/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package java.lang; /** * The wrapper for the primitive type {@code int}. *

* Implementation note: The "bit twiddling" methods in this class use techniques * described in Henry S. Warren, * Jr.'s Hacker's Delight, (Addison Wesley, 2002) and Sean Anderson's * Bit Twiddling Hacks. * * @see java.lang.Long * @since 1.0 */ @FindBugsSuppressWarnings("DM_NUMBER_CTOR") public final class Integer extends Number implements Comparable { private static final long serialVersionUID = 1360826667806852920L; /** * The int value represented by this Integer */ private final int value; /** * Constant for the maximum {@code int} value, 231-1. */ public static final int MAX_VALUE = 0x7FFFFFFF; /** * Constant for the minimum {@code int} value, -231. */ public static final int MIN_VALUE = 0x80000000; /** * Constant for the number of bits needed to represent an {@code int} in * two's complement form. * * @since 1.5 */ public static final int SIZE = 32; /** * Table for Seal's algorithm for Number of Trailing Zeros. Hacker's Delight * online, Figure 5-18 (http://www.hackersdelight.org/revisions.pdf) * The entries whose value is -1 are never referenced. */ private static final byte[] NTZ_TABLE = { 32, 0, 1, 12, 2, 6, -1, 13, 3, -1, 7, -1, -1, -1, -1, 14, 10, 4, -1, -1, 8, -1, -1, 25, -1, -1, -1, -1, -1, 21, 27, 15, 31, 11, 5, -1, -1, -1, -1, -1, 9, -1, -1, 24, -1, -1, 20, 26, 30, -1, -1, -1, -1, 23, -1, 19, 29, -1, 22, 18, 28, 17, 16, -1 }; /** * The {@link Class} object that represents the primitive type {@code int}. */ @SuppressWarnings("unchecked") public static final Class TYPE = (Class) int[].class.getComponentType(); // Note: Integer.TYPE can't be set to "int.class", since *that* is // defined to be "java.lang.Integer.TYPE"; /** * Constructs a new {@code Integer} with the specified primitive integer * value. * * @param value * the primitive integer value to store in the new instance. */ public Integer(int value) { this.value = value; } /** * Constructs a new {@code Integer} from the specified string. * * @param string * the string representation of an integer value. * @throws NumberFormatException * if {@code string} cannot be parsed as an integer value. * @see #parseInt(String) */ public Integer(String string) throws NumberFormatException { this(parseInt(string)); } @Override public byte byteValue() { return (byte) value; } /** * Compares this object to the specified integer object to determine their * relative order. * * @param object * the integer object to compare this object to. * @return a negative value if the value of this integer is less than the * value of {@code object}; 0 if the value of this integer and the * value of {@code object} are equal; a positive value if the value * of this integer is greater than the value of {@code object}. * @see java.lang.Comparable * @since 1.2 */ public int compareTo(Integer object) { return compare(value, object.value); } /** * Compares two {@code int} values. * @return 0 if lhs = rhs, less than 0 if lhs < rhs, and greater than 0 if lhs > rhs. * @since 1.7 * @hide 1.7 */ public static int compare(int lhs, int rhs) { return lhs < rhs ? -1 : (lhs == rhs ? 0 : 1); } private static NumberFormatException invalidInt(String s) { throw new NumberFormatException("Invalid int: \"" + s + "\""); } /** * Parses the specified string and returns a {@code Integer} instance if the * string can be decoded into an integer value. The string may be an * optional minus sign "-" followed by a hexadecimal ("0x..." or "#..."), * octal ("0..."), or decimal ("...") representation of an integer. * * @param string * a string representation of an integer value. * @return an {@code Integer} containing the value represented by * {@code string}. * @throws NumberFormatException * if {@code string} cannot be parsed as an integer value. */ public static Integer decode(String string) throws NumberFormatException { int length = string.length(), i = 0; if (length == 0) { throw invalidInt(string); } char firstDigit = string.charAt(i); boolean negative = firstDigit == '-'; if (negative) { if (length == 1) { throw invalidInt(string); } firstDigit = string.charAt(++i); } int base = 10; if (firstDigit == '0') { if (++i == length) { return valueOf(0); } if ((firstDigit = string.charAt(i)) == 'x' || firstDigit == 'X') { if (++i == length) { throw invalidInt(string); } base = 16; } else { base = 8; } } else if (firstDigit == '#') { if (++i == length) { throw invalidInt(string); } base = 16; } int result = parse(string, i, base, negative); return valueOf(result); } @Override public double doubleValue() { return value; } /** * Compares this instance