/** * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.android.internal.util; import android.os.Handler; import android.os.HandlerThread; import android.os.Looper; import android.os.Message; import android.util.Log; import java.util.ArrayList; import java.util.HashMap; import java.util.Vector; /** * {@hide} * *

The state machine defined here is a hierarchical state machine which processes messages * and can have states arranged hierarchically.

* *

A state is a State object and must implement * processMessage and optionally enter/exit/getName. * The enter/exit methods are equivalent to the construction and destruction * in Object Oriented programming and are used to perform initialization and * cleanup of the state respectively. The getName method returns the * name of the state the default implementation returns the class name it may be * desirable to have this return the name of the state instance name instead. * In particular if a particular state class has multiple instances.

* *

When a state machine is created addState is used to build the * hierarchy and setInitialState is used to identify which of these * is the initial state. After construction the programmer calls start * which initializes the state machine and calls enter for all of the initial * state's hierarchy, starting at its eldest parent. For example given the simple * state machine below after start is called mP1.enter will have been called and * then mS1.enter.

mP1 / \ mS2 mS1 ----> initial state *

After the state machine is created and started, messages are sent to a state * machine using sendMessage and the messages are created using * obtainMessage. When the state machine receives a message the * current state's processMessage is invoked. In the above example * mS1.processMessage will be invoked first. The state may use transitionTo * to change the current state to a new state

* *

Each state in the state machine may have a zero or one parent states and if * a child state is unable to handle a message it may have the message processed * by its parent by returning false or NOT_HANDLED. If a message is never processed * unhandledMessage will be invoked to give one last chance for the state machine * to process the message.

* *

When all processing is completed a state machine may choose to call * transitionToHaltingState. When the current processingMessage * returns the state machine will transfer to an internal HaltingState * and invoke halting. Any message subsequently received by the state * machine will cause haltedProcessMessage to be invoked.

* *

If it is desirable to completely stop the state machine call quit. This * will exit the current state and its parent and then exit from the controlling thread * and no further messages will be processed.

* *

In addition to processMessage each State has * an enter method and exit method which may be overridden.

* *

Since the states are arranged in a hierarchy transitioning to a new state * causes current states to be exited and new states to be entered. To determine * the list of states to be entered/exited the common parent closest to * the current state is found. We then exit from the current state and its * parent's up to but not including the common parent state and then enter all * of the new states below the common parent down to the destination state. * If there is no common parent all states are exited and then the new states * are entered.

* *

Two other methods that states can use are deferMessage and * sendMessageAtFrontOfQueue. The sendMessageAtFrontOfQueue sends * a message but places it on the front of the queue rather than the back. The * deferMessage causes the message to be saved on a list until a * transition is made to a new state. At which time all of the deferred messages * will be put on the front of the state machine queue with the oldest message * at the front. These will then be processed by the new current state before * any other messages that are on the queue or might be added later. Both of * these are protected and may only be invoked from within a state machine.

* *

To illustrate some of these properties we'll use state machine with an 8 * state hierarchy:

mP0 / \ mP1 mS0 / \ mS2 mS1 / \ \ mS3 mS4 mS5 ---> initial state *

After starting mS5 the list of active states is mP0, mP1, mS1 and mS5. * So the order of calling processMessage when a message is received is mS5, * mS1, mP1, mP0 assuming each processMessage indicates it can't handle this * message by returning false or NOT_HANDLED.

* *

Now assume mS5.processMessage receives a message it can handle, and during * the handling determines the machine should change states. It could call * transitionTo(mS4) and return true or HANDLED. Immediately after returning from * processMessage the state machine runtime will find the common parent, * which is mP1. It will then call mS5.exit, mS1.exit, mS2.enter and then * mS4.enter. The new list of active states is mP0, mP1, mS2 and mS4. So * when the next message is received mS4.processMessage will be invoked.

* *

Now for some concrete examples, here is the canonical HelloWorld as a state machine. * It responds with "Hello World" being printed to the log for every message.

class HelloWorld extends StateMachine { HelloWorld(String name) { super(name); addState(mState1); setInitialState(mState1); } public static HelloWorld makeHelloWorld() { HelloWorld hw = new HelloWorld("hw"); hw.start(); return hw; } class State1 extends State { @Override public boolean processMessage(Message message) { Log.d(TAG, "Hello World"); return HANDLED; } } State1 mState1 = new State1(); } void testHelloWorld() { HelloWorld hw = makeHelloWorld(); hw.sendMessage(hw.obtainMessage()); } *

A more interesting state machine is one with four states * with two independent parent states.

mP1 mP2 / \ mS2 mS1 *

Here is a description of this state machine using pseudo code.

