/*
* Copyright (C) 2014 The Android Open Source Project
* Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.lang;
import java.io.ObjectStreamField;
import java.io.UnsupportedEncodingException;
import java.lang.ArrayIndexOutOfBoundsException;
import java.nio.charset.Charset;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Formatter;
import java.util.Locale;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import java.util.regex.PatternSyntaxException;
import libcore.util.CharsetUtils;
import libcore.util.EmptyArray;
/**
* The String
class represents character strings. All
* string literals in Java programs, such as "abc"
, are
* implemented as instances of this class.
*
* Strings are constant; their values cannot be changed after they * are created. String buffers support mutable strings. * Because String objects are immutable they can be shared. For example: *
* String str = "abc"; *
* is equivalent to: *
* char data[] = {'a', 'b', 'c'}; * String str = new String(data); *
* Here are some more examples of how strings can be used: *
** System.out.println("abc"); * String cde = "cde"; * System.out.println("abc" + cde); * String c = "abc".substring(2,3); * String d = cde.substring(1, 2); *
* The class String
includes methods for examining
* individual characters of the sequence, for comparing strings, for
* searching strings, for extracting substrings, and for creating a
* copy of a string with all characters translated to uppercase or to
* lowercase. Case mapping is based on the Unicode Standard version
* specified by the {@link java.lang.Character Character} class.
*
* The Java language provides special support for the string
* concatenation operator ( + ), and for conversion of
* other objects to strings. String concatenation is implemented
* through the StringBuilder
(or StringBuffer
)
* class and its append
method.
* String conversions are implemented through the method
* toString
, defined by Object
and
* inherited by all classes in Java. For additional information on
* string concatenation and conversion, see Gosling, Joy, and Steele,
* The Java Language Specification.
*
*
Unless otherwise noted, passing a null argument to a constructor * or method in this class will cause a {@link NullPointerException} to be * thrown. * *
A String
represents a string in the UTF-16 format
* in which supplementary characters are represented by surrogate
* pairs (see the section Unicode
* Character Representations in the Character
class for
* more information).
* Index values refer to char
code units, so a supplementary
* character uses two positions in a String
.
*
The The {@code offset} argument is the index of the first byte of the
* subarray, and the {@code count} argument specifies the length of the
* subarray.
*
* Each {@code byte} in the subarray is converted to a {@code char} as
* specified in the method above.
*
* @deprecated This method does not properly convert bytes into characters.
* As of JDK 1.1, the preferred way to do this is via the
* {@code String} constructors that take a {@link
* java.nio.charset.Charset}, charset name, or that use the platform's
* default charset.
*
* @param ascii
* The bytes to be converted to characters
*
* @param hibyte
* The top 8 bits of each 16-bit Unicode code unit
*
* @param offset
* The initial offset
* @param count
* The length
*
* @throws IndexOutOfBoundsException
* If the {@code offset} or {@code count} argument is invalid
*
* @see #String(byte[], int)
* @see #String(byte[], int, int, java.lang.String)
* @see #String(byte[], int, int, java.nio.charset.Charset)
* @see #String(byte[], int, int)
* @see #String(byte[], java.lang.String)
* @see #String(byte[], java.nio.charset.Charset)
* @see #String(byte[])
*/
@Deprecated
public String(byte ascii[], int hibyte, int offset, int count) {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Allocates a new {@code String} containing characters constructed from
* an array of 8-bit integer values. Each character cin the
* resulting string is constructed from the corresponding component
* b in the byte array such that:
*
* The behavior of this constructor when the given bytes are not valid
* in the given charset is unspecified. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @param offset
* The index of the first byte to decode
*
* @param length
* The number of bytes to decode
* @param charsetName
* The name of a supported {@linkplain java.nio.charset.Charset
* charset}
*
* @throws UnsupportedEncodingException
* If the named charset is not supported
*
* @throws IndexOutOfBoundsException
* If the {@code offset} and {@code length} arguments index
* characters outside the bounds of the {@code bytes} array
*
* @since JDK1.1
*/
public String(byte bytes[], int offset, int length, String charsetName)
throws UnsupportedEncodingException {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Constructs a new {@code String} by decoding the specified subarray of
* bytes using the specified {@linkplain java.nio.charset.Charset charset}.
* The length of the new {@code String} is a function of the charset, and
* hence may not be equal to the length of the subarray.
*
* This method always replaces malformed-input and unmappable-character
* sequences with this charset's default replacement string. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @param offset
* The index of the first byte to decode
*
* @param length
* The number of bytes to decode
*
* @param charset
* The {@linkplain java.nio.charset.Charset charset} to be used to
* decode the {@code bytes}
*
* @throws IndexOutOfBoundsException
* If the {@code offset} and {@code length} arguments index
* characters outside the bounds of the {@code bytes} array
*
* @since 1.6
*/
public String(byte bytes[], int offset, int length, Charset charset) {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Constructs a new {@code String} by decoding the specified array of bytes
* using the specified {@linkplain java.nio.charset.Charset charset}. The
* length of the new {@code String} is a function of the charset, and hence
* may not be equal to the length of the byte array.
*
* The behavior of this constructor when the given bytes are not valid
* in the given charset is unspecified. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @param charsetName
* The name of a supported {@linkplain java.nio.charset.Charset
* charset}
*
* @throws UnsupportedEncodingException
* If the named charset is not supported
*
* @since JDK1.1
*/
public String(byte bytes[], String charsetName)
throws UnsupportedEncodingException {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Constructs a new {@code String} by decoding the specified array of
* bytes using the specified {@linkplain java.nio.charset.Charset charset}.
* The length of the new {@code String} is a function of the charset, and
* hence may not be equal to the length of the byte array.
*
* This method always replaces malformed-input and unmappable-character
* sequences with this charset's default replacement string. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @param charset
* The {@linkplain java.nio.charset.Charset charset} to be used to
* decode the {@code bytes}
*
* @since 1.6
*/
public String(byte bytes[], Charset charset) {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Constructs a new {@code String} by decoding the specified subarray of
* bytes using the platform's default charset. The length of the new
* {@code String} is a function of the charset, and hence may not be equal
* to the length of the subarray.
*
* The behavior of this constructor when the given bytes are not valid
* in the default charset is unspecified. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @param offset
* The index of the first byte to decode
*
* @param length
* The number of bytes to decode
*
* @throws IndexOutOfBoundsException
* If the {@code offset} and the {@code length} arguments index
* characters outside the bounds of the {@code bytes} array
*
* @since JDK1.1
*/
public String(byte bytes[], int offset, int length) {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Constructs a new {@code String} by decoding the specified array of bytes
* using the platform's default charset. The length of the new {@code
* String} is a function of the charset, and hence may not be equal to the
* length of the byte array.
*
* The behavior of this constructor when the given bytes are not valid
* in the default charset is unspecified. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @since JDK1.1
*/
public String(byte bytes[]) {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Allocates a new string that contains the sequence of characters
* currently contained in the string buffer argument. The contents of the
* string buffer are copied; subsequent modification of the string buffer
* does not affect the newly created string.
*
* @param buffer
* A {@code StringBuffer}
*/
public String(StringBuffer buffer) {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Allocates a new string that contains the sequence of characters
* currently contained in the string builder argument. The contents of the
* string builder are copied; subsequent modification of the string builder
* does not affect the newly created string.
*
* This constructor is provided to ease migration to {@code
* StringBuilder}. Obtaining a string from a string builder via the {@code
* toString} method is likely to run faster and is generally preferred.
*
* @param builder
* A {@code StringBuilder}
*
* @since 1.5
*/
public String(StringBuilder builder) {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Package private constructor
*
* @deprecated Use {@link #String(char[],int,int)} instead.
*/
@Deprecated
String(int offset, int count, char[] value) {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Returns the length of this string.
* The length is equal to the number of Unicode
* code units in the string.
*
* @return the length of the sequence of characters represented by this
* object.
*/
public int length() {
return count;
}
/**
* Returns true if, and only if, {@link #length()} is 0.
*
* @return true if {@link #length()} is 0, otherwise
* false
*
* @since 1.6
*/
public boolean isEmpty() {
return count == 0;
}
/**
* Returns the If the If the If the
* The first character to be copied is at index The first character to be copied is at index {@code srcBegin}; the
* last character to be copied is at index {@code srcEnd-1}. The total
* number of characters to be copied is {@code srcEnd-srcBegin}. The
* characters, converted to bytes, are copied into the subarray of {@code
* dst} starting at index {@code dstBegin} and ending at index:
*
* The behavior of this method when this string cannot be encoded in
* the given charset is unspecified. The {@link
* java.nio.charset.CharsetEncoder} class should be used when more control
* over the encoding process is required.
