)1L)n[x, y] =
n∑

k=0

(
n

k

)[
(δ − λ1L)kx, (δ − µ1L)n−ky

]
.

Hence show that if the primary decomposition of L with respect to δ

is L =
⊕

λ Lλ (as in the proof of Proposition 9.14), then

[Lλ, Lµ] ⊆ Lλ+µ.
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9.9. (i) Show that if L is a semisimple Lie algebra then L′ = L.

(ii) Suppose that L is the direct sum of simple ideals L = L1 ⊕
L2 ⊕ . . . ⊕ Lk. Show that if I is a simple ideal of L, then I is
equal to one of the Li. Hint : Consider the ideal [I, L].

(iii)� If L′ = L, must L be semisimple?

9.10. Suppose that L is a Lie algebra over C and that β is a symmetric,
associative bilinear form of L. Show that β induces a linear map

θ : L → L∗, θ(x) = β(x,−),

where by β(x,−) we mean the map y �→ β(x, y). Viewing both L and
L� as L-modules, show that θ is an L-module homomorphism. (The
L-module structure of L� is given by Exercise 7.12.) Deduce that if
β is non-degenerate, then L and L∗ are isomorphic as L-modules.

9.11.† Let L be a simple Lie algebra over C with Killing form κ. Use Ex-
ercise 9.10 to show that if β is any other symmetric, associative,
non-degenerate bilinear form on L, then there exists 0 �= λ ∈ C such
that κ = λβ.

9.12. Assuming that sl(n,C) is simple, use Exercise 9.11 to show that

κ(x, y) = 2n tr(xy), x, y ∈ sl(n,C).

To identify the scalar λ, it might be useful to take as a standard
basis for the Lie algebra; {eij : i �= j} ∪ {eii − ei+1,i+1 : 1 ≤ i < n}.

9.13. Give an example to show that the condition [d, n] = 0 in the Jordan
decomposition is necessary. That is, find a matrix x which can be
written as x = d+n with d diagonalisable and n nilpotent but where
this is not the Jordan decomposition of x.

9.14.† Let L be a complex semisimple Lie algebra. Suppose L has a faithful
representation in which x ∈ L acts diagonalisably. Show that x is a
semisimple element of L (in the sense of the abstract Jordan decom-
position) and hence that x acts diagonalisably in any representation
of L.

9.15.†� Suppose that M is an sl(2,C)-module. Use the abstract Jordan
decomposition to show that M decomposes as a direct sum of h-
eigenspaces. Hence use Exercise 8.6 to show that M is completely
reducible.
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9.16.† Suppose that L1 and L2 are complex semisimple Lie algebras and
that θ : L1 → L2 is a surjective homomorphism. Show that if x ∈ L1

has abstract Jordan decomposition x = d + n, then θ(x) ∈ L2 has
abstract Jordan decomposition θ(x) = θ(d)+θ(n). Hint : Exercise 2.8
is relevant.

9.17. Use Exercise 2.13 and Proposition 9.13 (that if L is a complex
semisimple Lie algebra, then ad L = Der L) to give an alternative
proof of Theorem 9.11 (that a complex semisimple Lie algebra is a
direct sum of simple ideals).

9.18.� Some small-dimensional examples suggest that if L is a Lie algebra
and I is an ideal of L, then one can always find a basis of I and
extend it to a basis of L in such a way that the Killing form of L

has a matrix of the form (
κI 0
0 �

)
.

Is this always the case?
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The Root Space Decomposition

We are now ready to embark on the classification of the complex semisimple Lie
algebras. So far we have proved the simplicity of only one family of Lie algebras,
namely the algebras sl(n,C) for n ≥ 2 (see Exercise 9.7). There is, however, a
strong sense in which their behaviour is typical of all complex semisimple Lie
algebras. We therefore begin by looking at the structures of sl(2,C) and sl(3,C)
in the belief that this will motivate the strategy adopted in this chapter.

In §3.2.4, we proved that sl(2,C) was the unique 3-dimensional semisimple
complex Lie algebra by proceeding as follows:

(1) We first showed that if L was a 3-dimensional Lie algebra such that L = L′,
then there was some h ∈ L such that adh was diagonalisable.

(2) We then took a basis of L consisting of eigenvectors for adh and by find-
ing the structure constants with respect to this basis showed that L was
isomorphic to sl(2,C).

In the case of sl(3,C), a suitable replacement for the element h ∈ sl(2,C) is
the 2-dimensional subalgebra H of diagonal matrices in sl(3,C). One can see
directly that sl(3,C) decomposes into a direct sum of common eigenspaces for
the elements of ad H. Suppose h ∈ H has diagonal entries a1, a2, a3. Then

[h, eij ] = (ai − aj)eij

so the elements eij for i �= j are common eigenvectors for the elements of ad H.
Moreover, as H is abelian, H is contained in the kernel of every element of
adH.
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It will be helpful to express this decomposition using the language of weights
and weight spaces introduced in Chapter 5. Define εi : H → C by εi(h) = ai.
We have

(adh)eij = (εi − εj)(h)eij .

Here εi − εj is a weight and eij is in its associated weight space. In fact one
can check that if Lij is the weight space for εi − εj , that is

Lij = {x ∈ sl(3,C) : (adh)x = (εi − εj)(h)x for all h ∈ H} ,

then we have Lij = Span{eij} for i �= j. Hence there is a direct sum decompo-
sition

sl(3,C) = H ⊕
⊕
i�=j

Lij .

The existence of this decomposition can be seen in a more abstract way.
Let L be a complex semisimple Lie algebra and let H be an abelian subalgebra
of L consisting of semisimple elements. By definition, ad h is diagonalisable
for every h ∈ H. Moreover, as commuting linear maps may be simultaneously
diagonalised, H acts diagonalisably on L in the adjoint representation. We may
therefore decompose L into a direct sum of weight spaces for the adjoint action
of H.

Our strategy is therefore:

(1) to find an abelian Lie subalgebra H of L that consists entirely of
semisimple elements; and

(2) to decompose L into weight spaces for the action of adH and
then exploit this decomposition to determine information about the
structure constants of L.

In the following section, we identify the desirable properties of the sub-
algebra H and prove some preliminary results about the decomposition. We
then show that subalgebras H with these desirable properties always exist and
complete step (2).

10.1 Preliminary Results

Suppose that L is a complex semisimple Lie algebra containing an abelian
subalgebra H consisting of semisimple elements. What information does this
give us about L?
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We have seen that L has a basis of common eigenvectors for the elements
of adH. Given a common eigenvector x ∈ L, the eigenvalues are given by the
associated weight, α : H → L, defined by

(adh)x = α(h)x for all h ∈ H.

Weights are elements of the dual space H�. For each α ∈ H�, let

Lα := {x ∈ L : [h, x] = α(h)x for all h ∈ H}
denote the corresponding weight space. One of these weight spaces is the zero
weight space:

L0 = {z ∈ L : [h, z] = 0 for all h ∈ H} .

This is the same as the centraliser of H in L, CL(H). As H is abelian, we have
H ⊆ L0.

Let Φ denote the set of non-zero α ∈ L� for which Lα is non-zero. We can
write the decomposition of L into weight spaces for H as

L = L0 ⊕
⊕
α∈Φ

Lα. (�)

Since L is finite-dimensional, this implies that Φ is finite.

Lemma 10.1

Suppose that α, β ∈ H�. Then

(i) [Lα, Lβ ] ⊆ Lα+β .

(ii) If α + β �= 0, then κ(Lα, Lβ) = 0.

(iii) The restriction of κ to L0 is non-degenerate.

Proof

(i) Take x ∈ Lα and y ∈ Lβ . We must show that [x, y], if non-zero, is an
eigenvector for each ad h ∈ H, with eigenvalue α(h) + β(h). Using the Jacobi
identity we get

[h, [x, y]] = [[h, x], y] + [x, [h, y]] = [α(h)x, y] + [x, β(h)y]

= α(h)[x, y] + β(h)[x, y]

= (α + β)(h)[x, y].

(ii) Since α + β �= 0, there is some h ∈ H such that (α + β)(h) �= 0. Now, for
any x ∈ Lα and y ∈ Lβ , we have, using the associativity of the Killing form,

α(h)κ(x, y) = κ([h, x], y) = −κ([x, h], y) = −κ(x, [h, y]) = −β(h)κ(x, y),
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and hence
(α + β)(h)κ(x, y) = 0.

Since by assumption (α + β)(h) �= 0, we must have κ(x, y) = 0.
(iii) Suppose that z ∈ L0 and κ(z, x) = 0 for all x in L0. By (ii), we know

that L0 ⊥ Lα for all α �= 0. If x ∈ L, then by (�) we can write x as

x = x0 +
∑
α∈Φ

xα

with xα ∈ Lα. By linearity, κ(z, x) = 0 for all x ∈ L. Since κ is non-degenerate,
it follows that z = 0, as required.

Exercise 10.1

Show that if x ∈ Lα where α �= 0, then adx is nilpotent.

If H is small, then the decomposition (�) is likely to be rather coarse,
with few non-zero weight spaces other than L0. Furthermore, if H is properly
contained in L0, then we get little information about how the elements in L0

that are not in H act on L. This is illustrated by the following exercise.

Exercise 10.2

Let L = sl(n,C), where n ≥ 2, and let H = Span{h}, where h = e11−e22.
Find L0 = CL(H), and determine the direct sum decomposition (�) with
respect to H.

We conclude that for the decomposition (�) of L into weight spaces to be
as useful as possible, H should be as large as possible, and ideally we would
have H = L0 = CL(H).

Definition 10.2

A Lie subalgebra H of a Lie algebra L is said to be a Cartan subalgebra (or
CSA) if H is abelian and every element h ∈ H is semisimple, and moreover H

is maximal with these properties.

Note that we do not assume L is semisimple in this definition. For example,
the subalgebra H of sl(3,C) considered in the introduction to this chapter is a
Cartan subalgebra of sl(3,C). One straightforward way to see this is to show
that Csl(3,C)(H) = H; thus H is not contained in any larger abelian subalgebra
of H.

We remark that some texts use a “maximal toral subalgebra” in place of
what we have called a Cartan subalgebra. The connection is discussed at the
end of Appendix C, where we establish that the two types of algebras are the
same.
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10.2 Cartan Subalgebras

Let L be a complex semisimple Lie algebra. We shall show that L has a non-zero
Cartan subalgebra. We first note that L must contain semisimple elements. If
x ∈ L has Jordan decomposition x = s + n, then by Theorem 9.15 both s

and n belong to L. If the semisimple part s were always zero, then by Engel’s
Theorem (in its second version), L would be nilpotent and therefore solvable.
Hence we can find a non-zero semisimple element s ∈ L. We can now obtain
a non-zero Cartan subalgebra of L by taking any subalgebra which contains
s and which is maximal subject to being abelian and consisting of semisimple
elements. (Such a subalgebra must exist because L is finite-dimensional.)

We shall now show that if H is a Cartan subalgebra then H = CL(H). The
proof of this statement is slightly technical, so the reader may prefer to defer
or skip some of the details. In this case, she should continue reading at §10.3.

Lemma 10.3

Let H be a Cartan subalgebra of L. Suppose that h ∈ H is such that the
dimension of CL(h) is minimal. Then every s ∈ H is central in CL(h), and so
CL(h) ⊆ CL(s). Hence CL(h) = CL(H).

Proof

We shall show that if s is not central in CL(h), then there is a linear combination
of s and h whose centraliser has smaller dimension than CL(h).

First we construct a suitable basis for L. We start by taking a basis of
CL(h) ∩ CL(s), {c1, . . . , cn}, say. As s is semisimple and s ∈ CL(h), ad s acts
diagonalisably on CL(h). We may therefore extend this basis to a basis of CL(h)
consisting of ad s eigenvectors, say by adjoining {x1, . . . , xp}. Similarly we may
extend {c1, . . . , cn} to a basis of CL(s) consisting of adh eigenvectors, say by
adjoining {y1, . . . , yq}. We leave it to the reader to check that

{c1, . . . , cn, x1, . . . , xp, y1, . . . , yq}
is a basis of CL(h)+CL(s). Finally, as adh and ad s commute and act diagonal-
isably on L, we may extend this basis to a basis of L by adjoining simultaneous
eigenvectors for ad h and ad s, say {w1, . . . , wr}.

Note that if [s, xj ] = 0 then xj ∈ CL(s) ∩ CL(h), a contradiction. Similarly,
one can check that [h, yk] �= 0. Let [h, wl] = θlwl and [s, wl] = σlwl. Again we
have θl, σl �= 0 for 1 ≤ l ≤ r. The following table summarises the eigenvalues
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of ad s, adh, and ad s + λ adh, where λ �= 0:

ci xj yk wl

ad s 0 �= 0 0 σl

adh 0 0 �= 0 θl

ad s + λ adh 0 �= 0 �= 0 σl + λθl

Thus, if we choose λ so that λ �= 0 and λ �= −σl/θl for any l, then we will have

CL(s + λh) = CL(s) ∩ CL(h).

By hypothesis, CL(h) �⊆ CL(s), so this subspace is of smaller dimension than
CL(h); this contradicts the choice of h.

Now, since CL(H) is the intersection of the CL(s) for s ∈ H, it follows
that CL(h) ⊆ CL(H). The other inclusion is obvious, so we have proved that
CL(h) = CL(H).

Theorem 10.4

If H is a Cartan subalgebra of L and h ∈ H is such that CL(h) = CL(H), then
CL(h) = H. Hence H is self-centralising.

Proof

Since H is abelian, H is certainly contained in CL(h). Suppose x ∈ CL(h) has
abstract Jordan decomposition x = s+n. As x commutes with h, Theorem 9.15
implies that both s and n lie in CL(h), so we must show that s ∈ H and n = 0.

We almost know already that s ∈ H. Namely, since CL(h) = CL(H), we
have that s commutes with every element of H and therefore H + Span{s} is
an abelian subalgebra of L consisting of semisimple elements. It contains the
Cartan subalgebra H and hence by maximality s ∈ H.

To show that the only nilpotent element in CL(H) is 0 takes slightly more
work.

Step 1: CL(h) is nilpotent. Take x ∈ CL(h) with x = s + n as above. Since
s ∈ H, it must be central in CL(h), so, regarded as linear maps from CL(h)
to itself, we have adx = adn. Thus for every x ∈ CL(h), adx : CL(h) →
CL(h) is nilpotent. It now follows from the second version of Engel’s Theorem
(Theorem 6.3) that CL(h) is a nilpotent Lie algebra.

Step 2: Every element in CL(h) is semisimple. Let x ∈ CL(h) have abstract
Jordan decomposition x = s+n as above. As CL(h) is nilpotent, it is certainly
solvable, so by Lie’s Theorem (Theorem 6.5) there is a basis of L in which
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the maps ad x for x ∈ CL(h) are represented by upper triangular matrices.
As ad n : L → L is nilpotent, its matrix must be strictly upper triangular.
Therefore

κ(n, z) = tr(adn ◦ ad z) = 0

for all z ∈ CL(h). By Lemma 10.1(iii), the restriction of κ to CL(H) is non-
degenerate, so we deduce n = 0, as required.

10.3 Definition of the Root Space
Decomposition

Let H be a Cartan subalgebra of our semisimple Lie algebra L. As H = CL(H),
the direct sum decomposition of L into weight spaces for H considered in §10.1
may be written as

L = H ⊕
⊕
α∈Φ

Lα,

where Φ is the set of α ∈ H� such that α �= 0 and Lα �= 0. Since L is finite-
dimensional, Φ is finite.

If α ∈ Φ, then we say that α is a root of L and Lα is the associated root
space. The direct sum decomposition above is the root space decomposition. It
should be noted that the roots and root spaces depend on the choice of Cartan
subalgebra H.

10.4 Subalgebras Isomorphic to sl(2, C)

We shall now associate to each root α ∈ Φ a Lie subalgebra of L isomorphic
to sl(2,C). These subalgebras will enable us to apply the results in Chapter 8
on representations of sl(2,C) to deduce several strong results on the structure
of L. Chapters 11 and 12 give many examples of the theory we develop in the
next three sections. See also Exercise 10.6 for a more immediate example.

Lemma 10.5

Suppose that α ∈ Φ and that x is a non-zero element in Lα. Then −α is a root
and there exists y ∈ L−α such that Span{x, y, [x, y]} is a Lie subalgebra of L

isomorphic to sl(2,C).
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Proof

First we claim that there is some y ∈ L−α such that κ(x, y) �= 0 and [x, y] �= 0.
Since κ is non-degenerate, there is some w ∈ L such that κ(x, w) �= 0. Write
w = y0 +

∑
β∈Φ yβ with y0 ∈ L0 and yβ ∈ Lβ . When we expand κ(x, y), we

find by Lemma 10.1(ii) that the only way a non-zero term can occur is if −α is
a root and y−α �= 0, so we may take y = y−α. Now, since α is non-zero, there
is some t ∈ H such that α(t) �= 0. For this t, we have

κ(t, [x, y]) = κ([t, x], y) = α(t)κ(x, y) �= 0

and so [x, y] �= 0.
Let S := Span{x, y, [x, y]}. By Lemma 10.1(i), [x, y] lies in L0 = H. As x

and y are simultaneous eigenvectors for all elements of ad H, and so in particular
for ad[x, y], this shows that S is a Lie subalgebra of L. It remains to show that
S is isomorphic to sl(2,C).

Let h := [x, y] ∈ S. We claim that α(h) �= 0. If not, then [h, x] = α(h)x = 0;
similarly [h, y] = −α(h)x = 0, so adh : L → L commutes with ad x : L → L

and ad y : L → L. By Proposition 5.7, adh : L → L is a nilpotent map.
On the other hand, because H is a Cartan subalgebra, h is semisimple. The
only element of L that is both semisimple and nilpotent is 0, so h = 0, a
contradiction.

Thus S is a 3-dimensional complex Lie algebra with S′ = S. By §3.2.4, S

is isomorphic to sl(2,C).

Using this lemma, we may associate to each α ∈ Φ a subalgebra sl(α) of
L isomorphic to sl(2,C). The following exercise gives a standard basis for this
Lie algebra.

Exercise 10.3

Show that for each α ∈ Φ, sl(α) has a basis {eα, fα, hα} such that

(i) eα ∈ Lα, fα ∈ L−α, hα ∈ H, and α(hα) = 2.

(ii) The map θ : Sα → sl(2,C) defined by θ(eα) = e, θ(fα) = f , θ(hα) =
h is a Lie algebra isomorphism.

Hint: With the notation used in the statement of the lemma, one can
take eα = x and fα = λy for a suitable choice of λ ∈ C.
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10.5 Root Strings and Eigenvalues

We can use the Killing form to define an isomorphism between H and H� as
follows. Given h ∈ H, let θh denote the map θh ∈ H� defined by

θh(k) = κ(h, k) for all k ∈ H.

By Lemma 10.1(iii) the Killing form is non-degenerate on restriction to H, so
the map h �→ θh is an isomorphism between H and H�. (If you did Exercise
9.10 then you will have seen this before; the proof is outlined in Appendix A.)
In particular, associated to each root α ∈ Φ there is a unique element tα ∈ H

such that
κ(tα, k) = α(k) for all k ∈ H.

One very useful property of this correspondence is the following lemma.

Lemma 10.6

Let α ∈ Φ. If x ∈ Lα and y ∈ L−α, then [x, y] = κ(x, y)tα. In particular,
hα = [eα, fα] ∈ Span{tα}.

Proof

For h ∈ H, we have

κ(h, [x, y]) = κ([h, x], y) = α(h)κ(x, y) = κ(tα, h)κ(x, y).

Now we view κ(x, y) as a scalar and rewrite the right-hand side to get

κ(h, [x, y]) = κ(h, κ(x, y)tα).

This shows that [x, y] − κ(x, y)tα is perpendicular to all h ∈ H, and hence it is
zero as κ restricted to H is non-degenerate.

We are now in a position to apply the results of Chapter 8 on the represen-
tation theory of sl(2,C). Let α be a root. We may regard L as an sl(α)-module
via restriction of the adjoint representation. Thus, if a ∈ sl(α) and y ∈ L, then
the action is given by

a · y = (ad a)y = [a, y].

Note that the sl(α)-submodules of L are precisely the vector subspaces M of
L such that [s, m] ∈ M for all s ∈ sl(α) and m ∈ M . Of course, it is enough
to check this when s is one of the standard basis elements hα, eα, fα. We shall
also need the following lemma.
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Lemma 10.7

If M is an sl(α)-submodule of L, then the eigenvalues of hα acting on M are
integers.

Proof

By Weyl’s Theorem, M may be decomposed into a direct sum of irreducible
sl(α)-modules; for irreducible sl(2,C)-modules, the result follows from the clas-
sification of Chapter 8.

Example 10.8

(1) If you did Exercise 8.3, then you will have seen how sl(3,C) decomposes
as an sl(α)-module where α = ε1 − ε2 is a root of the Cartan subalgebra of
sl(3,C) consisting of all diagonal matrices.

(2) Let U = H + sl(α). Let K = ker α ⊆ H. By the rank-nullity formula,
dimK = dimH − 1. (We know that dim imα = 1 as α(hα) �= 0.) As H is
abelian, [hα, x] = 0 for all x ∈ K. Moreover, if x ∈ K, then

[eα, x] = −[x, eα] = −α(x)eα = 0

and similarly [fα, x] = 0. Thus every element of sl(α) acts trivially on K.
It follows that U = K ⊕ sl(α) is a decomposition of U into sl(α)-modules.
By Exercise 8.2(iii), the adjoint representation of sl(α) is isomorphic to V2,
so U is isomorphic to the direct sum of dimH − 1 copies of the trivial
representation, V0, and one copy of the adjoint representation, V2.

(3) If β ∈ Φ or β = 0, let
M :=

⊕
c

Lβ+cα,

where the sum is over all c ∈ C such that β + cα ∈ Φ. It follows from
Lemma 10.1(i) that M is an sl(α)-submodule of L. This module is said to
be the α-root string through β. Analysing these modules will give the main
results of this section.

Proposition 10.9

Let α ∈ Φ. The root spaces L±α are 1-dimensional. Moreover, the only multiples
of α which lie in Φ are ±α.



10.5 Root Strings and Eigenvalues 101

Proof

If cα is a root, then hα takes cα(hα) = 2c as an eigenvalue. As the eigenvalues
of hα are integral, either c ∈ Z or c ∈ Z + 1

2 . To rule out the unwanted values
for c, we consider the root string module

M := H ⊕
⊕
cα∈Φ

Lcα.

Let K = ker α ⊆ H. By Example 10.8(2) above, K ⊕ sl(α) is an sl(α)-
submodule of M . By Weyl’s Theorem, modules for sl(α) are completely re-
ducible, so we may write

M = K ⊕ sl(α) ⊕ W,

where W is a complementary submodule.
If either of the conclusions of the proposition are false, then W is non-

zero. Let V ∼= Vs be an irreducible submodule of W . If s is even, then it
follows from the classification of Chapter 8 that V contains an hα-eigenvector
with eigenvalue 0. Call this eigenvector v. We have α(v) = 0, so v ∈ K. But
K ∩ V = 0, so we have reached a contradiction.

Before considering the case where s is odd, we pursue another consequence of
this argument. Suppose that 2α ∈ Φ. Then hα has 2α(hα) = 4 as an eigenvalue.
As the eigenvalues of hα on K ⊕ sl(α) are 0 and ±2, the only way this could
happen is if W contains an irreducible submodule Vs with s even, which we
just saw is impossible.

Now suppose that s is odd. Then V must contain an hα eigenvector with
eigenvalue 1. As α(hα) = 2, this implies that 1

2α is a root of L. But then
both 1

2α and α are roots of L, which contradicts the previous paragraph.

Proposition 10.10

Suppose that α, β ∈ Φ and β �= ±α.

(i) β(hα) ∈ Z.

(ii) There are integers r, q ≥ 0 such that β + kα ∈ Φ if and only if k ∈ Z and
−r ≤ k ≤ q. Moreover, r − q = β(hα).

(iii) If α + β ∈ Φ, then [eα, eβ ] is a non-zero scalar multiple of eα+β .

(iv) β − β(hα)α ∈ Φ.
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Proof

Let M :=
⊕

k Lβ+kα be the root string of α through β. To prove (i), we note
that β(hα) is the eigenvalue of hα acting on Lβ , and so it lies in Z.

We know from the previous proposition that dimLβ+kα = 1 whenever β+kα

is a root, so the eigenspaces of ad hα on M are all 1-dimensional and, since
(β + kα)hα = β(hα) + 2k, the eigenvalues of adhα on M are either all even or
all odd. It now follows from Chapter 8 that M is an irreducible sl(α)-module.
Suppose that M ∼= Vd. On Vd, the element hα acts diagonally with eigenvalues

{d, d − 2, . . . ,−d} ,

whereas on M , hα acts diagonally with eigenvalues

{β(hα) + 2k : β + kα ∈ Φ} .

Equating these sets shows that if we define r and q by d = β(hα) + 2q and
−d = β(hα) − 2r, then (ii) will hold.

Suppose v ∈ Lβ , so v belongs to the hα-eigenspace where hα acts as β(hα).
If (ad eα)eβ = 0, then eβ is a highest-weight vector in the irreducible represen-
tation M ∼= Vd, with highest weight β(hα). If α + β is a root, then hα acts on
the associated root space as (α + β)hα = β(hα) + 2. Therefore eβ is not in the
highest weight space of the irreducible representation M , and so (ad eα)eβ �= 0.
This proves (iii).

Finally, (iv) follows from part (ii) as

β − β(hα)α = β − (r − q)α

and −r ≤ −r + q ≤ q.

We now have a good idea about the structure constant of L (with respect
to a basis given by the root space decomposition). The action of H on the root
spaces of L is determined by the roots. Part (iii) of the previous proposition
shows that (up to scalar factors) the set of roots also determines the brackets
[eα, eβ ] for roots α �= ±β. Lastly, by construction, [eα, e−α] is in the span of
[eα, fα] = hα. The reader keen to see a complete answer should read about
Chevalley’s Theorem in §15.3.

10.6 Cartan Subalgebras as Inner-Product
Spaces

We conclude this chapter by showing that the roots of L all lie in a real vector
subspace of H� and that the Killing form induces an inner product on the
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space. This will enable us to bring some elementary geometric ideas to bear on
the classification problem.

The two propositions in the previous section show that the set Φ of roots
cannot be too big: For example, we saw that if α ∈ Φ then the only multiples
of α ∈ Φ are ±α. On the other hand, there must be roots, as otherwise the root
space decomposition would imply that L = H was abelian. What more can be
said?

Lemma 10.11

(i) If h ∈ H and h �= 0, then there exists a root α ∈ Φ such that α(h) �= 0.

(ii) The set Φ of roots spans H�.

Proof

Suppose that α(h) = 0 for all roots α. Then we have [h, x] = α(h)x = 0 for all
x ∈ Lα and for all roots α. Since H is abelian, it follows from the root space
decomposition that h ∈ Z(L), which is zero as L is semisimple.

In a sense, (ii) is just a reformulation of (i) in the language of linear algebra.
Let W ⊆ H� denote the span of Φ. Suppose that W is a proper subspace of
H�. Then the annihilator of W in H,

W ◦ = {h ∈ H : θ(h) = 0 for all θ ∈ W} ,

has dimension dimH −dimW �= 0. (See Appendix A.) Therefore there is some
non-zero h ∈ H such that θ(h) = 0 for all θ ∈ W , so in particular α(h) = 0 for
all α ∈ Φ, in contradiction to part (i).

In the previous section, we found that the elements tα and hα spanned the
same 1-dimensional subspace of L. More precisely, we have the following.

Lemma 10.12

For each α ∈ Φ, we have

(i) tα =
hα

κ(eα, fα)
and hα =

2tα
κ(tα, tα)

;

(ii) κ(tα, tα)κ(hα, hα) = 4.

Proof

The expression for tα follows from Lemma 10.6 applied with x = eα and y = fα.
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As α(hα) = 2, we have

2 = κ(tα, hα) = κ(tα, κ(eα, fα)tα),

which implies that κ(eα, fα)κ(tα, tα) = 2. Now substitute for κ(eα, fα) to get
the second expression. Finally,

κ(hα, hα) = κ

(
2tα

κ(tα, tα)
,

2tα
κ(tα, tα)

)
=

4
κ(tα, tα)

gives (ii).

Corollary 10.13

If α and β are roots, then κ(hα, hβ) ∈ Z and κ(tα, tβ) ∈ Q.

Proof

Using the root space decomposition to compute tr(ad hα ◦ adhβ), we get

κ(hα, hβ) =
∑
γ∈Φ

γ(hα)γ(hβ).

Since the eigenvalues of hα and hβ are integers, this shows that κ(hα, hβ) ∈ Z.
We now use the previous lemma to get

κ(tα, tβ) = κ

(
κ(tα, tα)hα

2
,
κ(tβ , tβ)hβ

2

)

=
κ(tα, tα)κ(tβ , tβ)

4
κ(hα, hβ) ∈ Q.

We can translate the Killing form on H to obtain a non-degenerate sym-
metric bilinear form on H∗, denoted (−,−). This form may be defined by

(θ, ϕ) = κ(tθ, tϕ),

where tθ and tϕ are the elements of H corresponding to θ and ϕ under the
isomorphism H ≡ H� induced by κ. In particular, if α and β are roots, then

(α, β) = κ(tα, tβ) ∈ Q.

Exercise 10.4

Show that β(hα) = 2(β,α)
(α,α) .

We saw in Lemma 10.11 that the roots of L span H�, so H� has a vector
space basis consisting of roots, say {α1, α2, . . . , α�}. We can now prove that
something stronger is true as follows.
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Lemma 10.14

If β is a root, then β is a linear combination of the αi with coefficients in Q.

Proof

Certainly we may write β =
∑�

i=1 ciαi with coefficients ci ∈ C. For each j with
1 ≤ j ≤ �, we have

(β, αj) =
�∑

i=1

(αi, αj)ci.

We can write these equations in matrix form as⎛
⎜⎝

(β, α1)
...

(β, α�)

⎞
⎟⎠ =

⎛
⎜⎝

(α1, α1) . . . (α1, α�)
...

. . .
...

(α�, α1) . . . (α�, α�)

⎞
⎟⎠
⎛
⎜⎝

c1
...
c�

⎞
⎟⎠ .

The matrix is the matrix of the non-degenerate bilinear form (−,−) with re-
spect to the chosen basis of roots, and so it is invertible (see Appendix A).
Moreover, we have seen that its entries are rational numbers, so it has an
inverse with entries in Q. Since also (β, αj) ∈ Q, the coefficients ci are ratio-
nal.

By this lemma, the real subspace of H� spanned by the roots α1, . . . , α�

contains all the roots of Φ and so does not depend on our particular choice of
basis. Let E denote this subspace.

Proposition 10.15

The form (−,−) is a real-valued inner product on E.

Proof

Since (−,−) is a symmetric bilinear form, we only need to check that the
restriction of (−,−) to E is positive definite. Let θ ∈ E correspond to tθ ∈ H.
Using the root space decomposition and the fact that (ad tθ)eβ = β(tθ)eβ , we
get

(θ, θ) = κ(tθ, tθ) =
∑
β∈Φ

β(tθ)2 =
∑
β∈Φ

κ(tβ , tθ)2 =
∑
β∈Φ

(β, θ)2.

As (β, θ) is real, the right-hand side is real and non-negative. Moreover, if
(θ, θ) = 0, then β(tθ) = 0 for all roots β, so by Lemma 10.11(i), θ = 0.
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EXERCISES

10.5. Suppose that L is a complex semisimple Lie algebra with Cartan
subalgebra H and root system Φ. Use the results of this chapter to
prove that

dimL = dimH + 2|Φ|.
Hence show that there are no semisimple Lie algebras of dimensions
4, 5, or 7.

10.6.† Let L = sl(3,C). With the same notation as in the introduction, let
α := ε1 − ε2 and β := ε2 − ε3. Show that the set of roots is

Φ = {±α,±β ± (α + β)}.

Show that the angle between the roots α and β is 2π/3 and verify
some of the results in §10.5 and §10.6 for sl(3,C).

10.7. Suppose L is semisimple of dimension 6. Let H be a Cartan subal-
gebra of L and let Φ be the associated set of roots.

(i) Show that dimH = 2 and that if α, β ∈ Φ span H, then Φ =
{±α,±β}.

(ii) Hence show that

[Lα, L±β ] = 0 and [L±β , [Lα, L−α]] = 0

and deduce that the subalgebra Lα ⊕L−α ⊕ [Lα, L−α] is an ideal
of L. Show that L is isomorphic to the direct sum of two copies
of sl(2,C).

10.8. Show that the set of diagonal matrices in so(4,C) (as defined in
Chapter 4) forms a Cartan subalgebra of so(4,C) and determine the
corresponding root space decomposition. Hence show that so(4,C) ∼=
sl(2,C) ⊕ sl(2,C). (The reader will probably now be able to guess
the reason for choosing non-obvious bilinear forms in the definition
of the symplectic and orthogonal Lie algebras.)

10.9. Let L be a semisimple Lie algebra with Cartan subalgebra H. Use the
root space decomposition to show that NL(H) = H. (The notation
NL(H) is defined in Exercise 5.6.)

