/* * Copyright (C) 2006 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.graphics; import android.text.GraphicsOperations; import android.text.SpannableString; import android.text.SpannedString; import android.text.TextUtils; import javax.microedition.khronos.opengles.GL; /** * The Canvas class holds the "draw" calls. To draw something, you need * 4 basic components: A Bitmap to hold the pixels, a Canvas to host * the draw calls (writing into the bitmap), a drawing primitive (e.g. Rect, * Path, text, Bitmap), and a paint (to describe the colors and styles for the * drawing). * *
For more information about how to use Canvas, read the * * Canvas and Drawables developer guide.
The initial target density of the canvas is the same as the given * bitmap's density. * * @param bitmap Specifies a mutable bitmap for the canvas to draw into. */ public Canvas(Bitmap bitmap) { if (!bitmap.isMutable()) { throw new IllegalStateException("Immutable bitmap passed to Canvas constructor"); } throwIfCannotDraw(bitmap); mNativeCanvas = initRaster(bitmap.ni()); mFinalizer = new CanvasFinalizer(mNativeCanvas); mBitmap = bitmap; mDensity = bitmap.mDensity; } /** @hide */ public Canvas(int nativeCanvas) { if (nativeCanvas == 0) { throw new IllegalStateException(); } mNativeCanvas = nativeCanvas; mFinalizer = new CanvasFinalizer(mNativeCanvas); mDensity = Bitmap.getDefaultDensity(); } /** * Replace existing canvas while ensuring that the swap has occurred before * the previous native canvas is unreferenced. */ private void safeCanvasSwap(int nativeCanvas, boolean copyState) { final int oldCanvas = mNativeCanvas; mNativeCanvas = nativeCanvas; mFinalizer.mNativeCanvas = nativeCanvas; if (copyState) { copyNativeCanvasState(oldCanvas, mNativeCanvas); } finalizer(oldCanvas); } /** * Gets the native canvas pointer. * * @return The native pointer. * * @hide */ public int getNativeCanvas() { return mNativeCanvas; } /** * Returns null. * * @deprecated This method is not supported and should not be invoked. * * @hide */ @Deprecated protected GL getGL() { return null; } /** * Indicates whether this Canvas uses hardware acceleration. * * Note that this method does not define what type of hardware acceleration * may or may not be used. * * @return True if drawing operations are hardware accelerated, * false otherwise. */ public boolean isHardwareAccelerated() { return false; } /** * Specify a bitmap for the canvas to draw into. All canvas state such as * layers, filters, and the save/restore stack are reset with the exception * of the current matrix and clip stack. Additionally, as a side-effect * the canvas' target density is updated to match that of the bitmap. * * @param bitmap Specifies a mutable bitmap for the canvas to draw into. * @see #setDensity(int) * @see #getDensity() */ public void setBitmap(Bitmap bitmap) { if (isHardwareAccelerated()) { throw new RuntimeException("Can't set a bitmap device on a GL canvas"); } if (bitmap == null) { safeCanvasSwap(initRaster(0), false); mDensity = Bitmap.DENSITY_NONE; } else { if (!bitmap.isMutable()) { throw new IllegalStateException(); } throwIfCannotDraw(bitmap); safeCanvasSwap(initRaster(bitmap.ni()), true); mDensity = bitmap.mDensity; } mBitmap = bitmap; } /** * Set the viewport dimensions if this canvas is GL based. If it is not, * this method is ignored and no exception is thrown. * * @param width The width of the viewport * @param height The height of the viewport * * @hide */ public void setViewport(int width, int height) { } /** * Return true if the device that the current layer draws into is opaque * (i.e. does not support per-pixel alpha). * * @return true if the device that the current layer draws into is opaque */ public native boolean isOpaque(); /** * Returns the width of the current drawing layer * * @return the width of the current drawing layer */ public native int getWidth(); /** * Returns the height of the current drawing layer * * @return the height of the current drawing layer */ public native int getHeight(); /** *
Returns the target density of the canvas. The default density is * derived from the density of its backing bitmap, or * {@link Bitmap#DENSITY_NONE} if there is not one.
* * @return Returns the current target density of the canvas, which is used * to determine the scaling factor when drawing a bitmap into it. * * @see #setDensity(int) * @see Bitmap#getDensity() */ public int getDensity() { return mDensity; } /** *Specifies the density for this Canvas' backing bitmap. This modifies * the target density of the canvas itself, as well as the density of its * backing bitmap via {@link Bitmap#setDensity(int) Bitmap.setDensity(int)}. * * @param density The new target density of the canvas, which is used * to determine the scaling factor when drawing a bitmap into it. Use * {@link Bitmap#DENSITY_NONE} to disable bitmap scaling. * * @see #getDensity() * @see Bitmap#setDensity(int) */ public void setDensity(int density) { if (mBitmap != null) { mBitmap.setDensity(density); } mDensity = density; } /** @hide */ public void setScreenDensity(int density) { mScreenDensity = density; } /** * Returns the maximum allowed width for bitmaps drawn with this canvas. * Attempting to draw with a bitmap wider than this value will result * in an error. * * @see #getMaximumBitmapHeight() */ public int getMaximumBitmapWidth() { return MAXMIMUM_BITMAP_SIZE; } /** * Returns the maximum allowed height for bitmaps drawn with this canvas. * Attempting to draw with a bitmap taller than this value will result * in an error. * * @see #getMaximumBitmapWidth() */ public int getMaximumBitmapHeight() { return MAXMIMUM_BITMAP_SIZE; } // the SAVE_FLAG constants must match their native equivalents /** restore the current matrix when restore() is called */ public static final int MATRIX_SAVE_FLAG = 0x01; /** restore the current clip when restore() is called */ public static final int CLIP_SAVE_FLAG = 0x02; /** the layer needs to per-pixel alpha */ public static final int HAS_ALPHA_LAYER_SAVE_FLAG = 0x04; /** the layer needs to 8-bits per color component */ public static final int FULL_COLOR_LAYER_SAVE_FLAG = 0x08; /** clip against the layer's bounds */ public static final int CLIP_TO_LAYER_SAVE_FLAG = 0x10; /** restore everything when restore() is called */ public static final int ALL_SAVE_FLAG = 0x1F; /** * Saves the current matrix and clip onto a private stack. Subsequent * calls to translate,scale,rotate,skew,concat or clipRect,clipPath * will all operate as usual, but when the balancing call to restore() * is made, those calls will be forgotten, and the settings that existed * before the save() will be reinstated. * * @return The value to pass to restoreToCount() to balance this save() */ public native int save(); /** * Based on saveFlags, can save the current matrix and clip onto a private * stack. Subsequent calls to translate,scale,rotate,skew,concat or * clipRect,clipPath will all operate as usual, but when the balancing * call to restore() is made, those calls will be forgotten, and the * settings that existed before the save() will be reinstated. * * @param saveFlags flag bits that specify which parts of the Canvas state * to save/restore * @return The value to pass to restoreToCount() to balance this save() */ public native int save(int saveFlags); /** * This behaves the same as save(), but in addition it allocates an * offscreen bitmap. All drawing calls are directed there, and