*
* @param charsetName
* The name of a supported {@linkplain java.nio.charset.Charset
* charset}
*
* @return The resultant byte array
*
* @throws UnsupportedEncodingException
* If the named charset is not supported
*
* @since JDK1.1
*/
public byte[] getBytes(String charsetName)
throws UnsupportedEncodingException {
return getBytes(Charset.forNameUEE(charsetName));
}
/**
* Encodes this {@code String} into a sequence of bytes using the given
* {@linkplain java.nio.charset.Charset charset}, storing the result into a
* new byte array.
*
* This method always replaces malformed-input and unmappable-character
* sequences with this charset's default replacement byte array. The
* {@link java.nio.charset.CharsetEncoder} class should be used when more
* control over the encoding process is required.
*
* @param charset
* The {@linkplain java.nio.charset.Charset} to be used to encode
* the {@code String}
*
* @return The resultant byte array
*
* @since 1.6
*/
public byte[] getBytes(Charset charset) {
if (charset == null) {
throw new NullPointerException("charset == null");
}
final String name = charset.name();
if ("UTF-8".equals(name)) {
return CharsetUtils.toUtf8Bytes(this, 0, count);
} else if ("ISO-8859-1".equals(name)) {
return CharsetUtils.toIsoLatin1Bytes(this, 0, count);
} else if ("US-ASCII".equals(name)) {
return CharsetUtils.toAsciiBytes(this, 0, count);
} else if ("UTF-16BE".equals(name)) {
return CharsetUtils.toBigEndianUtf16Bytes(this, 0, count);
}
return StringCoding.encode(charset, this);
}
/**
* Encodes this {@code String} into a sequence of bytes using the
* platform's default charset, storing the result into a new byte array.
*
* The behavior of this method when this string cannot be encoded in
* the default charset is unspecified. The {@link
* java.nio.charset.CharsetEncoder} class should be used when more control
* over the encoding process is required.
*
* @return The resultant byte array
*
* @since JDK1.1
*/
public byte[] getBytes() {
return getBytes(Charset.defaultCharset());
}
/**
* Compares this string to the specified object. The result is {@code
* true} if and only if the argument is not {@code null} and is a {@code
* String} object that represents the same sequence of characters as this
* object.
*
* @param anObject
* The object to compare this {@code String} against
*
* @return {@code true} if the given object represents a {@code String}
* equivalent to this string, {@code false} otherwise
*
* @see #compareTo(String)
* @see #equalsIgnoreCase(String)
*/
public boolean equals(Object anObject) {
if (this == anObject) {
return true;
}
if (anObject instanceof String) {
String anotherString = (String) anObject;
int n = count;
if (n == anotherString.count) {
int i = 0;
while (n-- != 0) {
if (charAt(i) != anotherString.charAt(i))
return false;
i++;
}
return true;
}
}
return false;
}
/**
* Compares this string to the specified {@code StringBuffer}. The result
* is {@code true} if and only if this {@code String} represents the same
* sequence of characters as the specified {@code StringBuffer}.
*
* @param sb
* The {@code StringBuffer} to compare this {@code String} against
*
* @return {@code true} if this {@code String} represents the same
* sequence of characters as the specified {@code StringBuffer},
* {@code false} otherwise
*
* @since 1.4
*/
public boolean contentEquals(StringBuffer sb) {
synchronized (sb) {
return contentEquals((CharSequence) sb);
}
}
/**
* Compares this string to the specified {@code CharSequence}. The result
* is {@code true} if and only if this {@code String} represents the same
* sequence of char values as the specified sequence.
*
* @param cs
* The sequence to compare this {@code String} against
*
* @return {@code true} if this {@code String} represents the same
* sequence of char values as the specified sequence, {@code
* false} otherwise
*
* @since 1.5
*/
public boolean contentEquals(CharSequence cs) {
if (count != cs.length())
return false;
// Argument is a StringBuffer, StringBuilder
if (cs instanceof AbstractStringBuilder) {
char v2[] = ((AbstractStringBuilder) cs).getValue();
int i = 0;
int n = count;
while (n-- != 0) {
if (charAt(i) != v2[i])
return false;
i++;
}
return true;
}
// Argument is a String
if (cs.equals(this))
return true;
// Argument is a generic CharSequence
int i = 0;
int n = count;
while (n-- != 0) {
if (charAt(i) != cs.charAt(i))
return false;
i++;
}
return true;
}
/**
* Compares this {@code String} to another {@code String}, ignoring case
* considerations. Two strings are considered equal ignoring case if they
* are of the same length and corresponding characters in the two strings
* are equal ignoring case.
*
* Two characters {@code c1} and {@code c2} are considered the same
* ignoring case if at least one of the following is true:
*
* This is the definition of lexicographic ordering. If two strings are
* different, then either they have different characters at some index
* that is a valid index for both strings, or their lengths are different,
* or both. If they have different characters at one or more index
* positions, let k be the smallest such index; then the string
* whose character at position k has the smaller value, as
* determined by using the < operator, lexicographically precedes the
* other string. In this case,
* Note that this Comparator does not take locale into account,
* and will result in an unsatisfactory ordering for certain locales.
* The java.text package provides Collators to allow
* locale-sensitive ordering.
*
* @see java.text.Collator#compare(String, String)
* @since 1.2
*/
public static final Comparator
* Note that this method does not take locale into account,
* and will result in an unsatisfactory ordering for certain locales.
* The java.text package provides collators to allow
* locale-sensitive ordering.
*
* @param str the
* A substring of this String object is compared to a substring
* of the argument other. The result is true if these substrings
* represent identical character sequences. The substring of this
* String object to be compared begins at index toffset
* and has length len. The substring of other to be compared
* begins at index ooffset and has length len. The
* result is false if and only if at least one of the following
* is true:
*
* A substring of this String object is compared to a substring
* of the argument other. The result is true if these
* substrings represent character sequences that are the same, ignoring
* case if and only if ignoreCase is true. The substring of
* this String object to be compared begins at index
* toffset and has length len. The substring of
* other to be compared begins at index ooffset and
* has length len. The result is false if and only if
* at least one of the following is true:
*
* If a character with value
* There is no restriction on the value of All indices are specified in All indices are specified in The returned index is the smallest value k for which:
* The returned index is the smallest value k for which:
* The returned index is the largest value k for which:
* The returned index is the largest value k for which:
*
* Examples:
*
* Examples:
* An invocation of this method of the form
*
*
* If the length of the argument string is
* Examples:
*
* If the character
* Examples:
* An invocation of this method of the form
* str.matches(regex) yields exactly the
* same result as the expression
*
* An invocation of this method of the form
* str.replaceFirst(regex, repl)
* yields exactly the same result as the expression
*
*
* Note that backslashes (\) and dollar signs ($) in the
* replacement string may cause the results to be different than if it were
* being treated as a literal replacement string; see
* {@link java.util.regex.Matcher#replaceFirst}.
* Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
* meaning of these characters, if desired.
*
* @param regex
* the regular expression to which this string is to be matched
* @param replacement
* the string to be substituted for the first match
*
* @return The resulting String
*
* @throws PatternSyntaxException
* if the regular expression's syntax is invalid
*
* @see java.util.regex.Pattern
*
* @since 1.4
* @spec JSR-51
*/
public String replaceFirst(String regex, String replacement) {
return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
}
/**
* Replaces each substring of this string that matches the given regular expression with the
* given replacement.
*
* An invocation of this method of the form
* str.replaceAll(regex, repl)
* yields exactly the same result as the expression
*
*
* Note that backslashes (\) and dollar signs ($) in the
* replacement string may cause the results to be different than if it were
* being treated as a literal replacement string; see
* {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
* Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
* meaning of these characters, if desired.
*
* @param regex
* the regular expression to which this string is to be matched
* @param replacement
* the string to be substituted for each match
*
* @return The resulting String
*
* @throws PatternSyntaxException
* if the regular expression's syntax is invalid
*
* @see java.util.regex.Pattern
*
* @since 1.4
* @spec JSR-51
*/
public String replaceAll(String regex, String replacement) {
return Pattern.compile(regex).matcher(this).replaceAll(replacement);
}
/**
* Replaces each substring of this string that matches the literal target
* sequence with the specified literal replacement sequence. The
* replacement proceeds from the beginning of the string to the end, for
* example, replacing "aa" with "b" in the string "aaa" will result in
* "ba" rather than "ab".
*
* @param target The sequence of char values to be replaced
* @param replacement The replacement sequence of char values
* @return The resulting string
* @throws NullPointerException if The array returned by this method contains each substring of this
* string that is terminated by another substring that matches the given
* expression or is terminated by the end of the string. The substrings in
* the array are in the order in which they occur in this string. If the
* expression does not match any part of the input then the resulting array
* has just one element, namely this string.
