/* * Copyright (C) 2014 The Android Open Source Project * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.lang; import java.util.Properties; /** * The {@code Integer} class wraps a value of the primitive type * {@code int} in an object. An object of type {@code Integer} * contains a single field whose type is {@code int}. * *

In addition, this class provides several methods for converting * an {@code int} to a {@code String} and a {@code String} to an * {@code int}, as well as other constants and methods useful when * dealing with an {@code int}. * *

Implementation note: The implementations of the "bit twiddling" * methods (such as {@link #highestOneBit(int) highestOneBit} and * {@link #numberOfTrailingZeros(int) numberOfTrailingZeros}) are * based on material from Henry S. Warren, Jr.'s Hacker's * Delight, (Addison Wesley, 2002). * * @author Lee Boynton * @author Arthur van Hoff * @author Josh Bloch * @author Joseph D. Darcy * @since JDK1.0 */ public final class Integer extends Number implements Comparable { /** * A constant holding the minimum value an {@code int} can * have, -231. */ public static final int MIN_VALUE = 0x80000000; /** * A constant holding the maximum value an {@code int} can * have, 231-1. */ public static final int MAX_VALUE = 0x7fffffff; /** * The {@code Class} instance representing the primitive type * {@code int}. * * @since JDK1.1 */ public static final Class TYPE = (Class) int[].class.getComponentType(); /** * All possible chars for representing a number as a String */ final static char[] digits = { '0' , '1' , '2' , '3' , '4' , '5' , '6' , '7' , '8' , '9' , 'a' , 'b' , 'c' , 'd' , 'e' , 'f' , 'g' , 'h' , 'i' , 'j' , 'k' , 'l' , 'm' , 'n' , 'o' , 'p' , 'q' , 'r' , 's' , 't' , 'u' , 'v' , 'w' , 'x' , 'y' , 'z' }; /** * Returns a string representation of the first argument in the * radix specified by the second argument. * *

If the radix is smaller than {@code Character.MIN_RADIX} * or larger than {@code Character.MAX_RADIX}, then the radix * {@code 10} is used instead. * *

If the first argument is negative, the first element of the * result is the ASCII minus character {@code '-'} * ('\u002D'). If the first argument is not * negative, no sign character appears in the result. * *

The remaining characters of the result represent the magnitude * of the first argument. If the magnitude is zero, it is * represented by a single zero character {@code '0'} * ('\u0030'); otherwise, the first character of * the representation of the magnitude will not be the zero * character. The following ASCII characters are used as digits: * *

* {@code 0123456789abcdefghijklmnopqrstuvwxyz} *
* * These are '\u0030' through * '\u0039' and '\u0061' through * '\u007A'. If {@code radix} is * N, then the first N of these characters * are used as radix-N digits in the order shown. Thus, * the digits for hexadecimal (radix 16) are * {@code 0123456789abcdef}. If uppercase letters are * desired, the {@link java.lang.String#toUpperCase()} method may * be called on the result: * *
* {@code Integer.toString(n, 16).toUpperCase()} *
* * @param i an integer to be converted to a string. * @param radix the radix to use in the string representation. * @return a string representation of the argument in the specified radix. * @see java.lang.Character#MAX_RADIX * @see java.lang.Character#MIN_RADIX */ public static String toString(int i, int radix) { if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) radix = 10; /* Use the faster version */ if (radix == 10) { return toString(i); } char buf[] = new char[33]; boolean negative = (i < 0); int charPos = 32; if (!negative) { i = -i; } while (i <= -radix) { int q = i / radix; buf[charPos--] = digits[radix * q - i]; i = q; } buf[charPos] = digits[-i]; if (negative) { buf[--charPos] = '-'; } return new String(buf, charPos, (33 - charPos)); } /** * Returns a string representation of the integer argument as an * unsigned integer in base 16. * *

The unsigned integer value is the argument plus 232 * if the argument is negative; otherwise, it is equal to the * argument. This value is converted to a string of ASCII digits * in hexadecimal (base 16) with no extra leading * {@code 0}s. If the unsigned magnitude is zero, it is * represented by a single zero character {@code '0'} * ('\u0030'); otherwise, the first character of * the representation of the unsigned magnitude will not be the * zero character. The following characters are used as * hexadecimal digits: * *