only when * the balancing call to restore() is made is that offscreen transfered to * the canvas (or the previous layer). Subsequent calls to translate, * scale, rotate, skew, concat or clipRect, clipPath all operate on this * copy. When the balancing call to restore() is made, this copy is * deleted and the previous matrix/clip state is restored. * * @param bounds May be null. The maximum size the offscreen bitmap * needs to be (in local coordinates) * @param paint This is copied, and is applied to the offscreen when * restore() is called. * @param saveFlags see _SAVE_FLAG constants * @return value to pass to restoreToCount() to balance this save() */ public int saveLayer(RectF bounds, Paint paint, int saveFlags) { return native_saveLayer(mNativeCanvas, bounds, paint != null ? paint.mNativePaint : 0, saveFlags); } /** * Helper version of saveLayer() that takes 4 values rather than a RectF. */ public int saveLayer(float left, float top, float right, float bottom, Paint paint, int saveFlags) { return native_saveLayer(mNativeCanvas, left, top, right, bottom, paint != null ? paint.mNativePaint : 0, saveFlags); } /** * This behaves the same as save(), but in addition it allocates an * offscreen bitmap. All drawing calls are directed there, and only when * the balancing call to restore() is made is that offscreen transfered to * the canvas (or the previous layer). Subsequent calls to translate, * scale, rotate, skew, concat or clipRect, clipPath all operate on this * copy. When the balancing call to restore() is made, this copy is * deleted and the previous matrix/clip state is restored. * * @param bounds The maximum size the offscreen bitmap needs to be * (in local coordinates) * @param alpha The alpha to apply to the offscreen when when it is drawn during restore() * @param saveFlags see _SAVE_FLAG constants * @return value to pass to restoreToCount() to balance this call */ public int saveLayerAlpha(RectF bounds, int alpha, int saveFlags) { alpha = Math.min(255, Math.max(0, alpha)); return native_saveLayerAlpha(mNativeCanvas, bounds, alpha, saveFlags); } /** * Helper for saveLayerAlpha() that takes 4 values instead of a RectF. */ public int saveLayerAlpha(float left, float top, float right, float bottom, int alpha, int saveFlags) { return native_saveLayerAlpha(mNativeCanvas, left, top, right, bottom, alpha, saveFlags); } /** * This call balances a previous call to save(), and is used to remove all * modifications to the matrix/clip state since the last save call. It is * an error to call restore() more times than save() was called. */ public native void restore(); /** * Returns the number of matrix/clip states on the Canvas' private stack. * This will equal # save() calls - # restore() calls. */ public native int getSaveCount(); /** * Efficient way to pop any calls to save() that happened after the save * count reached saveCount. It is an error for saveCount to be less than 1. * * Example: * int count = canvas.save(); * ... // more calls potentially to save() * canvas.restoreToCount(count); * // now the canvas is back in the same state it was before the initial * // call to save(). * * @param saveCount The save level to restore to. */ public native void restoreToCount(int saveCount); /** * Preconcat the current matrix with the specified translation * * @param dx The distance to translate in X * @param dy The distance to translate in Y */ public native void translate(float dx, float dy); /** * Preconcat the current matrix with the specified scale. * * @param sx The amount to scale in X * @param sy The amount to scale in Y */ public native void scale(float sx, float sy); /** * Preconcat the current matrix with the specified scale. * * @param sx The amount to scale in X * @param sy The amount to scale in Y * @param px The x-coord for the pivot point (unchanged by the scale) * @param py The y-coord for the pivot point (unchanged by the scale) */ public final void scale(float sx, float sy, float px, float py) { translate(px, py); scale(sx, sy); translate(-px, -py); } /** * Preconcat the current matrix with the specified rotation. * * @param degrees The amount to rotate, in degrees */ public native void rotate(float degrees); /** * Preconcat the current matrix with the specified rotation. * * @param degrees The amount to rotate, in degrees * @param px The x-coord for the pivot point (unchanged by the rotation) * @param py The y-coord for the pivot point (unchanged by the rotation) */ public final void rotate(float degrees, float px, float py) { translate(px, py); rotate(degrees); translate(-px, -py); } /** * Preconcat the current matrix with the specified skew. * * @param sx The amount to skew in X * @param sy The amount to skew in Y */ public native void skew(float sx, float sy); /** * Preconcat the current matrix with the specified matrix. If the specified * matrix is null, this method does nothing. * * @param matrix The matrix to preconcatenate with the current matrix */ public void concat(Matrix matrix) { if (matrix != null) native_concat(mNativeCanvas, matrix.native_instance); } /** * Completely replace the current matrix with the specified matrix. If the * matrix parameter is null, then the current matrix is reset to identity. * * Note: it is recommended to use {@link #concat(Matrix)}, * {@link #scale(float, float)}, {@link #translate(float, float)} and * {@link #rotate(float)} instead of this method. * * @param matrix The matrix to replace the current matrix with. If it is * null, set the current matrix to identity. * * @see #concat(Matrix) */ public void setMatrix(Matrix matrix) { native_setMatrix(mNativeCanvas, matrix == null ? 0 : matrix.native_instance); } /** * Return, in ctm, the current transformation matrix. This does not alter * the matrix in the canvas, but just returns a copy of it. */ @Deprecated public void getMatrix(Matrix ctm) { native_getCTM(mNativeCanvas, ctm.native_instance); } /** * Return a new matrix with a copy of the canvas' current transformation * matrix. */ @Deprecated public final Matrix getMatrix() { Matrix m = new Matrix(); //noinspection deprecation getMatrix(m); return m; } /** * Modify the current clip with the specified rectangle. * * @param rect The rect to intersect with the current clip * @param op How the clip is modified * @return true if the resulting clip is non-empty */ public boolean clipRect(RectF rect, Region.Op op) { return native_clipRect(mNativeCanvas, rect.left, rect.top, rect.right, rect.bottom, op.nativeInt); } /** * Modify the current clip with the specified rectangle, which is * expressed in local coordinates. * * @param rect The rectangle to intersect with the current clip. * @param op How the clip is modified * @return true if the resulting clip is non-empty */ public boolean clipRect(Rect rect, Region.Op op) { return native_clipRect(mNativeCanvas, rect.left, rect.top, rect.right, rect.bottom, op.nativeInt); } /** * Intersect the current clip with the specified rectangle, which is * expressed in local coordinates. * * @param rect The rectangle to intersect with the current clip. * @return true if the resulting clip is non-empty */ public native boolean clipRect(RectF rect); /** * Intersect the current clip with the specified rectangle, which is * expressed in local coordinates. * * @param rect The rectangle to intersect with the current clip. * @return true if the resulting clip is non-empty */ public native boolean clipRect(Rect rect); /** * Modify