*
* The limit parameter controls the number of times the
* pattern is applied and therefore affects the length of the resulting
* array. If the limit n is greater than zero then the pattern
* will be applied at most n - 1 times, the array's
* length will be no greater than n, and the array's last entry
* will contain all input beyond the last matched delimiter. If n
* is non-positive then the pattern will be applied as many times as
* possible and the array can have any length. If n is zero then
* the pattern will be applied as many times as possible, the array can
* have any length, and trailing empty strings will be discarded.
*
* The string "boo:and:foo", for example, yields the
* following results with these parameters:
*
* An invocation of this method of the form
* str.split(regex, n)
* yields the same result as the expression
*
* This method works as if by invoking the two-argument {@link
* #split(String, int) split} method with the given expression and a limit
* argument of zero. Trailing empty strings are therefore not included in
* the resulting array.
*
* The string "boo:and:foo", for example, yields the following
* results with these expressions:
*
*
* Examples of lowercase mappings are in the following table:
*
* Note: This method is locale sensitive, and may produce unexpected
* results if used for strings that are intended to be interpreted locale
* independently.
* Examples are programming language identifiers, protocol keys, and HTML
* tags.
* For instance,
* @return the
* Examples of locale-sensitive and 1:M case mappings are in the following table.
*
*
* Note: This method is locale sensitive, and may produce unexpected
* results if used for strings that are intended to be interpreted locale
* independently.
* Examples are programming language identifiers, protocol keys, and HTML
* tags.
* For instance,
* @return the
* If this
* Otherwise, if there is no character with a code greater than
*
* Otherwise, let k be the index of the first character in the
* string whose code is greater than
* This method may be used to trim whitespace (as defined above) from
* the beginning and end of a string.
*
* @return A copy of this string with leading and trailing white
* space removed, or this string if it has no leading or
* trailing white space.
*/
public String trim() {
int len = count;
int st = 0;
while ((st < len) && (charAt(st) <= ' ')) {
st++;
}
while ((st < len) && (charAt(len - 1) <= ' ')) {
len--;
}
return ((st > 0) || (len < count)) ? substring(st, len) : this;
}
/**
* This object (which is already a string!) is itself returned.
*
* @return the string itself.
*/
public String toString() {
return this;
}
/**
* Converts this string to a new character array.
*
* @return a newly allocated character array whose length is the length
* of this string and whose contents are initialized to contain
* the character sequence represented by this string.
*/
public native char[] toCharArray();
/**
* Returns a formatted string using the specified format string and
* arguments.
*
* The locale always used is the one returned by {@link
* java.util.Locale#getDefault() Locale.getDefault()}.
*
* @param format
* A format string
*
* @param args
* Arguments referenced by the format specifiers in the format
* string. If there are more arguments than format specifiers, the
* extra arguments are ignored. The number of arguments is
* variable and may be zero. The maximum number of arguments is
* limited by the maximum dimension of a Java array as defined by
* The Java™ Virtual Machine Specification.
* The behaviour on a
* null argument depends on the conversion.
*
* @throws IllegalFormatException
* If a format string contains an illegal syntax, a format
* specifier that is incompatible with the given arguments,
* insufficient arguments given the format string, or other
* illegal conditions. For specification of all possible
* formatting errors, see the Details section of the
* formatter class specification.
*
* @throws NullPointerException
* If the format is null
*
* @return A formatted string
*
* @see java.util.Formatter
* @since 1.5
*/
public static String format(String format, Object... args) {
return new Formatter().format(format, args).toString();
}
/**
* Returns a formatted string using the specified locale, format string,
* and arguments.
*
* @param l
* The {@linkplain java.util.Locale locale} to apply during
* formatting. If l is null then no localization
* is applied.
*
* @param format
* A format string
*
* @param args
* Arguments referenced by the format specifiers in the format
* string. If there are more arguments than format specifiers, the
* extra arguments are ignored. The number of arguments is
* variable and may be zero. The maximum number of arguments is
* limited by the maximum dimension of a Java array as defined by
* The Java™ Virtual Machine Specification.
* The behaviour on a
* null argument depends on the conversion.
*
* @throws IllegalFormatException
* If a format string contains an illegal syntax, a format
* specifier that is incompatible with the given arguments,
* insufficient arguments given the format string, or other
* illegal conditions. For specification of all possible
* formatting errors, see the Details section of the
* formatter class specification
*
* @throws NullPointerException
* If the format is null
*
* @return A formatted string
*
* @see java.util.Formatter
* @since 1.5
*/
public static String format(Locale l, String format, Object... args) {
return new Formatter(l).format(format, args).toString();
}
/**
* Returns the string representation of the
* The
* The representation is exactly the one returned by the
*
* The representation is exactly the one returned by the
*
* The representation is exactly the one returned by the
*
* The representation is exactly the one returned by the
*
* A pool of strings, initially empty, is maintained privately by the
* class
* When the intern method is invoked, if the pool already contains a
* string equal to this
* It follows that for any two strings
* All literal strings and string-valued constant expressions are
* interned. String literals are defined in section 3.10.5 of the
* The Java™ Language Specification.
*
* @return a string that has the same contents as this string, but is
* guaranteed to be from a pool of unique strings.
*/
public native String intern();
}
String
class provides methods for dealing with
* Unicode code points (i.e., characters), in addition to those for
* dealing with Unicode code units (i.e., char
values).
*
* @author Lee Boynton
* @author Arthur van Hoff
* @author Martin Buchholz
* @author Ulf Zibis
* @see java.lang.Object#toString()
* @see java.lang.StringBuffer
* @see java.lang.StringBuilder
* @see java.nio.charset.Charset
* @since JDK1.0
*/
public final class String
implements java.io.Serializable, Comparable
*
* The String is written by method TC_STRING
(utf String)
* DataOutput.writeUTF
.
* A new handle is generated to refer to all future references to the
* string instance within the stream.
*/
private static final ObjectStreamField[] serialPersistentFields =
new ObjectStreamField[0];
/**
* Initializes a newly created {@code String} object so that it represents
* an empty character sequence. Note that use of this constructor is
* unnecessary since Strings are immutable.
*/
public String() {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Initializes a newly created {@code String} object so that it represents
* the same sequence of characters as the argument; in other words, the
* newly created string is a copy of the argument string. Unless an
* explicit copy of {@code original} is needed, use of this constructor is
* unnecessary since Strings are immutable.
*
* @param original
* A {@code String}
*/
public String(String original) {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Allocates a new {@code String} so that it represents the sequence of
* characters currently contained in the character array argument. The
* contents of the character array are copied; subsequent modification of
* the character array does not affect the newly created string.
*
* @param value
* The initial value of the string
*/
public String(char value[]) {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Allocates a new {@code String} that contains characters from a subarray
* of the character array argument. The {@code offset} argument is the
* index of the first character of the subarray and the {@code count}
* argument specifies the length of the subarray. The contents of the
* subarray are copied; subsequent modification of the character array does
* not affect the newly created string.
*
* @param value
* Array that is the source of characters
*
* @param offset
* The initial offset
*
* @param count
* The length
*
* @throws IndexOutOfBoundsException
* If the {@code offset} and {@code count} arguments index
* characters outside the bounds of the {@code value} array
*/
public String(char value[], int offset, int count) {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Allocates a new {@code String} that contains characters from a subarray
* of the Unicode code point array
* argument. The {@code offset} argument is the index of the first code
* point of the subarray and the {@code count} argument specifies the
* length of the subarray. The contents of the subarray are converted to
* {@code char}s; subsequent modification of the {@code int} array does not
* affect the newly created string.
*
* @param codePoints
* Array that is the source of Unicode code points
*
* @param offset
* The initial offset
*
* @param count
* The length
*
* @throws IllegalArgumentException
* If any invalid Unicode code point is found in {@code
* codePoints}
*
* @throws IndexOutOfBoundsException
* If the {@code offset} and {@code count} arguments index
* characters outside the bounds of the {@code codePoints} array
*
* @since 1.5
*/
public String(int[] codePoints, int offset, int count) {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Allocates a new {@code String} constructed from a subarray of an array
* of 8-bit integer values.
*
*
*
* @deprecated This method does not properly convert bytes into
* characters. As of JDK 1.1, the preferred way to do this is via the
* {@code String} constructors that take a {@link
* java.nio.charset.Charset}, charset name, or that use the platform's
* default charset.
*
* @param ascii
* The bytes to be converted to characters
*
* @param hibyte
* The top 8 bits of each 16-bit Unicode code unit
*
* @see #String(byte[], int, int, java.lang.String)
* @see #String(byte[], int, int, java.nio.charset.Charset)
* @see #String(byte[], int, int)
* @see #String(byte[], java.lang.String)
* @see #String(byte[], java.nio.charset.Charset)
* @see #String(byte[])
*/
@Deprecated
public String(byte ascii[], int hibyte) {
throw new UnsupportedOperationException("Use StringFactory instead.");
}
/**
* Constructs a new {@code String} by decoding the specified subarray of
* bytes using the specified charset. The length of the new {@code String}
* is a function of the charset, and hence may not be equal to the length
* of the subarray.