10.10. In Lemma 10.5, we defined for each α ∈ Φ a subalgebra of L iso-
morphic to sl(2,C). In the main step in the proof, we showed that
if x ∈ Lα and y ∈ L−α, and h = [x, y] �= 0, then α(h) �= 0. Here is
an alternative proof of this using root string modules.
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Suppose that α(h) = 0. Let β ∈ Φ be any root. Let M be the α root
string module through β,

M =
⊕

c

Lβ+cα.

By considering the trace of h on M , show that β(h) = 0 and hence
get a contradiction.

10.11. Let L be a complex semisimple Lie algebra with Cartan subalgebra
H and root space Φ. Let α ∈ Φ and let sl(α) = Span{eα, fα, hα} be
the corresponding subalgebra constructed in §10.4. Show that this
subalgebra is unique up to

(1) scaling basis elements as ceα, c−1fα, hα for non-zero c ∈ C; and

(2) swapping eα and fα and then replacing hα with −hα.

10.12.† Let L be a semisimple Lie algebra and let Φ be its set of roots. Let
α ∈ Φ and let

N := Span{fα} ⊕ Span{hα} ⊕ Lα ⊕ L2α ⊕ . . . .

Show that N is an sl(α)-submodule of L. By considering the trace
of hα : N → N , give an alternative proof of Proposition 10.9.
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Root Systems

The essential properties of the roots of complex semisimple Lie algebras may
be captured in the idea of an abstract “root system”. In this chapter, we shall
develop the basic theory of root systems. Our eventual aim, achieved in Chap-
ters 13 and 14, will be to use root systems to classify the complex semisimple
Lie algebras.

Root systems have since been discovered to be important in many other
areas of mathematics, so while this is probably your first encounter with root
systems, it may well not be your last! In MathSciNet, the main database for
research papers in mathematics, there are, at the time of writing, 297 papers
whose title contains the words “root system”, and many thousands more in
which root systems are mentioned in the text.

11.1 Definition of Root Systems

Let E be a finite-dimensional real vector space endowed with an inner product
written (−,−). Given a non-zero vector v ∈ E, let sv be the reflection in the
hyperplane normal to v. Thus sv sends v to −v and fixes all elements y such
that (y, v) = 0. As an easy exercise, the reader may check that

sv(x) = x − 2(x, v)
(v, v)

v for all x ∈ E
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and that sv preserves the inner product, that is,

(sv(x), sv(y)) = (x, y) for all x, y ∈ E.

As it is a very useful convention, we shall write

〈x, v〉 :=
2(x, v)
(v, v)

,

noting that the symbol 〈x, v〉 is only linear with respect to its first variable, x.
With this notation, we can now define root systems.

Definition 11.1

A subset R of a real vector space E is a root system if it satisfies the following
axioms.

(R1) R is finite, it spans E, and it does not contain 0.

(R2) If α ∈ R, then the only scalar multiples of α in R are ±α.

(R3) If α ∈ R, then the reflection sα permutes the elements of R.

(R4) If α, β ∈ R, then 〈β, α〉 ∈ Z.

The elements of R are called roots.

Example 11.2

The root space decomposition gives our main example. Let L be a complex
semisimple Lie algebra, and suppose that Φ is the set of roots of L with respect
to some fixed Cartan subalgebra H. Let E denote the real span of Φ. By
Proposition 10.15, the symmetric bilinear form on E induced by the Killing
form (−,−) is an inner product.

We can use the results of §10.5 and §10.6 to show that Φ is a root system
in E. By definition, 0 �∈ Φ and, as we observed early on, Φ is finite. We showed
that (R2) holds in Proposition 10.9. To show that (R3) holds, we note that if
α, β ∈ Φ then

sα(β) = β − 2(β, α)
(α, α)

α = β − β(hα)α,

which lies in Φ by Proposition 10.10. To get the second equality above, we used
the identity of Exercise 10.4, which may be proved as follows:

β(hα) = κ(tβ , hα) = κ

(
tβ ,

2tα
(tα, tα)

)
=

2(β, α)
(α, α)

= 〈β, α〉 .

As the eigenvalues of hα are integers, this identity also establishes (R4).
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Exercise 11.1

We work in R�+1, with the Euclidean inner product. Let εi be the vector
in E with i-th entry 1 and all other entries zero. Define

R := {±(εi − εj) : 1 ≤ i < j ≤ � + 1}
and let E = SpanR = {∑αiεi :

∑
αi = 0}. Show that R is a root

system in E.

Remark 11.3

We shall see that our axioms isolate all the essential properties of roots of
Lie algebras. For this reason, there is no need in this chapter to keep the full
body of theory we have developed in mind — doing so would burden us with
extraneous notions while needlessly reducing the applicability of our arguments.
In any case, we shall see later that every root system is the set of roots of a
complex semisimple Lie algebra, so our problem is no more general than is
necessary: “It is the mark of the educated mind to use for each subject the
degree of exactness which it admits” (Aristotle).

11.2 First Steps in the Classification

The following lemma gives the first indication that the axioms for root systems
are quite restrictive.

Lemma 11.4 (Finiteness Lemma)

Suppose that R is a root system in the real inner-product space E. Let α, β ∈ R

with β �= ±α. Then
〈α, β〉 〈β, α〉 ∈ {0, 1, 2, 3}.

Proof

Thanks to (R4), the product in question is an integer: We must establish the
bounds. For any non-zero v, w ∈ E, the angle θ between v and w is such that
(v, w)2 = (v, v)(w, w) cos2 θ. This gives

〈α, β〉 〈β, α〉 = 4 cos2 θ ≤ 4.

Suppose we have cos2 θ = 1. Then θ is an integer multiple of π and so α and β

are linearly dependent, contrary to our assumption.
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We now use this lemma to show that there are only a few possibilities for
the integers 〈α, β〉. Take two roots α, β in a root system R with α �= ±β. We
may choose the labelling so that (β, β) ≥ (α, α) and hence

|〈β, α〉| =
2 |(β, α)|
(α, α)

≥ 2 |(α, β)|
(β, β)

= |〈α, β〉| .

By the Finiteness Lemma, the possibilities are:

〈α, β〉 〈β, α〉 θ
(β, β)
(α, α)

0 0 π/2 undetermined
1 1 π/3 1

−1 −1 2π/3 1
1 2 π/4 2

−1 −2 3π/4 2
1 3 π/6 3

−1 −3 5π/6 3

Given roots α and β, we would like to know when their sum and difference
lie in R. Our table gives some information about this question.

Proposition 11.5

Let α, β ∈ R.

(a) If the angle between α and β is strictly obtuse, then α + β ∈ R.

(b) If the angle between α and β is strictly acute and (β, β) ≥ (α, α), then
α − β ∈ R.

Proof

In either case, we may assume that (β, β) ≥ (α, α). By (R3), we know that
sβ(α) = α − 〈α, β〉 β lies in R. The table shows that if θ is strictly acute, then
〈α, β〉 = 1, and if θ is strictly obtuse, then 〈α, β〉 = −1.

Example 11.6

Let E = R2 with the Euclidean inner product. We shall find all root systems R

contained in E. Take a root α of the shortest possible length. Since R spans E,
it must contain some root β �= ±α. By considering −β if necessary, we may
assume that β makes an obtuse angle with α. Moreover, we may assume that
this angle, say θ, is as large as possible.
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(a) Suppose that θ = 2π/3. Using Proposition 11.5, we find that R contains
the six roots shown below.

α−α

α+β

−α−β

β

β

One can check that this set is closed under the action of the reflections
sα, sβ , sα+β . As s−α = sα, and so on, this is sufficient to verify (R3). We
have therefore found a root system in E. This root system is said to have
type A2. (The 2 refers to the dimension of the underlying space.)

(b) Suppose that θ = 3π/4. Proposition 11.5 shows that α + β is a root, and
applying sα to β shows that 2α + β is a root, so R must contain

α−α

2α+β

−2α−β

α+β

−α−β

β

−β.

This root space is said to have type B2. A further root would make an angle
of at most π/8 with one of the existing roots, so this must be all of R.

(c) Suppose that θ = 5π/6. We leave it to the reader to show that R must be

α

β

and to determine the correct labels for the remaining roots. This root
system is said to have type G2.
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(d) Suppose that β is perpendicular to α. This gives us the root system of
type A1 × A1.

β−β

α

−α

Here, as (α, β) = 0, the reflection sα fixes the roots ±β lying in the space
perpendicular to α, so there is no interaction between the roots ±α and ±β.
In particular, knowing the length of α tells us nothing about the length of β.
These considerations suggest the following definition.

Definition 11.7

The root system R is irreducible if R cannot be expressed as a disjoint union
of two non-empty subsets R1 ∪R2 such that (α, β) = 0 for α ∈ R1 and β ∈ R2.

Note that if such a decomposition exists, then R1 and R2 are root systems
in their respective spans. The next lemma tells us that it will be enough to
classify the irreducible root systems.

Lemma 11.8

Let R be a root system in the real vector space E. We may write R as a disjoint
union

R = R1 ∪ R2 ∪ . . . ∪ Rk,

where each Ri is an irreducible root system in the space Ei spanned by Ri, and
E is a direct sum of the orthogonal subspaces E1, . . . , Ek.

Proof

Define an equivalence relation ∼ on R by letting α ∼ β if there exist
γ1, γ2, . . . , γs in R with α = γ1 and β = γs such that (γi, γi+1) �= 0 for 1 ≤ i < s.
Let the Ri be the equivalence classes for this relation. It is clear that they sat-
isfy axioms (R1), (R2), and (R4); you are asked to check (R3) in the following
exercise. That each Ri is irreducible follows immediately from the construction.

As every root appears in some Ei, the sum of the Ei spans E. Suppose that
v1 + . . . + vk = 0, where vi ∈ Ei. Taking inner products with vj , we get

0 = (v1, vj) + . . . + (vj , vj) + . . . + (vk, vj) = (vj , vj)

so each vj = 0. Hence E = E1 ⊕ . . . ⊕ Ek.
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Exercise 11.2

Show that if (α, β) �= 0, then (α, sα(β)) �= 0. Deduce that the equivalence
classes defined in the proof of the lemma satisfy (R3).

11.3 Bases for Root Systems

Let R be a root system in the real inner-product space E. Because R spans
E, any maximal linearly independent subset of R is a vector space basis for R.
Proposition 11.5 suggests that it might be convenient if we could find such a
subset where every pair of elements made an obtuse angle. In fact, we can ask
for something stronger, as in the following.

Definition 11.9

A subset B of R is a base for the root system R if

(B1) B is a vector space basis for E, and

(B2) every β ∈ R can be written as β =
∑

α∈B kαα with kα ∈ Z, where all the
non-zero coefficients kα have the same sign.

Exercise 11.3

Show that if B is a base for a root system, then the angle between any
two distinct elements of B is obtuse (that is, at least π/2).

We say that a root β ∈ R is positive with respect to B if the coefficients given
in (B2) are positive, and otherwise it is negative with respect to B.

Exercise 11.4

Let R = {±(εi − εj) : 1 ≤ i < j ≤ � + 1} be the root system in Exercise
11.1. Let αi = εi − εi+1 for 1 ≤ i ≤ �. Show that B = {α1, . . . , α�} is a
base for R and find the positive roots.

A natural way to label the elements of R as positive or negative is to fix
a hyperplane of codimension 1 in E which does not contain any element of
R and then to label the roots of one side of the hyperplane as positive and
those on the other side as negative. Suppose that R has a base B compatible
with this labelling. Then the elements of B must lie on the positive side of the
hyperplane. For example, the diagram below shows a possible base for the root
system in Example 11.6(b).
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{α, β} is a base of the root system of type B2

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

α

β α+β 2α+β

chosen hyperplane

{aα + bβ : a, b ≥ 0}

Note that the roots in the base are those nearest to the hyperplane. This
observation motivates the proof of our next theorem.

Theorem 11.10

Every root system has a base.

Proof

Let R be a root system in the real inner-product space E. We may assume that
E has dimension at least 2, as the case dim E = 1 is obvious. We may choose a
vector z ∈ E which does not lie in the perpendicular space of any of the roots.
Such a vector must exist, as E has dimension at least 2, so it is not the union
of finitely many hyperplanes (see Exercise 11.8 or Exercise 11.12).

Let R+ be the set of α ∈ R which lie on the positive side of z, that is, those
α for which (z, α) > 0. Let

B := {α ∈ R+ : α is not the sum of two elements in R+}.

We claim that B is a base for R.
We first show that (B2) holds. If β ∈ R, then either β ∈ R+ or −β ∈ R+, so

it is sufficient to prove that every β ∈ R+ can be expressed as β =
∑

α∈B kαα

for some kα ∈ Z with each kα ≥ 0. If this fails, then we may choose a β ∈ R+,
not expressible in this form, such that the inner product (z, β) is as small as
possible. As β �∈ B, there exist β1, β2 ∈ R+ such that β = β1 +β2. By linearity,

(z, β) = (z, β1) + (z, β2)

is the sum of two positive numbers, and therefore 0 < (z, βi) < (z, β) for
i = 1, 2. Now at least one of β1, β2 cannot be expressed as a positive integral
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linear combination of the elements of α; this contradicts the choice of β.
It remains to show that B is linearly independent. First note that if α and β

are distinct elements of B, then by Exercise 11.3 the angle between them must
be obtuse. Suppose that

∑
α∈B rαα = 0, where rα ∈ R. Collecting all the terms

with positive coefficients to one side gives an element

x :=
∑

α : rα>0

rαα =
∑

β : rβ<0

(−rβ)β.

Hence
(x, x) =

∑
α : rα>0
β : rβ<0

rα(−rβ)(α, β) ≤ 0

and so x = 0. Therefore

0 = (x, z) =
∑

α : rα>0

rα(α, z),

where each (α, z) > 0 as α ∈ R+, so we must have rα = 0 for all α, and
similarly rβ = 0 for all β.

Let R+ denote the set of all positive roots in a root system R with respect
to a base B, and let R− be the set of all negative roots. Then R = R+ ∪ R−,
a disjoint union. The set B is contained in R+; the elements of B are called
simple roots. The reflections sα for α ∈ B are known as simple reflections.

Remark 11.11

A root system R will usually have many possible bases. For example, if B is a
base then so is {−α : α ∈ B}. In particular, the terms “positive” and “negative”
roots are always taken with reference to a fixed base B.

Exercise 11.5

Let R be a root system with a base B. Take any γ ∈ R. Show that the
set {sγ(α) : α ∈ B} is also a base of R.

11.3.1 The Weyl Group of a Root System

For each root α ∈ R, we have defined a reflection sα which acts as an invertible
linear map on E. We may therefore consider the group of invertible linear
transformations of E generated by the reflections sα for α ∈ R. This is known
as the Weyl group of R and is denoted by W or W (R).
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Lemma 11.12

The Weyl group W associated to R is finite.

Proof

By axiom (R3), the elements of W permute R, so there is a group homomor-
phism from W into the group of all permutations of R, which is a finite group
because R is finite. We claim that this homomorphism is injective, and so W

is finite.
Suppose that g ∈ W is in the kernel of this homomorphism. Then, by

definition, g fixes all the roots in R. But E is spanned by the roots, so g fixes
all elements in a basis of E, and so g must be the identity map.

11.3.2 Recovering the Roots

Suppose that we are given a base B for a root system R. We shall show that
this alone gives us enough information to recover R. To do this, we use the Weyl
group and prove that every root β is of the form β = g(α) for some α ∈ B

and some g in the subgroup W0 := 〈sγ : γ ∈ B〉 of W . (We shall also see that
W = W0.) Thus, if we repeatedly apply reflections in the simple roots, we will
eventually recover the full root system.

Some evidence for this statement is given by Example 11.6: in each case we
started with a pair of roots {α, β}, and knowing only the positions of α and
β, we used repeated reflections to construct the unique root system containing
these roots as a base.

Lemma 11.13

If α ∈ B, then the reflection sα permutes the set of positive roots other than
α.

Proof

Suppose that β ∈ R+ and β �= α. We know that β =
∑

γ∈B kγγ for some
kγ ≥ 0. Since β �= α and β ∈ R, there is some γ ∈ B with kγ �= 0 and γ �= α.
We know that sα(β) ∈ R; and from sα(β) = β − 〈β, α〉 α we see that the
coefficient of γ in sα(β) is kγ , which is positive. As all the non-zero coefficients
in the expression of sα(β) as a linear combination of base elements must have
the same sign, this tells us that sα(β) lies in R+.
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Proposition 11.14

Suppose that β ∈ R. There exists g ∈ W0 and α ∈ B such that β = g(α).

Proof

Suppose first of all that β ∈ R+ and that β =
∑

γ∈B kγγ with kγ ∈ Z, kγ ≥ 0.
We shall proceed by induction on the height of β defined by

ht(β) =
∑
γ∈B

kγ .

If ht(β) = 1, then β ∈ B, so we may take α = β and let g be the identity
map. For the inductive step, suppose that ht(β) = n ≥ 2. By axiom (R2), at
least two of the kγ are strictly positive.

We claim that there is some γ ∈ B such that (β, γ) > 0. If not, then
(β, γ) ≤ 0 for all γ ∈ B and so

(β, β) =
∑

γ

kγ(β, γ) ≤ 0,

which is a contradiction because β �= 0. We may therefore choose some γ ∈ B

with (β, γ) > 0. Then 〈β, γ〉 > 0 and so

ht(sγ(β)) = ht(β) − 〈β, γ〉 < ht(β).

(We have sγ(β) ∈ R+ by the previous lemma.) The inductive hypothesis now
implies that there exists α ∈ B and h ∈ W0 such that sγ(β) = h(α). Hence
β = sγ(h(α)) so we may take g = sγh, which lies in W0.

Now suppose that β ∈ R−, so −β ∈ R+. By the first part, −β = g(α) for
some g ∈ W0 and α ∈ B. By linearity of g, we get β = g(−α) = g(sα(α)),
where gsα ∈ W0.

We end this section by proving that a base for a root system determines its
full Weyl group. We need the following straightforward result.

Exercise 11.6

Suppose that α is a root and that g ∈ W . Show that gsαg−1 = sgα.

Lemma 11.15

We have W0 = W ; that is, W is generated by the sα for α ∈ B.
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Proof

By definition, W is generated by the reflections sβ for β ∈ R, so it is sufficient
to prove that sβ ∈ W0 for any β ∈ R. By Proposition 11.14, we know that given
β there is some g ∈ W0 and α ∈ B such that β = g(α). Now the reflection sβ

is equal to gsαg−1 ∈ W0 by the previous exercise.

11.4 Cartan Matrices and Dynkin Diagrams

Although in general a root system can have many different bases, the following
theorem shows that from a geometric point of view they are all essentially
the same. As the proof of this theorem is slightly technical, we postpone it to
Appendix D.

Theorem 11.16

Let R be a root system and suppose that B and B′ are two bases of R, as
defined in Definition 11.9. Then there exists an element g in the Weyl group
W (R) such that B′ = {g(α) : α ∈ B}.

Let B be a base in a root system R. Fix an order on the elements of B, say
(α1, . . . , α�). The Cartan matrix of R is defined to be the � × � matrix with
ij-th entry 〈αi, αj〉. Since for any root β we have

〈sβ(αi), sβ(αj)〉 = 〈αi, αj〉 ,

it follows from Theorem 11.16 that the Cartan matrix depends only on the
ordering adopted with our chosen base B and not on the base itself. Note that
by (R4) the entries of the Cartan matrix are integers.

Example 11.17

(1) Let R be as in Exercise 11.4(ii). Calculation shows that the Cartan matrix
with respect to the ordered base (α1, . . . , α�) is⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 . . . −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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(2) Let R be the root system which we have drawn in Example 11.6(b). This
has ordered base (α, β), and the corresponding Cartan matrix is

C =
(

2 −1
−2 2

)
.

Another way to record the information given in the Cartan matrix is in
a graph ∆ = ∆(R), defined as follows. The vertices of ∆ are labelled by the
simple roots of B. Between the vertices labelled by simple roots α and β, we
draw dαβ lines, where

dαβ := 〈α, β〉 〈β, α〉 ∈ {0, 1, 2, 3} .

If dαβ > 1, which happens whenever α and β have different lengths and are
not orthogonal, we draw an arrow pointing from the longer root to the shorter
root. This graph is called the Dynkin diagram of R. By Theorem 11.16, the
Dynkin diagram of R is independent of the choice of base.

The graph with the same vertices and edges, but without the arrows, is
known as the Coxeter graph of R.

Example 11.18

Using the base given in Exercise 11.4(ii), the Dynkin diagram of the root system
introduced in Exercise 11.1 is

α1 α2 α�−2 α�−1
. . . .

The Dynkin diagram for the root system in Example 11.6(b) is
β α

.

Exercise 11.7

Show that a root system is irreducible if and only if its Dynkin diagram
is connected; that is, given any two vertices, there is a path joining them.

Given a Dynkin diagram, one can read off the numbers 〈αi, αj〉 and so
recover the Cartan matrix. In fact, more is true: The next section shows that
a root system is essentially determined by its Dynkin diagram.

11.4.1 Isomorphisms of Root Systems

Definition 11.19

Let R and R′ be root systems in the real inner-product spaces E and E′,
respectively. We say that R and R′ are isomorphic if there is a vector space
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isomorphism ϕ : E → E′ such that

(a) ϕ(R) = R′, and

(b) for any two roots α, β ∈ R, 〈α, β〉 = 〈ϕ(α), ϕ(β)〉.

Recall that if θ is the angle between roots α and β, then 4 cos2 θ =
〈α, β〉 〈β, α〉, so condition (b) says that ϕ should preserve angles between root
vectors. For irreducible root systems, a stronger geometric characterisation is
possible — see Exercise 11.15 at the end of this chapter.

Example 11.20

Let R be a root system in the inner-product space E. We used that the reflection
maps sα for α ∈ R are isomorphisms (from R to itself) when we defined the
Cartan matrix of a root system.

An example of an isomorphism that is not distance preserving is given by
scaling: For any non-zero c ∈ C, the set cR = {cα : α ∈ R} is a root system in
E, and the map v �→ cv induces an isomorphism between R and cR.

It follows immediately from the definition of isomorphism that isomorphic
root systems have the same Dynkin diagram. We now prove that the converse
holds.

Proposition 11.21

Let R and R′ be root systems in the real vector spaces E and E′, respectively.
If the Dynkin diagrams of R and R′ are the same, then the root systems are
isomorphic.

Proof

We may choose bases B = {α1, . . . , α�} in R and B′ = {α′
1, . . . , α

′
�} in R′ so

that for all i, j one has
〈αi, αj〉 =

〈
α′

i, α
′
j

〉
.

Let ϕ : E → E′ be the linear map which maps αi to α′
i. By definition, this is

a vector space isomorphism satisfying condition 11.19(b). We must show that
ϕ(R) = R′.

Let v ∈ E and αi ∈ B. We have

ϕ (sαi(v)) = ϕ (v − 〈v, αi〉 αi)

= ϕ(v) − 〈v, αi〉 α′
i.
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We claim that 〈v, αi〉 = 〈ϕ(v), α′
i〉. To show this, express v as a linear combi-

nation of α1, . . . , αn and then use that 〈−,−〉 is linear in its first component.
Therefore the last equation may be written as

ϕ(sαi(v)) = sα′
i
(ϕ(v)).

By Lemma 11.15, the simple reflections sαi generate the Weyl group of R.
Hence the image under ϕ of the orbit of v ∈ E under the Weyl group of R

is contained in the orbit of ϕ(v) under the Weyl group of R′. Now Proposi-
tion 11.14 tells us that {g(α) : g ∈ W0, α ∈ B} = R so, since ϕ(B) = B′, we
must have ϕ(R) ⊆ R′.

The same argument may be applied to the inverse of ϕ to show that
ϕ−1(R′) ⊆ R. Hence ϕ(R) = R′, as required.

EXERCISES

11.8. Let E be a real inner-product space of dimension n ≥ 2. Show that E

is not the union of finitely many hyperplanes of dimension n−1. For
a more general result, see Exercise 11.12 below.

11.9.† Let E be a finite-dimensional real inner-product space. Let b1, . . . , bn

be a vector space basis of E. Show that there is some z ∈ E such
that (z, bi) > 0 for all i.

11.10. Let R be as in Exercise 11.1 with � = 2. We may regard the reflec-
tions sαj for j = 1, 2 as linear maps on R3. Determine sαj (εi) for
1 ≤ i ≤ 3 and 1 ≤ j ≤ 2. Hence show that W (R) is isomorphic to
the symmetric group S3.

11.11. Suppose that R is a root system in E, that R′ is a root system in E′,
and that ϕ : E → E′ is a linear map which induces an isomorphism
of root systems. Show that for α ∈ R one then has

sα = ϕ−1 ◦ sϕ(α) ◦ ϕ.

Prove that the Weyl group associated to R is isomorphic to the Weyl
group associated to R′. (If you know what it means, prove that the
pairs (R, W (R)) and (R′, W (R′)) are isomorphic as G-spaces.)

11.12.† Suppose that E is a finite-dimensional vector space over an infinite
field. Suppose U1, U2, . . . , Un are proper subspaces of E of the same
dimension. Show that the set-theoretic union

⋃n
i=1 Ui is not a sub-

space. In particular, it is a proper subset of E.
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11.13. Suppose that R is a root system in the real inner-product space E.
Show that

Ř :=
{

2α

(α, α)
: α ∈ R

}

is also a root system in E. Show that the Cartan matrix of Ř is
the transpose of the Cartan matrix of Ř (when each is taken with
respect to suitable ordering of the roots) and that the Weyl groups
of R and Ř are isomorphic. One says Ř is the dual root system to R.

11.14.† Show that if R is a root system and α, β ∈ R are roots with α �= ±β

then the subgroup of the Weyl group W (R) generated by sα, sβ

is a dihedral group with rotational subgroup generated by sαsβ .
Hence, or otherwise, find the Weyl groups of the root systems in
Example 11.6.

Hint : A group generated by two elements x and y, each of order 2,
is dihedral of order 2m, where m is the order of xy.

11.15.� Let R and R′ be irreducible root systems in the real inner-product
spaces E and E′. Prove that R and R′ are isomorphic if and only
if there exist a scalar λ ∈ R and a vector space isomorphism
ϕ : E → E′ such that ϕ(R) = R′ and

(ϕ(u), ϕ(v)) = λ(u, v) for all u, v ∈ E.
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The Classical Lie Algebras

Our aim in this chapter is to study the classical Lie algebras sl(n,C), so(n,C),
and sp(n,C) for n ≥ 2. We shall show that, with two exceptions, all these Lie
algebras are simple. We shall also find their root systems and the associated
Dynkin diagrams and describe their Killing forms. The main result we prove is
the following theorem.

Theorem 12.1

If L is a classical Lie algebra other than so(2,C) and so(4,C), then L is simple.

We also explain how the root systems we have determined can be used
to rule out most isomorphisms between different classical Lie algebras (while
suggesting the presence of those that do exist). This will lead us to a complete
classification of the classical Lie algebras up to isomorphism.

In the following section, we describe a programme that will enable us to
deal with each of the families of classical Lie algebras in a similar way. We then
carry out this programme for each family in turn.
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12.1 General Strategy

Let L be a classical Lie algebra. In each case, it follows from the definitions
given in §4.3 that L has a large subalgebra H of diagonal matrices. The maps
adh for h ∈ H are diagonalisable, as was first seen in Exercise 1.17, so H

consists of semisimple elements.
We can immediately say a bit more about the action of H. The subspace

L ∩ Span{eij : i �= j} of off-diagonal matrices in L is also invariant under adh

for h ∈ H and hence the action of adH on this space is diagonalisable. Let

L ∩ Span{eij : i �= j} =
⊕
α∈Φ

Lα,

where for α ∈ H�, Lα is the α-eigenspace of H on the off-diagonal part of L

and
Φ = {α ∈ H∗ : Lα �= 0}.

This gives us the decomposition

(�) L = L0 ⊕
⊕
α∈Φ

Lα,

which looks very much like a root space decomposition. We shall first show
that H = L0, from which it will follow that H is a Cartan subalgebra of L.

Lemma 12.2

Let L ⊆ gl(n,C) and H be as in (�) above. Suppose that for all h ∈ H there is
some α ∈ Φ such that α(h) �= 0. Then H is a Cartan subalgebra of L.

Proof

We know already that H is abelian and that all the elements of H are semisim-
ple. It remains to show that H is maximal with these properties. Suppose that
x ∈ L and that [H, x] = 0. (Equivalently, x ∈ L0.)

Using the direct sum decomposition (�), we may write x as x = hx +∑
α∈Φ cαxα, where xα ∈ Lα, cα ∈ C, and hx ∈ H. For all h ∈ H, we have

0 = [h, x] =
∑
α

cαα(h)xα.

By the hypothesis, for every α ∈ Φ there is some h ∈ H such that α(h) �= 0, so
cα = 0 for each α and hence x ∈ H.
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To show that the classical Lie algebras (with the two exceptions mentioned
in Theorem 12.1) are simple, we first need to show that they are semisimple.
We shall use the following criterion.

Proposition 12.3

Let L be a complex Lie algebra with Cartan subalgebra H. Let

L = H ⊕
⊕
α∈Φ

Lα

be the direct sum decomposition of L into simultaneous eigenspaces for the
elements of ad H, where Φ is the set of α ∈ H� such that Lα �= 0. Suppose that
the following conditions hold:

(i) For each 0 �= h ∈ H, there is some α ∈ Φ such that α(h) �= 0.

(ii) For each α ∈ Φ, the space Lα is 1-dimensional.

(iii) If α ∈ Φ, then −α ∈ Φ, and if Lα is spanned by xα, then [[xα, x−α], xα] �= 0.

Then L is semisimple.

Proof

By Exercise 4.6, it is enough to show that L has no non-zero abelian ideals.
Let A be an abelian ideal of L. By hypothesis, H acts diagonalisably on L and
[H, A] ⊆ A, so H also acts diagonalisably on A. We can therefore decompose
A as

A = (A ∩ H) ⊕
⊕
α∈Φ

(A ∩ Lα) .

Suppose for a contradiction that A ∩ Lα �= 0 for some α ∈ Φ. Then, because
Lα is 1-dimensional, we must have Lα ⊆ A. Since A is an ideal, this implies
that [Lα, L−α] ⊆ A, so A contains an element h of the form h = [xα, x−α],
where xα spans Lα and x−α spans L−α. Since A is abelian and both xα and h

are known to lie in A, we deduce that [h, xα] = 0. However, condition (iii) says
that [h, xα] �= 0, a contradiction.

We have therefore proved that A = A ∩ H; that is, A ⊆ H. If A contains
some non-zero element h, then, by condition (i), we know that there is some
α ∈ Φ such that α(h) �= 0. But then [h, xα] = α(h)xα ∈ Lα and also [h, xα] ∈ A,
so xα ∈ Lα∩A, which contradicts the previous paragraph. Therefore A = 0.

Note that since [Lα, L−α] ⊆ L0 = H, condition (iii) holds if and only if
α([Lα, L−α]) �= 0. Therefore, to show that this condition holds, it is enough to
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verify that [[Lα, L−α], Lα] �= 0 for one member of each pair of roots ±α; this
will help to reduce the amount of calculation required.

Having found a Cartan subalgebra of L and shown that L is semisimple, we
will then attempt to identify the root system. We must find a base for Φ, and
then for β, γ in the base we must find the Cartan number 〈β, γ〉. To do this,
we shall use the identity

〈β, γ〉 = β(hγ),

where hγ is part of the standard basis of the subalgebra sl(γ) associated to the
root γ (see §10.4). To find hγ will be an easy calculation for which we can use
the work done in checking condition (iii) of Proposition 12.3.

Now, to show that L is simple, it is enough, by the following proposition, to
show that Φ is irreducible, or equivalently (by Exercise 11.7) that the Dynkin
diagram of Φ is connected.

Proposition 12.4

Let L be a complex semisimple Lie algebra with Cartan subalgebra H and root
system Φ. If Φ is irreducible, then L is simple.

Proof

By the root space decomposition, we may write L as

L = H ⊕
⊕
α∈Φ

Lα.

Suppose that L has a proper non-zero ideal I. Since H consists of semisim-
ple elements, it acts diagonalisably on I, and so I has a basis of common
eigenvectors for the elements of ad H. As we know that each root space Lα is
1-dimensional, this implies that

I = H1 ⊕
⊕

α∈Φ1

Lα

for some subspace H1 of H = L0 and some subset Φ1 of Φ. Similarly, we have

I⊥ = H2 ⊕
⊕

α∈Φ2

Lα,

where I⊥ is the perpendicular space to I with respect to the Killing form. As
I ⊕ I⊥ = L, we must have H1 ⊕ H2 = H, Φ1 ∩ Φ2 = ∅, and Φ1 ∪ Φ2 = Φ.
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If Φ2 is empty, then Lα ⊆ I for all α ∈ Φ. As L is generated by its root
spaces, this implies that I = L, a contradiction. Similarly, Φ1 is non-empty.
Now, given α ∈ Φ1 and β ∈ Φ2, we have

〈α, β〉 = α(hβ) = 0

as α(hβ)eα = [hβ , eα] ∈ I⊥ ∩ I = 0, so (α, β) = 0 for all α ∈ Φ1 and β ∈ Φ2,
which shows that Φ is reducible.

