/* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain */ package java.util.concurrent; import java.util.concurrent.locks.*; import java.util.*; import java.io.Serializable; import java.io.IOException; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; // BEGIN android-note // removed link to collections framework docs // END android-note /** * A hash table supporting full concurrency of retrievals and * adjustable expected concurrency for updates. This class obeys the * same functional specification as {@link java.util.Hashtable}, and * includes versions of methods corresponding to each method of * Hashtable. However, even though all operations are * thread-safe, retrieval operations do not entail locking, * and there is not any support for locking the entire table * in a way that prevents all access. This class is fully * interoperable with Hashtable in programs that rely on its * thread safety but not on its synchronization details. * *

Retrieval operations (including get) generally do not * block, so may overlap with update operations (including * put and remove). Retrievals reflect the results * of the most recently completed update operations holding * upon their onset. For aggregate operations such as putAll * and clear, concurrent retrievals may reflect insertion or * removal of only some entries. Similarly, Iterators and * Enumerations return elements reflecting the state of the hash table * at some point at or since the creation of the iterator/enumeration. * They do not throw {@link ConcurrentModificationException}. * However, iterators are designed to be used by only one thread at a time. * *

The allowed concurrency among update operations is guided by * the optional concurrencyLevel constructor argument * (default 16), which is used as a hint for internal sizing. The * table is internally partitioned to try to permit the indicated * number of concurrent updates without contention. Because placement * in hash tables is essentially random, the actual concurrency will * vary. Ideally, you should choose a value to accommodate as many * threads as will ever concurrently modify the table. Using a * significantly higher value than you need can waste space and time, * and a significantly lower value can lead to thread contention. But * overestimates and underestimates within an order of magnitude do * not usually have much noticeable impact. A value of one is * appropriate when it is known that only one thread will modify and * all others will only read. Also, resizing this or any other kind of * hash table is a relatively slow operation, so, when possible, it is * a good idea to provide estimates of expected table sizes in * constructors. * *

This class and its views and iterators implement all of the * optional methods of the {@link Map} and {@link Iterator} * interfaces. * *

Like {@link Hashtable} but unlike {@link HashMap}, this class * does not allow null to be used as a key or value. * * @since 1.5 * @author Doug Lea * @param the type of keys maintained by this map * @param the type of mapped values */ public class ConcurrentHashMap extends AbstractMap implements ConcurrentMap, Serializable { private static final long serialVersionUID = 7249069246763182397L; /* * The basic strategy is to subdivide the table among Segments, * each of which itself is a concurrently readable hash table. */ /* ---------------- Constants -------------- */ /** * The default initial capacity for this table, * used when not otherwise specified in a constructor. */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The default load factor for this table, used when not * otherwise specified in a constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The default concurrency level for this table, used when not * otherwise specified in a constructor. */ static final int DEFAULT_CONCURRENCY_LEVEL = 16; /** * The maximum capacity, used if a higher value is implicitly * specified by either of the constructors with arguments. MUST * be a power of two <= 1<<30 to ensure that entries are indexable * using ints. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The maximum number of segments to allow; used to bound * constructor arguments. */ static final int MAX_SEGMENTS = 1 << 16; // slightly conservative /** * Number of unsynchronized retries in size and containsValue * methods before resorting to locking. This is used to avoid * unbounded retries if tables undergo continuous modification * which would make it impossible to obtain an accurate result. */ static final int RETRIES_BEFORE_LOCK = 2; /* ---------------- Fields -------------- */ /** * Mask value for indexing into segments. The upper bits of a * key's hash code are used to choose the segment. */ final int segmentMask; /** * Shift value for indexing within segments. */ final int segmentShift; /** * The segments, each of which is a specialized hash table */ final Segment[] segments; transient Set keySet; transient Set> entrySet; transient Collection values; /* ---------------- Small Utilities -------------- */ /** * Applies a supplemental hash function to a given hashCode, which * defends against poor quality hash functions. This is critical * because ConcurrentHashMap uses power-of-two length hash tables, * that otherwise encounter collisions for hashCodes that do not * differ in lower or upper bits. */ private static int hash(int