/* * Copyright (C) 2014 The Android Open Source Project * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.lang; /** * The {@code Long} class wraps a value of the primitive type {@code * long} in an object. An object of type {@code Long} contains a * single field whose type is {@code long}. * *
In addition, this class provides several methods for converting * a {@code long} to a {@code String} and a {@code String} to a {@code * long}, as well as other constants and methods useful when dealing * with a {@code long}. * *
Implementation note: The implementations of the "bit twiddling"
* methods (such as {@link #highestOneBit(long) highestOneBit} and
* {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
* based on material from Henry S. Warren, Jr.'s Hacker's
* Delight, (Addison Wesley, 2002).
*
* @author Lee Boynton
* @author Arthur van Hoff
* @author Josh Bloch
* @author Joseph D. Darcy
* @since JDK1.0
*/
public final class Long extends Number implements Comparable If the radix is smaller than {@code Character.MIN_RADIX}
* or larger than {@code Character.MAX_RADIX}, then the radix
* {@code 10} is used instead.
*
* If the first argument is negative, the first element of the
* result is the ASCII minus sign {@code '-'}
* ( The remaining characters of the result represent the magnitude
* of the first argument. If the magnitude is zero, it is
* represented by a single zero character {@code '0'}
* ( The unsigned {@code long} value is the argument plus
* 264 if the argument is negative; otherwise, it is
* equal to the argument. This value is converted to a string of
* ASCII digits in hexadecimal (base 16) with no extra
* leading {@code 0}s. If the unsigned magnitude is zero, it
* is represented by a single zero character {@code '0'}
* ( The unsigned {@code long} value is the argument plus
* 264 if the argument is negative; otherwise, it is
* equal to the argument. This value is converted to a string of
* ASCII digits in octal (base 8) with no extra leading
* {@code 0}s.
*
* If the unsigned magnitude is zero, it is represented by a
* single zero character {@code '0'}
* ( The unsigned {@code long} value is the argument plus
* 264 if the argument is negative; otherwise, it is
* equal to the argument. This value is converted to a string of
* ASCII digits in binary (base 2) with no extra leading
* {@code 0}s. If the unsigned magnitude is zero, it is
* represented by a single zero character {@code '0'}
* ( Note that neither the character {@code L}
* ( An exception of type {@code NumberFormatException} is
* thrown if any of the following situations occurs:
* Examples:
* Note that neither the character {@code L}
* ( In other words, this method returns a {@code Long} object equal
* to the value of:
*
* In other words, this method returns a {@code Long} object
* equal to the value of:
*
*
* The sequence of characters following an optional
* sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
* "{@code #}", or leading zero) is parsed as by the {@code
* Long.parseLong} method with the indicated radix (10, 16, or 8).
* This sequence of characters must represent a positive value or
* a {@link NumberFormatException} will be thrown. The result is
* negated if first character of the specified {@code String} is
* the minus sign. No whitespace characters are permitted in the
* {@code String}.
*
* @param nm the {@code String} to decode.
* @return a {@code Long} object holding the {@code long}
* value represented by {@code nm}
* @throws NumberFormatException if the {@code String} does not
* contain a parsable {@code long}.
* @see java.lang.Long#parseLong(String, int)
* @since 1.2
*/
public static Long decode(String nm) throws NumberFormatException {
int radix = 10;
int index = 0;
boolean negative = false;
Long result;
if (nm.length() == 0)
throw new NumberFormatException("Zero length string");
char firstChar = nm.charAt(0);
// Handle sign, if present
if (firstChar == '-') {
negative = true;
index++;
} else if (firstChar == '+')
index++;
// Handle radix specifier, if present
if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
index += 2;
radix = 16;
}
else if (nm.startsWith("#", index)) {
index ++;
radix = 16;
}
else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
index ++;
radix = 8;
}
if (nm.startsWith("-", index) || nm.startsWith("+", index))
throw new NumberFormatException("Sign character in wrong position");
try {
result = Long.valueOf(nm.substring(index), radix);
result = negative ? Long.valueOf(-result.longValue()) : result;
} catch (NumberFormatException e) {
// If number is Long.MIN_VALUE, we'll end up here. The next line
// handles this case, and causes any genuine format error to be
// rethrown.