with the specified object and indicates if they * are equal. In order to be equal, {@code o} must be an instance of * {@code Integer} and have the same integer value as this object. * * @param o * the object to compare this integer with. * @return {@code true} if the specified object is equal to this * {@code Integer}; {@code false} otherwise. */ @Override public boolean equals(Object o) { return (o instanceof Integer) && (((Integer) o).value == value); } @Override public float floatValue() { return value; } /** * Returns the {@code Integer} value of the system property identified by * {@code string}. Returns {@code null} if {@code string} is {@code null} * or empty, if the property can not be found or if its value can not be * parsed as an integer. * * @param string * the name of the requested system property. * @return the requested property's value as an {@code Integer} or * {@code null}. */ public static Integer getInteger(String string) { if (string == null || string.length() == 0) { return null; } String prop = System.getProperty(string); if (prop == null) { return null; } try { return decode(prop); } catch (NumberFormatException ex) { return null; } } /** * Returns the {@code Integer} value of the system property identified by * {@code string}. Returns the specified default value if {@code string} is * {@code null} or empty, if the property can not be found or if its value * can not be parsed as an integer. * * @param string * the name of the requested system property. * @param defaultValue * the default value that is returned if there is no integer * system property with the requested name. * @return the requested property's value as an {@code Integer} or the * default value. */ public static Integer getInteger(String string, int defaultValue) { if (string == null || string.length() == 0) { return valueOf(defaultValue); } String prop = System.getProperty(string); if (prop == null) { return valueOf(defaultValue); } try { return decode(prop); } catch (NumberFormatException ex) { return valueOf(defaultValue); } } /** * Returns the {@code Integer} value of the system property identified by * {@code string}. Returns the specified default value if {@code string} is * {@code null} or empty, if the property can not be found or if its value * can not be parsed as an integer. * * @param string * the name of the requested system property. * @param defaultValue * the default value that is returned if there is no integer * system property with the requested name. * @return the requested property's value as an {@code Integer} or the * default value. */ public static Integer getInteger(String string, Integer defaultValue) { if (string == null || string.length() == 0) { return defaultValue; } String prop = System.getProperty(string); if (prop == null) { return defaultValue; } try { return decode(prop); } catch (NumberFormatException ex) { return defaultValue; } } @Override public int hashCode() { return value; } /** * Gets the primitive value of this int. * * @return this object's primitive value. */ @Override public int intValue() { return value; } @Override public long longValue() { return value; } /** * Parses the specified string as a signed decimal integer value. The ASCII * character \u002d ('-') is recognized as the minus sign. * * @param string * the string representation of an integer value. * @return the primitive integer value represented by {@code string}. * @throws NumberFormatException * if {@code string} cannot be parsed as an integer value. */ public static int parseInt(String string) throws NumberFormatException { return parseInt(string, 10); } /** * Parses the specified string as a signed integer value using the specified * radix. The ASCII character \u002d ('-') is recognized as the minus sign. * * @param string * the string representation of an integer value. * @param radix * the radix to use when parsing. * @return the primitive integer value represented by {@code string} using * {@code radix}. * @throws NumberFormatException * if {@code string} cannot be parsed as an integer value, * or {@code radix < Character.MIN_RADIX || * radix > Character.MAX_RADIX}. */ public static int parseInt(String string, int radix) throws NumberFormatException { if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) { throw new NumberFormatException("Invalid radix: " + radix); } if (string == null) { throw invalidInt(string); } int length = string.length(), i = 0; if (length == 0) { throw invalidInt(string); } boolean negative = string.charAt(i) == '-'; if (negative && ++i == length) { throw invalidInt(string); } return parse(string, i, radix, negative); } private static int