h) { // Spread bits to regularize both segment and index locations, // using variant of single-word Wang/Jenkins hash. h += (h << 15) ^ 0xffffcd7d; h ^= (h >>> 10); h += (h << 3); h ^= (h >>> 6); h += (h << 2) + (h << 14); return h ^ (h >>> 16); } /** * Returns the segment that should be used for key with given hash * @param hash the hash code for the key * @return the segment */ final Segment segmentFor(int hash) { return segments[(hash >>> segmentShift) & segmentMask]; } /* ---------------- Inner Classes -------------- */ /** * ConcurrentHashMap list entry. Note that this is never exported * out as a user-visible Map.Entry. * * Because the value field is volatile, not final, it is legal wrt * the Java Memory Model for an unsynchronized reader to see null * instead of initial value when read via a data race. Although a * reordering leading to this is not likely to ever actually * occur, the Segment.readValueUnderLock method is used as a * backup in case a null (pre-initialized) value is ever seen in * an unsynchronized access method. */ static final class HashEntry { final K key; final int hash; volatile V value; final HashEntry next; HashEntry(K key, int hash, HashEntry next, V value) { this.key = key; this.hash = hash; this.next = next; this.value = value; } @SuppressWarnings("unchecked") static final HashEntry[] newArray(int i) { return new HashEntry[i]; } } /** * Segments are specialized versions of hash tables. This * subclasses from ReentrantLock opportunistically, just to * simplify some locking and avoid separate construction. */ static final class Segment extends ReentrantLock implements Serializable { /* * Segments maintain a table of entry lists that are ALWAYS * kept in a consistent state, so can be read without locking. * Next fields of nodes are immutable (final). All list * additions are performed at the front of each bin. This * makes it easy to check changes, and also fast to traverse. * When nodes would otherwise be changed, new nodes are * created to replace them. This works well for hash tables * since the bin lists tend to be short. (The average length * is less than two for the default load factor threshold.) * * Read operations can thus proceed without locking, but rely * on selected uses of volatiles to ensure that completed * write operations performed by other threads are * noticed. For most purposes, the "count" field, tracking the * number of elements, serves as that volatile variable * ensuring visibility. This is convenient because this field * needs to be read in many read operations anyway: * * - All (unsynchronized) read operations must first read the * "count" field, and should not look at table entries if * it is 0. * * - All (synchronized) write operations should write to * the "count" field after structurally changing any bin. * The operations must not take any action that could even * momentarily cause a concurrent read operation to see * inconsistent data. This is made easier by the nature of * the read operations in Map. For example, no operation * can reveal that the table has grown but the threshold * has not yet been updated, so there are no atomicity * requirements for this with respect to reads. * * As a guide, all critical volatile reads and writes to the * count field are marked in code comments. */ private static final long serialVersionUID = 2249069246763182397L; /** * The number of elements in this segment's region. */ transient volatile int count; /** * Number of updates that alter the size of the table. This is * used during bulk-read methods to make sure they see a * consistent snapshot: If modCounts change during a traversal * of segments computing size or checking containsValue, then * we might have an inconsistent view of state so (usually) * must retry. */ transient int modCount; /** * The table is rehashed when its size exceeds this threshold. * (The value of this field is always (int)(capacity * * loadFactor).) */ transient int threshold; /** * The per-segment table. */ transient volatile HashEntry[] table; /** * The load factor for the hash table. Even though this value * is same for all segments, it is replicated to avoid needing * links to outer object. * @serial */ final float loadFactor; Segment(int initialCapacity, float lf) { loadFactor = lf; setTable(HashEntry.newArray(initialCapacity)); } @SuppressWarnings("unchecked") static final Segment[] newArray(int i) { return new Segment[i]; } /** * Sets table to new HashEntry array. * Call only while holding lock or in constructor. */ void setTable(HashEntry[] newTable) { threshold = (int)(newTable.length * loadFactor); table = newTable; } /** * Returns properly casted first entry of bin for given hash. */ HashEntry getFirst(int hash) { HashEntry[] tab = table; return tab[hash & (tab.length - 1)]; } /** * Reads value field of an entry under lock. Called if value * field ever appears to be null. This is possible only if a * compiler happens to reorder a HashEntry initialization with * its table assignment, which is legal under memory model * but is not known to ever occur. */ V readValueUnderLock(HashEntry e) { lock(); try { return e.value; } finally { unlock(); } } /* Specialized implementations of map methods */ V get(Object key, int hash) { if (count != 0) { // read-volatile HashEntry e = getFirst(hash); while (e != null) { if (e.hash == hash && key.equals(e.key)) { V v = e.value; if (v != null) return v; return readValueUnderLock(e); // recheck } e = e.next; } } return null; } boolean containsKey(Object key, int hash) { if (count != 0) { // read-volatile HashEntry e = getFirst(hash); while (e != null) { if (e.hash == hash && key.equals(e.key)) return true; e = e.next; } } return false; } boolean containsValue(Object value) { if (count != 0) { // read-volatile HashEntry[] tab = table; int len = tab.length; for (int i = 0 ; i < len; i++) { for (HashEntry e = tab[i]; e != null; e = e.next) { V v = e.value; if (v == null) // recheck v = readValueUnderLock(e); if (value.equals(v)) return true; } } } return false; } boolean replace(K key, int hash, V oldValue, V newValue) { lock(); try { HashEntry e = getFirst(hash); while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; boolean replaced = false; if (e != null && oldValue.equals(e.value)) { replaced = true; e.value = newValue; } return replaced; } finally { unlock(); } } V replace(K key, int hash, V newValue) { lock(); try { HashEntry e = getFirst(hash); while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue = null; if (e != null) { oldValue = e.value; e.value = newValue; } return oldValue; } finally { unlock(); } } V put(K key, int hash, V value, boolean onlyIfAbsent) { lock(); try { int c = count; if (c++ > threshold) // ensure capacity rehash(); HashEntry[] tab = table; int index = hash & (tab.length - 1); HashEntry first = tab[index]; HashEntry e = first; while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue; if (e != null) { oldValue = e.value; if (!onlyIfAbsent) e.value = value; } else { oldValue = null; ++modCount; tab[index] = new HashEntry(key, hash, first, value); count = c; // write-volatile } return oldValue; } finally { unlock(); } } void rehash() { HashEntry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity >= MAXIMUM_CAPACITY) return; /* * Reclassify nodes in each list to new Map. Because we are * using power-of-two expansion, the elements from each bin * must either stay at same index, or move with a power of two * offset. We eliminate unnecessary node creation by catching * cases where old nodes can be reused because their next * fields won't change. Statistically, at the default * threshold, only about one-sixth of them need cloning when * a table doubles. The nodes they replace will be garbage * collectable as soon as they are no longer referenced by any * reader thread that may be in the midst of traversing table * right now. */ HashEntry[] newTable = HashEntry.newArray(oldCapacity<<1); threshold = (int)(newTable.length * loadFactor); int sizeMask = newTable.length - 1; for (int i = 0; i < oldCapacity ; i++) { // We need to guarantee that any existing reads of old Map can // proceed. So we cannot yet null out each bin. HashEntry e = oldTable[i]; if (e != null) { HashEntry next = e.next; int idx = e.hash & sizeMask; // Single node on list if (next == null) newTable[idx] = e; else { // Reuse trailing consecutive sequence at same slot HashEntry lastRun = e; int lastIdx = idx; for (HashEntry last = next; last != null; last = last.next) { int k = last.hash & sizeMask; if (k != lastIdx) { lastIdx = k; lastRun = last; } } newTable[lastIdx] = lastRun; // Clone all remaining nodes for (HashEntry p = e; p != lastRun; p = p.next) { int k = p.hash & sizeMask; HashEntry n = newTable[k]; newTable[k] = new HashEntry(p.key, p.hash, n, p.value); } } } } table = newTable; } /** * Remove; match on key only if value null, else match both. */ V remove(Object key, int hash, Object value) { lock(); try { int c = count - 1; HashEntry[] tab = table; int index = hash & (tab.length - 1); HashEntry first = tab[index]; HashEntry e = first; while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue = null; if (e != null) { V v = e.value; if (value == null || value.equals(v)) { oldValue = v; // All entries following removed node can stay // in list, but all preceding ones need to be // cloned. ++modCount; HashEntry newFirst = e.next; for (HashEntry p = first; p != e; p = p.next) newFirst = new HashEntry(p.key, p.hash, newFirst, p.value); tab[index] = newFirst; count = c; // write-volatile } } return oldValue; } finally { unlock(); } } void clear() { if (count != 0) { lock(); try { HashEntry[] tab = table; for (int i = 0; i < tab.length ; i++) tab[i] = null; ++modCount; count = 0; // write-volatile } finally { unlock(); } } } } /* ---------------- Public operations -------------- */ /** * Creates a new, empty map with the specified initial * capacity, load factor and concurrency level. * * @param initialCapacity the initial capacity. The implementation * performs internal sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. * Resizing may be performed when the average number of elements per * bin exceeds this threshold. * @param concurrencyLevel the estimated number of concurrently * updating threads. The implementation performs internal sizing * to try to accommodate this many threads. * @throws IllegalArgumentException if the initial capacity is * negative or the load factor or concurrencyLevel are * nonpositive. */ public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } segmentShift = 32 - sshift; segmentMask = ssize - 1; this.segments = Segment.newArray(ssize); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; int c = initialCapacity / ssize; if (c * ssize < initialCapacity) ++c; int