String constant = negative ? ("-" + nm.substring(index))
: nm.substring(index);
result = Long.valueOf(constant, radix);
}
return result;
}
/**
* The value of the {@code Long}.
*
* @serial
*/
private final long value;
/**
* Constructs a newly allocated {@code Long} object that
* represents the specified {@code long} argument.
*
* @param value the value to be represented by the
* {@code Long} object.
*/
public Long(long value) {
this.value = value;
}
/**
* Constructs a newly allocated {@code Long} object that
* represents the {@code long} value indicated by the
* {@code String} parameter. The string is converted to a
* {@code long} value in exactly the manner used by the
* {@code parseLong} method for radix 10.
*
* @param s the {@code String} to be converted to a
* {@code Long}.
* @throws NumberFormatException if the {@code String} does not
* contain a parsable {@code long}.
* @see java.lang.Long#parseLong(java.lang.String, int)
*/
public Long(String s) throws NumberFormatException {
this.value = parseLong(s, 10);
}
/**
* Returns the value of this {@code Long} as a
* {@code byte}.
*/
public byte byteValue() {
return (byte)value;
}
/**
* Returns the value of this {@code Long} as a
* {@code short}.
*/
public short shortValue() {
return (short)value;
}
/**
* Returns the value of this {@code Long} as an
* {@code int}.
*/
public int intValue() {
return (int)value;
}
/**
* Returns the value of this {@code Long} as a
* {@code long} value.
*/
public long longValue() {
return (long)value;
}
/**
* Returns the value of this {@code Long} as a
* {@code float}.
*/
public float floatValue() {
return (float)value;
}
/**
* Returns the value of this {@code Long} as a
* {@code double}.
*/
public double doubleValue() {
return (double)value;
}
/**
* Returns a {@code String} object representing this
* {@code Long}'s value. The value is converted to signed
* decimal representation and returned as a string, exactly as if
* the {@code long} value were given as an argument to the
* {@link java.lang.Long#toString(long)} method.
*
* @return a string representation of the value of this object in
* base 10.
*/
public String toString() {
return toString(value);
}
/**
* Returns a hash code for this {@code Long}. The result is
* the exclusive OR of the two halves of the primitive
* {@code long} value held by this {@code Long}
* object. That is, the hashcode is the value of the expression:
*
* The first argument is treated as the name of a system property.
* System properties are accessible through the {@link
* java.lang.System#getProperty(java.lang.String)} method. The
* string value of this property is then interpreted as a
* {@code long} value and a {@code Long} object
* representing this value is returned. Details of possible
* numeric formats can be found with the definition of
* {@code getProperty}.
*
* If there is no property with the specified name, if the
* specified name is empty or {@code null}, or if the
* property does not have the correct numeric format, then
* {@code null} is returned.
*
* In other words, this method returns a {@code Long} object equal to
* the value of:
*
* The first argument is treated as the name of a system property.
* System properties are accessible through the {@link
* java.lang.System#getProperty(java.lang.String)} method. The
* string value of this property is then interpreted as a
* {@code long} value and a {@code Long} object
* representing this value is returned. Details of possible
* numeric formats can be found with the definition of
* {@code getProperty}.
*
* The second argument is the default value. A {@code Long} object
* that represents the value of the second argument is returned if there
* is no property of the specified name, if the property does not have
* the correct numeric format, or if the specified name is empty or null.
*
* In other words, this method returns a {@code Long} object equal
* to the value of:
*
* Note that, in every case, neither {@code L}
* ( The second argument is the default value. The default value is
* returned if there is no property of the specified name, if the
* property does not have the correct numeric format, or if the
* specified name is empty or {@code null}.
*
* @param nm property name.
* @param val default value.
* @return the {@code Long} value of the property.
* @see java.lang.System#getProperty(java.lang.String)
* @see java.lang.System#getProperty(java.lang.String, java.lang.String)
* @see java.lang.Long#decode
*/
public static Long getLong(String nm, Long val) {
String v = null;
try {
v = System.getProperty(nm);
} catch (IllegalArgumentException e) {
} catch (NullPointerException e) {
}
if (v != null) {
try {
return Long.decode(v);
} catch (NumberFormatException e) {
}
}
return val;
}
/**
* Compares two {@code Long} objects numerically.
