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Abstract. Exterior differential ideals are discussed, and sets of invariant generators presen- 
ted, for Riemannian, conformal and projective geometries, and for specialisations such as 
Ricci-flat, self-dual and Einstein-Maxwell theories. The Cartan characteristic integers are 
explicitly calculated, and involutory basis forms found, for each of these (specialised to 
four dimensions), exposing their algebraic structure and showing how they generate 
well-posed sets of partial differential equations. 

1. Introduction 

Cartan’s method of moving frames may best be understood as an application of another 
of his seminal techniques: the discovery of well-posed exterior differential systems to 
represent coupled sets of first-order partial differential equations [ 11. In this paper we 
present Riemannian (and several other) geometries as sub-bundles of the first (or 
sometimes higher) frame bundle, i.e. as so-called G-structures, and in particular show 
that these sub-bundles are determined by well-posed invariant exterior differential 
systems [2] on the second (or sometimes higher) frame bundle. The integrability 
properties, transformations, invariances and other diagnostics of an exterior differential 
system can be studied by explicit calculation of its Cartan integer characters, by 
derivation of characteristic vectors and isovectors, and by discovery of conservation 
forms and prolongation forms involving auxiliary potential and pseudopotential fields 
[3]. The systematic application of this differential form analysis to moving frame 
systems may lead to new results for Riemannian geometries and gravitational field 
physics, and for invariant classification of equivalent solutions. 

In § 2 the basic concept of a well-posed exterior system is briefly explained, with 
emphasis on the diagnostic test by calculations of Cartan integer characters and 
involutive bases. Because of the large dimensionality of higher frame bundles, we 
have developed computer programs to calculate these characters from the ranks of 
successive sets of the homogeneous linear equations involved. In D 3 we present exterior 
differential systems for a number of four-dimensional geometries. Calculation of the 
Cartan integer characters shows these systems indeed to be well-posed and involutory 
with respect to the usually chosen independent variables. 

+ The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute 
of Technology, under contract with the National Aeronautics and Space Administration. 
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Spinor notations, and  specifically the Clifford algebra formalism introduced in 5 4, 
are especially convenient for abstractly manipulating the 'pulled back' differential form 
structures for Riemannian and conformal geometries. In 5 5 this is used to find a set 
of non-linear prolongation forms that expresses, and perhaps generalises, the coupled 
Einstein-Maxwell equations. The Cartan integer character analysis of this is given in 
four dimensions and shows that the system is indeed well-posed. 

2. Cartan integer characters and well-posed systems, Cauchy characteristic vectors, and 
specialisation and prolongation 

Consider a closed differential ideal I in an  n-dimensional manifold, generated by sets 
of I-forms a, 2-forms p, 3-forms y, and so on, all of which are explicitly given in a 
local basis of 1-forms, say w ' ,  i = 1, . . . , n. This frame need not be 'ho1onomic'-derived 
from a coordinate patch (in which case we would have w ' = d x ' ) .  If the ideal is 
invariantly given, the expansion of this set of generators of I, { a ,  p, y, . . .}, on the basis 
w '  has constant numerical coefficients. 

The simplest integral submanifolds of I are one dimensional; denote a generic one 
of these by VI .  They can each in principle be found by integration, beginning at an 
arbitrary initial point with a vector, say VI, chosen so that at successive points along 
the resultant trajectory V, 

V,Ja = 0 rank so. (1) 
This is a set of linear homogeneous equations for the components of Vl-in any 
independent basis-of rank, say so (just the number of independent 1-forms a ) .  So a 
choice of 2' = n - so  functions of an  autonomous variable y1  will thus have to be made. 

We could express the result as an equivalent set of autonomous ordinary differential 
equations for the trajectory in terms of holonomic components of V, , i.e. if Vi = VI J d x '  

d x ' / d y '  = Vi Vl ldy l  = 1. (2) 
The result is an  explicit map of VI + X ,  the manifold of x'. We could normalise y'  as 
shown, and  finally substitute back to find the induced map VI +d/dy'. 