In summary, our programme is:

(1) Find the subalgebra H of diagonal matrices in L and determine the
decomposition (�). This will show directly that conditions (i) and
(ii) of Proposition 12.3 hold.

(2) Check that [[Lα, L−α], Lα] �= 0 for each root α ∈ Φ.

By Lemma 12.2 and Proposition 12.3, we now know that L is semisimple
and that H is a Cartan subalgebra of L.

(3) Find a base for Φ.

(4) For γ, β in the base, find hγ and eβ and hence 〈β, γ〉 = β(hγ). This
will determine the Dynkin diagram of our root system, from which
we can verify that Φ is irreducible and L is simple.

12.2 sl(� + 1, C)

For this Lie algebra, most of the work has already been done.

(1) We saw at the start of Chapter 10 that the root space decomposition of
L = sl(� + 1,C) is

L = H ⊕
⊕
i�=j

Lεi−εj ,

where εi(h) is the i-th entry of h and the root space Lεi−εj is spanned
by eij . Thus Φ = {± (εi − εj) : 1 ≤ i < j ≤ l + 1}.

(2) If i < j, then [eij , eji] = eii − ejj = hij and [hij , eij ] = 2eij �= 0.

(3) We know from Exercise 11.4 that the root system Φ has as a base {αi : 1 ≤
i ≤ �}, where αi = εi − εi+1.
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(4) From (2) we see that standard basis elements for the subalgebras sl(αi)
can be taken as eαi

= ei,i+1, fαi
= ei+1,i, hαi

= eii − ei+1,i+1. Calculation
shows that

〈αi, αj〉 = αi(hαj ) =

⎧⎪⎪⎨
⎪⎪⎩

2 i = j

−1 |i − j| = 1

0 otherwise,

so the Cartan matrix of Φ is as calculated in Example 11.17(1) and the
Dynkin diagram is

α1 α2 α�−1 α�
. . . .

This diagram is connected, so L is simple. We say that the root system of
sl(� + 1,C) has type A�.

12.3 so(2� + 1, C)

Let L = glS(2� + 1,C) for � ≥ 1, where

S =

⎛
⎝1 0 0

0 0 I�

0 I� 0

⎞
⎠ .

Recall that this means

L =
{
x ∈ gl(2� + 1,C) : xtS = −Sx

}
.

We write elements of L as block matrices, of shapes adapted to the blocks of S.
Calculation shows, using Exercise 2.12, that

L =

⎧⎨
⎩
⎛
⎝ 0 ct −bt

b m p

−c q −mt

⎞
⎠ : p = −pt and q = −qt

⎫⎬
⎭ .

As usual, let H be the set of diagonal matrices in L. It will be convenient
to label the matrix entries from 0 to 2�. Let h ∈ H have diagonal entries
0, a1, . . . , a�,−a1, . . . ,−a�, so with our numbering convention,

h =
�∑

i=1

ai(eii − ei+�,i+�).



12.3 so(2� + 1,C) 131

(1a) We start by finding the root spaces for H. Consider the subspace of L

spanned by matrices whose non-zero entries occur only in the positions
labelled by b and c. This subspace has as a basis bi = ei,0 − e0,�+i and
ci = e0,i − e�+i,0 for 1 ≤ i ≤ �. (Note that bi and ci are matrices, not
scalars!) We calculate that

[h, bi] = aibi, [h, ci] = −aici.

(1b) We extend to a basis of L by the matrices

mij = eij − e�+j,�+i for 1 ≤ i �= j ≤ �,

pij = ei,�+j − ej,�+i for 1 ≤ i < j ≤ l,

qji = pt
ij = e�+j,i − e�+i,j for 1 ≤ i < j ≤ l.

Again we are fortunate that the obvious basis elements are in fact simul-
taneous eigenvectors for the action of H. Calculation shows that

[h, mij ] = (ai − aj)mij ,

[h, pij ] = (ai + aj)pij ,

[h, qji] = −(ai + aj)qji.

We can now list the roots. For 1 ≤ i ≤ �, let εi ∈ H� be the map sending
h to ai, its entry in position i.

root εi −εi εi − εj εi + εj −(εi + εj)

eigenvector bi ci mij (i �= j) pij (i < j) qji (i < j)

(2) We check that [h, xα] �= 0, where h = [xα, x−α].

(2a) For α = εi, we have

hi := [bi, ci] = eii − e�+i,�+i

and, by (1a), [hi, bi] = bi.

(2b) For α = εi − εj and i < j, we have

hij := [mij , mji] = (eii − e�+i,�+i) − (ejj − e�+j,�+j)

and, by (1b), [hij , mij ] = 2mij .

(2c) Finally, for α = εi + εj , for i < j, we have

hij = [pij , qji] = (eii − e�+i,�+i) + (ejj − e�+j,�+j)

and, by (1b), [hij , pij ] = 2pij .
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(3) We claim that a base for our root system is given by

B = {αi : 1 ≤ i < �} ∪ {β�},

where αi = εi − εi+1 and β� = ε�. To see this, note that when 1 ≤ i < �,

εi = αi + αi+1 + . . . + α�−1 + β�,

and that when 1 ≤ i < j ≤ �,

εi − εj = αi + αi+1 + . . . + αj−1,

εi + εj = αi + . . . αj−1 + 2(αj + αj+1 + . . . + α�−1 + β�).

Going through the table of roots shows that if γ ∈ Φ then either γ or
−γ appears above as a non-negative linear combination of elements of B.
Since B has � elements and � = dimH, this is enough to show that B is
a base of Φ.

(4) We now determine the Cartan matrix. For i < �, we take eαi = mi,i+1,
and then hαi

= hi,i+1 follows from (2b). We take eβ�
= b�, and then from

(2a) we see that hβ = 2(e�,� − e2�,2�).

For 1 ≤ i, j < �, we calculate that

[hαj , eαi ] =

⎧⎪⎪⎨
⎪⎪⎩

2eαj i = j

−eαj
|i − j| = 1

0 otherwise.

Hence

〈αi, αj〉 =

⎧⎪⎪⎨
⎪⎪⎩

2 i = j

−1 |i − j| = 1

0 otherwise.

Similarly, by calculating [hβ�
, eαi

] and [hαi
, eβ�

], we find that

〈αi, β�〉 =

{
−2 i = � − 1

0 otherwise,

〈β�, αi〉 =

{
−1 i = � − 1

0 otherwise.

This shows that the Dynkin diagram of Φ is

. . .
α1 α2 α�−2 α�−1 β�

.

As the Dynkin diagram is connected, Φ is irreducible and so L is simple.
The root system of so(2� + 1,C) is said to have type B�.
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12.4 so(2�, C)

Let L = glS(2�,C), where

S =
(

0 I�

I� 0

)
.

We write elements of L as block matrices, of shapes adapted to the blocks of S.
Calculation shows that

L =
{(

m p

q −mt

)
: p = −pt and q = −qt

}
.

We see that if � = 1 then the Lie algebra is 1-dimensional, and so, by definition,
not simple or semisimple. For this reason, we assumed in the statement of
Theorem 12.1 that � ≥ 2.

As usual, we let H be the set of diagonal matrices in L. We label the matrix
entries from 1 up to 2�. This means that we can use the calculations already
done for so(2�+1,C) by ignoring the row and column of matrices labelled by 0.

(1) All the work needed to find the root spaces in so(2�,C) is done for us by
step (1b) for so(2� + 1,C). Taking the notation from this part, we get the
following roots:

root εi − εj εi + εj −(εi + εj)

eigenvector mij (i �= j) pij (i < j) qji (i < j)

(2) The work already done in steps (2b) and (2c) for sl(2� + 1,C) shows that
[[Lα, L−α], Lα] �= 0 for each root α.

(3) We claim that a base for our root system is given by

B = {αi : 1 ≤ i < �} ∪ {β�},

where αi = εi − εi+1 and β� = ε�−1 + ε�. To see this, note that when
1 ≤ i < j < �,

εi − εj = αi + αi+1 + . . . + αj−1,

εi + εj = (αi + αi+1 + . . . + α�−2) + (αj + αj+1 + . . . + α�−1 + β�).

This shows that if γ ∈ Φ, then either γ or −γ is a non-negative linear
combination of elements of B with integer coefficients, so B is a base for
our root system.
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(4) We calculate the Cartan integers. The work already done for so(2� + 1,C)
gives us the Cartan numbers 〈αi, αj〉 for i, j < �. For the remaining ones,
we take eβ�

= p�−1,� and then we find from step (2c) for so(2� + 1,C) that

hβ�
= (e�−1,�−1 − e2�−1,2�−1) + (e�,� − e2�,2�).

Hence

〈αj , β�〉 =

{
−1 j = � − 2

0 otherwise,

〈β�, αj〉 =

{
−1 j = � − 2

0 otherwise.

If � = 2, then the base has only the two orthogonal roots α1 and β2, so in
this case, Φ is reducible. In fact, so(4,C) is isomorphic to sl(2,C)⊕sl(2,C),
as you were asked to prove in Exercise 10.8. This explains the other Lie
algebra excluded from the statement of Theorem 12.1.

If � ≥ 3, then our calculation shows that the Dynkin diagram of Φ is

. . .
α1 α2 α�−2

β�

α�−1

As this diagram is connected, the Lie algebra is simple. When � = 3, the
Dynkin diagram is the same as that of A3, the root system of sl(3,C), so we
might expect that so(6,C) should be isomorphic to sl(4,C). This is indeed
the case; see Exercise 14.1. For � ≥ 4, the root system of so(2�,C) is said
to have type D�.

12.5 sp(2�, C)

Let L = glS(2�,C), where S is the matrix

S =
(

0 I�

−I� 0

)
.

We write elements of L as block matrices, of shapes adapted to the blocks of S.
Calculation shows that

L =
{(

m p

q −mt

)
: p = pt and q = qt

}
.
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We see that when � = 1, this is the same Lie algebra as sl(2,C). In what follows,
we shall assume that � ≥ 2.

Let H be the set of diagonal matrices in L. We label the matrix en-
tries in the usual way from 1 to 2�. Let h ∈ H have diagonal entries
a1, . . . , a�,−a1, . . . ,−a�, that is,

h =
�∑

i=1

ai(eii − ei+�,i+�).

(1) We take the following basis for L:

mij = eij − e�+j,�+i for 1 ≤ i �= j ≤ �,

pij = ei,�+j + ej,�+i for 1 ≤ i ≤ j ≤ �,

qji = pt
ij = e�+j,i + e�+i,j for 1 ≤ i ≤ j ≤ �.

Calculation shows that

[h, mij ] = (ai − aj)mij ,

[h, pij ] = (ai + aj)pij ,

[h, qji] = −(ai + aj)qji.

Notice that for pij and qji it is allowed that i = j, and in these cases we
get the eigenvalues 2ai and −2ai, respectively.

We can now list the roots. Write εi for the element in H∗ sending h to ai.

root εi − εj εi + εj −(εi + εj) 2εi −2εi

eigenvector mij (i �= j) pij (i < j) qji (i < j) pii qii

(2) For each root α, we must check that [h, xα] �= 0, where h = [xα, x−α].
When α = εi − εj , this has been done in step (2b) for so(2� + 1,C). If
α = εi + εj , then xα = pij and x−α = qji. If

h = (eii − e�+i,�+i) + (ejj − e�+j,�+j),

then [h, xα] = 2xα when i �= j, and when i = j we get [h, xα] = 4xα.

(3) Let αi = εi − εi+1 for 1 ≤ i ≤ � − 1 as before, and let β� = 2ε�. We
claim that {α1, . . . , α�−1, β�} is a base for Φ. By the same argument as
used before, this follows once we observe that for 1 ≤ i < j ≤ �

εi − εj = αi + αi+1 + . . . + αj−1,

εi + εj = αi + αi+1 + . . . + αj−1 + 2(αj + . . . + α�−1) + β�,

2εi = 2(αi + αi+1 + . . . + α�−1) + β�.
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(4) We calculate the Cartan integers. The numbers 〈αi, αj〉 are already known.
Take eβ�

= p��, then we find that hβ�
= e�,� − e2�,2� and so

〈αi, β�〉 =

{
−1 i = � − 1

0 otherwise,

〈β�, αj〉 =

{
−2 i = � − 1

0 otherwise.

The Dynkin diagram of Φ is

. . .
α1 α2 α�−2 α�−1 β�

,

which is connected, so L is simple. The root system of sp(2�,C) is said
to have type C�. Since the root systems C2 and B2 have the same Dynkin
diagram, we might expect that the Lie algebras sp(4,C) and so(5,C) would
be isomorphic. This is the case, see Exercise 13.1.

12.6 Killing Forms of the Classical Lie Algebras

Now that we know that (with two exceptions) the classical Lie algebras are
simple, we can use some of our earlier work to compute their Killing forms. We
shall see that they can all be given by a simple closed formula.

Lemma 12.5

Let L ⊆ gl(n,C) be a simple classical Lie algebra. Let β : L × L → C be the
symmetric bilinear form

β(x, y) := tr(xy).

Then β is non-degenerate.

Proof

Let J = {x ∈ L : β(x, y) = 0 for all y ∈ L}. It follows from the associative
property of trace, as in Exercise 9.3, that J is an ideal of L. Since L is simple,
and clearly β is not identically zero, we must have J = 0. Therefore β is non-
degenerate.

In Exercise 9.11, we showed that any two non-degenerate symmetric associa-
tive bilinear forms on a simple Lie algebra are scalar multiples of one another.
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Hence, by Cartan’s Second Criterion (Theorem 9.9), if κ is the Killing form
on L, then κ = λβ for some non-zero scalar λ ∈ C. To determine the scalar
λ, we use the root space decomposition to compute κ(h, h′) for h, h′ ∈ H. For
example, for sl(�+1,C) let h ∈ H, with diagonal entries a1, . . . , a�+1, and sim-
ilarly let h′ ∈ H with diagonal entries a′

1, . . . , a
′
�+1. Then, using the root space

decomposition given in step (1) of §12.2, we get

κ(h, h′) =
∑
α∈Φ

α(h)α(h′) = 2
∑
i<j

(ai − aj)(a′
i − a′

j).

Putting h = h′, and a1 = 1, a2 = −1 and all other entries zero, we get
κ(h, h) = 8+4(�− 1) = 4(�+1). Since trh2 = 2, this implies that λ = 2(�+1).

For the remaining three families, see Exercise 12.3 below (or its solution in
Appendix E). We get κ(x, y) = λ tr(xy), where

λ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(� + 1) L = sl(� + 1,C)

2� − 1 L = so(2� + 1,C)

2(� + 1) L = sp(2�,C)

2(� − 1) L = so(2�,C).

12.7 Root Systems and Isomorphisms

Let L be a complex semisimple Lie algebra. We have seen how to define the
root system associated to a Cartan subalgebra of L. Could two different Cartan
subalgebras of L give different root systems? The following theorem, whose
proof may be found in Appendix C, shows that the answer is no.

Theorem 12.6

Let L be a complex semisimple Lie algebra. If Φ1 and Φ2 are the root systems
associated to two Cartan subalgebras of L, then Φ1 is isomorphic to Φ2.

Suppose now that L1 and L2 are complex semisimple Lie algebras that have
non-isomorphic root systems (with respect to some Cartan subalgebras). Then,
by the theorem, L1 and L2 cannot be isomorphic. Thus we can use root systems
to rule out isomorphisms between the classical Lie algebras. This does most of
the work needed to prove the following proposition.
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Proposition 12.7

The only isomorphisms between classical Lie algebras are:

(1) so(3,C) ∼= sp(2,C) ∼= sl(2,C); root systems of type A1,

(2) so(4,C) ∼= sl(2,C) ⊕ sl(2,C); root systems of type A1 × A1,

(3) so(5,C) ∼= sp(4,C); root systems of types B2 and C2,

(4) so(6,C) ∼= sl(4,C); root systems of types D3 and A3.

Note that we have not yet proved the existence of all these isomorphisms.
However, we have already seen the first two (see Exercises 1.14 and 10.8). The
third isomorphism appears in Exercise 12.2 below and the last is discussed
in Chapter 15. We are therefore led to conjecture that the converse of The-
orem 12.6 also holds; that is, if two complex semisimple Lie algebras have
isomorphic root systems, then they are isomorphic as Lie algebras.

We shall see in Chapter 14 that this is a corollary of Serre’s Theorem.
Thus isomorphisms of root systems precisely reflect isomorphisms of complex
semisimple Lie algebras. To classify the complex semisimple Lie algebras, we
should therefore first classify root systems. This is the subject of the next
chapter.

EXERCISES

12.1. Show that the dimensions of the classical Lie algebras are as follows

dim sl(� + 1,C) = �2 + 2�,

dim so(2� + 1,C) = 2�2 + �,

dim sp(2�,C) = 2�2 + �,

dim so(2�,C) = 2�2 − �.

12.2.� Show that the Lie algebras sp(4,C) and so(5,C) are isomorphic.
(For instance, use the root space decomposition to show that they
have bases affording the same structure constants.)

12.3.† This exercise gives a way to establish the semisimplicity of the clas-
sical Lie algebras using the Killing form.

(i) Let L be a classical Lie algebra, and let H be the subalgebra of
diagonal matrices, with eigenspace decomposition

L = H ⊕
⊕
α∈Φ

Lα,
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so H is self-centralising. Assume also that the following condi-
tions hold

(a) For each α ∈ Φ, the space Lα is 1-dimensional. If α ∈ Φ,
then −α ∈ Φ.

(b) For each α ∈ Φ, the space [Lα, L−α] is non-zero.

(c) The Killing form restricted to H is non-degenerate, and for
h ∈ H, if κ(h, h) = 0 then h = 0.

Show that the Killing form of L is then non-degenerate.

In the earlier sections of this chapter, we have found the roots with
respect to H explicitly. We can make use of this and find the Killing
form restricted to H explicitly.

(ii) Use the root space decomposition of sl(� + 1,C) to show that
if κ is the Killing form of sl(� + 1,C), then

κ(h, h′) = 2n tr(hh′) for all h, h′ ∈ H.

Hence, show that condition (c) above holds for the restriction
of κ to H and deduce that sl(� + 1,C) is semisimple.

(iii) Use similar methods to prove that the orthogonal and symplectic
Lie algebras are semisimple.

12.4.†� Let L be a Lie algebra with a faithful irreducible representation.
Show that either L is semisimple or Z(L) is 1-dimensional and L =
Z(L)⊕L′, where the derived algebra L′ is semisimple. (This gives yet
another way to prove the semisimplicity of the classical Lie algebras.)
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In §11.4, we saw how to define the Dynkin diagram of a root system. By The-
orem 11.16, which states that any two bases of a root system are conjugate by
an element of the Weyl group, this diagram is unique up to the labelling of
the vertices. (The labels merely indicate our notation for elements of the base;
and so have no essential importance.) Conversely, we saw in §11.4.1 that a root
system is determined up to isomorphism by its Dynkin diagram.

From the point of view of classifying complex semisimple Lie algebras, there
is no need to distinguish between isomorphic root systems. Hence the problem
of finding all root systems can be reduced to the problem of finding all Dynkin
diagrams; this gives us a very convenient way to organise the classification.

We shall prove that apart from the four infinite families of root systems
associated to the classical Lie algebras there are just five more root systems,
the so-called exceptional root systems. We end this chapter by saying a little
about how they may be constructed.
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13.1 Classification of Dynkin Diagrams

Our aim in this section is to prove the following theorem.

Theorem 13.1

Given an irreducible root system R, the unlabelled Dynkin diagram associated
to R is either a member of one of the four families

A� for � ≥ 1: . . .

B� for � ≥ 2: . . .

C� for � ≥ 3: . . .

D� for � ≥ 4: . . .

where each of the diagrams above has � vertices, or one of the five exceptional
diagrams

E6:

E7:

E8:

F4:

G2:

Note that there are no repetitions in this list. For example, we have not
included C2 in the list, as it is the same diagram as B2, and so the associated
root systems are isomorphic. (Exercise 13.1 at the end of this chapter asks you
to construct an explicit isomorphism.)

Let ∆ be a connected Dynkin diagram. As a first approximation, we shall
determine the possible underlying graphs for ∆, ignoring for the moment any
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arrows that may appear. To find these graphs, we do not need to know that
they come from root systems. Instead it is convenient to work with more general
sets of vectors.

Definition 13.2

Let E be a real inner-product space with inner product (−,−). A subset A of E

consisting of linearly independent vectors v1, v2, . . . , vn is said to be admissible
if it satisfies the following conditions:

(a) (vi, vi) = 1 for all i and (vi, vj) ≤ 0 if i �= j.

(b) If i �= j, then 4(vi, vj)2 ∈ {0, 1, 2, 3} .

To the admissible set A, we associate the graph ΓA with vertices labelled by
the vectors v1, . . . , vn, and with dij := 4(vi, vj)2 ∈ {0, 1, 2, 3} edges between vi

and vj for i �= j.

Example 13.3

Suppose that B is a base of a root system. Set A := {α/
√

(α, α) : α ∈ B}.
Then A is easily seen to be an admissible set. Moreover, the graph ΓA is the
Coxeter graph of B, as defined in §11.4.

We now find all the connected graphs that correspond to admissible sets.
Let A be an admissible set in the real inner-product space E with connected
graph Γ = ΓA. The first easy observation we make is that any subset of A is
also admissible. We shall use this several times below.

Lemma 13.4

The number of pairs of vertices joined by at least one edge is at most |A| − 1.

Proof

Suppose A = {v1, . . . , vn}. Set v =
∑n

i=1 vi. As A is linearly independent,
v �= 0. Hence (v, v) = n + 2

∑
i<j(vi, vj) > 0 and so

n >
∑
i<j

−2(vi, vj) =
∑
i<j

√
dij ≥ N,

where N is the number of pairs {vi, vj} such that dij ≥ 1; this is the number
that interests us.
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Corollary 13.5

The graph Γ does not contain any cycles.

Proof

Suppose that Γ does have a cycle. Let A′ be the subset of A consisting of
the vectors involved in this cycle. Then A′ is an admissible set with the same
number (or more) edges as vertices, in contradiction to the previous lemma.

Lemma 13.6

No vertex of Γ is incident to four or more edges.

Proof

Take a vertex v of Γ , and let v1, v2, . . . , vk be all the vertices in Γ joined to v.
Since Γ does not contain any cycles, we must have (vi, vj) = 0 for i �= j. Con-
sider the subspace U with basis v1, v2, . . . , vk, v. The Gram–Schmidt process
allows us to extend v1, . . . , vk to an orthonormal basis of U , say by adjoining
v0; necessarily (v, v0) �= 0. We may express v in terms of this orthonormal basis
as

v =
k∑

i=0

(v, vi)vi.

By assumption, v is a unit vector, so expanding (v, v) gives 1 = (v, v) =∑k
i=0(v, vi)2. Since (v, v0)2 > 0, this shows that

k∑
i=1

(v, vi)2 < 1.

Now, as A is admissible and (v, vi) �= 0, we know that (v, vi)2 ≥ 1
4 for 1 ≤ i ≤ k.

Hence k ≤ 3.

An immediate corollary of this lemma is the following.

Corollary 13.7

If Γ is connected and has a triple edge, then Γ = .
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Lemma 13.8 (Shrinking Lemma)

Suppose Γ has a subgraph which is a line, that is, of the form
v1 v2

. . .
vk

where there are no multiple edges between the vertices shown. Define A′ =
(A \ {v1, v2, . . . , vk}) ∪ {v} where v =

∑k
i=1 vi. Then A′ is admissible and the

graph ΓA′ is obtained from ΓA by shrinking the line to a single vertex.

Proof

Clearly A′ is linearly independent, so we need only verify the conditions on the
inner products. By assumption, we have 2(vi, vi+1) = −1 for 1 ≤ i ≤ k and
(vi, vj) = 0 for i �= j otherwise. This allows us to calculate (v, v). We find that

(v, v) = k + 2
k−1∑
i=1

(vi, vi+1) = k − (k − 1) = 1.

Suppose that w ∈ A and w �= vi for 1 ≤ i ≤ k. Then w is joined to at most one
of v1, . . . , vk (otherwise there would be a cycle). Therefore either (w, v) = 0
or (w, v) = (w, vi) for some 1 ≤ i ≤ k and then 4(w, v)2 ∈ {0, 1, 2, 3}, so
A′ satisfies the defining conditions for an admissible set. These remarks also
determine the graph ΓA′ .

Say that a vertex of Γ is a branch vertex if it is incident to three or more
edges; by Lemma 13.6 such a vertex is incident to exactly three edges.

Lemma 13.9

The graph Γ has

(i) no more than one double edge;

(ii) no more than one branch vertex; and

(iii) not both a double edge and a branch vertex.

Proof

Suppose Γ has two (or more) double edges. Since Γ is connected, it has a
subgraph consisting of two double edges connected by a line of the form

. . . .
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By the Shrinking Lemma, we obtain an admissible set with graph

which contradicts Lemma 13.6. The proofs of the remaining two parts are very
similar, so we leave them to the reader.

For the final steps of the proof of Theorem 13.1, we shall need the following
calculation of an inner product.

Lemma 13.10

Suppose that Γ has a line as a subgraph:
v1 v2

. . .
vp

Let v =
∑p

i=1 ivi. Then (v, v) = p(p+1)
2 .

Proof

The shape of the subgraph tells us that 2(vi, vi+1) = −1 for 1 ≤ i ≤ p and that
(vi, vj) = 0 for i �= j otherwise, so

(v, v) =
p∑

i=1

i2 + 2
p−1∑
i=1

(vi, vi+1)i(i + 1) =
p∑

i=1

i2 −
p−1∑
i=1

i(i + 1) = p2 −
p−1∑
i=1

i,

which is equal to p(p + 1)/2.

Proposition 13.11

If Γ has a double edge, then Γ is one of
. . . ,

Proof

By Lemma 13.9, any such Γ has the form

v1
. . .

vp wq
. . .

w1

where, without loss of generality, p ≥ q. Let v =
∑p

i=1 ivi and w =
∑q

i=1 iwi.
By the calculation above, we have

(v, v) =
p(p + 1)

2
, (w, w) =

q(q + 1)
2

.
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We see from the graph that 4(vp, wq)2 = 2 and (vi, wj) = 0 in all other cases.
Hence

(v, w)2 = (pvp, qwq)2 =
p2q2

2
.

As v and w are linearly independent, the Cauchy–Schwarz inequality implies
that (v, w)2 < (v, v)(w, w). Substituting, we get 2pq < (p+1)(q+1), and hence

(p − 1)(q − 1) = pq − p − q + 1 < 2

so either q = 1 or p = q = 2.

Proposition 13.12

If Γ has a branch point, then either Γ is Dn for some n ≥ 4 or Γ is E6, E7,
or E8.

Proof

By Lemma 13.9, any such Γ has the form

v1
. . .

vp z

xr

yq

x1

y1

.. .

. ..

where, without loss of generality, p ≥ q ≥ r. We must show that either q = r = 1
or q = 2, r = 1, and p ≤ 4.

As in the proof of the last proposition, we let v =
∑p

i=1 ivi, w =
∑q

i=1 iwi,
and x =

∑r
i=1 ixi. Then v, w, x are pairwise orthogonal. Let v̂ = v/‖v‖,

ŵ = w/‖w‖, and x̂ = x/‖x‖. The space U spanned by v, w, x, z has as an
orthonormal basis

{v̂, ŵ, x̂, z0}
for some choice of z0 which will satisfy (z, z0) �= 0. We may write

z = (z, v̂)v̂ + (z, ŵ)ŵ + (z, x̂)x̂ + (z, z0)z0.

As z is a unit vector and (z, z0) �= 0, we get

(z, ṽ)2 + (z, w̃)2 + (z, x̃)2 < 1.
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We know the lengths of v, w, x from Lemma 13.10. Furthermore, (z, v)2 =
(z, pvp)2 = p2/4, and similarly (z, w)2 = q2/4 and (z, x)2 = r2/4. Substituting
these into the previous inequality gives

2p2

4p(p + 1)
+

2q2

4q(q + 1)
+

2r2

4r(r + 1)
< 1.

By elementary steps, this is equivalent to

1
p + 1

+
1

q + 1
+

1
r + 1

> 1.

Since 1
p+1 ≤ 1

q+1 ≤ 1
r+1 ≤ 1

2 , we have 1 < 3
r+1 and hence r < 2, so we must

have r = 1. Repeating this argument gives that q < 3, so q = 1 or q = 2. If
q = 2, then we see that p < 5. On the other hand, if q = 1, then there is no
restriction on r.

We have now found all connected graphs which come from admissible sets.
We return to our connected Dynkin diagram ∆. We saw in Example 13.3 that
the Coxeter graph of ∆, say ∆̄, must appear somewhere in our collection. If ∆

has no multiple edges, then, by Proposition 13.12, ∆ = ∆̄ is one of the graphs
listed in Theorem 13.1.

If ∆ has a double edge, then Proposition 13.11 tells us that there are two
possibilities for ∆̄. In the case of B2 and F4, we get essentially the same graph
whichever way we put the arrow; otherwise there are two different choices,
giving Bn and Cn for n ≥ 3. Finally, if ∆ has a triple edge, then Corollary 13.7
tells us that ∆ = G2. This completes the proof of Theorem 13.1.

13.2 Constructions

We now want to show that all the Dynkin diagrams listed in Theorem 13.1
actually occur as the Dynkin diagram of some root system.

Our analysis of the classical Lie algebras sl�+1, so2�+1, sp2�, and so2� in
Chapter 12 gives us constructions of root systems of types A, B, C, and D

respectively. We discuss the Weyl groups of these root systems in Appendix D.
For the exceptional Dynkin diagrams G2, F4, E6, E7, and E8, we have to do
more work. For completeness, we give constructions of all the corresponding
root systems, but as those of type E are rather large and difficult to work with,
we do not go into any details for this type.

In each case, we shall take for the underlying space E a subspace of a
Euclidean space Rm. Let εi be the vector with 1 in position i and 0 elsewhere.
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When describing bases, we shall follow the pattern established in Chapter 12
by taking as many simple roots as possible from the set {α1, . . . , αm−1}, where

αi := εi − εi+1.

For these elements, we have

〈αi, αj〉 =

⎧⎪⎪⎨
⎪⎪⎩

2 i = j

−1 |i − j| = 1

0 otherwise,

so the corresponding part of the Dynkin diagram is a line,

. . .
αi−1 αi αi+1

. . .

and the corresponding part of the Cartan matrix is⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...
. . . 2 −1 0 . . .

. . . −1 2 −1 . . .

. . . 0 −1 2 . . .
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Both of these will be familiar from root systems of type A.

13.2.1 Type G2

We have already given one construction of a root system of type G2 in Exam-
ple 11.6(c). We give another here, which is more typical of the other construc-
tions that follow. Let E =

{
v =

∑3
i=1 ciεi ∈ R3 :

∑
ci = 0

}
, let

I =
{
m1ε1 + m2ε2 + m3ε3 ∈ R3 : m1, m2, m3 ∈ Z

}
,

and let
R = {α ∈ I ∩ E : (α, α) = 2 or (α, α) = 6} .

This is motivated by noting that the ratio of the length of a long root to the
length of a short root in a root system of type G2 is

√
3. By direct calculation,

one finds that

R =
{±(εi − εj), i �= j

} ∪ {±(2εi − εj − εk), {i, j, k} = {1, 2, 3}}.
This gives 12 roots in total, as expected from the diagram in Example 11.6(c).
To find a base, we need to find α, β ∈ R of different lengths, making an angle
of 5π/6. One suitable choice is α = ε1 − ε2 and β = ε2 + ε3 − 2ε1.

The Weyl group for G2 is generated by the simple reflections sα and sβ . By
Exercise 11.14(ii), it is the dihedral group of order 12.
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13.2.2 Type F4

Since the Dynkin diagram F4 contains the Dynkin diagram B3, we might hope
to construct the corresponding root system by extending the root system of B3.
Therefore we look for β ∈ R4 so that B = (ε1 − ε2, ε2 − ε3, ε3, β) is a base with
Cartan numbers given by the labelled Dynkin diagram:

ε1−ε2 ε2−ε3 ε3 β

It is easy to see that the only possible choices for β are β = − 1
2 (ε1 + ε2 +

ε3) ± 1
2ε4. Therefore it seems hopeful to set

R = {±εi : 1 ≤ i ≤ 4} ∪ {±εi ± εj : 1 ≤ i �= j ≤ 4} ∪ {1
2 (±ε1 ± ε2 ± ε3 ± ε4)}.

One can check directly that axioms (R1) up to (R4) hold; see Exercise 13.3. It
remains to check that

β1 = ε1 − ε2,

β2 = ε2 − ε3,

β3 = ε3,

β4 =
1
2
(−ε1 − ε2 − ε3 + ε4),

defines a base for R. Note that R has 48 elements, so we need to find 24 positive
roots. Each εi is a positive root, and if 1 ≤ i < j ≤ 3 then so are εi − εj and
εi + εj . Furthermore, for 1 ≤ i ≤ 3, also ε4 ± εi are positive roots.