*
* @param anotherLong the {@code Long} to be compared.
* @return the value {@code 0} if this {@code Long} is
* equal to the argument {@code Long}; a value less than
* {@code 0} if this {@code Long} is numerically less
* than the argument {@code Long}; and a value greater
* than {@code 0} if this {@code Long} is numerically
* greater than the argument {@code Long} (signed
* comparison).
* @since 1.2
*/
public int compareTo(Long anotherLong) {
return compare(this.value, anotherLong.value);
}
/**
* Compares two {@code long} values numerically.
* The value returned is identical to what would be returned by:
* Note that this method is closely related to the logarithm base 2.
* For all positive {@code long} values x:
* Note that left rotation with a negative distance is equivalent to
* right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
* distance)}. Note also that rotation by any multiple of 64 is a
* no-op, so all but the last six bits of the rotation distance can be
* ignored, even if the distance is negative: {@code rotateLeft(val,
* distance) == rotateLeft(val, distance & 0x3F)}.
*
* @return the value obtained by rotating the two's complement binary
* representation of the specified {@code long} value left by the
* specified number of bits.
* @since 1.5
*/
public static long rotateLeft(long i, int distance) {
return (i << distance) | (i >>> -distance);
}
/**
* Returns the value obtained by rotating the two's complement binary
* representation of the specified {@code long} value right by the
* specified number of bits. (Bits shifted out of the right hand, or
* low-order, side reenter on the left, or high-order.)
*
* Note that right rotation with a negative distance is equivalent to
* left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
* distance)}. Note also that rotation by any multiple of 64 is a
* no-op, so all but the last six bits of the rotation distance can be
* ignored, even if the distance is negative: {@code rotateRight(val,
* distance) == rotateRight(val, distance & 0x3F)}.
*
* @return the value obtained by rotating the two's complement binary
* representation of the specified {@code long} value right by the
* specified number of bits.
* @since 1.5
*/
public static long rotateRight(long i, int distance) {
return (i >>> distance) | (i << -distance);
}
/**
* Returns the value obtained by reversing the order of the bits in the
* two's complement binary representation of the specified {@code long}
* value.
*
* @return the value obtained by reversing order of the bits in the
* specified {@code long} value.
* @since 1.5
*/
public static long reverse(long i) {
// HD, Figure 7-1
i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
i = (i << 48) | ((i & 0xffff0000L) << 16) |
((i >>> 16) & 0xffff0000L) | (i >>> 48);
return i;
}
/**
* Returns the signum function of the specified {@code long} value. (The
* return value is -1 if the specified value is negative; 0 if the
* specified value is zero; and 1 if the specified value is positive.)
*
* @return the signum function of the specified {@code long} value.
* @since 1.5
*/
public static int signum(long i) {
// HD, Section 2-7
return (int) ((i >> 63) | (-i >>> 63));
}
/**
* Returns the value obtained by reversing the order of the bytes in the
* two's complement representation of the specified {@code long} value.
*
* @return the value obtained by reversing the bytes in the specified
* {@code long} value.
* @since 1.5
*/
public static long reverseBytes(long i) {
i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
return (i << 48) | ((i & 0xffff0000L) << 16) |
((i >>> 16) & 0xffff0000L) | (i >>> 48);
}
/**
* Adds two {@code long} values together as per the + operator.
*
* @param a the first operand
* @param b the second operand
* @return the sum of {@code a} and {@code b}
* @see java.util.function.BinaryOperator
* @since 1.8
*/
public static long sum(long a, long b) {
return a + b;
}
/**
* Returns the greater of two {@code long} values
* as if by calling {@link Math#max(long, long) Math.max}.
*
* @param a the first operand
* @param b the second operand
* @return the greater of {@code a} and {@code b}
* @see java.util.function.BinaryOperator
* @since 1.8
*/
public static long max(long a, long b) {
return Math.max(a, b);
}
/**
* Returns the smaller of two {@code long} values
* as if by calling {@link Math#min(long, long) Math.min}.
