/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.location; import android.annotation.SystemApi; import android.os.Bundle; import android.os.Parcel; import android.os.Parcelable; import android.os.SystemClock; import android.util.Printer; import android.util.TimeUtils; import java.text.DecimalFormat; import java.util.StringTokenizer; /** * A data class representing a geographic location. * *
A location can consist of a latitude, longitude, timestamp, * and other information such as bearing, altitude and velocity. * *
All locations generated by the {@link LocationManager} are * guaranteed to have a valid latitude, longitude, and timestamp * (both UTC time and elapsed real-time since boot), all other * parameters are optional. */ public class Location implements Parcelable { /** * Constant used to specify formatting of a latitude or longitude * in the form "[+-]DDD.DDDDD where D indicates degrees. */ public static final int FORMAT_DEGREES = 0; /** * Constant used to specify formatting of a latitude or longitude * in the form "[+-]DDD:MM.MMMMM" where D indicates degrees and * M indicates minutes of arc (1 minute = 1/60th of a degree). */ public static final int FORMAT_MINUTES = 1; /** * Constant used to specify formatting of a latitude or longitude * in the form "DDD:MM:SS.SSSSS" where D indicates degrees, M * indicates minutes of arc, and S indicates seconds of arc (1 * minute = 1/60th of a degree, 1 second = 1/3600th of a degree). */ public static final int FORMAT_SECONDS = 2; /** * Bundle key for a version of the location that has been fed through * LocationFudger. Allows location providers to flag locations as being * safe for use with ACCESS_COARSE_LOCATION permission. * * @hide */ public static final String EXTRA_COARSE_LOCATION = "coarseLocation"; /** * Bundle key for a version of the location containing no GPS data. * Allows location providers to flag locations as being safe to * feed to LocationFudger. * * @hide */ public static final String EXTRA_NO_GPS_LOCATION = "noGPSLocation"; private String mProvider; private long mTime = 0; private long mElapsedRealtimeNanos = 0; private double mLatitude = 0.0; private double mLongitude = 0.0; private boolean mHasAltitude = false; private double mAltitude = 0.0f; private boolean mHasSpeed = false; private float mSpeed = 0.0f; private boolean mHasBearing = false; private float mBearing = 0.0f; private boolean mHasAccuracy = false; private float mAccuracy = 0.0f; private Bundle mExtras = null; private boolean mIsFromMockProvider = false; // Cache the inputs and outputs of computeDistanceAndBearing // so calls to distanceTo() and bearingTo() can share work private double mLat1 = 0.0; private double mLon1 = 0.0; private double mLat2 = 0.0; private double mLon2 = 0.0; private float mDistance = 0.0f; private float mInitialBearing = 0.0f; // Scratchpad private final float[] mResults = new float[2]; /** * Construct a new Location with a named provider. * *
By default time, latitude and longitude are 0, and the location * has no bearing, altitude, speed, accuracy or extras. * * @param provider the name of the provider that generated this location */ public Location(String provider) { mProvider = provider; } /** * Construct a new Location object that is copied from an existing one. */ public Location(Location l) { set(l); } /** * Sets the contents of the location to the values from the given location. */ public void set(Location l) { mProvider = l.mProvider; mTime = l.mTime; mElapsedRealtimeNanos = l.mElapsedRealtimeNanos; mLatitude = l.mLatitude; mLongitude = l.mLongitude; mHasAltitude = l.mHasAltitude; mAltitude = l.mAltitude; mHasSpeed = l.mHasSpeed; mSpeed = l.mSpeed; mHasBearing = l.mHasBearing; mBearing = l.mBearing; mHasAccuracy = l.mHasAccuracy; mAccuracy = l.mAccuracy; mExtras = (l.mExtras == null) ? null : new Bundle(l.mExtras); mIsFromMockProvider = l.mIsFromMockProvider; } /** * Clears the contents of the location. */ public void reset() { mProvider = null; mTime = 0; mElapsedRealtimeNanos = 0; mLatitude = 0; mLongitude = 0; mHasAltitude = false; mAltitude = 0; mHasSpeed = false; mSpeed = 0; mHasBearing = false; mBearing = 0; mHasAccuracy = false; mAccuracy = 0; mExtras = null; mIsFromMockProvider = false; } /** * Converts a coordinate to