This already gives us 16 roots. In total, there are 16 roots of the form
1
2 (
∑±εi). As one would expect, half of these turn out to be positive roots.

Obviously each must have a summand equal to β4. There are 3 positive roots
of the form β4 + εj , and also 3 of the form β4 + εj + εk. Then there is β4 itself,
and finally β4 + ε1 + ε2 + ε3 = 1

2

∑
εi.

The Weyl group is known to have order 27 32, but its structure is too com-
plicated to be discussed here.

13.2.3 Type E

To construct the root systems of types E, it will be convenient to first construct
a root system of type E8 and then to find root systems of types E6 and E7

inside it.
Let E = R8 and let

R =
{

±εi ± εj : i < j
}

∪
{1

2

8∑
i=1

±εi

}
,
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where in the second set an even number of + signs are chosen.
The first set in the union contributes 112 roots and the second 128, giving

240 roots in all. Assuming that R is a root system, we claim that a base for R

is given by B = {β1, β2, . . . , β8}, where

β1 =
1
2

(
−ε1 − ε8 +

7∑
i=2

εi

)
,

β2 = −ε1 − ε2,

βi = εi−2 − εi−1 if 3 ≤ i ≤ 8.

To see that B is a base, one first verifies that the roots ±εi −εj for i < j can be
written as linear combinations of the elements of B with positive coefficients.
The remaining positive roots are those of the form

1
2

(
−ε8 +

7∑
i=1

±εi

)
,

where there are an odd number of + signs chosen in the sum. To check this,
subtract off β1, and then verify that the result is a positive integral linear
combination of the remaining roots. (This is where the condition on the signs
comes in.) The labelled Dynkin diagram is

β1 β3 β4

β2

β5 β6 β7 β8
.

Omitting the root β8 gives a base for a root system of type E7, and omitting
the roots β7 and β8 gives a base for a root system of type E6. We leave it to the
keen reader to explicitly construct these root systems. (Details may be found in
Bourbaki, Lie Groups and Lie Algebras [6], Chapter 5, Section 4, Number 4.)

EXERCISES

13.1. Find an explicit isomorphism between the root systems of types B2

and C2. That is, find a linear map between the vector spaces for B2

and C2, respectively, which interchanges a long root with a short
root, and preserves the Cartan numbers.

13.2. Show that the root systems of types Bn and Cn are dual to one
another in the sense defined in Exercise 11.13.
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13.3. Check that the construction of F4 given in §13.2.2 really does give a
root system. This can be simplified by noting that R contains

{±εi : 1 ≤ i ≤ 3} ∪ {±εi ± εj : 1 ≤ i �= j ≤ 3},

which is the root system of type B3 we constructed in Chapter 12.
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Simple Lie Algebras

In this chapter, we shall show that for each isomorphism class of irreducible root
systems there is a unique simple Lie algebra over C (up to isomorphism) with
that root system. Moreover, we shall prove that every simple Lie algebra has
an irreducible root system, so every simple Lie algebra arises in this way. These
results mean that the classification of irreducible root systems in Chapter 13
gives us a complete classification of all complex simple Lie algebras.

We have already shown in Proposition 12.4 that if the root system of a Lie
algebra is irreducible, then the Lie algebra is simple. We now show that the
converse holds; that is, the root system of a simple Lie algebra is irreducible.
We need the following lemma concerning reducible root systems.

Lemma 14.1

Suppose that Φ is a root system and that Φ = Φ1 ∪ Φ2 where (α, β) = 0 for all
α ∈ Φ1, β ∈ Φ2.

(a) If α ∈ Φ1 and β ∈ Φ2, then α + β �∈ Φ.

(b) If α, α′ ∈ Φ1 and α + α′ ∈ Φ, then α + α′ ∈ Φ1.

Proof

For (a), note that (α, α+β) = (α, α) �= 0, so α+β �∈ Φ2. Similarly, (β, α+β) =
(β, β) �= 0, so α + β �∈ Φ1.
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To prove (b), we suppose for a contradiction that α+α′ ∈ Φ2. Remembering
that −α′ ∈ Φ1, we have α = −α′ + (α + α′), so α can be expressed as the sum
of a root in Φ1 and a root in Φ2. This contradicts the previous part.

Proposition 14.2

Let L be a complex semisimple Lie algebra with Cartan subalgebra H and root
system Φ. If L is simple, then Φ is irreducible.

Proof

By the root space decomposition, we may write L as

L = H ⊕
⊕
α∈Φ

Lα.

Suppose that Φ is reducible, with Φ = Φ1 ∪ Φ2, where Φ1 and Φ2 are non-
empty and (α, β) = 0 for all α ∈ Φ1 and β ∈ Φ2. We shall show that the root
spaces Lα for α ∈ Φ1 generate a proper ideal of L, and so L is not simple.

For each α ∈ Φ1 we have defined a Lie subalgebra sl(α) ∼= sl(2,C) of L with
standard basis {eα, fα, hα}. Let

I := Span{eα, fα, hα : α ∈ Φ1}.

The root space decomposition shows that I is a non-zero proper subspace of L.
We claim that I is an ideal of L; it is a subspace by definition, so we only

have to show that [x, a] ∈ L for all x ∈ L and a ∈ I. For this it suffices to take
a = eα and a = fα for α ∈ Φ1 since these elements generate I. Moreover, we
may assume that x lies in one of the summands of the root space decomposition
of L.

If x ∈ H, then [x, eα] = α(x)eα ∈ I and similarly [x, fα] = −α(x)eα ∈ I.
Suppose that x ∈ Lβ . Then, for any α ∈ Φ1, [x, eα] ∈ Lα+β by Lemma 10.1(i).
If β ∈ Φ2, then by Lemma 14.1(a) above, we know that α + β is not a root,
so Lα+β = 0, and hence [x, eα] ∈ I. Otherwise β ∈ Φ1, and then by Lemma
14.1(b) we know that α+β ∈ Φ1, so Lα+β ⊆ I, by the definition of I. Similarly,
one shows that [x, fα] ∈ I. (Alternatively, one may argue that as fα is a scalar
multiple of e−α, it is enough to look at the elements eα.)

14.1 Serre’s Theorem

Serre’s Theorem is a way to describe a complex semisimple Lie algebra by
generators and relations that depend only on data from its Cartan matrix. The
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reader will probably have seen examples of groups, such as the dihedral groups,
given by specifying a set of generators and the relations that they satisfy. The
situation for Lie algebras is analogous.

14.1.1 Generators

Let L be a complex semisimple Lie algebra with Cartan subalgebra H and root
system Φ. Suppose that Φ has as a base {α1, . . . , α�}. For each i between 1
and � let ei, fi, hi be a standard basis of sl(αi). We ask whether the ei, fi, hi for
1 ≤ i ≤ � might already generate L; that is, can every element of L be obtained
by repeatedly taking linear combinations and Lie brackets of these elements?

Example 14.3

Let L = sl(� + 1,C). We shall show that the elements ei,i+1 and ei+1,i for
1 ≤ i ≤ � already generate L as a Lie algebra. By taking the commutators
[ei,i+1, ei+1,i] we get a basis for the Cartan subalgebra H of diagonal matrices.
For i + 1 < j, we have [ei,i+1, ei+1,j ] = eij , and hence by induction we get all
eij with i < j. Similarly, we may obtain all eij with i > j.

It is useful to look at these in terms of roots. Recall that the root system of
L with respect to H has as a base α1, . . . , α�, where αi = εi − εi+1. For i < j,
we have Span{eij} = Lβ , where β = αi + γ and γ = αi+1 + . . . + αj−1. This
can be expressed neatly using reflections since

sαi
(γ) = γ − 〈γ, αi〉 αi = γ + αi = β.

In fact, this method gives a general way to obtain any non-zero root space. To
show this, we only need to remind ourselves of some earlier results.

Lemma 14.4

Let L be a complex semisimple Lie algebra, and let {α1, . . . , α�} be a base of
the root system. Suppose {ei, fi, hi} is a standard basis of sl(αi). Then L can
be generated, as a Lie algebra, by {e1, . . . , e�, f1, . . . , f�}.

Proof

We first show that every element of H can be obtained. Since hi = [ei, fi],
it is sufficient to prove that H is spanned by h1, . . . , h�. Recall that we have
identified H with H∗, via the Killing form κ, so that αi ∈ H∗ corresponds to
the element tαi ∈ H. As H� is spanned by the roots α1, . . . , α�, H has as a
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basis {tαi
: 1 ≤ i ≤ �}. By Lemma 10.6, hi is a non-zero scalar multiple of tαi

.
Hence {h1, . . . , h�} is a basis for H.

Now let β ∈ Φ. We want to show that Lβ is contained in the Lie subalgebra
generated by the ei and the fi. Call this subalgebra L̃. By Proposition 11.14,
we know that β = w(αj), where w is a product of reflections sαi for some base
elements αi. Hence, by induction on the number of reflections, it is enough to
prove the following: If β = sαi

(γ) for some γ ∈ Φ with Lγ ⊆ L̃, then Lβ ⊆ L̃.
By hypothesis, β = γ − 〈γ, αi〉αi. In Proposition 10.10, we looked at the

sl(αi)-submodule of L defined by⊕
k

Lγ+kαi
,

where the sum is over all k ∈ Z such that γ+kαi ∈ Φ, and the module structure
is given by the adjoint action of sl(αi). We proved that this is an irreducible
sl(αi)-module. If 0 �= eγ ∈ Lγ , then by applying powers of ad e or ad f we may
obtain eγ+kαi whenever γ + kαi ∈ Φ. Hence, if we take k = 〈γ, αi〉, then we
will obtain eβ . Hence Lβ is contained in L̃.

14.1.2 Relations

Next, we search for relations satisfied by the ei, fi, and hi. These should only
involve information which can be obtained from the Cartan matrix. We write
cij = 〈αi, αj〉. Note that since the angle between any two base elements is
obtuse (see Exercise 11.3), cij ≤ 0 for all i �= j.

Lemma 14.5

The elements ei, fi, hi for 1 ≤ i ≤ � satisfy the following relations.

(S1) [hi, hj ] = 0 for all i, j;

(S2) [hi, ej ] = cjiej and [hi, fj ] = −cjifj for all i, j;

(S3) [ei, fi] = hi for each i and [ei, fj ] = 0 if i �= j;

(S4) (ad ei)1−cji(ej) = 0 and (ad fi)1−cji(fj) = 0 if i �= j.

Proof

We know H is a Cartan subalgebra and hence it is abelian, so (S1) holds.
Condition (S2) follows from

[hi, ej ] = αj(hi)ej = 〈αj , αi〉 ej = cjiej ,
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while the first part of (S3) follows from the isomorphism of sl(αi) with sl(2,C).
If i �= j, we have [ei, fj ] ∈ Lαi−αj

; see Lemma 10.1(i). But since α1, . . . , α�

form a base for Φ, αi − αj �∈ Φ. Therefore Lαi−αj = 0. This proves the second
part of (S3).

To prove (S4), we fix αi, αj in the base and consider

M =
⊕

k

Lαj+kαi ,

where the sum is taken over all k ∈ Z such that αj + kαi ∈ Φ. As before,
this is an sl(αi)-module. Since αj − αi �∈ Φ, the sum only involves k ≥ 0 and
k = 0 does occur. Thus the smallest eigenvalue of ad hi on M is 〈αj , αi〉 = cji.
By the classification of irreducible sl(2,C)-modules in Chapter 8, the largest
eigenvalue of adhi must be −cji.

An adhi eigenvector with eigenvalue −cji is given by x = (ad ei)−cji(ej), so
applying ad ei to x gives zero. This proves the first part of (S4). In fact, we have
even proved that 1−cji is the minimal integer r ≥ 0 such that (ad ei)r(ej) = 0.

The other part of (S4) is proved by the same method. (Alternatively, one
might note that the set of −αj also is a base for the root system with standard
basis fi, ei,−hi.)

Serre’s Theorem says that these relations completely determine the Lie
algebra.

Theorem 14.6 (Serre’s Theorem)

Let C be the Cartan matrix of a root system. Let L be the complex Lie algebra
which is generated by elements ei, fi, hi for 1 ≤ i ≤ �, subject to the relations
(S1) to (S4). Then L is finite-dimensional and semisimple with Cartan subal-
gebra H spanned by {h1, . . . , h�}, and its root system has Cartan matrix C.

We immediately give our main application. Suppose that L is a complex
semisimple Lie algebra with Cartan matrix C. By Lemma 14.5 this Lie algebra
satisfies the Serre relations, so we can deduce that it must be isomorphic to
the Lie algebra in Serre’s Theorem with Cartan matrix C. Hence, up to iso-
morphism, there is just one Lie algebra for each root system. (We remarked at
the end of Chapter 12 on some examples that support this statement.)

Serre’s Theorem also solves the problem of constructing Lie algebras with
the exceptional root systems G2, F4, E6, E7, and E8: Just apply it with the
Cartan matrix for the type required! Moreover, it shows that, up to isomor-
phism, there is just one exceptional Lie algebra for each type.
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One might like to know whether the exceptional Lie algebras occur in any
natural way. They had not been encountered until the classification. But subse-
quently, after looking for them, they have all been found as algebras of deriva-
tions of suitable algebras. See Exercise 14.4 below for an indication of the
approaches used.

14.2 On the Proof of Serre’s Theorem

We will now give an outline of the proof of Serre’s Theorem. The full details
are quite involved; they are given for example in Humphreys, Introduction to
Lie Algebras and Representation Theory, [14].

Step 1. One first considers the Lie algebra L generated by the elements
ei, fi, hi for 1 ≤ i ≤ � which satisfies the relations (S1) to (S3) but where
(S4) is not yet imposed. This Lie algebra is (usually) infinite-dimensional. Its
structure had been determined before Serre by Chevalley, Harish-Chandra, and
Jacobson.

One difficulty of studying L is that one cannot easily see how large it is,
and therefore one needs some rather advanced technology: Just defining a Lie
algebra by generators and relations may well produce something which is either
much smaller or larger than one intended — see Exercise 14.2 for a small
illustration of this.

The structure of L is as follows. Let E be the Lie subalgebra of L generated
by {e1, . . . , e�}, and let F be the Lie subalgebra of L generated by {f1, . . . , f�}.
Let H be the span of {h1, . . . , h�}. Then, as a vector space,

L = F ⊕ H ⊕ E .

We pause to give two examples.

Example 14.7

Consider the root system of type A1 × A1 shown in Example 11.6(d). Here E
is the Lie algebra generated by e1 and e2, with the only relations being those
coming from the Jacobi identity and the anticommutativity of the Lie bracket.
A Lie algebra of this kind is known as a free Lie algebra and, as long as it has
at least two generators, it is infinite-dimensional.

If instead we take the root system of type A1, then each of E and F is
1-dimensional and L is just sl(2,C). This is the only case where L is finite-
dimensional.
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Step 2. Now we impose the relations (S4) onto L. Let U+ be the ideal of E
generated by all θij , where

θij := (ad ei)1−cji(ej).

Similarly, let U− be the ideal of F generated by all θ−
ij , where

θ−
ij := (ad fi)1−cji(fj).

Let U := U+ ⊕ U−, and let

N+ := E/U+, N− := F/U−.

One shows that U+, U−, and hence U are actually ideals of L. Hence the
Lie algebra L in Serre’s Theorem, which by definition is L/U , decomposes as

L = N− ⊕ H ⊕ N+.

By definition, U+ and U− are invariant under adhi for each i and therefore adhi

acts diagonally on L. One now has to show that L is finite-dimensional, with
Cartan subalgebra H, and that the corresponding root space decomposition
has a base giving the prescribed Cartan matrix.

Example 14.8

For the root system A1 × A1, we have, by definition, c12 = c21 = 0 and hence
U+ is the ideal generated by (ad e1)(e2) and (ad e2)(e1); that is, by [e1, e2].
This produces a very small quotient E/U+, which is spanned by the cosets of
e1, e2 and is 2-dimensional.

This is not quite obvious, so we sketch a proof. Given x ∈ E , we can subtract
off an element in the span of e1 and e2 to leave x as a sum of elements of the
form [u, v] for u, v ∈ E . Now, as [e1, e1] = [e2, e2] = 0, the bracket [e1, e2]
must appear in every element in E ′ (when expressed in terms of e1 and e2), so
E ′ = U+ and x ∈ Span{e1, e2} + U+.

Similarly, F/U− is 2-dimensional, spanned by the cosets of f1 and f2. Write
x̄ for the coset of x in L. We see directly that L = L/U has a direct sum
decomposition

Span{ē1, f̄1, h1} ⊕ Span{ē2, f̄2, h2},

where ē1 denote the coset e + U+, and so on. These are ideals in L, and each
is isomorphic to sl(2,C), so in this case we get that L is the direct sum of two
copies of sl(2,C), as we should expect.

For the general proof, more work is needed. The reader might like to try to
construct a Lie algebra of type B2 by this method to get some flavour of what
is required.
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14.3 Conclusion

The definition of a semisimple Lie algebra does not, on the face of it, seem very
restrictive, so the fact that the complex semisimple Lie algebras are determined,
up to isomorphism, by their Dynkin diagrams should seem quite remarkable.

In Appendix C, we show that the root system of a semisimple Lie algebra
is uniquely determined (up to isomorphism). Thus complex semisimple Lie
algebras with different Dynkin diagrams are not isomorphic. This is the last
ingredient we need to establish a bijective correspondence between isomorphism
classes of complex semisimple Lie algebras and the Dynkin diagrams listed in
Theorem 13.1.

This classification theorem is one of the most important and far-reaching
in mathematics; we look at some of the further developments it has motivated
in the final chapter.

EXERCISES

14.1. Use Serre’s Theorem to show that the Lie algebra so(6,C) is isomor-
phic to sl(4,C). (This isomorphism can also be shown by geometric
arguments; see Chapter 15.)

14.2. Let L be the Lie algebra generated by x, y, z subject to the relations

[x, y] = z, [y, z] = x, [z, x] = x.

Show that L is one-dimensional.

14.3. Let L be a Lie algebra generated by x, y, with no relations other
than the Jacobi identity, and [u, v] = −[v, u] for u, v ∈ L. Show that
any Lie algebra G generated by two elements occurs as a homomor-
phic image of L. (So if you could establish that there are such G of
arbitrary large dimensions, then you could deduce that L must be
infinite-dimensional.)

14.4. Let H be the algebra of quaternions. Thus H is the 4-dimensional
real associative algebra with basis 1, i, j, k and multiplication de-
scribed by i2 = j2 = k2 = ijk = −1. (These are the equations fa-
mously carved in 1843 by Hamilton on Brougham Bridge in Dublin.)

(i) Let δ ∈ Der H, the Lie algebra of derivations of H. Show
that δ preserves the subspace of H consisting of purely imagi-
nary quaternions (that is, those elements of the form xi+yj+zk)
and that δ(1) = 0. Hence show that Der H is isomorphic to the
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Lie algebra of antisymmetric 3 × 3 real matrices. (In particular,
it has a faithful 3-dimensional representation.)

(ii) Show that if we complexify DerH by taking the algebra of an-
tisymmetric 3 × 3 complex matrices, we obtain sl(2,C).

One step up from the quaternions lies the 8-dimensional Cayley al-
gebra of octonions. One can construct the exceptional Lie algebra g2

of type G2 by taking the algebra of derivations of the octonions and
then complexifying; this construction also gives its smallest faithful
representation. The remaining exceptional Lie algebras can also be
constructed by related techniques. For details, we refer the reader
to either Schafer, An Introduction to Nonassociative Algebras [21] or
Baez, “The Octonions”[2].
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Further Directions

Now that we have a good understanding of the complex semisimple Lie algebras,
we can also hope to understand their representation theory. This is the first
of the topics we shall discuss. By Weyl’s Theorem, every finite-dimensional
representation is a direct sum of irreducible representations; we shall outline
their construction. An essential tool in the representation theory of Lie algebras
is the universal enveloping algebra associated to a Lie algebra. We explain what
this is and why it is important.

The presentation of complex semisimple Lie algebras by generators and rela-
tions given in Serre’s Theorem has inspired the definition of new families of Lie
algebras. These include the Kac–Moody Lie algebras and their generalisations,
which also have been important in the remarkable “moonshine” conjectures.

The theory of complex simple Lie algebras was used by Chevalley to con-
struct simple groups of matrices over any field. The resulting groups are now
known as Chevalley groups or as groups of Lie type. We briefly explain the basic
idea and give an example.

Going in the other direction, given a group with a suitable ‘smooth’ struc-
ture, one can define an associated Lie algebra and use it to study the group. It
was in fact in this way that Lie algebras were first discovered. We have given a
very rough indication of this process in Exercise 4.9; as there are already many
accessible books in this area, for example Matrix Groups by Baker [3] in the
SUMS series, we refer the reader to them for further reading.

A very spectacular application of the theory of Lie algebra to group theory
occurs in the restricted Burnside problem, which we discuss in §15.5. This
involves Lie algebras defined over fields with prime characteristic. Lie algebras
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defined over fields of prime characteristic occur in several other contexts; we
shall mention restricted Lie algebras and give an example of a simple Lie algebra
that does not have an analogue in characteristic zero.

As well as classifying complex semisimple Lie algebras, Dynkin diagrams
also appear in the representation theory of associative algebras. We shall ex-
plain some of the theory involved. Besides the appearance of Dynkin diagrams,
one reason for introducing this topic is that there is a surprising connection
with the theory of complex semisimple Lie algebras.

The survey in this chapter is certainly not exhaustive, and in places it is
deliberately informal. Our purpose is to describe the main ideas; more detailed
accounts exist and we give references to those that we believe would be acces-
sible to the interested reader. For accounts of the early history of Lie algebras
we recommend Wilhelm Killing and the Structure of Lie algebras, by Hawkins
[12] and The Mathematician Sophus Lie, by Stubhaug [23].

15.1 The Irreducible Representations of a
Semisimple Lie Algebra

We begin by describing the classification of the finite-dimensional irreducible
representations of a complex semisimple Lie algebra L. By Weyl’s Theorem, we
may then obtain all finite-dimensional representations by taking direct sums of
irreducible representations.

Let L have Cartan subalgebra H and root system Φ. Choose a base Π =
{α1, . . . , α�} of Φ and let Φ+ and Φ− denote respectively the positive and
negative roots with respect to Φ. It will be convenient to use the triangular
decomposition

L = N− ⊕ H ⊕ N+.

Here N+ =
⊕

α∈Φ+ Lα and N− =
⊕

α∈Φ+ L−α. Note that the summands
H, N−, and N+ are subalgebras of L.

15.1.1 General Properties

Suppose that V is a finite-dimensional representation of L. Each element of H

is semisimple, so it acts diagonalisably on L (see Exercise 9.14). Since finitely
many commuting linear maps can be simultaneously diagonalised, V has a basis
of simultaneous eigenvectors for H.
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We can therefore decompose V into weight spaces for H. For λ ∈ H�, let

Vλ = {v ∈ V : h · v = λ(h)v for all h ∈ H}
and let Ψ be the set of λ ∈ H� for which Vλ �= 0. The weight space decomposition
of V is then

V =
⊕
λ∈Ψ

Vλ.

Example 15.1

(1) Let V = L with the adjoint representation. Then weights are the same
thing as roots, and the weight space decomposition is just the root space
decomposition.

(2) Let L = sl(3,C), let H be the Cartan subalgebra of diagonal matrices,
and let V = C3 be its natural representation. The weights that appear are
ε1, ε2, ε3, where εi(h) is the i-th entry of the diagonal matrix h.

For each α ∈ Φ, we may regard V as a representation of sl(α). In particular,
this tells us that the eigenvalues of hα acting on V are integers, and hence the
weights in Ψ lie in the real span of the roots. We saw in §10.6 that this space
is an inner-product space.

Example 15.2

For example, the following diagram shows the weights of the natural and adjoint
representations of sl(3,C) with respect to the Cartan subalgebra H of diagonal
matrices projected onto a plane. The weight spaces of the natural representation
are marked. To locate ε1 we note that restricted to H, ε1 + ε2 + ε3 = 0, and
hence ε1 is the same map on H as 1

3 (2ε1 − ε2 − ε3) = 1
3 (2α + β).

α=ε1−ε2−α

α+β

−α−β

β=ε2−ε3

−β

ε1ε2

ε3

••

•

We now look at the action of eα and fα for α ∈ Φ. Let v ∈ Vλ. We leave
it to the reader to check that eα · v ∈ Vλ+α and fα · v ∈ Vλ−α; note that this
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generalises Lemma 8.3 for sl(2,C). Since the set Ψ of weights of V is finite,
there must be some λ ∈ Ψ such that for all α ∈ Φ+, λ + α �∈ Ψ . We call such a
λ a highest weight, and if v ∈ Vλ is non-zero, then we say v is a highest-weight
vector.

This agrees with our usage of these words in Chapter 8 since for representa-
tions of sl(2,C) a weight of the Cartan subalgebra spanned by h is essentially
the same thing as an eigenvalue of h.

In the previous example, the positive roots of sl(3,C) with respect to the
base Π = {α, β} are α, β, α + β, and so the (unique) highest weight of the
natural representation of sl(3,C) is ε1.

Lemma 15.3

Let V be a simple L-module. The set Ψ of weights of V contains a unique
highest weight. If λ is this highest weight then Vλ is 1-dimensional and all
other weights of V are of the form λ −∑αi∈Π aiαi for some ai ∈ Z, ai ≥ 0.

Proof

Take 0 �= v ∈ Vλ and let W be the subspace of V spanned by elements of the
form

fα1fα2 . . . fαk
· v, (�)

where the αi are not necessarily distinct elements of Π. Note that each element
of the form (�) is an H-eigenvector. We claim that W is an L-submodule of V .

By Lemma 14.4, L is generated by the elements eα, fα for α ∈ Π, so it is
enough to check that W is closed under their action. For the fα, this follows at
once from the definition. Let w = fα1fα2 . . . fαk

· v. To show that eα · w ∈ W ,
we shall use induction on k.

If k = 0 (that is, w = v), then we know that eα · v = 0. For k ≥ 1, let
w1 = fα2 . . . fαk

v so that w = fα1w1 and

eα · w = eα · (fα1 · w1) = fα1 · (eα · w1) + [fα1 , eα] · w1.

Now [fα1 , eα] ∈ [L−α1 , Lα] = Lα−α1 . Both α and α1 are elements of the base Π,
so Lα−α1 = 0, unless α = α1, in which case Lα−α1 ⊆ L0 = H. So in either
case w1 is an eigenvector for [fα1 , eα]. Moreover, by the inductive hypothesis,
eα · w1 lies in W , so by the definition of W we have fα1 · (eα · w1) ∈ W .

Since V is simple and W is non-zero, we have V = W . We can see from (�)
that the weights of V are of the form λ −∑i aiαi for αi ∈ Π and ai ≥ 0, so λ

is the unique highest weight.
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Example 15.4

Let L = sl(� + 1,C) and let V = L, with the adjoint representation. By Ex-
ample 7.4, V is a simple L-module. We have seen above that the root space
decomposition of L is the same as the weight space decomposition of this mod-
ule. The unique highest weight is α1 +α2 + . . .+α�, and for the highest-weight
vector v in the lemma we can take e1,�+1.

Suppose that λ is a weight for a finite-dimensional representation V . Let
α ∈ Π. Suppose that λ(hα), the eigenvalue of hα on the λ-weight space, is
negative. Then, by the representation theory of sl(2,C), eα · Lλ �= 0, and so
α+λ ∈ Ψ . Thus, if λ is the highest weight for a finite-dimensional representation
V , then λ(hα) ≥ 0 for all α ∈ Π.

This motivates the main result, given in the following theorem.

Theorem 15.5

Let Λ be the set of all λ ∈ H∗ such that λ(hα) ∈ Z and λ(hα) ≥ 0 for all
α ∈ Π. For each λ ∈ Λ, there is a finite-dimensional simple L-module, denoted
by V (λ), which has highest weight λ. Moreover, any two simple L-modules with
the same highest weight are isomorphic, and every simple L-module may be
constructed in this way.

To describe Λ in general, one uses the fundamental dominant weights. These
are defined to be the unique elements λ1, . . . , λ� ∈ H∗ such that

λi(hαj ) = δij .

By the theorem above, Λ is precisely the set of linear combinations of the λi

with non-negative integer coefficients. One would also like to relate the λi to
the elements of our base of H�. Recall that λ(hα) = 〈λ, α〉; so if we write
λi =

∑�
k=1 dikαk, then

λi(hαj ) =
∑

k

dik〈αk, αj〉,

so the coefficients dik are given by the inverse of the Cartan matrix of L.

Example 15.6

Let L = sl(3,C). Then the inverse of the Cartan matrix is

1
3

(
2 1
1 2

)
,



168 15. Further Directions

and the fundamental dominant weights are 1
3 (2α + β) = ε1 and 1

3 (α + 2β) =
−ε3. The diagram in 15.2 shows that ε1 is the highest weight of the natural
representation; ε3 appears as the highest weight of the dual of the natural
representation.

So far, for a general complex simple Lie algebra L, the only irreducible
representations we know are the trivial and adjoint representations. If L is a
classical Lie algebra, then we can add the natural representation to this list.
The previous theorem says there are many more representations. How can they
be constructed?

15.1.2 Exterior Powers

Several general methods of constructing new modules from old ones are known.
Important amongst these are tensor products and the related symmetric and
exterior powers.

Let V be a finite-dimensional complex vector space with basis v1, . . . , vn.
For each i, j with 1 ≤ i, j ≤ n, we introduce a symbol vi ∧ vj , which satisfies
vj ∧ vi = −vi ∧ vj . The exterior square V

∧
V is defined to be the complex

vector space of dimension
(
n
2

)
with basis given by {vi ∧ vj : 1 ≤ i < j ≤ n}.

Thus, a general element of V
∧

V has the form∑
i<j

cijvi ∧ vj for scalars cij ∈ C.

For v =
∑

aivi and w =
∑

bjvj , define v ∧ w by

v ∧ w =
∑
i,j

aibjvi ∧ wj .

This shows that the map (v, w) → v ∧ w is bilinear. One can show that the
definition does not depend on the choice of basis. That is, if w1, . . . , wn is some
other basis of V , then the set of all wi ∧ wj for 1 ≤ i < j ≤ n is a basis for
V
∧

V with the same properties as the previous basis.
Now suppose that L is a Lie algebra and ρ : L → gl(V ) is a representation.

We may define a new representation ∧2ρ : L → gl(V
∧

V ) by

(∧2ρ)(x)(vi ∧ vj) = ρ(x)vi ∧ vj + vi ∧ ρ(x)vj for x ∈ L

and extending it to linear combinations of basis elements. (The reader might
care to check that this really does define a representation of L.)
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More generally, for any integer r ≤ n, one introduces similarly symbols
vi1 ∧ vi2 ∧ . . . ∧ vir satisfying

vi1 ∧ . . . ∧ vik
∧ vik+1 ∧ . . . ∧ vir = −vi1 ∧ . . . ∧ vik+1 ∧ vik

∧ . . . ∧ vir .

The r-fold exterior power of V , denoted by
∧r

V is the vector space over C of
dimension

(
n
r

)
with basis

vi1 ∧ vi2 ∧ . . . ∧ vir , 1 ≤ i1 < . . . < ir ≤ n.

The action of L generalises so that

(∧rρ)(x)(vi1 ∧ . . . ∧ vir ) =
r∑

s=1

vi1 ∧ . . . ∧ ρ(x)vis ∧ . . . ∧ vir .

It is known that if V is the natural module of a classical Lie algebra, then
all the exterior powers V are irreducible. This is very helpful when constructing
the irreducible representations of the classical Lie algebras.

We shall now use exterior powers to give a direct proof that so(6,C) and
sl(4,C) are isomorphic. (In Chapter 14, we noted that this follows from Serre’s
Theorem, but we did not give an explicit isomorphism.)

Let L = sl(4,C), and let V be the 4-dimensional natural L-module. Then∧2
V is a 6-dimensional L-module. Now

∧4
V has dimension

(4
4

)
= 1. If we fix

a basis v1, . . . , v4 of V , then
∧4

V is spanned by ṽ := v1 ∧ v2 ∧ v3 ∧ v4. We may
define a bilinear map

2∧
V ×

2∧
V → C

by setting (v, w) = c if v ∧ w = cṽ for c ∈ C.

Exercise 15.1

Find the matrix describing this bilinear form on
∧2

V with respect to
the basis {vi ∧ vj : i < j}. Show that it is congruent to the bilinear form
defined by the matrix S, where

S =
(

0 I

I 0

)
.

The module
∧4

V is a 1-dimensional module for a semisimple Lie algebra,
so it must be the trivial module for L. So for x ∈ L and v, w ∈ ∧2

V , we have
x · (v ∧ w) = 0. But by the definition of the action of L, we get

x · (v ∧ w) = v ∧ (xw) + (xv) ∧ w.

Hence, if we translate this into the bilinear form, we have

(v, xw) = −(xv, w).
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Thus the image of ϕ : L → gl(
∧2

V ) is contained in glS(6,C) = so(6,C), where
S is as above. Since L is simple and ϕ is non-zero, ϕ must be one-to-one, so by
dimension counting it gives an isomorphism between sl(4,C) and so(6,C).