*
* @param a the first operand
* @param b the second operand
* @return the smaller of {@code a} and {@code b}
* @see java.util.function.BinaryOperator
* @since 1.8
*/
public static long min(long a, long b) {
return Math.min(a, b);
}
/** use serialVersionUID from JDK 1.0.2 for interoperability */
private static final long serialVersionUID = 4290774380558885855L;
}
'\u002d'
). If the first argument is not
* negative, no sign character appears in the result.
*
* '\u0030'
); otherwise, the first character of
* the representation of the magnitude will not be the zero
* character. The following ASCII characters are used as digits:
*
*
* {@code 0123456789abcdefghijklmnopqrstuvwxyz}
*
*
* These are '\u0030'
through
* '\u0039'
and '\u0061'
through
* '\u007a'
. If {@code radix} is
* N, then the first N of these characters
* are used as radix-N digits in the order shown. Thus,
* the digits for hexadecimal (radix 16) are
* {@code 0123456789abcdef}. If uppercase letters are
* desired, the {@link java.lang.String#toUpperCase()} method may
* be called on the result:
*
*
* {@code Long.toString(n, 16).toUpperCase()}
*
*
* @param i a {@code long} to be converted to a string.
* @param radix the radix to use in the string representation.
* @return a string representation of the argument in the specified radix.
* @see java.lang.Character#MAX_RADIX
* @see java.lang.Character#MIN_RADIX
*/
public static String toString(long i, int radix) {
if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
radix = 10;
if (radix == 10)
return toString(i);
char[] buf = new char[65];
int charPos = 64;
boolean negative = (i < 0);
if (!negative) {
i = -i;
}
while (i <= -radix) {
buf[charPos--] = Integer.digits[(int)(-(i % radix))];
i = i / radix;
}
buf[charPos] = Integer.digits[(int)(-i)];
if (negative) {
buf[--charPos] = '-';
}
return new String(buf, charPos, (65 - charPos));
}
/**
* Returns a string representation of the {@code long}
* argument as an unsigned integer in base 16.
*
* '\u0030'
); otherwise, the first character of
* the representation of the unsigned magnitude will not be the
* zero character. The following characters are used as
* hexadecimal digits:
*
*
* {@code 0123456789abcdef}
*
*
* These are the characters '\u0030'
through
* '\u0039'
and '\u0061'
through
* '\u0066'
. If uppercase letters are desired,
* the {@link java.lang.String#toUpperCase()} method may be called
* on the result:
*
*
* {@code Long.toHexString(n).toUpperCase()}
*
*
* @param i a {@code long} to be converted to a string.
* @return the string representation of the unsigned {@code long}
* value represented by the argument in hexadecimal
* (base 16).
* @since JDK 1.0.2
*/
public static String toHexString(long i) {
return toUnsignedString(i, 4);
}
/**
* Returns a string representation of the {@code long}
* argument as an unsigned integer in base 8.
*
* '\u0030'
); otherwise, the first character of
* the representation of the unsigned magnitude will not be the
* zero character. The following characters are used as octal
* digits:
*
*
* {@code 01234567}
*
*
* These are the characters '\u0030'
through
* '\u0037'
.
*
* @param i a {@code long} to be converted to a string.
* @return the string representation of the unsigned {@code long}
* value represented by the argument in octal (base 8).
* @since JDK 1.0.2
*/
public static String toOctalString(long i) {
return toUnsignedString(i, 3);
}
/**
* Returns a string representation of the {@code long}
* argument as an unsigned integer in base 2.
*
* '\u0030'
); otherwise, the first character of
* the representation of the unsigned magnitude will not be the
* zero character. The characters {@code '0'}
* ('\u0030'
) and {@code '1'}
* ('\u0031'
) are used as binary digits.
*
* @param i a {@code long} to be converted to a string.
* @return the string representation of the unsigned {@code long}
* value represented by the argument in binary (base 2).
* @since JDK 1.0.2
*/
public static String toBinaryString(long i) {
return toUnsignedString(i, 1);
}
/**
* Convert the integer to an unsigned number.
*/
private static String toUnsignedString(long i, int shift) {
char[] buf = new char[64];
int charPos = 64;
int radix = 1 << shift;
long mask = radix - 1;
do {
buf[--charPos] = Integer.digits[(int)(i & mask)];
i >>>= shift;
} while (i != 0);
return new String(buf, charPos, (64 - charPos));
}
/**
* Returns a {@code String} object representing the specified
* {@code long}. The argument is converted to signed decimal
* representation and returned as a string, exactly as if the
* argument and the radix 10 were given as arguments to the {@link
* #toString(long, int)} method.