Now use VI as an  initial boundary for a second set of integrations to find a 
one-parameter family of trajectories that will form a two-dimensional integral manifold 
7,. Start at each point of V I ,  labelled with y l ,  and there, and at successive points 
along each resultant trajectory, choose a vector V, such that 

rank so + s1 . V,JCY=O 
V,J VI Jp = 0 (3) 

Given VI,  this is a set of linear homogeneous equations for the components of V,. 
The rank cannot be less than so, so with Cartan we denote it so+ sI . Now one solution 
of (3) can be just V,, so for the construction we must have Z2 = n - so - s l  > 1, and  
then that many functions of a second autonomous variable, y 2 ,  can be chosen during 
the integrations along the trajectories of V,. This results in a two-dimensional integral 
manifold V,, as clearly from (1) and (3) all of I vanishes when restricted to V,. 

This second set of integrations along V, may not appear to have been completely 
specified, however, as we only had previously determined VI at a boundary. We also 
need the components of VI,  as parameters, at each point of the integrations along the 
trajectories of V , .  Cartan's deep insight was that, since we are working with a closed 
ideal I, it is consistent to require [ V,, V , ]  = 0 as we go. This determines VI as being 
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‘dragged along’ the V2 congruence. Now since 

LvV,(V1--la)=[V,, V , ] Ja+  V l J ( d ( V 2 i a ) +  V2Jda) )  (4) 
we see that all three right-hand terms vanish by our construction, and  so the condition 
V,-Ia = 0, true initially, is itself dragged along V, and preserved. VI is thus simul- 
taneously constructed throughout the two-dimensional manifold as everywhere belong- 
ing to one-dimensional integral manifolds, as indeed we initially took it. The result 
is that one  has intersecting families of one-dimensional integral manifolds Y ,  from 
both VI and  V,, that these are 2-forming, and  that the 2-manifolds Y2 are also integral 
manifolds. Normalised autonomous variables y’ and y2 can be introduced by writing 
the holonomic components of the vectors as Vl = a x ’ / a y ’ ,  V: = ax i /ay2  and the con: 
struction guarantees that these are consistent. They map VI and  V, to d l d y ’  and d / d y 2 .  

The construction of three-dimensional integral manifolds proceeds entirely 
analogously. This time we begin with a bounding 2-manifold V2,  everywhere containing 
V, and V,, and  search for a V3 at each point of V2 such that 

V3Ja = 0 

The rank is denoted so+ s1 + s 2 ,  so s, must be S O ,  and we can proceed if 2, > 2. As 
we integrate trajectories of V,, we drag the integral 2-manifold V, along by [ V3, VI] = 0, 
[ V3, V,] = 0, which preserves [ VI, V,] = 0 and  satisfies equations analogous to (4) for 
its propagation along V3. 

Integral manifolds constructed in this way, from nested integral manifolds of lower 
dimensionality, are called regular. Not all integral manifolds are regular-various 
‘singular’ manifolds can also exist. But in any event, we recognise with Cartan that 
the positive integers so, sl, s2 are numerical concomitants of the closed ideal I and 
demonstrate in principle the integration of generic solutions. 

Now at each integration we add  more linear equations and further construction 
can only become more constrained, 2p S 2p-l. But if we have a ( p  - 1)-dimensional 
integral manifold, we of course have p - 1 trivial solutions of the linear homogeneous 
equations for V,-thus we need TP > p - 1 to proceed to construct Vp. The process 
must terminate, so the regular integral manifolds of I must have a maximum dimension: 
this is Cartan’s genus, g. If T g > g - l  but L Z g + , s g  we cannot proceed past g 
dimensions. This says in particular that if 

2 g + l = 2 g = n - ( s o + . . . s , - , ) = g  i.e. s, = 0 (6) 
there is no freedom left-no arbitrary function other than normalisation of V, o r  the 
last autonomous variable yg-in the final construction of maximum dimensional 
integral manifolds, Vg. 

Although there is no unique ideal I to represent a given set of partial differential 
equations, limiting the ideals considered to those that satisfy the criterion of (6) makes 
the choice of I as a practical matter quite limited. We denote such ideals as being 
‘well-posed’. The associated sets of partial differential equations will include all 
integrability conditions, and  will be neither over nor under determined. All the 
geometric systems we deal with below will satisfy this criterion. 

