/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.hardware; import android.annotation.SystemApi; import android.os.Build; import android.os.Handler; import android.util.Log; import android.util.SparseArray; import java.util.ArrayList; import java.util.Collections; import java.util.List; /** *
* SensorManager lets you access the device's {@link android.hardware.Sensor * sensors}. Get an instance of this class by calling * {@link android.content.Context#getSystemService(java.lang.String) * Context.getSystemService()} with the argument * {@link android.content.Context#SENSOR_SERVICE}. *
** Always make sure to disable sensors you don't need, especially when your * activity is paused. Failing to do so can drain the battery in just a few * hours. Note that the system will not disable sensors automatically when * the screen turns off. *
** Note: Don't use this mechanism with a Trigger Sensor, have a look * at {@link TriggerEventListener}. {@link Sensor#TYPE_SIGNIFICANT_MOTION} * is an example of a trigger sensor. *
** public class SensorActivity extends Activity implements SensorEventListener { * private final SensorManager mSensorManager; * private final Sensor mAccelerometer; * * public SensorActivity() { * mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE); * mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); * } * * protected void onResume() { * super.onResume(); * mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL); * } * * protected void onPause() { * super.onPause(); * mSensorManager.unregisterListener(this); * } * * public void onAccuracyChanged(Sensor sensor, int accuracy) { * } * * public void onSensorChanged(SensorEvent event) { * } * } ** * @see SensorEventListener * @see SensorEvent * @see Sensor * */ public abstract class SensorManager { /** @hide */ protected static final String TAG = "SensorManager"; private static final float[] mTempMatrix = new float[16]; // Cached lists of sensors by type. Guarded by mSensorListByType. private final SparseArray
* NOTE: Both wake-up and non wake-up sensors matching the given type are * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties * of the returned {@link Sensor}. *
* * @param type * of sensors requested * * @return a list of sensors matching the asked type. * * @see #getDefaultSensor(int) * @see Sensor */ public List* NOTE: Both wake-up and non wake-up sensors matching the given type are * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties * of the returned {@link Sensor}. *
* * @param type of sensors requested * * @return a list of dynamic sensors matching the requested type. * * @see Sensor */ public List* For example, *
* Note: Sensors like {@link Sensor#TYPE_PROXIMITY} and {@link Sensor#TYPE_SIGNIFICANT_MOTION} * are declared as wake-up sensors by default. *
* @param type * type of sensor requested * @param wakeUp * flag to indicate whether the Sensor is a wake-up or non wake-up sensor. * @return the default sensor matching the requested type and wakeUp properties if one exists * and the application has the necessary permissions, or null otherwise. * @see Sensor#isWakeUpSensor() */ public Sensor getDefaultSensor(int type, boolean wakeUp) { Listtrue
if the sensor is supported and successfully
* enabled
*/
@Deprecated
public boolean registerListener(SensorListener listener, int sensors) {
return registerListener(listener, sensors, SENSOR_DELAY_NORMAL);
}
/**
* Registers a SensorListener for given sensors.
*
* @deprecated This method is deprecated, use
* {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
* instead.
*
* @param listener
* sensor listener object
*
* @param sensors
* a bit masks of the sensors to register to
*
* @param rate
* rate of events. This is only a hint to the system. events may be
* received faster or slower than the specified rate. Usually events
* are received faster. The value must be one of
* {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
* {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
*
* @return true
if the sensor is supported and successfully
* enabled
*/
@Deprecated
public boolean registerListener(SensorListener listener, int sensors, int rate) {
return getLegacySensorManager().registerListener(listener, sensors, rate);
}
/**
* Unregisters a listener for all sensors.
*
* @deprecated This method is deprecated, use
* {@link SensorManager#unregisterListener(SensorEventListener)}
* instead.
*
* @param listener
* a SensorListener object
*/
@Deprecated
public void unregisterListener(SensorListener listener) {
unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW);
}
/**
* Unregisters a listener for the sensors with which it is registered.
*
* @deprecated This method is deprecated, use
* {@link SensorManager#unregisterListener(SensorEventListener, Sensor)}
* instead.
*
* @param listener
* a SensorListener object
*
* @param sensors
* a bit masks of the sensors to unregister from
*/
@Deprecated
public void unregisterListener(SensorListener listener, int sensors) {
getLegacySensorManager().unregisterListener(listener, sensors);
}
/**
* Unregisters a listener for the sensors with which it is registered.