parse(String string, int offset, int radix, boolean negative) throws NumberFormatException { int max = Integer.MIN_VALUE / radix; int result = 0, length = string.length(); while (offset < length) { int digit = Character.digit(string.charAt(offset++), radix); if (digit == -1) { throw invalidInt(string); } if (max > result) { throw invalidInt(string); } int next = result * radix - digit; if (next > result) { throw invalidInt(string); } result = next; } if (!negative) { result = -result; if (result < 0) { throw invalidInt(string); } } return result; } @Override public short shortValue() { return (short) value; } /** * Converts the specified integer into its binary string representation. The * returned string is a concatenation of '0' and '1' characters. * * @param i * the integer to convert. * @return the binary string representation of {@code i}. */ public static String toBinaryString(int i) { return IntegralToString.intToBinaryString(i); } /** * Converts the specified integer into its hexadecimal string * representation. The returned string is a concatenation of characters from * '0' to '9' and 'a' to 'f'. * * @param i * the integer to convert. * @return the hexadecimal string representation of {@code i}. */ public static String toHexString(int i) { return IntegralToString.intToHexString(i, false, 0); } /** * Converts the specified integer into its octal string representation. The * returned string is a concatenation of characters from '0' to '7'. * * @param i * the integer to convert. * @return the octal string representation of {@code i}. */ public static String toOctalString(int i) { return IntegralToString.intToOctalString(i); } @Override public String toString() { return Integer.toString(value); } /** * Converts the specified integer into its decimal string representation. * The returned string is a concatenation of a minus sign if the number is * negative and characters from '0' to '9'. * * @param i * the integer to convert. * @return the decimal string representation of {@code i}. */ public static String toString(int i) { return IntegralToString.intToString(i); } /** * Converts the specified signed integer into a string representation based on the * specified radix. The returned string is a concatenation of a minus sign * if the number is negative and characters from '0' to '9' and 'a' to 'z', * depending on the radix. If {@code radix} is not in the interval defined * by {@code Character.MIN_RADIX} and {@code Character.MAX_RADIX} then 10 is * used as the base for the conversion. * *

This method treats its argument as signed. If you want to convert an * unsigned value to one of the common non-decimal bases, you may find * {@link #toBinaryString}, {@code #toHexString}, or {@link #toOctalString} * more convenient. * * @param i * the signed integer to convert. * @param radix * the base to use for the conversion. * @return the string representation of {@code i}. */ public static String toString(int i, int radix) { return IntegralToString.intToString(i, radix); } /** * Parses the specified string as a signed decimal integer value. * * @param string * the string representation of an integer value. * @return an {@code Integer} instance containing the integer value * represented by {@code string}. * @throws NumberFormatException * if {@code string} cannot be parsed as an integer value. * @see #parseInt(String) */ public static Integer valueOf(String string) throws NumberFormatException { return valueOf(parseInt(string)); } /** * Parses the specified string as a signed integer value using the specified * radix. * * @param string * the string representation of an integer value. * @param radix * the radix to use when parsing. * @return an {@code Integer} instance containing the integer value * represented by {@code string} using {@code radix}. * @throws NumberFormatException * if {@code string} cannot be parsed as an integer value, or * {@code radix < Character.MIN_RADIX || * radix > Character.MAX_RADIX}. * @see #parseInt(String, int) */ public static Integer valueOf(String string, int radix) throws NumberFormatException { return valueOf(parseInt(string, radix)); } /** * Determines the highest (leftmost) bit of the specified integer that is 1 * and returns the bit mask value for that bit. This is also referred to as * the Most Significant 1 Bit. Returns zero if the specified integer is * zero. * * @param i * the integer to examine. * @return the bit mask indicating the highest 1 bit in {@code i}. * @since 1.5 */ public static int highestOneBit(int i) { // Hacker's Delight, Figure 3-1 i |= (i >> 1); i |= (i >> 2); i |= (i >> 4); i |= (i >> 8); i |= (i >> 16); return i - (i >>> 1); } /** * Determines