
CORRECTIONS TO SECOND PRINTING OF

Olver, P.J., Equivalence, Invariants, and Symmetry ,
Cambridge University Press, Cambridge, 1995.

Last modified: October 2, 2009

⋆ ⋆ ⋆ On back cover, line 17–18, change

prospective geometry

to

projective geometry

⋆ ⋆ ⋆ page xv, add to acknowledgements

Faruk Güngor, Oleg Morozov, Jeongoo Cheh, Juha Pohjanpelto, Francis Valiquette

⋆ ⋆ ⋆ page 22, line 10, change

and all t, s ∈ R where the equation is defined.

to

all t, s ∈ V where V ⊂ R
2 is a connected open subset of the (t, s) plane containing

(0, 0) consisting of points where the equation is defined.

⋆ ⋆ ⋆ page 39, Example 2.13, change the first two occurrences of

PSL(n, R)

to

PGL(n, R).

⋆ ⋆ ⋆ Also append to the last sentence

PSL(n, R) = SL(n, R)/{± 11} is equal to the connected component of PGL(n, R) con-
taining the identity.

⋆ ⋆ ⋆ page 51, equation (2.14), change

Ck
ij = −Ck

ij

to

Ck
ji = −Ck

ij

⋆ ⋆ ⋆ page 93, lines 10–24, change

In order to formulate a general theorem governing the existence of relative invariants
for sufficiently regular group actions, we consider the extended group action (3.15) on
the bundle E = M × U . The key remark is that there is a one-to-one correspondence
between relative invariants of weight µ and linear absolute invariants of the extended action.
Specifically, a linear function J(x, u) =

∑n
α=1 Rα(x)uα is an invariant of the extended

group action (3.15) if and only if the vector-valued function R(x) = (R1(x), . . . , Rq(x))T

is a relative invariant of weight µ. Therefore, we need only produce a sufficient number
of linear invariants of the extended action. Moreover, if J(x, u) is any invariant of the

1



extended group action, then it is not hard to prove that its linear Taylor polynomial is
also an invariant, and hence provides a relative invariant for the multiplier representation.
Thus, the only question is how many independent relative invariants can be constructed
in this manner.

to

In order to formulate a general theorem governing the existence of relative invariants
for sufficiently regular group actions, we consider the extended group action (3.15) on
the bundle E = M × U and its dual version (x, v) 7→ (g · x, µ(g, x)−T ) on the dual bundle
E∗ = X×U∗. The key remark is that there is a one-to-one correspondence between relative
invariants of weight µ and linear absolute invariants of the dual action. Specifically, a linear
function J(x, v) =

∑n
α=1 Rα(x)vα is an invariant of the dual action on E∗ if and only if

the vector-valued function R(x) = (R1(x), . . . , Rq(x))T is a relative invariant of weight µ.
Therefore, we need only produce a sufficient number of linear invariants of the extended
action. Moreover, if J(x, v) is any invariant of the extended group action, then it is not
hard to prove that its linear Taylor polynomial is also an invariant, and hence provides a
relative invariant for the multiplier representation. Thus, the only question is how many
independent relative invariants can be constructed in this manner.

⋆ ⋆ ⋆ page 94, lines 26–28, change

I do not know a general theorem that counts the number of relative invariants of
multiplier representations that do not satisfy the hypotheses of Theorem 3.36

to

A general theorem that counts the number of relative invariants of multiplier repre-
sentations in all cases can be found in the recent paper by M. Fels and the author, “On
relative invariants”, Math. Ann. 308 (1997), 701–732.