To summarise, determining ‘well-posedness’ and the Cartan characters requires 
calculation of the ranks of successive sets of equations such as those given in ( l ) ,  (3) 
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and (5). At each step these are linear homogeneous equations for the components of 
the new vector. However, the coefficients in the equations which are derived from 
forms of degree >1 depend on the components of all previous vectors, as in the p 
and y equations of ( 5 ) ,  and those components have themselves already been required 
to jointly annul all the forms in the ideal at previous steps. Consequently, they are 
subject to both linear and  non-linear constraint equations, which must be taken into 
account in calculating the rank of the new equations. In general, p-degree forms will 
lead to pth-order polynomial constraints, so if one attempts to obtain a general solution, 
this nested algebraic problem is not in fact a linear one. Is this a serious problem? 

As an  example from what follows, consider the ideal of (12), which is set on the 
manifold of the second frame bundle over a base space of dimension m ;  its dimension 
n is $ m ( m + l ) ( m + 2 ) ,  so if m = 4 ,  the vectors V, will each have 60 components. 
Calculating the ranks of equations solving the ideal, when we come to consider the 
equations for v6 we would have 100 quadratic constraints and 40 cubic constraints 
involving the 300 components of the previous five vectors V , ,  . . . , V,  ! In special 
situations, of course, it may well be that symmetry properties can be used to obtain 
the answer easily. But in a general case it is unlikely that even a highly sophisticated 
algebraic manipulation system would be capable of correctly evaluating the rank of 
the equations for v6 in the presence of such constraints. 

Since the rank evaluation need only be done at a single generic point of the manifold, 
we can finesse the algebraic problem by calculating particular solutions using fixed 
numerical components V, JwJ. At each step these components are determined to satisfy 
the appropriate linear equations at that step, and any components left undetermined 
by the equations are assigned random numerical values. This purely numerical problem 
is now linear throughout and standard techniques to determine the ranks of linear 
equations can be used. We also have elected to assign integer values to the vector 
components and  to d o  the numerical calculations using integer arithmetic. While not 
really essential, this does avoid the possible problem of having fortuitously small values 
become zero due to numerical round-off errors. 

Clearly, this technique suffers from the difficulty of any Monte Carlo approach in 
that it may not give the generic answer in any single calculation. A particular set of 
assigned random numerical components may here give a lower rank than is true in 
general. This does in fact happen, but quite infrequently, since the large number of 
random components provides a very large ensemble of random vectors. Furthermore, 
even on a personal computer the calculation only requires from a few seconds to a 
few minutes, depending on size, so it can easily be repeated many times over to check 
for accidental degeneracies. 

It is also important to explicitly calculate which basis 1-forms remain independent 
when restricted to the maximal dimension integral submanifolds Vg. A set of g of 
these-neither they nor any linear combinations of them vanishing-are then a suitable 
1-form basis to span Vg. Cartan denotes these as involutory, and when holonomic they 
belong to a possible set of independent variables for a set of partial differential equations 
locally equivalent to I. The involutory property of a particular set of g bases can also 
be obtained from the Monte Carlo calculation. This can be done simply by modifying 
the program to require that the first g vectors span the g-dimensional subspace of 
those bases. When g such non-zero vectors result, involution of the corresponding 
bases is demonstrated. 

Cauchy characteristic vectors are vector fields V such that V J I  = I. This is a set 
of linear homogeneous equations for the n components of V. The set of all independent 
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Cauchy characteristic vectors V, ,  a = 1, . . . , q, generates a q-dimensional fibration and 
Cartan has shown that, in fact, a set of generators for I can be found involving q 
fewer basis 1-forms (and, for a non-invariantly expressed ideal, q fewer explicit 
coordinate dependences). If inspection shows some of the basis forms not to be 
explicitly present in the set of generators of an invariant (closed) ideal, for each of 
these one immediately has a Cauchy characteristic vector. The consequence of import- 
ance here, however, is that by their defining property these Cauchy characteristic 
vectors satisfy all the successive equations ( l ) ,  (3), ( 5 ) ,  etc, of the construction of 
regular integral manifolds, could have been used at any of the steps, and must all be 
present in the maximal manifolds ‘Vg. At least locally, each Vg has the structure of a 
fibre bundle: q-dimensional fibres over a (g - q)-dimensional base. Although the 
Cauchy characteristic vectors solve homogeneous equations and so are undetermined 
in length, it is, as we will see later, sometimes possible to explicitly ‘calibrate’ them 
to give ‘Vg the further structure of a principal fibre bundle. 