*
*
* Note: Don't use this method with a one shot trigger sensor such as
* {@link Sensor#TYPE_SIGNIFICANT_MOTION}.
* Use {@link #cancelTriggerSensor(TriggerEventListener, Sensor)} instead.
*
*
* @param listener
* a SensorEventListener object
*
* @param sensor
* the sensor to unregister from
*
* @see #unregisterListener(SensorEventListener)
* @see #registerListener(SensorEventListener, Sensor, int)
*/
public void unregisterListener(SensorEventListener listener, Sensor sensor) {
if (listener == null || sensor == null) {
return;
}
unregisterListenerImpl(listener, sensor);
}
/**
* Unregisters a listener for all sensors.
*
* @param listener
* a SensorListener object
*
* @see #unregisterListener(SensorEventListener, Sensor)
* @see #registerListener(SensorEventListener, Sensor, int)
*
*/
public void unregisterListener(SensorEventListener listener) {
if (listener == null) {
return;
}
unregisterListenerImpl(listener, null);
}
/** @hide */
protected abstract void unregisterListenerImpl(SensorEventListener listener, Sensor sensor);
/**
* Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
* sensor at the given sampling frequency.
* * The events will be delivered to the provided {@code SensorEventListener} as soon as they are * available. To reduce the power consumption, applications can use * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a * positive non-zero maximum reporting latency. *
** In the case of non-wake-up sensors, the events are only delivered while the Application * Processor (AP) is not in suspend mode. See {@link Sensor#isWakeUpSensor()} for more details. * To ensure delivery of events from non-wake-up sensors even when the screen is OFF, the * application registering to the sensor must hold a partial wake-lock to keep the AP awake, * otherwise some events might be lost while the AP is asleep. Note that although events might * be lost while the AP is asleep, the sensor will still consume power if it is not explicitly * deactivated by the application. Applications must unregister their {@code * SensorEventListener}s in their activity's {@code onPause()} method to avoid consuming power * while the device is inactive. See {@link #registerListener(SensorEventListener, Sensor, int, * int)} for more details on hardware FIFO (queueing) capabilities and when some sensor events * might be lost. *
** In the case of wake-up sensors, each event generated by the sensor will cause the AP to * wake-up, ensuring that each event can be delivered. Because of this, registering to a wake-up * sensor has very significant power implications. Call {@link Sensor#isWakeUpSensor()} to check * whether a sensor is a wake-up sensor. See * {@link #registerListener(SensorEventListener, Sensor, int, int)} for information on how to * reduce the power impact of registering to wake-up sensors. *
** Note: Don't use this method with one-shot trigger sensors such as * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. Use * {@link Sensor#getReportingMode()} to obtain the reporting mode of a given sensor. *
* * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object. * @param sensor The {@link android.hardware.Sensor Sensor} to register to. * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are * delivered at. This is only a hint to the system. Events may be received faster or * slower than the specified rate. Usually events are received faster. The value must * be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired delay * between events in microseconds. Specifying the delay in microseconds only works * from Android 2.3 (API level 9) onwards. For earlier releases, you must use one of * the {@code SENSOR_DELAY_*} constants. * @returntrue
if the sensor is supported and successfully enabled.
* @see #registerListener(SensorEventListener, Sensor, int, Handler)
* @see #unregisterListener(SensorEventListener)
* @see #unregisterListener(SensorEventListener, Sensor)
*/
public boolean registerListener(SensorEventListener listener, Sensor sensor,
int samplingPeriodUs) {
return registerListener(listener, sensor, samplingPeriodUs, null);
}
/**
* Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
* sensor at the given sampling frequency and the given maximum reporting latency.