15.1.3 Tensor Products

Let V and W be finite-dimensional complex vector spaces with bases v1, . . . , vm

and w1, . . . , wn, respectively. For each i, j with 1 ≤ i ≤ m and 1 ≤ j ≤ n, we
introduce a symbol viotimeswj . The tensor product space V ⊗ W is defined
to be the mn-dimensional complex vector space with basis given by {vi ⊗ wj :
1 ≤ i ≤ n, 1 ≤ j ≤ m}. Thus a general element of V ⊗ W has the form∑

i,j

cijvi ⊗ wj for scalars cij ∈ C.

For v =
∑

i aivi ∈ V and w =
∑

j bjwj ∈ W , we define v ⊗ w ∈ V ⊗ W by

v ⊗ w =
∑
i,j

aibj(vi ⊗ wj).

This shows that (v, w) → v ⊗ w is bilinear. Again one can show that this
definition of V ⊗ W does not depend on the choice of bases.

Suppose we have representations ρ1 : L → gl(V ), ρ2 : L → gl(W ). We
may define a new representation ρ : L → gl(V ⊗ W ) by

ρ(x)(v ⊗ w) = ρ1(x)(v) ⊗ w + v ⊗ ρ2(x)(w).

Example 15.7

Let L = sl(2,C), and let V = C2 be the natural module with standard basis
v1, v2. Let W = C2 be another copy of the natural module, with basis w1, w2.
With respect to the basis v1 ⊗ v1, v1 ⊗ v2, v2 ⊗ v1, v2 ⊗ v2, one finds that the
matrices of e, f , and h are

ρ(e) =

⎛
⎜⎜⎝

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , ρ(f) =

⎛
⎜⎜⎝

0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

⎞
⎟⎟⎠ , ρ(h) =

⎛
⎜⎜⎝

2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

⎞
⎟⎟⎠ .

By Exercise 8.4, an sl(2,C)-module is determined up to isomorphism by
the eigenvalues of h. Here the highest eigenvalue appearing is 2, so V2 is a
submodule of V ⊗ W . This leaves only an eigenvalue of 0, so we must have

V ⊗ W ∼= V0 ⊕ V2.
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Exercise 15.2

Find an explicit direct sum decomposition of V ⊗ W into irreducible
submodules.

The book Representation Theory by Fulton and Harris [10] works out many
more examples of this type.

For a general semisimple Lie algebra L, there is a more efficient and uni-
fied construction of the simple L-modules, which also allows one to construct
certain infinite-dimensional representations. This uses the universal enveloping
algebra of L. We shall now introduce this algebra and explain how to use it to
construct the simple L-modules. We also explain the main idea in the proof of
Theorem 15.5 above.

15.2 Universal Enveloping Algebras

Given a Lie algebra L over a field F , one can define its universal enveloping
algebra, denoted by U(L). This is an associative algebra (see §1.5) over F , which
is always infinite-dimensional unless L is zero.

Assume that L is finite-dimensional with vector space basis {x1, x2, . . . , xn}.
The structure constants with respect to this basis are the scalars ak

ij given by

[xi, xj ] =
∑

k

ak
ijxk for 1 ≤ i, j ≤ n.

Then U(L) can be defined as the unital associative algebra, generated by
X1, X2, . . . , Xn, subject to the relations

XiXj − XjXi =
n∑

k=1

ak
ijXk for 1 ≤ i, j ≤ n.

It can be shown (see Exercise 15.8) that the algebra U(L) does not depend on
the choice of the basis. That is, if we start with two different bases for L, then
the algebras we get by this construction are isomorphic.

Example 15.8

(1) Let L = Span{x} be a 1-dimensional abelian Lie algebra over a field F . The
only structure constants come from [x, x] = 0. This gives us the relation
XX − XX = 0, which is vacuous. Hence U(L) is the associative algebra
generated by the single element X. In other words, U(L) is the polynomial
algebra F [X].
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(2) More generally, let L be the n-dimensional abelian Lie algebra with basis
{x1, x2, . . . , xn}. As before, all structure constants are zero, and hence U(L)
is isomorphic to the polynomial algebra in n variables.

We now consider a more substantial example. Let L = sl(2,C) with its usual
basis, f , h, e. We know the structure constants and therefore we can calculate
in the algebra U(L). We should really write E, H, F for the corresponding
generators of U(L), but unfortunately this creates an ambiguity as H is already
used to denote Cartan subalgebras. So instead we also write e, f, h for the
generators of U(L); the context will make clear the algebra in which we are
working.

The triangular decomposition of L,

L = N− ⊕ H ⊕ N+,

where N− = Span{f}, H = Span{h}, and N+ = Span{e}, gives us three sub-
algebras of U(L). For example, U(L) contains all polynomials in e; this subal-
gebra can be thought of as the universal enveloping algebra U(N+). Similarly,
U(L) contains all polynomials in f and in h. But, in addition, U(L) contains
products of these elements. Using the relations ef − fe = h, he − eh = 2e, and
hf − fh = −2f , valid in U(L), one can show the following.

Lemma 15.9

Let L = sl(2,C). The associative algebra U(L) has as a vector space basis

{fahbec : a, b, c ≥ 0}.

To show that this set spans the universal enveloping algebra, it suffices
to verify that every monomial in the generators can be expressed as a linear
combination of monomials of the type appearing in the lemma. The reader
might, as an exercise, express the monomial hef as a linear combination of the
given set; this should be enough to show the general strategy.

Proving linear independence is considerably harder, so we shall not go into
the details. Indeed it is not even obvious that the elements e, f ∈ U(L) are
linearly independent, but this much at least will follow from Exercise 15.8.

In general, if the Lie algebra L has basis x1, . . . , xn, then the algebra U(L)
has basis

{Xa1
1 Xa2

2 . . . Xan
n : a1, . . . an ≥ 0}.

This is known as a Poincaré–Birkhoff–Witt-basis or PBW-basis of U(L). The
previous lemma is the special case where L = sl(2,C) and X1 = f , X2 = h,
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and X3 = e. We could equally well have taken the basis elements in a different
order.

An important corollary is that the elements X1, X2, . . . , Xn are linearly
independent, and so L can be found as a subspace of U(L). Furthermore, if L1

is a Lie subalgebra of L, then U(L1) is an associative subalgebra of U(L); this
justifies our earlier assertions about polynomial subalgebras of U(sl(2,C)).

15.2.1 Modules for U(L)

We now explain the sense in which the universal enveloping algebra of a Lie
algebra L is “universal”. We first need to introduce the idea of a representation
of an associative algebra.

Let A be a unital associative algebra over a field F . A representation of A

on an F -vector space V is a homomorphism of associative algebras

ϕ : A → EndF (V ),

where EndF (V ) is the associative algebra of linear maps on V . Thus ϕ is
linear, ϕ maps the multiplicative identity of A to the identity map of V , and

ϕ(ab) = ϕ(a) ◦ ϕ(b) for all a, b ∈ A.

Unlike in earlier chapters, we now allow V to be infinite-dimensional. Note that
the underlying vector space of EndF (V ) is the same as that of gl(V ); we write
EndF (V ) if we are using its associative structure and gl(V ) if we are using its
Lie algebra structure.

In what follows, it is most convenient to use the language of modules, so we
shall indicate the action of L implicitly by writing a · v rather than ϕ(a)(v).

Lemma 15.10

Let L be a Lie algebra and let U(L) be its universal enveloping algebra. There is
a bijective correspondence between L-modules and U(L)-modules. Under this
correspondence, an L-module is simple if and only if it is simple as a module
for U(L).

Proof

Let V be an L-module. Since the elements Xi generate U(L) as an associative
algebra, the action U(L) on V is determined by the action of the Xi. We
let Xi ∈ U(L) act on V in the same way as xi ∈ L acts on V . To verify that
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this defines an action of U(L), one only needs to check that it satisfies the
defining relations for U(L). Consider the identity in L

[xi, xj ] =
∑

k

ak
ijxk.

For the action to be well-defined, we require that on V

(XiXj − XjXi)v =
∑

k

ak
ijXkv.

By definition, the left-hand side is equal to (xixj − xjxi)v; that is,

[xi, xj ]v =
∑

k

ak
ijxkv.

Since Xk acts on V in the same way as xk, this is equal to the right-hand side,
as we required.

Conversely, suppose V is a U(L)-module. By restriction, V is also an L-
module since L ⊆ U(L). Furthermore, V is simple as an L-module if and only
if it is simple as a module for U(L). This is a simple change of perspective and
can easily be checked formally.

The proof of this lemma demonstrates a certain universal property of U(L).
See Exercise 15.8 for more details.

15.2.2 Verma Modules

Suppose that L is a complex semisimple Lie algebra and U(L) is the universal
enveloping algebra of L. We shall use the equivalence between modules for U(L)
and L to construct an important family of L-modules.

Let H be a Cartan subalgebra of L, let Φ be the corresponding root system,
and let Π be a base of Φ. As usual, we write Φ+ for the positive roots with
respect to Π. We may choose a basis h1, . . . , h� of H such that hi = hαi

for αi ∈ Π. For λ ∈ H∗ let I(λ) be the left ideal of U(L) generated by the
elements eα for α ∈ Φ and also hi − λ(hi)1 for 1 ≤ i ≤ �. Thus I(λ) consists of
all elements ∑

uαeα +
∑

yi(hi − λ(hi)1),

where the uα and the yi are arbitrary elements of U(L). We may consider I(λ)
as a left module for U(L). Let M(λ) be the quotient space

M(λ) := U(L)/I(λ).

This becomes a U(L)-module with the action u · (v + I(λ)) = uv + I(λ). We
say M(λ) is the Verma module associated to λ.
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Proposition 15.11

If v̄ = 1 + I(λ), then v̄ generates M(λ) as a U(L)-module. For α ∈ Φ+ and
eα ∈ Lα, we have eαv̄ = 0; and for h ∈ H we have hv̄ = λ(h)v̄. The module
M(λ) has a unique maximal submodule, and the quotient of M(λ) by this
submodule is the simple module V (λ) with highest weight λ.

The first part of the theorem is easy: We have

eα · v̄ = eα + I(λ),

which is zero in M(λ). Moreover,

hi · v̄ = hi + I(λ) = λ(hi)1 + I(λ)

since hi − λ(hi)1 ∈ I(λ). Since

x + I(λ) = x · (1 + I(λ) = x · v̄ for all x ∈ U(L),

the coset v̄ generates M(λ).
One can show that a vector space basis for M(λ) is given by the elements

u · v̄, where u runs through a basis of U(N−). By the PBW-Theorem, U(N−)
has a basis consisting of monomials in the fα for α ∈ Φ; this shows that M(λ)
decomposes as a direct sum of simultaneous H-eigenspaces. We can then see
that M(λ) has a unique maximal weight, namely λ.

Knowing this, one can complete the proof of the proposition. Details can
be found in Humphreys [14] (Chapter 20), or Dixmier [9]. Note, however, that
the labelling in Dixmier is slightly different.

Example 15.12

We give two examples of Verma modules for L = sl(2,C). First we construct one
which is irreducible; this will show that L has infinite-dimensional irreducible
representations.

(1) Let λ = −d, where d > 0. Thus M(λ) = U(L)/I(λ), where

I(λ) = U(L)e + U(L)(h + d1).

As a vector space, M(λ) has basis{
f̄a = fa + Iλ : a ≥ 0

}
.

It follows by induction for each a ≥ 0 that f̄a is an eigenvector for h with
eigenvalue −d − 2a. Furthermore, we have e · 1̄ = 0, e · f̄ = −d · 1̄, and
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inductively e· f̄a = ca−1f̄
a−1, where ca−1 is a negative integer. As in §8.1.1,

we can draw M(λ) as

. . .

c2
�� •

c1
��

1

		

−d−4

•
c0

��

1

��

−d−2

•
0

��

1

��

−d

. . . f̄2 f̄ 1̄

where loops represent the action of h, arrows to the right represent the
action of e, and arrows to the left represent the action of f . Using this, one
can check that for any non-zero x ∈ M(λ) the span of

{x, e · x, e2 · x, . . .}
contains the generator 1̄ = 1 + I(λ) and hence M(λ) is an infinite-
dimensional simple module.

(2) We consider the Verma module M(0). In this case, the span of all f̄a where
a > 0 is a proper submodule of M(λ). For example,

e · f̄ = ef + I(0) = (fe + h) + I(0),

which is zero, since e, h ∈ I(0). The quotient of M(0) by this submodule is
the trivial L-module, V (0).

Verma modules are the building blocks for the so-called category O, which
has recently been of major interest. Here the starting point is the observation
that although each M(λ) is infinite-dimensional, when viewed as U(L)-modules
it has finite length. That is, there are submodules

0 = M0 ⊆ M1 ⊆ M2 ⊆ . . . ⊆ Mk = M(λ)

such that Mi/Mi−1 is simple for 1 ≤ i ≤ k. A proof of this and more proper-
ties of Verma modules can be found in Dixmier [9] or Humphreys [14] (note,
however, that Dixmier uses different labelling.)

In 1985, Drinfeld and Jimbo independently defined quantum groups by “de-
forming” the universal enveloping algebras of Lie algebras. (So contrary to
what one might expect, quantum groups are really algebras!) Since then, quan-
tum groups have found numerous applications in areas including theoretical
physics, knot theory, and representations of algebraic groups. In 1990, Drinfeld
was awarded a Fields Medal for his work. For more about quantum groups, see
Jantzen, Lectures on Quantum Groups [16].
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15.3 Groups of Lie Type

The theory of simple Lie algebras over C was used by Chevalley to construct
simple groups of matrices over any field.

How can one construct invertible linear transformations from a complex
Lie algebra? Let δ : L → L be a derivation of L such that δn = 0 for some
n ≥ 1. In Exercise 15.9, we define the exponential exp(δ) and show that it is
an automorphism of L.

Given a complex semisimple Lie algebra L, let x be an element in a root
space. We know that adx is a derivation of L, and by Exercise 10.1 adx is
nilpotent. Hence exp(adx) is an automorphism of L. One then takes the group
generated by all the exp(ad cx), for c ∈ C, for x in a strategically chosen basis
of L. This basis is known as the Chevalley basis; it is described in the following
theorem.

Theorem 15.13

Let L be a simple Lie algebra over C, with Cartan subalgebra H and associated
root system Φ, and let Π be a base for Φ. For each α ∈ Φ, one may choose
hα ∈ H so that hα ∈ [L−α, Lα] and α(hα) = 2. One may also choose an element
eα ∈ Lα such that [eα, e−α] = hα and [eα, eβ ] = ±(p + 1)eα+β , where p is the
greatest integer for which β + pα ∈ Φ.

The set {hα : α ∈ Π} ∪ {eβ : β ∈ Φ} is a basis for L. Moreover, for all
γ ∈ Φ, [eγ , e−γ ] = hγ is an integral linear combination of the hα for α ∈ Π.
The remaining structure constants of L with respect to this basis are as follows:

[hα, hβ ] = 0,

[hα, eβ ] = β(hα)eβ ,

[eα, eβ ] =

{
±(p + 1)eα+β α + β ∈ Φ

0 α + β �∈ Φ ∪ {0}.

In particular, they are all integers.

Recall that in §10.4 we found for each α ∈ Φ a subalgebra Span{eα, fα, hα}
isomorphic to sl(2,C). Chevalley’s Theorem asserts that the eα and fα = e−α

can be chosen so as to give an especially convenient form for the structure
constants of L.

Exercise 15.3

By using the calculations in Chapter 12, determine a Chevalley basis for
the Lie algebra so(5,C) of type B2.
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Since the structure constants are integers, the Z-span of such a basis, de-
noted by LZ, is closed under Lie brackets. If one now takes any field F , one
can define a Lie algebra LF over F as follows. Take as a basis

{h̄α : α ∈ Π} ∪ {ēβ , β ∈ Φ}
and define the Lie commutator by taking the structure constants for LZ and
interpreting them as elements in the prime subfield of F . For example, the stan-
dard basis e, h, f of sl(2,C) is a Chevalley basis, and applying this construction
gives sl(2, F ).

Now we can describe the automorphisms. First take the field C. For c ∈ C
and α ∈ Φ, define

xα(c) := exp(c ad eα).

As explained, this is an automorphism of L. One can show that it takes elements
of the Chevalley basis to linear combinations of basis elements with coefficients
of the form aci, where a ∈ Z and i ≥ 0. Let Aα(c) be the matrix of xα(c) with
respect to the Chevalley basis of L. By this remark, the entries of Aα(c) have
the form aci for a ∈ Z and i ≥ 0. Define the Chevalley group associated to L

by
GC(L) := 〈Aα(c) : α ∈ Φ, c ∈ C〉.

We can also define automorphisms of LF . Take t ∈ F . Let Ãα(t) be the
matrix obtained from Aα(c) by replacing each entry aci by āti, where ā is a

viewed as an element in the prime subfield of F . The Chevalley group of L over
F is then defined to be the group

GK(L) := 〈Ãα(t) : α ∈ Φ, t ∈ K〉.
Exercise 15.4

Let L = sl(2,C). Let c ∈ C. Show that with respect to the Chevalley
basis e, h, f , the matrix of exp(c ad e) is⎛

⎝1 −2c −c2

0 1 c

0 0 1

⎞
⎠

and find the matrix of exp(c ad f). Then describe the group GF2(L),
where F2 is the field with 2-elements.

The structure of these groups is studied in detail in Carter’s book Simple
Groups of Lie Type [7], see also [13].
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Remark 15.14

One reason why finite groups of Lie type are important is the Classification
Theorem of Finite Simple Groups. This theorem, which is one of the greatest
achievements of twentieth century mathematics (though to date not yet com-
pletely written down), asserts that there are two infinite families of finite simple
groups, namely the alternating groups and the finite groups of Lie type, and
that any finite simple group is either a member of one of these two families or
is one of the 26 sporadic simple groups.

15.4 Kac–Moody Lie Algebras

The presentation of complex semisimple Lie algebras given by Serre’s Theorem
can be generalized to construct new families of Lie algebras. Instead of taking
the Cartan matrix associated to a root system, one can start with a more
general matrix and then use its entries, together with the Serre relations, to
define a new Lie algebra. These Lie algebras are usually infinite-dimensional; in
fact the finite-dimensional Lie algebras given by this construction are precisely
the Lie algebras of types A, B, C, D, E, F, G which we have already seen.

We shall summarize a small section from the introduction of the book In-
finite Dimensional Lie Algebras by Kac [18]. One defines a generalised Cartan
matrix to be an n × n matrix A = (aij) such that

(a) aij ∈ Z for all i, j;

(b) aii = 2, and aij ≤ 0 for i �= j;

(c) if aij = 0 then aji = 0.

The associated Kac–Moody Lie algebra is the complex Lie algebra over C
generated by the 3n elements ei, fi, hi, subject to the Serre relations, as stated
in §14.1.2.

When the rank of the matrix A is n−1, this construction gives the so-called
affine Kac–Moody Lie algebras. Modifications of such algebras can be proved
to be simple; there is much interest in their representation theory, and several
new applications have been discovered.
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15.4.1 The Moonshine Conjecture

The largest of the 26 sporadic simple groups is known (because of its enormous
size) as the monster group. Its order is

246.320.59.76.112.133.17.19.23.29.31.41.47.59.71 ≈ 8 × 1053.

Like Lie algebras and associative algebras, groups also have representations.
The three smallest representations of the monster group over the complex num-
bers have dimensions 1, 196883 (it was through this representation that the
monster was discovered), and 21296876.

In 1978, John MacKay noticed a near coincidence with the coefficients of
the Fourier series expansion of the elliptic modular function j,

j(τ) = q−1 + 744 + 196884q + 21493760q2 + . . . ,

where q = e2πiτ . As well as noting that 196884 = 196883 + 1 and 21493760 =
21296876 + 196883 + 1, he showed that (with a small generalisation) this con-
nection persisted for all the coefficients of the j-function.

That there could be an underlying connection between the monster group
and modular functions seemed at first so implausible that this became known as
the Moonshine Conjecture. Yet in 1998 Borcherds succeeded in establishing just
such a connection, thus proving the Moonshine Conjecture. A very important
part of his work was a further generalisation of the Kac–Moody Lie algebras
connected with the exceptional root system of type E8.

Borcherds was awarded a Fields Medal for his work. A survey can be found
in Ray [19]. The reader might also like to read the article by Carter [8].

15.5 The Restricted Burnside Problem

In 1902, William Burnside wrote “A still undecided point in the theory of
discontinuous groups is whether the order of a group may not be finite, while
the order of every operation it contains is finite.” Here we shall consider a
variation on his question which can be answered using techniques from Lie
algebras.

We must first introduce two definitions: a group G has exponent n if gn = 1
for all g ∈ G, and, moreover, n is the least number with this property. A group is
r-generated if all its elements can be obtained by repeatedly composing a fixed
subset of r of its elements. The restricted Burnside problem asks: Given r, n ≥
1, is there an upper bound on the orders of the finite r-generated groups of
exponent n?
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Since there are only finitely many isomorphism classes of groups of any given
order, the restricted Burnside problem has an affirmative answer if and only if
there are (up to isomorphism) only finitely many finite r-generated groups of
exponent n.

The reader may well have already seen this problem in the case n = 2.

Exercise 15.5

Suppose that G has exponent 2 and is generated by g1, . . . , gr. Show that
G is abelian and that |G| ≤ 2r.

So for n = 2, our question has an affirmative answer. In 1992, Zelmanov
proved that this is the case whenever n is a prime power. Building on earlier
work of Hall and Higman, this was enough to show that the answer is affirmative
for all n and r. In 1994, Zelmanov was awarded a Fields Medal for his work.

We shall sketch a proof for the case n = 3, which shows some of the ideas
in Zelmanov’s proof.

Let G be a finitely generated group of exponent p, where p is prime. We
define the lower central series of G by G0 = G and Gi = [G, Gi−1] for i ≥
1. Here [G, Gi−1] is the group generated by all group commutators [x, y] =
x−1y−1xy for x ∈ G, y ∈ Gi−1. We have

G = G0 ≥ G1 ≥ G2 ≥ . . . .

If for some m ≥ 1 we have Gm = 1, then we say G is nilpotent.
The notation for group commutators used above is standard; x and y are

group elements and the operations are products and inverses in a group. It
should not be confused with a commutator in a Lie algebra.

Remark 15.15

It is no accident that the definition of nilpotency for groups mirrors that for Lie
algebras. Indeed, nilpotency was first considered for Lie algebras and only much
later for groups. This is in contrast to solvability, which was first considered
for groups by Galois in his 1830s work on the solution of polynomial equations
by radicals.

Each Gi/Gi+1 is a finitely generated abelian group all of whose non-identity
elements have order p. In other words, it is a vector space over Fp, the field with
p elements. We may make the (potentially infinite-dimensional) vector space

B =
∞⊕

i=0

Gi/Gi+1



182 15. Further Directions

into a Lie algebra by defining

[xGi, yGj ] = [x, y]Gi+j

and extending by linearity to arbitrary elements of B. Here on the left we
have a commutator in the Lie algebra B and on the right a commutator taken
in the group G. It takes some work to see that with this definition the Lie
bracket is well defined and satisfies the Jacobi identity — see Vaughan-Lee,
The Restricted Burnside Problem [24] §2.3, for details. Anticommutativity is
more easily seen since if x, y ∈ G, then [x, y]−1 = [y, x].

If G is nilpotent (and still finitely generated) then it must be finite, for each
Gi/Gi+1 is a finitely generated abelian group of exponent p, and hence finite.
Moreover, if G is nilpotent, then B is a nilpotent Lie algebra. Unfortunately, the
converse does not hold because the lower central series might terminate with
Gi = Gi+1 still being an infinite group. However, one can still say something:
For the proof of the following theorem, see §2.3 of Vaughan-Lee [24].

Theorem 15.16

If B is nilpotent, then there is an upper bound on the orders of the finite
r-generated groups of exponent n. �

The general proof that B is nilpotent is hard. When p = 3, however, there
are some significant simplifications. By Exercise 4.8, it is sufficient to prove
that [x, [x, y]] = 0 for all x, y ∈ B. By the construction of B, this will hold if
and only if [g, [g, h]] = 1 for all g, h ∈ G, now working with group commutators.
We now show that this follows from the assumption that G has exponent 3:

[g, [g, h]] = g−1[g, h]−1g[g, h]

= g−1h−1g−1hggg−1h−1gh

= g−1h−1(g−1hg−1)ggh−1gh

= g−1h−1h−1gh−1g−1h−1gh

= g−1hg(h−1g−1h−1)gh

= g−1hgghggh

= (g−1hg−1)hg−1h

= h−1gh−1hg−1h

= 1,

where the bracketing indicates that in the coming step the “rewriting rule”
aba = b−1a−1b−1 for a, b ∈ G will be used; this identity holds because ababab =
(ab)3 = 1. The reader might like to see if there is a shorter proof.
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We must use the elementary argument of Exercise 4.8 rather than En-
gel’s Theorem to prove that B is nilpotent since we have only proved Engel’s
Theorem for finite-dimensional Lie algebras. In fact, one of Zelmanov’s main
achievements was to prove an infinite-dimensional version of Engel’s Theorem.

15.6 Lie Algebras over Fields of Prime
Characteristic

Many Lie algebras over fields of prime characteristic occur naturally; for exam-
ple, the Lie algebras just seen in the context of the restricted Burnside problem.
We have already seen that such Lie algebras have a behaviour different from
complex Lie algebras; for example, Lie’s Theorem does not hold — see Exer-
cise 6.4. However, other properties appear. For example, let A be an algebra
defined over a field of prime characteristic p. Consider the Lie algebra DerA of
derivations of A. The Leibniz formula (see Exercise 1.19) tells us that

Dp(xy) =
p∑

k=0

(
p

k

)
Dk(x)Dp−k(y) = xDp(y) + Dp(x)y

for all x, y ∈ A. Thus the p-th power of a derivation is again a derivation. This
was one of the examples that led to the formulation of an axiomatic definition of
p-maps on Lie algebras. A Lie algebra with a p-map is known as a p-Lie algebra.
Details of this may be found in Jacobson’s book Lie Algebras [15] and also in
Strade and Farnsteiner, Modular Lie Algebras and their Representations [22]
or, especially for the representation theory, Jantzen [17].

What can be said about simple Lie algebras over fields of prime charac-
teristic 0? Since Lie’s Theorem fails in this context, one might expect that
the classification of simple Lie algebras over the complex numbers would not
generalise. For example, Exercise 15.11 shows that sl(n, F ) is not simple when
the characteristic of F divides n. Moreover, new simple Lie algebras have been
discovered over fields of prime characteristic that do not have any analogues in
characteristic zero.

As an illustration, we shall define the Witt algebra W (1). Fix a field F of
characteristic p. The Witt algebra W (1) over F is p-dimensional, with basis

e−1, e0, . . . , ep−2

and Lie bracket

[ei, ej ] =

{
(j − i)ei+j −1 ≤ i + j ≤ p − 2

0 otherwise.
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When p = 2, this algebra is the 2-dimensional non-abelian Lie algebra.

Exercise 15.6

Show that W (1) is simple for p ≥ 3. Show that if p = 3, the Lie al-
gebra W (1) is isomorphic to sl(2, F ). Show that if p > 3 then W (1) is
not isomorphic to any classical Lie algebra defined over F . Hint : The
dimensions of the classical Lie algebras (defined over any field) are as
given in Exercise 12.1.

A classification of the simple Lie algebras over prime characteristic p is work
currently in progress by Premet and Strade.

15.7 Quivers

A quiver is another name for a directed graph, for instance,

·
γ

4



· α

1
�� · β

32
�� 3

is a quiver with vertices labelled 1, 2, 3, 4 and arrows labelled α, β, γ. The
underlying graph of a quiver is obtained by ignoring the direction of the arrows.

A path in a quiver is a sequence of arrows which can be composed. In the
example above, βα is a path (we read paths from right to left as this is the
order in which we compose maps), but αβ and αγ are not.

Let Q be a quiver and let F be a field. The path algebra FQ is the vector
space which has as basis all paths in Q, including the vertices, regarded as
paths of length zero. For example, the path algebra of the quiver above has
basis

{e1, e2, e3, e4, α, β, γ, βα, βγ}.

If two basis elements can be composed to make a path, then their product is
defined to be that path. Otherwise, their product is zero. For example, the
product of β and α is βα since βα is a path, whereas the product of α and γ

is zero. The behaviour of the vertices is illustrated by e2
1 = e1, e2α = αe1 = α,

e1e2 = 0. This turns FQ into an associative algebra, which is finite-dimensional
precisely when Q has no oriented cycles.

One would like to understand the representations of FQ. Let V be an FQ-
module. The vertices ei are idempotents whose sum is the identity of the algebra
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FQ and eiej = 0 if i �= j, so we can use them to decompose V as a direct sum
of subspaces

V =
⊕

eiV.

The arrows act as linear maps between the eiV . For example, in the quiver
above, α = e2αe1 so α(e1V ) ⊆ e2V . This allows us to draw a module pictorially:
For instance,

0

0




F
1 �� F

0 �� 0

shows a 2-dimensional module V , where e1V ∼= e2V ∼= F and α acts as an
isomorphism between e1V and e2V (and β and γ act as the zero map).

The simple FQ-modules are all 1-dimensional, with one for each vertex. For
example,

0

0




0
0 �� F

0 �� 0

shows the simple module corresponding to vertex 2. In this module, e2V = V

and all the other basis elements act as 0.
Usually there will be FQ-modules which are not direct sums of simple

modules. For example, the first module defined above has e2V as its unique non-
trivial submodule, and so it does not split up as a direct sum of simple modules.
Thus there are indecomposable FQ-modules which are not irreducible. One can
measure the extent to which complete reducibility fails to hold by asking how
many indecomposable FQ-modules there are.

If there are only finitely indecomposable modules (up to isomorphism), the
algebra FQ is said to have finite type. In the 1970s, Gabriel found a necessary
and sufficient condition for a quiver algebra to have finite type. He proved the
following theorem.

Theorem 15.17 (Gabriel’s Theorem)

The path algebra FQ has finite type if and only if the underlying graph of Q
is a disjoint union of Dynkin diagrams of types A, D, E. Moreover, the inde-
composable KQ-modules are parametrized naturally by the positive roots of
the associated root system.
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Example 15.18

Consider the quiver of type A4

· α1

1
�� · α2

2
�� · α3

3 4
�� ·

By Gabriel’s Theorem, the indecomposable representations of this quiver are
in bijection with the positive roots in the root system of type A4. The simple
roots α1, α2, α3, α4 correspond to the simple modules. The positive root α1+α2

corresponds to the module

F
1 �� F

0 �� 0
0 �� 0

and so on.

One might wonder whether this connection with Dynkin diagrams is merely
an accident. Not long ago, Ringel discovered a deep connection between quivers
and the theory of Lie algebras. He showed that, when F is a finite field, one may
define an algebra which encapsulates all the representations of FQ. This algebra
is now known as the Ringel–Hall algebra; Ringel proved that this algebra is
closely related to the quantum group of the same type as the underlying graph
of the quiver.

EXERCISES

15.7. Tensor products can also be used to construct representations of a
direct sum of two Lie algebras. Let L1 and L2 be isomorphic copies
of sl(2,C) and let L = L1 ⊕ L2. Let V (a) and V (b) be irreducible
modules for sl(2,C) with highest weights a and b, respectively.

(i) Show that we may make V (a) ⊗ V (b) into a module for L by
setting

(x, y) · v ⊗ w = ((x · v) ⊗ w) + (v ⊗ (y · w))

for x ∈ L1, y ∈ L2, v ∈ V (a), and w ∈ V (b).

(ii) Show that V (a)⊗V (b) is an irreducible representation of L with
highest weight λ defined by

λ(h, 0) = a λ(0, h) = b.
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It can be shown that this construction gives every irreducible L-
module. By Exercise 10.8, sl(2,C) ⊕ sl(2,C) ∼= so(4,C), so we have
constructed all the finite-dimensional representations of so(4,C).
Generalising these ideas, one can show that any semisimple Lie alge-
bra has a faithful irreducible representation; from this it is not hard
to prove a (partial) converse of Exercise 12.4.

15.8. Let L be a Lie algebra and let U(L) be its universal enveloping
algebra as defined above. Let ι : L → U(L) be the linear map defined
by ι(xi) = Xi.

Let A be an associative algebra; we may also view A as a Lie algebra
with Lie bracket [x, y] = xy − yx for x, y ∈ A (see §1.5).

(i) Show that U(L) has the following universal property : Given a
Lie algebra homomorphism ϕ : L → A, there exists a unique
homomorphism of associative algebras θ : U(L) → A such that
θ ◦ ι = ϕ. In other words, the following diagram commutes:

L
ϕ ��

ι ����
��

��
�� A

U(L)

θ

��

(ii) Suppose that V is an associative algebra and ι′ : L → V is a
Lie algebra homomorphism (where we regard V as a Lie algebra)
such that if we replace ι with ι′ then V has the universal property
of U(L). Show that V and U(L) are isomorphic. In particular,
this shows that U(L) does not depend on the choice of basis
of L.