* {@code 0123456789abcdef} *
* * These are the characters '\u0030' through * '\u0039' and '\u0061' through * '\u0066'. If uppercase letters are * desired, the {@link java.lang.String#toUpperCase()} method may * be called on the result: * *
* {@code Integer.toHexString(n).toUpperCase()} *
* * @param i an integer to be converted to a string. * @return the string representation of the unsigned integer value * represented by the argument in hexadecimal (base 16). * @since JDK1.0.2 */ public static String toHexString(int i) { return toUnsignedString(i, 4); } /** * Returns a string representation of the integer argument as an * unsigned integer in base 8. * *

The unsigned integer value is the argument plus 232 * if the argument is negative; otherwise, it is equal to the * argument. This value is converted to a string of ASCII digits * in octal (base 8) with no extra leading {@code 0}s. * *

If the unsigned magnitude is zero, it is represented by a * single zero character {@code '0'} * ('\u0030'); otherwise, the first character of * the representation of the unsigned magnitude will not be the * zero character. The following characters are used as octal * digits: * *

* {@code 01234567} *
* * These are the characters '\u0030' through * '\u0037'. * * @param i an integer to be converted to a string. * @return the string representation of the unsigned integer value * represented by the argument in octal (base 8). * @since JDK1.0.2 */ public static String toOctalString(int i) { return toUnsignedString(i, 3); } /** * Returns a string representation of the integer argument as an * unsigned integer in base 2. * *

The unsigned integer value is the argument plus 232 * if the argument is negative; otherwise it is equal to the * argument. This value is converted to a string of ASCII digits * in binary (base 2) with no extra leading {@code 0}s. * If the unsigned magnitude is zero, it is represented by a * single zero character {@code '0'} * ('\u0030'); otherwise, the first character of * the representation of the unsigned magnitude will not be the * zero character. The characters {@code '0'} * ('\u0030') and {@code '1'} * ('\u0031') are used as binary digits. * * @param i an integer to be converted to a string. * @return the string representation of the unsigned integer value * represented by the argument in binary (base 2). * @since JDK1.0.2 */ public static String toBinaryString(int i) { return toUnsignedString(i, 1); } /** * Convert the integer to an unsigned number. */ private static String toUnsignedString(int i, int shift) { char[] buf = new char[32]; int charPos = 32; int radix = 1 << shift; int mask = radix - 1; do { buf[--charPos] = digits[i & mask]; i >>>= shift; } while (i != 0); return new String(buf, charPos, (32 - charPos)); } private static final String[] SMALL_NEG_VALUES = new String[100]; private static final String[] SMALL_NONNEG_VALUES = new String[100]; final static char [] DigitTens = { '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '3', '3', '3', '3', '3', '3', '3', '3', '3', '3', '4', '4', '4', '4', '4', '4', '4', '4', '4', '4', '5', '5', '5', '5', '5', '5', '5', '5', '5', '5', '6', '6', '6', '6', '6', '6', '6', '6', '6', '6', '7', '7', '7', '7', '7', '7', '7', '7', '7', '7', '8', '8', '8', '8', '8', '8', '8', '8', '8', '8', '9', '9', '9', '9', '9', '9', '9', '9', '9', '9', } ; final static char [] DigitOnes = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', } ; // I use the "invariant division by multiplication" trick to // accelerate