the current clip with the specified rectangle, which is * expressed in local coordinates. * * @param left The left side of the rectangle to intersect with the * current clip * @param top The top of the rectangle to intersect with the current * clip * @param right The right side of the rectangle to intersect with the * current clip * @param bottom The bottom of the rectangle to intersect with the current * clip * @param op How the clip is modified * @return true if the resulting clip is non-empty */ public boolean clipRect(float left, float top, float right, float bottom, Region.Op op) { return native_clipRect(mNativeCanvas, left, top, right, bottom, op.nativeInt); } /** * Intersect the current clip with the specified rectangle, which is * expressed in local coordinates. * * @param left The left side of the rectangle to intersect with the * current clip * @param top The top of the rectangle to intersect with the current clip * @param right The right side of the rectangle to intersect with the * current clip * @param bottom The bottom of the rectangle to intersect with the current * clip * @return true if the resulting clip is non-empty */ public native boolean clipRect(float left, float top, float right, float bottom); /** * Intersect the current clip with the specified rectangle, which is * expressed in local coordinates. * * @param left The left side of the rectangle to intersect with the * current clip * @param top The top of the rectangle to intersect with the current clip * @param right The right side of the rectangle to intersect with the * current clip * @param bottom The bottom of the rectangle to intersect with the current * clip * @return true if the resulting clip is non-empty */ public native boolean clipRect(int left, int top, int right, int bottom); /** * Modify the current clip with the specified path. * * @param path The path to operate on the current clip * @param op How the clip is modified * @return true if the resulting is non-empty */ public boolean clipPath(Path path, Region.Op op) { return native_clipPath(mNativeCanvas, path.ni(), op.nativeInt); } /** * Intersect the current clip with the specified path. * * @param path The path to intersect with the current clip * @return true if the resulting is non-empty */ public boolean clipPath(Path path) { return clipPath(path, Region.Op.INTERSECT); } /** * Modify the current clip with the specified region. Note that unlike * clipRect() and clipPath() which transform their arguments by the * current matrix, clipRegion() assumes its argument is already in the * coordinate system of the current layer's bitmap, and so not * transformation is performed. * * @param region The region to operate on the current clip, based on op * @param op How the clip is modified * @return true if the resulting is non-empty */ public boolean clipRegion(Region region, Region.Op op) { return native_clipRegion(mNativeCanvas, region.ni(), op.nativeInt); } /** * Intersect the current clip with the specified region. Note that unlike * clipRect() and clipPath() which transform their arguments by the * current matrix, clipRegion() assumes its argument is already in the * coordinate system of the current layer's bitmap, and so not * transformation is performed. * * @param region The region to operate on the current clip, based on op * @return true if the resulting is non-empty */ public boolean clipRegion(Region region) { return clipRegion(region, Region.Op.INTERSECT); } public DrawFilter getDrawFilter() { return mDrawFilter; } public void setDrawFilter(DrawFilter filter) { int nativeFilter = 0; if (filter != null) { nativeFilter = filter.mNativeInt; } mDrawFilter = filter; nativeSetDrawFilter(mNativeCanvas, nativeFilter); } public enum EdgeType { /** * Black-and-White: Treat edges by just rounding to nearest pixel boundary */ BW(0), //!< treat edges by just rounding to nearest pixel boundary /** * Antialiased: Treat edges by rounding-out, since they may be antialiased */ AA(1); EdgeType(int nativeInt) { this.nativeInt = nativeInt; } /** * @hide */ public final int nativeInt; } /** * Return true if the specified rectangle, after being transformed by the * current matrix, would lie completely outside of the current clip. Call * this to check if an area you intend to draw into is clipped out (and * therefore you can skip making the draw calls). * * @param rect the rect to compare with the current clip * @param type {@link Canvas.EdgeType#AA} if the path should be considered antialiased, * since that means it may affect a larger area (more pixels) than * non-antialiased ({@link Canvas.EdgeType#BW}). * @return true if the rect (transformed by the canvas' matrix) * does not intersect with the canvas' clip */ public boolean quickReject(RectF rect, EdgeType type) { return native_quickReject(mNativeCanvas, rect); } /** * Return true if the specified path, after being transformed by the * current matrix, would lie completely outside of the current clip. Call * this to check if an area you intend to draw into is clipped out (and * therefore you can skip making the draw calls). Note: for speed it may * return false even if the path itself might not intersect the clip * (i.e. the bounds of the path intersects, but the path does not). * * @param path The path to compare with the current clip * @param type {@link Canvas.EdgeType#AA} if the path should be considered antialiased, * since that means it may affect a larger area (more pixels) than * non-antialiased ({@link Canvas.EdgeType#BW}). * @return true if the path (transformed by the canvas' matrix) * does not intersect with the canvas' clip */ public boolean quickReject(Path path, EdgeType type) { return native_quickReject(mNativeCanvas, path.ni()); } /** * Return true if the specified rectangle, after being transformed by the * current matrix, would lie completely outside of the current clip. Call * this to check if an area you intend to draw into is clipped out (and * therefore you can skip making the draw calls). * * @param left The left side of the rectangle to compare with the * current clip * @param top The top of the rectangle to compare with the current * clip * @param right The right side of the rectangle to compare with the * current clip * @param bottom The bottom of the rectangle to compare with the * current clip * @param type {@link Canvas.EdgeType#AA} if the path should be considered antialiased, * since that means it may affect a larger area (more pixels) than * non-antialiased ({@link Canvas.EdgeType#BW}). * @return true if the rect (transformed by the canvas' matrix) * does not intersect with the canvas' clip */ public boolean quickReject(float left, float top, float right, float bottom, EdgeType type) { return native_quickReject(mNativeCanvas, left, top, right, bottom); } /** * Return the bounds of the current clip (in local coordinates) in the * bounds parameter, and return true if it is non-empty. This can be useful * in a way similar to quickReject, in that it tells you that drawing * outside of these bounds will be clipped out. * * @param bounds Return the clip bounds here. If it is null, ignore it but * still return true if the current clip is non-empty. * @return true if the current clip is non-empty. */ public boolean getClipBounds(Rect bounds) { return native_getClipBounds(mNativeCanvas, bounds); } /** * Retrieve the bounds of the current clip (in local coordinates). * * @return the clip bounds, or [0, 0, 0, 0] if the clip is empty. */ public final Rect getClipBounds() { Rect r = new Rect(); getClipBounds(r); return r; } /** * Fill the entire canvas' bitmap (restricted to the current clip) with the * specified RGB color, using srcover porterduff mode. * * @param r red component (0..255) of the color to draw onto the canvas * @param g green component (0..255) of the color to draw onto the canvas * @param b blue component (0..255) of the color to draw onto the canvas */ public void drawRGB(int r, int g, int b) { native_drawRGB(mNativeCanvas, r, g, b); } /** * Fill the entire canvas' bitmap (restricted to the current clip) with the * specified ARGB color, using srcover porterduff mode. * * @param a alpha component (0..255) of the color to draw onto the canvas * @param r red component (0..255) of the color to draw onto the canvas * @param g green component (0..255) of the color to draw onto the canvas * @param b blue component (0..255) of the color to draw onto the canvas */ public void drawARGB(int a, int r, int g, int b) { native_drawARGB(mNativeCanvas, a, r, g, b); } /** * Fill the entire canvas' bitmap (restricted to the current clip) with the * specified color, using srcover porterduff mode. * * @param color the color to draw onto the canvas */ public void drawColor(int color) { native_drawColor(mNativeCanvas, color); } /** * Fill the entire canvas' bitmap (restricted to the current clip) with the * specified color and porter-duff xfermode. * * @param color the color to draw with * @param mode the porter-duff mode to apply to the color */ public void drawColor(int color, PorterDuff.Mode mode) { native_drawColor(mNativeCanvas, color, mode.nativeInt); } /** * Fill the entire canvas' bitmap (restricted to the current clip) with * the specified paint. This is equivalent (but faster) to drawing an * infinitely large rectangle with the specified paint. * * @param paint The paint used to draw onto the canvas */ public void drawPaint(Paint paint) { native_drawPaint(mNativeCanvas, paint.mNativePaint); } /** * Draw a series of points. Each point is centered at the coordinate * specified by pts[], and its diameter is specified by the paint's stroke * width (as transformed by the canvas' CTM), with special treatment for * a stroke width of 0, which always draws exactly 1 pixel (or at most 4 * if antialiasing is enabled). The shape of the point is controlled by * the paint's Cap type. The shape is a square, unless the cap type is * Round, in which case the shape is a circle. * * @param pts Array of points to draw [x0 y0 x1 y1 x2 y2 ...] * @param offset Number of values to skip before starting to draw. * @param count The number of values to process, after skipping offset * of them. Since one point uses two values, the number of * "points" that are drawn is really (count >> 1). * @param paint The paint used to draw the points */ public native void drawPoints(float[] pts, int offset, int count, Paint paint); /** * Helper for drawPoints() that assumes you want to draw the entire array */ public void drawPoints(float[] pts, Paint paint) { drawPoints(pts, 0, pts.length, paint); } /** * Helper for drawPoints() for drawing a single point. */ public native void drawPoint(float x, float y, Paint paint); /** * Draw a line segment with the specified start and stop x,y coordinates, * using the specified paint. * *
Note that since a line is always "framed", the Style is ignored in the paint.
* *Degenerate lines (length is 0) will not be drawn.
* * @param startX The x-coordinate of the start point of the line * @param startY The y-coordinate of the start point of the line * @param paint The paint used to draw the line */ public void drawLine(float startX, float startY, float stopX, float stopY, Paint paint) { native_drawLine(mNativeCanvas, startX, startY, stopX, stopY, paint.mNativePaint); } /** * Draw a series of lines. Each line is taken from 4 consecutive values * in the pts array. Thus to draw 1 line, the array must contain at least 4 * values. This is logically the same as drawing the array as follows: * drawLine(pts[0], pts[1], pts[2], pts[3]) followed by * drawLine(pts[4], pts[5], pts[6], pts[7]) and so on. * * @param pts Array of points to draw [x0 y0 x1 y1 x2 y2 ...] * @param offset Number of values in the array to skip before drawing. * @param count The number of values in the array to process, after * skipping "offset" of them. Since each line uses 4 values, * the number of "lines" that are drawn is really * (count >> 2). * @param paint The paint used to draw the points */ public native void drawLines(float[] pts, int offset, int count, Paint paint); public void drawLines(float[] pts, Paint paint) { drawLines(pts, 0, pts.length, paint); } /** * Draw the specified Rect using the specified paint. The rectangle will * be filled or framed based on the Style in the paint. * * @param rect The rect to be drawn * @param paint The paint used to draw the rect */ public void drawRect(RectF rect, Paint paint) { native_drawRect(mNativeCanvas, rect, paint.mNativePaint); } /** * Draw the specified Rect using the specified Paint. The rectangle * will be filled or framed based on the Style in the paint. * * @param r The rectangle to be drawn. * @param paint The paint used to draw the rectangle */ public void drawRect(Rect r, Paint paint) { drawRect(r.left, r.top, r.right, r.bottom, paint); } /** * Draw the specified Rect using the specified paint. The rectangle will * be filled or framed based on the Style in the paint. * * @param left The left side of the rectangle to be drawn * @param top The top side of the rectangle to be drawn * @param right The right side of the rectangle to be drawn * @param bottom The bottom side of the rectangle to be drawn * @param paint The paint used to draw the rect */ public void drawRect(float left, float top, float right, float bottom, Paint paint) { native_drawRect(mNativeCanvas, left, top, right, bottom, paint.mNativePaint); } /** * Draw the specified oval using the specified paint. The oval will be * filled or framed based on the Style in the paint. * * @param oval The rectangle bounds of the oval to be drawn */ public void drawOval(RectF oval, Paint paint) { if (oval == null) { throw new NullPointerException(); } native_drawOval(mNativeCanvas, oval, paint.mNativePaint); } /** * Draw the specified circle using the specified paint. If radius is <= 0, * then nothing will be drawn. The circle will be filled or framed based * on the Style in the paint. * * @param cx The x-coordinate of the center of the cirle to be drawn * @param cy The y-coordinate of the center of the cirle to be drawn * @param radius The radius of the cirle to be drawn * @param paint The paint used to draw the circle */ public void drawCircle(float cx, float cy, float radius, Paint paint) { native_drawCircle(mNativeCanvas, cx, cy, radius, paint.mNativePaint); } /** *Draw the specified arc, which will be scaled to fit inside the * specified oval.
* *If the start angle is negative or >= 360, the start angle is treated * as start angle modulo 360.
* *If the sweep angle is >= 360, then the oval is drawn * completely. Note that this differs slightly from SkPath::arcTo, which * treats the sweep angle modulo 360. If the sweep angle is negative, * the sweep angle is treated as sweep angle modulo 360
* *The arc is drawn clockwise. An angle of 0 degrees correspond to the * geometric angle of 0 degrees (3 o'clock on a watch.)