a String representation. The outputType * may be one of FORMAT_DEGREES, FORMAT_MINUTES, or FORMAT_SECONDS. * The coordinate must be a valid double between -180.0 and 180.0. * * @throws IllegalArgumentException if coordinate is less than * -180.0, greater than 180.0, or is not a number. * @throws IllegalArgumentException if outputType is not one of * FORMAT_DEGREES, FORMAT_MINUTES, or FORMAT_SECONDS. */ public static String convert(double coordinate, int outputType) { if (coordinate < -180.0 || coordinate > 180.0 || Double.isNaN(coordinate)) { throw new IllegalArgumentException("coordinate=" + coordinate); } if ((outputType != FORMAT_DEGREES) && (outputType != FORMAT_MINUTES) && (outputType != FORMAT_SECONDS)) { throw new IllegalArgumentException("outputType=" + outputType); } StringBuilder sb = new StringBuilder(); // Handle negative values if (coordinate < 0) { sb.append('-'); coordinate = -coordinate; } DecimalFormat df = new DecimalFormat("###.#####"); if (outputType == FORMAT_MINUTES || outputType == FORMAT_SECONDS) { int degrees = (int) Math.floor(coordinate); sb.append(degrees); sb.append(':'); coordinate -= degrees; coordinate *= 60.0; if (outputType == FORMAT_SECONDS) { int minutes = (int) Math.floor(coordinate); sb.append(minutes); sb.append(':'); coordinate -= minutes; coordinate *= 60.0; } } sb.append(df.format(coordinate)); return sb.toString(); } /** * Converts a String in one of the formats described by * FORMAT_DEGREES, FORMAT_MINUTES, or FORMAT_SECONDS into a * double. * * @throws NullPointerException if coordinate is null * @throws IllegalArgumentException if the coordinate is not * in one of the valid formats. */ public static double convert(String coordinate) { // IllegalArgumentException if bad syntax if (coordinate == null) { throw new NullPointerException("coordinate"); } boolean negative = false; if (coordinate.charAt(0) == '-') { coordinate = coordinate.substring(1); negative = true; } StringTokenizer st = new StringTokenizer(coordinate, ":"); int tokens = st.countTokens(); if (tokens < 1) { throw new IllegalArgumentException("coordinate=" + coordinate); } try { String degrees = st.nextToken(); double val; if (tokens == 1) { val = Double.parseDouble(degrees); return negative ? -val : val; } String minutes = st.nextToken(); int deg = Integer.parseInt(degrees); double min; double sec = 0.0; if (st.hasMoreTokens()) { min = Integer.parseInt(minutes); String seconds = st.nextToken(); sec = Double.parseDouble(seconds); } else { min = Double.parseDouble(minutes); } boolean isNegative180 = negative && (deg == 180) && (min == 0) && (sec == 0); // deg must be in [0, 179] except for the case of -180 degrees if ((deg < 0.0) || (deg > 179 && !isNegative180)) { throw new IllegalArgumentException("coordinate=" + coordinate); } if (min < 0 || min > 59) { throw new IllegalArgumentException("coordinate=" + coordinate); } if (sec < 0 || sec > 59) { throw new IllegalArgumentException("coordinate=" + coordinate); } val = deg*3600.0 + min*60.0 + sec; val /= 3600.0; return negative ? -val : val; } catch (NumberFormatException nfe) { throw new IllegalArgumentException("coordinate=" + coordinate); } } private static void computeDistanceAndBearing(double lat1, double lon1, double lat2, double lon2, float[] results) { // Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf // using the "Inverse Formula" (section 4) int MAXITERS = 20; // Convert lat/long to radians lat1 *= Math.PI / 180.0; lat2 *= Math.PI / 180.0; lon1 *= Math.PI / 180.0; lon2 *= Math.PI / 180.0; double a = 6378137.0; // WGS84 major axis double b = 6356752.3142; // WGS84 semi-major axis double f = (a - b) / a; double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b); double L = lon2 - lon1; double A = 0.0; double U1 = Math.atan((1.0 - f) * Math.tan(lat1)); double U2 = Math.atan((1.0 - f) * Math.tan(lat2)); double cosU1 = Math.cos(U1); double cosU2 = Math.cos(U2); double sinU1 = Math.sin(U1); double sinU2 = Math.sin(U2); double cosU1cosU2 = cosU1 * cosU2; double sinU1sinU2 = sinU1 * sinU2; double sigma = 0.0; double deltaSigma = 0.0; double cosSqAlpha = 0.0; double cos2SM = 0.0; double cosSigma = 0.0; double sinSigma = 0.0; double cosLambda = 0.0; double sinLambda = 0.0; double lambda = L; // initial guess for (int iter = 0; iter < MAXITERS; iter++) { double lambdaOrig = lambda; cosLambda = Math.cos(lambda); sinLambda = Math.sin(lambda); double t1 = cosU2 * sinLambda; double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda; double sinSqSigma = t1 * t1 + t2 * t2; // (14) sinSigma = Math.sqrt(sinSqSigma); cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15) sigma = Math.atan2(sinSigma, cosSigma); // (16) double sinAlpha = (sinSigma == 0) ? 