/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.support.v4.app;
import android.app.Activity;
import android.content.ComponentCallbacks;
import android.content.Context;
import android.content.Intent;
import android.content.IntentSender;
import android.content.res.Configuration;
import android.content.res.Resources;
import android.os.Bundle;
import android.os.Parcel;
import android.os.Parcelable;
import android.support.annotation.CallSuper;
import android.support.annotation.NonNull;
import android.support.annotation.Nullable;
import android.support.annotation.RestrictTo;
import android.support.annotation.StringRes;
import android.support.v4.util.DebugUtils;
import android.support.v4.util.SimpleArrayMap;
import android.support.v4.view.LayoutInflaterCompat;
import android.util.AttributeSet;
import android.util.Log;
import android.util.SparseArray;
import android.view.ContextMenu;
import android.view.ContextMenu.ContextMenuInfo;
import android.view.LayoutInflater;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.view.View.OnCreateContextMenuListener;
import android.view.ViewGroup;
import android.view.animation.Animation;
import android.widget.AdapterView;
import java.io.FileDescriptor;
import java.io.PrintWriter;
import static android.support.annotation.RestrictTo.Scope.GROUP_ID;
final class FragmentState implements Parcelable {
final String mClassName;
final int mIndex;
final boolean mFromLayout;
final int mFragmentId;
final int mContainerId;
final String mTag;
final boolean mRetainInstance;
final boolean mDetached;
final Bundle mArguments;
final boolean mHidden;
Bundle mSavedFragmentState;
Fragment mInstance;
public FragmentState(Fragment frag) {
mClassName = frag.getClass().getName();
mIndex = frag.mIndex;
mFromLayout = frag.mFromLayout;
mFragmentId = frag.mFragmentId;
mContainerId = frag.mContainerId;
mTag = frag.mTag;
mRetainInstance = frag.mRetainInstance;
mDetached = frag.mDetached;
mArguments = frag.mArguments;
mHidden = frag.mHidden;
}
public FragmentState(Parcel in) {
mClassName = in.readString();
mIndex = in.readInt();
mFromLayout = in.readInt() != 0;
mFragmentId = in.readInt();
mContainerId = in.readInt();
mTag = in.readString();
mRetainInstance = in.readInt() != 0;
mDetached = in.readInt() != 0;
mArguments = in.readBundle();
mHidden = in.readInt() != 0;
mSavedFragmentState = in.readBundle();
}
public Fragment instantiate(FragmentHostCallback host, Fragment parent,
FragmentManagerNonConfig childNonConfig) {
if (mInstance == null) {
final Context context = host.getContext();
if (mArguments != null) {
mArguments.setClassLoader(context.getClassLoader());
}
mInstance = Fragment.instantiate(context, mClassName, mArguments);
if (mSavedFragmentState != null) {
mSavedFragmentState.setClassLoader(context.getClassLoader());
mInstance.mSavedFragmentState = mSavedFragmentState;
}
mInstance.setIndex(mIndex, parent);
mInstance.mFromLayout = mFromLayout;
mInstance.mRestored = true;
mInstance.mFragmentId = mFragmentId;
mInstance.mContainerId = mContainerId;
mInstance.mTag = mTag;
mInstance.mRetainInstance = mRetainInstance;
mInstance.mDetached = mDetached;
mInstance.mHidden = mHidden;
mInstance.mFragmentManager = host.mFragmentManager;
if (FragmentManagerImpl.DEBUG) Log.v(FragmentManagerImpl.TAG,
"Instantiated fragment " + mInstance);
}
mInstance.mChildNonConfig = childNonConfig;
return mInstance;
}
@Override
public int describeContents() {
return 0;
}
@Override
public void writeToParcel(Parcel dest, int flags) {
dest.writeString(mClassName);
dest.writeInt(mIndex);
dest.writeInt(mFromLayout ? 1 : 0);
dest.writeInt(mFragmentId);
dest.writeInt(mContainerId);
dest.writeString(mTag);
dest.writeInt(mRetainInstance ? 1 : 0);
dest.writeInt(mDetached ? 1 : 0);
dest.writeBundle(mArguments);
dest.writeInt(mHidden? 1 : 0);
dest.writeBundle(mSavedFragmentState);
}
public static final Parcelable.Creator The main differences when using this support version instead of the framework version are:
* Applications should generally not implement a constructor. Prefer
* {@link #onAttach(Context)} instead. It is the first place application code can run where
* the fragment is ready to be used - the point where the fragment is actually associated with
* its context. Some applications may also want to implement {@link #onInflate} to retrieve
* attributes from a layout resource, although note this happens when the fragment is attached.