* * This function is similar to {@link #registerListener(SensorEventListener, Sensor, int)} but * it allows events to stay temporarily in the hardware FIFO (queue) before being delivered. The * events can be stored in the hardware FIFO up to {@code maxReportLatencyUs} microseconds. Once * one of the events in the FIFO needs to be reported, all of the events in the FIFO are * reported sequentially. This means that some events will be reported before the maximum * reporting latency has elapsed. *
* When {@code maxReportLatencyUs} is 0, the call is equivalent to a call to * {@link #registerListener(SensorEventListener, Sensor, int)}, as it requires the events to be * delivered as soon as possible. *
* When {@code sensor.maxFifoEventCount()} is 0, the sensor does not use a FIFO, so the call * will also be equivalent to {@link #registerListener(SensorEventListener, Sensor, int)}. *
* Setting {@code maxReportLatencyUs} to a positive value allows to reduce the number of * interrupts the AP (Application Processor) receives, hence reducing power consumption, as the * AP can switch to a lower power state while the sensor is capturing the data. This is * especially important when registering to wake-up sensors, for which each interrupt causes the * AP to wake up if it was in suspend mode. See {@link Sensor#isWakeUpSensor()} for more * information on wake-up sensors. *
**
* Note: Don't use this method with one-shot trigger sensors such as * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. * * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object * that will receive the sensor events. If the application is interested in receiving * flush complete notifications, it should register with * {@link android.hardware.SensorEventListener SensorEventListener2} instead. * @param sensor The {@link android.hardware.Sensor Sensor} to register to. * @param samplingPeriodUs The desired delay between two consecutive events in microseconds. * This is only a hint to the system. Events may be received faster or slower than * the specified rate. Usually events are received faster. Can be one of * {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, * {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in * microseconds. * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before * being reported to the application. A large value allows reducing the power * consumption associated with the sensor. If maxReportLatencyUs is set to zero, * events are delivered as soon as they are available, which is equivalent to calling * {@link #registerListener(SensorEventListener, Sensor, int)}. * @returntrue
if the sensor is supported and successfully enabled.
* @see #registerListener(SensorEventListener, Sensor, int)
* @see #unregisterListener(SensorEventListener)
* @see #flush(SensorEventListener)
*/
public boolean registerListener(SensorEventListener listener, Sensor sensor,
int samplingPeriodUs, int maxReportLatencyUs) {
int delay = getDelay(samplingPeriodUs);
return registerListenerImpl(listener, sensor, delay, null, maxReportLatencyUs, 0);
}
/**
* Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
* sensor. Events are delivered in continuous mode as soon as they are available. To reduce the
* power consumption, applications can use
* {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a
* positive non-zero maximum reporting latency.
* *
* Note: Don't use this method with a one shot trigger sensor such as * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. * * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object. * @param sensor The {@link android.hardware.Sensor Sensor} to register to. * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are * delivered at. This is only a hint to the system. Events may be received faster or * slower than the specified rate. Usually events are received faster. The value must * be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired * delay between events in microseconds. Specifying the delay in microseconds only * works from Android 2.3 (API level 9) onwards. For earlier releases, you must use * one of the {@code SENSOR_DELAY_*} constants. * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent * sensor events} will be delivered to. * @returntrue
if the sensor is supported and successfully enabled.
* @see #registerListener(SensorEventListener, Sensor, int)
* @see #unregisterListener(SensorEventListener)
* @see #unregisterListener(SensorEventListener, Sensor)
*/
public boolean registerListener(SensorEventListener listener, Sensor sensor,
int samplingPeriodUs, Handler handler) {
int delay = getDelay(samplingPeriodUs);
return registerListenerImpl(listener, sensor, delay, handler, 0, 0);
}
/**
* Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
* sensor at the given sampling frequency and the given maximum reporting latency.
*
* @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
* that will receive the sensor events. If the application is interested in receiving
* flush complete notifications, it should register with
* {@link android.hardware.SensorEventListener SensorEventListener2} instead.
* @param sensor The {@link android.hardware.Sensor Sensor} to register to.
* @param samplingPeriodUs The desired delay between two consecutive events in microseconds.
* This is only a hint to the system. Events may be received faster or slower than
* the specified rate. Usually events are received faster. Can be one of
* {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
* {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in
* microseconds.
* @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before
* being reported to the application. A large value allows reducing the power
* consumption associated with the sensor. If maxReportLatencyUs is set to zero,
* events are delivered as soon as they are available, which is equivalent to calling
* {@link #registerListener(SensorEventListener, Sensor, int)}.
* @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent
* sensor events} will be delivered to.
* @return true
if the sensor is supported and successfully enabled.
* @see #registerListener(SensorEventListener, Sensor, int, int)
*/
public boolean registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs,
int maxReportLatencyUs, Handler handler) {
int delayUs = getDelay(samplingPeriodUs);
return registerListenerImpl(listener, sensor, delayUs, handler, maxReportLatencyUs, 0);
}
/** @hide */
protected abstract boolean registerListenerImpl(SensorEventListener listener, Sensor sensor,
int delayUs, Handler handler, int maxReportLatencyUs, int reservedFlags);
/**
* Flushes the FIFO of all the sensors registered for this listener. If there are events
* in the FIFO of the sensor, they are returned as if the maxReportLantecy of the FIFO has
* expired. Events are returned in the usual way through the SensorEventListener.