*
* @param i a {@code long} to be converted.
* @return a string representation of the argument in base 10.
*/
public static String toString(long i) {
if (i == Long.MIN_VALUE)
return "-9223372036854775808";
int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
char[] buf = new char[size];
getChars(i, size, buf);
// Android-changed: change string constructor.
return new String(buf);
}
/**
* Places characters representing the integer i into the
* character array buf. The characters are placed into
* the buffer backwards starting with the least significant
* digit at the specified index (exclusive), and working
* backwards from there.
*
* Will fail if i == Long.MIN_VALUE
*/
static void getChars(long i, int index, char[] buf) {
long q;
int r;
int charPos = index;
char sign = 0;
if (i < 0) {
sign = '-';
i = -i;
}
// Get 2 digits/iteration using longs until quotient fits into an int
while (i > Integer.MAX_VALUE) {
q = i / 100;
// really: r = i - (q * 100);
r = (int)(i - ((q << 6) + (q << 5) + (q << 2)));
i = q;
buf[--charPos] = Integer.DigitOnes[r];
buf[--charPos] = Integer.DigitTens[r];
}
// Get 2 digits/iteration using ints
int q2;
int i2 = (int)i;
while (i2 >= 65536) {
q2 = i2 / 100;
// really: r = i2 - (q * 100);
r = i2 - ((q2 << 6) + (q2 << 5) + (q2 << 2));
i2 = q2;
buf[--charPos] = Integer.DigitOnes[r];
buf[--charPos] = Integer.DigitTens[r];
}
// Fall thru to fast mode for smaller numbers
// assert(i2 <= 65536, i2);
for (;;) {
q2 = (i2 * 52429) >>> (16+3);
r = i2 - ((q2 << 3) + (q2 << 1)); // r = i2-(q2*10) ...
buf[--charPos] = Integer.digits[r];
i2 = q2;
if (i2 == 0) break;
}
if (sign != 0) {
buf[--charPos] = sign;
}
}
// Requires positive x
static int stringSize(long x) {
long p = 10;
for (int i=1; i<19; i++) {
if (x < p)
return i;
p = 10*p;
}
return 19;
}
/**
* Parses the string argument as a signed {@code long} in the
* radix specified by the second argument. The characters in the
* string must all be digits of the specified radix (as determined
* by whether {@link java.lang.Character#digit(char, int)} returns
* a nonnegative value), except that the first character may be an
* ASCII minus sign {@code '-'} ('\u002D'
) to
* indicate a negative value or an ASCII plus sign {@code '+'}
* ('\u002B'
) to indicate a positive value. The
* resulting {@code long} value is returned.
*
* '\u004C'
) nor {@code l}
* ('\u006C'
) is permitted to appear at the end
* of the string as a type indicator, as would be permitted in
* Java programming language source code - except that either
* {@code L} or {@code l} may appear as a digit for a
* radix greater than 22.
*
*
*
*
*
* '\u002d'
) or plus sign {@code
* '+'} ('\u002B'
) provided that the string is
* longer than length 1.
*
*
*
* @param s the {@code String} containing the
* {@code long} representation to be parsed.
* @param radix the radix to be used while parsing {@code s}.
* @return the {@code long} represented by the string argument in
* the specified radix.
* @throws NumberFormatException if the string does not contain a
* parsable {@code long}.