Integer.toString. In particular we want to // avoid division by 10. // // The "trick" has roughly the same performance characteristics // as the "classic" Integer.toString code on a non-JIT VM. // The trick avoids .rem and .div calls but has a longer code // path and is thus dominated by dispatch overhead. In the // JIT case the dispatch overhead doesn't exist and the // "trick" is considerably faster than the classic code. // // TODO-FIXME: convert (x * 52429) into the equiv shift-add // sequence. // // RE: Division by Invariant Integers using Multiplication // T Gralund, P Montgomery // ACM PLDI 1994 // /** * Returns a {@code String} object representing the * specified integer. The argument is converted to signed decimal * representation and returned as a string, exactly as if the * argument and radix 10 were given as arguments to the {@link * #toString(int, int)} method. * * @param i an integer to be converted. * @return a string representation of the argument in base 10. */ public static String toString(int i) { if (i == Integer.MIN_VALUE) return "-2147483648"; // Android-changed: cache the string literal for small values. boolean negative = i < 0; boolean small = negative ? i > -100 : i < 100; if (small) { final String[] smallValues = negative ? SMALL_NEG_VALUES : SMALL_NONNEG_VALUES; if (negative) { i = -i; if (smallValues[i] == null) { smallValues[i] = i < 10 ? new String(new char[]{'-', DigitOnes[i]}) : new String(new char[]{'-', DigitTens[i], DigitOnes[i]}); } } else { if (smallValues[i] == null) { smallValues[i] = i < 10 ? new String(new char[]{DigitOnes[i]}) : new String(new char[]{DigitTens[i], DigitOnes[i]}); } } return smallValues[i]; } int size = negative ? stringSize(-i) + 1 : stringSize(i); char[] buf = new char[size]; getChars(i, size, buf); // Android-changed: change string constructor. return new String(buf); } /** * Places characters representing the integer i into the * character array buf. The characters are placed into * the buffer backwards starting with the least significant * digit at the specified index (exclusive), and working * backwards from there. * * Will fail if i == Integer.MIN_VALUE */ static void getChars(int i, int index, char[] buf) { int q, r; int charPos = index; char sign = 0; if (i < 0) { sign = '-'; i = -i; } // Generate two digits per iteration while (i >= 65536) { q = i / 100; // really: r = i - (q * 100); r = i - ((q << 6) + (q << 5) + (q << 2)); i = q; buf [--charPos] = DigitOnes[r]; buf [--charPos] = DigitTens[r]; } // Fall thru to fast mode for smaller numbers // assert(i <= 65536, i); for (;;) { q = (i * 52429) >>> (16+3); r = i - ((q << 3) + (q << 1)); // r = i-(q*10) ... buf [--charPos] = digits [r]; i = q; if (i == 0) break; } if (sign != 0) { buf [--charPos] = sign; } } final static int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999, 99999999, 999999999, Integer.MAX_VALUE }; // Requires positive x static int stringSize(int x) { for (int i=0; ; i++) if (x <= sizeTable[i]) return i+1; } /** * Parses the string argument as a signed integer in the radix * specified by the second argument. The characters in the string * must all be digits of the specified radix (as determined by * whether {@link java.lang.Character#digit(char, int)} returns a * nonnegative value), except that the first character may be an * ASCII minus sign {@code '-'} ('\u002D') to * indicate a negative value or an ASCII plus sign {@code '+'} * ('\u002B') to indicate a positive value. The * resulting integer value is returned. * *