* This call doesn't affect the maxReportLantecy for this sensor. This call is asynchronous and
* returns immediately.
* {@link android.hardware.SensorEventListener2#onFlushCompleted onFlushCompleted} is called
* after all the events in the batch at the time of calling this method have been delivered
* successfully. If the hardware doesn't support flush, it still returns true and a trivial
* flush complete event is sent after the current event for all the clients registered for this
* sensor.
*
* @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
* which was previously used in a registerListener call.
* @return true
if the flush is initiated successfully on all the sensors
* registered for this listener, false if no sensor is previously registered for this
* listener or flush on one of the sensors fails.
* @see #registerListener(SensorEventListener, Sensor, int, int)
* @throws IllegalArgumentException when listener is null.
*/
public boolean flush(SensorEventListener listener) {
return flushImpl(listener);
}
/** @hide */
protected abstract boolean flushImpl(SensorEventListener listener);
/**
* Used for receiving notifications from the SensorManager when dynamic sensors are connected or
* disconnected.
*/
public static abstract class DynamicSensorCallback {
/**
* Called when there is a dynamic sensor being connected to the system.
*
* @param sensor the newly connected sensor. See {@link android.hardware.Sensor Sensor}.
*/
public void onDynamicSensorConnected(Sensor sensor) {}
/**
* Called when there is a dynamic sensor being disconnected from the system.
*
* @param sensor the disconnected sensor. See {@link android.hardware.Sensor Sensor}.
*/
public void onDynamicSensorDisconnected(Sensor sensor) {}
}
/**
* Add a {@link android.hardware.SensorManager.DynamicSensorCallback
* DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat
* registration with the already registered callback object will have no additional effect.
*
* @param callback An object that implements the
* {@link android.hardware.SensorManager.DynamicSensorCallback
* DynamicSensorCallback}
* interface for receiving callbacks.
* @see #addDynamicSensorCallback(DynamicSensorCallback, Handler)
*
* @throws IllegalArgumentException when callback is null.
*/
public void registerDynamicSensorCallback(DynamicSensorCallback callback) {
registerDynamicSensorCallback(callback, null);
}
/**
* Add a {@link android.hardware.SensorManager.DynamicSensorCallback
* DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat
* registration with the already registered callback object will have no additional effect.
*
* @param callback An object that implements the
* {@link android.hardware.SensorManager.DynamicSensorCallback
* DynamicSensorCallback} interface for receiving callbacks.
* @param handler The {@link android.os.Handler Handler} the {@link
* android.hardware.SensorManager.DynamicSensorCallback
* sensor connection events} will be delivered to.
*
* @throws IllegalArgumentException when callback is null.
*/
public void registerDynamicSensorCallback(
DynamicSensorCallback callback, Handler handler) {
registerDynamicSensorCallbackImpl(callback, handler);
}
/**
* Remove a {@link android.hardware.SensorManager.DynamicSensorCallback
* DynamicSensorCallback} to stop sending dynamic sensor connection events to that
* callback.
*
* @param callback An object that implements the
* {@link android.hardware.SensorManager.DynamicSensorCallback
* DynamicSensorCallback}
* interface for receiving callbacks.
*/
public void unregisterDynamicSensorCallback(DynamicSensorCallback callback) {
unregisterDynamicSensorCallbackImpl(callback);
}
/**
* Tell if dynamic sensor discovery feature is supported by system.
*
* @return true
if dynamic sensor discovery is supported, false
* otherwise.