We have previously introduced a kind of prolongation [3] for sets of partial 
differential equations with g = 2 (two independent variables), in which auxiliary 1- 
forms, say a’, are adjoined to the ideal I, to form an ideal 1 ‘ =  { I ,  a’} that is still closed 
and well-posed. These also involve new variables, which become essentially potential 
fields (or, most generally, pseudopotentials or ‘Miura’ transforms) in the integral 
manifolds of 1’. This prolongation can now be formulated in the general case. We 
seek to adjoin additional forms, say a’, p ’ ,  y, . . . , of degrees 1, 2 ,  3, etc, involving n’ 
additional coordinates x ’ =  { x n t ’ ,  . . . , x”+”’} and basis 1-forms, to construct an ideal 
I ’  = { I ,  a’, p’,  . . .} with the following properties: (i) d l ’ c  1’, (ii) 2: LE,,  2; 2 LE2, 
2; 2 Y 3 ,  etc, (iii) g’ = g and (iv) I ’  and I involutory with respect to the same g bases. 
In a solution manifold, the adjoined prolongation variables are seen as auxiliary fields, 
functions of the same independent variables. We again calculate the numerology with 
the Monte Carlo programs. 

If the second of these conditions is not fulfilled, but the others are, the enlarged 
exterior differential system I‘ is itself still well-posed and of interest in its own right. 
Since the freedom of the Cartan construction is at some point limited, however, 
solutions of such an I ’  must be specialised, i.e. must be a consistent and well formulated 
subset of solutions of the ideal I,  while at the same time an interesting set of auxiliary 
or pseudopotential variables is now also solved for. Examples of this, as we will see, 
are the Ricci-flat and Einstein-Maxwell solutions, particular specialised subsets of 
general Riemannian geometries. The ideal I ‘  for the latter of these involves six auxiliary 
variables, n’ = 6 ,  and two additional 3-forms y, and explicit calculation has shown it 
to be well-posed. 

Several examples of true prolongation, when none of the 2,, decreases, are discussed 
below: (i)  extension of the ideal for conformal geometry to that for so-called normal 
conformal geometry, ( i i )  adjoining a 3-form to the ideal for general three-dimensional 
Riemannian geometry, and ( i i i )  adjoining forms for test electromagnetic fields to the 
I for general four-dimensional Riemannian geometry. 

3. Exterior differential systems for various well-posed four-dimensional geometries 

Frame bundles come partially equipped with canonical or ‘solder’ basis 1-forms and 
structure identities [ 2 ] .  Given a differentiable manifold M ,  dim m, the second frame 
bundle over M ,  denoted F, (Mj ,  is a principal fibre bundle that contains independent 
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intrinsic (or canonical) sets of 1-forms denoted w' ,  wJ ( i , j ,  k = 1 , .  . . , m ) ,  numbering 
m and m2 respectively. A complete basis also requires a third set wjk (symmetric on 
the pair of lower indices) that is in fact only given canonically on the third frame 
bundle, a cross section of which gives a suitable set on the second frame bundle. These 
basis forms satisfy the structure 2-form identities: 

d w ' + w :  A w ' = O  ( 7 )  

plus the exterior derivative of (8), a 3-form identity. The essence of the method of 
moving frames is to set exterior differential systems using these canonical (but 
anholonomic) basis forms, and avoiding-or deferring-use of specific (holonomic) 
coordinates in F 2 ( M ) ,  or any submanifold, as much as possible. Using the Cartan 
character analysis, such a system must be shown to be well-posed; then the regular 
integral manifolds which it determines, when properly fibred, can be G-structures, 
principal fibre sub-bundles of F,( M ) .  Generalised G-structures extend this construc- 
tion to even higher frame bundles. 

Cartan's exterior differential system for a general Riemannian geometry is a closed 
ideal, Z, generated by i m ( m + l )  1-forms and their exterior derivatives, the latter 
calculable using (8): 

Wf + w; (9) 

For I we calculate [4] that so = ;m( m + 1) = s1 = s2 = . . . = s,, smtl = 0 = smf2 = . . . , and 
it follows that g = i m ( m  + 1). w '  and wf --U{ are an  involutory set. The $ m ( m  - 1)  
basis forms 6 ~ J - w :  d o  not appear in (3) and  (4), and  consequently there are q =  
i m ( m  - 1) Cauchy characteristic vectors determined by Z, flows that will lie in the 
maximal integral submanifolds, as fibres. When m = 4, n = 60, so = 10, s, = 10, s2 = 10, 
s3 = 10, s4 = 10, g = 10, the maximal integral submanifolds of Z are ten dimensional 
with six-dimensional fibres. This is the first well-posed system summarised in table 1. 