state mP1 { enter { log("mP1.enter"); } exit { log("mP1.exit"); } on msg { CMD_2 { send(CMD_3); defer(msg); transitonTo(mS2); return HANDLED; } return NOT_HANDLED; } } INITIAL state mS1 parent mP1 { enter { log("mS1.enter"); } exit { log("mS1.exit"); } on msg { CMD_1 { transitionTo(mS1); return HANDLED; } return NOT_HANDLED; } } state mS2 parent mP1 { enter { log("mS2.enter"); } exit { log("mS2.exit"); } on msg { CMD_2 { send(CMD_4); return HANDLED; } CMD_3 { defer(msg); transitionTo(mP2); return HANDLED; } return NOT_HANDLED; } } state mP2 { enter { log("mP2.enter"); send(CMD_5); } exit { log("mP2.exit"); } on msg { CMD_3, CMD_4 { return HANDLED; } CMD_5 { transitionTo(HaltingState); return HANDLED; } return NOT_HANDLED; } } *

The implementation is below and also in StateMachineTest:

class Hsm1 extends StateMachine { private static final String TAG = "hsm1"; public static final int CMD_1 = 1; public static final int CMD_2 = 2; public static final int CMD_3 = 3; public static final int CMD_4 = 4; public static final int CMD_5 = 5; public static Hsm1 makeHsm1() { Log.d(TAG, "makeHsm1 E"); Hsm1 sm = new Hsm1("hsm1"); sm.start(); Log.d(TAG, "makeHsm1 X"); return sm; } Hsm1(String name) { super(name); Log.d(TAG, "ctor E"); // Add states, use indentation to show hierarchy addState(mP1); addState(mS1, mP1); addState(mS2, mP1); addState(mP2); // Set the initial state setInitialState(mS1); Log.d(TAG, "ctor X"); } class P1 extends State { @Override public void enter() { Log.d(TAG, "mP1.enter"); } @Override public boolean processMessage(Message message) { boolean retVal; Log.d(TAG, "mP1.processMessage what=" + message.what); switch(message.what) { case CMD_2: // CMD_2 will arrive in mS2 before CMD_3 sendMessage(obtainMessage(CMD_3)); deferMessage(message); transitionTo(mS2); retVal = HANDLED; break; default: // Any message we don't understand in this state invokes unhandledMessage retVal = NOT_HANDLED; break; } return retVal; } @Override public void exit() { Log.d(TAG, "mP1.exit"); } } class S1 extends State { @Override public void enter() { Log.d(TAG, "mS1.enter"); } @Override public boolean processMessage(Message message) { Log.d(TAG, "S1.processMessage what=" + message.what); if (message.what == CMD_1) { // Transition to ourself to show that enter/exit is called transitionTo(mS1); return HANDLED; } else { // Let parent process all other messages return NOT_HANDLED; } } @Override public void exit() { Log.d(TAG, "mS1.exit"); } } class S2 extends State { @Override public void enter() { Log.d(TAG, "mS2.enter"); } @Override public boolean processMessage(Message message) { boolean retVal; Log.d(TAG, "mS2.processMessage what=" + message.what); switch(message.what) { case(CMD_2): sendMessage(obtainMessage(CMD_4)); retVal = HANDLED; break; case(CMD_3): deferMessage(message); transitionTo(mP2); retVal = HANDLED; break; default: retVal = NOT_HANDLED; break; } return retVal; } @Override public void exit() { Log.d(TAG, "mS2.exit"); } } class P2 extends State { @Override public void enter() { Log.d(TAG, "mP2.enter"); sendMessage(obtainMessage(CMD_5)); } @Override public boolean processMessage(Message message) { Log.d(TAG, "P2.processMessage what=" + message.what); switch(message.what) { case(CMD_3): break; case(CMD_4): break; case(CMD_5): transitionToHaltingState(); break; } return HANDLED; } @Override public void exit() { Log.d(TAG, "mP2.exit"); } } @Override void halting() { Log.d(TAG, "halting"); synchronized (this) { this.notifyAll(); } } P1 mP1 = new P1(); S1 mS1 = new S1(); S2 mS2 = new S2(); P2 mP2 = new P2(); } *

If this is executed by sending two messages CMD_1 and CMD_2 * (Note the synchronize is only needed because we use hsm.wait())

Hsm1 hsm = makeHsm1(); synchronize(hsm) { hsm.sendMessage(obtainMessage(hsm.CMD_1)); hsm.sendMessage(obtainMessage(hsm.CMD_2)); try { // wait for the messages to be handled hsm.wait(); } catch (InterruptedException e) { Log.e(TAG, "exception while waiting " + e.getMessage()); } } *

The output is:

D/hsm1 ( 1999): makeHsm1 E D/hsm1 ( 1999): ctor E D/hsm1 ( 1999): ctor X D/hsm1 ( 1999): mP1.enter D/hsm1 ( 1999): mS1.enter D/hsm1 ( 1999): makeHsm1 X D/hsm1 ( 1999): mS1.processMessage what=1 D/hsm1 ( 1999): mS1.exit D/hsm1 ( 1999): mS1.enter D/hsm1 ( 1999): mS1.processMessage what=2 D/hsm1 ( 1999): mP1.processMessage what=2 D/hsm1 ( 1999): mS1.exit D/hsm1 ( 1999): mS2.enter D/hsm1 ( 1999): mS2.processMessage what=2 D/hsm1 ( 1999): mS2.processMessage what=3 D/hsm1 ( 1999): mS2.exit D/hsm1 ( 1999): mP1.exit D/hsm1 ( 1999): mP2.enter D/hsm1 ( 1999): mP2.processMessage what=3 D/hsm1 ( 1999): mP2.processMessage what=4 D/hsm1 ( 1999): mP2.processMessage what=5 D/hsm1 ( 1999): mP2.exit D/hsm1 ( 1999): halting */ public class StateMachine { private static final String TAG = "StateMachine"; private String mName; /** Message.what value when quitting */ public static final int SM_QUIT_CMD = -1; /** Message.what value when initializing */ public static final int SM_INIT_CMD = -2; /** * Convenience constant that maybe returned by processMessage * to indicate the the message was processed and is not to be * processed by parent states */ public static final boolean HANDLED = true; /** * Convenience constant that maybe returned by processMessage * to indicate the the message was NOT processed and is to be * processed by parent states */ public static final boolean NOT_HANDLED = false; /** * {@hide} * * The information maintained for a processed message. */ public static class ProcessedMessageInfo { private int what; private State state; private State orgState; /** * Constructor * @param message * @param state that handled the message * @param orgState is the first state the received the message but * did not processes the message. */ ProcessedMessageInfo(Message message, State state, State orgState) { update(message, state, orgState); } /** * Update the information in the record. * @param state that handled the message * @param orgState is the first state the received the message but * did not processes the message. */ public void update(Message message, State state, State orgState) { this.what = message.what; this.state = state; this.orgState = orgState; } /** * @return the command that was executing */ public int getWhat() { return what; } /** * @return the state that handled this message */ public State getState() { return state; } /** * @return the original state that received the message. */ public State getOriginalState() { return orgState; } /** * @return as string */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("what="); sb.append(what); sb.append(" state="); sb.append(cn(state)); sb.append(" orgState="); sb.append(cn(orgState)); return sb.toString(); } /** * @return an objects class name */ private String cn(Object n) { if (n == null) { return "null"; } else { String name = n.getClass().getName(); int lastDollar = name.lastIndexOf('$'); return name.substring(lastDollar + 1); } } } /** * A list of messages recently processed by the state machine. * * The class maintains a list of messages that have been most * recently processed. The list is finite and may be set in the * constructor or by calling setSize. The public interface also * includes size which returns the number of recent messages, * count which is the number of message processed since the * the last setSize, get which returns a processed message and * add which adds a processed messaged. */ private static class ProcessedMessages { private static final int DEFAULT_SIZE = 20; private Vector mMessages = new Vector(); private int mMaxSize = DEFAULT_SIZE; private int mOldestIndex = 0; private int mCount = 0; /** * Constructor */ ProcessedMessages() { } /** * Set size of messages to maintain and clears all current messages. * * @param maxSize number of messages to maintain at anyone time. */ void setSize(int maxSize) { mMaxSize = maxSize; mCount = 0; mMessages.clear(); } /** * @return the number of recent messages. */ int size() { return mMessages.size(); } /** * @return the total number of messages processed since size was set. */ int count() { return mCount; } /** * Clear the list of Processed Message Info. */ void cleanup() { mMessages.clear(); } /** * @return the information on a particular record. 