/* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package java.util.concurrent; /** * A {@link ForkJoinTask} with a completion action performed when * triggered and there are no remaining pending actions. * CountedCompleters are in general more robust in the * presence of subtask stalls and blockage than are other forms of * ForkJoinTasks, but are less intuitive to program. Uses of * CountedCompleter are similar to those of other completion based * components (such as {@link java.nio.channels.CompletionHandler}) * except that multiple pending completions may be necessary * to trigger the completion action {@link #onCompletion(CountedCompleter)}, * not just one. * Unless initialized otherwise, the {@linkplain #getPendingCount pending * count} starts at zero, but may be (atomically) changed using * methods {@link #setPendingCount}, {@link #addToPendingCount}, and * {@link #compareAndSetPendingCount}. Upon invocation of {@link * #tryComplete}, if the pending action count is nonzero, it is * decremented; otherwise, the completion action is performed, and if * this completer itself has a completer, the process is continued * with its completer. As is the case with related synchronization * components such as {@link java.util.concurrent.Phaser Phaser} and * {@link java.util.concurrent.Semaphore Semaphore}, these methods * affect only internal counts; they do not establish any further * internal bookkeeping. In particular, the identities of pending * tasks are not maintained. As illustrated below, you can create * subclasses that do record some or all pending tasks or their * results when needed. As illustrated below, utility methods * supporting customization of completion traversals are also * provided. However, because CountedCompleters provide only basic * synchronization mechanisms, it may be useful to create further * abstract subclasses that maintain linkages, fields, and additional * support methods appropriate for a set of related usages. * *
A concrete CountedCompleter class must define method {@link * #compute}, that should in most cases (as illustrated below), invoke * {@code tryComplete()} once before returning. The class may also * optionally override method {@link #onCompletion(CountedCompleter)} * to perform an action upon normal completion, and method * {@link #onExceptionalCompletion(Throwable, CountedCompleter)} to * perform an action upon any exception. * *
CountedCompleters most often do not bear results, in which case
* they are normally declared as {@code CountedCompleter A CountedCompleter that does not itself have a completer (i.e.,
* one for which {@link #getCompleter} returns {@code null}) can be
* used as a regular ForkJoinTask with this added functionality.
* However, any completer that in turn has another completer serves
* only as an internal helper for other computations, so its own task
* status (as reported in methods such as {@link ForkJoinTask#isDone})
* is arbitrary; this status changes only upon explicit invocations of
* {@link #complete}, {@link ForkJoinTask#cancel},
* {@link ForkJoinTask#completeExceptionally(Throwable)} or upon
* exceptional completion of method {@code compute}. Upon any
* exceptional completion, the exception may be relayed to a task's
* completer (and its completer, and so on), if one exists and it has
* not otherwise already completed. Similarly, cancelling an internal
* CountedCompleter has only a local effect on that completer, so is
* not often useful.
*
* Sample Usages.
*
* Parallel recursive decomposition. CountedCompleters may
* be arranged in trees similar to those often used with {@link
* RecursiveAction}s, although the constructions involved in setting
* them up typically vary. Here, the completer of each task is its
* parent in the computation tree. Even though they entail a bit more
* bookkeeping, CountedCompleters may be better choices when applying
* a possibly time-consuming operation (that cannot be further
* subdivided) to each element of an array or collection; especially
* when the operation takes a significantly different amount of time
* to complete for some elements than others, either because of
* intrinsic variation (for example I/O) or auxiliary effects such as
* garbage collection. Because CountedCompleters provide their own
* continuations, other threads need not block waiting to perform
* them.
*
* For example, here is an initial version of a class that uses
* divide-by-two recursive decomposition to divide work into single
* pieces (leaf tasks). Even when work is split into individual calls,
* tree-based techniques are usually preferable to directly forking
* leaf tasks, because they reduce inter-thread communication and
* improve load balancing. In the recursive case, the second of each
* pair of subtasks to finish triggers completion of its parent
* (because no result combination is performed, the default no-op
* implementation of method {@code onCompletion} is not overridden).