An exception of type {@code NumberFormatException} is * thrown if any of the following situations occurs: *

* *

Examples: *

     * parseInt("0", 10) returns 0
     * parseInt("473", 10) returns 473
     * parseInt("+42", 10) returns 42
     * parseInt("-0", 10) returns 0
     * parseInt("-FF", 16) returns -255
     * parseInt("1100110", 2) returns 102
     * parseInt("2147483647", 10) returns 2147483647
     * parseInt("-2147483648", 10) returns -2147483648
     * parseInt("2147483648", 10) throws a NumberFormatException
     * parseInt("99", 8) throws a NumberFormatException
     * parseInt("Kona", 10) throws a NumberFormatException
     * parseInt("Kona", 27) returns 411787
     * 
* * @param s the {@code String} containing the integer * representation to be parsed * @param radix the radix to be used while parsing {@code s}. * @return the integer represented by the string argument in the * specified radix. * @exception NumberFormatException if the {@code String} * does not contain a parsable {@code int}. */ public static int parseInt(String s, int radix) throws NumberFormatException { /* * WARNING: This method may be invoked early during VM initialization * before IntegerCache is initialized. Care must be taken to not use * the valueOf method. */ if (s == null) { throw new NumberFormatException("null"); } if (radix < Character.MIN_RADIX) { throw new NumberFormatException("radix " + radix + " less than Character.MIN_RADIX"); } if (radix > Character.MAX_RADIX) { throw new NumberFormatException("radix " + radix + " greater than Character.MAX_RADIX"); } int result = 0; boolean negative = false; int i = 0, len = s.length(); int limit = -Integer.MAX_VALUE; int multmin; int digit; if (len > 0) { char firstChar = s.charAt(0); if (firstChar < '0') { // Possible leading "+" or "-" if (firstChar == '-') { negative = true; limit = Integer.MIN_VALUE; } else if (firstChar != '+') throw NumberFormatException.forInputString(s); if (len == 1) // Cannot have lone "+" or "-" throw NumberFormatException.forInputString(s); i++; } multmin = limit / radix; while (i < len) { // Accumulating negatively avoids surprises near MAX_VALUE digit = Character.digit(s.charAt(i++),radix); if (digit < 0) { throw NumberFormatException.forInputString(s); } if (result < multmin) { throw NumberFormatException.forInputString(s); } result *= radix; if (result < limit + digit) { throw NumberFormatException.forInputString(s); } result -= digit; } } else { throw NumberFormatException.forInputString(s); } return negative ? result : -result; } /** * Parses the string argument as a signed decimal integer. The * characters in the string must all be decimal digits, except * that the first character may be an ASCII minus sign {@code '-'} * ('\u002D') to indicate a negative value or an * ASCII plus sign {@code '+'} ('\u002B') to * indicate a positive value. The resulting integer value is * returned, exactly as if the argument and the radix 10 were * given as arguments to the {@link #parseInt(java.lang.String, * int)} method. * * @param s a {@code String} containing the {@code int} * representation to be parsed * @return the integer value represented by the argument in decimal. * @exception NumberFormatException if the string does not contain a * parsable integer. */ public static int parseInt(String s) throws NumberFormatException { return parseInt(s,10); } /** * Returns an {@code Integer} object holding the value * extracted from the specified {@code String} when parsed * with the radix given by the second argument. The first argument * is interpreted as representing a signed integer in the radix * specified by the second argument, exactly as if the arguments * were given to the {@link #parseInt(java.lang.String, int)} * method. The result is an {@code Integer} object that * represents the integer value specified by the string. * *

In other words, this method returns an {@code Integer} * object equal to the value of: * *

* {@code new Integer(Integer.parseInt(s, radix))} *
* * @param s the string to be parsed. * @param radix the radix to be used in interpreting {@code s} * @return an {@code Integer} object holding the value * represented by the string argument in the specified * radix. * @exception NumberFormatException if the {@code String} * does not contain a parsable {@code int}. */ public static Integer valueOf(String s, int radix) throws NumberFormatException { return Integer.valueOf(parseInt(s,radix)); } /** * Returns an {@code Integer} object holding the * value of the specified {@code String}. The argument is * interpreted as representing a signed decimal integer, exactly * as if the argument were given to the {@link * #parseInt(java.lang.String)} method. The result is an * {@code Integer} object that represents the integer value * specified by the string. * *

In other words, this method returns an {@code Integer} * object equal to the value of: * *