0 is the oldest * record and size()-1 is the newest record. If the index is to * large null is returned. */ ProcessedMessageInfo get(int index) { int nextIndex = mOldestIndex + index; if (nextIndex >= mMaxSize) { nextIndex -= mMaxSize; } if (nextIndex >= size()) { return null; } else { return mMessages.get(nextIndex); } } /** * Add a processed message. * * @param message * @param state that handled the message * @param orgState is the first state the received the message but * did not processes the message. */ void add(Message message, State state, State orgState) { mCount += 1; if (mMessages.size() < mMaxSize) { mMessages.add(new ProcessedMessageInfo(message, state, orgState)); } else { ProcessedMessageInfo pmi = mMessages.get(mOldestIndex); mOldestIndex += 1; if (mOldestIndex >= mMaxSize) { mOldestIndex = 0; } pmi.update(message, state, orgState); } } } private static class SmHandler extends Handler { /** The debug flag */ private boolean mDbg = false; /** The quit object */ private static final Object mQuitObj = new Object(); /** The current message */ private Message mMsg; /** A list of messages that this state machine has processed */ private ProcessedMessages mProcessedMessages = new ProcessedMessages(); /** true if construction of the state machine has not been completed */ private boolean mIsConstructionCompleted; /** Stack used to manage the current hierarchy of states */ private StateInfo mStateStack[]; /** Top of mStateStack */ private int mStateStackTopIndex = -1; /** A temporary stack used to manage the state stack */ private StateInfo mTempStateStack[]; /** The top of the mTempStateStack */ private int mTempStateStackCount; /** State used when state machine is halted */ private HaltingState mHaltingState = new HaltingState(); /** State used when state machine is quitting */ private QuittingState mQuittingState = new QuittingState(); /** Reference to the StateMachine */ private StateMachine mSm; /** * Information about a state. * Used to maintain the hierarchy. */ private class StateInfo { /** The state */ State state; /** The parent of this state, null if there is no parent */ StateInfo parentStateInfo; /** True when the state has been entered and on the stack */ boolean active; /** * Convert StateInfo to string */ @Override public String toString() { return "state=" + state.getName() + ",active=" + active + ",parent=" + ((parentStateInfo == null) ? "null" : parentStateInfo.state.getName()); } } /** The map of all of the states in the state machine */ private HashMap mStateInfo = new HashMap(); /** The initial state that will process the first message */ private State mInitialState; /** The destination state when transitionTo has been invoked */ private State mDestState; /** The list of deferred messages */ private ArrayList mDeferredMessages = new ArrayList(); /** * State entered when transitionToHaltingState is called. */ private class HaltingState extends State { @Override public boolean processMessage(Message msg) { mSm.haltedProcessMessage(msg); return true; } } /** * State entered when a valid quit message is handled. */ private class QuittingState extends State { @Override public boolean processMessage(Message msg) { return NOT_HANDLED; } } /** * Handle messages sent to the state machine by calling * the current state's processMessage. It also handles * the enter/exit calls and placing any deferred messages * back onto the queue when transitioning to a new state. */ @Override public final void handleMessage(Message msg) { if (mDbg) Log.d(TAG, "handleMessage: E msg.what=" + msg.what); /** Save the current message */ mMsg = msg; /** * Check that construction was completed */ if (!mIsConstructionCompleted) { Log.e(TAG, "The start method not called, ignore msg: " + msg); return; } /** * Process the message abiding by the hierarchical semantics * and perform any requested transitions. */ processMsg(msg); performTransitions(); if (mDbg) Log.d(TAG, "handleMessage: X"); } /** * Do any transitions */ private void performTransitions() { /** * If transitionTo has been called, exit and then enter * the appropriate states. We loop on this to allow * enter and exit methods to use transitionTo. */ State destState = null; while (mDestState != null) { if (mDbg) Log.d(TAG, "handleMessage: new destination call exit"); /** * Save mDestState locally and set to null * to know if enter/exit use transitionTo. */ destState = mDestState; mDestState = null; /** * Determine the states to exit and enter and return the * common ancestor state of the enter/exit states. Then * invoke the exit methods then the enter methods. */ StateInfo commonStateInfo = setupTempStateStackWithStatesToEnter(destState); invokeExitMethods(commonStateInfo); int stateStackEnteringIndex = moveTempStateStackToStateStack(); invokeEnterMethods(stateStackEnteringIndex); /** * Since we have transitioned to a new state we need to have * any deferred messages moved to the front of the message queue * so they will be processed before any other messages in the * message queue. */ moveDeferredMessageAtFrontOfQueue(); } /** * After processing all transitions check and * see if the last transition was to quit or halt. */ if (destState != null) { if (destState == mQuittingState) { cleanupAfterQuitting(); } else if (destState == mHaltingState) { /** * Call halting() if we've transitioned to the halting * state. All subsequent messages will be processed in * in the halting state which invokes haltedProcessMessage(msg); */ mSm.halting(); } } } /** * Cleanup all the static variables and the looper after the SM has been quit. */ private final void cleanupAfterQuitting() { mSm.quitting(); if (mSm.mSmThread != null) { // If we made the thread then quit looper which stops the thread. getLooper().quit(); mSm.mSmThread = null; } mSm.mSmHandler = null; mSm = null; mMsg = null; mProcessedMessages.cleanup(); mStateStack = null; mTempStateStack = null; mStateInfo.clear(); mInitialState = null; mDestState = null; mDeferredMessages.clear(); } /** * Complete the construction of the state machine. */ private final void completeConstruction() { if (mDbg) Log.d(TAG, "completeConstruction: E"); /** * Determine the maximum depth of the state hierarchy * so we can allocate the state stacks. */ int maxDepth = 0; for (StateInfo si : mStateInfo.values()) { int depth = 0; for (StateInfo i = si; i != null; depth++) { i = i.parentStateInfo; } if (maxDepth < depth) { maxDepth = depth; } } if (mDbg) Log.d(TAG, "completeConstruction: maxDepth=" + maxDepth); mStateStack = new StateInfo[maxDepth]; mTempStateStack = new StateInfo[maxDepth]; setupInitialStateStack(); /** * Construction is complete call all enter methods * starting at the first entry. */ mIsConstructionCompleted = true; mMsg = obtainMessage(SM_INIT_CMD); invokeEnterMethods(0); /** * Perform any transitions requested by the enter methods */ performTransitions(); if (mDbg) Log.d(TAG, "completeConstruction: X"); } /** * Process the message. If the current state doesn't handle * it, call the states parent and so on. If it is never handled then * call the state machines unhandledMessage method. */ private final void processMsg(Message msg) { StateInfo curStateInfo = mStateStack[mStateStackTopIndex]; if (mDbg) { Log.d(TAG, "processMsg: " + curStateInfo.state.getName()); } while (!curStateInfo.state.processMessage(msg)) { /** * Not processed */ curStateInfo = curStateInfo.parentStateInfo; if (curStateInfo == null) { /** * No parents left so it's not handled */ mSm.unhandledMessage(msg); if (isQuit(msg)) { transitionTo(mQuittingState); } break; } if (mDbg) { Log.d(TAG, "processMsg: " + curStateInfo.state.getName()); } } /** * Record that we processed the message */ if (curStateInfo != null) { State orgState = mStateStack[mStateStackTopIndex].state; mProcessedMessages.add(msg, curStateInfo.state, orgState); } else { mProcessedMessages.add(msg, null, null); } } /** * Call the exit method for each state from the top of stack * up to the common ancestor state. */ private final void invokeExitMethods(StateInfo commonStateInfo) { while ((mStateStackTopIndex >= 0) && (mStateStack[mStateStackTopIndex] != commonStateInfo)) { State curState = mStateStack[mStateStackTopIndex].state; if (mDbg) Log.d(TAG, "invokeExitMethods: " + curState.getName()); curState.exit(); mStateStack[mStateStackTopIndex].active = false; mStateStackTopIndex -= 1; } } /** * Invoke the enter method starting at the entering index to top of state stack */ private final void invokeEnterMethods(int stateStackEnteringIndex) { for (int i = stateStackEnteringIndex; i <= mStateStackTopIndex; i++) { if (mDbg) Log.d(TAG, "invokeEnterMethods: " + mStateStack[i].state.getName()); mStateStack[i].state.enter(); mStateStack[i].active = true; } } /** * Move the deferred message to the front of the message queue. */ private final void moveDeferredMessageAtFrontOfQueue() { /** * The oldest messages on the deferred list must be at * the front of the queue so start at the back, which * as the most resent message and end with the oldest * messages at the front of the queue. */ for (int i = mDeferredMessages.size() - 1; i >= 0; i-- ) { Message curMsg = mDeferredMessages.get(i); if (mDbg) Log.d(TAG, "moveDeferredMessageAtFrontOfQueue; what=" + curMsg.what); sendMessageAtFrontOfQueue(curMsg); } mDeferredMessages.clear(); } /** * Move the contents of the temporary stack to the state stack * reversing the order of the items on the temporary stack as * they are moved. * * @return index into mStateStack where entering needs to start */ private final int moveTempStateStackToStateStack() { int startingIndex = mStateStackTopIndex + 1; int i = mTempStateStackCount - 1; int j = startingIndex; while (i >= 0) { if (mDbg) Log.d(TAG, "moveTempStackToStateStack: i=" + i + ",j=" + j); mStateStack[j] = mTempStateStack[i]; j += 1; i -= 1; } mStateStackTopIndex = j - 1; if (mDbg) { Log.d(TAG, "moveTempStackToStateStack: X mStateStackTop=" + mStateStackTopIndex + ",startingIndex=" + startingIndex + ",Top=" + mStateStack[mStateStackTopIndex].state.getName()); } return startingIndex; } /** * Setup the mTempStateStack with the states we are going to enter. * * This is found by searching up the destState's ancestors for a * state that is already active i.e. StateInfo.active == true. * The destStae and all of its inactive parents will be on the * TempStateStack as the list of states to enter. * * @return StateInfo of the common ancestor for the destState and * current state or null if there is no common parent. */ private final StateInfo setupTempStateStackWithStatesToEnter(State destState) { /** * Search up the