*/
public static long parseLong(String s, int radix)
throws NumberFormatException
{
if (s == null) {
throw new NumberFormatException("null");
}
if (radix < Character.MIN_RADIX) {
throw new NumberFormatException("radix " + radix +
" less than Character.MIN_RADIX");
}
if (radix > Character.MAX_RADIX) {
throw new NumberFormatException("radix " + radix +
" greater than Character.MAX_RADIX");
}
long result = 0;
boolean negative = false;
int i = 0, len = s.length();
long limit = -Long.MAX_VALUE;
long multmin;
int digit;
if (len > 0) {
char firstChar = s.charAt(0);
if (firstChar < '0') { // Possible leading "+" or "-"
if (firstChar == '-') {
negative = true;
limit = Long.MIN_VALUE;
} else if (firstChar != '+')
throw NumberFormatException.forInputString(s);
if (len == 1) // Cannot have lone "+" or "-"
throw NumberFormatException.forInputString(s);
i++;
}
multmin = limit / radix;
while (i < len) {
// Accumulating negatively avoids surprises near MAX_VALUE
digit = Character.digit(s.charAt(i++),radix);
if (digit < 0) {
throw NumberFormatException.forInputString(s);
}
if (result < multmin) {
throw NumberFormatException.forInputString(s);
}
result *= radix;
if (result < limit + digit) {
throw NumberFormatException.forInputString(s);
}
result -= digit;
}
} else {
throw NumberFormatException.forInputString(s);
}
return negative ? result : -result;
}
/**
* Parses the string argument as a signed decimal {@code long}.
* The characters in the string must all be decimal digits, except
* that the first character may be an ASCII minus sign {@code '-'}
* (
* parseLong("0", 10) returns 0L
* parseLong("473", 10) returns 473L
* parseLong("+42", 10) returns 42L
* parseLong("-0", 10) returns 0L
* parseLong("-FF", 16) returns -255L
* parseLong("1100110", 2) returns 102L
* parseLong("99", 8) throws a NumberFormatException
* parseLong("Hazelnut", 10) throws a NumberFormatException
* parseLong("Hazelnut", 36) returns 1356099454469L
*
\u002D'
) to indicate a negative value or an
* ASCII plus sign {@code '+'} ('\u002B'
) to
* indicate a positive value. The resulting {@code long} value is
* returned, exactly as if the argument and the radix {@code 10}
* were given as arguments to the {@link
* #parseLong(java.lang.String, int)} method.
*
* '\u004C'
) nor {@code l}
* ('\u006C'
) is permitted to appear at the end
* of the string as a type indicator, as would be permitted in
* Java programming language source code.
*
* @param s a {@code String} containing the {@code long}
* representation to be parsed
* @return the {@code long} represented by the argument in
* decimal.
* @throws NumberFormatException if the string does not contain a
* parsable {@code long}.
*/
public static long parseLong(String s) throws NumberFormatException {
return parseLong(s, 10);
}
/**
* Returns a {@code Long} object holding the value
* extracted from the specified {@code String} when parsed
* with the radix given by the second argument. The first
* argument is interpreted as representing a signed
* {@code long} in the radix specified by the second
* argument, exactly as if the arguments were given to the {@link
* #parseLong(java.lang.String, int)} method. The result is a
* {@code Long} object that represents the {@code long}
* value specified by the string.
*
*
* {@code new Long(Long.parseLong(s, radix))}
*
*
* @param s the string to be parsed
* @param radix the radix to be used in interpreting {@code s}
* @return a {@code Long} object holding the value
* represented by the string argument in the specified
* radix.
* @throws NumberFormatException If the {@code String} does not
* contain a parsable {@code long}.
*/
public static Long valueOf(String s, int radix) throws NumberFormatException {
return Long.valueOf(parseLong(s, radix));
}
/**
* Returns a {@code Long} object holding the value
* of the specified {@code String}. The argument is
* interpreted as representing a signed decimal {@code long},
* exactly as if the argument were given to the {@link
* #parseLong(java.lang.String)} method. The result is a
* {@code Long} object that represents the integer value
* specified by the string.
*
*
* {@code new Long(Long.parseLong(s))}
*
*
* @param s the string to be parsed.
* @return a {@code Long} object holding the value
* represented by the string argument.
* @throws NumberFormatException If the string cannot be parsed
* as a {@code long}.
*/
public static Long valueOf(String s) throws NumberFormatException
{
return Long.valueOf(parseLong(s, 10));
}
private static class LongCache {
private LongCache(){}
static final Long cache[] = new Long[-(-128) + 127 + 1];
static {
for(int i = 0; i < cache.length; i++)
cache[i] = new Long(i - 128);
}
}
/**
* Returns a {@code Long} instance representing the specified
* {@code long} value.