The q = $m( m - 1) Cauchy characteristic vectors contracted on the g - q forms w '  
must all give zero, i.e. the w '  further pulled back into the fibres then vanish. The 
canonical structure 2-form identities from (8) that survive in the fibres involve only 

Table 1. Closed exterior differential systems on  F , ( M j  and F , ( M j ,  dim M = 4 .  

n so SI s2 s3 51 g 

General Riemannian geometry 60 10 IO 10 10 10 10 
Ricci-flat Riemannian geometry 60 10 IO 14 12 4 10 
Self-dual Riemannian geometry 60 IO 13 13 10 4 10 
Flat spacetime 60 I O  16 12 8 4 10 
Einstein-Maxwell theory 66 10 I O  16 16 4 10 
Riemannian geometry with test Maxwell field 66 10 10 12 14 10 10 
Conformal geometry 60 9 9 9 9 9 15 
Normal conformal geometry 70 9 9 13 15 9 15 
Flat conformal geometry 70 9 19 14 9 4 15 
Projective geometry 70 0 0 0 10 36 24 
Flat projective geometry 70 0 19 14 9 4 24 
Flat affine geometry 140 40 40 24 12 4 20 
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the 01 - w{ and are Cartan-Maurer equations. This gives the fibres the structure of 
group manifolds, in this case O ( m ) .  The Cauchy characteristic vectors finally can be 
'calibrated' so as to be algebraically dual to the wi  ( = - U { ) ,  and then their action will 
explicitly represent the Lie algebra o( m): 

V : J w a  = O  

(11) b v;hJ; = s;s; -s;s, 
v ;Jw;c  = 0. 

Each integral submanifold thus has the structure of an  O ( m )  principal bundle over 
a n  m-dimensional base. This is the G-structure. Since there is a natural map F , ( M )  + 

F , ( M ) ,  it could also be seen as a sub-bundle of F , ( M ) .  The set = -w< canonically 
given in each such integral submanifold is usually now called the (torsion-free) 
connection. Holonomic coordinates can be introduced such that an  arbitrary m- 
dimensional cross section is a realisation of an orthogonal frame field on an  m- 
dimensional metric space. This is illustrated in figure 1. Evidently different [$m( m + 
l)]-dimensional integral submanifolds of I can belong to intrinsically different Rieman- 
nian geometries, and indeed Cartan's approach to the equivalence problem for such 
geometries was to formulate them in this language. 

Projective (241 
Flat a f f i n e  (201 
Normal conformal (15 1 I 60 80 

Figure 1. Exterior differential ideals. I, determine various geometries as sub-bundles of 
frame bundles over a base manifold M. Invariant basis forms are indicated, and dimensions 
given for the case dim M = 4. 

Ricci-flat four-dimensional Riemannian geometries [4] are sub-bundles of F2(4) 
determined by an exterior system I '  containing four additional 3-forms adjoined to 
the I of general Riemannian geometry: 

wj+w; '  

w i r  A U '  + w: ,  A w ' 

wJ. A w '  A w k  +ai ,  A w '  A w ' + w f ;  A w '  A w i  

i ,  j ,  k = { 1, 2, 3,4}. 

Explicit calculation gives so = 10, s, = 10, s? = 14, sj  = 12, s4 = 4, g = 10 and the U ' ,  w j  
are in involution. There are evidently the same six Cauchy characteristic vectors; the 
integral manifolds are ( a  subset of all possible) orthogonal frame bundles. That this 
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is a specialisation is of course also shown by calculating the 2,,, two of which decrease. 
It is noteworthy how the Ricci-flat formulation varies with dimension, for example 
in five dimensions ( n  = 105) one must form I’ by adjoining to I the 4-forms 

0:. A w s  A w A w . In six dimensions one must adjoin 5-forms, and  so on. We 
have calculated the Cartan characters for several other low-dimensional Ricci-flat 
geometries to verify that these ideals are all indeed well-posed. This result is of course 
gratifying, though not to us obvious; the ‘naturalness’ of the adjoined higher rank 
forms is perhaps clearer in Clifford algebra formalism ( 5  4). 