parent list of the destination state for an active * state. Use a do while() loop as the destState must always be entered * even if it is active. This can happen if we are exiting/entering * the current state. */ mTempStateStackCount = 0; StateInfo curStateInfo = mStateInfo.get(destState); do { mTempStateStack[mTempStateStackCount++] = curStateInfo; curStateInfo = curStateInfo.parentStateInfo; } while ((curStateInfo != null) && !curStateInfo.active); if (mDbg) { Log.d(TAG, "setupTempStateStackWithStatesToEnter: X mTempStateStackCount=" + mTempStateStackCount + ",curStateInfo: " + curStateInfo); } return curStateInfo; } /** * Initialize StateStack to mInitialState. */ private final void setupInitialStateStack() { if (mDbg) { Log.d(TAG, "setupInitialStateStack: E mInitialState=" + mInitialState.getName()); } StateInfo curStateInfo = mStateInfo.get(mInitialState); for (mTempStateStackCount = 0; curStateInfo != null; mTempStateStackCount++) { mTempStateStack[mTempStateStackCount] = curStateInfo; curStateInfo = curStateInfo.parentStateInfo; } // Empty the StateStack mStateStackTopIndex = -1; moveTempStateStackToStateStack(); } /** * @return current message */ private final Message getCurrentMessage() { return mMsg; } /** * @return current state */ private final IState getCurrentState() { return mStateStack[mStateStackTopIndex].state; } /** * Add a new state to the state machine. Bottom up addition * of states is allowed but the same state may only exist * in one hierarchy. * * @param state the state to add * @param parent the parent of state * @return stateInfo for this state */ private final StateInfo addState(State state, State parent) { if (mDbg) { Log.d(TAG, "addStateInternal: E state=" + state.getName() + ",parent=" + ((parent == null) ? "" : parent.getName())); } StateInfo parentStateInfo = null; if (parent != null) { parentStateInfo = mStateInfo.get(parent); if (parentStateInfo == null) { // Recursively add our parent as it's not been added yet. parentStateInfo = addState(parent, null); } } StateInfo stateInfo = mStateInfo.get(state); if (stateInfo == null) { stateInfo = new StateInfo(); mStateInfo.put(state, stateInfo); } // Validate that we aren't adding the same state in two different hierarchies. if ((stateInfo.parentStateInfo != null) && (stateInfo.parentStateInfo != parentStateInfo)) { throw new RuntimeException("state already added"); } stateInfo.state = state; stateInfo.parentStateInfo = parentStateInfo; stateInfo.active = false; if (mDbg) Log.d(TAG, "addStateInternal: X stateInfo: " + stateInfo); return stateInfo; } /** * Constructor * * @param looper for dispatching messages * @param sm the hierarchical state machine */ private SmHandler(Looper looper, StateMachine sm) { super(looper); mSm = sm; addState(mHaltingState, null); addState(mQuittingState, null); } /** @see StateMachine#setInitialState(State) */ private final void setInitialState(State initialState) { if (mDbg) Log.d(TAG, "setInitialState: initialState" + initialState.getName()); mInitialState = initialState; } /** @see StateMachine#transitionTo(IState) */ private final void transitionTo(IState destState) { mDestState = (State) destState; if (mDbg) Log.d(TAG, "StateMachine.transitionTo EX destState" + mDestState.getName()); } /** @see StateMachine#deferMessage(Message) */ private final void deferMessage(Message msg) { if (mDbg) Log.d(TAG, "deferMessage: msg=" + msg.what); /* Copy the "msg" to "newMsg" as "msg" will be recycled */ Message newMsg = obtainMessage(); newMsg.copyFrom(msg); mDeferredMessages.add(newMsg); } /** @see StateMachine#deferMessage(Message) */ private final void quit() { if (mDbg) Log.d(TAG, "quit:"); sendMessage(obtainMessage(SM_QUIT_CMD, mQuitObj)); } /** @see StateMachine#isQuit(Message) */ private final boolean isQuit(Message msg) { return (msg.what == SM_QUIT_CMD) && (msg.obj == mQuitObj); } /** @see StateMachine#isDbg() */ private final boolean isDbg() { return mDbg; } /** @see StateMachine#setDbg(boolean) */ private final void setDbg(boolean dbg) { mDbg = dbg; } /** @see StateMachine#setProcessedMessagesSize(int) */ private final void setProcessedMessagesSize(int maxSize) { mProcessedMessages.setSize(maxSize); } /** @see StateMachine#getProcessedMessagesSize() */ private final int getProcessedMessagesSize() { return mProcessedMessages.size(); } /** @see StateMachine#getProcessedMessagesCount() */ private final int getProcessedMessagesCount() { return mProcessedMessages.count(); } /** @see StateMachine#getProcessedMessageInfo(int) */ private final ProcessedMessageInfo getProcessedMessageInfo(int index) { return mProcessedMessages.get(index); } } private SmHandler mSmHandler; private HandlerThread mSmThread; /** * Initialize. * * @param looper for this state machine * @param name of the state machine */ private void initStateMachine(String name, Looper looper) { mName = name; mSmHandler = new SmHandler(looper, this); } /** * Constructor creates a StateMachine