*/
public boolean isDynamicSensorDiscoverySupported() {
List* Computes the inclination matrix I as well as the rotation matrix * R transforming a vector from the device coordinate system to the * world's coordinate system which is defined as a direct orthonormal basis, * where: *
* **
*
* By definition: *
* [0 0 g] = R * gravity (g = magnitude of gravity) *
* [0 m 0] = I * R * geomagnetic (m = magnitude of * geomagnetic field) *
* R is the identity matrix when the device is aligned with the * world's coordinate system, that is, when the device's X axis points * toward East, the Y axis points to the North Pole and the device is facing * the sky. * *
* I is a rotation matrix transforming the geomagnetic vector into * the same coordinate space as gravity (the world's coordinate space). * I is a simple rotation around the X axis. The inclination angle in * radians can be computed with {@link #getInclination}. *
* Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending * on the length of the passed array: *
* If the array length is 16: * *
* / M[ 0] M[ 1] M[ 2] M[ 3] \ * | M[ 4] M[ 5] M[ 6] M[ 7] | * | M[ 8] M[ 9] M[10] M[11] | * \ M[12] M[13] M[14] M[15] / ** * This matrix is ready to be used by OpenGL ES's * {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int) * glLoadMatrixf(float[], int)}. *
* Note that because OpenGL matrices are column-major matrices you must * transpose the matrix before using it. However, since the matrix is a * rotation matrix, its transpose is also its inverse, conveniently, it is * often the inverse of the rotation that is needed for rendering; it can * therefore be used with OpenGL ES directly. *
* Also note that the returned matrices always have this form: * *
* / M[ 0] M[ 1] M[ 2] 0 \ * | M[ 4] M[ 5] M[ 6] 0 | * | M[ 8] M[ 9] M[10] 0 | * \ 0 0 0 1 / ** *
* If the array length is 9: * *
* / M[ 0] M[ 1] M[ 2] \ * | M[ 3] M[ 4] M[ 5] | * \ M[ 6] M[ 7] M[ 8] / ** *
* The inverse of each matrix can be computed easily by taking its * transpose. * *
* The matrices returned by this function are meaningful only when the * device is not free-falling and it is not close to the magnetic north. If * the device is accelerating, or placed into a strong magnetic field, the * returned matrices may be inaccurate. * * @param R * is an array of 9 floats holding the rotation matrix R when * this function returns. R can be null. *
* * @param I * is an array of 9 floats holding the rotation matrix I when * this function returns. I can be null. *
* * @param gravity * is an array of 3 floats containing the gravity vector expressed in * the device's coordinate. You can simply use the * {@link android.hardware.SensorEvent#values values} returned by a * {@link android.hardware.SensorEvent SensorEvent} of a * {@link android.hardware.Sensor Sensor} of type * {@link android.hardware.Sensor#TYPE_ACCELEROMETER * TYPE_ACCELEROMETER}. *
*
* @param geomagnetic
* is an array of 3 floats containing the geomagnetic vector
* expressed in the device's coordinate. You can simply use the
* {@link android.hardware.SensorEvent#values values} returned by a
* {@link android.hardware.SensorEvent SensorEvent} of a
* {@link android.hardware.Sensor Sensor} of type
* {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
* TYPE_MAGNETIC_FIELD}.
*
* @return true
on success, false
on failure (for
* instance, if the device is in free fall). Free fall is defined as
* condition when the magnitude of the gravity is less than 1/10 of
* the nominal value. On failure the output matrices are not modified.
*
* @see #getInclination(float[])
* @see #getOrientation(float[], float[])
* @see #remapCoordinateSystem(float[], int, int, float[])
*/
public static boolean getRotationMatrix(float[] R, float[] I,
float[] gravity, float[] geomagnetic) {
// TODO: move this to native code for efficiency
float Ax = gravity[0];
float Ay = gravity[1];
float Az = gravity[2];
final float normsqA = (Ax*Ax + Ay*Ay + Az*Az);
final float g = 9.81f;
final float freeFallGravitySquared = 0.01f * g * g;
if (normsqA < freeFallGravitySquared) {
// gravity less than 10% of normal value
return false;
}
final float Ex = geomagnetic[0];
final float Ey = geomagnetic[1];
final float Ez = geomagnetic[2];
float Hx = Ey*Az - Ez*Ay;
float Hy = Ez*Ax - Ex*Az;
float Hz = Ex*Ay - Ey*Ax;
final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz);
if (normH < 0.1f) {
// device is close to free fall (or in space?), or close to
// magnetic north pole. Typical values are > 100.
return false;
}
final float invH = 1.0f / normH;
Hx *= invH;
Hy *= invH;
Hz *= invH;
final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az);
Ax *= invA;
Ay *= invA;
Az *= invA;
final float Mx = Ay*Hz - Az*Hy;
final float My = Az*Hx - Ax*Hz;
final float Mz = Ax*Hy - Ay*Hx;
if (R != null) {
if (R.length == 9) {
R[0] = Hx; R[1] = Hy; R[2] = Hz;
R[3] = Mx; R[4] = My; R[5] = Mz;
R[6] = Ax; R[7] = Ay; R[8] = Az;
} else if (R.length == 16) {
R[0] = Hx; R[1] = Hy; R[2] = Hz; R[3] = 0;
R[4] = Mx; R[5] = My; R[6] = Mz; R[7] = 0;
R[8] = Ax; R[9] = Ay; R[10] = Az; R[11] = 0;
R[12] = 0; R[13] = 0; R[14] = 0; R[15] = 1;
}
}
if (I != null) {
// compute the inclination matrix by projecting the geomagnetic
// vector onto the Z (gravity) and X (horizontal component
// of geomagnetic vector) axes.