In four dimensions a well known further specialisation is to Ricci-flat self-dual 
geometries. Now I’ is generated by 

k l  E v k f m  

We calculate so = 10, s, = 13, s2 = 13, s3 = 10, s4 = 4, well-posed with g = 10. The final 
specialisation in this line is to adjoin all the 2-forms wjs A us. One then obtains so = 10, 
s1 = 16, s2 = 12, s3 = 8, s4 = 4, well-posed with g = 10 and, in fact, an  orthogonal bundle 
over flat 4-space. 

Other classical geometries can also be treated with this approach. Conformal 
geometry follows from an  ideal on F , ( M )  generated by a set of traceless 1-forms and 
their closure 2-forms: 

where r = ( l /m)w:  and  r, = (l/m)w:,. In four dimensions one obtains so = 9, s1 = 9, 
s2 = 9, s3 = 9, s4 = 9, well-posed with g = 15. The solutions have ( q  = 11)-dimensional 
fibres, only seven of which can be calibrated by pulling back the remaining basis 
1-forms, w; - w( and 7. Thus the solutions cannot strictly be seen as sub-bundles of 
F1. The forms r, are not canonically given on F 2 ,  and so we do  not have explicit 
2-form relations for d r ,  that would pull back to give complete dual Cartan-Maurer 
structure to the fibres, as subgroups of the GL(m)  fibres of F,.  Thus conformal 
geometry is better set as a higher-order G-structure [5]. 

On the third frame bundle F , ( M )  the forms wlk are canonical and satisfy in general 
the structure equations 

(15) 

together with their closure. For m = 4 ,  some 80 new forms wlkf are introduced to 
complete a basis; the dimensionality is 140. Consider first however the specialised 
case (which uses the trace of (15)) when just i m (  m + 1) new basis forms r,] = ( l / m ) w  :,, 
are introduced into invariant structure equations for the r, : 

d r ,  - w A T ,  + r,, A w ’ = 0. 

I d w i k + w I ,  A w:k - w I  A - wi,  A wJ,+wJkl  A w = 0 

(16) 

For m = 4, now n = 70 and, returning to the discussion of conformal geometry, the 
extra freedom allows us to supplement the ideal of (14) with the additional 3-forms 



Exterior diferential ideals 27 1 

and their closure 4-forms: 

.,klfi; A W 

& y k / f i ,  A W J  A W k  

where the 'curvature' forms are respectively defined as 

W i S  A W s  + 7, A W J  - 7, A W '  - 8 ( T F  A W s  

0, T,, A 0'. 

They identically satisfy Cli A wJ = 0 and Cl ,  A W '  = 0. The additional forms (17) express 
the condition for a 'normal Cartan connection' that, in any final cross section, where 
Cl( = Kik ,uk  A w ' ,  the components Kikl will satisfy Kil l  = 0. The Cartan characters for 
the augmented ideal (14) plus (17) now are computed to be s0=9,  s, =9,  s2 = 13, 
s3 = 15, s4 = 9; g = 15, still with eleven Cauchy characteristics. There are now eleven 
structure relations, pulled back, to calibrate solutions as principal fibre bundles. This 
extension and completion of the ideal for conformal geometry to the third frame bundle 
is clearly no restriction on the generality of the solutions, since none of the decreases. 
The well-posedness of this completed ideal is, of course, related to mathematical 
theorems on the uniqueness of normal Cartan connections [ 5 ] .  

In the case of flat conformal geometry, one adjoins to (14) the 2-forms fii and Cl, .  
We then calculate so = 9, s, = 19, s2 = 14, s3 = 9, s4 = 4, well-posed with n = 70 and g = 15. 

Projective geometries are submanifolds of F 3 ( M )  determined by ideals that do not 
restrict the U:. Consider, when m = 4, a set of 4-forms and their closure 5-forms: 

These express again the normal Cartan condition K J l k  = 0 for curvature forms now 
identified as [5] 

W:. A W s  - UJ A W '  - 8iU, A W s  (20) 

where u2- [ l / (m+l) ]w: l  and ujJ =[ l / (m+l) ]w: , .  The ideal generated by (19) yields 
the numerology n = 70, so = s, = s2 = 0, s3 = 10, s4 = 36 and g = 24. The problem is 
well-posed: there are twenty-dimensional fibres which can be calibrated by the involu- 
tory bases w; ,  U,. Flat projective geometry is generated by the 2-forms Szj and 0, (the 
forms of (19) are then in the ideal). Since ClT = 0 there are just nineteen of these and 
the result is n = 70, so = 0, s, = 19, s2 = 14, s3 = 9, s4 = 4 and g = 24. 