* {@code new Integer(Integer.parseInt(s))} *
* * @param s the string to be parsed. * @return an {@code Integer} object holding the value * represented by the string argument. * @exception NumberFormatException if the string cannot be parsed * as an integer. */ public static Integer valueOf(String s) throws NumberFormatException { return Integer.valueOf(parseInt(s, 10)); } /** * Cache to support the object identity semantics of autoboxing for values between * -128 and 127 (inclusive) as required by JLS. * * The cache is initialized on first usage. The size of the cache * may be controlled by the -XX:AutoBoxCacheMax= option. * During VM initialization, java.lang.Integer.IntegerCache.high property * may be set and saved in the private system properties in the * sun.misc.VM class. */ private static class IntegerCache { static final int low = -128; static final int high; static final Integer cache[]; static { // high value may be configured by property int h = 127; String integerCacheHighPropValue = sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high"); if (integerCacheHighPropValue != null) { int i = parseInt(integerCacheHighPropValue); i = Math.max(i, 127); // Maximum array size is Integer.MAX_VALUE h = Math.min(i, Integer.MAX_VALUE - (-low) -1); } high = h; cache = new Integer[(high - low) + 1]; int j = low; for(int k = 0; k < cache.length; k++) cache[k] = new Integer(j++); } private IntegerCache() {} } /** * Returns an {@code Integer} instance representing the specified * {@code int} value. If a new {@code Integer} instance is not * required, this method should generally be used in preference to * the constructor {@link #Integer(int)}, as this method is likely * to yield significantly better space and time performance by * caching frequently requested values. * * This method will always cache values in the range -128 to 127, * inclusive, and may cache other values outside of this range. * * @param i an {@code int} value. * @return an {@code Integer} instance representing {@code i}. * @since 1.5 */ public static Integer valueOf(int i) { assert IntegerCache.high >= 127; if (i >= IntegerCache.low && i <= IntegerCache.high) return IntegerCache.cache[i + (-IntegerCache.low)]; return new Integer(i); } /** * The value of the {@code Integer}. * * @serial */ private final int value; /** * Constructs a newly allocated {@code Integer} object that * represents the specified {@code int} value. * * @param value the value to be represented by the * {@code Integer} object. */ public Integer(int value) { this.value = value; } /** * Constructs a newly allocated {@code Integer} object that * represents the {@code int} value indicated by the * {@code String} parameter. The string is converted to an * {@code int} value in exactly the manner used by the * {@code parseInt} method for radix 10. * * @param s the {@code String} to be converted to an * {@code Integer}. * @exception NumberFormatException if the {@code String} does not * contain a parsable integer. * @see java.lang.Integer#parseInt(java.lang.String, int) */ public Integer(String s) throws NumberFormatException { this.value = parseInt(s, 10); } /** * Returns the value of this {@code Integer} as a * {@code byte}. */ public byte byteValue() { return (byte)value; } /** * Returns the value of this {@code Integer} as a * {@code short}. */ public short shortValue() { return (short)value; } /** * Returns the value of this {@code Integer} as an * {@code int}. */ public int intValue() { return value; } /** * Returns the value of this {@code Integer} as a * {@code long}. */ public long longValue() { return (long)value; } /** * Returns the value of this {@code Integer} as a * {@code float}. */ public float floatValue() { return (float)value; } /** * Returns the value of this {@code Integer} as a * {@code double}. */ public double doubleValue() { return (double)value; } /** * Returns a {@code String} object representing this * {@code Integer}'s value. The value is converted to signed * decimal representation and returned as a string, exactly as if * the integer value were given as an argument to the {@link * java.lang.Integer#toString(int)} method. * * @return a string representation of the value of this object in * base 10. */ public String toString() { return toString(value); } /** * Returns a hash code for this {@code Integer}. * * @return a hash code value for this object, equal to the * primitive {@code int} value represented by this * {@code Integer} object. */ public int hashCode() { return value; } /** * Returns a hash code for a {@code int} value; compatible with * {@code Integer.hashCode()}. * * @param value the value to hash * @since 1.8 * * @return a hash code value for a {@code int} value. */ public static int hashCode(int value) { return value; } /** * Compares this object to the specified object. The result is * {@code true} if and only if the argument is not * {@code null} and is an {@code Integer} object that * contains the same {@code int} value as this object. * * @param obj the object to compare with. * @return {@code true} if the objects are the same; * {@code false} otherwise. */ public boolean equals(Object obj) { if (obj instanceof Integer) { return value == ((Integer)obj).intValue(); } return false; } /** * Determines the integer value of the system property with the * specified name. * *

The first argument is treated as the name of a system property. * System properties are accessible through the * {@link java.lang.System#getProperty(java.lang.String)} method. The * string value of this property is then interpreted as an integer * value and an {@code Integer} object representing this value is * returned. Details of possible numeric formats can be found with * the definition of {@code getProperty}. * *

If there is no property with the specified name, if the specified name * is empty or {@code null}, or if the property does not have * the correct numeric format, then {@code null} is returned. * *

In other words, this method returns an {@code Integer} * object equal to the value of: * *

* {@code getInteger(nm, null)} *
* * @param nm property name. * @return the {@code Integer} value of the property. * @see java.lang.System#getProperty(java.lang.String) * @see java.lang.System#getProperty(java.lang.String, java.lang.String) */ public static Integer getInteger(String nm) { return getInteger(nm, null); } /** * Determines the integer value of the system property with the * specified name. * *

The first argument is treated as the name of a system property. * System properties are accessible through the {@link * java.lang.System#getProperty(java.lang.String)} method. The * string value of this property is then interpreted as an integer * value and an {@code Integer} object representing this value is * returned. Details of possible numeric formats can be found with * the definition of {@code getProperty}. * *

The second argument is the default value. An {@code Integer} object * that represents the value of the second argument is returned if there * is no property of the specified name, if the property does not have * the correct numeric format, or if the specified name is empty or * {@code null}. * *