* If a new {@code Long} instance is not required, this method
* should generally be used in preference to the constructor
* {@link #Long(long)}, as this method is likely to yield
* significantly better space and time performance by caching
* frequently requested values.
*
* Note that unlike the {@linkplain Integer#valueOf(int)
* corresponding method} in the {@code Integer} class, this method
* is not required to cache values within a particular
* range.
*
* @param l a long value.
* @return a {@code Long} instance representing {@code l}.
* @since 1.5
*/
public static Long valueOf(long l) {
final int offset = 128;
if (l >= -128 && l <= 127) { // will cache
return LongCache.cache[(int)l + offset];
}
return new Long(l);
}
/**
* Decodes a {@code String} into a {@code Long}.
* Accepts decimal, hexadecimal, and octal numbers given by the
* following grammar:
*
*
*
*
* DecimalNumeral, HexDigits, and OctalDigits
* are as defined in section 3.10.1 of
* The Java™ Language Specification,
* except that underscores are not accepted between digits.
*
*
*
*
* {@code (int)(this.longValue()^(this.longValue()>>>32))}
*
*
* @return a hash code value for this object.
*/
public int hashCode() {
return Long.hashCode(value);
}
/**
* Returns a hash code for a {@code long} value; compatible with
* {@code Long.hashCode()}.
*
* @param value the value to hash
* @return a hash code value for a {@code long} value.
* @since 1.8
*/
public static int hashCode(long value) {
return (int)(value ^ (value >>> 32));
}
/**
* Compares this object to the specified object. The result is
* {@code true} if and only if the argument is not
* {@code null} and is a {@code Long} object that
* contains the same {@code long} value as this object.
*
* @param obj the object to compare with.
* @return {@code true} if the objects are the same;
* {@code false} otherwise.
*/
public boolean equals(Object obj) {
if (obj instanceof Long) {
return value == ((Long)obj).longValue();
}
return false;
}
/**
* Determines the {@code long} value of the system property
* with the specified name.
*
*
* {@code getLong(nm, null)}
*
*
* @param nm property name.
* @return the {@code Long} value of the property.
* @see java.lang.System#getProperty(java.lang.String)
* @see java.lang.System#getProperty(java.lang.String, java.lang.String)
*/
public static Long getLong(String nm) {
return getLong(nm, null);
}
/**
* Determines the {@code long} value of the system property
* with the specified name.
*
*
* {@code getLong(nm, new Long(val))}
*
*
* but in practice it may be implemented in a manner such as:
*
*
*
* to avoid the unnecessary allocation of a {@code Long} object when
* the default value is not needed.
*
* @param nm property name.
* @param val default value.
* @return the {@code Long} value of the property.
* @see java.lang.System#getProperty(java.lang.String)
* @see java.lang.System#getProperty(java.lang.String, java.lang.String)
*/
public static Long getLong(String nm, long val) {
Long result = Long.getLong(nm, null);
return (result == null) ? Long.valueOf(val) : result;
}
/**
* Returns the {@code long} value of the system property with
* the specified name. The first argument is treated as the name
* of a system property. System properties are accessible through
* the {@link java.lang.System#getProperty(java.lang.String)}
* method. The string value of this property is then interpreted
* as a {@code long} value, as per the
* {@code Long.decode} method, and a {@code Long} object
* representing this value is returned.
*
*
* Long result = getLong(nm, null);
* return (result == null) ? new Long(val) : result;
*
*
*
* '\u004C'
) nor {@code l}
* ('\u006C'
) is permitted to appear at the end
* of the property value as a type indicator, as would be
* permitted in Java programming language source code.
*
*
* Long.valueOf(x).compareTo(Long.valueOf(y))
*
*
* @param x the first {@code long} to compare
* @param y the second {@code long} to compare
* @return the value {@code 0} if {@code x == y};
* a value less than {@code 0} if {@code x < y}; and
* a value greater than {@code 0} if {@code x > y}
* @since 1.7
*/
public static int compare(long x, long y) {
return (x < y) ? -1 : ((x == y) ? 0 : 1);
}
// Bit Twiddling
/**
* The number of bits used to represent a {@code long} value in two's
* complement binary form.
*
* @since 1.5
*/
public static final int SIZE = 64;
/**
* The number of bytes used to represent a {@code long} value in two's
* complement binary form.