(iii) Let x1, . . . , xk ∈ L. Suppose that L has a representation ϕ :
L → gl(V ) such that ϕ(x1), . . . , ϕ(xk) are linearly indepen-
dent. Show that X1, . . . , Xk are linearly independent elements
of U(L). Hence prove that if L is semisimple then ι is injective.

15.9. Let δ : L → L be a derivation of a complex finite-dimensional Lie
algebra L. Suppose that δn = 0 where n ≥ 1. Define exp(δ) : L → L

by

exp(δ)(x) =
(

1 + δ +
δ2

2!
+ . . .

)
x.

(By hypothesis the sum is finite.) Prove that exp(δ) is an automor-
phism of L; that is, exp(δ) : L → L is an invertible linear map such
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that

[exp δ(x), exp δ(y)] = exp δ([x, y]) for all x, y ∈ L.

15.10. Let L be a finite-dimensional complex Lie algebra and let α be an
automorphism of L. For ν ∈ C, let

Lν = {x ∈ L : α(x) = ν(x)}.

Show that [Lλ, Lµ] ⊆ Lλµ. Now suppose that we have α3 = 1, and
that α fixes no non-zero element of L. Prove that L is nilpotent.

15.11. Let F be a field of prime characteristic p. Show that if p divides n

then sl(n, F ) is not simple.



16
Appendix A: Linear Algebra

This appendix gives a summary of the results we need from linear algebra.
Recommended for further reading are Blyth and Robertson’s books Basic Lin-
ear Algebra [4] and Further Linear Algebra [5] and Halmos Finite-Dimensional
Vector Spaces [11].

We expect that the reader will already know the definition of vector spaces
and will have seen some examples. For most of this book, we deal with finite-
dimensional vector spaces over the complex numbers, so the main example to
bear in mind is Cn, which we think of as a set of column vectors.

We assume that the reader knows about bases, subspaces, and direct sums.
We therefore begin our account by describing quotient spaces. Next we discuss
the connection between linear maps and matrices, diagonalisation of matrices,
and Jordan canonical form. We conclude by reviewing the bilinear algebra
needed in the main text.

16.1 Quotient Spaces

Suppose that W is a subspace of the vector space V . A coset of W is a set of
the form

v + W := {v + w : w ∈ W}.

It is important to realise that unless W = 0, each coset will have many different
labels; in fact, v + W = v′ + W if and only if v − v′ ∈ W .
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The quotient space V/W is the set of all cosets of W . This becomes a vector
space, with zero element 0 + W = W , if addition is defined by

(v + W ) + (v′ + W ) := (v + v′) + W for v, v′ ∈ V

and scalar multiplication by

λ(v + W ) := λv + W for v, v′ ∈ V , λ ∈ F .

One must check that these operations are well-defined ; that is, they do not
depend on the choice of labelling elements. Suppose for instance that v + W =
v′ + W . Then, since v − v′ ∈ W , we have λv − λv′ ∈ W for any scalar λ, so
λv + W = λv′ + W .

The following diagram shows the elements of R2/W , where W is the sub-
space of R2 spanned by

(1
1

)
.

W

(1
0

)
+ W

(0
1

)
+ W

. . .

. . .

The cosets R2/W are all the translations of the line W . One can choose a
standard set of coset representatives by picking any line through 0 (other than
W ) and looking at its intersection points with the cosets of W ; this gives a
geometric interpretation of the isomorphism R2/W ∼= R.

It is often useful to consider quotient spaces when attempting a proof by
induction on the dimension of a vector space. In this context, it can be useful to
know that if v1, . . . , vk are vectors in V such that the cosets v1 +W, . . . , vk +W

form a basis for the quotient space V/W , then v1, . . . , vk, together with any
basis for W , forms a basis for V .
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16.2 Linear Maps

Let V and W be vector spaces over a field F . A linear map (or linear transfor-
mation) x : V → W is a map satisfying

x(λu + µv) = λx(u) + µx(v) for all u, v ∈ V and λ, µ ∈ F .

A bijective linear map between two vector spaces is an isomorphism. We assume
the reader knows about the definitions of the image and kernel of a linear map,
and can prove the rank-nullity theorem,

dimV = dim imx + dim kerx.

A corollary of the rank-nullity theorem is that if dimV = dimW and
x : V → W is injective, then, since dim im x = dimV , x is an isomorphism.
One can draw the same conclusion if instead we know that x is surjective. We
refer to this type of reasoning as an argument by dimension counting.

We can now state the isomorphism theorems for vector spaces.

Theorem 16.1 (Isomorphism theorems for vector spaces)

(a) If x : V → W is a linear map, then kerx is a subspace of V , imx is a
subspace of W , and

V/ ker x ∼= W.

(b) If U and W are subspaces of a vector space, (U + W )/W ∼= U/(U ∩ W ).

(c) Suppose that U and W are subspaces of a vector space V such that U ⊆ W .
Then W/U is a subspace of V/U and (V/U)/(W/U) ∼= V/W .

Proof

For part (a), define a map ϕ : V/ ker x → im x by

ϕ(v + kerx) = x(v).

This map is well-defined since if v + ker x = v′ + ker x then v − v′ ∈ ker x, so
ϕ(v + ker x) = x(v) = x(v′) = ϕ(v′ + ker x). It is routine to check that ϕ is
linear, injective, and surjective, so it gives the required isomorphism.

To prove (b), consider the composite of the inclusion map U → U + W

with the quotient map U + W → (U + W )/W . This gives us a linear map
U → (U + W )/W . Under this map, x ∈ U is sent to 0 ∈ (U + W )/W if and
only if x ∈ W , so its kernel is U ∩ W . Now apply part (a).

Part (c) can be proved similarly; we leave this to the reader.
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Parts (a), (b) and (c) of this theorem are known respectively as the first,
second, and third isomorphism theorems. See Exercise 16.5 for one application.

16.3 Matrices and Diagonalisation

Suppose that x : V → V is a linear transformation of a finite-dimensional
vector space V . Let {v1, . . . , vn} be a basis of V . Using this basis, we may
define scalars aij by

x(vj) =
n∑

i=1

aijvi.

We say that the n×n matrix A with entries (aij) is the matrix of x with respect
to our chosen basis. Conversely, given a basis of V and a matrix A, we can use
the previous equation to define a linear map x, whose matrix with respect to
this basis is A.

Exercise 16.1

(i) Let x : V → V and y : V → V be linear maps with matrices A and B

with respect to a basis of V . Show that, with respect to this basis,
the matrix of the composite map yx is the matrix product BA.

(ii) Suppose that x has matrix A with respect to the basis v1, . . . , vn

of V . Let w1, . . . , wn be another basis of V . Show that the matrix
of A in this new basis is P−1AP where the matrix P = (pij) is
defined by

wj =
n∑

i=1

pijvi.

Matrices related in this way are said to be similar.

It had been said that “a true gentleman never takes bases unless he really
has to.” We generally agree with this sentiment, preferring to use matrices
only when they are necessary for explicit computations (for example in Chap-
ter 12 when we look at the classical Lie algebras). When we are obliged to
consider matrices, then we can at least try to choose bases so that they are of
a convenient form.

Recall that a non-zero vector v ∈ V such that x(v) = λv is said to be an
eigenvector of x with corresponding eigenvalue λ. The eigenspace for eigen-
value λ is the vector subspace

{v ∈ V : x(v) = λv}.
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It is an elementary fact that non-zero vectors in different eigenspaces are
linearly independent. (This will often be useful for us; for example, see step 1
in the proof of Theorem 8.5.)

The linear map x can be represented by a diagonal matrix if and only if V

has a basis consisting of eigenvectors for x. This is the same as saying that the
space V is a direct sum of x-eigenspaces,

V = Vλ1 ⊕ Vλ2 ⊕ . . . ⊕ Vλr
,

where the λi are the distinct eigenvalues of x. If this is the case, we say that x

is diagonalisable.
Note that λ ∈ C is an eigenvalue of x if and only if ker(x − λ1V ) is non-

zero, which is the case if and only if det(x − λ1V ) = 0. The eigenvalues of x

are therefore the roots of the characteristic polynomial of x, defined by

cx(X) = det(x − X1V ),

where X is an indeterminant. Since over C any non-constant polynomial has a
root, this shows that any linear transformation of a complex vector space has
an eigenvalue.

The characteristic polynomial of x does not in itself give enough information
to determine whether x is diagonalisable — consider for example the matrices(

1 0
0 1

)
,

(
1 1
0 1

)
.

To get further, one needs the minimal polynomial. The minimal polynomial
of x is the monic polynomial of least degree which kills x, so m(X) = Xd +
ad−1X

d−1 + . . . + a1X + a0 is the minimal polynomial of x if

xd + ad−1x
d−1 + . . . + a1x + a01V = 0

and the degree d is as small as possible.
An important property of the minimal polynomial is that if f(X) is any

polynomial such that f(x) = 0 then m(X) divides f(X).

Exercise 16.2

Prove this assertion by using polynomial division to write f(X) =
a(X)m(X) + r(X), where the remainder polynomial r(X) is either 0
or has degree less than that of m(X), and then showing that r(x) = 0.

By the famous theorem of Cayley–Hamilton (see Exercise 16.4), the minimal
polynomial of x divides the characteristic polynomial of x. We now explore some
of the arguments in which the minimal polynomial is used.
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16.3.1 The Primary Decomposition Theorem

Theorem 16.2 (Primary decomposition theorem)

Suppose the minimal polynomial of x factorises as

(X − λ1)a1 . . . (X − λr)ar ,

where the λi are distinct and each ai ≥ 1. Then V decomposes as a direct sum
of x-invariant subspaces Vi,

V = V1 ⊕ V2 ⊕ . . . ⊕ Vr,

where Vi = ker(x − λi1V )ai . The subspaces Vi are said to be the generalised
eigenspaces of x.

This theorem may be proved by repeatedly applying the following lemma.

Lemma 16.3

If f(X) ∈ C[X] and g(X) ∈ C[X] are coprime polynomials such that
f(x)g(x) = 0, then im f(x) and im g(x) are x-invariant subspaces of V . More-
over,

(i) V = im f(x) ⊕ im g(x), and

(ii) im f(x) = ker g(x) and im g(x) = ker f(x).

Proof

If v = f(x)w, then xv = f(x)xw, so the subspaces im f(x) and im g(x) are
x-invariant. By Euclid’s algorithm, there exist polynomials a(X), b(X) ∈ C[X]
such that a(X)f(X) + b(X)g(X) = 1, so for any v ∈ V ,

f(x)(a(x)v) + g(x)(b(x)v) = v. (�)

This shows that V = im f(x) + im g(x). If v ∈ im g(x) with, say, v = g(x)w,
then f(x)v = f(x)g(x)w = 0, so im g(x) ⊆ ker f(x). On the other hand, if
f(x)v = 0, then by (�), v = g(x)(b(x)v) so v ∈ im g(x). Finally, if

v ∈ im f(x) ∩ im g(x) = ker f(x) ∩ ker g(x),

then as f(x)a(x)v = a(x)f(x)v = 0 and similarly b(x)g(x) = 0, it follows
from (�) that v = 0.

The following criterion for a linear map to be diagonalisable follows directly
from the primary decomposition theorem.
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Theorem 16.4

Let x : V → V be a linear map of a vector space V . Then x is diagonalisable
if and only if the minimal polynomial of x splits as a product of distinct linear
factors.

Corollary 16.5

Let x : V → V be a diagonalisable linear transformation. Suppose that U is a
subspace of V which is invariant under x, that is, x(u) ∈ U for all u ∈ U .

(a) The restriction of x to U is diagonalisable.

(b) Given any basis of U consisting of eigenvectors for x, we may extend this
basis to a basis of V consisting of eigenvectors for x.

Proof

Let m(X) be the minimal polynomial of x : V → V . Let mU (X) be the
minimal polynomial of x, regarded just as a linear transformation of U . Then
m(x)(U) = 0, so mU (X) must divide m(X). Hence mU (X) is a product of
distinct linear factors.

Now let V = Vλ1 ⊕ . . . ⊕ Vλr be the decomposition of V into distinct
eigenspaces of x. Since x acts diagonalisably on U we have

U = U ∩ Vλ1 ⊕ . . . ⊕ U ∩ Vλr
.

Extend the basis of each U ∩ Vλi to a basis of Vλi . This gives us a basis of V

of the required form.

We now give another application of the primary decomposition theorem.

Lemma 16.6

Suppose that x has minimal polynomial

f(X) = (X − λ1)a1 . . . (X − λr)ar ,

where the λi are pairwise distinct. Let the corresponding primary decomposi-
tion of V as a direct sum of generalised eigenspaces be

V = V1 ⊕ . . . ⊕ Vr,

where Vi = ker(x − λi1V )ai . Then, given any µ1, . . . , µr ∈ C, there is a poly-
nomial p(X) such that

p(x) = µ11V1 + µ21V2 . . . + µr1Vr .
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Proof

Suppose we could find a polynomial f(X) ∈ C[X] such that

f(X) ≡ µi mod (X − λi)ai .

Take v ∈ Vi = ker(x−λi1V )ai . By our supposition, f(X) = µi+a(X)(X−λi)ai

for some polynomial a(X). Hence

f(x)v = µi1Viv + a(X)(x − λi)aiv = µiv,

as required.
The polynomials (X − λ1)a1 . . . , (X − λr)ar are coprime. We may therefore

apply the Chinese Remainder Theorem, which states that in these circum-
stances the map

C[X] →
r⊕

i=1

C[X]
(X − λi)ai

f(X) �→ (f(X) mod (X − λ1)a1 , . . . , f(X) mod (X − λr)ar )

is surjective, to obtain a suitable f(X).

In terms of matrices, this lemma says that

p(x) =

⎛
⎜⎜⎜⎝

µ1In1 0 . . . 0
0 µ2In2 . . . 0
...

...
. . .

...
0 0 . . . µrInr

⎞
⎟⎟⎟⎠ ,

where ni = dimVi and Is denotes the s × s identity matrix.

16.3.2 Simultaneous Diagonalisation

In the main text, we shall several times have a finite family of linear transfor-
mations of a vector space V , each of which is individually diagonalisable. When
can one find a basis of V in which they are all simultaneously diagonal?

Lemma 16.7

Let x1, . . . , xk : V → V be diagonalisable linear transformations. There is a
basis of V consisting of simultaneous eigenvectors for all the xi if and only if
they commute. (That is, xixj = xjxi for all pairs i, j.)
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Proof

For the “only if” direction we note that diagonal matrices commute with one
another, so if we can represent all the xi by diagonal matrices, they must
commute.

The main step in the “if” direction is the case k = 2. Write V as a direct
sum of eigenspaces for x1, say V = Vλ1 ⊕ . . .⊕Vλr , where the λi are the distinct
eigenvalues of x1. If v ∈ Vλi then so is x2(v), for

x1x2(v) = x2x1(v) = x2(λiv) = λi(x2(v)).

We now apply Corollary 16.5(a) to deduce that x2 restricted to Vλi is di-
agonalisable. A basis of Vλi

consisting of eigenvectors for x2 is automatically a
basis of eigenvectors for x1, so if we take the union of a basis of eigenvectors
for x2 on each Vλi , we get a basis of V consisting of simultaneous eigenvectors
for both x1 and x2.

The inductive step is left to the reader.

In Exercise 16.6, we give a small generalisation which will be needed in the
main text.

16.4 Interlude: The Diagonal Fallacy

Consider the following (fallacious) argument. Let V be a 2-dimensional vector
space, say with basis v1, v2. Let x : V → V be the linear map whose matrix
with respect to this basis is (

0 1
0 0

)
.

We claim that if U is a subspace of V such that x(U) ⊆ U , then either U = 0,
U = Span{v1}, or U = V . Clearly each of these subspaces is invariant under x,
so we only need to prove that there are no others. But since x(v2) = v1,
Span{v2} is not x-invariant. (QED?)

Here we committed the diagonal fallacy : We assumed that an arbitrary
subspace of V would contain one of our chosen basis vectors. This assumption
is very tempting — which perhaps explains why it is so often made — but it
is nonetheless totally unjustified.

Exercise 16.3

Give a correct proof of the previous result.
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The following diagram (which is frequently useful as a counterexample in
linear algebra) illustrates how the fallacy we have been discussing gets its name.

Span{(11)}Span{(10)}

Span{(01)}

16.5 Jordan Canonical Form

Let V be a finite-dimensional complex vector space and let x : V → V be a
linear map. Exercise 6.2 outlines the proof that one can always find a basis of V

in which x is represented by an upper triangular matrix. For many purposes,
this result is sufficient. For example, it implies that a nilpotent map may be
represented by a strictly upper triangular matrix, and so nilpotent maps have
trace 0.

Sometimes, however, one needs the full strength of Jordan canonical form.
A general matrix in Jordan canonical form looks like⎛

⎜⎜⎜⎝
A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ar

⎞
⎟⎟⎟⎠ ,

where each Ai is a Jordan block matrix Jt(λ) for some t ∈ N and λ ∈ C:

Jt(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
0 0 λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

t×t

.

We now outline a proof that any linear transformation of a complex vector
space can be represented by a matrix in Jordan canonical form.
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The first step is to reduce to the case where xq = 0 for some q ≥ 1; that
is, x is a nilpotent linear map.

By the primary decomposition theorem, it suffices to consider the case
where x has only one eigenvalue, say λ. Then by considering x − λ1V , we
may reduce to the case where x acts nilpotently. So it suffices to show that a
nilpotent transformation can be put into Jordan canonical form.

16.5.1 Jordan Canonical Form for Nilpotent Maps

We shall work by induction on dimV .
Suppose that xq = 0 and xq−1 �= 0. Let v ∈ V be any vector such that

xq−1v �= 0. One can check that the vectors v, xv, . . . , xq−1v are linearly inde-
pendent. Their span, U say, is an x-invariant subspace of V . With respect to
the given basis of U , the matrix of x : U → U is the q × q matrix

Jq(0) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠ .

Suppose we can find an x-invariant complementary subspace to U ; that is,
a subspace C such that x maps C into C and V = U ⊕ C. Then, by induction,
there is a basis of C in which the matrix of x restricted to C is in Jordan
canonical form. Putting the bases of C and U together gives us a suitable basis
for V .

To show that a suitable complement exists, we use a further induction on q.
If q = 1, then x = 0 and any vector space complement to Span {v} will do.
Now suppose we can find complements when xq−1 = 0.

Consider imx ⊆ V . On imx, x acts as a nilpotent linear map whose q − 1
power is 0, so by induction on q we get

im x = Span
{
xv, . . . , xq−1v

}⊕ W

for some x-invariant subspace W . Note that U∩W = 0. Our task is to extend W

to a suitable x-invariant complement for U in V .
Suppose first that W = 0. In this case, imx = Span

{
xv, . . . , xq−1v

}
and

ker x ∩ im x =
〈
xq−1v

〉
. Extend xq−1v to a basis of kerx, say by v1, . . . , vs. By

the rank-nullity formula

v, xv . . . , xq−1v, v1, . . . , vs
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is a basis of V . The subspace spanned by v1, . . . , vs is an x-invariant complement
to U .

Now suppose that W �= 0. Then x induces a linear transformation, say x̄,
on V/W . Let v̄ = v + W . Since im x̄ = Span

{
x̄v̄, . . . , x̄q−1v̄

}
, the first case im-

plies that there is an x̄-invariant complement in V/W to Span
{
v̄, x̄v̄, . . . x̄q−1v̄

}
.

The preimage of this complement in V is a suitable complement to U .

16.6 Jordan Decomposition

Any linear transformation x of a complex vector space V has a Jordan de-
composition, x = d + n, where d is diagonalisable, n is nilpotent, and d and n

commute.
One can see this by putting x into Jordan canonical form: Fix a basis of V

in which x is represented by a matrix in Jordan canonical form. Let d be the
map whose matrix in this basis has the diagonal entries of x down its diagonal,
and let n = x − d. For example we might have

x =

⎛
⎝1 1 0

0 1 0
0 0 1

⎞
⎠ , d =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , n =

⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠ .

As n is represented by a strictly upper triangular matrix, it is nilpotent. We
leave it to the reader to check that d and n commute.

In applications it is useful to know that d and n can be expressed as poly-
nomials in x. In the following lemma, we also prove a related result that is
needed in Chapter 9.

Lemma 16.8

Let x have Jordan decomposition x = d+n as above, where d is diagonalisable,
n is nilpotent, and d, n commute.

(a) There is a polynomial p(X) ∈ C[X] such that p(x) = d.

(b) Fix a basis of V in which d is diagonal. Let d̄ be the linear map whose
matrix with respect to this basis is the complex conjugate of the matrix
of d. There is a polynomial q(X) ∈ C[X] such that q(x) = d̄.
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Proof

Let λ1, . . . , λr be the distinct eigenvalues of x. The minimal polynomial of x is
then

m(X) = (X − λ1)a1 . . . (X − λr)ar ,

where ai is the size of the largest Jordan block with eigenvalue λi.
We can now apply Lemma 16.6 to get the polynomials we seek. For part

(a) take µi = λi, and for part (b) take µi = λ̄i.

Part (a) of this lemma can be used to prove that the Jordan decomposition
of a linear map is unique — see Exercise 16.7 below.

16.7 Bilinear Algebra

As well as the books already mentioned, we recommend Artin’s Geometric
Algebra [1] for further reading on bilinear algebra. From now on, we let V be
an n-dimensional vector space over a field F .

16.7.1 Dual spaces

The dual space of V , denoted V �, is by definition the set of all linear maps from
V to F . Thus, if f, g ∈ V �, then f + g is defined by (f + g)(v) = f(v) + g(v)
for v ∈ V , and if λ ∈ F , then λf is defined by (λf)(v) = λf(v).

Given a vector space basis {v1, . . . , vn} of V , one defines the associated
dual basis of V as follows. Let fi : V → F be the linear map defined on basis
elements by

fi(vj) =

{
1 i = j

0 i �= j.

It is not hard to check that f1, . . . , fn is a basis for V �. In particular dimV =
dimV �.

The dual space of V ∗ can be identified with V in a natural way. Given
v ∈ V , we may define an evaluation map εv : V ∗ → F by

εv(f) := f(v) for all f ∈ V ∗.

It is straightforward to check that εv is linear and so belongs to the dual space
of V �; that is, to V ��. Moreover, the map v �→ εv (which we might call ε)
from V to V �� is itself linear. We claim that ε : V → V �� is an isomorphism.



202 16. Appendix A: Linear Algebra

Since we have already shown that dim V = dimV � = dimV ��, it is sufficient
to show that εv = 0 implies v = 0. One way to do this is as follows. If v �= 0,
then we may extend v to a basis of V and take the associated dual basis.
Then f1(v) = 1 and hence εv(f1) �= 0, so εv �= 0.

If U is a subspace of V we let

U◦ = {f ∈ V � : f(u) = 0 for all u ∈ U}
be the annihilator of U in V �. One can show that U◦ is a subspace of V � and
that

dimU + dimU◦ = dimV.

A proof of the last statement is outlined in Exercise 16.8.
Given a subspace W of V ∗, we can similarly define the annihilator of W

in V ��. Under the identification of V �� with V , the annihilator of W becomes

W 0 = {v ∈ V : f(v) = 0 for all f ∈ W}.

In particular, we have dimW + dimW 0 = dimV .

16.7.2 Bilinear Forms

Definition 16.9

A bilinear form on V is a map

(−,−) : V × V → F

such that

(λ1v1 + λ2v2, w) = λ1(v1, w) + λ2(v2, w),

(v, µ1w1 + µ2w2) = µ1(v, w1) + µ2(v, w2),

for all vi, wi ∈ V and λi, µi ∈ F .

For example, if F = R and V = Rn, then the usual dot product is a bilinear
form on V .

As for linear transformations, we can represent bilinear forms by matrices.
Suppose that (−,−) is a bilinear form on the vector space V and that V has
basis {v1, . . . , vn}. The matrix of (−,−) with respect to this basis is A = (aij),
where aij = (vi, vj). If we change the basis, say to {w1, . . . , wn}, then the new
matrix representing (−,−) is P tAP where P = (pij) is the n×n matrix defined
by

wj =
n∑

i=1

pijvi.
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Matrices related in this way are said to be congruent.
Conversely, given an n × n matrix S = (sij), we may define a bilinear form

on V by setting
(vi, vj) = sij

and extending “bilinearly” to arbitrary elements in V × V . That is, if v =∑
i λivi and w =

∑
j µjvj with λi and µj scalars, then

(v, w) =
n∑

i=1

n∑
j=1

sijλiµj .

The last equation may be written in matrix form as

(v, w) = (λ1 . . . λn)

⎛
⎜⎝

s11 . . . s1n

...
. . .

...
sn1 . . . snn

⎞
⎟⎠
⎛
⎜⎝

µ1
...

µn

⎞
⎟⎠ .

Given a subset U of V , we set

U⊥ := {v ∈ V : (u, v) = 0 for all u ∈ U}.

This is always a subspace of V . We say that the form (−,−) is non-degenerate
if V ⊥ = {0}.

Example 16.10

Let U be a 2m-dimensional vector space with basis u1, . . . , u2m, and let

S =
(

0 Im

Im 0

)
,

where Im is the identity matrix of size m × m. The bilinear form associated
to S may be shown to be non-degenerate. (For example, this follows from
Exercise 16.9.) However, the restriction of the form to the subspace spanned
by u1, . . . , um is identically zero.

For a more substantial example, see Exercise 16.10 below.

We now explain the connection between bilinear forms and dual spaces.
Let ϕ : V → V � be the linear map defined by ϕ(v) = (−, v). That is, ϕ(v)
is the linear map sending u ∈ V to (u, v). If (−,−) is non-degenerate, then
ker ϕ = 0, so by dimension counting, ϕ is an isomorphism. Thus every element
of V � is of the form (−, v) for a unique v ∈ V ; this is a special case of the Riesz
representation theorem. A small generalisation of this argument can be used to
prove the following lemma — see Exercise 16.8.
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Lemma 16.11

Suppose that (−,−) is a non-degenerate bilinear form on the vector space V .
Then, for all subspaces U of V , we have

dimU + dimU⊥ = dimV.

If U ∩ U⊥ = 0, then V = U ⊕ U⊥ and, furthermore, the restrictions of (−,−)
to U and to U⊥ are non-degenerate.

16.7.3 Canonical Forms for Bilinear Forms

Definition 16.12

Suppose that (−,−) : V × V → F is a bilinear form. We say that (−,−) is
symmetric if (v, w) = (w, v) for all v, w ∈ V and that (−,−) is skew-symmetric
or symplectic if (v, w) = −(w, v) for all v, w ∈ V .

In the main text, we shall only need to deal with bilinear forms that are
either symmetric or skew-symmetric. For such a form, (v, w) = 0 if and only
if (w, v) = 0. When F = R, a symmetric bilinear form with (v, v) ≥ 0 for all
v ∈ V and such that (v, v) = 0 if and only if v = 0 is said to be an inner
product.

A vector v ∈ V is said to be isotropic with respect to a form (−, −) if
(v, v) = 0. For example, if (−,−) is symplectic and the characteristic of the
field is not 2, then all elements in V are isotropic. But symmetric bilinear
forms can also have isotropic vectors (as long as they do not come from inner
products). For example, in Example 16.10 above, the basis of U consists of
isotropic vectors.

If (−,−) is non-degenerate and v ∈ V is isotropic, then there exists some
w ∈ V such that (v, w) �= 0. Clearly v and w must be linearly independent.
This observation motivates the following lemma (which we use in Appendix C).

Lemma 16.13

Suppose V has a non-degenerate bilinear form (−,−). Suppose U1 and U2 are
trivially-intersecting subspaces of V such that (u, v) = 0 for all u, v ∈ U1 and
for all u, v ∈ U2 and that (−,−) restricted to U1 ⊕U2 is non-degenerate. Then,
if {u1, . . . , um} is a basis of U1 there is a basis {u′

1, . . . , u
′
n}, of U2 such that

(ui, u
′
j) =

{
1 i = j

0 i �= j.
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Proof

Consider the map γ : U2 → U∗
1 defined by γ(v) = (−, v). That is, γ(v)(u) =

(u, v) for all u ∈ U1. This map is linear, and it is injective because the restriction
of (−,−) to U1 ⊕ U2 is non-degenerate, so we have

dimU2 ≤ dimU∗
1 = dimU1.

By symmetry, we also have dim U1 ≤ dimU2, so γ must be an isomorphism.
Given the basis {u1, . . . , un} of U1, let {f1, . . . , fn} be the corresponding

dual basis of U∗
1 . For 1 ≤ j ≤ n, let u′

j ∈ U2 be the unique vector such that
γ(u′

j) = fj . Then we have

(ui, u
′
j) = fj(ui) =

{
1 i = j

0 i �= j

as required.
Note that if (−,−) is symmetric, then the matrix of (−,−) with respect to

this basis of U1 ⊕ U2 is (
0 Im

Im 0

)
.

An analogous holds if (−,−) is skew-symmetric.

In the following we assume that the characteristic of F is not 2.

Lemma 16.14

Let (−,−) be a non-degenerate symmetric bilinear form on V . Then there is a
basis {v1, . . . , vn} of V such that (vi, vj) = 0 if i �= j and (vi, vi) �= 0.

Proof

We use induction on n = dimV . If n = 1, then the result is obvious, so we may
assume that dim V ≥ 2.

Suppose that (v, v) = 0 for all v ∈ V . Then, thanks to the identity

(v + w, v + w) = (v, v) + (w, w) + 2(v, w),

we have (v, w) = 0 for all v, w ∈ V , which contradicts our assumption that
(−,−) is non-degenerate. (This is where we need our assumption on the char-
acteristic of F .)

We may therefore choose v ∈ V so that (v, v) �= 0. Let U = Span{v}. By
hypothesis U ∩U⊥ = {0}, so by Lemma 16.11 we have V = U ⊕U⊥. Moreover,
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the restriction of (−,−) to U⊥ is non-degenerate. By the inductive hypothesis,
there is a basis of U⊥, say {v2, . . . , vn}, such that (vi, vj) = 0 for i �= j and
(vi, vi) �= 0 for 2 ≤ i ≤ n. Since also (v, vj) = 0 for j �= 1, if we put v1 = v then
the basis {v1, . . . , vn} has the required properties.

Depending on the field, we may be able to be more precise about the diag-
onal entries di = (vi, vi). Suppose that F = R. Then we may find λi ∈ R such
that λ2

i = |di|. By replacing vi with vi/λi, we may assume that (vi, vi) = ±1.
The bilinear form (−,−) is an inner product if and only if (vi, vi) > 0 for all i.

If F = C, then we can find λi so that λ2
i = di, and hence we may assume

that (vi, vi) = 1 for all i, so the matrix representing (−, −) is the n×n identity
matrix.

Lemma 16.15

Suppose that (−,−) is a non-degenerate symplectic bilinear form on V . Then
we have dimV = 2m for some m. Moreover, there is a basis of V such that
(vi, vi+n) �= 0 for 1 ≤ i ≤ n and (vi, vj) = 0 if |i − j| �= n.

Proof

Again we work by induction dimV . Let 0 �= v ∈ V . Since (−,−) is non-
degenerate, we may find w ∈ V such that (v, w) �= 0. Since v, w are isotropic,
it is clear that {v, w} is linearly independent. Set v1 = v and v2 = w. If
dimV = 2, then we are done. Otherwise, let U be the orthogonal complement
of the space W spanned by v1, v2. One shows easily that U ∩ W = {0} and
that by dimension counting V = U ⊕ W . Now, the restriction of (−,−) to U is
non-degenerate and also symplectic. The result now follows by induction.

When F = R or F = C, it is again useful to scale the basis elements. In
particular, when F = C we may arrange that the matrix representing (−,−)
has the form (

0 Im

−Im 0

)
,

where Im is the m × m identity matrix.

EXERCISES

16.4. Let x : V → V be a linear transformation of a complex vector space.
By the result mentioned at the start of §16.5, we may find a basis
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v1, . . . , vn of V in which x is represented by an upper triangular
matrix. Let λ1, . . . , λn be the diagonal entries of this matrix. Show
that if 1 ≤ k ≤ n then

(x − λk1V ) . . . (x − λn1V )V ⊆ Span{v1, . . . , vk−1}.

Hence prove the Cayley–Hamilton theorem for linear maps on com-
plex vector spaces.

16.5. Let A be an m × n matrix with entries in a field F . Show that there
is a bijective correspondence between solution sets of the equation
Ax = y for y ∈ im A and elements of the quotient vector space
Fn/ ker A.

16.6.† Let V be a finite-dimensional vector space.

(i) Show that Hom(V, V ), the set of linear transformations of V , is
a vector space, and determine its dimension.

(ii) Let A ⊆ Hom(V, V ) be a collection of commuting linear maps,
each individually diagonalisable. Show that there is a basis of V

in which all the elements of A are simultaneously diagonal.

(iii)� Can the assumption that V is finite-dimensional be dropped?

16.7.† Suppose that x : V → V is a linear map on a vector space V and
that x = d + n = d′ + n′ where d, d′ are diagonalisable and n, n′ are
nilpotent, d and n commute and d′ and n′ commute. Show that d

and d′ commute. Hence show that d − d′ = n′ − n = 0. Deduce that
the Jordan decomposition of a linear map is unique.