cap = 1; while (cap < c) cap <<= 1; for (int i = 0; i < this.segments.length; ++i) this.segments[i] = new Segment(cap, loadFactor); } /** * Creates a new, empty map with the specified initial capacity * and load factor and with the default concurrencyLevel (16). * * @param initialCapacity The implementation performs internal * sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. * Resizing may be performed when the average number of elements per * bin exceeds this threshold. * @throws IllegalArgumentException if the initial capacity of * elements is negative or the load factor is nonpositive * * @since 1.6 */ public ConcurrentHashMap(int initialCapacity, float loadFactor) { this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL); } /** * Creates a new, empty map with the specified initial capacity, * and with default load factor (0.75) and concurrencyLevel (16). * * @param initialCapacity the initial capacity. The implementation * performs internal sizing to accommodate this many elements. * @throws IllegalArgumentException if the initial capacity of * elements is negative. */ public ConcurrentHashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); } /** * Creates a new, empty map with a default initial capacity (16), * load factor (0.75) and concurrencyLevel (16). */ public ConcurrentHashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); } /** * Creates a new map with the same mappings as the given map. * The map is created with a capacity of 1.5 times the number * of mappings in the given map or 16 (whichever is greater), * and a default load factor (0.75) and concurrencyLevel (16). * * @param m the map */ public ConcurrentHashMap(Map m) { this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); putAll(m); } /** * Returns true if this map contains no key-value mappings. * * @return true if this map contains no key-value mappings */ public boolean isEmpty() { final Segment[] segments = this.segments; /* * We keep track of per-segment modCounts to avoid ABA * problems in which an element in one segment was added and * in another removed during traversal, in which case the * table was never actually empty at any point. Note the * similar use of modCounts in the size() and containsValue() * methods, which are the only other methods also susceptible * to ABA problems. */ int[] mc = new int[segments.length]; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { if (segments[i].count != 0) return false; else mcsum += mc[i] = segments[i].modCount; } // If mcsum happens to be zero, then we know we got a snapshot // before any modifications at all were made. This is // probably common enough to bother tracking. if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { if (segments[i].count != 0 || mc[i] != segments[i].modCount) return false; } } return true; } /** * Returns the number of key-value mappings in this map. If the * map contains more than Integer.MAX_VALUE elements, returns * Integer.MAX_VALUE. * * @return the number of key-value mappings in this map */ public int size() { final Segment[] segments = this.segments; long sum = 0; long check = 0; int[] mc = new int[segments.length]; // Try a few times to get accurate count. On failure due to // continuous async changes in table, resort to locking. for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { check = 0; sum = 0; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { sum += segments[i].count; mcsum += mc[i] = segments[i].modCount; } if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { check += segments[i].count; if (mc[i] != segments[i].modCount) { check = -1; // force retry break; } } } if (check == sum) break; } if (check != sum) { // Resort to locking all segments sum = 0; for (int i = 0; i < segments.length; ++i) segments[i].lock(); for (int i = 0; i < segments.length; ++i) sum += segments[i].count; for (int i = 0; i < segments.length; ++i) segments[i].unlock(); } if (sum > Integer.MAX_VALUE) return Integer.MAX_VALUE; else return (int)sum; } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * *

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code key.equals(k)}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * @throws NullPointerException if the specified key is null */ public V get(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).get(key, hash); } /** * Tests if the specified object is a key in this table. * * @param key possible key * @return true if and only if the specified object * is a key in this table, as determined by the * equals method; false otherwise. * @throws NullPointerException if the specified key is null */ public boolean containsKey(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).containsKey(key, hash); } /** * Returns true if this map maps one or more keys to the * specified value. Note: This method requires a full internal * traversal of the hash table, and so is much slower than * method containsKey. * * @param value value whose presence in this map is to be tested * @return true if this map maps one or more keys to the * specified value * @throws NullPointerException if the specified value is null */ public boolean containsValue(Object value) { if (value == null) throw new NullPointerException(); // See explanation of modCount use above final Segment[] segments = this.segments; int[] mc = new int[segments.length]; // Try a few times without