*
* @since 1.8
*/
public static final int BYTES = SIZE / Byte.SIZE;
/**
* Returns a {@code long} value with at most a single one-bit, in the
* position of the highest-order ("leftmost") one-bit in the specified
* {@code long} value. Returns zero if the specified value has no
* one-bits in its two's complement binary representation, that is, if it
* is equal to zero.
*
* @return a {@code long} value with a single one-bit, in the position
* of the highest-order one-bit in the specified value, or zero if
* the specified value is itself equal to zero.
* @since 1.5
*/
public static long highestOneBit(long i) {
// HD, Figure 3-1
i |= (i >> 1);
i |= (i >> 2);
i |= (i >> 4);
i |= (i >> 8);
i |= (i >> 16);
i |= (i >> 32);
return i - (i >>> 1);
}
/**
* Returns a {@code long} value with at most a single one-bit, in the
* position of the lowest-order ("rightmost") one-bit in the specified
* {@code long} value. Returns zero if the specified value has no
* one-bits in its two's complement binary representation, that is, if it
* is equal to zero.
*
* @return a {@code long} value with a single one-bit, in the position
* of the lowest-order one-bit in the specified value, or zero if
* the specified value is itself equal to zero.
* @since 1.5
*/
public static long lowestOneBit(long i) {
// HD, Section 2-1
return i & -i;
}
/**
* Returns the number of zero bits preceding the highest-order
* ("leftmost") one-bit in the two's complement binary representation
* of the specified {@code long} value. Returns 64 if the
* specified value has no one-bits in its two's complement representation,
* in other words if it is equal to zero.
*
*
*
*
* @return the number of zero bits preceding the highest-order
* ("leftmost") one-bit in the two's complement binary representation
* of the specified {@code long} value, or 64 if the value
* is equal to zero.
* @since 1.5
*/
public static int numberOfLeadingZeros(long i) {
// HD, Figure 5-6
if (i == 0)
return 64;
int n = 1;
int x = (int)(i >>> 32);
if (x == 0) { n += 32; x = (int)i; }
if (x >>> 16 == 0) { n += 16; x <<= 16; }
if (x >>> 24 == 0) { n += 8; x <<= 8; }
if (x >>> 28 == 0) { n += 4; x <<= 4; }
if (x >>> 30 == 0) { n += 2; x <<= 2; }
n -= x >>> 31;
return n;
}
/**
* Returns the number of zero bits following the lowest-order ("rightmost")
* one-bit in the two's complement binary representation of the specified
* {@code long} value. Returns 64 if the specified value has no
* one-bits in its two's complement representation, in other words if it is
* equal to zero.
*
* @return the number of zero bits following the lowest-order ("rightmost")
* one-bit in the two's complement binary representation of the
* specified {@code long} value, or 64 if the value is equal
* to zero.
* @since 1.5
*/
public static int numberOfTrailingZeros(long i) {
// HD, Figure 5-14
int x, y;
if (i == 0) return 64;
int n = 63;
y = (int)i; if (y != 0) { n = n -32; x = y; } else x = (int)(i>>>32);
y = x <<16; if (y != 0) { n = n -16; x = y; }
y = x << 8; if (y != 0) { n = n - 8; x = y; }
y = x << 4; if (y != 0) { n = n - 4; x = y; }
y = x << 2; if (y != 0) { n = n - 2; x = y; }
return n - ((x << 1) >>> 31);
}
/**
* Returns the number of one-bits in the two's complement binary
* representation of the specified {@code long} value. This function is
* sometimes referred to as the population count.
*
* @return the number of one-bits in the two's complement binary
* representation of the specified {@code long} value.
* @since 1.5
*/
public static int bitCount(long i) {
// HD, Figure 5-14
i = i - ((i >>> 1) & 0x5555555555555555L);
i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
i = i + (i >>> 8);
i = i + (i >>> 16);
i = i + (i >>> 32);
return (int)i & 0x7f;
}
/**
* Returns the value obtained by rotating the two's complement binary
* representation of the specified {@code long} value left by the
* specified number of bits. (Bits shifted out of the left hand, or
* high-order, side reenter on the right, or low-order.)
*
*