*
*
* c == (char)(((hibyte & 0xff) << 8)
* | (b & 0xff))
*
char
value at the
* specified index. An index ranges from 0
to
* length() - 1
. The first char
value of the sequence
* is at index 0
, the next at index 1
,
* and so on, as for array indexing.
*
* char
value specified by the index is a
* surrogate, the surrogate
* value is returned.
*
* @param index the index of the char
value.
* @return the char
value at the specified index of this string.
* The first char
value is at index 0
.
* @exception IndexOutOfBoundsException if the index
* argument is negative or not less than the length of this
* string.
*/
public native char charAt(int index);
native void setCharAt(int index, char c);
/**
* Returns the character (Unicode code point) at the specified
* index. The index refers to char
values
* (Unicode code units) and ranges from 0
to
* {@link #length()} - 1
.
*
* char
value specified at the given index
* is in the high-surrogate range, the following index is less
* than the length of this String
, and the
* char
value at the following index is in the
* low-surrogate range, then the supplementary code point
* corresponding to this surrogate pair is returned. Otherwise,
* the char
value at the given index is returned.
*
* @param index the index to the char
values
* @return the code point value of the character at the
* index
* @exception IndexOutOfBoundsException if the index
* argument is negative or not less than the length of this
* string.
* @since 1.5
*/
public int codePointAt(int index) {
if ((index < 0) || (index >= count)) {
throw new StringIndexOutOfBoundsException(index);
}
return Character.codePointAt(this, index);
}
/**
* Returns the character (Unicode code point) before the specified
* index. The index refers to char
values
* (Unicode code units) and ranges from 1
to {@link
* CharSequence#length() length}.
*
* char
value at (index - 1)
* is in the low-surrogate range, (index - 2)
is not
* negative, and the char
value at (index -
* 2)
is in the high-surrogate range, then the
* supplementary code point value of the surrogate pair is
* returned. If the char
value at index -
* 1
is an unpaired low-surrogate or a high-surrogate, the
* surrogate value is returned.
*
* @param index the index following the code point that should be returned
* @return the Unicode code point value before the given index.
* @exception IndexOutOfBoundsException if the index
* argument is less than 1 or greater than the length
* of this string.
* @since 1.5
*/
public int codePointBefore(int index) {
int i = index - 1;
if ((i < 0) || (i >= count)) {
throw new StringIndexOutOfBoundsException(index);
}
return Character.codePointBefore(this, index);
}
/**
* Returns the number of Unicode code points in the specified text
* range of this String
. The text range begins at the
* specified beginIndex
and extends to the
* char
at index endIndex - 1
. Thus the
* length (in char
s) of the text range is
* endIndex-beginIndex
. Unpaired surrogates within
* the text range count as one code point each.
*
* @param beginIndex the index to the first char
of
* the text range.
* @param endIndex the index after the last char
of
* the text range.
* @return the number of Unicode code points in the specified text
* range
* @exception IndexOutOfBoundsException if the
* beginIndex
is negative, or endIndex
* is larger than the length of this String
, or
* beginIndex
is larger than endIndex
.
* @since 1.5
*/
public int codePointCount(int beginIndex, int endIndex) {
if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
throw new IndexOutOfBoundsException();
}
return Character.codePointCount(this, beginIndex, endIndex);
}
/**
* Returns the index within this String
that is
* offset from the given index
by
* codePointOffset
code points. Unpaired surrogates
* within the text range given by index
and
* codePointOffset
count as one code point each.
*
* @param index the index to be offset
* @param codePointOffset the offset in code points
* @return the index within this String
* @exception IndexOutOfBoundsException if index
* is negative or larger then the length of this
* String
, or if codePointOffset
is positive
* and the substring starting with index
has fewer
* than codePointOffset
code points,
* or if codePointOffset
is negative and the substring
* before index
has fewer than the absolute value
* of codePointOffset
code points.
* @since 1.5
*/
public int offsetByCodePoints(int index, int codePointOffset) {
if (index < 0 || index > count) {
throw new IndexOutOfBoundsException();
}
return Character.offsetByCodePoints(this, index, codePointOffset);
}
/**
* Copies characters from this string into the destination character
* array.
* srcBegin
;
* the last character to be copied is at index srcEnd-1
* (thus the total number of characters to be copied is
* srcEnd-srcBegin
). The characters are copied into the
* subarray of dst
starting at index dstBegin
* and ending at index:
*
*
* @param srcBegin index of the first character in the string
* to copy.
* @param srcEnd index after the last character in the string
* to copy.
* @param dst the destination array.
* @param dstBegin the start offset in the destination array.
* @exception IndexOutOfBoundsException If any of the following
* is true:
*
* dstbegin + (srcEnd-srcBegin) - 1
*
*/
public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
if (dst == null) {
throw new NullPointerException("dst == null");
}
if (srcBegin < 0) {
throw new StringIndexOutOfBoundsException(this, srcBegin);
}
if (srcEnd > count) {
throw new StringIndexOutOfBoundsException(this, srcEnd);
}
int n = srcEnd - srcBegin;
if (srcEnd < srcBegin) {
throw new StringIndexOutOfBoundsException(this, srcBegin, n);
}
if (dstBegin < 0) {
throw new ArrayIndexOutOfBoundsException("dstBegin < 0. dstBegin=" + dstBegin);
}
// dstBegin can be equal to dst.length, but only in the case where zero chars are to be
// copied.
if (dstBegin > dst.length) {
throw new ArrayIndexOutOfBoundsException(
"dstBegin > dst.length. dstBegin=" + dstBegin + ", dst.length=" + dst.length);
}
if (n > dst.length - dstBegin) {
throw new ArrayIndexOutOfBoundsException(
"n > dst.length - dstBegin. n=" + n + ", dst.length=" + dst.length
+ "dstBegin=" + dstBegin);
}
getCharsNoCheck(srcBegin, srcEnd, dst, dstBegin);
}
/**
* getChars without bounds checks, for use by other classes
* within the java.lang package only. The caller is responsible for
* ensuring that start >= 0 && start <= end && end <= count.
*/
native void getCharsNoCheck(int start, int end, char[] buffer, int index);
/**
* Copies characters from this string into the destination byte array. Each
* byte receives the 8 low-order bits of the corresponding character. The
* eight high-order bits of each character are not copied and do not
* participate in the transfer in any way.
*
* srcBegin
is negative.
* srcBegin
is greater than srcEnd
* srcEnd
is greater than the length of this
* string
* dstBegin
is negative
* dstBegin+(srcEnd-srcBegin)
is larger than
* dst.length
*
* @deprecated This method does not properly convert characters into
* bytes. As of JDK 1.1, the preferred way to do this is via the
* {@link #getBytes()} method, which uses the platform's default charset.
*
* @param srcBegin
* Index of the first character in the string to copy
*
* @param srcEnd
* Index after the last character in the string to copy
*
* @param dst
* The destination array
*
* @param dstBegin
* The start offset in the destination array
*
* @throws IndexOutOfBoundsException
* If any of the following is true:
*
* dstbegin + (srcEnd-srcBegin) - 1
*
*
*/
@Deprecated
public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
if (srcBegin < 0) {
throw new StringIndexOutOfBoundsException(this, srcBegin);
}
if (srcEnd > count) {
throw new StringIndexOutOfBoundsException(this, srcEnd);
}
if (srcBegin > srcEnd) {
throw new StringIndexOutOfBoundsException(this, (srcEnd - srcBegin));
}
int j = dstBegin;
int n = srcEnd;
int i = srcBegin;
while (i < n) {
dst[j++] = (byte)charAt(i++);
}
}
/**
* Encodes this {@code String} into a sequence of bytes using the named
* charset, storing the result into a new byte array.
*
*
*
*
* @param anotherString
* The {@code String} to compare this {@code String} against
*
* @return {@code true} if the argument is not {@code null} and it
* represents an equivalent {@code String} ignoring case; {@code
* false} otherwise
*
* @see #equals(Object)
*/
public boolean equalsIgnoreCase(String anotherString) {
return (this == anotherString) ? true
: (anotherString != null)
&& (anotherString.count == count)
&& regionMatches(true, 0, anotherString, 0, count);
}
/**
* Compares two strings lexicographically.
* The comparison is based on the Unicode value of each character in
* the strings. The character sequence represented by this
* String
object is compared lexicographically to the
* character sequence represented by the argument string. The result is
* a negative integer if this String
object
* lexicographically precedes the argument string. The result is a
* positive integer if this String
object lexicographically
* follows the argument string. The result is zero if the strings
* are equal; compareTo
returns 0
exactly when
* the {@link #equals(Object)} method would return true
.