16.8. Let U be a subspace of the F -vector space V .

(i) Consider the restriction map r : V � → U�, which takes a linear
map f : V → F and regards it just as a map on U . Show that
ker r = U◦ and im r = U�. Hence prove that

dimU + dimU0 = dimV.

(ii) Now suppose that (−,−) is a non-degenerate bilinear form on
V . By considering the linear map ϕ : V → U� defined by

ϕ(v)(u) = (u, v),

show that dimU + dimU⊥ = dimV .
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16.9. Let V be a finite-dimensional vector space with basis {v1, . . . , vn}.
Suppose that (−,−) is a bilinear form on V , and let aij = (vi, vj).
Show that V ⊥ = {0} if and only if the matrix A = (aij) is non-
singular.

16.10. Let V be a finite-dimensional vector space and let Hom(V, V ) be the
vector space of all linear transformations of V . Show that

(x, y) �→ tr(xy)

defines a non-degenerate symmetric bilinear form on Hom(V, V ). By
Exercise 16.8(ii) this form induces an isomorphism

Hom(V, V ) → Hom(V, V )�.

What is the image of the identity map 1V : V → V under this
isomorphism?
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Appendix B: Weyl’s Theorem

We want to show that any finite-dimensional representation of a complex
semisimple Lie algebra is a direct sum of irreducible representations. This is
known as Weyl’s Theorem; it is a fundamental result in the representation
theory of Lie algebras. We used it several times in Chapter 9 to decompose a
representation of sl(2,C) into a direct sum of irreducible representations.

As usual, all Lie algebras and representations in this chapter are finite-
dimensional.

17.1 Trace Forms

When we proved that a complex semisimple Lie algebra is a direct sum of simple
Lie algebras (or, equivalently, that the adjoint representation is completely
reducible), we used the Killing form κ. Now we use a generalisation of the
Killing form known as the trace form.

Let L be a Lie algebra and let V be an L-module. Write ϕ : L → gl(V ) for
the corresponding representation. Define the trace form βV : L × L → C by

βV (x, y) := tr(ϕ(x) ◦ ϕ(y)) for x, y ∈ L.

This is a symmetric bilinear form on L. In the special case where V = L and ϕ

is the adjoint representation, it is just the Killing form. The trace form βV is
associative; that is,

βV ([x, y], z) = βV (x, [y, z]) for all x, y, z ∈ L,
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as an easy calculation will show. This implies, as it did for the Killing form,
that if we define the radical of β by

radβV := {x ∈ L : βV (x, y) = 0 for all y ∈ L},

then radβV is an ideal of L.
So far, our definitions make sense for any representation of an arbitrary Lie

algebra. For semisimple Lie algebras, we have the following lemma.

Lemma 17.1

Suppose L is a complex semisimple Lie algebra and ϕ : L → gl(V ) is a faithful
representation (that is, ϕ is injective). Then radβV is zero and so βV is non-
degenerate.

Proof

Let I = radβV . For any x, y ∈ I, we have βV (x, y) = 0. Now apply Proposi-
tion 9.3 to the Lie subalgebra ϕ(I) of gl(V ). This gives that ϕ(I) is solvable
and hence, since ϕ is injective, that I is solvable. But L is semisimple, so it has
no non-zero solvable ideals, and therefore I is zero.

With the assumptions of the previous lemma, we may use the bilinear
form βV to identify L with L�: namely, given θ ∈ L�, there is a unique el-
ement y ∈ L such that β(x, y) = θ(x) for all x ∈ L. Let x1, . . . , xn be a vector
space basis of L and let θ1, . . . , θn be the dual basis of L�. We use this identifi-
cation to find elements y1, . . . , yn such that βV (x, yj) = θj(x) for all x ∈ L, or
equivalently such that

βV (xi, yj) =

{
1 i = j

0 i �= j.

Lemma 17.2

Suppose that x ∈ L and [xi, x] =
∑

j aijxj . Then, for each t with 1 ≤ t ≤ n,
we have

[x, yt] =
n∑

i=1

atiyi.
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Proof

We have

βV ([xi, x], yt) =
n∑

j=1

aijβV (xj , yt) = ait.

We write [x, yt] =
∑n

s=1 btsys. By associativity,

ait = βV ([xi, x], yt) = βV (xi, [x, yt]) =
n∑

s=1

btsβV (xi, ys) = bti.

17.2 The Casimir Operator

Let L be a complex semisimple Lie algebra and let V be a faithful L-module
with associated representation ϕ : L → gl(V ). We continue using the trace form
βV and the two bases of L defined above. The Casimir operator associated to
ϕ is the linear map c : V → V defined by

c(v) =
n∑

i=1

xi · (yi · v)

in terms of the module action. In the language of representations, c becomes

c =
n∑

i=1

ϕ(xi)ϕ(yi).

Lemma 17.3

(a) The map c : V → V is an L-module homomorphism.

(b) We have tr(c) = dimL.

Proof

For (a), we must show that c(x · v) − x · (c(v)) = 0 for all v ∈ V and x ∈ L, so
consider

c(x · v) − x · (cv) =
n∑

i=1

xi(yi(xv)) −
n∑

i=1

x(xi(yiv)).

Add the equation −xi(x(yiv)) + xi(x(yiv)) = 0 to each term in the sum to get

c(x · v) − x · (cv) =
n∑

i=1

xi([yi, x]v) +
n∑

i=1

[xi, x](yiv).
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If [xi, x] =
∑n

j=1 aijxj , then by the previous lemma we know that [yi, x] =∑n
j=1 ajiyj . Substituting this into the previous equation gives

c(x · v) − x · (cv) =
∑
i,j

−ajixi(yjv) +
∑
i,j

aijxj(yiv) = 0.

For (b), note that

tr c =
n∑

i=1

tr(ϕ(xi) ◦ ϕ(yi)) =
n∑

i=1

βV (xi, yi) = n

and n = dimL.

Theorem 17.4 (Weyl’s Theorem)

Let L be a complex semisimple Lie algebra. Every finite-dimensional L-module
is completely reducible.

Proof

Let V be such an L-module, and let ϕ : L → gl(V ) be the corresponding
representation. Suppose that W is a submodule of V . By induction on dimV

it is enough to show that W has a complement in V , that is, there is some
L-submodule C of V such that V = W ⊕ C.

We may assume that ϕ is one-to-one, for if not then we can replace L by the
Lie algebra L/I, where I is the kernel of ϕ. By Lemma 9.12, L/I is semisimple,
and if we view V as a module for L/I, then the corresponding representation is
one-to-one. It is clear that the submodule structure of V as a module for L/I

is the same as the submodule structure of V as a module for L.
We first prove Weyl’s Theorem in the special case where dim W = dimV −1.

In this case, the factor module V/W is the trivial L-module since the derived
algebra L′ acts trivially on any one-dimensional L-module, and for L semisimple
we have L′ = L (see Exercise 9.9). Hence

x ∈ L, v ∈ V =⇒ x · v ∈ W. (�)

We now proceed by induction on dimW .

Step 1: Assume for a start that W is simple. Let c : V → V be the Casimir
operator of V . Since c is an L-module homomorphism, its kernel is a submodule
of V . Our aim is to show that ker c is a suitable complement for W .

As we have noted in (�), for x ∈ L and v ∈ V we have x · v ∈ W . This
implies that c(v) ∈ W for all v ∈ V . In particular, this shows that c is not onto
and therefore ker c �= 0 by the rank-nullity formula.
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The restriction of c to W is also an L-module homomorphism, so by Schur’s
Lemma there is some λ ∈ C such that c(w) = λw for all w ∈ W . We claim
that λ �= 0. To see this, we calculate the trace of c in two ways. First, using
c(V ) ⊆ W and c(w) = λw for w ∈ W , we get that the trace of c is equal to
λ dimW . On the other hand, from Lemma 17.3 we know that the trace is equal
to dimL, which is non-zero. Hence λ �= 0. We deduce that ker c ∩ W = 0. It
now follows from dimension counting that W ⊕ ker c = V .

Step 2: For the inductive step, suppose that W1 is a proper submodule
of W . Then W/W1 is a submodule of V/W1, and the quotient is 1-dimensional,
since by the third isomorphism theorem, we have

(V/W1)/(W/W1) ∼= V/W.

Moreover, dimV/W1 < dimV , so the inductive hypothesis applied to V/W1

gives that
V/W1 = W/W1 ⊕ X̄,

where X̄ is a 1-dimensional L-submodule of V/W1. By the submodule corre-
spondence, there is a submodule X of V containing W1 such that X̄ = X/W1.

Now, dimX = 1 + dimW1, and dimX < dimV (otherwise we would have
W1 = W ), so we can also apply the inductive hypothesis to X and get X =
W1 ⊕ C for some L-submodule C of X (and again dimC = 1). We claim that
V = W ⊕ C. By dimension counting, it is enough to show that W ∩ C = 0.
The direct sum decomposition of V/W1 above implies that the image of W ∩X

under the quotient map V → V/W1 is zero. Hence W ∩ X ⊆ W1 and so
W ∩ C ⊆ W1 ∩ C = 0.

This completes the proof of Weyl’s Theorem in the special case where
dimW + 1 = dimV .

We now consider the general case. Suppose W is an L-submodule of V .
Consider the L-module M := Hom(V, W ) of linear maps from V to W . Recall
from Exercise 7.12 that the action of L on M is defined by

(x · f)(v) = x · f(v) − f(x · v) for x ∈ L, f ∈ M, v ∈ V .

We can apply the result for the special case to M as follows. Let

MS := {f ∈ M : f↓W = λ1W for some λ ∈ C},

M0 := {f ∈ M : f↓W = 0},

where f↓W denotes the restricted map f : W → W . One can check that both
MS and M0 are L-submodules of M , and M0 ⊆ MS .

We claim that the quotient MS/M0 is 1-dimensional. Clearly, the identity
map 1V of V lies in MS but not in M0, so the coset of 1V is a non-zero element
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in the quotient. Now if f ∈ MS satisfies f↓W = λ1W , then f − λ1V belongs to
M0; that is, f + M0 = λ1V + M0.

We now apply Weyl’s Theorem for the special case. This tells us that MS =
M0 ⊕ C for some L-submodule C of MS . Also, C is 1-dimensional and hence
trivial as an L-module, so C contains a non-zero element ϕ such that x · ϕ = 0
for all x ∈ L. The condition x · ϕ = 0 just means that ϕ is an L-module
homomorphism. By scaling ϕ we may assume that ϕ↓W = 1W .

Now we can get back to the original module V . Since ϕ is an L-module
homomorphism, its kernel, say K, is a submodule of V . We claim that V =
K ⊕ W . If v ∈ K ∩ W , then ϕ(v) = 0. On the other hand, the restriction of
ϕ to W is the identity, so ϕ(v) = v. Therefore K ∩ W = 0. By the definition
of M , im ϕ is contained in W . It now follows from the rank-nullity formula that

dimK = dimV − dim imϕ ≥ dimV − dimW,

so by dimension counting V = K + W . Hence V = K ⊕ W , as required.

EXERCISES

17.1. Let V be a representation of the complex semisimple Lie algebra L.
Prove that the Casimir operator c : V → V is independent of the
choice of basis of L.

17.2. Show that the Casimir operator for the natural representation of
sl(2,C) with respect to the standard basis (h, e, f) of sl(2,C) is given
by

c(v) = (ef + fe + 1
2h

2)v.

Show that if V is any irreducible representation of sl(2,C), then the
Casimir operator for V is given by a scalar multiple of this expres-
sion.

17.3. Prove that a complex Lie algebra is semisimple if and only if all its
finite-dimensional representations are completely reducible.
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Suppose that L is a semisimple Lie algebra with Cartan subalgebra H and asso-
ciated root system Φ. We want to show that if H1 is another Cartan subalgebra
of L, with associated root system Φ1, then Φ1 is isomorphic to Φ. This shows
first of all that the root system of a semisimple Lie algebra is well-defined (up
to isomorphism) and secondly that semisimple Lie algebras with different root
systems cannot be isomorphic.

The general proof of this statement is quite long and difficult and requires
several ideas which we have so far avoided introducing. So instead we give a
proof that assumes that L is a classical Lie algebra. This will be sufficient
to show that the only isomorphisms between the classical Lie algebras come
from isomorphisms between their root systems; we used this fact at the end
of Chapter 12. We then show how Serre’s Theorem and the classification of
Chapter 14 can be used to give the result for a general semisimple Lie algebra.

We conclude by discussing the connection between our Cartan subal-
gebras and the “maximal toral algebras” used by other authors, such as
Humphreys [14].

18.1 Root Systems of Classical Lie Algebras

Let L be a classical Lie algebra, so L is defined as a particular subalgebra of
a matrix algebra gl(n,C). This gives us a practical way to show that the root
systems corresponding to different Cartan subalgebras are isomorphic.
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Proposition 18.1

Let H and K be Cartan subalgebras of L. Suppose that there is an invertible
n×n matrix P such that PHP−1 ⊆ K and PLP−1 ⊆ L. Then the root systems
corresponding to H and K are isomorphic.

Proof

We first show that the hypotheses imply PHP−1 = K and PLP−1 = L.
The latter follows just by dimension counting. For the former, we argue that
because an element of L is semisimple if and only if it is diagonalisable (see
Theorem 9.16) and, moreover, a conjugate of a diagonalisable matrix is diago-
nalisable, the elements of P−1KP are semisimple. Hence P−1KP is an abelian
subalgebra of L consisting of semisimple elements and containing H. Since H

is a Cartan subalgebra, we must have H = P−1KP .
Now let α be a root taken with respect to H, and let x ∈ L be in the

corresponding root space, so [h, x] = α(h)x for all h ∈ H. Then

[PhP−1, PxP−1] = P [h, x]P−1 = α(h)PxP−1.

Hence, if we define αP ∈ K� by

αP(k) = α(P−1kP ) for k ∈ K,

then PxP−1 is in the αP root space of K. Therefore α �→ αP is a one-to-one
map from the roots of H to the roots of K; by symmetry it is a bijection.

In fact, this map induces an isomorphism between the root systems corre-
sponding to H and K. To check condition (b) in the definition of isomorphism
(Definition 11.19), note that if α and β are roots with respect to H, then

〈αP , βP 〉 = αP
(
hβP

)
= α(P−1hβP P ) = α(hβ) = 〈α, β〉 .

Here we used that hαP = PhαP−1; one way to prove this is to consider the
action of PhαP−1 on the K-root spaces where K acts as ±αP .

For the classical Lie algebras, we have a standard choice of Cartan sub-
algebra, namely the subalgebra consisting of all diagonal matrices in the Lie
algebra. So given a Cartan subalgebra H, we look for a basis of V = Cn in
which the elements of H are diagonal. We can then apply Proposition 18.1
with P as the change of basis matrix.

We start with the Lie algebras sl(n,C) for n ≥ 2. In this case, because
commuting diagonalisable matrices may be simultaneously diagonalised, and
conjugation preserves traces, the hypotheses for Proposition 18.1 are easily
seen to be satisfied.
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18.2 Orthogonal and Symplectic Lie Algebras

We now consider sp(2m,C) for m ≥ 1 and so(n,C) for n ≥ 3. Note that we do
not consider

so(2,C) =
{(

c 0
0 −c

)
: c ∈ C

}

as it is abelian and so (by definition) not semisimple.
We defined the algebras so(2�,C), so(2� + 1,C), sp(2�, C) in §4.3 as the set

of matrices {x ∈ gl(n,C) : xtS + Sx = 0}, where S is

(
0 I�

I� 0

)
,

⎛
⎝1 0 0

0 0 I�

0 I� 0

⎞
⎠ ,

(
0 I�

−I� 0

)
,

respectively. Since we shall need to change bases, it is advantageous to translate
the defining condition into the language of bilinear forms. We may define a non-
singular bilinear form on V = Cn by setting

(v, w) := vtSw for all v, w ∈ V .

With this convention, each family of classical Lie algebras may be defined by

{x ∈ gl(V ) : (xv, w) = −(v, xw) for all v, w ∈ V }.

The matrix S may be recovered as the matrix of the form (−,−) with respect
to the standard basis ε1, . . . , εn of V .

By Theorem 10.4, there exists h ∈ H such that H = CL(h). As an element
of a Cartan subalgebra, h is semisimple. It follows that h acts diagonalisably
on V , and so we may write V as a direct sum of eigenspaces for h. Let

V =
⊕
λ∈Ψ

Vλ,

where Ψ is the set of eigenvalues of h and Vλ is the eigenspace for eigenvalue λ.

Lemma 18.2

(a) Suppose that λ, µ ∈ Ψ and λ + µ �= 0. Then Vλ ⊥ Vµ. In particular,
(v, v) = 0 for all v ∈ Vλ when λ �= 0.

(b) If λ ∈ Ψ , then −λ ∈ Ψ .

(c) If λ ∈ Ψ is non-zero, then the restriction of the bilinear form to Vλ ⊕ V−λ

is nonsingular.

(d) If 0 ∈ Ψ , then the bilinear form restricted to V0 is nonsingular.
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Proof

We adapt the proof of Lemma 10.1. For (a), note that if v ∈ Vλ and w ∈ Vµ,
then

λ(v, w) = (λv, w) = (hv, w) = −(v, hw) = −µ(v, w).

Hence (λ+µ)(v, w) = 0 and so (v, w) = 0. For (b), take 0 �= v ∈ Vλ; since (−,−)
is non-degenerate, there is some x ∈ V such that (v, x) �= 0. Write x =

∑
xµ,

where xµ ∈ Vµ. Then

0 �= (v, x) =
∑

µ

(v, xµ) = (v, x−λ)

and hence V−λ must be non-zero. Parts (c) and (d) follow easily from part (a)
and the non-degeneracy of (−,−).

Let λ be a non-zero weight of H in its action on V . By part (a) of the
previous lemma, (u, v) = 0 for all u, v ∈ Vλ and also for all u, v ∈ V−λ. By
part (c), the restriction of (−,−) to Vλ ⊕ V−λ is non-degenerate, so it follows
from Lemma 16.13 that for any basis {fi} of Vλ there is a vector space basis
{f ′

i} of V−λ such that

(fi, f
′
j) =

{
1 i = j

0 i �= j.

The matrix describing the bilinear form on Vλ ⊕ V−λ with respect to this
basis is therefore one of (

0 I

I 0

)
,

(
0 I

−I 0

)
,

depending on whether (−,−) is symmetric (which is the case when L is orthog-
onal) or skew-symmetric (which is the case when L is symplectic).

Now suppose h has a zero eigenvalue. By part (d) of the previous lemma, the
restriction of the bilinear form to V0 is non-degenerate. Hence we can choose a
basis of V0 so that the matrix of the bilinear form (−,−) restricted to V0 is of
the same form as the original matrix S.

We can put together the bases just constructed to get a basis of V , say
B = {b1, . . . , bn}. This basis consists of eigenvectors of h. Moreover, the matrix
of the bilinear form (−,−) with respect to B is the same as its matrix with
respect to the standard basis, namely S.

Proposition 18.3

With respect to the basis B, the matrices of elements of H are diagonal.



18.2 Orthogonal and Symplectic Lie Algebras 219

Proof

We write a general x ∈ H = CL(h) with respect to the basis B. Since x

commutes with h, it preserves the eigenspaces of h. It follows that the matrix
of x restricted to Vλ ⊕ V−λ must be of the form(

a 0
0 b

)

for some matrices a and b of size dim Vλ. The matrix with respect to B of the

bilinear form (−,−) on Vλ ⊕ V−λ is
(

0 I

±I 0

)
; hence

xt

(
0 I

±I 0

)
+
(

0 I

±I 0

)
x = 0.

Therefore the matrix of x with respect to B is(
a 0
0 −at

)

where a can be any matrix of size dimVλ. As H is abelian we must have m = 1
(otherwise there are non-commuting matrices of this form).

Now consider the block of x corresponding to V0. Let m = dimV0. If our
Lie algebra is sp2m(C) then we must have x ∈ sp2m(C). Since sp2(C) = sl2(C)
is non-abelian, this forces m = 0. On the other hand, if we are considering
son(C), then we may have m = 2 since, as noted earlier, so2(C) already consists
of diagonal matrices, but m > 2 is impossible since so3(C) is non-abelian.

Therefore, in either case, the matrix of x with respect to our chosen basis
of V is diagonal.

Corollary 18.4

Define P : V → V by Pbi = εi, where ε1, . . . , εn is the standard basis of
V = Cn. Then every element of PHP−1 is diagonal and PLP−1 ⊆ L.

Proof

We first note that P−tSP−1 is the matrix of the bilinear form (−,−) with
respect to the basis B. By construction, this is the same as S, so P−tSP−1 = S,
which gives S = P tSP .

Now, to show that PLP−1 = L, it is sufficient to prove that for each x ∈ L

(PxP−1)tS + S(PxP−1) = 0.
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This is easily seen to be equivalent to

xtP tSP + P tSPx = 0,

which holds by the first paragraph and the definition of L.
Finally, for each h ∈ H, we have PhP−1εi = PhP−1Pbi = Phbi ∈

Span{Pbi} = Span{εi}, so PHP−1 consists of diagonal matrices. The max-
imality of H now guarantees that every diagonal matrix in L must appear.

Hence, by Proposition 18.1, the root system corresponding to H is isomor-
phic to the root system corresponding to the Cartan subalgebra of diagonal
matrices.

18.3 Exceptional Lie Algebras

Lemma 18.5

Let L be an exceptional simple Lie algebra with Cartan subalgebra H and root
system Φ. If H1 is another Cartan subalgebra of L, then its root system Φ1 is
isomorphic to Φ.

Proof

We use the classification of root systems in Chapter 13. If Φ1 has type A, B,
C, or D, then Serre’s Theorem implies that L is isomorphic to a classical Lie
algebra. So we would have a classical Lie algebra with a root system of type
E, F , or G, in contradiction to the previous section.

Therefore Φ1 must be an exceptional root system, and so by Serre’s theorem
we get an isomorphism between two exceptional Lie algebras. But, by Exer-
cise 10.5, the dimensions of the exceptional Lie algebras can be found from
their root systems to be

type G2 F4 E6 E7 E8

dimension 14 52 78 133 248

so this is only possible if Φ1 is isomorphic to Φ, as required.
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18.4 Maximal Toral Subalgebras

A Lie algebra is said to be toral if it consists entirely of semisimple elements.
A maximal toral subalgebra of a Lie algebra L is a Lie subalgebra of L which
is toral and which is not contained in any larger toral subalgebra. Our aim
is to show that the maximal toral subalgebras of L are precisely the Cartan
subalgebras.

Lemma 18.6

If L is a semisimple Lie algebra and T is a toral subalgebra of L, then T is
abelian.

Proof

Take s ∈ T . As ad s acts diagonalisably on L and preserves T , the restriction
of ad s to T is also diagonalisable. We must show that it only has zero as an
eigenvalue.

Suppose that there is some non-zero t ∈ T such that (ad s)t = ct with c �= 0.
We shall obtain a contradiction by rewriting this as (ad t)s = −ct. As ad t

also acts diagonalisably on T , we may extend t to a basis of T consisting of
eigenvectors for ad t, say {t, y1, . . . , ym−1}. Let

s = λt + µ1y1 + . . . + µmym.

Then
−ct = (ad t)s = µ1(ad t)y1 + . . . + µm(ad t)ym

is a non-trivial linear dependency between elements of our chosen basis of T ,
so we have reached a contradiction.

Corollary 18.7

A subalgebra of L is maximal toral if and only if it is a Cartan subalgebra.

Proof

Since the previous lemma shows that toral subalgebras are always abelian, a
maximal toral subalgebra is the same thing as a maximal abelian toral subal-
gebra; that is, a Cartan subalgebra.
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Our first aim in this appendix is to prove the following theorem.

Theorem 19.1

Let R be a root system with base B and Weyl group W . If w ∈ W , then w(B)
is also a base of R. Moreover, if B′ is another base of R, then there exists a
unique w ∈ W such that w(B) = B′.

We use part of this theorem in the main text to show that the Cartan matrix
and Dynkin diagram of a root system do not depend on the choice of base.

We then describe the structure of the Weyl groups of root systems of types
A, B, C, and D.

19.1 Proof of Existence

The first part of the theorem is very easy to prove. Let B = {α1, . . . , α�} and
let α be a root. Then w−1α is also a root (since the Weyl group permutes the
roots). Suppose that

w−1α =
�∑

i=1

kiαi,
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where the coefficients ki all have the same sign. Then

α =
�∑

i=1

kiw(αi)

with the same coefficients and hence w(B) is a base. This shows that the Weyl
group permutes the collection of bases of R.

We now prove that the Weyl group acts transitively. Let R+ denote the set
of positive roots of R with respect to B. Let B′ = {α′

1, . . . , α
′
�} be another base

of R. Let R
′+ denote the set of positive roots of R, taken with respect to B′,

and let R
′− denote the set of negative roots of R, again taken with respect to

B. Note that all these sets have the same size, namely half the size of R.
The proof will be by induction on |R+ ∩ R

′−|. Interestingly, the base case,
where R+ ∩R

′− = ∅, is the hardest part. In this case, we must have R+ = R
′+,

so the bases B and B′ give the same positive roots. Each element of B′ is a
positive root with respect to B, so we may define a matrix P by

α′
j =

�∑
i=1

pijαi,

whose coefficients are all non-negative integers. Similarly we may define a ma-
trix Q by

αk =
�∑

j=1

qjkα′
j .

These matrices have the property that PQ = QP = I. Now, by Exercise 19.1
below, this can only happen if P and Q are permutation matrices. Hence the
sets B and B′ coincide, and so for the element w we may take the identity.

Now suppose that |R+ ∩ R
′−| = n > 0. Then B ∩ R

′− �= ∅ since otherwise
B ⊆ R

′+, which implies R+ ⊆ R
′+ and hence R+ = R

′+, since both sets have
the same size. Take some α ∈ B ∩R

′−, and let s = sα. Then s(R+) is the set of
roots obtained from R+ by replacing α by −α, so the intersection s(R+)∩R

′−

has n − 1 elements. The set s(R+) is the set of positive roots with respect to
the base s(B). By the inductive hypothesis, there is some w1 ∈ W such that
w1(s(B)) = B′. Now take w = w1s; this sends B to B′.

We have already proved enough of the theorem for our applications in the
main text. It remains to show that the element w ∈ W which we have found is
unique.

19.2 Proof of Uniqueness

We keep the notation of the previous section.
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Lemma 19.2

Let α1, α2, . . . , αt ∈ B be not necessarily distinct simple roots and set si =
sαi ∈ W . Suppose that s1s2 . . . st−1(αt) ∈ R−. Then there is some r such that
1 ≤ r < t and

s1s2 . . . st = (s1s2 . . . sr−1)(sr+1 . . . st−1).

Proof

Let βi = si+1 . . . st−1(αt) for 0 ≤ i ≤ t−2 and let βt−1 = αt. Then β0 ∈ R− by
assumption, and βt−1 ∈ R+ since αt is a simple root. Hence there is a smallest
r with 1 ≤ r ≤ t − 1 such that βr ∈ R+ and sr(βr) ∈ R−. By Lemma 11.13,
the only positive root sent by the simple reflection sr to a negative root is αr,
so we must have βr = αr.

Therefore we have αr = w(αt), where w = sr+1 . . . st−1. Now we analyse
what this means for the reflection sr. Substituting, we get

sr = sαr
= sβr

= swαt
.

But we know from Exercise 11.6 that sw(αt) = wsαtw
−1. Since w−1 is just the

product of the reflections making up w taken in the opposite order, we get

sr = sr+1 . . . st−1stst−1 . . . sr+1.

We substitute this and get

s1 . . . sr . . . st = s1 . . . sr−1 (sr+1 . . . st−1stst−1 . . . sr+1) sr+1 . . . st−1st,

and cancelling gives the stated answer.

Corollary 19.3

Suppose w = s1 . . . st ∈ W with si = sαi and αi ∈ B. If t is minimal such
that w is a product of this form, then w takes αt to a negative root.

Proof

We have w(αt) = −s1 . . . st−1(αt). Suppose, for a contradiction, that this is a
positive root. Then s1 . . . st−1(αt) is a negative root, so by the previous lemma
we can write s1 . . . st−1 as a product of fewer reflections. It follows also that w

can be written as a product of fewer than t simple reflections, which contradicts
the hypothesis.
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We can now prove uniqueness. It is sufficient to prove that if w ∈ W and
w(B) = B, then w is the identity. Suppose not, and write w as a product of
reflections w = s1 . . . st, where si = sαi for αi ∈ B and t is as small as possible.
By assumption, t ≥ 1, so by the previous corollary w(αt) is a negative root and
hence it is not in B, a contradiction to the assumption that w(B) = B. This
shows that w = 1.

19.3 Weyl Groups

We now discuss the Weyl groups of the root systems of types A, B, C, and D

using the constructions given in Chapter 12. We need to calculate the action
of the simple reflections sα for α in a base of the root system. Since we chose
bases containing as many of the elements

αi := εi − εi+1

as possible, it will be useful to calculate the action of the reflection sαi on Rm.
We have

sαi(v) = v − 〈v, αi〉αi

= (v1, . . . , vm) − (vi − vi+1)(εi − εi+1)

= (v1, . . . , vi−1, vi+1, vi, vi+2, . . . , vm).

Thus, sαi permutes the i-th and (i + 1)-th coordinate of vectors.

19.3.1 The Weyl Group of Type A�

The base given in §12.2 is α1, . . . , α�, so the Weyl group is generated by the
reflections sαi

, whose action we just calculated. More generally, this calculation
shows that the reflection sεi−εj swaps the i-th and j-th coordinates of a vector.

We can use this to identify the group structure of the Weyl group; namely,
W acts by linear transformations on R�+1, and in this action it permutes the
standard basis vectors εi. For example, the reflection sαi swaps εi and εi+1 and
fixes the other basis vectors, so we get a group homomorphism ρ : W → S�+1,
where ρ(w) is the permutation induced on the standard basis of R�+1. The
symmetric group is generated by transpositions so ρ is onto. Furthermore, ρ

is injective, for if w fixes every εi, then w must be the identity map, so W is
isomorphic to the symmetric group S�+1.
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19.3.2 The Weyl Group of Type B�

The base constructed in §12.3 is α1, . . . , α�−1, β�, where β� = ε�. We start by
looking at the simple reflections. For 1 ≤ i < � we have already calculated their
action at the start of §13.2. To find sβ�

, we note that for every v ∈ R� we have
〈v, β�〉 = 2v� and hence

sβ�
(v1, . . . , v�) = (v1, . . . ,−v�).

Similarly, for any i, we have 〈v, εi〉 = 2vi and hence

sεi(v1, . . . , v�) = (v1, . . . ,−vi, . . . , v�).

Let N be the subgroup of W generated by sε1 , . . . , sε�
. The generators satisfy

s2
εi

= 1 and they commute, so N is isomorphic to a direct product of � copies
of the cyclic group of order 2.

We claim that N is a normal subgroup of W . To see this, one checks that
sαi

and sεj commute for j �= i, i + 1, and that

sαisεi+1sαi
= sεi

and hence sαi
sεi

sαi
= sεi+1 . (Recall that sαi

is its own inverse.) Since the sαi

and sβ�
generate W and sβn

∈ N , this is sufficient to show that N is normal.
Finally, we claim that the factor group W/N is isomorphic to the symmetric

group S�. We have seen that in the conjugacy action of W on N , the generators
{sε1 , . . . , sε�

} are permuted. This gives us a homomorphism W → S�. As N is
abelian, the kernel of this homomorphism contains N .

Let S denote the subgroup of W generated by sα1 , . . . , sα�−1 . We know
that S is isomorphic to Sl from §19.3.1. It is easy to see by looking at the
action of S and N on ±ε1, . . . ,±ε� that S ∩ N = {1}. Hence we have W/N =
SN/N ∼= S/S ∩ N ∼= S�. More concretely, we may observe that the simple
reflection sαi acts as the transposition (sεisεi+1) on N , so the action of W/N =〈
sα1N, . . . , sαn−1N

〉
on the generators of N is equivalent to the action of S� on

{1 . . . n}.

19.3.3 The Weyl Group of Type C�

It will be seen that the only difference between the root systems of type B�

and C� we constructed in Chapter 12 is in the relative lengths of the roots.
This does not affect the reflection maps: If v ∈ R�, then sv is the same linear
map as sλv for any λ ∈ R, so the Weyl group of type C� is the same as that of
type B�. (Underlying this is a duality between B� and C� — see Exercise 13.2
below.)



228 19. Appendix D: Weyl Groups

19.3.4 The Weyl Group of Type D�

Here our base was α1, . . . , α�−1, β�, where β� = ε�−1 + ε�. We find that
sβ�

(v1, . . . , v�−1, v�) = (v1, . . . ,−v�,−v�−1). Therefore, the composite map
sα�−1sβ�

acts as

sαn−1sβn
(v1, . . . , v�−1, v�) = (v1, . . . ,−v�−1, v�).