locking for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { int sum = 0; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { int c = segments[i].count; mcsum += mc[i] = segments[i].modCount; if (segments[i].containsValue(value)) return true; } boolean cleanSweep = true; if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { int c = segments[i].count; if (mc[i] != segments[i].modCount) { cleanSweep = false; break; } } } if (cleanSweep) return false; } // Resort to locking all segments for (int i = 0; i < segments.length; ++i) segments[i].lock(); boolean found = false; try { for (int i = 0; i < segments.length; ++i) { if (segments[i].containsValue(value)) { found = true; break; } } } finally { for (int i = 0; i < segments.length; ++i) segments[i].unlock(); } return found; } /** * Legacy method testing if some key maps into the specified value * in this table. This method is identical in functionality to * {@link #containsValue}, and exists solely to ensure * full compatibility with class {@link java.util.Hashtable}, * which supported this method prior to introduction of the * Java Collections framework. * @param value a value to search for * @return true if and only if some key maps to the * value argument in this table as * determined by the equals method; * false otherwise * @throws NullPointerException if the specified value is null */ public boolean contains(Object value) { return containsValue(value); } /** * Maps the specified key to the specified value in this table. * Neither the key nor the value can be null. * *

The value can be retrieved by calling the get method * with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with key, or * null if there was no mapping for key * @throws NullPointerException if the specified key or value is null */ public V put(K key, V value) { if (value == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).put(key, hash, value, false); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or null if there was no mapping for the key * @throws NullPointerException if the specified key or value is null */ public V putIfAbsent(K key, V value) { if (value == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).put(key, hash, value, true); } /** * Copies all of the mappings from the specified map to this one. * These mappings replace any mappings that this map had for any of the * keys currently in the specified map. * * @param m mappings to be stored in this map */ public void putAll(Map m) { for (Map.Entry e : m.entrySet()) put(e.getKey(), e.getValue()); } /** * Removes the key (and its corresponding value) from this map. * This method does nothing if the key is not in the map. * * @param key the key that needs to be removed * @return the previous value associated with key, or * null if there was no mapping for key * @throws NullPointerException if the specified key is null */ public V remove(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).remove(key, hash, null); } /** * {@inheritDoc} * * @throws NullPointerException if the specified key is null */ public boolean remove(Object key, Object value) { int hash = hash(key.hashCode()); if (value == null) return false; return segmentFor(hash).remove(key, hash, value) != null; } /** * {@inheritDoc} * * @throws NullPointerException if any of the arguments are null */ public boolean replace(K key, V oldValue, V newValue) { if (oldValue == null || newValue == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).replace(key, hash, oldValue, newValue); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or null if there was no mapping for the key * @throws NullPointerException if the specified key or value is null */ public V replace(K key, V value) { if (value == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).replace(key, hash, value); } /** * Removes all of the mappings from this map. */ public void clear() { for (int i = 0; i < segments.length; ++i) segments[i].clear(); } /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from this map, * via the Iterator.remove, Set.remove, * removeAll, retainAll, and clear * operations. It does not support the add or * addAll operations. * *

The view's iterator is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ public Set keySet() { Set ks = keySet; return (ks != null) ? ks : (keySet = new KeySet()); } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. The collection * supports element removal, which removes the corresponding * mapping from this map, via the Iterator.remove, * Collection.remove, removeAll, * retainAll, and clear operations. It does not * support the add or addAll operations. * *

The view's iterator is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ public Collection values() { Collection vs = values; return (vs != null) ? vs : (values = new Values()); } /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from the map, * via the Iterator.remove, Set.remove, * removeAll, retainAll, and clear * operations. It does not support the add or * addAll operations. * *