the lowest (rightmost) bit of the specified integer that is 1 * and returns the bit mask value for that bit. This is also referred * to as the Least Significant 1 Bit. Returns zero if the specified integer * is zero. * * @param i * the integer to examine. * @return the bit mask indicating the lowest 1 bit in {@code i}. * @since 1.5 */ public static int lowestOneBit(int i) { return i & -i; } /** * Determines the number of leading zeros in the specified integer prior to * the {@link #highestOneBit(int) highest one bit}. * * @param i * the integer to examine. * @return the number of leading zeros in {@code i}. * @since 1.5 */ public static int numberOfLeadingZeros(int i) { // Hacker's Delight, Figure 5-6 if (i <= 0) { return (~i >> 26) & 32; } int n = 1; if (i >> 16 == 0) { n += 16; i <<= 16; } if (i >> 24 == 0) { n += 8; i <<= 8; } if (i >> 28 == 0) { n += 4; i <<= 4; } if (i >> 30 == 0) { n += 2; i <<= 2; } return n - (i >>> 31); } /** * Determines the number of trailing zeros in the specified integer after * the {@link #lowestOneBit(int) lowest one bit}. * * @param i * the integer to examine. * @return the number of trailing zeros in {@code i}. * @since 1.5 */ public static int numberOfTrailingZeros(int i) { return NTZ_TABLE[((i & -i) * 0x0450FBAF) >>> 26]; } /** * Counts the number of 1 bits in the specified integer; this is also * referred to as population count. * * @param i * the integer to examine. * @return the number of 1 bits in {@code i}. * @since 1.5 */ public static int bitCount(int i) { // Hacker's Delight, Figure 5-2 i -= (i >> 1) & 0x55555555; i = (i & 0x33333333) + ((i >> 2) & 0x33333333); i = ((i >> 4) + i) & 0x0F0F0F0F; i += i >> 8; i += i >> 16; return i & 0x0000003F; } /** * Rotates the bits of the specified integer to the left by the specified * number of bits. * * @param i * the integer value to rotate left. * @param distance * the number of bits to rotate. * @return the rotated value. * @since 1.5 */ public static int rotateLeft(int i, int distance) { // Shift distances are mod 32 (JLS3 15.19), so we needn't mask -distance return (i << distance) | (i >>> -distance); } /** * Rotates the bits of the specified integer to the right by the specified * number of bits. * * @param i * the integer value to rotate right. * @param distance * the number of bits to rotate. * @return the rotated value. * @since 1.5 */ public static int rotateRight(int i, int distance) { // Shift distances are mod 32 (JLS3 15.19), so we needn't mask -distance return (i >>> distance) | (i << -distance); } /** * Reverses the order of the bytes of the specified integer. * * @param i * the integer value for which to reverse the byte order. * @return the reversed value. * @since 1.5 */ public static int reverseBytes(int i) { // Hacker's Delight 7-1, with minor tweak from Veldmeijer // http://graphics.stanford.edu/~seander/bithacks.html i = ((i >>> 8) & 0x00FF00FF) | ((i & 0x00FF00FF) << 8); return ( i >>> 16 ) | ( i << 16); } /** * Reverses the order of the bits of the specified integer. * * @param i * the integer value for which to reverse the bit order. * @return the reversed value. * @since 1.5 */ public static int reverse(int i) { // Hacker's Delight 7-1, with minor tweak from Veldmeijer // http://graphics.stanford.edu/~seander/bithacks.html i = ((i >>> 1) & 0x55555555) | ((i & 0x55555555) << 1); i = ((i >>> 2) & 0x33333333) | ((i & 0x33333333) << 2); i = ((i >>> 4) & 0x0F0F0F0F) | ((i & 0x0F0F0F0F) << 4); i = ((i >>> 8) & 0x00FF00FF) | ((i & 0x00FF00FF) << 8); return ((i >>> 16) ) | ((i ) << 16); } /** * Returns the value of the {@code signum} function for the specified * integer. * * @param i * the integer value to check. * @return -1 if {@code i} is negative, 1 if {@code i} is positive, 0 if * {@code i} is zero. * @since 1.5 */ public static int signum(int i) { return (i >> 31) | (-i >>> 31); // Hacker's delight 2-7 } /** * Returns a {@code Integer} instance for the specified integer value. *

* If it is not necessary to get a new {@code Integer} instance, it is * recommended to use this method instead of the constructor, since it * maintains a cache of instances which may result in better performance. * * @param i * the integer value to store in the instance. * @return a {@code Integer} instance containing {@code i}. * @since 1.5 */ public static Integer valueOf(int i) { return i >= 128 || i < -128 ? new Integer(i) : SMALL_VALUES[i + 128]; } /** * A cache of instances used by {@link Integer#valueOf(int)} and auto-boxing */ private static final Integer[] SMALL_VALUES = new Integer[256]; static { for (int i = -128; i < 128; i++) { SMALL_VALUES[i + 128] = new Integer(i); } } }