⋆ ⋆ ⋆ page 96, equation (3.30), change

v
−

= a1

∂

∂a0

+ 2a2

∂

∂a1

+ · · ·+ (n − 1)an−1

∂

∂an−2

+ nan

∂

∂an−1

,

v0 = −na0

∂

∂a0

− (n − 2)a1

∂

∂a1

+ · · ·+ (n − 2)an−1

∂

∂an−1

+ nan

∂

∂an

,

v+ = na0

∂

∂a1

+ (n − 1)a1

∂

∂a2

+ · · ·+ 2an−2

∂

∂an−1

+ an−1

∂

∂an

.

to

v
−

= na1

∂

∂a0

+ (n − 1)a2

∂

∂a1

+ · · · + 2an−1

∂

∂an−2

+ an

∂

∂an−1

,

v0 = na0

∂

∂a0

+ (n − 2)a1

∂

∂a1

+ · · · + (2 − n)an−1

∂

∂an−1

− nan

∂

∂an

,

v+ = a0

∂

∂a1

+ 2a1

∂

∂a2

+ · · · + (n − 1)an−2

∂

∂an−1

+ nan−1

∂

∂an

.
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⋆ ⋆ ⋆ page 120, second line after equation (4.35), change

The Lie algebra (4.14)

to

The Lie algebra (4.35)

⋆ ⋆ ⋆ page 144, line 10, change

aν
µ ξi

ν

to

Aν
µ ξi

ν

⋆ ⋆ ⋆ page 148, equation (5.15), change

v0 = x
∂

∂x
−

n

2
u

∂

∂u
, v+ = x2 ∂

∂x
− nxu

∂

∂u
.

to

v0 = x
∂

∂x
+

n

2
u

∂

∂u
, v+ = x2 ∂

∂x
+ nxu

∂

∂u
.

⋆ ⋆ ⋆ page 159, lines 5, 15 & 18, change

dn+1K1 ∧ · · · ∧ dn+1Kr

to

dn+1[DK1] ∧ · · · ∧ dn+1[DKr]

⋆ ⋆ ⋆ page 171, lines 20 & -8, change

n + 2

to

n + 1

⋆ ⋆ ⋆ page 171, line -7 to -3, delete sentence

Moreover, if the stable ... have order at most n + 1.

⋆ ⋆ ⋆ page 173, Example 5.52, line 2, after “. . . via the standard representation”, add

(x, y, u) 7→ (αx + βy, γx + δy, u), where αδ − βγ = 1

⋆ ⋆ ⋆ page 188, line -2, change

log x = h(u/x)

to

log x = h(u/xm)

⋆ ⋆ ⋆ page 190, line 9, change

GH/G

to

GH/H
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⋆ ⋆ ⋆ page 190, line 18, change

η∂y + ζ∂u + ζy∂vy

to

η∂y + ζ∂v + ζy∂vy

⋆ ⋆ ⋆ page 190, line 22, change

v = ∂y

to

v = ∂v

⋆ ⋆ ⋆ page 192, formula (6.32), change

(1 + ux)3/2

to

(1 + u2
x)3/2

⋆ ⋆ ⋆ page 192, displayed formula after (6.32), change

(1 + θ2
r)

to

(1 + r2θ2
r)

3/2

⋆ ⋆ ⋆ page 195, line -4, change

Alternatively, x = wuu/wu, where w is an arbitrary solution . . .

to

Alternatively, w = xuu/xu is an arbitrary solution . . .

⋆ ⋆ ⋆ page 198, equation (6.56), change

y

to

w
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⋆ ⋆ ⋆ page 201, equation (6.61), change

det

∣∣∣∣∣∣∣∣∣∣

ξ1 ϕ1 ϕ1
1 . . . ϕr−1

1

ξ2 ϕ2 ϕ1
2 . . . ϕr−1

2

...
...

...
. . .

...
ξr ϕr ϕ1

r . . . ϕr−1
r

∣∣∣∣∣∣∣∣∣∣

= 0.

to

det

∣∣∣∣∣∣∣∣∣∣

ξ1 ϕ1 ϕ1
1 . . . ϕr−2

1

ξ2 ϕ2 ϕ1
2 . . . ϕr−2

2

...
...

...
. . .

...
ξr ϕr ϕ1

r . . . ϕr−2
r

∣∣∣∣∣∣∣∣∣∣

= 0.

⋆ ⋆ ⋆ page 226, line 6, change

P (t, x, u(2n))

to

R(t, x, u(2n))

⋆ ⋆ ⋆ page 231, lines -4 & -1, change

E(L)

to

E(L)

⋆ ⋆ ⋆ page 243, lines 18 & 20, change

(x, vy, vyy, . . .)

to

(y, vy, vyy, . . .)