* compareTo
returns the
* difference of the two character values at position k
in
* the two string -- that is, the value:
*
* If there is no index position at which they differ, then the shorter
* string lexicographically precedes the longer string. In this case,
*
* this.charAt(k)-anotherString.charAt(k)
*
compareTo
returns the difference of the lengths of the
* strings -- that is, the value:
*
*
* @param anotherString the
* this.length()-anotherString.length()
*
String
to be compared.
* @return the value 0
if the argument string is equal to
* this string; a value less than 0
if this string
* is lexicographically less than the string argument; and a
* value greater than 0
if this string is
* lexicographically greater than the string argument.
*/
public native int compareTo(String anotherString);
/**
* A Comparator that orders String
objects as by
* compareToIgnoreCase
. This comparator is serializable.
* compareTo
with normalized versions of the strings
* where case differences have been eliminated by calling
* Character.toLowerCase(Character.toUpperCase(character))
on
* each character.
* String
to be compared.
* @return a negative integer, zero, or a positive integer as the
* specified String is greater than, equal to, or less
* than this String, ignoring case considerations.
* @see java.text.Collator#compare(String, String)
* @since 1.2
*/
public int compareToIgnoreCase(String str) {
return CASE_INSENSITIVE_ORDER.compare(this, str);
}
/**
* Tests if two string regions are equal.
*
*
* @param toffset the starting offset of the subregion in this string.
* @param other the string argument.
* @param ooffset the starting offset of the subregion in the string
* argument.
* @param len the number of characters to compare.
* @return true
if the specified subregion of this string
* exactly matches the specified subregion of the string argument;
* false
otherwise.
*/
public boolean regionMatches(int toffset, String other, int ooffset,
int len) {
int to = toffset;
int po = ooffset;
// Note: toffset, ooffset, or len might be near -1>>>1.
if ((ooffset < 0) || (toffset < 0)
|| (toffset > (long)count - len)
|| (ooffset > (long)other.count - len)) {
return false;
}
while (len-- > 0) {
if (charAt(to++) != other.charAt(po++)) {
return false;
}
}
return true;
}
/**
* Tests if two string regions are equal.
*
*
* @param ignoreCase if
*
* this.charAt(toffset+k) != other.charAt(ooffset+k)
*
* and:
*
* Character.toLowerCase(this.charAt(toffset+k)) !=
Character.toLowerCase(other.charAt(ooffset+k))
*
*
* Character.toUpperCase(this.charAt(toffset+k)) !=
* Character.toUpperCase(other.charAt(ooffset+k))
*
true
, ignore case when comparing
* characters.
* @param toffset the starting offset of the subregion in this
* string.
* @param other the string argument.
* @param ooffset the starting offset of the subregion in the string
* argument.
* @param len the number of characters to compare.
* @return true
if the specified subregion of this string
* matches the specified subregion of the string argument;
* false
otherwise. Whether the matching is exact
* or case insensitive depends on the ignoreCase
* argument.
*/
public boolean regionMatches(boolean ignoreCase, int toffset,
String other, int ooffset, int len) {
int to = toffset;
int po = ooffset;
// Note: toffset, ooffset, or len might be near -1>>>1.
if ((ooffset < 0) || (toffset < 0)
|| (toffset > (long)count - len)
|| (ooffset > (long)other.count - len)) {
return false;
}
while (len-- > 0) {
char c1 = charAt(to++);
char c2 = other.charAt(po++);
if (c1 == c2) {
continue;
}
if (ignoreCase) {
// If characters don't match but case may be ignored,
// try converting both characters to uppercase.
// If the results match, then the comparison scan should
// continue.
char u1 = Character.toUpperCase(c1);
char u2 = Character.toUpperCase(c2);
if (u1 == u2) {
continue;
}
// Unfortunately, conversion to uppercase does not work properly
// for the Georgian alphabet, which has strange rules about case
// conversion. So we need to make one last check before
// exiting.
if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
continue;
}
}
return false;
}
return true;
}
/**
* Tests if the substring of this string beginning at the
* specified index starts with the specified prefix.
*
* @param prefix the prefix.
* @param toffset where to begin looking in this string.
* @return true
if the character sequence represented by the
* argument is a prefix of the substring of this object starting
* at index toffset
; false
otherwise.
* The result is false
if toffset
is
* negative or greater than the length of this
* String
object; otherwise the result is the same
* as the result of the expression
*
* this.substring(toffset).startsWith(prefix)
*
*/
public boolean startsWith(String prefix, int toffset) {
int to = toffset;
int po = 0;
int pc = prefix.count;
// Note: toffset might be near -1>>>1.
if ((toffset < 0) || (toffset > count - pc)) {
return false;
}
while (--pc >= 0) {
if (charAt(to++) != prefix.charAt(po++)) {
return false;
}
}
return true;
}
/**
* Tests if this string starts with the specified prefix.
*
* @param prefix the prefix.
* @return true
if the character sequence represented by the
* argument is a prefix of the character sequence represented by
* this string; false
otherwise.
* Note also that true
will be returned if the
* argument is an empty string or is equal to this
* String
object as determined by the
* {@link #equals(Object)} method.
* @since 1. 0
*/
public boolean startsWith(String prefix) {
return startsWith(prefix, 0);
}
/**
* Tests if this string ends with the specified suffix.
*
* @param suffix the suffix.
* @return true
if the character sequence represented by the
* argument is a suffix of the character sequence represented by
* this object; false
otherwise. Note that the
* result will be true
if the argument is the
* empty string or is equal to this String
object
* as determined by the {@link #equals(Object)} method.
*/
public boolean endsWith(String suffix) {
return startsWith(suffix, count - suffix.count);
}
/**
* Returns a hash code for this string. The hash code for a
* String
object is computed as
*
* using
* s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
*
int
arithmetic, where s[i]
is the
* ith character of the string, n
is the length of
* the string, and ^
indicates exponentiation.
* (The hash value of the empty string is zero.)
*
* @return a hash code value for this object.
*/
public int hashCode() {
int h = hash;
if (h == 0 && count > 0) {
for (int i = 0; i < count; i++) {
h = 31 * h + charAt(i);
}
hash = h;
}
return h;
}
/**
* Returns the index within this string of the first occurrence of
* the specified character. If a character with value
* ch
occurs in the character sequence represented by
* this String
object, then the index (in Unicode
* code units) of the first such occurrence is returned. For
* values of ch
in the range from 0 to 0xFFFF
* (inclusive), this is the smallest value k such that:
*
* is true. For other values of
* this.charAt(k) == ch
*
ch
, it is the
* smallest value k such that:
*
* is true. In either case, if no such character occurs in this
* string, then
* this.codePointAt(k) == ch
*
-1
is returned.
*
* @param ch a character (Unicode code point).
* @return the index of the first occurrence of the character in the
* character sequence represented by this object, or
* -1
if the character does not occur.
*/
public int indexOf(int ch) {
return indexOf(ch, 0);
}
/**
* Returns the index within this string of the first occurrence of the
* specified character, starting the search at the specified index.
* ch
occurs in the
* character sequence represented by this String
* object at an index no smaller than fromIndex
, then
* the index of the first such occurrence is returned. For values
* of ch
in the range from 0 to 0xFFFF (inclusive),
* this is the smallest value k such that:
*
* is true. For other values of
* (this.charAt(k) == ch) && (k >= fromIndex)
*
ch
, it is the
* smallest value k such that:
*
* is true. In either case, if no such character occurs in this
* string at or after position
* (this.codePointAt(k) == ch) && (k >= fromIndex)
*
fromIndex
, then
* -1
is returned.
*
* fromIndex
. If it
* is negative, it has the same effect as if it were zero: this entire
* string may be searched. If it is greater than the length of this
* string, it has the same effect as if it were equal to the length of
* this string: -1
is returned.
*
* char
values
* (Unicode code units).
*
* @param ch a character (Unicode code point).
* @param fromIndex the index to start the search from.
* @return the index of the first occurrence of the character in the
* character sequence represented by this object that is greater
* than or equal to fromIndex
, or -1
* if the character does not occur.
*/
public int indexOf(int ch, int fromIndex) {
final int max = count;
if (fromIndex < 0) {
fromIndex = 0;
} else if (fromIndex >= max) {
// Note: fromIndex might be near -1>>>1.
return -1;
}
if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
// handle most cases here (ch is a BMP code point or a
// negative value (invalid code point))
for (int i = fromIndex; i < max; i++) {
if (charAt(i) == ch) {
return i;
}
}
return -1;
} else {
return indexOfSupplementary(ch, fromIndex);
}
}
private native int fastIndexOf(int c, int start);
/**
* Handles (rare) calls of indexOf with a supplementary character.