Flat affine geometry is set on F 3 ( M )  in analogy to flat metric geometry on F2( M ) .  
That is, the ideal is generated by all of the W i k  and their closure wik7 A w ' ,  n = 140, 
so=sl  =40, s,=24, s 3 =  12, s 4 = 4 ,  g = 2 0 ,  and the fibres can use the W ;  to have the 
structure of gl(4). 

The Cartan numerologies calculated for all these geometries are summarised in 
table 1. 

4. Clifford-algebra-valued forms 161 

The large set of structure equations that remain when (7) and (8) are restricted to any 
integral submanifold of the ideal I generated by (9) and (10) can be written in various 
concise spinor notations that allow convenient manipulation. The sets of forms entering 
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( 7 )  and (8), when restricted with (9) and ( lo ) ,  are antisymmetric on pairs of indices, 
and the contractions on indices are those of matrix algebra. The straightforward 
formalism of m-dimensional Clifford algebra is, we believe, consequently heuristic for 
the derivation of further results or of consistent further restrictions to special cases, 
and since no complex conjugating is involved it is perhaps easier to use than any of 
its spinor isomorphs. At the same time, any such notation can conceal essential details, 
in particular all the information contained in the Cartan characters themselves, o r  
results peculiar to a particular value of m, so one must be able at any point to return 
to the explicit canonical frame basis. 

We introduce symbols I, yl, yv, y y k ,  etc, each totally antisymmetric on its indices, 
as a basis set for the Clifford algebra in m dimensions. The entire algebra is generated 
by the anticommutator relation y'y' + y ' y '  = 26"I  together with the definitions y V  = 
y [ I y J I ,  Y J J k  = y " y J y k l ,  and so on. One can think of the y ' ,  etc, as square matrices, and 
indeed in the case m =4 ,  there is a 4 x 4  (invertible) matrix representation of this 
algebra (Eddington's E numbers), but we will not in fact need a matrix representation, 
nor be concerned with its rank. We will treat the Clifford algebra as generated by 2" 
independent basis elements I , .  . . , y" , where there are precisely m indices in the last 
of these. Explicit equations in terms of the basis set of differential forms can be 
recovered from a Clifford-algebra-valued expression by expansion on this basis. In 
the Clifford algebra there is a grading such that I is of grade zero, the y '  are of grade 
1, yv of grade 2 ,  etc. After expansion of a vanishing expression into this basis the sets 
of forms of each grade can be independently set to zero. 

The antisymmetry of the sets of forms w ' ,  OJ and A w s  in an  integral submanifold 
allows us to define Clifford-algebra-valued forms there: 

0 = w'y '  ( 2 1 )  

( 2 2 )  

( 2 3 )  

r = l , ' y U  
4 J  

R = i R l y v  = -zwJy 1 1  A w ' y ' J  

(also defining the antisymmetric set of Riemann 2-forms RJ = -R<).  
Entirely equivalent to ( 7 )  and (8), restricted with (9) and ( lo ) ,  are the relations 

d o  +re + or = o 
dT+  TT - R = O  

R0 - 0 R  = O  

and their identical consequence 

d R + T R - R T = O .  ( 2 7 )  

We have omitted the wedge symbol, A ,  for simplicity. 
As an  example of expansion of a Clifford-algebra-valued expression on the set of 

completely antisymmetric independent basis elements, consider ( 2 6 ) .  We write this 
first as 

RO - OR = REO'( y u h y l  - Y'Y' ' )  (28) 

and use the basic anticommutator relation to expand the products on basis elements 
to find 
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So, taking the y a  as independent, we recover 

R E  A W ~  = O  

which also is obvious from the definition (23). 
The Ricci-flat specialisation of Riemannian geometries becomes in this formalism 

the adjoining to I of the Clifford-algebra-valued forms RO (when m = 4), o r  ROO (when 
m = 5),  etc. 