⋆ ⋆ ⋆ page 293, line 7, change

a4 = 0

to

a4 = a5 = 0

⋆ ⋆ ⋆ page 293, equations (9.30) & (9.32), change

ā6ω
3 = a6ω

3

to

ā6ω
3 = a6ω

3
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⋆ ⋆ ⋆ page 307, line 13, change

α̃κ =
∑

k zκ
j (x) θj

to

α̃κ =
∑

j zκ
j (x) θj

⋆ ⋆ ⋆ page 307, equation (10.7), change

r∑

k=1

zκ
j θj

to
m∑

j=1

zκ
j θj

⋆ ⋆ ⋆ page 309, equation (10.12), change

p∑

i=1

zκ
i θi

to
m∑

i=1

zκ
i θi

⋆ ⋆ ⋆ page 339, line 6, delete first

arc length

⋆ ⋆ ⋆ page 341, line -3, change

I4

to

I5

⋆ ⋆ ⋆ page 349, line -12, change

α1 − T 1
12θ

1 ∧ θ2 − T 1
13θ

1 ∧ θ3

to

α1 − T 1
12θ

2 − T 1
13θ

3

⋆ ⋆ ⋆ page 367, line 10, change

manifolds M

to

manifolds M and M

6



⋆ ⋆ ⋆ page 372, lines 13–16, change

However, I do not know any naturally occurring examples exhibiting this phenomenon,
and, moreover, the prolongation procedure to be discussed below will handle this (remote)
possibility as well.)

to

However, the prolongation procedure to be discussed below will handle this possibility
as well; an example is the equivalence problem for a parabolic evolution equation analyzed
in [69].)

⋆ ⋆ ⋆ page 375, line 5, change

(12.3)

to

(12.1)

⋆ ⋆ ⋆ page 394, lines 16 & 21, change

(11.6)

to

(11.7)

⋆ ⋆ ⋆ page 394, line 22, change

vector S

to

matrix S

⋆ ⋆ ⋆ page 395, equation (12.52), change

̟ = α + S θ, or explicitly, ̟i = αi +
∑m

j=1 Si
jθ

j

to

̟ = α − S θ, or explicitly, ̟i = αi −
∑m

j=1 Si
jθ

j

⋆ ⋆ ⋆ page 406, equation (12.73), change

QpD̂xQpp6Quu

to

QpD̂xQpp + 6 Quu
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⋆ ⋆ ⋆ page 411, lines 12–13, change

c(x, y, ϕ(x, y))
∂ϕ

∂x
= a(x, y, ϕ(x, y)),

c(x, y, ϕ(x, y))
∂ϕ

∂y
= b(x, y, ϕ(x, y)).

to

c(x, y, ϕ(x, y))
∂ϕ

∂x
= −a(x, y, ϕ(x, y)),

c(x, y, ϕ(x, y))
∂ϕ

∂y
= −b(x, y, ϕ(x, y)).

⋆ ⋆ ⋆ page 423, equation (14.4), change

Φ(t, w)

to

Φ(t, s)

⋆ ⋆ ⋆ pages 477, 484 & 487, update the following references:

[8] Anderson, I.M., and Kamran, N., The variational bicomplex for second order scalar
partial differential equations in the plane, Duke Math. J. 87 (1997), 265–319

[139] Komrakov, B., Primitive actions and the Sophus Lie problem, in: The Sophus

Lie Memorial Conference, Oslo, 1992, O.A. Laudal and B. Jahren, eds., Scandinavian
Univ. Press, Oslo, 1994, pp. 187–269

[190] Olver, P.J., Sapiro, G., and Tannenbaum, A., Invariant geometric evolutions of
surfaces and volumetric smoothing, SIAM J. Appl. Math. 57 (1997), 176–194.

⋆ ⋆ ⋆ page 479, ref [30], change

preprint, Selecta Math.; 1 (1995) 21–112.

to

Selecta Math. 1 (1995), 21–112.

⋆ ⋆ ⋆ page 483, reference [128], change

dx/dy

to

dy/dx

⋆ ⋆ ⋆ page 504, change two entries

affine-invariant arc length, 339

to

affine-invariant arc length, 241, 339
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