*/
private int indexOfSupplementary(int ch, int fromIndex) {
if (Character.isValidCodePoint(ch)) {
final char hi = Character.highSurrogate(ch);
final char lo = Character.lowSurrogate(ch);
final int max = count - 1;
for (int i = fromIndex; i < max; i++) {
if (charAt(i) == hi && charAt(i + 1) == lo) {
return i;
}
}
}
return -1;
}
/**
* Returns the index within this string of the last occurrence of
* the specified character. For values of ch
in the
* range from 0 to 0xFFFF (inclusive), the index (in Unicode code
* units) returned is the largest value k such that:
*
* is true. For other values of
* this.charAt(k) == ch
*
ch
, it is the
* largest value k such that:
*
* is true. In either case, if no such character occurs in this
* string, then
* this.codePointAt(k) == ch
*
-1
is returned. The
* String
is searched backwards starting at the last
* character.
*
* @param ch a character (Unicode code point).
* @return the index of the last occurrence of the character in the
* character sequence represented by this object, or
* -1
if the character does not occur.
*/
public int lastIndexOf(int ch) {
return lastIndexOf(ch, count - 1);
}
/**
* Returns the index within this string of the last occurrence of
* the specified character, searching backward starting at the
* specified index. For values of ch
in the range
* from 0 to 0xFFFF (inclusive), the index returned is the largest
* value k such that:
*
* is true. For other values of
* (this.charAt(k) == ch) && (k <= fromIndex)
*
ch
, it is the
* largest value k such that:
*
* is true. In either case, if no such character occurs in this
* string at or before position
* (this.codePointAt(k) == ch) && (k <= fromIndex)
*
fromIndex
, then
* -1
is returned.
*
* char
values
* (Unicode code units).
*
* @param ch a character (Unicode code point).
* @param fromIndex the index to start the search from. There is no
* restriction on the value of fromIndex
. If it is
* greater than or equal to the length of this string, it has
* the same effect as if it were equal to one less than the
* length of this string: this entire string may be searched.
* If it is negative, it has the same effect as if it were -1:
* -1 is returned.
* @return the index of the last occurrence of the character in the
* character sequence represented by this object that is less
* than or equal to fromIndex
, or -1
* if the character does not occur before that point.
*/
public int lastIndexOf(int ch, int fromIndex) {
if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
// handle most cases here (ch is a BMP code point or a
// negative value (invalid code point))
int i = Math.min(fromIndex, count - 1);
for (; i >= 0; i--) {
if (charAt(i) == ch) {
return i;
}
}
return -1;
} else {
return lastIndexOfSupplementary(ch, fromIndex);
}
}
/**
* Handles (rare) calls of lastIndexOf with a supplementary character.
*/
private int lastIndexOfSupplementary(int ch, int fromIndex) {
if (Character.isValidCodePoint(ch)) {
char hi = Character.highSurrogate(ch);
char lo = Character.lowSurrogate(ch);
int i = Math.min(fromIndex, count - 2);
for (; i >= 0; i--) {
if (charAt(i) == hi && charAt(i + 1) == lo) {
return i;
}
}
}
return -1;
}
/**
* Returns the index within this string of the first occurrence of the
* specified substring.
*
*
* If no such value of k exists, then {@code -1} is returned.
*
* @param str the substring to search for.
* @return the index of the first occurrence of the specified substring,
* or {@code -1} if there is no such occurrence.
*/
public int indexOf(String str) {
return indexOf(str, 0);
}
/**
* Returns the index within this string of the first occurrence of the
* specified substring, starting at the specified index.
*
*
* this.startsWith(str, k)
*
* If no such value of k exists, then {@code -1} is returned.
*
* @param str the substring to search for.
* @param fromIndex the index from which to start the search.
* @return the index of the first occurrence of the specified substring,
* starting at the specified index,
* or {@code -1} if there is no such occurrence.
*/
public int indexOf(String str, int fromIndex) {
return indexOf(this, str, fromIndex);
}
/**
* Code shared by String and StringBuffer to do searches. The
* source is the character array being searched, and the target
* is the string being searched for.
*
* @param source the characters being searched.
* @param target the characters being searched for.
* @param fromIndex the index to begin searching from.
*/
static int indexOf(String source,
String target,
int fromIndex) {
if (fromIndex >= source.count) {
return (target.count == 0 ? source.count : -1);
}
if (fromIndex < 0) {
fromIndex = 0;
}
if (target.count == 0) {
return fromIndex;
}
char first = target.charAt(0);
int max = (source.count - target.count);
for (int i = fromIndex; i <= max; i++) {
/* Look for first character. */
if (source.charAt(i)!= first) {
while (++i <= max && source.charAt(i) != first);
}
/* Found first character, now look at the rest of v2 */
if (i <= max) {
int j = i + 1;
int end = j + target.count - 1;
for (int k = 1; j < end && source.charAt(j)
== target.charAt(k); j++, k++);
if (j == end) {
/* Found whole string. */
return i;
}
}
}
return -1;
}
/**
* Code shared by String and StringBuffer to do searches. The
* source is the character array being searched, and the target
* is the string being searched for.
*
* @param source the characters being searched.
* @param sourceOffset offset of the source string.
* @param sourceCount count of the source string.
* @param target the characters being searched for.
* @param targetOffset offset of the target string.
* @param targetCount count of the target string.
* @param fromIndex the index to begin searching from.
*/
static int indexOf(char[] source, int sourceOffset, int sourceCount,
char[] target, int targetOffset, int targetCount,
int fromIndex) {
if (fromIndex >= sourceCount) {
return (targetCount == 0 ? sourceCount : -1);
}
if (fromIndex < 0) {
fromIndex = 0;
}
if (targetCount == 0) {
return fromIndex;
}
char first = target[targetOffset];
int max = sourceOffset + (sourceCount - targetCount);
for (int i = sourceOffset + fromIndex; i <= max; i++) {
/* Look for first character. */
if (source[i] != first) {
while (++i <= max && source[i] != first);
}
/* Found first character, now look at the rest of v2 */
if (i <= max) {
int j = i + 1;
int end = j + targetCount - 1;
for (int k = targetOffset + 1; j < end && source[j]
== target[k]; j++, k++);
if (j == end) {
/* Found whole string. */
return i - sourceOffset;
}
}
}
return -1;
}
/**
* Returns the index within this string of the last occurrence of the
* specified substring. The last occurrence of the empty string ""
* is considered to occur at the index value {@code this.length()}.
*
*
* k >= fromIndex && this.startsWith(str, k)
*
* If no such value of k exists, then {@code -1} is returned.
*
* @param str the substring to search for.
* @return the index of the last occurrence of the specified substring,
* or {@code -1} if there is no such occurrence.
*/
public int lastIndexOf(String str) {
return lastIndexOf(str, count);
}
/**
* Returns the index within this string of the last occurrence of the
* specified substring, searching backward starting at the specified index.
*
*
* this.startsWith(str, k)
*
* If no such value of k exists, then {@code -1} is returned.
*
* @param str the substring to search for.
* @param fromIndex the index to start the search from.
* @return the index of the last occurrence of the specified substring,
* searching backward from the specified index,
* or {@code -1} if there is no such occurrence.
*/
public int lastIndexOf(String str, int fromIndex) {
return lastIndexOf(this, str, fromIndex);
}
/**
* Code shared by String and StringBuffer to do searches. The
* source is the character array being searched, and the target
* is the string being searched for.
*
* @param source the characters being searched.
* @param sourceOffset offset of the source string.
* @param sourceCount count of the source string.
* @param target the characters being searched for.
* @param targetOffset offset of the target string.
* @param targetCount count of the target string.
* @param fromIndex the index to begin searching from.
*/
static int lastIndexOf(String source,
String target,
int fromIndex) {
/*
* Check arguments; return immediately where possible. For
* consistency, don't check for null str.
*/
int rightIndex = source.count - target.count;
if (fromIndex < 0) {
return -1;
}
if (fromIndex > rightIndex) {
fromIndex = rightIndex;
}
/* Empty string always matches. */
if (target.count == 0) {
return fromIndex;
}
int strLastIndex = target.count - 1;
char strLastChar = target.charAt(strLastIndex);
int min = target.count - 1;
int i = min + fromIndex;
startSearchForLastChar:
while (true) {
while (i >= min && source.charAt(i) != strLastChar) {
i--;
}
if (i < min) {
return -1;
}
int j = i - 1;
int start = j - (target.count - 1);
int k = strLastIndex - 1;
while (j > start) {
if (source.charAt(j--) != target.charAt(k--)) {
i--;
continue startSearchForLastChar;
}
}
return start + 1;
}
}
/**
* Code shared by String and StringBuffer to do searches. The
* source is the character array being searched, and the target
* is the string being searched for.
*
* @param source the characters being searched.
* @param sourceOffset offset of the source string.
* @param sourceCount count of the source string.
* @param target the characters being searched for.
* @param targetOffset offset of the target string.
* @param targetCount count of the target string.
* @param fromIndex the index to begin searching from.