In other words, this method returns an {@code Integer} object * equal to the value of: * *

* {@code getInteger(nm, new Integer(val))} *
* * but in practice it may be implemented in a manner such as: * *
     * Integer result = getInteger(nm, null);
     * return (result == null) ? new Integer(val) : result;
     * 
* * to avoid the unnecessary allocation of an {@code Integer} * object when the default value is not needed. * * @param nm property name. * @param val default value. * @return the {@code Integer} value of the property. * @see java.lang.System#getProperty(java.lang.String) * @see java.lang.System#getProperty(java.lang.String, java.lang.String) */ public static Integer getInteger(String nm, int val) { Integer result = getInteger(nm, null); return (result == null) ? Integer.valueOf(val) : result; } /** * Returns the integer value of the system property with the * specified name. The first argument is treated as the name of a * system property. System properties are accessible through the * {@link java.lang.System#getProperty(java.lang.String)} method. * The string value of this property is then interpreted as an * integer value, as per the {@code Integer.decode} method, * and an {@code Integer} object representing this value is * returned. * * * *

The second argument is the default value. The default value is * returned if there is no property of the specified name, if the * property does not have the correct numeric format, or if the * specified name is empty or {@code null}. * * @param nm property name. * @param val default value. * @return the {@code Integer} value of the property. * @see java.lang.System#getProperty(java.lang.String) * @see java.lang.System#getProperty(java.lang.String, java.lang.String) * @see java.lang.Integer#decode */ public static Integer getInteger(String nm, Integer val) { String v = null; try { v = System.getProperty(nm); } catch (IllegalArgumentException e) { } catch (NullPointerException e) { } if (v != null) { try { return Integer.decode(v); } catch (NumberFormatException e) { } } return val; } /** * Decodes a {@code String} into an {@code Integer}. * Accepts decimal, hexadecimal, and octal numbers given * by the following grammar: * *

*
*
DecodableString: *
Signopt DecimalNumeral *
Signopt {@code 0x} HexDigits *
Signopt {@code 0X} HexDigits *
Signopt {@code #} HexDigits *
Signopt {@code 0} OctalDigits *

*

Sign: *
{@code -} *
{@code +} *
*
* * DecimalNumeral, HexDigits, and OctalDigits * are as defined in section 3.10.1 of * The Java™ Language Specification, * except that underscores are not accepted between digits. * *

The sequence of characters following an optional * sign and/or radix specifier ("{@code 0x}", "{@code 0X}", * "{@code #}", or leading zero) is parsed as by the {@code * Integer.parseInt} method with the indicated radix (10, 16, or * 8). This sequence of characters must represent a positive * value or a {@link NumberFormatException} will be thrown. The * result is negated if first character of the specified {@code * String} is the minus sign. No whitespace characters are * permitted in the {@code String}. * * @param nm the {@code String} to decode. * @return an {@code Integer} object holding the {@code int} * value represented by {@code nm} * @exception NumberFormatException if the {@code String} does not * contain a parsable integer. * @see java.lang.Integer#parseInt(java.lang.String, int) */ public static Integer decode(String nm) throws NumberFormatException { int radix = 10; int index = 0; boolean negative = false; Integer result; if (nm.length() == 0) throw new NumberFormatException("Zero length string"); char firstChar = nm.charAt(0); // Handle sign, if present if (firstChar == '-') { negative = true; index++; } else if (firstChar == '+') index++; // Handle radix specifier, if present if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) { index += 2; radix = 16; } else if (nm.startsWith("#", index)) { index ++; radix = 16; } else if (nm.startsWith("0", index) && nm.length() > 1 + index) { index ++; radix = 8; } if (nm.startsWith("-", index) || nm.startsWith("+", index)) throw new NumberFormatException("Sign character in wrong position"); try { result = Integer.valueOf(nm.substring(index), radix); result = negative ? Integer.valueOf(-result.intValue()) : result; } catch (NumberFormatException e) { // If number is Integer.MIN_VALUE, we'll end up here. The next line // handles this case, and causes any genuine format error to be // rethrown. String constant = negative ? ("-" + nm.substring(index)) : nm.substring(index); result = Integer.valueOf(constant, radix); } return result; } /** * Compares two {@code Integer} objects numerically. * * @param anotherInteger the {@code Integer} to be compared. * @return the value {@code 0} if this {@code Integer} is * equal to the argument {@code Integer}; a value less than * {@code 0} if this {@code Integer} is numerically less * than the argument {@code Integer}; and a value greater * than {@code 0} if this {@code Integer} is numerically * greater than the argument {@code Integer} (signed * comparison). * @since 1.2 */ public int compareTo(Integer anotherInteger) { return compare(this.value, anotherInteger.value); } /** * Compares two {@code int} values numerically. * The value returned is identical to what would be returned by: *