* A static utility method sets up the base task and invokes it
* (here, implicitly using the {@link ForkJoinPool#commonPool()}).
*
* Searching. A tree of CountedCompleters can search for a
* value or property in different parts of a data structure, and
* report a result in an {@link
* java.util.concurrent.atomic.AtomicReference AtomicReference} as
* soon as one is found. The others can poll the result to avoid
* unnecessary work. (You could additionally {@linkplain #cancel
* cancel} other tasks, but it is usually simpler and more efficient
* to just let them notice that the result is set and if so skip
* further processing.) Illustrating again with an array using full
* partitioning (again, in practice, leaf tasks will almost always
* process more than one element):
*
* Recording subtasks. CountedCompleter tasks that combine
* results of multiple subtasks usually need to access these results
* in method {@link #onCompletion(CountedCompleter)}. As illustrated in the following
* class (that performs a simplified form of map-reduce where mappings
* and reductions are all of type {@code E}), one way to do this in
* divide and conquer designs is to have each subtask record its
* sibling, so that it can be accessed in method {@code onCompletion}.
* This technique applies to reductions in which the order of
* combining left and right results does not matter; ordered
* reductions require explicit left/right designations. Variants of
* other streamlinings seen in the above examples may also apply.
*
* Completion Traversals. If using {@code onCompletion} to
* process completions is inapplicable or inconvenient, you can use
* methods {@link #firstComplete} and {@link #nextComplete} to create
* custom traversals. For example, to define a MapReducer that only
* splits out right-hand tasks in the form of the third ForEach
* example, the completions must cooperatively reduce along
* unexhausted subtask links, which can be done as follows:
*
* Triggers. Some CountedCompleters are themselves never
* forked, but instead serve as bits of plumbing in other designs;
* including those in which the completion of one or more async tasks
* triggers another async task. For example:
*
* This method may be useful when forcing completion as soon as
* any one (versus all) of several subtask results are obtained.
* However, in the common (and recommended) case in which {@code
* setRawResult} is not overridden, this effect can be obtained
* more simply using {@code quietlyCompleteRoot();}.
*
* @param rawResult the raw result
*/
public void complete(T rawResult) {
CountedCompleter> p;
setRawResult(rawResult);
onCompletion(this);
quietlyComplete();
if ((p = completer) != null)
p.tryComplete();
}
/**
* If this task's pending count is zero, returns this task;
* otherwise decrements its pending count and returns {@code
* null}. This method is designed to be used with {@link
* #nextComplete} in completion traversal loops.
*
* @return this task, if pending count was zero, else {@code null}
*/
public final CountedCompleter> firstComplete() {
for (int c;;) {
if ((c = pending) == 0)
return this;
else if (U.compareAndSwapInt(this, PENDING, c, c - 1))
return null;
}
}
/**
* If this task does not have a completer, invokes {@link
* ForkJoinTask#quietlyComplete} and returns {@code null}. Or, if
* the completer's pending count is non-zero, decrements that
* pending count and returns {@code null}. Otherwise, returns the
* completer. This method can be used as part of a completion
* traversal loop for homogeneous task hierarchies:
*
* {@code
* class MyOperation
*
* This design can be improved by noticing that in the recursive case,
* the task has nothing to do after forking its right task, so can
* directly invoke its left task before returning. (This is an analog
* of tail recursion removal.) Also, because the task returns upon
* executing its left task (rather than falling through to invoke
* {@code tryComplete}) the pending count is set to one:
*
* {@code
* class ForEach
*
* As a further improvement, notice that the left task need not even exist.
* Instead of creating a new one, we can iterate using the original task,
* and add a pending count for each fork. Additionally, because no task
* in this tree implements an {@link #onCompletion(CountedCompleter)} method,
* {@code tryComplete()} can be replaced with {@link #propagateCompletion}.
*
* {@code
* class ForEach
*
* Additional improvements of such classes might entail precomputing
* pending counts so that they can be established in constructors,
* specializing classes for leaf steps, subdividing by say, four,
* instead of two per iteration, and using an adaptive threshold
* instead of always subdividing down to single elements.
