/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Don't edit this file! It is auto-generated by frameworks/rs/api/generate.sh. /* * rs_quaternion.rsh: Quaternion Functions * * The following functions manipulate quaternions. */ #ifndef RENDERSCRIPT_RS_QUATERNION_RSH #define RENDERSCRIPT_RS_QUATERNION_RSH /* * rsQuaternionAdd: Add two quaternions * * Adds two quaternions, i.e. *q += *rhs; * * Parameters: * q: Destination quaternion to add to. * rhs: Quaternion to add. */ static inline void __attribute__((overloadable)) rsQuaternionAdd(rs_quaternion* q, const rs_quaternion* rhs) { q->w *= rhs->w; q->x *= rhs->x; q->y *= rhs->y; q->z *= rhs->z; } /* * rsQuaternionConjugate: Conjugate a quaternion * * Conjugates the quaternion. * * Parameters: * q: Quaternion to modify. */ static inline void __attribute__((overloadable)) rsQuaternionConjugate(rs_quaternion* q) { q->x = -q->x; q->y = -q->y; q->z = -q->z; } /* * rsQuaternionDot: Dot product of two quaternions * * Returns the dot product of two quaternions. * * Parameters: * q0: First quaternion. * q1: Second quaternion. */ static inline float __attribute__((overloadable)) rsQuaternionDot(const rs_quaternion* q0, const rs_quaternion* q1) { return q0->w*q1->w + q0->x*q1->x + q0->y*q1->y + q0->z*q1->z; } /* * rsQuaternionGetMatrixUnit: Get a rotation matrix from a quaternion * * Computes a rotation matrix from the normalized quaternion. * * Parameters: * m: Resulting matrix. * q: Normalized quaternion. */ static inline void __attribute__((overloadable)) rsQuaternionGetMatrixUnit(rs_matrix4x4* m, const rs_quaternion* q) { float xx = q->x * q->x; float xy = q->x * q->y; float xz = q->x * q->z; float xw = q->x * q->w; float yy = q->y * q->y; float yz = q->y * q->z; float yw = q->y * q->w; float zz = q->z * q->z; float zw = q->z * q->w; m->m[0] = 1.0f - 2.0f * ( yy + zz ); m->m[4] = 2.0f * ( xy - zw ); m->m[8] = 2.0f * ( xz + yw ); m->m[1] = 2.0f * ( xy + zw ); m->m[5] = 1.0f - 2.0f * ( xx + zz ); m->m[9] = 2.0f * ( yz - xw ); m->m[2] = 2.0f * ( xz - yw ); m->m[6] = 2.0f * ( yz + xw ); m->m[10] = 1.0f - 2.0f * ( xx + yy ); m->m[3] = m->m[7] = m->m[11] = m->m[12] = m->m[13] = m->m[14] = 0.0f; m->m[15] = 1.0f; } /* * rsQuaternionLoadRotateUnit: Quaternion that represents a rotation about an arbitrary unit vector * * Loads a quaternion that represents a rotation about an arbitrary unit vector. * * Parameters: * q: Destination quaternion. * rot: Angle to rotate by, in radians. * x: X component of the vector. * y: Y component of the vector. * z: Z component of the vector. */ static inline void __attribute__((overloadable)) rsQuaternionLoadRotateUnit(rs_quaternion* q, float rot, float x, float y, float z) { rot *= (float)(M_PI / 180.0f) * 0.5f; float c = cos(rot); float s = sin(rot); q->w = c; q->x = x * s; q->y = y * s; q->z = z * s; } /* * rsQuaternionSet: Create a quaternion * * Creates a quaternion from its four components or from another quaternion. * * Parameters: * q: Destination quaternion. * w: W component. * x: X component. * y: Y component. * z: Z component. * rhs: Source quaternion. */ static inline void __attribute__((overloadable)) rsQuaternionSet(rs_quaternion* q, float w, float x, float y, float z) { q->w = w; q->x = x; q->y = y; q->z = z; } static inline void __attribute__((overloadable)) rsQuaternionSet(rs_quaternion* q, const rs_quaternion* rhs) { q->w = rhs->w; q->x = rhs->x; q->y = rhs->y; q->z = rhs->z; } /* * rsQuaternionLoadRotate: Create a rotation quaternion * * Loads a quaternion that represents a rotation about an arbitrary vector * (doesn't have to be unit) * * Parameters: * q: Destination quaternion. * rot: Angle to rotate by. * x: X component of a vector. * y: Y component of a vector. * z: Z component of a vector. */ static inline void __attribute__((overloadable)) rsQuaternionLoadRotate(rs_quaternion* q, float rot, float x, float y, float z) { const float len = x*x + y*y + z*z; if (len != 1) { const float recipLen = 1.f / sqrt(len); x *= recipLen; y *= recipLen; z *= recipLen; } rsQuaternionLoadRotateUnit(q, rot, x, y, z); } /* * rsQuaternionNormalize: Normalize a quaternion * * Normalizes the quaternion. * * Parameters: * q: Quaternion to normalize. */ static inline void __attribute__((overloadable)) rsQuaternionNormalize(rs_quaternion* q) { const float len = rsQuaternionDot(q, q); if (len != 1) { const float recipLen = 1.f / sqrt(len); q->w *= recipLen; q->x *= recipLen; q->y *= recipLen; q->z *= recipLen; } } /* * rsQuaternionMultiply: Multiply a quaternion by a scalar or another quaternion * * Multiplies a quaternion by a scalar or by another quaternion, e.g * *q = *q * scalar; or *q = *q * *rhs;. * * Parameters: * q: Destination quaternion. * scalar: Scalar to multiply the quaternion by. * rhs: Quaternion to multiply the destination quaternion by. */ static inline void __attribute__((overloadable)) rsQuaternionMultiply(rs_quaternion* q, float scalar) { q->w *= scalar; q->x *= scalar; q->y *= scalar; q->z *= scalar; } static inline void __attribute__((overloadable)) rsQuaternionMultiply(rs_quaternion* q, const rs_quaternion* rhs) { rs_quaternion qtmp; rsQuaternionSet(&qtmp, q); q->w = qtmp.w*rhs->w - qtmp.x*rhs->x - qtmp.y*rhs->y - qtmp.z*rhs->z; q->x = qtmp.w*rhs->x + qtmp.x*rhs->w + qtmp.y*rhs->z - qtmp.z*rhs->y; q->y = qtmp.w*rhs->y + qtmp.y*rhs->w + qtmp.z*rhs->x - qtmp.x*rhs->z; q->z = qtmp.w*rhs->z + qtmp.z*rhs->w + qtmp.x*rhs->y - qtmp.y*rhs->x; rsQuaternionNormalize(q); } /* * rsQuaternionSlerp: Spherical linear interpolation between two quaternions * * Performs spherical linear interpolation between two quaternions. * * Parameters: * q: Result quaternion from the interpolation. * q0: First input quaternion. * q1: Second input quaternion. * t: How much to interpolate by. */ static inline void __attribute__((overloadable)) rsQuaternionSlerp(rs_quaternion* q, const rs_quaternion* q0, const rs_quaternion* q1, float t) { if (t <= 0.0f) { rsQuaternionSet(q, q0); return; } if (t >= 1.0f) { rsQuaternionSet(q, q1); return; } rs_quaternion tempq0, tempq1; rsQuaternionSet(&tempq0, q0); rsQuaternionSet(&tempq1, q1); float angle = rsQuaternionDot(q0, q1); if (angle < 0) { rsQuaternionMultiply(&tempq0, -1.0f); angle *= -1.0f; } float scale, invScale; if (angle + 1.0f > 0.05f) { if (1.0f - angle >= 0.05f) { float theta = acos(angle); float invSinTheta = 1.0f / sin(theta); scale = sin(theta * (1.0f - t)) * invSinTheta; invScale = sin(theta * t) * invSinTheta; } else { scale = 1.0f - t; invScale = t; } } else { rsQuaternionSet(&tempq1, tempq0.z, -tempq0.y, tempq0.x, -tempq0.w); scale = sin(M_PI * (0.5f - t)); invScale = sin(M_PI * t); } rsQuaternionSet(q, tempq0.w*scale + tempq1.w*invScale, tempq0.x*scale + tempq1.x*invScale, tempq0.y*scale + tempq1.y*invScale, tempq0.z*scale + tempq1.z*invScale); } #endif // RENDERSCRIPT_RS_QUATERNION_RSH