* * @param oval The bounds of oval used to define the shape and size * of the arc * @param startAngle Starting angle (in degrees) where the arc begins * @param sweepAngle Sweep angle (in degrees) measured clockwise * @param useCenter If true, include the center of the oval in the arc, and close it if it is being stroked. This will draw a wedge * @param paint The paint used to draw the arc */ public void drawArc(RectF oval, float startAngle, float sweepAngle, boolean useCenter, Paint paint) { if (oval == null) { throw new NullPointerException(); } native_drawArc(mNativeCanvas, oval, startAngle, sweepAngle, useCenter, paint.mNativePaint); } /** * Draw the specified round-rect using the specified paint. The roundrect * will be filled or framed based on the Style in the paint. * * @param rect The rectangular bounds of the roundRect to be drawn * @param rx The x-radius of the oval used to round the corners * @param ry The y-radius of the oval used to round the corners * @param paint The paint used to draw the roundRect */ public void drawRoundRect(RectF rect, float rx, float ry, Paint paint) { if (rect == null) { throw new NullPointerException(); } native_drawRoundRect(mNativeCanvas, rect, rx, ry, paint.mNativePaint); } /** * Draw the specified path using the specified paint. The path will be * filled or framed based on the Style in the paint. * * @param path The path to be drawn * @param paint The paint used to draw the path */ public void drawPath(Path path, Paint paint) { native_drawPath(mNativeCanvas, path.ni(), paint.mNativePaint); } /** * @hide */ protected static void throwIfCannotDraw(Bitmap bitmap) { if (bitmap.isRecycled()) { throw new RuntimeException("Canvas: trying to use a recycled bitmap " + bitmap); } if (!bitmap.isPremultiplied() && bitmap.getConfig() == Bitmap.Config.ARGB_8888 && bitmap.hasAlpha()) { throw new RuntimeException("Canvas: trying to use a non-premultiplied bitmap " + bitmap); } } /** * Draws the specified bitmap as an N-patch (most often, a 9-patches.) * * @param patch The ninepatch object to render * @param dst The destination rectangle. * @param paint The paint to draw the bitmap with. may be null * * @hide */ public void drawPatch(NinePatch patch, Rect dst, Paint paint) { patch.drawSoftware(this, dst, paint); } /** * Draws the specified bitmap as an N-patch (most often, a 9-patches.) * * @param patch The ninepatch object to render * @param dst The destination rectangle. * @param paint The paint to draw the bitmap with. may be null * * @hide */ public void drawPatch(NinePatch patch, RectF dst, Paint paint) { patch.drawSoftware(this, dst, paint); } /** * Draw the specified bitmap, with its top/left corner at (x,y), using * the specified paint, transformed by the current matrix. * *Note: if the paint contains a maskfilter that generates a mask which * extends beyond the bitmap's original width/height (e.g. BlurMaskFilter), * then the bitmap will be drawn as if it were in a Shader with CLAMP mode. * Thus the color outside of the original width/height will be the edge * color replicated. * *
If the bitmap and canvas have different densities, this function * will take care of automatically scaling the bitmap to draw at the * same density as the canvas. * * @param bitmap The bitmap to be drawn * @param left The position of the left side of the bitmap being drawn * @param top The position of the top side of the bitmap being drawn * @param paint The paint used to draw the bitmap (may be null) */ public void drawBitmap(Bitmap bitmap, float left, float top, Paint paint) { throwIfCannotDraw(bitmap); native_drawBitmap(mNativeCanvas, bitmap.ni(), left, top, paint != null ? paint.mNativePaint : 0, mDensity, mScreenDensity, bitmap.mDensity); } /** * Draw the specified bitmap, scaling/translating automatically to fill * the destination rectangle. If the source rectangle is not null, it * specifies the subset of the bitmap to draw. * *
Note: if the paint contains a maskfilter that generates a mask which * extends beyond the bitmap's original width/height (e.g. BlurMaskFilter), * then the bitmap will be drawn as if it were in a Shader with CLAMP mode. * Thus the color outside of the original width/height will be the edge * color replicated. * *
This function ignores the density associated with the bitmap. * This is because the source and destination rectangle coordinate * spaces are in their respective densities, so must already have the * appropriate scaling factor applied. * * @param bitmap The bitmap to be drawn * @param src May be null. The subset of the bitmap to be drawn * @param dst The rectangle that the bitmap will be scaled/translated * to fit into * @param paint May be null. The paint used to draw the bitmap */ public void drawBitmap(Bitmap bitmap, Rect src, RectF dst, Paint paint) { if (dst == null) { throw new NullPointerException(); } throwIfCannotDraw(bitmap); native_drawBitmap(mNativeCanvas, bitmap.ni(), src, dst, paint != null ? paint.mNativePaint : 0, mScreenDensity, bitmap.mDensity); } /** * Draw the specified bitmap, scaling/translating automatically to fill * the destination rectangle. If the source rectangle is not null, it * specifies the subset of the bitmap to draw. * *
Note: if the paint contains a maskfilter that generates a mask which * extends beyond the bitmap's original width/height (e.g. BlurMaskFilter), * then the bitmap will be drawn as if it were in a Shader with CLAMP mode. * Thus the color outside of the original width/height will be the edge * color replicated. * *
This function ignores the density associated with the bitmap. * This is because the source and destination rectangle coordinate * spaces are in their respective densities, so must already have the * appropriate scaling factor applied. * * @param bitmap The bitmap to be drawn * @param src May be null. The subset of the bitmap to be drawn * @param dst The rectangle that the bitmap will be scaled/translated * to fit into * @param paint May be null. The paint used to draw the bitmap */ public void drawBitmap(Bitmap bitmap, Rect src, Rect dst, Paint paint) { if (dst == null) { throw new NullPointerException(); } throwIfCannotDraw(bitmap); native_drawBitmap(mNativeCanvas, bitmap.ni(), src, dst, paint != null ? paint.mNativePaint : 0, mScreenDensity, bitmap.mDensity); } /** * Treat the specified array of colors as a bitmap, and draw it. This gives * the same result as first creating a bitmap from the array, and then * drawing it, but this method avoids explicitly creating a bitmap object * which can be more efficient if the colors are changing often. * * @param colors Array of colors representing the pixels of the bitmap * @param offset Offset into the array of colors for the first pixel * @param stride The number of colors in the array between rows (must be * >= width or <= -width). * @param x The X coordinate for where to draw the bitmap * @param y The Y coordinate for where to draw the bitmap * @param width The width of the bitmap * @param height The height of the bitmap * @param hasAlpha True if the alpha channel of the colors contains valid * values. If false, the alpha byte is ignored (assumed to * be 0xFF for every pixel). * @param paint May be null. The paint used to draw the bitmap */ public void drawBitmap(int[] colors, int offset, int stride, float x, float y, int width, int height, boolean hasAlpha, Paint paint) { // check for valid input if (width < 0) { throw new IllegalArgumentException("width must be >= 0"); } if (height < 0) { throw new IllegalArgumentException("height