0.0 : cosU1cosU2 * sinLambda / sinSigma; // (17) cosSqAlpha = 1.0 - sinAlpha * sinAlpha; cos2SM = (cosSqAlpha == 0) ? 0.0 : cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18) double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn A = 1 + (uSquared / 16384.0) * // (3) (4096.0 + uSquared * (-768 + uSquared * (320.0 - 175.0 * uSquared))); double B = (uSquared / 1024.0) * // (4) (256.0 + uSquared * (-128.0 + uSquared * (74.0 - 47.0 * uSquared))); double C = (f / 16.0) * cosSqAlpha * (4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10) double cos2SMSq = cos2SM * cos2SM; deltaSigma = B * sinSigma * // (6) (cos2SM + (B / 4.0) * (cosSigma * (-1.0 + 2.0 * cos2SMSq) - (B / 6.0) * cos2SM * (-3.0 + 4.0 * sinSigma * sinSigma) * (-3.0 + 4.0 * cos2SMSq))); lambda = L + (1.0 - C) * f * sinAlpha * (sigma + C * sinSigma * (cos2SM + C * cosSigma * (-1.0 + 2.0 * cos2SM * cos2SM))); // (11) double delta = (lambda - lambdaOrig) / lambda; if (Math.abs(delta) < 1.0e-12) { break; } } float distance = (float) (b * A * (sigma - deltaSigma)); results[0] = distance; if (results.length > 1) { float initialBearing = (float) Math.atan2(cosU2 * sinLambda, cosU1 * sinU2 - sinU1 * cosU2 * cosLambda); initialBearing *= 180.0 / Math.PI; results[1] = initialBearing; if (results.length > 2) { float finalBearing = (float) Math.atan2(cosU1 * sinLambda, -sinU1 * cosU2 + cosU1 * sinU2 * cosLambda); finalBearing *= 180.0 / Math.PI; results[2] = finalBearing; } } } /** * Computes the approximate distance in meters between two * locations, and optionally the initial and final bearings of the * shortest path between them. Distance and bearing are defined using the * WGS84 ellipsoid. * *
The computed distance is stored in results[0]. If results has length * 2 or greater, the initial bearing is stored in results[1]. If results has * length 3 or greater, the final bearing is stored in results[2]. * * @param startLatitude the starting latitude * @param startLongitude the starting longitude * @param endLatitude the ending latitude * @param endLongitude the ending longitude * @param results an array of floats to hold the results * * @throws IllegalArgumentException if results is null or has length < 1 */ public static void distanceBetween(double startLatitude, double startLongitude, double endLatitude, double endLongitude, float[] results) { if (results == null || results.length < 1) { throw new IllegalArgumentException("results is null or has length < 1"); } computeDistanceAndBearing(startLatitude, startLongitude, endLatitude, endLongitude, results); } /** * Returns the approximate distance in meters between this * location and the given location. Distance is defined using * the WGS84 ellipsoid. * * @param dest the destination location * @return the approximate distance in meters */ public float distanceTo(Location dest) { // See if we already have the result synchronized (mResults) { if (mLatitude != mLat1 || mLongitude != mLon1 || dest.mLatitude != mLat2 || dest.mLongitude != mLon2) { computeDistanceAndBearing(mLatitude, mLongitude, dest.mLatitude, dest.mLongitude, mResults); mLat1 = mLatitude; mLon1 = mLongitude; mLat2 = dest.mLatitude; mLon2 = dest.mLongitude; mDistance = mResults[0]; mInitialBearing = mResults[1]; } return mDistance; } } /** * Returns the approximate initial bearing in degrees East of true * North when traveling along the shortest path between this * location and the given location. The shortest path is defined * using the WGS84 ellipsoid. Locations that are (nearly) * antipodal may produce meaningless results. * * @param dest the destination location * @return the initial bearing in degrees */ public float bearingTo(Location dest) { synchronized (mResults) { // See if we already have the result if (mLatitude != mLat1 || mLongitude != mLon1 || dest.mLatitude != mLat2 || dest.mLongitude != mLon2) { computeDistanceAndBearing(mLatitude, mLongitude, dest.mLatitude, dest.mLongitude, mResults); mLat1 = mLatitude; mLon1 = mLongitude; mLat2 = dest.mLatitude; mLon2 = dest.mLongitude; mDistance = mResults[0]; mInitialBearing = mResults[1]; } return mInitialBearing; } } /** * Returns the name of the provider that generated this fix. * * @return the provider, or null if it has not been set */ public String getProvider() { return mProvider; } /** * Sets the name of the provider that generated this fix. */ public void setProvider(String provider) { mProvider = provider; } /** * Return the UTC time of this fix, in milliseconds since January 1, 1970. * *
Note that the UTC time on a device is not monotonic: it * can jump forwards or backwards unpredictably. So always use * {@link #getElapsedRealtimeNanos} when calculating time deltas. * *
On the other hand, {@link #getTime} is useful for presenting * a human readable time to the user, or for carefully comparing * location fixes across reboot or across devices. * *
All locations generated by the {@link LocationManager} * are guaranteed to have a valid UTC time, however remember that * the system time may have changed since the location was generated. * * @return time of fix, in milliseconds since January 1, 1970. */ public long getTime() { return mTime; } /** * Set the UTC time of this fix, in milliseconds since January 1, * 1970. * * @param time UTC time of this fix, in milliseconds since January 1, 1970 */ public void setTime(long time) { mTime = time; } /** * Return the time of this fix, in elapsed real-time since system boot. * *
This value can be reliably compared to * {@link android.os.SystemClock#elapsedRealtimeNanos}, * to calculate the age of a fix and to compare Location fixes. This * is reliable because elapsed real-time is guaranteed monotonic for * each system boot and continues to increment even when the system * is in deep sleep (unlike {@link #getTime}. * *
All locations generated by the {@link LocationManager} * are guaranteed to have a valid elapsed real-time. * * @return elapsed real-time of fix, in nanoseconds since system boot. */ public long getElapsedRealtimeNanos() { return mElapsedRealtimeNanos; } /** * Set the time of this fix, in elapsed real-time since system boot. * * @param time elapsed real-time of fix, in nanoseconds since system boot. */ public void setElapsedRealtimeNanos(long time) { mElapsedRealtimeNanos = time; } /** * Get the latitude, in degrees. * *
All locations generated by the {@link LocationManager} * will have a valid latitude. */ public double getLatitude() { return mLatitude; } /** * Set the latitude, in degrees. */ public void setLatitude(double latitude) { mLatitude = latitude; } /** * Get the longitude, in degrees. * *
All locations generated by the {@link LocationManager} * will have a valid longitude. */ public double getLongitude() { return mLongitude; } /** * Set the longitude, in degrees. */ public void setLongitude(double longitude) { mLongitude = longitude; } /** * True if this location has an altitude. */ public boolean hasAltitude() { return mHasAltitude; } /** * Get the altitude if available, in meters above the WGS 84 reference * ellipsoid. * *
If this location does not have an altitude then 0.0 is returned. */ public double getAltitude() { return mAltitude; } /** * Set the altitude, in meters above the WGS 84 reference ellipsoid. * *
Following this call {@link #hasAltitude} will return true. */ public void setAltitude(double altitude) { mAltitude = altitude; mHasAltitude = true; } /** * Remove the altitude from this location. * *
Following this call {@link #hasAltitude} will return false, * and {@link #getAltitude} will return 0.0. */ public void removeAltitude() { mAltitude = 0.0f; mHasAltitude = false; } /** * True if this location has a speed. */ public boolean hasSpeed() { return mHasSpeed; } /** * Get the speed if it is available, in meters/second over ground. * *
If this location does not have a speed then 0.0 is returned. */ public float getSpeed() { return mSpeed; } /** * Set the speed, in meters/second over ground. * *
Following this call {@link #hasSpeed} will return true. */ public void setSpeed(float speed) { mSpeed = speed; mHasSpeed = true; } /** * Remove the speed from this location. * *