     *    Integer.valueOf(x).compareTo(Integer.valueOf(y))
     * 
* * @param x the first {@code int} to compare * @param y the second {@code int} to compare * @return the value {@code 0} if {@code x == y}; * a value less than {@code 0} if {@code x < y}; and * a value greater than {@code 0} if {@code x > y} * @since 1.7 */ public static int compare(int x, int y) { return (x < y) ? -1 : ((x == y) ? 0 : 1); } // Bit twiddling /** * The number of bits used to represent an {@code int} value in two's * complement binary form. * * @since 1.5 */ public static final int SIZE = 32; /** * The number of bytes used to represent a {@code int} value in two's * complement binary form. * * @since 1.8 */ public static final int BYTES = SIZE / Byte.SIZE; /** * Returns an {@code int} value with at most a single one-bit, in the * position of the highest-order ("leftmost") one-bit in the specified * {@code int} value. Returns zero if the specified value has no * one-bits in its two's complement binary representation, that is, if it * is equal to zero. * * @return an {@code int} value with a single one-bit, in the position * of the highest-order one-bit in the specified value, or zero if * the specified value is itself equal to zero. * @since 1.5 */ public static int highestOneBit(int i) { // HD, Figure 3-1 i |= (i >> 1); i |= (i >> 2); i |= (i >> 4); i |= (i >> 8); i |= (i >> 16); return i - (i >>> 1); } /** * Returns an {@code int} value with at most a single one-bit, in the * position of the lowest-order ("rightmost") one-bit in the specified * {@code int} value. Returns zero if the specified value has no * one-bits in its two's complement binary representation, that is, if it * is equal to zero. * * @return an {@code int} value with a single one-bit, in the position * of the lowest-order one-bit in the specified value, or zero if * the specified value is itself equal to zero. * @since 1.5 */ public static int lowestOneBit(int i) { // HD, Section 2-1 return i & -i; } /** * Returns the number of zero bits preceding the highest-order * ("leftmost") one-bit in the two's complement binary representation * of the specified {@code int} value. Returns 32 if the * specified value has no one-bits in its two's complement representation, * in other words if it is equal to zero. * *

Note that this method is closely related to the logarithm base 2. * For all positive {@code int} values x: *

* * @return the number of zero bits preceding the highest-order * ("leftmost") one-bit in the two's complement binary representation * of the specified {@code int} value, or 32 if the value * is equal to zero. * @since 1.5 */ public static int numberOfLeadingZeros(int i) { // HD, Figure 5-6 if (i == 0) return 32; int n = 1; if (i >>> 16 == 0) { n += 16; i <<= 16; } if (i >>> 24 == 0) { n += 8; i <<= 8; } if (i >>> 28 == 0) { n += 4; i <<= 4; } if (i >>> 30 == 0) { n += 2; i <<= 2; } n -= i >>> 31; return n; } /** * Returns the number of zero bits following the lowest-order ("rightmost") * one-bit in the two's complement binary representation of the specified * {@code int} value. Returns 32 if the specified value has no * one-bits in its two's complement representation, in other words if it is * equal to zero. * * @return the number of zero bits following the lowest-order ("rightmost") * one-bit in the two's complement binary representation of the * specified {@code int} value, or 32 if the value is equal * to zero. * @since 1.5 */ public static int numberOfTrailingZeros(int i) { // HD, Figure 5-14 int y; if (i == 0) return 32; int n = 31; y = i <<16; if (y != 0) { n = n -16; i = y; } y = i << 8; if (y != 0) { n = n - 8; i = y; } y = i << 4; if (y != 0) { n = n - 4; i = y; } y = i << 2; if (y != 0) { n = n - 2; i = y; } return n - ((i << 1) >>> 31); } /** * Returns the number of one-bits in the two's complement binary * representation of the specified {@code int} value. This function is * sometimes referred to as the population count. * * @return the number of one-bits in the two's complement binary * representation of the specified {@code int} value. * @since 1.5 */ public static int bitCount(int i) { // HD, Figure 5-2 i = i - ((i >>> 1) & 0x55555555); i = (i & 0x33333333) + ((i >>> 2) & 0x33333333); i = (i + (i >>> 4)) & 0x0f0f0f0f; i = i + (i >>> 8); i = i + (i >>> 16); return i & 0x3f; } /** * Returns the value obtained by rotating the two's complement binary * representation of the specified {@code int} value left by the * specified number of bits. (Bits shifted out of the left hand, or * high-order, side reenter on the right, or low-order.) * *