with its own thread. * * @param name of the state machine */ protected StateMachine(String name) { mSmThread = new HandlerThread(name); mSmThread.start(); Looper looper = mSmThread.getLooper(); initStateMachine(name, looper); } /** * Constructor creates an StateMachine using the looper. * * @param name of the state machine */ protected StateMachine(String name, Looper looper) { initStateMachine(name, looper); } /** * Add a new state to the state machine * @param state the state to add * @param parent the parent of state */ protected final void addState(State state, State parent) { mSmHandler.addState(state, parent); } /** * @return current message */ protected final Message getCurrentMessage() { return mSmHandler.getCurrentMessage(); } /** * @return current state */ protected final IState getCurrentState() { return mSmHandler.getCurrentState(); } /** * Add a new state to the state machine, parent will be null * @param state to add */ protected final void addState(State state) { mSmHandler.addState(state, null); } /** * Set the initial state. This must be invoked before * and messages are sent to the state machine. * * @param initialState is the state which will receive the first message. */ protected final void setInitialState(State initialState) { mSmHandler.setInitialState(initialState); } /** * transition to destination state. Upon returning * from processMessage the current state's exit will * be executed and upon the next message arriving * destState.enter will be invoked. * * this function can also be called inside the enter function of the * previous transition target, but the behavior is undefined when it is * called mid-way through a previous transition (for example, calling this * in the enter() routine of a intermediate node when the current transition * target is one of the nodes descendants). * * @param destState will be the state that receives the next message. */ protected final void transitionTo(IState destState) { mSmHandler.transitionTo(destState); } /** * transition to halt state. Upon returning * from processMessage we will exit all current * states, execute the halting() method and then * all subsequent messages haltedProcessMesage * will be called. */ protected final void transitionToHaltingState() { mSmHandler.transitionTo(mSmHandler.mHaltingState); } /** * Defer this message until next state transition. * Upon transitioning all deferred messages will be * placed on the queue and reprocessed in the original * order. (i.e. The next state the oldest messages will * be processed first) * * @param msg is deferred until the next transition. */ protected final void deferMessage(Message msg) { mSmHandler.deferMessage(msg); } /** * Called when message wasn't handled * * @param msg that couldn't be handled. */ protected void unhandledMessage(Message msg) { if (mSmHandler.mDbg) Log.e(TAG, mName + " - unhandledMessage: msg.what=" + msg.what); } /** * Called for any message that is received after * transitionToHalting is called. */ protected void haltedProcessMessage(Message msg) { } /** * This will be called once after handling a message that called * transitionToHalting. All subsequent messages will invoke * {@link StateMachine#haltedProcessMessage(Message)} */ protected void halting() { } /** * This will be called once after a quit message that was NOT handled by * the derived StateMachine. The StateMachine will stop and any subsequent messages will be * ignored. In addition, if this StateMachine created the thread, the thread will * be stopped after this method returns. */ protected void quitting() { } /** * @return the name */ public final String getName() { return mName; } /** * Set size of messages to maintain and clears all current messages. * * @param maxSize number of messages to maintain at anyone time. */ public final void setProcessedMessagesSize(int maxSize) { mSmHandler.setProcessedMessagesSize(maxSize); } /** * @return number of messages processed */ public final int getProcessedMessagesSize() { return mSmHandler.getProcessedMessagesSize(); } /** * @return the total number of messages processed */ public final int getProcessedMessagesCount() { return mSmHandler.getProcessedMessagesCount(); } /** * @return a processed message information */ public final ProcessedMessageInfo getProcessedMessageInfo(int index) { return mSmHandler.getProcessedMessageInfo(index); } /** * @return Handler */ public final Handler getHandler() { return mSmHandler; } /** * Get a message and set Message.target = this. * * @return message or null if SM has quit */ public final Message obtainMessage() { if (mSmHandler == null) return null; return Message.obtain(mSmHandler); } /** * Get a message and set Message.target = this and what * * @param what is the assigned to Message.what. * @return message or null if SM has quit */ public final Message obtainMessage(int what) { if (mSmHandler == null) return null; return Message.obtain(mSmHandler, what); } /** * Get