The view's iterator is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ public Set> entrySet() { Set> es = entrySet; return (es != null) ? es : (entrySet = new EntrySet()); } /** * Returns an enumeration of the keys in this table. * * @return an enumeration of the keys in this table * @see #keySet() */ public Enumeration keys() { return new KeyIterator(); } /** * Returns an enumeration of the values in this table. * * @return an enumeration of the values in this table * @see #values() */ public Enumeration elements() { return new ValueIterator(); } /* ---------------- Iterator Support -------------- */ abstract class HashIterator { int nextSegmentIndex; int nextTableIndex; HashEntry[] currentTable; HashEntry nextEntry; HashEntry lastReturned; HashIterator() { nextSegmentIndex = segments.length - 1; nextTableIndex = -1; advance(); } public boolean hasMoreElements() { return hasNext(); } final void advance() { if (nextEntry != null && (nextEntry = nextEntry.next) != null) return; while (nextTableIndex >= 0) { if ( (nextEntry = currentTable[nextTableIndex--]) != null) return; } while (nextSegmentIndex >= 0) { Segment seg = segments[nextSegmentIndex--]; if (seg.count != 0) { currentTable = seg.table; for (int j = currentTable.length - 1; j >= 0; --j) { if ( (nextEntry = currentTable[j]) != null) { nextTableIndex = j - 1; return; } } } } } public boolean hasNext() { return nextEntry != null; } HashEntry nextEntry() { if (nextEntry == null) throw new NoSuchElementException(); lastReturned = nextEntry; advance(); return lastReturned; } public void remove() { if (lastReturned == null) throw new IllegalStateException(); ConcurrentHashMap.this.remove(lastReturned.key); lastReturned = null; } } final class KeyIterator extends HashIterator implements Iterator, Enumeration { public K next() { return super.nextEntry().key; } public K nextElement() { return super.nextEntry().key; } } final class ValueIterator extends HashIterator implements Iterator, Enumeration { public V next() { return super.nextEntry().value; } public V nextElement() { return super.nextEntry().value; } } /** * Custom Entry class used by EntryIterator.next(), that relays * setValue changes to the underlying map. */ final class WriteThroughEntry extends AbstractMap.SimpleEntry { WriteThroughEntry(K k, V v) { super(k,v); } /** * Set our entry's value and write through to the map. The * value to return is somewhat arbitrary here. Since a * WriteThroughEntry does not necessarily track asynchronous * changes, the most recent "previous" value could be * different from what we return (or could even have been * removed in which case the put will re-establish). We do not * and cannot guarantee more. */ public V setValue(V value) { if (value == null) throw new NullPointerException(); V v = super.setValue(value); ConcurrentHashMap.this.put(getKey(), value); return v; } } final class EntryIterator extends HashIterator implements Iterator> { public Map.Entry next() { HashEntry e = super.nextEntry(); return new WriteThroughEntry(e.key, e.value); } } final class KeySet extends AbstractSet { public Iterator iterator() { return new KeyIterator(); } public int size() { return ConcurrentHashMap.this.size(); } public boolean isEmpty() { return ConcurrentHashMap.this.isEmpty(); } public boolean contains(Object o) { return ConcurrentHashMap.this.containsKey(o); } public boolean remove(Object o) { return ConcurrentHashMap.this.remove(o) != null; } public void clear() { ConcurrentHashMap.this.clear(); } } final class Values extends AbstractCollection { public Iterator iterator() { return new ValueIterator(); } public int size() { return ConcurrentHashMap.this.size(); } public boolean isEmpty() { return ConcurrentHashMap.this.isEmpty(); } public boolean contains(Object o) { return ConcurrentHashMap.this.containsValue(o); } public void clear() { ConcurrentHashMap.this.clear(); } } final class EntrySet extends AbstractSet> { public Iterator> iterator() { return new EntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; V v = ConcurrentHashMap.this.get(e.getKey()); return v != null && v.equals(e.getValue()); } public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return ConcurrentHashMap.this.remove(e.getKey(), e.getValue()); } public int size() { return ConcurrentHashMap.this.size(); } public boolean isEmpty() { return ConcurrentHashMap.this.isEmpty(); } public void clear() { ConcurrentHashMap.this.clear(); } } /* ---------------- Serialization Support -------------- */ /** * Save the state of the ConcurrentHashMap instance to a * stream (i.e., serialize it). * @param s the stream * @serialData * the key (Object) and value (Object) * for each key-value mapping, followed by a null pair. * The key-value mappings are emitted in no particular order. */ private void writeObject(java.io.ObjectOutputStream s) throws IOException { s.defaultWriteObject(); for (int k = 0; k < segments.length; ++k) { Segment seg = segments[k]; seg.lock(); try { HashEntry[] tab = seg.table; for (int i = 0; i < tab.length; ++i) { for (HashEntry e = tab[i]; e != null; e = e.next) { s.writeObject(e.key); s.writeObject(e.value); } } } finally { seg.unlock(); } } s.writeObject(null); s.writeObject(null); } /** * Reconstitute the ConcurrentHashMap instance from a * stream (i.e., deserialize it). * @param s the stream */ private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { s.defaultReadObject(); // Initialize each segment to be minimally sized, and let grow. for (int i = 0; i < segments.length; ++i) { segments[i].setTable(new HashEntry[1]); } // Read the keys and values, and put the mappings in the table for (;;) { K key = (K) s.readObject(); V value = (V) s.readObject(); if (key == null) break; put(key, value); } } }