final float invE = 1.0f / (float)Math.sqrt(Ex*Ex + Ey*Ey + Ez*Ez);
final float c = (Ex*Mx + Ey*My + Ez*Mz) * invE;
final float s = (Ex*Ax + Ey*Ay + Ez*Az) * invE;
if (I.length == 9) {
I[0] = 1; I[1] = 0; I[2] = 0;
I[3] = 0; I[4] = c; I[5] = s;
I[6] = 0; I[7] =-s; I[8] = c;
} else if (I.length == 16) {
I[0] = 1; I[1] = 0; I[2] = 0;
I[4] = 0; I[5] = c; I[6] = s;
I[8] = 0; I[9] =-s; I[10]= c;
I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0;
I[15] = 1;
}
}
return true;
}
/**
* Computes the geomagnetic inclination angle in radians from the
* inclination matrix I returned by {@link #getRotationMatrix}.
*
* @param I
* inclination matrix see {@link #getRotationMatrix}.
*
* @return The geomagnetic inclination angle in radians.
*
* @see #getRotationMatrix(float[], float[], float[], float[])
* @see #getOrientation(float[], float[])
* @see GeomagneticField
*
*/
public static float getInclination(float[] I) {
if (I.length == 9) {
return (float)Math.atan2(I[5], I[4]);
} else {
return (float)Math.atan2(I[6], I[5]);
}
}
/**
*
* Rotates the supplied rotation matrix so it is expressed in a different * coordinate system. This is typically used when an application needs to * compute the three orientation angles of the device (see * {@link #getOrientation}) in a different coordinate system. *
* ** When the rotation matrix is used for drawing (for instance with OpenGL * ES), it usually doesn't need to be transformed by this function, * unless the screen is physically rotated, in which case you can use * {@link android.view.Display#getRotation() Display.getRotation()} to * retrieve the current rotation of the screen. Note that because the user * is generally free to rotate their screen, you often should consider the * rotation in deciding the parameters to use here. *
* ** Examples: *
* *
*
remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);
* *
remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);
*
* Since the resulting coordinate system is orthonormal, only two axes need
* to be specified.
*
* @param inR
* the rotation matrix to be transformed. Usually it is the matrix
* returned by {@link #getRotationMatrix}.
*
* @param X
* defines the axis of the new cooridinate system that coincide with the X axis of the
* original coordinate system.
*
* @param Y
* defines the axis of the new cooridinate system that coincide with the Y axis of the
* original coordinate system.
*
* @param outR
* the transformed rotation matrix. inR and outR should not be the same
* array.
*
* @return
* When it returns, the array values are as follows:
*
* Applying these three rotations in the azimuth, pitch, roll order
* transforms an identity matrix to the rotation matrix passed into this
* method. Also, note that all three orientation angles are expressed in
* radians.
*
* @param R
* rotation matrix see {@link #getRotationMatrix}.
*
* @param values
* an array of 3 floats to hold the result.
*
* @return The array values passed as argument.
*
* @see #getRotationMatrix(float[], float[], float[], float[])
* @see GeomagneticField
*/
public static float[] getOrientation(float[] R, float values[]) {
/*
* 4x4 (length=16) case:
* / R[ 0] R[ 1] R[ 2] 0 \
* | R[ 4] R[ 5] R[ 6] 0 |
* | R[ 8] R[ 9] R[10] 0 |
* \ 0 0 0 1 /
*
* 3x3 (length=9) case:
* / R[ 0] R[ 1] R[ 2] \
* | R[ 3] R[ 4] R[ 5] |
* \ R[ 6] R[ 7] R[ 8] /
*
*/
if (R.length == 9) {
values[0] = (float)Math.atan2(R[1], R[4]);
values[1] = (float)Math.asin(-R[7]);
values[2] = (float)Math.atan2(-R[6], R[8]);
} else {
values[0] = (float)Math.atan2(R[1], R[5]);
values[1] = (float)Math.asin(-R[9]);
values[2] = (float)Math.atan2(-R[8], R[10]);
}
return values;
}
/**
* Computes the Altitude in meters from the atmospheric pressure and the
* pressure at sea level.