must be >= 0"); } if (Math.abs(stride) < width) { throw new IllegalArgumentException("abs(stride) must be >= width"); } int lastScanline = offset + (height - 1) * stride; int length = colors.length; if (offset < 0 || (offset + width > length) || lastScanline < 0 || (lastScanline + width > length)) { throw new ArrayIndexOutOfBoundsException(); } // quick escape if there's nothing to draw if (width == 0 || height == 0) { return; } // punch down to native for the actual draw native_drawBitmap(mNativeCanvas, colors, offset, stride, x, y, width, height, hasAlpha, paint != null ? paint.mNativePaint : 0); } /** Legacy version of drawBitmap(int[] colors, ...) that took ints for x,y */ public void drawBitmap(int[] colors, int offset, int stride, int x, int y, int width, int height, boolean hasAlpha, Paint paint) { // call through to the common float version drawBitmap(colors, offset, stride, (float)x, (float)y, width, height, hasAlpha, paint); } /** * Draw the bitmap using the specified matrix. * * @param bitmap The bitmap to draw * @param matrix The matrix used to transform the bitmap when it is drawn * @param paint May be null. The paint used to draw the bitmap */ public void drawBitmap(Bitmap bitmap, Matrix matrix, Paint paint) { nativeDrawBitmapMatrix(mNativeCanvas, bitmap.ni(), matrix.ni(), paint != null ? paint.mNativePaint : 0); } /** * @hide */ protected static void checkRange(int length, int offset, int count) { if ((offset | count) < 0 || offset + count > length) { throw new ArrayIndexOutOfBoundsException(); } } /** * Draw the bitmap through the mesh, where mesh vertices are evenly * distributed across the bitmap. There are meshWidth+1 vertices across, and * meshHeight+1 vertices down. The verts array is accessed in row-major * order, so that the first meshWidth+1 vertices are distributed across the * top of the bitmap from left to right. A more general version of this * method is drawVertices(). * * @param bitmap The bitmap to draw using the mesh * @param meshWidth The number of columns in the mesh. Nothing is drawn if * this is 0 * @param meshHeight The number of rows in the mesh. Nothing is drawn if * this is 0 * @param verts Array of x,y pairs, specifying where the mesh should be * drawn. There must be at least * (meshWidth+1) * (meshHeight+1) * 2 + vertOffset values * in the array * @param vertOffset Number of verts elements to skip before drawing * @param colors May be null. Specifies a color at each vertex, which is * interpolated across the cell, and whose values are * multiplied by the corresponding bitmap colors. If not null, * there must be at least (meshWidth+1) * (meshHeight+1) + * colorOffset values in the array. * @param colorOffset Number of color elements to skip before drawing * @param paint May be null. The paint used to draw the bitmap */ public void drawBitmapMesh(Bitmap bitmap, int meshWidth, int meshHeight, float[] verts, int vertOffset, int[] colors, int colorOffset, Paint paint) { if ((meshWidth | meshHeight | vertOffset | colorOffset) < 0) { throw new ArrayIndexOutOfBoundsException(); } if (meshWidth == 0 || meshHeight == 0) { return; } int count = (meshWidth + 1) * (meshHeight + 1); // we mul by 2 since we need two floats per vertex checkRange(verts.length, vertOffset, count * 2); if (colors != null) { // no mul by 2, since we need only 1 color per vertex checkRange(colors.length, colorOffset, count); } nativeDrawBitmapMesh(mNativeCanvas, bitmap.ni(), meshWidth, meshHeight, verts, vertOffset, colors, colorOffset, paint != null ? paint.mNativePaint : 0); } public enum VertexMode { TRIANGLES(0), TRIANGLE_STRIP(1), TRIANGLE_FAN(2); VertexMode(int nativeInt) { this.nativeInt = nativeInt; } /** * @hide */ public final int nativeInt; } /** * Draw the array of vertices, interpreted as triangles (based on mode). The * verts array is required, and specifies the x,y pairs for each vertex. If * texs is non-null, then it is used to specify the coordinate in shader * coordinates to use at each vertex (the paint must have a shader in this * case). If there is no texs array, but there is a color array, then each * color is interpolated across its corresponding triangle in a gradient. If * both texs and colors arrays are present, then they behave as before, but * the resulting color at each pixels is the result of multiplying the * colors from the shader and the color-gradient together. The indices array * is optional, but if it is present, then it is used to specify the index * of each triangle, rather than just walking through the arrays in order. * * @param mode How to interpret the array of vertices * @param vertexCount The number of values in the vertices array (and * corresponding texs and colors arrays if non-null). Each logical * vertex is two values (x, y), vertexCount must be a multiple of 2. * @param verts Array of vertices for the mesh * @param vertOffset Number of values in the verts to skip before drawing. * @param texs May be null. If not null, specifies the coordinates to sample * into the current shader (e.g. bitmap tile or gradient) * @param texOffset Number of values in texs to skip before drawing. * @param colors May be null. If not null, specifies a color for each * vertex, to be interpolated across the triangle. * @param colorOffset Number of values in colors to skip before drawing. * @param indices If not null, array of indices to reference into the * vertex (texs, colors) array. * @param indexCount number of entries in the indices array (if not null). * @param paint Specifies the shader to use if the texs array is non-null. */ public void drawVertices(VertexMode mode, int vertexCount, float[] verts, int vertOffset, float[] texs, int texOffset, int[] colors, int colorOffset, short[] indices, int indexOffset, int indexCount, Paint paint) { checkRange(verts.length, vertOffset, vertexCount); if (texs != null) { checkRange(texs.length, texOffset, vertexCount); } if (colors != null) { checkRange(colors.length, colorOffset, vertexCount / 2); } if (indices != null) { checkRange(indices.length, indexOffset, indexCount); } nativeDrawVertices(mNativeCanvas, mode.nativeInt, vertexCount, verts, vertOffset, texs, texOffset, colors, colorOffset, indices, indexOffset, indexCount, paint.mNativePaint); } /** * Draw the text, with origin at (x,y), using the specified paint. The * origin is interpreted based on the Align setting in the paint. * * @param text The text to be drawn * @param x The x-coordinate of the origin of the text being drawn * @param y The y-coordinate of the origin of the text being drawn * @param paint The paint used for the text (e.g. color, size, style) */ public void drawText(char[] text, int index, int count, float x, float y, Paint paint) { if ((index | count | (index + count) | (text.length - index - count)) < 0) { throw new IndexOutOfBoundsException(); } native_drawText(mNativeCanvas, text, index, count, x, y, paint.mBidiFlags, paint.mNativePaint); } /** * Draw the text, with origin at (x,y), using the specified paint. The * origin is interpreted based on the Align setting in the paint. * * @param text The text to be drawn * @param x The x-coordinate of the origin of the text being drawn * @param y The y-coordinate of the origin of the text being drawn * @param paint The paint used for the text (e.g. color, size, style) */ public void drawText(String text, float x, float y, Paint paint) { native_drawText(mNativeCanvas, text, 0, text.length(), x, y, paint.mBidiFlags, paint.mNativePaint); } /** * Draw the text, with origin at (x,y), using the specified