Note that left rotation with a negative distance is equivalent to * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val, * distance)}. Note also that rotation by any multiple of 32 is a * no-op, so all but the last five bits of the rotation distance can be * ignored, even if the distance is negative: {@code rotateLeft(val, * distance) == rotateLeft(val, distance & 0x1F)}. * * @return the value obtained by rotating the two's complement binary * representation of the specified {@code int} value left by the * specified number of bits. * @since 1.5 */ public static int rotateLeft(int i, int distance) { return (i << distance) | (i >>> -distance); } /** * Returns the value obtained by rotating the two's complement binary * representation of the specified {@code int} value right by the * specified number of bits. (Bits shifted out of the right hand, or * low-order, side reenter on the left, or high-order.) * *

Note that right rotation with a negative distance is equivalent to * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val, * distance)}. Note also that rotation by any multiple of 32 is a * no-op, so all but the last five bits of the rotation distance can be * ignored, even if the distance is negative: {@code rotateRight(val, * distance) == rotateRight(val, distance & 0x1F)}. * * @return the value obtained by rotating the two's complement binary * representation of the specified {@code int} value right by the * specified number of bits. * @since 1.5 */ public static int rotateRight(int i, int distance) { return (i >>> distance) | (i << -distance); } /** * Returns the value obtained by reversing the order of the bits in the * two's complement binary representation of the specified {@code int} * value. * * @return the value obtained by reversing order of the bits in the * specified {@code int} value. * @since 1.5 */ public static int reverse(int i) { // HD, Figure 7-1 i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555; i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333; i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f; i = (i << 24) | ((i & 0xff00) << 8) | ((i >>> 8) & 0xff00) | (i >>> 24); return i; } /** * Returns the signum function of the specified {@code int} value. (The * return value is -1 if the specified value is negative; 0 if the * specified value is zero; and 1 if the specified value is positive.) * * @return the signum function of the specified {@code int} value. * @since 1.5 */ public static int signum(int i) { // HD, Section 2-7 return (i >> 31) | (-i >>> 31); } /** * Returns the value obtained by reversing the order of the bytes in the * two's complement representation of the specified {@code int} value. * * @return the value obtained by reversing the bytes in the specified * {@code int} value. * @since 1.5 */ public static int reverseBytes(int i) { return ((i >>> 24) ) | ((i >> 8) & 0xFF00) | ((i << 8) & 0xFF0000) | ((i << 24)); } /** * Adds two integers together as per the + operator. * * @param a the first operand * @param b the second operand * @return the sum of {@code a} and {@code b} * @see java.util.function.BinaryOperator * @since 1.8 */ public static int sum(int a, int b) { return a + b; } /** * Returns the greater of two {@code int} values * as if by calling {@link Math#max(int, int) Math.max}. * * @param a the first operand * @param b the second operand * @return the greater of {@code a} and {@code b} * @see java.util.function.BinaryOperator * @since 1.8 */ public static int max(int a, int b) { return Math.max(a, b); } /** * Returns the smaller of two {@code int} values * as if by calling {@link Math#min(int, int) Math.min}. * * @param a the first operand * @param b the second operand * @return the smaller of {@code a} and {@code b} * @see java.util.function.BinaryOperator * @since 1.8 */ public static int min(int a, int b) { return Math.min(a, b); } /** use serialVersionUID from JDK 1.0.2 for interoperability */ private static final long serialVersionUID = 1360826667806852920L; }