a message and set Message.target = this, * what and obj. * * @param what is the assigned to Message.what. * @param obj is assigned to Message.obj. * @return message or null if SM has quit */ public final Message obtainMessage(int what, Object obj) { if (mSmHandler == null) return null; return Message.obtain(mSmHandler, what, obj); } /** * Get a message and set Message.target = this, * what, arg1 and arg2 * * @param what is assigned to Message.what * @param arg1 is assigned to Message.arg1 * @param arg2 is assigned to Message.arg2 * @return A Message object from the global pool or null if * SM has quit */ public final Message obtainMessage(int what, int arg1, int arg2) { if (mSmHandler == null) return null; return Message.obtain(mSmHandler, what, arg1, arg2); } /** * Get a message and set Message.target = this, * what, arg1, arg2 and obj * * @param what is assigned to Message.what * @param arg1 is assigned to Message.arg1 * @param arg2 is assigned to Message.arg2 * @param obj is assigned to Message.obj * @return A Message object from the global pool or null if * SM has quit */ public final Message obtainMessage(int what, int arg1, int arg2, Object obj) { if (mSmHandler == null) return null; return Message.obtain(mSmHandler, what, arg1, arg2, obj); } /** * Enqueue a message to this state machine. */ public final void sendMessage(int what) { // mSmHandler can be null if the state machine has quit. if (mSmHandler == null) return; mSmHandler.sendMessage(obtainMessage(what)); } /** * Enqueue a message to this state machine. */ public final void sendMessage(int what, Object obj) { // mSmHandler can be null if the state machine has quit. if (mSmHandler == null) return; mSmHandler.sendMessage(obtainMessage(what,obj)); } /** * Enqueue a message to this state machine. */ public final void sendMessage(Message msg) { // mSmHandler can be null if the state machine has quit. if (mSmHandler == null) return; mSmHandler.sendMessage(msg); } /** * Enqueue a message to this state machine after a delay. */ public final void sendMessageDelayed(int what, long delayMillis) { // mSmHandler can be null if the state machine has quit. if (mSmHandler == null) return; mSmHandler.sendMessageDelayed(obtainMessage(what), delayMillis); } /** * Enqueue a message to this state machine after a delay. */ public final void sendMessageDelayed(int what, Object obj, long delayMillis) { // mSmHandler can be null if the state machine has quit. if (mSmHandler == null) return; mSmHandler.sendMessageDelayed(obtainMessage(what, obj), delayMillis); } /** * Enqueue a message to this state machine after a delay. */ public final void sendMessageDelayed(Message msg, long delayMillis) { // mSmHandler can be null if the state machine has quit. if (mSmHandler == null) return; mSmHandler.sendMessageDelayed(msg, delayMillis); } /** * Enqueue a message to the front of the queue for this state machine. * Protected, may only be called by instances of StateMachine. */ protected final void sendMessageAtFrontOfQueue(int what, Object obj) { mSmHandler.sendMessageAtFrontOfQueue(obtainMessage(what, obj)); } /** * Enqueue a message to the front of the queue for this state machine. * Protected, may only be called by instances of StateMachine. */ protected final void sendMessageAtFrontOfQueue(int what) { mSmHandler.sendMessageAtFrontOfQueue(obtainMessage(what)); } /** * Enqueue a message to the front of the queue for this state machine. * Protected, may only be called by instances of StateMachine. */ protected final void sendMessageAtFrontOfQueue(Message msg) { mSmHandler.sendMessageAtFrontOfQueue(msg); } /** * Removes a message from the message queue. * Protected, may only be called by instances of StateMachine. */ protected final void removeMessages(int what) { mSmHandler.removeMessages(what); } /** * Conditionally quit the looper and stop execution. * * This sends the SM_QUIT_MSG to the state machine and * if not handled by any state's processMessage then the * state machine will be stopped and no further messages * will be processed. */ public final void quit() { // mSmHandler can be null if the state machine has quit. if (mSmHandler == null) return; mSmHandler.quit(); } /** * @return ture if msg is quit */ protected final boolean isQuit(Message msg) { return mSmHandler.isQuit(msg); } /** * @return if debugging is enabled */ public boolean isDbg() { // mSmHandler can be null if the state machine has quit. if (mSmHandler == null) return false; return mSmHandler.isDbg(); } /** * Set debug enable/disabled. * * @param dbg is true to enable debugging. */ public void setDbg(boolean dbg) { // mSmHandler can be null if the state machine has quit. if (mSmHandler == null) return; mSmHandler.setDbg(dbg); } /** * Start the state machine. */ public void start() { // mSmHandler can be null if the state machine has quit. if (mSmHandler == null) return; /** Send the complete construction message */ mSmHandler.completeConstruction(); } }