paint. * The origin is interpreted based on the Align setting in the paint. * * @param text The text to be drawn * @param start The index of the first character in text to draw * @param end (end - 1) is the index of the last character in text to draw * @param x The x-coordinate of the origin of the text being drawn * @param y The y-coordinate of the origin of the text being drawn * @param paint The paint used for the text (e.g. color, size, style) */ public void drawText(String text, int start, int end, float x, float y, Paint paint) { if ((start | end | (end - start) | (text.length() - end)) < 0) { throw new IndexOutOfBoundsException(); } native_drawText(mNativeCanvas, text, start, end, x, y, paint.mBidiFlags, paint.mNativePaint); } /** * Draw the specified range of text, specified by start/end, with its * origin at (x,y), in the specified Paint. The origin is interpreted * based on the Align setting in the Paint. * * @param text The text to be drawn * @param start The index of the first character in text to draw * @param end (end - 1) is the index of the last character in text * to draw * @param x The x-coordinate of origin for where to draw the text * @param y The y-coordinate of origin for where to draw the text * @param paint The paint used for the text (e.g. color, size, style) */ public void drawText(CharSequence text, int start, int end, float x, float y, Paint paint) { if (text instanceof String || text instanceof SpannedString || text instanceof SpannableString) { native_drawText(mNativeCanvas, text.toString(), start, end, x, y, paint.mBidiFlags, paint.mNativePaint); } else if (text instanceof GraphicsOperations) { ((GraphicsOperations) text).drawText(this, start, end, x, y, paint); } else { char[] buf = TemporaryBuffer.obtain(end - start); TextUtils.getChars(text, start, end, buf, 0); native_drawText(mNativeCanvas, buf, 0, end - start, x, y, paint.mBidiFlags, paint.mNativePaint); TemporaryBuffer.recycle(buf); } } /** * Render a run of all LTR or all RTL text, with shaping. This does not run * bidi on the provided text, but renders it as a uniform right-to-left or * left-to-right run, as indicated by dir. Alignment of the text is as * determined by the Paint's TextAlign value. * * @param text the text to render * @param index the start of the text to render * @param count the count of chars to render * @param contextIndex the start of the context for shaping. Must be * no greater than index. * @param contextCount the number of characters in the context for shaping. * ContexIndex + contextCount must be no less than index * + count. * @param x the x position at which to draw the text * @param y the y position at which to draw the text * @param dir the run direction, either {@link #DIRECTION_LTR} or * {@link #DIRECTION_RTL}. * @param paint the paint * @hide */ public void drawTextRun(char[] text, int index, int count, int contextIndex, int contextCount, float x, float y, int dir, Paint paint) { if (text == null) { throw new NullPointerException("text is null"); } if (paint == null) { throw new NullPointerException("paint is null"); } if ((index | count | text.length - index - count) < 0) { throw new IndexOutOfBoundsException(); } if (dir != DIRECTION_LTR && dir != DIRECTION_RTL) { throw new IllegalArgumentException("unknown dir: " + dir); } native_drawTextRun(mNativeCanvas, text, index, count, contextIndex, contextCount, x, y, dir, paint.mNativePaint); } /** * Render a run of all LTR or all RTL text, with shaping. This does not run * bidi on the provided text, but renders it as a uniform right-to-left or * left-to-right run, as indicated by dir. Alignment of the text is as * determined by the Paint's TextAlign value. * * @param text the text to render * @param start the start of the text to render. Data before this position * can be used for shaping context. * @param end the end of the text to render. Data at or after this * position can be used for shaping context. * @param x the x position at which to draw the text * @param y the y position at which to draw the text * @param dir the run direction, either 0 for LTR or 1 for RTL. * @param paint the paint * @hide */ public void drawTextRun(CharSequence text, int start, int end, int contextStart, int contextEnd, float x, float y, int dir, Paint paint) { if (text == null) { throw new NullPointerException("text is null"); } if (paint == null) { throw new NullPointerException("paint is null"); } if ((start | end | end - start | text.length() - end) < 0) { throw new IndexOutOfBoundsException(); } int flags = dir == 0 ? 0 : 1; if (text instanceof String || text instanceof SpannedString || text instanceof SpannableString) { native_drawTextRun(mNativeCanvas, text.toString(), start, end, contextStart, contextEnd, x, y, flags, paint.mNativePaint); } else if (text instanceof GraphicsOperations) { ((GraphicsOperations) text).drawTextRun(this, start, end, contextStart, contextEnd, x, y, flags, paint); } else { int contextLen = contextEnd - contextStart; int len = end - start; char[] buf = TemporaryBuffer.obtain(contextLen); TextUtils.getChars(text, contextStart, contextEnd, buf, 0); native_drawTextRun(mNativeCanvas, buf, start - contextStart, len, 0, contextLen, x, y, flags, paint.mNativePaint); TemporaryBuffer.recycle(buf); } } /** * Draw the text in the array, with each character's origin specified by * the pos array. * * This method does not support glyph composition and decomposition and * should therefore not be used to render complex scripts. * * @param text The text to be drawn * @param index The index of the first character to draw * @param count The number of characters to draw, starting from index. * @param pos Array of [x,y] positions, used to position each * character * @param paint The paint used for the text (e.g. color, size, style) */ @Deprecated public void drawPosText(char[] text, int index, int count, float[] pos, Paint paint) { if (index < 0 || index + count > text.length || count*2 > pos.length) { throw new IndexOutOfBoundsException(); } native_drawPosText(mNativeCanvas, text, index, count, pos, paint.mNativePaint); } /** * Draw the text in the array, with each character's origin specified by * the pos array. * * This method does not support glyph composition and decomposition and * should therefore not be used to render complex scripts. * * @param text The text to be drawn * @param pos Array of [x,y] positions, used to position each character * @param paint The paint used for the text (e.g. color, size, style) */ @Deprecated public void drawPosText(String text, float[] pos, Paint paint) { if (text.length()*2 > pos.length) { throw new ArrayIndexOutOfBoundsException(); } native_drawPosText(mNativeCanvas, text, pos, paint.mNativePaint); } /** * Draw the text, with origin at (x,y), using the specified paint, along * the specified path. The paint's Align setting determins where along the * path to start the text. * * @param text The text to be drawn * @param path The path the text should follow for its baseline * @param hOffset The distance along the path to add to the text's * starting position * @param vOffset The distance above(-) or below(+) the path to position * the text * @param paint The paint used for the text (e.g. color, size, style) */ public void drawTextOnPath(char[] text, int index, int count, Path path, float hOffset, float vOffset, Paint paint) { if (index < 0 || index + count > text.length) { throw new ArrayIndexOutOfBoundsException(); } native_drawTextOnPath(mNativeCanvas, text, index, count, path.ni(), hOffset, vOffset, paint.mBidiFlags, paint.mNativePaint); } /** * Draw the text, with origin at (x,y), using the specified paint, along * the specified path. The paint's Align setting determins where along the * path to start the text. * * @param text The text to be drawn * @param path The path the text should follow for its baseline * @param hOffset The distance along the path to add to the text's * starting position * @param vOffset The distance above(-) or below(+) the path to position * the text * @param paint The paint used for the text (e.g. color, size, style) */ public void drawTextOnPath(String text, Path path, float hOffset, float vOffset, Paint paint) { if (text.length() > 0) { native_drawTextOnPath(mNativeCanvas, text, path.ni(), hOffset, vOffset, paint.mBidiFlags, paint.mNativePaint); } } /** * Save the canvas state, draw the picture, and restore the canvas state. * This differs from picture.draw(canvas), which does not perform any * save/restore. * *