Following this call {@link #hasSpeed} will return false, * and {@link #getSpeed} will return 0.0. */ public void removeSpeed() { mSpeed = 0.0f; mHasSpeed = false; } /** * True if this location has a bearing. */ public boolean hasBearing() { return mHasBearing; } /** * Get the bearing, in degrees. * *
Bearing is the horizontal direction of travel of this device, * and is not related to the device orientation. It is guaranteed to * be in the range (0.0, 360.0] if the device has a bearing. * *
If this location does not have a bearing then 0.0 is returned. */ public float getBearing() { return mBearing; } /** * Set the bearing, in degrees. * *
Bearing is the horizontal direction of travel of this device, * and is not related to the device orientation. * *
The input will be wrapped into the range (0.0, 360.0]. */ public void setBearing(float bearing) { while (bearing < 0.0f) { bearing += 360.0f; } while (bearing >= 360.0f) { bearing -= 360.0f; } mBearing = bearing; mHasBearing = true; } /** * Remove the bearing from this location. * *
Following this call {@link #hasBearing} will return false, * and {@link #getBearing} will return 0.0. */ public void removeBearing() { mBearing = 0.0f; mHasBearing = false; } /** * True if this location has an accuracy. * *
All locations generated by the {@link LocationManager} have an * accuracy. */ public boolean hasAccuracy() { return mHasAccuracy; } /** * Get the estimated accuracy of this location, in meters. * *
We define accuracy as the radius of 68% confidence. In other * words, if you draw a circle centered at this location's * latitude and longitude, and with a radius equal to the accuracy, * then there is a 68% probability that the true location is inside * the circle. * *
In statistical terms, it is assumed that location errors * are random with a normal distribution, so the 68% confidence circle * represents one standard deviation. Note that in practice, location * errors do not always follow such a simple distribution. * *
This accuracy estimation is only concerned with horizontal * accuracy, and does not indicate the accuracy of bearing, * velocity or altitude if those are included in this Location. * *
If this location does not have an accuracy, then 0.0 is returned. * All locations generated by the {@link LocationManager} include * an accuracy. */ public float getAccuracy() { return mAccuracy; } /** * Set the estimated accuracy of this location, meters. * *
See {@link #getAccuracy} for the definition of accuracy. * *
Following this call {@link #hasAccuracy} will return true. */ public void setAccuracy(float accuracy) { mAccuracy = accuracy; mHasAccuracy = true; } /** * Remove the accuracy from this location. * *
Following this call {@link #hasAccuracy} will return false, and * {@link #getAccuracy} will return 0.0. */ public void removeAccuracy() { mAccuracy = 0.0f; mHasAccuracy = false; } /** * Return true if this Location object is complete. * *
A location object is currently considered complete if it has * a valid provider, accuracy, wall-clock time and elapsed real-time. * *
All locations supplied by the {@link LocationManager} to * applications must be complete. * * @see #makeComplete * @hide */ @SystemApi public boolean isComplete() { if (mProvider == null) return false; if (!mHasAccuracy) return false; if (mTime == 0) return false; if (mElapsedRealtimeNanos == 0) return false; return true; } /** * Helper to fill incomplete fields. * *
Used to assist in backwards compatibility with * Location objects received from applications. * * @see #isComplete * @hide */ @SystemApi public void makeComplete() { if (mProvider == null) mProvider = "?"; if (!mHasAccuracy) { mHasAccuracy = true; mAccuracy = 100.0f; } if (mTime == 0) mTime = System.currentTimeMillis(); if (mElapsedRealtimeNanos == 0) mElapsedRealtimeNanos = SystemClock.elapsedRealtimeNanos(); } /** * Returns additional provider-specific information about the * location fix as a Bundle. The keys and values are determined * by the provider. If no additional information is available, * null is returned. * *
A number of common key/value pairs are listed * below. Providers that use any of the keys on this list must * provide the corresponding value as described below. * *