*
* {@code
* class Searcher
*
* In this example, as well as others in which tasks have no other
* effects except to compareAndSet a common result, the trailing
* unconditional invocation of {@code tryComplete} could be made
* conditional ({@code if (result.get() == null) tryComplete();})
* because no further bookkeeping is required to manage completions
* once the root task completes.
*
* {@code
* class MyMapper
*
* Here, method {@code onCompletion} takes a form common to many
* completion designs that combine results. This callback-style method
* is triggered once per task, in either of the two different contexts
* in which the pending count is, or becomes, zero: (1) by a task
* itself, if its pending count is zero upon invocation of {@code
* tryComplete}, or (2) by any of its subtasks when they complete and
* decrement the pending count to zero. The {@code caller} argument
* distinguishes cases. Most often, when the caller is {@code this},
* no action is necessary. Otherwise the caller argument can be used
* (usually via a cast) to supply a value (and/or links to other
* values) to be combined. Assuming proper use of pending counts, the
* actions inside {@code onCompletion} occur (once) upon completion of
* a task and its subtasks. No additional synchronization is required
* within this method to ensure thread safety of accesses to fields of
* this task or other completed tasks.
*
* {@code
* class MapReducer
*
* {@code
* class HeaderBuilder extends CountedCompleter<...> { ... }
* class BodyBuilder extends CountedCompleter<...> { ... }
* class PacketSender extends CountedCompleter<...> {
* PacketSender(...) { super(null, 1); ... } // trigger on second completion
* public void compute() { } // never called
* public void onCompletion(CountedCompleter> caller) { sendPacket(); }
* }
* // sample use:
* PacketSender p = new PacketSender();
* new HeaderBuilder(p, ...).fork();
* new BodyBuilder(p, ...).fork();
* }
*
* @since 1.8
* @hide
* @author Doug Lea
*/
public abstract class CountedCompleter {@code
* for (CountedCompleter> c = firstComplete();
* c != null;
* c = c.nextComplete()) {
* // ... process c ...
* }}
*
* @return the completer, or {@code null} if none
*/
public final CountedCompleter> nextComplete() {
CountedCompleter> p;
if ((p = completer) != null)
return p.firstComplete();
else {
quietlyComplete();
return null;
}
}
/**
* Equivalent to {@code getRoot().quietlyComplete()}.
*/
public final void quietlyCompleteRoot() {
for (CountedCompleter> a = this, p;;) {
if ((p = a.completer) == null) {
a.quietlyComplete();
return;
}
a = p;
}
}
/**
* Supports ForkJoinTask exception propagation.
*/
void internalPropagateException(Throwable ex) {
CountedCompleter> a = this, s = a;
while (a.onExceptionalCompletion(ex, s) &&
(a = (s = a).completer) != null && a.status >= 0 &&
a.recordExceptionalCompletion(ex) == EXCEPTIONAL)
;
}
/**
* Implements execution conventions for CountedCompleters.
*/
protected final boolean exec() {
compute();
return false;
}
/**
* Returns the result of the computation. By default
* returns {@code null}, which is appropriate for {@code Void}
* actions, but in other cases should be overridden, almost
* always to return a field or function of a field that
* holds the result upon completion.
*
* @return the result of the computation
*/
public T getRawResult() { return null; }
/**
* A method that result-bearing CountedCompleters may optionally
* use to help maintain result data. By default, does nothing.
* Overrides are not recommended. However, if this method is
* overridden to update existing objects or fields, then it must
* in general be defined to be thread-safe.
*/
protected void setRawResult(T t) { }
// Unsafe mechanics
private static final sun.misc.Unsafe U;
private static final long PENDING;
static {
try {
U = sun.misc.Unsafe.getUnsafe();
PENDING = U.objectFieldOffset
(CountedCompleter.class.getDeclaredField("pending"));
} catch (Exception e) {
throw new Error(e);
}
}
}