* Note: This forces the picture to internally call * {@link Picture#endRecording} in order to prepare for playback. * * @param picture The picture to be drawn */ public void drawPicture(Picture picture) { picture.endRecording(); int restoreCount = save(); picture.draw(this); restoreToCount(restoreCount); } /** * Draw the picture, stretched to fit into the dst rectangle. */ public void drawPicture(Picture picture, RectF dst) { save(); translate(dst.left, dst.top); if (picture.getWidth() > 0 && picture.getHeight() > 0) { scale(dst.width() / picture.getWidth(), dst.height() / picture.getHeight()); } drawPicture(picture); restore(); } /** * Draw the picture, stretched to fit into the dst rectangle. */ public void drawPicture(Picture picture, Rect dst) { save(); translate(dst.left, dst.top); if (picture.getWidth() > 0 && picture.getHeight() > 0) { scale((float) dst.width() / picture.getWidth(), (float) dst.height() / picture.getHeight()); } drawPicture(picture); restore(); } /** * Releases the resources associated with this canvas. * * @hide */ public void release() { mFinalizer.dispose(); } /** * Free up as much memory as possible from private caches (e.g. fonts, images) * * @hide */ public static native void freeCaches(); /** * Free up text layout caches * * @hide */ public static native void freeTextLayoutCaches(); private static native int initRaster(int nativeBitmapOrZero); private static native void copyNativeCanvasState(int srcCanvas, int dstCanvas); private static native int native_saveLayer(int nativeCanvas, RectF bounds, int paint, int layerFlags); private static native int native_saveLayer(int nativeCanvas, float l, float t, float r, float b, int paint, int layerFlags); private static native int native_saveLayerAlpha(int nativeCanvas, RectF bounds, int alpha, int layerFlags); private static native int native_saveLayerAlpha(int nativeCanvas, float l, float t, float r, float b, int alpha, int layerFlags); private static native void native_concat(int nCanvas, int nMatrix); private static native void native_setMatrix(int nCanvas, int nMatrix); private static native boolean native_clipRect(int nCanvas, float left, float top, float right, float bottom, int regionOp); private static native boolean native_clipPath(int nativeCanvas, int nativePath, int regionOp); private static native boolean native_clipRegion(int nativeCanvas, int nativeRegion, int regionOp); private static native void nativeSetDrawFilter(int nativeCanvas, int nativeFilter); private static native boolean native_getClipBounds(int nativeCanvas, Rect bounds); private static native void native_getCTM(int canvas, int matrix); private static native boolean native_quickReject(int nativeCanvas, RectF rect); private static native boolean native_quickReject(int nativeCanvas, int path); private static native boolean native_quickReject(int nativeCanvas, float left, float top, float right, float bottom); private static native void native_drawRGB(int nativeCanvas, int r, int g, int b); private static native void native_drawARGB(int nativeCanvas, int a, int r, int g, int b); private static native void native_drawColor(int nativeCanvas, int color); private static native void native_drawColor(int nativeCanvas, int color, int mode); private static native void native_drawPaint(int nativeCanvas, int paint); private static native void native_drawLine(int nativeCanvas, float startX, float startY, float stopX, float stopY, int paint); private static native void native_drawRect(int nativeCanvas, RectF rect, int paint); private static native void native_drawRect(int nativeCanvas, float left, float top, float right, float bottom, int paint); private static native void native_drawOval(int nativeCanvas, RectF oval, int paint); private static native void native_drawCircle(int nativeCanvas, float cx, float cy, float radius, int paint); private static native void native_drawArc(int nativeCanvas, RectF oval, float startAngle, float sweep, boolean useCenter, int paint); private static native void native_drawRoundRect(int nativeCanvas, RectF rect, float rx, float ry, int paint); private static native void native_drawPath(int nativeCanvas, int path, int paint); private native void native_drawBitmap(int nativeCanvas, int bitmap, float left, float top, int nativePaintOrZero, int canvasDensity, int screenDensity, int bitmapDensity); private native void native_drawBitmap(int nativeCanvas, int bitmap, Rect src, RectF dst, int nativePaintOrZero, int screenDensity, int bitmapDensity); private static native void native_drawBitmap(int nativeCanvas, int bitmap, Rect src, Rect dst, int nativePaintOrZero, int screenDensity, int bitmapDensity); private static native void native_drawBitmap(int nativeCanvas, int[] colors, int offset, int stride, float x, float y, int width, int height, boolean hasAlpha, int nativePaintOrZero); private static native void nativeDrawBitmapMatrix(int nCanvas, int nBitmap, int nMatrix, int nPaint); private static native void nativeDrawBitmapMesh(int nCanvas, int nBitmap, int meshWidth, int meshHeight, float[] verts, int vertOffset, int[] colors, int colorOffset, int nPaint); private static native void nativeDrawVertices(int nCanvas, int mode, int n, float[] verts, int vertOffset, float[] texs, int texOffset, int[] colors, int colorOffset, short[] indices, int indexOffset, int indexCount, int nPaint); private static native void native_drawText(int nativeCanvas, char[] text, int index, int count, float x, float y, int flags, int paint); private static native void native_drawText(int nativeCanvas, String text, int start, int end, float x, float y, int flags, int paint); private static native void native_drawTextRun(int nativeCanvas, String text, int start, int end, int contextStart, int contextEnd, float x, float y, int flags, int paint); private static native void native_drawTextRun(int nativeCanvas, char[] text, int start, int count, int contextStart, int contextCount, float x, float y, int flags, int paint); private static native void native_drawPosText(int nativeCanvas, char[] text, int index, int count, float[] pos, int paint); private static native void native_drawPosText(int nativeCanvas, String text, float[] pos, int paint); private static native void native_drawTextOnPath(int nativeCanvas, char[] text, int index, int count, int path, float hOffset, float vOffset, int bidiFlags, int paint); private static native void native_drawTextOnPath(int nativeCanvas, String text, int path, float hOffset, float vOffset, int flags, int paint); private static native void finalizer(int nativeCanvas); }