5. Einstein-Maxwell ideals 

We have found a quadratically non-linear set of 3-forms, in the abstract Clifford 
notation, which can apparently sometimes lead to interesting auxiliary or prolongation 
fields for Riemannian geometries. Introducing a Clifford-algebra-valued scalar, 4, we 
can construct the 3-form 

E = d(e+pe) + re4e - e4er + 04e40 + RO (31) 
which may quickly be shown to be closed, modulo itself and I (that is, using (24)-(27))! 
Thus the prolonged ideal I’  = { I ,  E} may be a self-consistent way to introduce auxiliary 
fields, at least in those cases which the Cartan character analysis shows to be well set. 

The first case we have worked out is when m = 3, and moreover we take 4 to be 
purely grade 1 : 4 = 4, y‘.  Recall that the ideal I for Riemannian geometry has so = 6 = 
s, = s2 = s3; dim F2(3) = 30, g = 6. The prolongation E is in this case a single 3-form: 

ci41 A w k  A wJ + 4 s w :  A W J  A w k  - 4 s 4 s w 1  A W J  A w k  

+ 2 4 J 4 F w  ’ A w A w - $U), A w ’ A w + antisy m on i, j ,  k. (32) 
With the 4, the dimension is 33. The Cartan characters become so = 6, s, = 6, s2 = 7 ,  
s3 = 8, s4 = s5 = 0 (none of which is a decrease, so none of the T,, decreases), the genus 
is unaltered, there are still three Cauchy congruences and the w 1  remain in involution, 
independent in the solution manifolds. We have apparently found a sort of non-linear 
vector potential for the Ricci scalar R :  of any Riemannian 3-manifold. 

When m = 4, and when we specialise 4 to the second grade, we recover the 
Rainich-Misner- Wheeler ‘already unified’ theory of electromagnetism in general rela- 
tivity. Whenever m is even, setting 4 = F1,y” in (31) gives two separate equations: 

d (  e4e) + r e4e - e4er = o 
e4ede + RB = 0. 

(33) 

(34) 
The first of these, when m = 4, is of grades 0 and 4, giving two 3-forms for Maxwell’s 
field equations: 

dF,] A w k  A w’-ZF,,w) h u h  A w‘+antisym on i, j ,  k,  l = O  

dF,] A w ’  A w1 -2Fvw: A 0’  A w J  = O  
(35) 

while the second, (34), incorporates all the non-linearity, is pure grade three and is 
precisely the Einstein-Maxwell field equation coupling gravitation to electromagnetic 
energy-momentum. The total number of dimensions is now 66, the Cartan characters 
become so = 10, s, = 10, s2 = 16, s3 = 16, s 4 = 4 ,  s5 = O =  s6= etc; the genus is 10. The 
ideal I’ is in involution with respect to w ’ ,  w ; ,  and the coupled Einstein-Maxwell 
equations are thus shown to be well-posed. Note however that Lf4 has decreased! As 
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is well known from Rainich-Misner-Wheeler theory, this is a specialisation: it formu- 
lates a consistent subset of Riemannian 4-geometries (in which the Ricci tensor has a 
particular canonical form). 

We have performed many computer calculations of ideals including generalised 
Einstein-Maxwell forms (31), i.e. when 4 is not purely of grade two. Surprisingly, 
none of these passed the requirements of being well-posed, with the w '  remaining 
independent in the solution manifolds. It remains for future research to ascertain if 
the generalisation remains empty for m > 4. 

As a final remark in this particular case m = 4, the Maxwell 3-forms given by (35) 
are in fact algebraically equivalent to a pair of exact 3-forms [4] 

d (Fywk A W ' E " ~ '  ) = 0  and d (  Fyw'  A 0') = 0 

so the grade-3 part of (31) is not needed to ensure closure. Thus it can be dropped 
and one thus finds a linear prolongation; namely just the imposition of test electromag- 
netic fields on an arbitrary 4-geometry. (Otherwise said, that the integrability condition 
Re40 - 04eR = 0 is identically satisfied for pure grade-2 4, when m = 4, for any R.) 
The Cartan characters of I ,  augmented with the two 3-forms in (36), are so = 10, s, = 10, 
s2 = 12, s3 = 14, s4 = 10, s5 = 0, etc g = 10 and this is truly a prolongation and not a 
specialisation. 
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