*/
static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
char[] target, int targetOffset, int targetCount,
int fromIndex) {
/*
* Check arguments; return immediately where possible. For
* consistency, don't check for null str.
*/
int rightIndex = sourceCount - targetCount;
if (fromIndex < 0) {
return -1;
}
if (fromIndex > rightIndex) {
fromIndex = rightIndex;
}
/* Empty string always matches. */
if (targetCount == 0) {
return fromIndex;
}
int strLastIndex = targetOffset + targetCount - 1;
char strLastChar = target[strLastIndex];
int min = sourceOffset + targetCount - 1;
int i = min + fromIndex;
startSearchForLastChar:
while (true) {
while (i >= min && source[i] != strLastChar) {
i--;
}
if (i < min) {
return -1;
}
int j = i - 1;
int start = j - (targetCount - 1);
int k = strLastIndex - 1;
while (j > start) {
if (source[j--] != target[k--]) {
i--;
continue startSearchForLastChar;
}
}
return start - sourceOffset + 1;
}
}
/**
* Returns a new string that is a substring of this string. The
* substring begins with the character at the specified index and
* extends to the end of this string.
* k <= fromIndex && this.startsWith(str, k)
*
*
* @param beginIndex the beginning index, inclusive.
* @return the specified substring.
* @exception IndexOutOfBoundsException if
*
* "unhappy".substring(2) returns "happy"
* "Harbison".substring(3) returns "bison"
* "emptiness".substring(9) returns "" (an empty string)
*
beginIndex
is negative or larger than the
* length of this String
object.
*/
public String substring(int beginIndex) {
if (beginIndex < 0) {
throw new StringIndexOutOfBoundsException(this, beginIndex);
}
int subLen = count - beginIndex;
if (subLen < 0) {
throw new StringIndexOutOfBoundsException(this, beginIndex);
}
return (beginIndex == 0) ? this : fastSubstring(beginIndex, subLen);
}
/**
* Returns a new string that is a substring of this string. The
* substring begins at the specified beginIndex
and
* extends to the character at index endIndex - 1
.
* Thus the length of the substring is endIndex-beginIndex
.
*
*
* @param beginIndex the beginning index, inclusive.
* @param endIndex the ending index, exclusive.
* @return the specified substring.
* @exception IndexOutOfBoundsException if the
*
* "hamburger".substring(4, 8) returns "urge"
* "smiles".substring(1, 5) returns "mile"
*
beginIndex
is negative, or
* endIndex
is larger than the length of
* this String
object, or
* beginIndex
is larger than
* endIndex
.
*/
public String substring(int beginIndex, int endIndex) {
if (beginIndex < 0) {
throw new StringIndexOutOfBoundsException(this, beginIndex);
}
int subLen = endIndex - beginIndex;
if (endIndex > count || subLen < 0) {
throw new StringIndexOutOfBoundsException(this, beginIndex, subLen);
}
return ((beginIndex == 0) && (endIndex == count)) ? this
: fastSubstring(beginIndex, subLen);
}
private native String fastSubstring(int start, int length);
/**
* Returns a new character sequence that is a subsequence of this sequence.
*
*
*
* behaves in exactly the same way as the invocation
*
*
* str.subSequence(begin, end)
*
* This method is defined so that the String class can implement
* the {@link CharSequence} interface.
* str.substring(begin, end)
0
, then this
* String
object is returned. Otherwise, a new
* String
object is created, representing a character
* sequence that is the concatenation of the character sequence
* represented by this String
object and the character
* sequence represented by the argument string.
*
* @param str the
* "cares".concat("s") returns "caress"
* "to".concat("get").concat("her") returns "together"
*
String
that is concatenated to the end
* of this String
.
* @return a string that represents the concatenation of this object's
* characters followed by the string argument's characters.
*/
public native String concat(String str);
/**
* Returns a new string resulting from replacing all occurrences of
* oldChar
in this string with newChar
.
* oldChar
does not occur in the
* character sequence represented by this String
object,
* then a reference to this String
object is returned.
* Otherwise, a new String
object is created that
* represents a character sequence identical to the character sequence
* represented by this String
object, except that every
* occurrence of oldChar
is replaced by an occurrence
* of newChar
.
*
*
* @param oldChar the old character.
* @param newChar the new character.
* @return a string derived from this string by replacing every
* occurrence of
* "mesquite in your cellar".replace('e', 'o')
* returns "mosquito in your collar"
* "the war of baronets".replace('r', 'y')
* returns "the way of bayonets"
* "sparring with a purple porpoise".replace('p', 't')
* returns "starring with a turtle tortoise"
* "JonL".replace('q', 'x') returns "JonL" (no change)
*
oldChar
with newChar
.
*/
public String replace(char oldChar, char newChar) {
String replaced = this;
if (oldChar != newChar) {
for (int i = 0; i < count; ++i) {
if (charAt(i) == oldChar) {
if (replaced == this) {
replaced = StringFactory.newStringFromString(this);
}
replaced.setCharAt(i, newChar);
}
}
}
return replaced;
}
/**
* Tells whether or not this string matches the given regular expression.
*
* {@link java.util.regex.Pattern}.{@link
* java.util.regex.Pattern#matches(String,CharSequence)
* matches}(regex, str)
*
* @param regex
* the regular expression to which this string is to be matched
*
* @return true if, and only if, this string matches the
* given regular expression
*
* @throws PatternSyntaxException
* if the regular expression's syntax is invalid
*
* @see java.util.regex.Pattern
*
* @since 1.4
* @spec JSR-51
*/
public boolean matches(String regex) {
return Pattern.matches(regex, this);
}
/**
* Returns true if and only if this string contains the specified
* sequence of char values.
*
* @param s the sequence to search for
* @return true if this string contains s
, false otherwise
* @throws NullPointerException if s
is null
* @since 1.5
*/
public boolean contains(CharSequence s) {
return indexOf(s.toString()) > -1;
}
/**
* Replaces the first substring of this string that matches the given regular expression with the
* given replacement.
*
*
* {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
* compile}(regex).{@link
* java.util.regex.Pattern#matcher(java.lang.CharSequence)
* matcher}(str).{@link java.util.regex.Matcher#replaceFirst
* replaceFirst}(repl)
*
*
* {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
* compile}(regex).{@link
* java.util.regex.Pattern#matcher(java.lang.CharSequence)
* matcher}(str).{@link java.util.regex.Matcher#replaceAll
* replaceAll}(repl)
*
*target
or
* replacement
is null
.
* @since 1.5
*/
public String replace(CharSequence target, CharSequence replacement) {
if (target == null) {
throw new NullPointerException("target == null");
}
if (replacement == null) {
throw new NullPointerException("replacement == null");
}
String replacementStr = replacement.toString();
String targetStr = target.toString();
// Special case when target == "". This is a pretty nonsensical transformation and nobody
// should be hitting this.
//
// See commit 870b23b3febc85 and http://code.google.com/p/android/issues/detail?id=8807
// An empty target is inserted at the start of the string, the end of the string and
// between all characters.
if (targetStr.isEmpty()) {
// Note that overallocates by |replacement.size()| if |this| is the empty string, but
// that should be a rare case within an already nonsensical case.
StringBuilder sb = new StringBuilder(replacementStr.length() * (count + 2) + count);
sb.append(replacementStr);
for (int i = 0; i < count; ++i) {
sb.append(charAt(i));
sb.append(replacementStr);
}
return sb.toString();
}
// This is the "regular" case.
int lastMatch = 0;
StringBuilder sb = null;
for (;;) {
int currentMatch = indexOf(this, targetStr, lastMatch);
if (currentMatch == -1) {
break;
}
if (sb == null) {
sb = new StringBuilder(count);
}
sb.append(this, lastMatch, currentMatch);
sb.append(replacementStr);
lastMatch = currentMatch + targetStr.count;
}
if (sb != null) {
sb.append(this, lastMatch, count);
return sb.toString();
} else {
return this;
}
}
/**
* Splits this string around matches of the given
* regular expression.
*
*
*
*
*
*
* Regex
* Limit
* Result
*
* :
* 2
* { "boo", "and:foo" }
* :
* 5
* { "boo", "and", "foo" }
* :
* -2
* { "boo", "and", "foo" }
* o
* 5
* { "b", "", ":and:f", "", "" }
* o
* -2
* { "b", "", ":and:f", "", "" }
* o
* 0
* { "b", "", ":and:f" }
* {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
* compile}(regex).{@link
* java.util.regex.Pattern#split(java.lang.CharSequence,int)
* split}(str, n)
*
*
*
* @param regex
* the delimiting regular expression
*
* @param limit
* the result threshold, as described above
*
* @return the array of strings computed by splitting this string
* around matches of the given regular expression
*
* @throws PatternSyntaxException
* if the regular expression's syntax is invalid
*
* @see java.util.regex.Pattern
*
* @since 1.4
* @spec JSR-51
*/
public String[] split(String regex, int limit) {
// Try fast splitting without allocating Pattern object
String[] fast = Pattern.fastSplit(regex, this, limit);
if (fast != null) {
return fast;
}
return Pattern.compile(regex).split(this, limit);
}
/**
* Splits this string around matches of the given regular expression.