More generally, if we set βi = εi−1 + εi and ti−1 := sαi−1sβi
, then

ti−1(v) = (v1, . . . ,−vi−1,−vi, vi+1, . . . , v�).

Let N be the subgroup generated by t1, . . . , t�−1. The generators commute and
square to the identity, so N is isomorphic to a direct product of � − 1 copies of
the cyclic group of order 2. In fact, N is normal in W and the quotient W/N

is isomorphic to the symmetric group S�.

EXERCISES

19.1.† Suppose that P and Q are matrices, all of whose entries are non-
negative integers. Show that if PQ = I then P and Q are permu-
tation matrices. That is, each row and column of P has a unique
non-zero entry, and this entry is a 1. For instance,⎛

⎝1 0 0
0 0 1
0 1 0

⎞
⎠

is a permutation matrix corresponding to the transposition (23).

19.2.� This exercise gives an alternative, more geometric proof that the
Weyl group of a root system acts transitively on its collection of
bases. For solutions, see Chapter 10 of Humphreys, Introduction to
Lie Algebras and Representation Theory [14].

(i) Let V be a real inner-product space, and let v1, . . . , vk be vectors
in V . Show that there exists z ∈ V such that (z, vi) > 0 for
1 ≤ i ≤ k if and only if v1, . . . , vk are linearly independent.
Hint : For the “if” direction, let Vj = Span{vi : i �= j}, take
wj ∈ V ⊥

j , and consider a vector of the form
∑

j cjvj for scalars
cj ∈ R. For the “only if” direction see the proof of Theorem
11.10.

(ii) Let R be a root system in the real inner-product space E.
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(a) Show that if B = {α1, . . . , α�} is a base for a root system R,
then there exists z ∈ E such that (αi, z) > 0 for 1 ≤ i ≤ �.

(b) Show that R+ = {α ∈ R : (α, z) > 0}.

(c) Say that β ∈ R+ is indecomposable if it cannot be written
as β1 + β2 for β1, β2 ∈ R+. Show that B is the set of inde-
composable elements of R+. Thus the construction used to
prove Theorem 11.10 in fact gives every base of R.

(d) Suppose v ∈ E and (α, v) �= 0 for all α ∈ R. Prove that there
exists w ∈ W such that (α, w(v)) > 0 for all α ∈ R+. Hint :
Let δ = 1

2

∑
α∈R+ α, and choose w ∈ W so that (w(α), δ) is

maximised.

(e) Prove that if B′ is another base of W , then there exists
w ∈ W such that w(B′) = B.

19.3. Prove the statements made about the Weyl group of type Dn. (Hint:
Mimic the proof for type Bn.)
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Exercises

If an exercise is used later in the main text, then we have usually provided
a solution, in order to prevent the reader from getting needlessly stuck. We
do, however, encourage the reader to make a thorough unaided attempt before
evaluating what we have to offer. There are usually several good solutions, and
yours might well be just as good as ours, or even better!

Chapter 1

1.11. An isomorphism of L1 and L2 is necessarily an isomorphism of their
underlying vector spaces, so if L1 and L2 are isomorphic, then they
have the same dimension.

Conversely, if L1 and L2 have the same dimension, then there is an
invertible linear map f : L1 → L2. For x, y ∈ L1, we have

f([x, y]) = 0 = [f(x), f(y)],

so f is also an isomorphism of Lie algebras.

1.13. The structure constants are determined by the Lie brackets [h, e] = 2e,
[h, f ] = −2f , and [e, f ] = h.

1.14. (i) The vector space of 3 × 3 antisymmetric matrices is 3-dimensional.
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One possible basis is given by the matrices

X =

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠ , Y =

⎛
⎝0 0 0

0 0 1
0 −1 0

⎞
⎠ , Z =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ .

This basis has been chosen so that [X, Y ] = Z, [Y, Z] = X, [Z, X] = Y .
Hence the linear map θ : L → gl(3,C) defined on basis elements by
θ(x) = X, θ(y) = Y , and θ(z) = Z gives one possible isomorphism.

(ii) Let (e, f, h) be the basis of sl(2,C) given in Exercise 1.13. We look for
a possible image of h under a Lie algebra isomorphism ϕ : sl(2,C) → L.

Let α, β, γ ∈ C and let u = αx + βy + γz ∈ L. The matrix of adu is⎛
⎝ 0 −γ β

γ 0 −α

−β α 0

⎞
⎠ ,

which has characteristic polynomial

χ(X) = −X3 − (α2 + β2 + γ2)X.

If u = ϕ(h), then as

(adu)(ϕ(e)) = [ϕ(h), ϕ(e)] = ϕ([h, e]) = 2ϕ(e)

adu has 2 as an eigenvalue. Similarly, −2 must be an eigenvalue of ad u,
and so is 0, so we need α2 + β2 + γ2 = −4. This suggests that we might
try taking u = 2iz. Looking for eigenvectors of adu, we find that x + iy

is in the 2-eigenspace and x − iy is in the −2-eigenspace. We cannot
immediately take these eigenvectors as the images of e and f because
[x+iy, x−iy] = −2iz, whereas we would want [ϕ(e), ϕ(f)] = ϕ([e, f ]) =
ϕ(h) = 2iz. However, if we scale one of them by −1, we can also satisfy
this requirement.

Therefore, if we define ϕ : sl(2,C) → L by ϕ(h) = 2iz, ϕ(e) = x + iy,
and ϕ(f) = −x + iy, then by Exercise 1.9, ϕ will be one of the many
possible isomorphisms.

1.16. Hint : Try looking for a 2-dimensional algebra over F . Define the multi-
plication by a table specifying the products of basis elements.
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Chapter 2

2.5. As z is a linear combination of commutators [x, y] with x, y ∈ L, it is
sufficient to show that tr ad[x, y] = 0. But

tr ad[x, y] = tr[adx, ad y] = tr(adx ◦ ad y − ad y ◦ adx) = 0.

2.8. Part (a) should not be found difficult, but as we use it many times, we
prove it here. Let x1, x2 ∈ L1. We have ϕ[x1, x2] = [ϕx1, ϕx2] so, by
linearity, ϕ(L′

1) ⊆ L′
2. Now L′

2 is spanned by commutators [y1, y2] with
y1, y2 ∈ L2, so to prove that we have equality, it is enough to note that
if ϕx1 = y1 and ϕx2 = y2, then ϕ[x1, x2] = [y1, y2].

2.11. If x ∈ glS(n, F ), then PxP−1 ∈ glT (n, F ) since

(P−1xP )tT = P txtP−tT = P txtSP = −P tSxP = −T (P−1xP ).

We may therefore define a linear map

f : glS(n, F ) → glT (n, F ), f(x) = PxP−1.

This map has inverse y �→ P−1yP , so it defines a vector space isomor-
phism between glS(n, F ) and glT (n, F ). Moreover, f is a Lie algebra
homomorphism since if x, y ∈ glS(n, F ) then

f([x, y]) = P (xy − yx)P−1

= (PxP−1)(PyP−1) − (PyP−1)(PxP−1)

= [PxP−1, PyP−1]

= [f(x), f(y)].

See Exercise 4.10 for a related problem.

2.14.� (i) One approach is to argue that L is a Lie subalgebra of the Lie algebra
of all 3 × 3 matrices with entries in R[x, y].

(ii) The calculation shows that

[A(xi, 0, 0), A(0, yj , 0)] = A(0, 0, xiyi).

Hence L′ is the subspace of all matrices of the form A(0, 0, h(x, y)) with
h(x, y) ∈ R[x, y].

(iii) Suppose A(0, 0, x2 + xy + y2) is a commutator. Then, by part (ii),
there exist polynomials f1(x), f2(x), g1(y), g2(y) such that

x2 + xy + y2 = f1(x)g2(y) − f2(x)g1(y).
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Considering this as an equality of polynomials in x, with coefficients
in the ring R[y], we see that either f1(x) has degree 2 and f2(x) has
degree 0 or vice versa. In the first case, g2(y) must be a constant poly-
nomial or else we get an unwanted x2yk term. Similarly, in the second
case g1(y) must be constant, so there is no way we can obtain the xy

term.

This exercise is based on Exercise 2.43 in Rotman’s, Introduction to the
Theory of Groups [20]. Rotman goes on to say that by taking a suitable
ideal I in R[x, y] so that R[x, y]/I is finite, and replacing polynomials
with suitable elements of the quotient ring, one can make the example
finite-dimensional. For example one may take I to be the ideal generated
by x3, y3, x2y, xy2.

Chapter 3

3.2. We shall prove the “if” direction by defining an isomorphism ϕ between
Lµ and Lµ−1 . Let x1, y1, z1 be a basis of Lµ chosen so that ad x1 acts
on L′

µ = Span {y1, z1} as the linear map with matrix(
1 0
0 µ

)
.

Let x2, y2, z2 be the analogous basis of Lµ−1 . We note that µ−1 adx1

has matrix (
µ−1 0
0 1

)
,

which is the matrix of adx2 : L′
µ−1 → L′

µ−1 , up to a swapping of the
rows and columns. This suggests that we might define our isomorphism
on basis elements by

ϕ(µ−1x1) = x2, ϕ(y1) = z2, ϕ(z1) = y2.

To check that this recipe really does define a Lie algebra isomorphism,
it suffices to verify that ϕ[x1, y1] = [ϕx1, ϕy1], ϕ[x1, z1] = [ϕx1, ϕz1],
and ϕ[y1z1] = [ϕy1, ϕz1]; we leave this to the reader.

Now we tackle the harder “only if” direction. Suppose ϕ : Lµ → Lν is
an isomorphism. By Exercise 2.8(a), ϕ restricts to an isomorphism from
L′

µ to L′
ν . As ϕ is surjective, we must have ϕx1 = αx2 + w for some

non-zero scalar α and some w ∈ L′
ν . Let v ∈ L′

µ. Calculating in Lµ gives

[ϕx1, ϕv] = ϕ[x1, v] = (ϕ ◦ adx1)v,
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while calculating in Lν gives

[ϕx1, ϕv] = [αx2 + w, ϕv] = α(adx2 ◦ ϕ)v.

Thus ϕ ◦ adx1 = α adx2 ◦ ϕ = ad(αx2) ◦ ϕ. As ϕ is an isomorphism,
this says that the linear maps adx1 : L′

µ → L′
µ and adαx2 : L′

ν → L′
ν

are similar. In particular, they have the same sets of eigenvalues, hence
{1, µ} = {α, αν}.

There are now two possibilities: either α = 1 and µ = ν, or α = µ and
µν = 1; that is, µ = ν−1.

3.6. One can prove this by mimicking the approach used in §3.2.4 for the
complex case. Step 1 and Step 2 remain valid over R. If we still can find
an element x of L such that adx has a non-zero real eigenvalue, then
Step 3 and Step 4 also go through unchanged.

However, it is now possible that for every non-zero x ∈ L the linear map
adx has eigenvalues 0, α, ᾱ where α �∈ R. Suppose this is the case. Pick
a non-zero x ∈ L with eigenvalues 0, α, ᾱ. As before, tr adx = 0, so α

is purely imaginary. By scaling, we may assume that α = i. Since adx

may be represented by the matrix⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ ,

there exist elements y, z ∈ L such that [x, y] = z and [x, z] = −y.
One can now proceed as in Step 4 to determine the remaining structure
constants and deduce that L ∼= R3

∧.

It is easier to show that R3
∧ is not isomorphic to sl(2,R): this is the

content of Exercise 3.5.

Chapter 4

4.8. For (i) we take a, b, c ∈ L and expand 0 = [[a, b + c], b + c] to get

[[a, b], c] = −[[a, c], b]. (�)

The Jacobi identity states that for all x, y, z ∈ L

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

By (�) the second term equals −[[y, x], z] = [[x, y], z] and similarly the
third term equals [[x, y], z], so 3[[x, y], z] = 0 for all x, y, z ∈ L. As L

does not have characteristic 3, this implies that L3 = 0.
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Now assume that F has characteristic 3. The identity (�) implies that
[[x, y], z] is alternating; that is, permuting any two neighbouring entries
changes its sign. In fact, [[[x, y], z], t] is also alternating. This follows
from (�) for the first three places, and also for the last, if one temporarily
sets w = [x, y].

We shall write [x, y, z, t] for [[[x, y], z], t]. Using the alternating property
and the Jacobi identity, we get

[[x, y], [z, t]] = [x, y, z, t] − [x, y, t, z] = 2[x, y, z, t]

= −[x, y, z, t].

This also gives
[[z, t], [x, y]] = −[z, t, x, y]

But [z, t, x, y] = [x, y, z, t] (we swap an even number of times), and hence

[[x, y], [z, t]] = [[z, t], [x, y]] = [x, y, z, t].

Comparing this with the first equation we get 2[x, y, z, t] = 0, and hence
L4 = 0.

Chapter 6

6.5. (ii) Suppose L is solvable. Then, by Lie’s theorem, there is a basis of adL

in which all the matrices adx for x ∈ L are upper triangular. Hence, if
x ∈ L′, then adx is represented by a strictly upper triangular matrix.
If follows that all the maps adx for x ∈ L′ are nilpotent, so by Engel’s
Theorem L′ is nilpotent.

The converse is easier, for if L′ is nilpotent then L′ is solvable, and so
L is solvable.

Chapter 7

7.8. By Schur’s Lemma (Lemma 7.13), z acts by scalar multiplication by
some scalar λ on any finite-dimensional irreducible representation. But
since z = [f, g] is a commutator, the trace of the map representing z is
zero. Hence λ = 0 and the representation is not faithful.

Alternatively, since the Heisenberg algebra is solvable, one can use Ex-
ample 7.9(3).
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Remark : The Heisenberg algebra models the position and momentum
of particles in quantum mechanics. The fact that there are no faith-
ful finite-dimensional irreducible representations (or even faithful irre-
ducible representations by bounded linear operators on a Hilbert space)
makes the mathematics involved in quantum theory quite a challenge.

7.9. To check that ϕ is a representation it is sufficient, since x, y form a basis
of L, to check that [ϕ(x), ϕ(y)] = ϕ([x, y]) = ϕ(x); this follows from[(

0 1
0 0

)
,

(−1 1
0 0

)]
=
(

0 1
0 0

)
.

The matrices of ad x and ad y with respect to the basis x, y are

ad(x) =
(

0 1
0 0

)
, ad(y) =

(−1 0
0 0

)
.

To show that the representations ad and ϕ are isomorphic, it is sufficient
to find a linear map θ : C2 → L such that

θ ◦ adx = ϕ(x) ◦ θ and θ ◦ ad y = ϕ(y) ◦ θ

If θ has matrix P , then we need

P

(
0 1
0 0

)
=
(

0 1
0 0

)
P and P

(−1 0
0 0

)
=
(−1 1

0 0

)
P.

A small amount of calculation (starting with the first condition) now

shows that we may take P =
(

1 1
0 1

)
.

7.13. Suppose that W is an L-submodule of V . Then, in particular, W is an
A-submodule of V . Each a ∈ A acts diagonalisably on V and preserves
the subspace W , hence W has a basis of a-eigenvectors. But commuting
linear maps may be simultaneously diagonalised, so W has a basis of
common eigenvectors for the elements of A.

In terms of weight spaces, this shows that if λ1, . . . , λk ∈ A� are the
weights of A appearing in the action of A on V so

V =
k⊕

i=1

Vλi

where Vλi
= {v ∈ V : a · v = λi(a)v for all v ∈ V } is the weight space

associated to λi, then

W =
k⊕

i=1

(W ∩ Vλi) .
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Chapter 8

8.6. (i) To show that c : M → M is a homomorphism of sl(2,C)-modules,
it is sufficient to show that it commutes with the action of e, f , and h.
For v ∈ M , we have

e · c(v) = (efe + e2f + 1
2eh2) · v

= efe · v + e(fe + h) · v + 1
2 (he − 2e)h · v

= 2efe · v + 1
2heh · v,

whereas

c(e · v) = (efe + fe2 + 1
2h2e) · v

= efe · v + (ef − h)e · v + 1
2h(he + 2e) · v

= 2efe · v + 1
2heh · v

so c commutes with e. The proof for f is similar. For h, one checks that

h(ef + fe) · v = (ef + fe)h · v

using similar arguments.

(ii) Computing the action of c on the highest-weight vector Xd ∈ Vd we
get

c(Xd) = (ef + fe + 1
2h2) · Xd = dXd + 0 + 1

2d2Xd = 1
2d(d + 2)Xd,

so by Schur’s Lemma c acts on Vd as multiplication by 1
2d(d + 2).

(iii) Since c is a module homomorphism, so is (c − λi1M )mi for any
λi ∈ C, mi ≥ 0. The kernel of this map is then an sl(2,C)-submodule.

(iv) By part (ii), we know that c acts on the irreducible submodule
U ∼= Vd as multiplication by 1

2d(d + 2). By assumption, c has just one
eigenvalue on the module M , so we must have λ = 1

2d(d + 2). Now
suppose W ∼= Vd′ is another irreducible submodule of M . Since λ is the
unique eigenvalue of c on M , we must have

1
2d(d + 2) = 1

2d′(d′ + 2),

which implies that d = d′.

(v) Since N is a submodule of M , we can consider the action of c on
the quotient space M/N ,

c(v + N) = (ef + fe + 1
2h2) · (v + N).
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Since M = ker(c − λ1M )m for some m ≥ 0, we have

(c − λ1M )m(v + N) = 0 for all v ∈ M.

Hence c has just one eigenvalue, namely λ, on M/N . So, as in part (iv),
any irreducible submodule of M/N is isomorphic to Vd.

Chapter 9

9.4. Take the standard basis e, f, h of sl(2,C). With respect to this basis,

ad e =

⎛
⎝0 0 −2

0 0 0
0 1 0

⎞
⎠ , ad f =

⎛
⎝ 0 0 0

0 0 2
−1 0 0

⎞
⎠ , adh =

⎛
⎝2 0 0

0 −2 0
0 0 0

⎞
⎠ .

The matrix describing the Killing form is then⎛
⎝0 4 0

4 0 0
0 0 8

⎞
⎠ .

Since this matrix has rank 3, the Killing form is non-degenerate.

The Lie algebra gl(2,C) contains the identity matrix I =
(

1 0
0 1

)
, which

commutes with all elements of gl(2,C). Hence ad I = 0 and κ(I, x) = 0
for each x, so gl(2,C)⊥ is non-zero.

9.6. We have already looked at sl(2,C). The Heisenberg algebra is nilpotent,
so by Exercise 9.5 its Killing form is identically zero. The Lie algebra
considered in §3.2.2 is a direct sum of the 2-dimensional non-abelian
Lie algebra with the trivial Lie algebra, so its Killing form is known by
Example 9.7.

Now let L be the 3-dimensional Lie algebra considered in §3.2.3. We saw
that this Lie algebra has a basis x, y, z such that y, z span L′ and the
action of adx on L′ is represented by a matrix(

1 0
0 λ

)

for some λ ∈ C. We find that κ(b, c) = 0 for all basis vectors b, c, with
the only exception κ(x, x) = 1 + λ2.
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9.11. By Exercise 9.10, β and κ induce isomorphisms of L-modules θβ : L →
L� and θκ : L → L�.

Consider the composite map θ−1
κ θβ : L → L. As L is a simple Lie

algebra, L is simple when considered as an L-module via the adjoint
representation, so Schur’s Lemma implies that there is a scalar λ ∈ C
such that θ−1

κ θβ = λ1L, or equivalently θκ = λθβ . So by definition of
the maps θκ and θβ ,

κ(x, y) = θκ(x)(y) = λθβ(x)(y) = λβ(x, y)

for all x, y ∈ L.

9.14. Let V be the given faithful representation. Using this representation, we
may regard L as a subalgebra of gl(V ). By Theorem 9.16, the abstract
Jordan decomposition of x ∈ L must agree with its Jordan decomposi-
tion as an element of gl(V ). As x is diagonalisable, this implies that x

is a semisimple element of L. It now follows from Theorem 9.16 that x

acts diagonalisably in any representation of L.

9.15.� Let c be the Casimir operator on M ; see Exercise 8.6. By this exercise,
we may assume that c has only one eigenvalue on M . Moreover, this
exercise shows that this eigenvalue is 1

2d(d + 2), where d is the largest
eigenvalue of h on M , and that any simple submodule of M , or more
generally of a quotient of M , must be isomorphic to Vd.

The idea is to keep on taking off irreducible representations generated
by highest-weight vectors. To make this argument explicit, we let U be
a maximal completely reducible submodule of M , so U is a direct sum
of irreducible representations each isomorphic to Vd. Our aim is to show
that U = M .

Suppose that U is a proper submodule of M . In this case, M/U is non-
zero, so it has a simple submodule, which must be isomorphic to Vd.
Looking at the largest eigenvalue appearing in this submodule tells us
that in M/U there is an h-eigenvector with eigenvalue d. As h acts
diagonalisably on M this implies that there is an h-eigenvector v ∈ M\U

such that h · v = dv.

If e · v �= 0 then e · v would be an h-eigenvector with eigenvalue d + 2.
Hence e·v = 0 and v is a highest-weight vector. Let W be the submodule
of M generated by w. By Corollary 8.6 (which says that a highest-
weight vector in a finite-dimensional module generates an irreducible
submodule), W is irreducible. As w �∈ U , the irreducibility of W implies
that U ∩ W = 0, so U ⊕ W is a larger completely reducible submodule
of M , a contradiction.
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9.16. By Exercise 2.8, ad θ(d) is diagonalisable. Suppose that (adn)m = 0.
Then, for all y ∈ L1,

(ad θ(n))mθ(y) = [θ(n), [θ(n), . . . , [θ(n), θ(y)] . . .]]

= θ([n, [n, . . . , [n, y] . . .]])

= θ((adn)my) = 0.

As θ is surjective, this shows that ad θ(n) is nilpotent. Moreover,

[ad θ(d), ad θ(n)] = ad[θ(d), θ(n)] = ad θ([d, n]) = 0,

so ad θ(d) and ad θ(n) commute. By uniqueness of the Jordan decom-
position, ad θ(x) ∈ gl(L2) has Jordan decomposition

ad θ(x) = ad θ(d) + ad θ(n).

The result now follows from the definition of the abstract Jordan de-
composition.

Chapter 10

10.6. We may take hα = e11−e22 and hβ = e22−e33. If θ is the angle between
α and β, then by Exercise 10.4,

4 cos2(θ) = 4
(α, β)
(β, β)

(β, α)
(α, α)

= α(hβ)β(hα) = 1 × −1 = −1

and hence cos θ = − 1
2 .

The real subspace of H� spanned by the roots looks like

α=ε1−ε2−α

α+β

−α−β

β=ε2−ε3

−β

••

• •

• •

• 0

The arrows show the action of ad eα on the α root strings. (This action
may be checked to be consistent with Proposition 10.10.)
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10.12. It is clear from Lemma 10.1(i) that N is invariant under eα, and as a sum
of hα-weight spaces, N is certainly invariant under hα. The potential
problem comes when we apply fα to elements of Lα. But by Lemma
10.6,

[fα, Lα] ⊆ [L−α, Lα] ⊆ Span {tα} = Span {hα} ,

so N is also closed under the action of fα.

Consider the trace of ad hα : N → N . This must be zero because ad hα =
[ad eα, ad fα] and so

tr adhα = tr (ad eα ad fα − ad fα ad eα) = 0.

On the other hand,

tr adhα = −α(hα)+0+
∑

m∈N

mα(hα) dimLmα = −2+2
∑

m∈N

m dimLmα.

As dim Lα ≥ 1, this shows that dim Lα = 1 and that the only positive
integral multiple of α that lies in Φ is α. The negative multiples can be
dealt with similarly by considering −α.

We finish much as in the proof of Proposition 10.9. Suppose that (n+ 1
2 )α

is a root for some n ∈ Z. The corresponding eigenvalue of hα is 2n + 1,
which is odd. By the classification of Chapter 8, 1 must appear as an
eigenvalue of hα on the root string module

⊕
c Lcα. Therefore 1

2α is a
root of L. But the first part of this solution shows that if α is a root
then 2α is not a root, so this is impossible.

Chapter 11

11.12. We may assume without loss of generality that the Ui are pairwise dis-
tinct. We shall use induction on n, starting with n = 2. Assume for a
contradiction that U1 ∪ U2 is a subspace. By the hypothesis, there exist
u1 ∈ U1 \U2 and u2 ∈ U2 \U1. Consider u1 +u2. If this element belongs
to U1, then u2 = (u1+u2)−u1 ∈ U1, which is a contradiction. Similarly,
u1 + u2 �∈ U2, so u1 + u2 �∈ U1 ∪ U2.

For the inductive step, we assume the statement holds for n−1 distinct
proper subspaces of the same dimension. Assume for a contradiction
that

⋃n
i=1 Ui = U is a subspace. The subspace U1 is not contained in

the union of U2, . . . , Un, for this would mean that already U =
⋃n

i=2 Ui,
contrary to the inductive hypothesis.
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So there is some u1 ∈ U1 which does not lie in Ui for any i �= 1.
Similarly, there is some u2 ∈ U2 which does not lie in Ui for any i �= 2.
Now consider u1 + λu2 for λ �= 0. This lies in U , and hence it belongs
to at least one of the Ui. Take two different non-zero scalars λ1 and λ2.
Then the elements

u1 + λ1u2, u1 + λ2u2

must lie in different spaces Ui; for instance, if they both belong to U3

then so does their difference and hence u2 ∈ U3, contrary to the choice.
The field contains n − 1 distinct non-zero scalars, so the corresponding
n − 1 elements of the form u1 + λiu2 must lie in n − 1 distinct sets Ui.
But since U1 and U2 are ruled out, there are only n − 2 sets available,
so we have a contradiction.

Note that this proof only needs |F | ≥ n.

11.9. Let Vi = Span{bj : j �= i} and let δj be a vector which spans V ⊥
j .

Try z =
∑

riδi. We have by construction that (z, bj) = rj(δj , bj) for
each j. Now, (δj , bj) �= 0 (otherwise bj would be in Vj), so we can take
rj = (δj , bj) and this z will do.

11.14. By restriction, we may view sα and sβ as orthogonal transformations
of the plane spanned by α and β. Let θ be the angle between α and β.
We know that sαsβ is a rotation, as it is an orthogonal transformation
of the plane with determinant 1. To find its angle, we argue that if ϕ

is the angle made between sαsβ(β) = −β + 〈β, α〉 α and β, then, since
sαsβ(β) has the same length as β,

2 cos ϕ = 〈sαsβ(β), β〉 = −2 + 〈β, α〉 〈α, β〉 = −2 + 4 cos2 θ

so cos ϕ = 2 cos2 θ − 1 = cos 2θ. Thus ϕ = ±2θ.

Using the bases {α, β} given in Example 11.6 for the 2-dimensional root
systems, we get:

type θ order of sαsβ

A1 × A1 π 2
A2 2π/3 3
B2 3π/4 4
G2 5π/6 6

The hint given in the question now shows that the Weyl groups are
C2 × C2, D6, D8, and D12 respectively.



244 20. Appendix E: Answers to Selected Exercises

Chapter 12

12.3. (i) Consider the matrix describing κ, with respect to a basis compatible
with the root space decomposition. It is block-diagonal. One diagonal
block is κ restricted to H × H. All other blocks are 2 × 2 blocks cor-
responding to pairs ±α. We must show that all these blocks are non-
singular. That the block corresponding to H is non-degenerate follows
from hypothesis (c). Let α ∈ Φ and consider the corresponding block; it
is of the form (

0 κ(xα, x−α)
κ(xα, x−α) 0

)
,

so we need only that this is non-zero. Let h = [xα, x−α]. We have

0 �= κ(h, h) = κ(h, [xα, x−α]) = κ([h, xα], x−α) = α(h)κ(xα, x−α),

as required.

(ii) Let h ∈ H have diagonal entries a1, . . . , a�+1, and similarly let
h′ ∈ H have diagonal entries a′

1, . . . , a
′
�+1. The root space decompo-

sition gives

κ(h, h′) =
∑
α∈Φ

α(h)α(h′) = 2
∑
i<j

(ai − aj)(a′
i − a′

j).

We write this as

2
∑
i<j

(aia
′
i + aja

′
j) − 2

∑
i<j

(aia
′
j + aja

′
i).

Consider
∑

i<j(aia
′
i +aja

′
j). The total number of terms is �(�+1). Each

aka′
k occurs the same number of times, so the first sum is equal to

2�
∑

i

aia
′
i = 2� tr(hh′).

Next consider the second sum. It can be written as

2
∑

i

ai

(∑
j �=i

a′
j

)
= 2

∑
i

ai(−a′
i) = −2 tr(hh′).

Here we have used that h and h′ have trace zero. Combining these, we
have

κ(h, h′) = 2(� + 1) tr(hh′) = 2(� + 1)
∑

i

aia
′
i.

Now
∑

aia
′
i describes the usual inner product on R�+1 and hence κ is

non-degenerate and κ(h, h) = 0 only if h = 0.
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(iii) Let L = so(2�+1,C). Let h be a diagonal matrix of L with diagonal
entries 0, a1, . . . , a�,−a1, . . . ,−a�, as in §12.3, and similarly let h′ be
another diagonal matrix. Making use of the table for the roots, we have

κ(h, h′) =
∑
α∈Φ

α(h)α(h′)

= 2
�∑

i=1

aia
′
i + 2

∑
i<j

(ai − aj)(a′
i − a′

j)

+ 2
∑
i<j

(ai + aj)(a′
i + a′

j)

= 2
�∑

i=1

aia
′
i + 4

∑
i<j

(aia
′
i + aja

′
j).

Consider
∑

i<j(aia
′
i + aja

′
j). The counting argument we used for the

case of sl(� + 1,C) shows that this is equal to (� − 1)
∑�

i=1 aia
′
i. Hence

κ(h, h′) = (4� − 2)
�∑

i=1

aia
′
i = (2� − 1) tr(hh′).

This time
∑

aia
′
i restricted to real matrices gives the usual inner product

on R�. Hence κ is non-degenerate and κ(h, h) = 0 only if h = 0.

This essentially does all the calculations needed for so(2�,C) — the
only difference is that the first term, 2

∑�
i=1 aia

′
i, does not appear. The

calculations required for sp(2�,C) are similar.

12.4.� Let I = radL and let ϕ : L → gl(V ) be the given faithful representation.
We assume that rad L is non-zero. By Lie’s Theorem, there is a vector
v ∈ V such that ϕ(x)v ∈ Span{v} for all x ∈ I. Let λ ∈ I� be the
associated weight. By the Invariance Lemma (Lemma 5.5), Vλ is an L-
invariant subspace of V . But V is irreducible so Vλ = V . Hence rad L

acts diagonalisably on V . Since V is faithful, this implies that radL is
abelian. Moreover, since kerλ ⊆ ker ϕ = 0, radL must be 1-dimensional.

Let rad L = Span{z}. We may regard Span{z} as a 1-dimensional repre-
sentation of the semisimple Lie algebra L/radL. The only 1-dimensional
representation of a semisimple Lie algebra is the trivial representation,
so [x, z] = 0 for all x ∈ L and radL is central.

To see that the radical splits off, we use Weyl’s Theorem: regarding
L as a representation of L/Z(L) via the adjoint representation we see
that the submodule Span{z} has an L/Z(L)-invariant complement. This
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complement will also be L-invariant, so we have L = Z(L)⊕M for some
ideal M . Now M ∼= L/radL implies that M ′ = M and hence L′ = M .

(The converse also holds; namely, if L = Z(L) ⊕ L′ with L′ semisimple
and Z(L) 1-dimensional, then L has a faithful irreducible representation
— see Exercise 15.7. The reader may wish to note that Lie algebras L

with radL = Z(L) are said to be reductive.)

Appendix A

16.6. (ii) Let W be the subspace of Hom(V, V ) spanned by A. We may take
x1, . . . , xm ∈ A so that

W = Span{x1, . . . , xm}.

By hypothesis, these maps commute so, by Lemma 16.7, there is a basis
of V in which they are all represented by diagonal matrices. Since a linear
combination of diagonal matrices is still diagonal, with respect to this
basis every element of W , and hence every element of A, is represented
by a diagonal matrix.

16.7. By hypothesis, d′ commutes with x. By Lemma 16.8, we may express d

as a polynomial in x, so d′ and d commute. Similarly, n and n′ commute.

By Lemma 16.7, there is a basis of V in which both d and d′ are
represented by diagonal matrices, so d − d′ is diagonalisable. On the
other hand, since n and n′ commute, n − n′ is nilpotent, so we must
have d − d′ = n − n′ = 0; that is, d = d′ and n = n′.

Appendix D

19.1. Let P = (pij) and Q = (qij) for 1 ≤ i, j ≤ n. We have
∑n

i=1 p1iqi1 = 1,
so there is a unique i1 such that p1i1 = 1 = q1i1 . Since for j �= 1 we have∑n

i=1 p1iqij = 0 and since p1i1 = 1, it follows that qi1j = 0; that is the
row of Q with index i1 is of the form

(1 0 0 · · · 0).

Similarly, Q has a row of the form

(0 1 0 · · · 0)

and so on. Hence Q is a permutation matrix, and since the inverse of a
permutation matrix is also a permutation matrix, so is its inverse, P .
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