/*===---- emmintrin.h - SSE2 intrinsics ------------------------------------=== * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * *===-----------------------------------------------------------------------=== */ #ifndef __EMMINTRIN_H #define __EMMINTRIN_H #include typedef double __m128d __attribute__((__vector_size__(16))); typedef long long __m128i __attribute__((__vector_size__(16))); /* Type defines. */ typedef double __v2df __attribute__ ((__vector_size__ (16))); typedef long long __v2di __attribute__ ((__vector_size__ (16))); typedef short __v8hi __attribute__((__vector_size__(16))); typedef char __v16qi __attribute__((__vector_size__(16))); /* Unsigned types */ typedef unsigned long long __v2du __attribute__ ((__vector_size__ (16))); typedef unsigned short __v8hu __attribute__((__vector_size__(16))); typedef unsigned char __v16qu __attribute__((__vector_size__(16))); /* We need an explicitly signed variant for char. Note that this shouldn't * appear in the interface though. */ typedef signed char __v16qs __attribute__((__vector_size__(16))); #include /* Define the default attributes for the functions in this file. */ #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse2"))) static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_add_sd(__m128d __a, __m128d __b) { __a[0] += __b[0]; return __a; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_add_pd(__m128d __a, __m128d __b) { return (__m128d)((__v2df)__a + (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_sub_sd(__m128d __a, __m128d __b) { __a[0] -= __b[0]; return __a; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_sub_pd(__m128d __a, __m128d __b) { return (__m128d)((__v2df)__a - (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_mul_sd(__m128d __a, __m128d __b) { __a[0] *= __b[0]; return __a; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_mul_pd(__m128d __a, __m128d __b) { return (__m128d)((__v2df)__a * (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_div_sd(__m128d __a, __m128d __b) { __a[0] /= __b[0]; return __a; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_div_pd(__m128d __a, __m128d __b) { return (__m128d)((__v2df)__a / (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_sqrt_sd(__m128d __a, __m128d __b) { __m128d __c = __builtin_ia32_sqrtsd((__v2df)__b); return (__m128d) { __c[0], __a[1] }; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_sqrt_pd(__m128d __a) { return __builtin_ia32_sqrtpd((__v2df)__a); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_min_sd(__m128d __a, __m128d __b) { return __builtin_ia32_minsd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_min_pd(__m128d __a, __m128d __b) { return __builtin_ia32_minpd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_max_sd(__m128d __a, __m128d __b) { return __builtin_ia32_maxsd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_max_pd(__m128d __a, __m128d __b) { return __builtin_ia32_maxpd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_and_pd(__m128d __a, __m128d __b) { return (__m128d)((__v4su)__a & (__v4su)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_andnot_pd(__m128d __a, __m128d __b) { return (__m128d)(~(__v4su)__a & (__v4su)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_or_pd(__m128d __a, __m128d __b) { return (__m128d)((__v4su)__a | (__v4su)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_xor_pd(__m128d __a, __m128d __b) { return (__m128d)((__v4su)__a ^ (__v4su)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpeq_pd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpeqpd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmplt_pd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpltpd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmple_pd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmplepd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpgt_pd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpltpd((__v2df)__b, (__v2df)__a); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpge_pd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmplepd((__v2df)__b, (__v2df)__a); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpord_pd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpordpd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpunord_pd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpunordpd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpneq_pd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpneqpd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpnlt_pd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpnltpd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpnle_pd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpnlepd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpngt_pd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpnltpd((__v2df)__b, (__v2df)__a); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpnge_pd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpnlepd((__v2df)__b, (__v2df)__a); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpeq_sd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpeqsd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmplt_sd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpltsd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmple_sd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmplesd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpgt_sd(__m128d __a, __m128d __b) { __m128d __c = __builtin_ia32_cmpltsd((__v2df)__b, (__v2df)__a); return (__m128d) { __c[0], __a[1] }; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpge_sd(__m128d __a, __m128d __b) { __m128d __c = __builtin_ia32_cmplesd((__v2df)__b, (__v2df)__a); return (__m128d) { __c[0], __a[1] }; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpord_sd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpordsd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpunord_sd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpunordsd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpneq_sd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpneqsd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpnlt_sd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpnltsd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpnle_sd(__m128d __a, __m128d __b) { return (__m128d)__builtin_ia32_cmpnlesd((__v2df)__a, (__v2df)__b); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpngt_sd(__m128d __a, __m128d __b) { __m128d __c = __builtin_ia32_cmpnltsd((__v2df)__b, (__v2df)__a); return (__m128d) { __c[0], __a[1] }; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cmpnge_sd(__m128d __a, __m128d __b) { __m128d __c = __builtin_ia32_cmpnlesd((__v2df)__b, (__v2df)__a); return (__m128d) { __c[0], __a[1] }; } static __inline__ int __DEFAULT_FN_ATTRS _mm_comieq_sd(__m128d __a, __m128d __b) { return __builtin_ia32_comisdeq((__v2df)__a, (__v2df)__b); } static __inline__ int __DEFAULT_FN_ATTRS _mm_comilt_sd(__m128d __a, __m128d __b) { return __builtin_ia32_comisdlt((__v2df)__a, (__v2df)__b); } static __inline__ int __DEFAULT_FN_ATTRS _mm_comile_sd(__m128d __a, __m128d __b) { return __builtin_ia32_comisdle((__v2df)__a, (__v2df)__b); } static __inline__ int __DEFAULT_FN_ATTRS _mm_comigt_sd(__m128d __a, __m128d __b) { return __builtin_ia32_comisdgt((__v2df)__a, (__v2df)__b); } static __inline__ int __DEFAULT_FN_ATTRS _mm_comige_sd(__m128d __a, __m128d __b) { return __builtin_ia32_comisdge((__v2df)__a, (__v2df)__b); } static __inline__ int __DEFAULT_FN_ATTRS _mm_comineq_sd(__m128d __a, __m128d __b) { return __builtin_ia32_comisdneq((__v2df)__a, (__v2df)__b); } static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomieq_sd(__m128d __a, __m128d __b) { return __builtin_ia32_ucomisdeq((__v2df)__a, (__v2df)__b); } static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomilt_sd(__m128d __a, __m128d __b) { return __builtin_ia32_ucomisdlt((__v2df)__a, (__v2df)__b); } static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomile_sd(__m128d __a, __m128d __b) { return __builtin_ia32_ucomisdle((__v2df)__a, (__v2df)__b); } static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomigt_sd(__m128d __a, __m128d __b) { return __builtin_ia32_ucomisdgt((__v2df)__a, (__v2df)__b); } static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomige_sd(__m128d __a, __m128d __b) { return __builtin_ia32_ucomisdge((__v2df)__a, (__v2df)__b); } static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomineq_sd(__m128d __a, __m128d __b) { return __builtin_ia32_ucomisdneq((__v2df)__a, (__v2df)__b); } static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cvtpd_ps(__m128d __a) { return __builtin_ia32_cvtpd2ps((__v2df)__a); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cvtps_pd(__m128 __a) { return (__m128d) __builtin_convertvector( __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 1), __v2df); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cvtepi32_pd(__m128i __a) { return (__m128d) __builtin_convertvector( __builtin_shufflevector((__v4si)__a, (__v4si)__a, 0, 1), __v2df); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtpd_epi32(__m128d __a) { return __builtin_ia32_cvtpd2dq((__v2df)__a); } static __inline__ int __DEFAULT_FN_ATTRS _mm_cvtsd_si32(__m128d __a) { return __builtin_ia32_cvtsd2si((__v2df)__a); } static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cvtsd_ss(__m128 __a, __m128d __b) { __a[0] = __b[0]; return __a; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cvtsi32_sd(__m128d __a, int __b) { __a[0] = __b; return __a; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cvtss_sd(__m128d __a, __m128 __b) { __a[0] = __b[0]; return __a; } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvttpd_epi32(__m128d __a) { return (__m128i)__builtin_ia32_cvttpd2dq((__v2df)__a); } static __inline__ int __DEFAULT_FN_ATTRS _mm_cvttsd_si32(__m128d __a) { return __a[0]; } static __inline__ __m64 __DEFAULT_FN_ATTRS _mm_cvtpd_pi32(__m128d __a) { return (__m64)__builtin_ia32_cvtpd2pi((__v2df)__a); } static __inline__ __m64 __DEFAULT_FN_ATTRS _mm_cvttpd_pi32(__m128d __a) { return (__m64)__builtin_ia32_cvttpd2pi((__v2df)__a); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cvtpi32_pd(__m64 __a) { return __builtin_ia32_cvtpi2pd((__v2si)__a); } static __inline__ double __DEFAULT_FN_ATTRS _mm_cvtsd_f64(__m128d __a) { return __a[0]; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_load_pd(double const *__dp) { return *(__m128d*)__dp; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_load1_pd(double const *__dp) { struct __mm_load1_pd_struct { double __u; } __attribute__((__packed__, __may_alias__)); double __u = ((struct __mm_load1_pd_struct*)__dp)->__u; return (__m128d){ __u, __u }; } #define _mm_load_pd1(dp) _mm_load1_pd(dp) static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_loadr_pd(double const *__dp) { __m128d __u = *(__m128d*)__dp; return __builtin_shufflevector((__v2df)__u, (__v2df)__u, 1, 0); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_loadu_pd(double const *__dp) { struct __loadu_pd { __m128d __v; } __attribute__((__packed__, __may_alias__)); return ((struct __loadu_pd*)__dp)->__v; } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_loadu_si64(void const *__a) { struct __loadu_si64 { long long __v; } __attribute__((__packed__, __may_alias__)); long long __u = ((struct __loadu_si64*)__a)->__v; return (__m128i){__u, 0L}; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_load_sd(double const *__dp) { struct __mm_load_sd_struct { double __u; } __attribute__((__packed__, __may_alias__)); double __u = ((struct __mm_load_sd_struct*)__dp)->__u; return (__m128d){ __u, 0 }; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_loadh_pd(__m128d __a, double const *__dp) { struct __mm_loadh_pd_struct { double __u; } __attribute__((__packed__, __may_alias__)); double __u = ((struct __mm_loadh_pd_struct*)__dp)->__u; return (__m128d){ __a[0], __u }; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_loadl_pd(__m128d __a, double const *__dp) { struct __mm_loadl_pd_struct { double __u; } __attribute__((__packed__, __may_alias__)); double __u = ((struct __mm_loadl_pd_struct*)__dp)->__u; return (__m128d){ __u, __a[1] }; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_undefined_pd(void) { return (__m128d)__builtin_ia32_undef128(); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_set_sd(double __w) { return (__m128d){ __w, 0 }; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_set1_pd(double __w) { return (__m128d){ __w, __w }; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_set_pd(double __w, double __x) { return (__m128d){ __x, __w }; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_setr_pd(double __w, double __x) { return (__m128d){ __w, __x }; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_setzero_pd(void) { return (__m128d){ 0, 0 }; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_move_sd(__m128d __a, __m128d __b) { return (__m128d){ __b[0], __a[1] }; } static __inline__ void __DEFAULT_FN_ATTRS _mm_store_sd(double *__dp, __m128d __a) { struct __mm_store_sd_struct { double __u; } __attribute__((__packed__, __may_alias__)); ((struct __mm_store_sd_struct*)__dp)->__u = __a[0]; } static __inline__ void __DEFAULT_FN_ATTRS _mm_store_pd(double *__dp, __m128d __a) { *(__m128d*)__dp = __a; } static __inline__ void __DEFAULT_FN_ATTRS _mm_store1_pd(double *__dp, __m128d __a) { __a = __builtin_shufflevector((__v2df)__a, (__v2df)__a, 0, 0); _mm_store_pd(__dp, __a); } static __inline__ void __DEFAULT_FN_ATTRS _mm_store_pd1(double *__dp, __m128d __a) { return _mm_store1_pd(__dp, __a); } static __inline__ void __DEFAULT_FN_ATTRS _mm_storeu_pd(double *__dp, __m128d __a) { struct __storeu_pd { __m128d __v; } __attribute__((__packed__, __may_alias__)); ((struct __storeu_pd*)__dp)->__v = __a; } static __inline__ void __DEFAULT_FN_ATTRS _mm_storer_pd(double *__dp, __m128d __a) { __a = __builtin_shufflevector((__v2df)__a, (__v2df)__a, 1, 0); *(__m128d *)__dp = __a; } static __inline__ void __DEFAULT_FN_ATTRS _mm_storeh_pd(double *__dp, __m128d __a) { struct __mm_storeh_pd_struct { double __u; } __attribute__((__packed__, __may_alias__)); ((struct __mm_storeh_pd_struct*)__dp)->__u = __a[1]; } static __inline__ void __DEFAULT_FN_ATTRS _mm_storel_pd(double *__dp, __m128d __a) { struct __mm_storeh_pd_struct { double __u; } __attribute__((__packed__, __may_alias__)); ((struct __mm_storeh_pd_struct*)__dp)->__u = __a[0]; } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_add_epi8(__m128i __a, __m128i __b) { return (__m128i)((__v16qu)__a + (__v16qu)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_add_epi16(__m128i __a, __m128i __b) { return (__m128i)((__v8hu)__a + (__v8hu)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_add_epi32(__m128i __a, __m128i __b) { return (__m128i)((__v4su)__a + (__v4su)__b); } static __inline__ __m64 __DEFAULT_FN_ATTRS _mm_add_si64(__m64 __a, __m64 __b) { return (__m64)__builtin_ia32_paddq((__v1di)__a, (__v1di)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_add_epi64(__m128i __a, __m128i __b) { return (__m128i)((__v2du)__a + (__v2du)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_adds_epi8(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_paddsb128((__v16qi)__a, (__v16qi)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_adds_epi16(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_paddsw128((__v8hi)__a, (__v8hi)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_adds_epu8(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_paddusb128((__v16qi)__a, (__v16qi)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_adds_epu16(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_paddusw128((__v8hi)__a, (__v8hi)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_avg_epu8(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_pavgb128((__v16qi)__a, (__v16qi)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_avg_epu16(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_pavgw128((__v8hi)__a, (__v8hi)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_madd_epi16(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_pmaddwd128((__v8hi)__a, (__v8hi)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epi16(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_pmaxsw128((__v8hi)__a, (__v8hi)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epu8(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_pmaxub128((__v16qi)__a, (__v16qi)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epi16(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_pminsw128((__v8hi)__a, (__v8hi)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epu8(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_pminub128((__v16qi)__a, (__v16qi)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_mulhi_epi16(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_pmulhw128((__v8hi)__a, (__v8hi)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_mulhi_epu16(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_pmulhuw128((__v8hi)__a, (__v8hi)__b); } /// \brief Multiplies the corresponding elements of two [8 x short] vectors and /// returns a vector containing the low-order 16 bits of each 32-bit product /// in the corresponding element. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPMULLW / PMULLW instruction. /// /// \param __a /// A 128-bit integer vector containing one of the source operands. /// \param __b /// A 128-bit integer vector containing one of the source operands. /// \returns A 128-bit integer vector containing the products of both operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_mullo_epi16(__m128i __a, __m128i __b) { return (__m128i)((__v8hu)__a * (__v8hu)__b); } /// \brief Multiplies 32-bit unsigned integer values contained in the lower bits /// of the two 64-bit integer vectors and returns the 64-bit unsigned /// product. /// /// \headerfile /// /// This intrinsic corresponds to the \c PMULUDQ instruction. /// /// \param __a /// A 64-bit integer containing one of the source operands. /// \param __b /// A 64-bit integer containing one of the source operands. /// \returns A 64-bit integer vector containing the product of both operands. static __inline__ __m64 __DEFAULT_FN_ATTRS _mm_mul_su32(__m64 __a, __m64 __b) { return __builtin_ia32_pmuludq((__v2si)__a, (__v2si)__b); } /// \brief Multiplies 32-bit unsigned integer values contained in the lower /// bits of the corresponding elements of two [2 x i64] vectors, and returns /// the 64-bit products in the corresponding elements of a [2 x i64] vector. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPMULUDQ / PMULUDQ instruction. /// /// \param __a /// A [2 x i64] vector containing one of the source operands. /// \param __b /// A [2 x i64] vector containing one of the source operands. /// \returns A [2 x i64] vector containing the product of both operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_mul_epu32(__m128i __a, __m128i __b) { return __builtin_ia32_pmuludq128((__v4si)__a, (__v4si)__b); } /// \brief Computes the absolute differences of corresponding 8-bit integer /// values in two 128-bit vectors. Sums the first 8 absolute differences, and /// separately sums the second 8 absolute differences. Packss these two /// unsigned 16-bit integer sums into the upper and lower elements of a /// [2 x i64] vector. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSADBW / PSADBW instruction. /// /// \param __a /// A 128-bit integer vector containing one of the source operands. /// \param __b /// A 128-bit integer vector containing one of the source operands. /// \returns A [2 x i64] vector containing the sums of the sets of absolute /// differences between both operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_sad_epu8(__m128i __a, __m128i __b) { return __builtin_ia32_psadbw128((__v16qi)__a, (__v16qi)__b); } /// \brief Subtracts the corresponding 8-bit integer values in the operands. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSUBB / PSUBB instruction. /// /// \param __a /// A 128-bit integer vector containing the minuends. /// \param __b /// A 128-bit integer vector containing the subtrahends. /// \returns A 128-bit integer vector containing the differences of the values /// in the operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_sub_epi8(__m128i __a, __m128i __b) { return (__m128i)((__v16qu)__a - (__v16qu)__b); } /// \brief Subtracts the corresponding 16-bit integer values in the operands. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSUBW / PSUBW instruction. /// /// \param __a /// A 128-bit integer vector containing the minuends. /// \param __b /// A 128-bit integer vector containing the subtrahends. /// \returns A 128-bit integer vector containing the differences of the values /// in the operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_sub_epi16(__m128i __a, __m128i __b) { return (__m128i)((__v8hu)__a - (__v8hu)__b); } /// \brief Subtracts the corresponding 32-bit integer values in the operands. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSUBD / PSUBD instruction. /// /// \param __a /// A 128-bit integer vector containing the minuends. /// \param __b /// A 128-bit integer vector containing the subtrahends. /// \returns A 128-bit integer vector containing the differences of the values /// in the operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_sub_epi32(__m128i __a, __m128i __b) { return (__m128i)((__v4su)__a - (__v4su)__b); } /// \brief Subtracts signed or unsigned 64-bit integer values and writes the /// difference to the corresponding bits in the destination. /// /// \headerfile /// /// This intrinsic corresponds to the \c PSUBQ instruction. /// /// \param __a /// A 64-bit integer vector containing the minuend. /// \param __b /// A 64-bit integer vector containing the subtrahend. /// \returns A 64-bit integer vector containing the difference of the values in /// the operands. static __inline__ __m64 __DEFAULT_FN_ATTRS _mm_sub_si64(__m64 __a, __m64 __b) { return (__m64)__builtin_ia32_psubq((__v1di)__a, (__v1di)__b); } /// \brief Subtracts the corresponding elements of two [2 x i64] vectors. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSUBQ / PSUBQ instruction. /// /// \param __a /// A 128-bit integer vector containing the minuends. /// \param __b /// A 128-bit integer vector containing the subtrahends. /// \returns A 128-bit integer vector containing the differences of the values /// in the operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_sub_epi64(__m128i __a, __m128i __b) { return (__m128i)((__v2du)__a - (__v2du)__b); } /// \brief Subtracts corresponding 8-bit signed integer values in the input and /// returns the differences in the corresponding bytes in the destination. /// Differences greater than 7Fh are saturated to 7Fh, and differences less /// than 80h are saturated to 80h. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSUBSB / PSUBSB instruction. /// /// \param __a /// A 128-bit integer vector containing the minuends. /// \param __b /// A 128-bit integer vector containing the subtrahends. /// \returns A 128-bit integer vector containing the differences of the values /// in the operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_subs_epi8(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_psubsb128((__v16qi)__a, (__v16qi)__b); } /// \brief Subtracts corresponding 16-bit signed integer values in the input and /// returns the differences in the corresponding bytes in the destination. /// Differences greater than 7FFFh are saturated to 7FFFh, and values less /// than 8000h are saturated to 8000h. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSUBSW / PSUBSW instruction. /// /// \param __a /// A 128-bit integer vector containing the minuends. /// \param __b /// A 128-bit integer vector containing the subtrahends. /// \returns A 128-bit integer vector containing the differences of the values /// in the operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_subs_epi16(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_psubsw128((__v8hi)__a, (__v8hi)__b); } /// \brief Subtracts corresponding 8-bit unsigned integer values in the input /// and returns the differences in the corresponding bytes in the /// destination. Differences less than 00h are saturated to 00h. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSUBUSB / PSUBUSB instruction. /// /// \param __a /// A 128-bit integer vector containing the minuends. /// \param __b /// A 128-bit integer vector containing the subtrahends. /// \returns A 128-bit integer vector containing the unsigned integer /// differences of the values in the operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_subs_epu8(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_psubusb128((__v16qi)__a, (__v16qi)__b); } /// \brief Subtracts corresponding 16-bit unsigned integer values in the input /// and returns the differences in the corresponding bytes in the /// destination. Differences less than 0000h are saturated to 0000h. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSUBUSW / PSUBUSW instruction. /// /// \param __a /// A 128-bit integer vector containing the minuends. /// \param __b /// A 128-bit integer vector containing the subtrahends. /// \returns A 128-bit integer vector containing the unsigned integer /// differences of the values in the operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_subs_epu16(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_psubusw128((__v8hi)__a, (__v8hi)__b); } /// \brief Performs a bitwise AND of two 128-bit integer vectors. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPAND / PAND instruction. /// /// \param __a /// A 128-bit integer vector containing one of the source operands. /// \param __b /// A 128-bit integer vector containing one of the source operands. /// \returns A 128-bit integer vector containing the bitwise AND of the values /// in both operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_and_si128(__m128i __a, __m128i __b) { return (__m128i)((__v2du)__a & (__v2du)__b); } /// \brief Performs a bitwise AND of two 128-bit integer vectors, using the /// one's complement of the values contained in the first source operand. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPANDN / PANDN instruction. /// /// \param __a /// A 128-bit vector containing the left source operand. The one's complement /// of this value is used in the bitwise AND. /// \param __b /// A 128-bit vector containing the right source operand. /// \returns A 128-bit integer vector containing the bitwise AND of the one's /// complement of the first operand and the values in the second operand. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_andnot_si128(__m128i __a, __m128i __b) { return (__m128i)(~(__v2du)__a & (__v2du)__b); } /// \brief Performs a bitwise OR of two 128-bit integer vectors. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPOR / POR instruction. /// /// \param __a /// A 128-bit integer vector containing one of the source operands. /// \param __b /// A 128-bit integer vector containing one of the source operands. /// \returns A 128-bit integer vector containing the bitwise OR of the values /// in both operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_or_si128(__m128i __a, __m128i __b) { return (__m128i)((__v2du)__a | (__v2du)__b); } /// \brief Performs a bitwise exclusive OR of two 128-bit integer vectors. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPXOR / PXOR instruction. /// /// \param __a /// A 128-bit integer vector containing one of the source operands. /// \param __b /// A 128-bit integer vector containing one of the source operands. /// \returns A 128-bit integer vector containing the bitwise exclusive OR of the /// values in both operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_xor_si128(__m128i __a, __m128i __b) { return (__m128i)((__v2du)__a ^ (__v2du)__b); } /// \brief Left-shifts the 128-bit integer vector operand by the specified /// number of bytes. Low-order bits are cleared. /// /// \headerfile /// /// \code /// __m128i _mm_slli_si128(__m128i a, const int imm); /// \endcode /// /// This intrinsic corresponds to the \c VPSLLDQ / PSLLDQ instruction. /// /// \param a /// A 128-bit integer vector containing the source operand. /// \param imm /// An immediate value specifying the number of bytes to left-shift /// operand a. /// \returns A 128-bit integer vector containing the left-shifted value. #define _mm_slli_si128(a, imm) __extension__ ({ \ (__m128i)__builtin_shufflevector( \ (__v16qi)_mm_setzero_si128(), \ (__v16qi)(__m128i)(a), \ ((char)(imm)&0xF0) ? 0 : 16 - (char)(imm), \ ((char)(imm)&0xF0) ? 1 : 17 - (char)(imm), \ ((char)(imm)&0xF0) ? 2 : 18 - (char)(imm), \ ((char)(imm)&0xF0) ? 3 : 19 - (char)(imm), \ ((char)(imm)&0xF0) ? 4 : 20 - (char)(imm), \ ((char)(imm)&0xF0) ? 5 : 21 - (char)(imm), \ ((char)(imm)&0xF0) ? 6 : 22 - (char)(imm), \ ((char)(imm)&0xF0) ? 7 : 23 - (char)(imm), \ ((char)(imm)&0xF0) ? 8 : 24 - (char)(imm), \ ((char)(imm)&0xF0) ? 9 : 25 - (char)(imm), \ ((char)(imm)&0xF0) ? 10 : 26 - (char)(imm), \ ((char)(imm)&0xF0) ? 11 : 27 - (char)(imm), \ ((char)(imm)&0xF0) ? 12 : 28 - (char)(imm), \ ((char)(imm)&0xF0) ? 13 : 29 - (char)(imm), \ ((char)(imm)&0xF0) ? 14 : 30 - (char)(imm), \ ((char)(imm)&0xF0) ? 15 : 31 - (char)(imm)); }) #define _mm_bslli_si128(a, imm) \ _mm_slli_si128((a), (imm)) /// \brief Left-shifts each 16-bit value in the 128-bit integer vector operand /// by the specified number of bits. Low-order bits are cleared. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSLLW / PSLLW instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// An integer value specifying the number of bits to left-shift each value /// in operand __a. /// \returns A 128-bit integer vector containing the left-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_slli_epi16(__m128i __a, int __count) { return (__m128i)__builtin_ia32_psllwi128((__v8hi)__a, __count); } /// \brief Left-shifts each 16-bit value in the 128-bit integer vector operand /// by the specified number of bits. Low-order bits are cleared. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSLLW / PSLLW instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// A 128-bit integer vector in which bits [63:0] specify the number of bits /// to left-shift each value in operand __a. /// \returns A 128-bit integer vector containing the left-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_sll_epi16(__m128i __a, __m128i __count) { return (__m128i)__builtin_ia32_psllw128((__v8hi)__a, (__v8hi)__count); } /// \brief Left-shifts each 32-bit value in the 128-bit integer vector operand /// by the specified number of bits. Low-order bits are cleared. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSLLD / PSLLD instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// An integer value specifying the number of bits to left-shift each value /// in operand __a. /// \returns A 128-bit integer vector containing the left-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_slli_epi32(__m128i __a, int __count) { return (__m128i)__builtin_ia32_pslldi128((__v4si)__a, __count); } /// \brief Left-shifts each 32-bit value in the 128-bit integer vector operand /// by the specified number of bits. Low-order bits are cleared. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSLLD / PSLLD instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// A 128-bit integer vector in which bits [63:0] specify the number of bits /// to left-shift each value in operand __a. /// \returns A 128-bit integer vector containing the left-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_sll_epi32(__m128i __a, __m128i __count) { return (__m128i)__builtin_ia32_pslld128((__v4si)__a, (__v4si)__count); } /// \brief Left-shifts each 64-bit value in the 128-bit integer vector operand /// by the specified number of bits. Low-order bits are cleared. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSLLQ / PSLLQ instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// An integer value specifying the number of bits to left-shift each value /// in operand __a. /// \returns A 128-bit integer vector containing the left-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_slli_epi64(__m128i __a, int __count) { return __builtin_ia32_psllqi128((__v2di)__a, __count); } /// \brief Left-shifts each 64-bit value in the 128-bit integer vector operand /// by the specified number of bits. Low-order bits are cleared. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSLLQ / PSLLQ instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// A 128-bit integer vector in which bits [63:0] specify the number of bits /// to left-shift each value in operand __a. /// \returns A 128-bit integer vector containing the left-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_sll_epi64(__m128i __a, __m128i __count) { return __builtin_ia32_psllq128((__v2di)__a, (__v2di)__count); } /// \brief Right-shifts each 16-bit value in the 128-bit integer vector operand /// by the specified number of bits. High-order bits are filled with the sign /// bit of the initial value. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSRAW / PSRAW instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// An integer value specifying the number of bits to right-shift each value /// in operand __a. /// \returns A 128-bit integer vector containing the right-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_srai_epi16(__m128i __a, int __count) { return (__m128i)__builtin_ia32_psrawi128((__v8hi)__a, __count); } /// \brief Right-shifts each 16-bit value in the 128-bit integer vector operand /// by the specified number of bits. High-order bits are filled with the sign /// bit of the initial value. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSRAW / PSRAW instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// A 128-bit integer vector in which bits [63:0] specify the number of bits /// to right-shift each value in operand __a. /// \returns A 128-bit integer vector containing the right-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_sra_epi16(__m128i __a, __m128i __count) { return (__m128i)__builtin_ia32_psraw128((__v8hi)__a, (__v8hi)__count); } /// \brief Right-shifts each 32-bit value in the 128-bit integer vector operand /// by the specified number of bits. High-order bits are filled with the sign /// bit of the initial value. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSRAD / PSRAD instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// An integer value specifying the number of bits to right-shift each value /// in operand __a. /// \returns A 128-bit integer vector containing the right-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_srai_epi32(__m128i __a, int __count) { return (__m128i)__builtin_ia32_psradi128((__v4si)__a, __count); } /// \brief Right-shifts each 32-bit value in the 128-bit integer vector operand /// by the specified number of bits. High-order bits are filled with the sign /// bit of the initial value. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSRAD / PSRAD instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// A 128-bit integer vector in which bits [63:0] specify the number of bits /// to right-shift each value in operand __a. /// \returns A 128-bit integer vector containing the right-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_sra_epi32(__m128i __a, __m128i __count) { return (__m128i)__builtin_ia32_psrad128((__v4si)__a, (__v4si)__count); } /// \brief Right-shifts the 128-bit integer vector operand by the specified /// number of bytes. High-order bits are cleared. /// /// \headerfile /// /// \code /// __m128i _mm_srli_si128(__m128i a, const int imm); /// \endcode /// /// This intrinsic corresponds to the \c VPSRLDQ / PSRLDQ instruction. /// /// \param a /// A 128-bit integer vector containing the source operand. /// \param imm /// An immediate value specifying the number of bytes to right-shift operand /// a. /// \returns A 128-bit integer vector containing the right-shifted value. #define _mm_srli_si128(a, imm) __extension__ ({ \ (__m128i)__builtin_shufflevector( \ (__v16qi)(__m128i)(a), \ (__v16qi)_mm_setzero_si128(), \ ((char)(imm)&0xF0) ? 16 : (char)(imm) + 0, \ ((char)(imm)&0xF0) ? 17 : (char)(imm) + 1, \ ((char)(imm)&0xF0) ? 18 : (char)(imm) + 2, \ ((char)(imm)&0xF0) ? 19 : (char)(imm) + 3, \ ((char)(imm)&0xF0) ? 20 : (char)(imm) + 4, \ ((char)(imm)&0xF0) ? 21 : (char)(imm) + 5, \ ((char)(imm)&0xF0) ? 22 : (char)(imm) + 6, \ ((char)(imm)&0xF0) ? 23 : (char)(imm) + 7, \ ((char)(imm)&0xF0) ? 24 : (char)(imm) + 8, \ ((char)(imm)&0xF0) ? 25 : (char)(imm) + 9, \ ((char)(imm)&0xF0) ? 26 : (char)(imm) + 10, \ ((char)(imm)&0xF0) ? 27 : (char)(imm) + 11, \ ((char)(imm)&0xF0) ? 28 : (char)(imm) + 12, \ ((char)(imm)&0xF0) ? 29 : (char)(imm) + 13, \ ((char)(imm)&0xF0) ? 30 : (char)(imm) + 14, \ ((char)(imm)&0xF0) ? 31 : (char)(imm) + 15); }) #define _mm_bsrli_si128(a, imm) \ _mm_srli_si128((a), (imm)) /// \brief Right-shifts each of 16-bit values in the 128-bit integer vector /// operand by the specified number of bits. High-order bits are cleared. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSRLW / PSRLW instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// An integer value specifying the number of bits to right-shift each value /// in operand __a. /// \returns A 128-bit integer vector containing the right-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_srli_epi16(__m128i __a, int __count) { return (__m128i)__builtin_ia32_psrlwi128((__v8hi)__a, __count); } /// \brief Right-shifts each of 16-bit values in the 128-bit integer vector /// operand by the specified number of bits. High-order bits are cleared. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSRLW / PSRLW instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// A 128-bit integer vector in which bits [63:0] specify the number of bits /// to right-shift each value in operand __a. /// \returns A 128-bit integer vector containing the right-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_srl_epi16(__m128i __a, __m128i __count) { return (__m128i)__builtin_ia32_psrlw128((__v8hi)__a, (__v8hi)__count); } /// \brief Right-shifts each of 32-bit values in the 128-bit integer vector /// operand by the specified number of bits. High-order bits are cleared. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSRLD / PSRLD instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// An integer value specifying the number of bits to right-shift each value /// in operand __a. /// \returns A 128-bit integer vector containing the right-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_srli_epi32(__m128i __a, int __count) { return (__m128i)__builtin_ia32_psrldi128((__v4si)__a, __count); } /// \brief Right-shifts each of 32-bit values in the 128-bit integer vector /// operand by the specified number of bits. High-order bits are cleared. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSRLD / PSRLD instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// A 128-bit integer vector in which bits [63:0] specify the number of bits /// to right-shift each value in operand __a. /// \returns A 128-bit integer vector containing the right-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_srl_epi32(__m128i __a, __m128i __count) { return (__m128i)__builtin_ia32_psrld128((__v4si)__a, (__v4si)__count); } /// \brief Right-shifts each of 64-bit values in the 128-bit integer vector /// operand by the specified number of bits. High-order bits are cleared. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSRLQ / PSRLQ instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// An integer value specifying the number of bits to right-shift each value /// in operand __a. /// \returns A 128-bit integer vector containing the right-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_srli_epi64(__m128i __a, int __count) { return __builtin_ia32_psrlqi128((__v2di)__a, __count); } /// \brief Right-shifts each of 64-bit values in the 128-bit integer vector /// operand by the specified number of bits. High-order bits are cleared. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPSRLQ / PSRLQ instruction. /// /// \param __a /// A 128-bit integer vector containing the source operand. /// \param __count /// A 128-bit integer vector in which bits [63:0] specify the number of bits /// to right-shift each value in operand __a. /// \returns A 128-bit integer vector containing the right-shifted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_srl_epi64(__m128i __a, __m128i __count) { return __builtin_ia32_psrlq128((__v2di)__a, (__v2di)__count); } /// \brief Compares each of the corresponding 8-bit values of the 128-bit /// integer vectors for equality. Each comparison yields 0h for false, FFh /// for true. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPCMPEQB / PCMPEQB instruction. /// /// \param __a /// A 128-bit integer vector. /// \param __b /// A 128-bit integer vector. /// \returns A 128-bit integer vector containing the comparison results. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmpeq_epi8(__m128i __a, __m128i __b) { return (__m128i)((__v16qi)__a == (__v16qi)__b); } /// \brief Compares each of the corresponding 16-bit values of the 128-bit /// integer vectors for equality. Each comparison yields 0h for false, FFFFh /// for true. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPCMPEQW / PCMPEQW instruction. /// /// \param __a /// A 128-bit integer vector. /// \param __b /// A 128-bit integer vector. /// \returns A 128-bit integer vector containing the comparison results. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmpeq_epi16(__m128i __a, __m128i __b) { return (__m128i)((__v8hi)__a == (__v8hi)__b); } /// \brief Compares each of the corresponding 32-bit values of the 128-bit /// integer vectors for equality. Each comparison yields 0h for false, /// FFFFFFFFh for true. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPCMPEQD / PCMPEQD instruction. /// /// \param __a /// A 128-bit integer vector. /// \param __b /// A 128-bit integer vector. /// \returns A 128-bit integer vector containing the comparison results. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmpeq_epi32(__m128i __a, __m128i __b) { return (__m128i)((__v4si)__a == (__v4si)__b); } /// \brief Compares each of the corresponding signed 8-bit values of the 128-bit /// integer vectors to determine if the values in the first operand are /// greater than those in the second operand. Each comparison yields 0h for /// false, FFh for true. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPCMPGTB / PCMPGTB instruction. /// /// \param __a /// A 128-bit integer vector. /// \param __b /// A 128-bit integer vector. /// \returns A 128-bit integer vector containing the comparison results. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmpgt_epi8(__m128i __a, __m128i __b) { /* This function always performs a signed comparison, but __v16qi is a char which may be signed or unsigned, so use __v16qs. */ return (__m128i)((__v16qs)__a > (__v16qs)__b); } /// \brief Compares each of the corresponding signed 16-bit values of the /// 128-bit integer vectors to determine if the values in the first operand /// are greater than those in the second operand. Each comparison yields 0h /// for false, FFFFh for true. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPCMPGTW / PCMPGTW instruction. /// /// \param __a /// A 128-bit integer vector. /// \param __b /// A 128-bit integer vector. /// \returns A 128-bit integer vector containing the comparison results. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmpgt_epi16(__m128i __a, __m128i __b) { return (__m128i)((__v8hi)__a > (__v8hi)__b); } /// \brief Compares each of the corresponding signed 32-bit values of the /// 128-bit integer vectors to determine if the values in the first operand /// are greater than those in the second operand. Each comparison yields 0h /// for false, FFFFFFFFh for true. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPCMPGTD / PCMPGTD instruction. /// /// \param __a /// A 128-bit integer vector. /// \param __b /// A 128-bit integer vector. /// \returns A 128-bit integer vector containing the comparison results. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmpgt_epi32(__m128i __a, __m128i __b) { return (__m128i)((__v4si)__a > (__v4si)__b); } /// \brief Compares each of the corresponding signed 8-bit values of the 128-bit /// integer vectors to determine if the values in the first operand are less /// than those in the second operand. Each comparison yields 0h for false, /// FFh for true. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPCMPGTB / PCMPGTB instruction. /// /// \param __a /// A 128-bit integer vector. /// \param __b /// A 128-bit integer vector. /// \returns A 128-bit integer vector containing the comparison results. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmplt_epi8(__m128i __a, __m128i __b) { return _mm_cmpgt_epi8(__b, __a); } /// \brief Compares each of the corresponding signed 16-bit values of the /// 128-bit integer vectors to determine if the values in the first operand /// are less than those in the second operand. Each comparison yields 0h for /// false, FFFFh for true. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPCMPGTW / PCMPGTW instruction. /// /// \param __a /// A 128-bit integer vector. /// \param __b /// A 128-bit integer vector. /// \returns A 128-bit integer vector containing the comparison results. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmplt_epi16(__m128i __a, __m128i __b) { return _mm_cmpgt_epi16(__b, __a); } /// \brief Compares each of the corresponding signed 32-bit values of the /// 128-bit integer vectors to determine if the values in the first operand /// are less than those in the second operand. Each comparison yields 0h for /// false, FFFFFFFFh for true. /// /// \headerfile /// /// This intrinsic corresponds to the \c VPCMPGTD / PCMPGTD instruction. /// /// \param __a /// A 128-bit integer vector. /// \param __b /// A 128-bit integer vector. /// \returns A 128-bit integer vector containing the comparison results. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmplt_epi32(__m128i __a, __m128i __b) { return _mm_cmpgt_epi32(__b, __a); } #ifdef __x86_64__ /// \brief Converts a 64-bit signed integer value from the second operand into a /// double-precision value and returns it in the lower element of a [2 x /// double] vector; the upper element of the returned vector is copied from /// the upper element of the first operand. /// /// \headerfile /// /// This intrinsic corresponds to the \c VCVTSI2SD / CVTSI2SD instruction. /// /// \param __a /// A 128-bit vector of [2 x double]. The upper 64 bits of this operand are /// copied to the upper 64 bits of the destination. /// \param __b /// A 64-bit signed integer operand containing the value to be converted. /// \returns A 128-bit vector of [2 x double] whose lower 64 bits contain the /// converted value of the second operand. The upper 64 bits are copied from /// the upper 64 bits of the first operand. static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_cvtsi64_sd(__m128d __a, long long __b) { __a[0] = __b; return __a; } /// \brief Converts the first (lower) element of a vector of [2 x double] into a /// 64-bit signed integer value, according to the current rounding mode. /// /// \headerfile /// /// This intrinsic corresponds to the \c VCVTSD2SI / CVTSD2SI instruction. /// /// \param __a /// A 128-bit vector of [2 x double]. The lower 64 bits are used in the /// conversion. /// \returns A 64-bit signed integer containing the converted value. static __inline__ long long __DEFAULT_FN_ATTRS _mm_cvtsd_si64(__m128d __a) { return __builtin_ia32_cvtsd2si64((__v2df)__a); } /// \brief Converts the first (lower) element of a vector of [2 x double] into a /// 64-bit signed integer value, truncating the result when it is inexact. /// /// \headerfile /// /// This intrinsic corresponds to the \c VCVTTSD2SI / CVTTSD2SI instruction. /// /// \param __a /// A 128-bit vector of [2 x double]. The lower 64 bits are used in the /// conversion. /// \returns A 64-bit signed integer containing the converted value. static __inline__ long long __DEFAULT_FN_ATTRS _mm_cvttsd_si64(__m128d __a) { return __a[0]; } #endif /// \brief Converts a vector of [4 x i32] into a vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the \c VCVTDQ2PS / CVTDQ2PS instruction. /// /// \param __a /// A 128-bit integer vector. /// \returns A 128-bit vector of [4 x float] containing the converted values. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cvtepi32_ps(__m128i __a) { return __builtin_ia32_cvtdq2ps((__v4si)__a); } /// \brief Converts a vector of [4 x float] into a vector of [4 x i32]. /// /// \headerfile /// /// This intrinsic corresponds to the \c VCVTPS2DQ / CVTPS2DQ instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \returns A 128-bit integer vector of [4 x i32] containing the converted /// values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtps_epi32(__m128 __a) { return (__m128i)__builtin_ia32_cvtps2dq((__v4sf)__a); } /// \brief Converts a vector of [4 x float] into a vector of [4 x i32], /// truncating the result when it is inexact. /// /// \headerfile /// /// This intrinsic corresponds to the \c VCVTTPS2DQ / CVTTPS2DQ instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x i32] containing the converted values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvttps_epi32(__m128 __a) { return (__m128i)__builtin_convertvector((__v4sf)__a, __v4si); } /// \brief Returns a vector of [4 x i32] where the lowest element is the input /// operand and the remaining elements are zero. /// /// \headerfile /// /// This intrinsic corresponds to the \c VMOVD / MOVD instruction. /// /// \param __a /// A 32-bit signed integer operand. /// \returns A 128-bit vector of [4 x i32]. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtsi32_si128(int __a) { return (__m128i)(__v4si){ __a, 0, 0, 0 }; } #ifdef __x86_64__ /// \brief Returns a vector of [2 x i64] where the lower element is the input /// operand and the upper element is zero. /// /// \headerfile /// /// This intrinsic corresponds to the \c VMOVQ / MOVQ instruction. /// /// \param __a /// A 64-bit signed integer operand containing the value to be converted. /// \returns A 128-bit vector of [2 x i64] containing the converted value. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtsi64_si128(long long __a) { return (__m128i){ __a, 0 }; } #endif /// \brief Moves the least significant 32 bits of a vector of [4 x i32] to a /// 32-bit signed integer value. /// /// \headerfile /// /// This intrinsic corresponds to the \c VMOVD / MOVD instruction. /// /// \param __a /// A vector of [4 x i32]. The least significant 32 bits are moved to the /// destination. /// \returns A 32-bit signed integer containing the moved value. static __inline__ int __DEFAULT_FN_ATTRS _mm_cvtsi128_si32(__m128i __a) { __v4si __b = (__v4si)__a; return __b[0]; } #ifdef __x86_64__ /// \brief Moves the least significant 64 bits of a vector of [2 x i64] to a /// 64-bit signed integer value. /// /// \headerfile /// /// This intrinsic corresponds to the \c VMOVQ / MOVQ instruction. /// /// \param __a /// A vector of [2 x i64]. The least significant 64 bits are moved to the /// destination. /// \returns A 64-bit signed integer containing the moved value. static __inline__ long long __DEFAULT_FN_ATTRS _mm_cvtsi128_si64(__m128i __a) { return __a[0]; } #endif /// \brief Moves packed integer values from an aligned 128-bit memory location /// to elements in a 128-bit integer vector. /// /// \headerfile /// /// This intrinsic corresponds to the \c VMOVDQA / MOVDQA instruction. /// /// \param __p /// An aligned pointer to a memory location containing integer values. /// \returns A 128-bit integer vector containing the moved values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_load_si128(__m128i const *__p) { return *__p; } /// \brief Moves packed integer values from an unaligned 128-bit memory location /// to elements in a 128-bit integer vector. /// /// \headerfile /// /// This intrinsic corresponds to the \c VMOVDQU / MOVDQU instruction. /// /// \param __p /// A pointer to a memory location containing integer values. /// \returns A 128-bit integer vector containing the moved values. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_loadu_si128(__m128i const *__p) { struct __loadu_si128 { __m128i __v; } __attribute__((__packed__, __may_alias__)); return ((struct __loadu_si128*)__p)->__v; } /// \brief Returns a vector of [2 x i64] where the lower element is taken from /// the lower element of the operand, and the upper element is zero. /// /// \headerfile /// /// This intrinsic corresponds to the \c VMOVQ / MOVQ instruction. /// /// \param __p /// A 128-bit vector of [2 x i64]. Bits [63:0] are written to bits [63:0] of /// the destination. /// \returns A 128-bit vector of [2 x i64]. The lower order bits contain the /// moved value. The higher order bits are cleared. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_loadl_epi64(__m128i const *__p) { struct __mm_loadl_epi64_struct { long long __u; } __attribute__((__packed__, __may_alias__)); return (__m128i) { ((struct __mm_loadl_epi64_struct*)__p)->__u, 0}; } /// \brief Generates a 128-bit vector of [4 x i32] with unspecified content. /// This could be used as an argument to another intrinsic function where the /// argument is required but the value is not actually used. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \returns A 128-bit vector of [4 x i32] with unspecified content. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_undefined_si128(void) { return (__m128i)__builtin_ia32_undef128(); } /// \brief Initializes both 64-bit values in a 128-bit vector of [2 x i64] with /// the specified 64-bit integer values. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __q1 /// A 64-bit integer value used to initialize the upper 64 bits of the /// destination vector of [2 x i64]. /// \param __q0 /// A 64-bit integer value used to initialize the lower 64 bits of the /// destination vector of [2 x i64]. /// \returns An initialized 128-bit vector of [2 x i64] containing the values /// provided in the operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_set_epi64x(long long __q1, long long __q0) { return (__m128i){ __q0, __q1 }; } /// \brief Initializes both 64-bit values in a 128-bit vector of [2 x i64] with /// the specified 64-bit integer values. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __q1 /// A 64-bit integer value used to initialize the upper 64 bits of the /// destination vector of [2 x i64]. /// \param __q0 /// A 64-bit integer value used to initialize the lower 64 bits of the /// destination vector of [2 x i64]. /// \returns An initialized 128-bit vector of [2 x i64] containing the values /// provided in the operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_set_epi64(__m64 __q1, __m64 __q0) { return (__m128i){ (long long)__q0, (long long)__q1 }; } /// \brief Initializes the 32-bit values in a 128-bit vector of [4 x i32] with /// the specified 32-bit integer values. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __i3 /// A 32-bit integer value used to initialize bits [127:96] of the /// destination vector. /// \param __i2 /// A 32-bit integer value used to initialize bits [95:64] of the destination /// vector. /// \param __i1 /// A 32-bit integer value used to initialize bits [63:32] of the destination /// vector. /// \param __i0 /// A 32-bit integer value used to initialize bits [31:0] of the destination /// vector. /// \returns An initialized 128-bit vector of [4 x i32] containing the values /// provided in the operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_set_epi32(int __i3, int __i2, int __i1, int __i0) { return (__m128i)(__v4si){ __i0, __i1, __i2, __i3}; } /// \brief Initializes the 16-bit values in a 128-bit vector of [8 x i16] with /// the specified 16-bit integer values. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __w7 /// A 16-bit integer value used to initialize bits [127:112] of the /// destination vector. /// \param __w6 /// A 16-bit integer value used to initialize bits [111:96] of the /// destination vector. /// \param __w5 /// A 16-bit integer value used to initialize bits [95:80] of the destination /// vector. /// \param __w4 /// A 16-bit integer value used to initialize bits [79:64] of the destination /// vector. /// \param __w3 /// A 16-bit integer value used to initialize bits [63:48] of the destination /// vector. /// \param __w2 /// A 16-bit integer value used to initialize bits [47:32] of the destination /// vector. /// \param __w1 /// A 16-bit integer value used to initialize bits [31:16] of the destination /// vector. /// \param __w0 /// A 16-bit integer value used to initialize bits [15:0] of the destination /// vector. /// \returns An initialized 128-bit vector of [8 x i16] containing the values /// provided in the operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_set_epi16(short __w7, short __w6, short __w5, short __w4, short __w3, short __w2, short __w1, short __w0) { return (__m128i)(__v8hi){ __w0, __w1, __w2, __w3, __w4, __w5, __w6, __w7 }; } /// \brief Initializes the 8-bit values in a 128-bit vector of [16 x i8] with /// the specified 8-bit integer values. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __b15 /// Initializes bits [127:120] of the destination vector. /// \param __b14 /// Initializes bits [119:112] of the destination vector. /// \param __b13 /// Initializes bits [111:104] of the destination vector. /// \param __b12 /// Initializes bits [103:96] of the destination vector. /// \param __b11 /// Initializes bits [95:88] of the destination vector. /// \param __b10 /// Initializes bits [87:80] of the destination vector. /// \param __b9 /// Initializes bits [79:72] of the destination vector. /// \param __b8 /// Initializes bits [71:64] of the destination vector. /// \param __b7 /// Initializes bits [63:56] of the destination vector. /// \param __b6 /// Initializes bits [55:48] of the destination vector. /// \param __b5 /// Initializes bits [47:40] of the destination vector. /// \param __b4 /// Initializes bits [39:32] of the destination vector. /// \param __b3 /// Initializes bits [31:24] of the destination vector. /// \param __b2 /// Initializes bits [23:16] of the destination vector. /// \param __b1 /// Initializes bits [15:8] of the destination vector. /// \param __b0 /// Initializes bits [7:0] of the destination vector. /// \returns An initialized 128-bit vector of [16 x i8] containing the values /// provided in the operands. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_set_epi8(char __b15, char __b14, char __b13, char __b12, char __b11, char __b10, char __b9, char __b8, char __b7, char __b6, char __b5, char __b4, char __b3, char __b2, char __b1, char __b0) { return (__m128i)(__v16qi){ __b0, __b1, __b2, __b3, __b4, __b5, __b6, __b7, __b8, __b9, __b10, __b11, __b12, __b13, __b14, __b15 }; } /// \brief Initializes both values in a 128-bit integer vector with the /// specified 64-bit integer value. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __q /// Integer value used to initialize the elements of the destination integer /// vector. /// \returns An initialized 128-bit integer vector of [2 x i64] with both /// elements containing the value provided in the operand. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_set1_epi64x(long long __q) { return (__m128i){ __q, __q }; } /// \brief Initializes both values in a 128-bit vector of [2 x i64] with the /// specified 64-bit value. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __q /// A 64-bit value used to initialize the elements of the destination integer /// vector. /// \returns An initialized 128-bit vector of [2 x i64] with all elements /// containing the value provided in the operand. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_set1_epi64(__m64 __q) { return (__m128i){ (long long)__q, (long long)__q }; } /// \brief Initializes all values in a 128-bit vector of [4 x i32] with the /// specified 32-bit value. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __i /// A 32-bit value used to initialize the elements of the destination integer /// vector. /// \returns An initialized 128-bit vector of [4 x i32] with all elements /// containing the value provided in the operand. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_set1_epi32(int __i) { return (__m128i)(__v4si){ __i, __i, __i, __i }; } /// \brief Initializes all values in a 128-bit vector of [8 x i16] with the /// specified 16-bit value. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __w /// A 16-bit value used to initialize the elements of the destination integer /// vector. /// \returns An initialized 128-bit vector of [8 x i16] with all elements /// containing the value provided in the operand. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_set1_epi16(short __w) { return (__m128i)(__v8hi){ __w, __w, __w, __w, __w, __w, __w, __w }; } /// \brief Initializes all values in a 128-bit vector of [16 x i8] with the /// specified 8-bit value. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __b /// An 8-bit value used to initialize the elements of the destination integer /// vector. /// \returns An initialized 128-bit vector of [16 x i8] with all elements /// containing the value provided in the operand. static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_set1_epi8(char __b) { return (__m128i)(__v16qi){ __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b }; } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_setr_epi64(__m64 __q0, __m64 __q1) { return (__m128i){ (long long)__q0, (long long)__q1 }; } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_setr_epi32(int __i0, int __i1, int __i2, int __i3) { return (__m128i)(__v4si){ __i0, __i1, __i2, __i3}; } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_setr_epi16(short __w0, short __w1, short __w2, short __w3, short __w4, short __w5, short __w6, short __w7) { return (__m128i)(__v8hi){ __w0, __w1, __w2, __w3, __w4, __w5, __w6, __w7 }; } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_setr_epi8(char __b0, char __b1, char __b2, char __b3, char __b4, char __b5, char __b6, char __b7, char __b8, char __b9, char __b10, char __b11, char __b12, char __b13, char __b14, char __b15) { return (__m128i)(__v16qi){ __b0, __b1, __b2, __b3, __b4, __b5, __b6, __b7, __b8, __b9, __b10, __b11, __b12, __b13, __b14, __b15 }; } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_setzero_si128(void) { return (__m128i){ 0LL, 0LL }; } static __inline__ void __DEFAULT_FN_ATTRS _mm_store_si128(__m128i *__p, __m128i __b) { *__p = __b; } static __inline__ void __DEFAULT_FN_ATTRS _mm_storeu_si128(__m128i *__p, __m128i __b) { struct __storeu_si128 { __m128i __v; } __attribute__((__packed__, __may_alias__)); ((struct __storeu_si128*)__p)->__v = __b; } static __inline__ void __DEFAULT_FN_ATTRS _mm_maskmoveu_si128(__m128i __d, __m128i __n, char *__p) { __builtin_ia32_maskmovdqu((__v16qi)__d, (__v16qi)__n, __p); } static __inline__ void __DEFAULT_FN_ATTRS _mm_storel_epi64(__m128i *__p, __m128i __a) { struct __mm_storel_epi64_struct { long long __u; } __attribute__((__packed__, __may_alias__)); ((struct __mm_storel_epi64_struct*)__p)->__u = __a[0]; } static __inline__ void __DEFAULT_FN_ATTRS _mm_stream_pd(double *__p, __m128d __a) { __builtin_nontemporal_store((__v2df)__a, (__v2df*)__p); } static __inline__ void __DEFAULT_FN_ATTRS _mm_stream_si128(__m128i *__p, __m128i __a) { __builtin_nontemporal_store((__v2di)__a, (__v2di*)__p); } static __inline__ void __DEFAULT_FN_ATTRS _mm_stream_si32(int *__p, int __a) { __builtin_ia32_movnti(__p, __a); } #ifdef __x86_64__ static __inline__ void __DEFAULT_FN_ATTRS _mm_stream_si64(long long *__p, long long __a) { __builtin_ia32_movnti64(__p, __a); } #endif static __inline__ void __DEFAULT_FN_ATTRS _mm_clflush(void const *__p) { __builtin_ia32_clflush(__p); } static __inline__ void __DEFAULT_FN_ATTRS _mm_lfence(void) { __builtin_ia32_lfence(); } static __inline__ void __DEFAULT_FN_ATTRS _mm_mfence(void) { __builtin_ia32_mfence(); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_packs_epi16(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_packsswb128((__v8hi)__a, (__v8hi)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_packs_epi32(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_packssdw128((__v4si)__a, (__v4si)__b); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_packus_epi16(__m128i __a, __m128i __b) { return (__m128i)__builtin_ia32_packuswb128((__v8hi)__a, (__v8hi)__b); } static __inline__ int __DEFAULT_FN_ATTRS _mm_extract_epi16(__m128i __a, int __imm) { __v8hi __b = (__v8hi)__a; return (unsigned short)__b[__imm & 7]; } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_insert_epi16(__m128i __a, int __b, int __imm) { __v8hi __c = (__v8hi)__a; __c[__imm & 7] = __b; return (__m128i)__c; } static __inline__ int __DEFAULT_FN_ATTRS _mm_movemask_epi8(__m128i __a) { return __builtin_ia32_pmovmskb128((__v16qi)__a); } #define _mm_shuffle_epi32(a, imm) __extension__ ({ \ (__m128i)__builtin_shufflevector((__v4si)(__m128i)(a), \ (__v4si)_mm_undefined_si128(), \ ((imm) >> 0) & 0x3, ((imm) >> 2) & 0x3, \ ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); }) #define _mm_shufflelo_epi16(a, imm) __extension__ ({ \ (__m128i)__builtin_shufflevector((__v8hi)(__m128i)(a), \ (__v8hi)_mm_undefined_si128(), \ ((imm) >> 0) & 0x3, ((imm) >> 2) & 0x3, \ ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3, \ 4, 5, 6, 7); }) #define _mm_shufflehi_epi16(a, imm) __extension__ ({ \ (__m128i)__builtin_shufflevector((__v8hi)(__m128i)(a), \ (__v8hi)_mm_undefined_si128(), \ 0, 1, 2, 3, \ 4 + (((imm) >> 0) & 0x3), \ 4 + (((imm) >> 2) & 0x3), \ 4 + (((imm) >> 4) & 0x3), \ 4 + (((imm) >> 6) & 0x3)); }) static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_unpackhi_epi8(__m128i __a, __m128i __b) { return (__m128i)__builtin_shufflevector((__v16qi)__a, (__v16qi)__b, 8, 16+8, 9, 16+9, 10, 16+10, 11, 16+11, 12, 16+12, 13, 16+13, 14, 16+14, 15, 16+15); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_unpackhi_epi16(__m128i __a, __m128i __b) { return (__m128i)__builtin_shufflevector((__v8hi)__a, (__v8hi)__b, 4, 8+4, 5, 8+5, 6, 8+6, 7, 8+7); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_unpackhi_epi32(__m128i __a, __m128i __b) { return (__m128i)__builtin_shufflevector((__v4si)__a, (__v4si)__b, 2, 4+2, 3, 4+3); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_unpackhi_epi64(__m128i __a, __m128i __b) { return (__m128i)__builtin_shufflevector((__v2di)__a, (__v2di)__b, 1, 2+1); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_unpacklo_epi8(__m128i __a, __m128i __b) { return (__m128i)__builtin_shufflevector((__v16qi)__a, (__v16qi)__b, 0, 16+0, 1, 16+1, 2, 16+2, 3, 16+3, 4, 16+4, 5, 16+5, 6, 16+6, 7, 16+7); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_unpacklo_epi16(__m128i __a, __m128i __b) { return (__m128i)__builtin_shufflevector((__v8hi)__a, (__v8hi)__b, 0, 8+0, 1, 8+1, 2, 8+2, 3, 8+3); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_unpacklo_epi32(__m128i __a, __m128i __b) { return (__m128i)__builtin_shufflevector((__v4si)__a, (__v4si)__b, 0, 4+0, 1, 4+1); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_unpacklo_epi64(__m128i __a, __m128i __b) { return (__m128i)__builtin_shufflevector((__v2di)__a, (__v2di)__b, 0, 2+0); } static __inline__ __m64 __DEFAULT_FN_ATTRS _mm_movepi64_pi64(__m128i __a) { return (__m64)__a[0]; } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_movpi64_epi64(__m64 __a) { return (__m128i){ (long long)__a, 0 }; } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_move_epi64(__m128i __a) { return __builtin_shufflevector((__v2di)__a, (__m128i){ 0 }, 0, 2); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_unpackhi_pd(__m128d __a, __m128d __b) { return __builtin_shufflevector((__v2df)__a, (__v2df)__b, 1, 2+1); } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_unpacklo_pd(__m128d __a, __m128d __b) { return __builtin_shufflevector((__v2df)__a, (__v2df)__b, 0, 2+0); } static __inline__ int __DEFAULT_FN_ATTRS _mm_movemask_pd(__m128d __a) { return __builtin_ia32_movmskpd((__v2df)__a); } #define _mm_shuffle_pd(a, b, i) __extension__ ({ \ (__m128d)__builtin_shufflevector((__v2df)(__m128d)(a), (__v2df)(__m128d)(b), \ 0 + (((i) >> 0) & 0x1), \ 2 + (((i) >> 1) & 0x1)); }) static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_castpd_ps(__m128d __a) { return (__m128)__a; } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_castpd_si128(__m128d __a) { return (__m128i)__a; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_castps_pd(__m128 __a) { return (__m128d)__a; } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_castps_si128(__m128 __a) { return (__m128i)__a; } static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_castsi128_ps(__m128i __a) { return (__m128)__a; } static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_castsi128_pd(__m128i __a) { return (__m128d)__a; } static __inline__ void __DEFAULT_FN_ATTRS _mm_pause(void) { __builtin_ia32_pause(); } #undef __DEFAULT_FN_ATTRS #define _MM_SHUFFLE2(x, y) (((x) << 1) | (y)) #endif /* __EMMINTRIN_H */