*
* Typically the atmospheric pressure is read from a
* {@link Sensor#TYPE_PRESSURE} sensor. The pressure at sea level must be
* known, usually it can be retrieved from airport databases in the
* vicinity. If unknown, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE}
* as an approximation, but absolute altitudes won't be accurate.
*
* To calculate altitude differences, you must calculate the difference
* between the altitudes at both points. If you don't know the altitude
* as sea level, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} instead,
* which will give good results considering the range of pressure typically
* involved.
*
* Each input matrix is either as a 3x3 or 4x4 row-major matrix
* depending on the length of the passed array:
* If the array length is 9, then the array elements represent this matrix
* If the array length is 16, then the array elements represent this matrix
*
* When the sensor detects a trigger event condition, such as significant motion in
* the case of the {@link Sensor#TYPE_SIGNIFICANT_MOTION}, the provided trigger listener
* will be invoked once and then its request to receive trigger events will be canceled.
* To continue receiving trigger events, the application must request to receive trigger
* events again.
*
* Note that a Trigger sensor will be auto disabled if
* {@link TriggerEventListener#onTrigger(TriggerEvent)} has triggered.
* This method is provided in case the user wants to explicitly cancel the request
* to receive trigger events.
* true
on success. false
if the input
* parameters are incorrect, for instance if X and Y define the same
* axis. Or if inR and outR don't have the same length.
*
* @see #getRotationMatrix(float[], float[], float[], float[])
*/
public static boolean remapCoordinateSystem(float[] inR, int X, int Y,
float[] outR)
{
if (inR == outR) {
final float[] temp = mTempMatrix;
synchronized(temp) {
// we don't expect to have a lot of contention
if (remapCoordinateSystemImpl(inR, X, Y, temp)) {
final int size = outR.length;
for (int i=0 ; i
*
*
*
* float altitude_difference =
* getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point2)
* - getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point1);
*
* / R[ 0] R[ 1] R[ 2] \
* | R[ 3] R[ 4] R[ 5] |
* \ R[ 6] R[ 7] R[ 8] /
*
*
* / R[ 0] R[ 1] R[ 2] R[ 3] \
* | R[ 4] R[ 5] R[ 6] R[ 7] |
* | R[ 8] R[ 9] R[10] R[11] |
* \ R[12] R[13] R[14] R[15] /
*
*
* See {@link #getOrientation} for more detailed definition of the output.
*
* @param R current rotation matrix
* @param prevR previous rotation matrix
* @param angleChange an an array of floats (z, x, and y) in which the angle change
* (in radians) is stored
*/
public static void getAngleChange( float[] angleChange, float[] R, float[] prevR) {
float rd1=0,rd4=0, rd6=0,rd7=0, rd8=0;
float ri0=0,ri1=0,ri2=0,ri3=0,ri4=0,ri5=0,ri6=0,ri7=0,ri8=0;
float pri0=0, pri1=0, pri2=0, pri3=0, pri4=0, pri5=0, pri6=0, pri7=0, pri8=0;
if(R.length == 9) {
ri0 = R[0];
ri1 = R[1];
ri2 = R[2];
ri3 = R[3];
ri4 = R[4];
ri5 = R[5];
ri6 = R[6];
ri7 = R[7];
ri8 = R[8];
} else if(R.length == 16) {
ri0 = R[0];
ri1 = R[1];
ri2 = R[2];
ri3 = R[4];
ri4 = R[5];
ri5 = R[6];
ri6 = R[8];
ri7 = R[9];
ri8 = R[10];
}
if(prevR.length == 9) {
pri0 = prevR[0];
pri1 = prevR[1];
pri2 = prevR[2];
pri3 = prevR[3];
pri4 = prevR[4];
pri5 = prevR[5];
pri6 = prevR[6];
pri7 = prevR[7];
pri8 = prevR[8];
} else if(prevR.length == 16) {
pri0 = prevR[0];
pri1 = prevR[1];
pri2 = prevR[2];
pri3 = prevR[4];
pri4 = prevR[5];
pri5 = prevR[6];
pri6 = prevR[8];
pri7 = prevR[9];
pri8 = prevR[10];
}
// calculate the parts of the rotation difference matrix we need
// rd[i][j] = pri[0][i] * ri[0][j] + pri[1][i] * ri[1][j] + pri[2][i] * ri[2][j];
rd1 = pri0 * ri1 + pri3 * ri4 + pri6 * ri7; //rd[0][1]
rd4 = pri1 * ri1 + pri4 * ri4 + pri7 * ri7; //rd[1][1]
rd6 = pri2 * ri0 + pri5 * ri3 + pri8 * ri6; //rd[2][0]
rd7 = pri2 * ri1 + pri5 * ri4 + pri8 * ri7; //rd[2][1]
rd8 = pri2 * ri2 + pri5 * ri5 + pri8 * ri8; //rd[2][2]
angleChange[0] = (float)Math.atan2(rd1, rd4);
angleChange[1] = (float)Math.asin(-rd7);
angleChange[2] = (float)Math.atan2(-rd6, rd8);
}
/** Helper function to convert a rotation vector to a rotation matrix.
* Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a
* 9 or 16 element rotation matrix in the array R. R must have length 9 or 16.
* If R.length == 9, the following matrix is returned:
*
* / R[ 0] R[ 1] R[ 2] \
* | R[ 3] R[ 4] R[ 5] |
* \ R[ 6] R[ 7] R[ 8] /
*
* If R.length == 16, the following matrix is returned:
*
* / R[ 0] R[ 1] R[ 2] 0 \
* | R[ 4] R[ 5] R[ 6] 0 |
* | R[ 8] R[ 9] R[10] 0 |
* \ 0 0 0 1 /
*
* @param rotationVector the rotation vector to convert
* @param R an array of floats in which to store the rotation matrix
*/
public static void getRotationMatrixFromVector(float[] R, float[] rotationVector) {
float q0;
float q1 = rotationVector[0];
float q2 = rotationVector[1];
float q3 = rotationVector[2];
if (rotationVector.length >= 4) {
q0 = rotationVector[3];
} else {
q0 = 1 - q1*q1 - q2*q2 - q3*q3;
q0 = (q0 > 0) ? (float)Math.sqrt(q0) : 0;
}
float sq_q1 = 2 * q1 * q1;
float sq_q2 = 2 * q2 * q2;
float sq_q3 = 2 * q3 * q3;
float q1_q2 = 2 * q1 * q2;
float q3_q0 = 2 * q3 * q0;
float q1_q3 = 2 * q1 * q3;
float q2_q0 = 2 * q2 * q0;
float q2_q3 = 2 * q2 * q3;
float q1_q0 = 2 * q1 * q0;
if(R.length == 9) {
R[0] = 1 - sq_q2 - sq_q3;
R[1] = q1_q2 - q3_q0;
R[2] = q1_q3 + q2_q0;
R[3] = q1_q2 + q3_q0;
R[4] = 1 - sq_q1 - sq_q3;
R[5] = q2_q3 - q1_q0;
R[6] = q1_q3 - q2_q0;
R[7] = q2_q3 + q1_q0;
R[8] = 1 - sq_q1 - sq_q2;
} else if (R.length == 16) {
R[0] = 1 - sq_q2 - sq_q3;
R[1] = q1_q2 - q3_q0;
R[2] = q1_q3 + q2_q0;
R[3] = 0.0f;
R[4] = q1_q2 + q3_q0;
R[5] = 1 - sq_q1 - sq_q3;
R[6] = q2_q3 - q1_q0;
R[7] = 0.0f;
R[8] = q1_q3 - q2_q0;
R[9] = q2_q3 + q1_q0;
R[10] = 1 - sq_q1 - sq_q2;
R[11] = 0.0f;
R[12] = R[13] = R[14] = 0.0f;
R[15] = 1.0f;
}
}
/** Helper function to convert a rotation vector to a normalized quaternion.
* Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a normalized
* quaternion in the array Q. The quaternion is stored as [w, x, y, z]
* @param rv the rotation vector to convert
* @param Q an array of floats in which to store the computed quaternion
*/
public static void getQuaternionFromVector(float[] Q, float[] rv) {
if (rv.length >= 4) {
Q[0] = rv[3];
} else {
Q[0] = 1 - rv[0]*rv[0] - rv[1]*rv[1] - rv[2]*rv[2];
Q[0] = (Q[0] > 0) ? (float)Math.sqrt(Q[0]) : 0;
}
Q[1] = rv[0];
Q[2] = rv[1];
Q[3] = rv[2];
}
/**
* Requests receiving trigger events for a trigger sensor.
*
*