*
*
*
*
* @param regex
* the delimiting regular expression
*
* @return the array of strings computed by splitting this string
* around matches of the given regular expression
*
* @throws PatternSyntaxException
* if the regular expression's syntax is invalid
*
* @see java.util.regex.Pattern
*
* @since 1.4
* @spec JSR-51
*/
public String[] split(String regex) {
return split(regex, 0);
}
/**
* Converts all of the characters in this
*
*
* Regex
* Result
*
* :
* { "boo", "and", "foo" }
* o
* { "b", "", ":and:f" } String
to lower
* case using the rules of the given Locale
. Case mapping is based
* on the Unicode Standard version specified by the {@link java.lang.Character Character}
* class. Since case mappings are not always 1:1 char mappings, the resulting
* String
may be a different length than the original String
.
*
*
*
* @param locale use the case transformation rules for this locale
* @return the
*
* Language Code of Locale
* Upper Case
* Lower Case
* Description
*
*
* tr (Turkish)
* \u0130
* \u0069
* capital letter I with dot above -> small letter i
*
*
* tr (Turkish)
* \u0049
* \u0131
* capital letter I -> small letter dotless i
*
*
* (all)
* French Fries
* french fries
* lowercased all chars in String
*
*
* (all)
*
*
*
*
*
*
* lowercased all chars in String
* String
, converted to lowercase.
* @see java.lang.String#toLowerCase()
* @see java.lang.String#toUpperCase()
* @see java.lang.String#toUpperCase(Locale)
* @since 1.1
*/
public String toLowerCase(Locale locale) {
return CaseMapper.toLowerCase(locale, this);
}
/**
* Converts all of the characters in this String
to lower
* case using the rules of the default locale. This is equivalent to calling
* toLowerCase(Locale.getDefault())
.
* "TITLE".toLowerCase()
in a Turkish locale
* returns "t\u005Cu0131tle"
, where '\u005Cu0131' is the
* LATIN SMALL LETTER DOTLESS I character.
* To obtain correct results for locale insensitive strings, use
* toLowerCase(Locale.ENGLISH)
.
* String
, converted to lowercase.
* @see java.lang.String#toLowerCase(Locale)
*/
public String toLowerCase() {
return toLowerCase(Locale.getDefault());
}
/**
* Converts all of the characters in this String
to upper
* case using the rules of the given Locale
. Case mapping is based
* on the Unicode Standard version specified by the {@link java.lang.Character Character}
* class. Since case mappings are not always 1:1 char mappings, the resulting
* String
may be a different length than the original String
.
*
*
* @param locale use the case transformation rules for this locale
* @return the
*
* Language Code of Locale
* Lower Case
* Upper Case
* Description
*
*
* tr (Turkish)
* \u0069
* \u0130
* small letter i -> capital letter I with dot above
*
*
* tr (Turkish)
* \u0131
* \u0049
* small letter dotless i -> capital letter I
*
*
* (all)
* \u00df
* \u0053 \u0053
* small letter sharp s -> two letters: SS
*
*
* (all)
* Fahrvergnügen
* FAHRVERGNÜGEN
*
* String
, converted to uppercase.
* @see java.lang.String#toUpperCase()
* @see java.lang.String#toLowerCase()
* @see java.lang.String#toLowerCase(Locale)
* @since 1.1
*/
public String toUpperCase(Locale locale) {
return CaseMapper.toUpperCase(locale, this, count);
}
/**
* Converts all of the characters in this String
to upper
* case using the rules of the default locale. This method is equivalent to
* toUpperCase(Locale.getDefault())
.
* "title".toUpperCase()
in a Turkish locale
* returns "T\u005Cu0130TLE"
, where '\u005Cu0130' is the
* LATIN CAPITAL LETTER I WITH DOT ABOVE character.
* To obtain correct results for locale insensitive strings, use
* toUpperCase(Locale.ENGLISH)
.
* String
, converted to uppercase.
* @see java.lang.String#toUpperCase(Locale)
*/
public String toUpperCase() {
return toUpperCase(Locale.getDefault());
}
/**
* Returns a copy of the string, with leading and trailing whitespace
* omitted.
* String
object represents an empty character
* sequence, or the first and last characters of character sequence
* represented by this String
object both have codes
* greater than '\u0020'
(the space character), then a
* reference to this String
object is returned.
* '\u0020'
in the string, then a new
* String
object representing an empty string is created
* and returned.
* '\u0020'
, and let
* m be the index of the last character in the string whose code
* is greater than '\u0020'
. A new String
* object is created, representing the substring of this string that
* begins with the character at index k and ends with the
* character at index m-that is, the result of
* this.substring(k, m+1)
.
* Object
argument.
*
* @param obj an Object
.
* @return if the argument is null
, then a string equal to
* "null"
; otherwise, the value of
* obj.toString()
is returned.
* @see java.lang.Object#toString()
*/
public static String valueOf(Object obj) {
return (obj == null) ? "null" : obj.toString();
}
/**
* Returns the string representation of the char
array
* argument. The contents of the character array are copied; subsequent
* modification of the character array does not affect the newly
* created string.
*
* @param data a char
array.
* @return a newly allocated string representing the same sequence of
* characters contained in the character array argument.
*/
public static String valueOf(char data[]) {
return StringFactory.newStringFromChars(data);
}
/**
* Returns the string representation of a specific subarray of the
* char
array argument.
* offset
argument is the index of the first
* character of the subarray. The count
argument
* specifies the length of the subarray. The contents of the subarray
* are copied; subsequent modification of the character array does not
* affect the newly created string.
*
* @param data the character array.
* @param offset the initial offset into the value of the
* String
.
* @param count the length of the value of the String
.
* @return a string representing the sequence of characters contained
* in the subarray of the character array argument.
* @exception IndexOutOfBoundsException if offset
is
* negative, or count
is negative, or
* offset+count
is larger than
* data.length
.
*/
public static String valueOf(char data[], int offset, int count) {
return StringFactory.newStringFromChars(data, offset, count);
}
/**
* Returns a String that represents the character sequence in the
* array specified.
*
* @param data the character array.
* @param offset initial offset of the subarray.
* @param count length of the subarray.
* @return a String
that contains the characters of the
* specified subarray of the character array.
*/
public static String copyValueOf(char data[], int offset, int count) {
// All public String constructors now copy the data.
return StringFactory.newStringFromChars(data, offset, count);
}
/**
* Returns a String that represents the character sequence in the
* array specified.
*
* @param data the character array.
* @return a String
that contains the characters of the
* character array.
*/
public static String copyValueOf(char data[]) {
return StringFactory.newStringFromChars(data);
}
/**
* Returns the string representation of the boolean
argument.
*
* @param b a boolean
.
* @return if the argument is true
, a string equal to
* "true"
is returned; otherwise, a string equal to
* "false"
is returned.
*/
public static String valueOf(boolean b) {
return b ? "true" : "false";
}
/**
* Returns the string representation of the char
* argument.
*
* @param c a char
.
* @return a string of length 1
containing
* as its single character the argument c
.
*/
public static String valueOf(char c) {
return StringFactory.newStringFromChars(0, 1, new char[] { c });
}
/**
* Returns the string representation of the int
argument.
* Integer.toString
method of one argument.
*
* @param i an int
.
* @return a string representation of the int
argument.
* @see java.lang.Integer#toString(int, int)
*/
public static String valueOf(int i) {
return Integer.toString(i);
}
/**
* Returns the string representation of the long
argument.
* Long.toString
method of one argument.
*
* @param l a long
.
* @return a string representation of the long
argument.
* @see java.lang.Long#toString(long)
*/
public static String valueOf(long l) {
return Long.toString(l);
}
/**
* Returns the string representation of the float
argument.
* Float.toString
method of one argument.
*
* @param f a float
.
* @return a string representation of the float
argument.
* @see java.lang.Float#toString(float)
*/
public static String valueOf(float f) {
return Float.toString(f);
}
/**
* Returns the string representation of the double
argument.
* Double.toString
method of one argument.
*
* @param d a double
.
* @return a string representation of the double
argument.
* @see java.lang.Double#toString(double)
*/
public static String valueOf(double d) {
return Double.toString(d);
}
/**
* Returns a canonical representation for the string object.
* String
.
* String
object as determined by
* the {@link #equals(Object)} method, then the string from the pool is
* returned. Otherwise, this String
object is added to the
* pool and a reference to this String
object is returned.
* s
and t
,
* s.intern() == t.intern()
is true
* if and only if s.equals(t)
is true
.
*