*/
public Fragment() {
}
/**
* Like {@link #instantiate(Context, String, Bundle)} but with a null
* argument Bundle.
*/
public static Fragment instantiate(Context context, String fname) {
return instantiate(context, fname, null);
}
/**
* Create a new instance of a Fragment with the given class name. This is
* the same as calling its empty constructor.
*
* @param context The calling context being used to instantiate the fragment.
* This is currently just used to get its ClassLoader.
* @param fname The class name of the fragment to instantiate.
* @param args Bundle of arguments to supply to the fragment, which it
* can retrieve with {@link #getArguments()}. May be null.
* @return Returns a new fragment instance.
* @throws InstantiationException If there is a failure in instantiating
* the given fragment class. This is a runtime exception; it is not
* normally expected to happen.
*/
public static Fragment instantiate(Context context, String fname, @Nullable Bundle args) {
try {
Class> clazz = sClassMap.get(fname);
if (clazz == null) {
// Class not found in the cache, see if it's real, and try to add it
clazz = context.getClassLoader().loadClass(fname);
sClassMap.put(fname, clazz);
}
Fragment f = (Fragment)clazz.newInstance();
if (args != null) {
args.setClassLoader(f.getClass().getClassLoader());
f.mArguments = args;
}
return f;
} catch (ClassNotFoundException e) {
throw new InstantiationException("Unable to instantiate fragment " + fname
+ ": make sure class name exists, is public, and has an"
+ " empty constructor that is public", e);
} catch (java.lang.InstantiationException e) {
throw new InstantiationException("Unable to instantiate fragment " + fname
+ ": make sure class name exists, is public, and has an"
+ " empty constructor that is public", e);
} catch (IllegalAccessException e) {
throw new InstantiationException("Unable to instantiate fragment " + fname
+ ": make sure class name exists, is public, and has an"
+ " empty constructor that is public", e);
}
}
/**
* Determine if the given fragment name is a support library fragment class.
*
* @param context Context used to determine the correct ClassLoader to use
* @param fname Class name of the fragment to test
* @return true if If this Fragment is a child of another Fragment, the FragmentManager
* returned here will be the parent's {@link #getChildFragmentManager()}.
*/
final public FragmentManager getFragmentManager() {
return mFragmentManager;
}
/**
* Return a private FragmentManager for placing and managing Fragments
* inside of this Fragment.
*/
final public FragmentManager getChildFragmentManager() {
if (mChildFragmentManager == null) {
instantiateChildFragmentManager();
if (mState >= RESUMED) {
mChildFragmentManager.dispatchResume();
} else if (mState >= STARTED) {
mChildFragmentManager.dispatchStart();
} else if (mState >= ACTIVITY_CREATED) {
mChildFragmentManager.dispatchActivityCreated();
} else if (mState >= CREATED) {
mChildFragmentManager.dispatchCreate();
}
}
return mChildFragmentManager;
}
/**
* Returns the parent Fragment containing this Fragment. If this Fragment
* is attached directly to an Activity, returns null.
*/
final public Fragment getParentFragment() {
return mParentFragment;
}
/**
* Return true if the fragment is currently added to its activity.
*/
final public boolean isAdded() {
return mHost != null && mAdded;
}
/**
* Return true if the fragment has been explicitly detached from the UI.
* That is, {@link FragmentTransaction#detach(Fragment)
* FragmentTransaction.detach(Fragment)} has been used on it.
*/
final public boolean isDetached() {
return mDetached;
}
/**
* Return true if this fragment is currently being removed from its
* activity. This is not whether its activity is finishing, but
* rather whether it is in the process of being removed from its activity.
*/
final public boolean isRemoving() {
return mRemoving;
}
/**
* Return true if the layout is included as part of an activity view
* hierarchy via the <fragment> tag. This will always be true when
* fragments are created through the <fragment> tag, except
* in the case where an old fragment is restored from a previous state and
* it does not appear in the layout of the current state.
*/
final public boolean isInLayout() {
return mInLayout;
}
/**
* Return true if the fragment is in the resumed state. This is true
* for the duration of {@link #onResume()} and {@link #onPause()} as well.
*/
final public boolean isResumed() {
return mState >= RESUMED;
}
/**
* Return true if the fragment is currently visible to the user. This means
* it: (1) has been added, (2) has its view attached to the window, and
* (3) is not hidden.
*/
final public boolean isVisible() {
return isAdded() && !isHidden() && mView != null
&& mView.getWindowToken() != null && mView.getVisibility() == View.VISIBLE;
}
/**
* Return true if the fragment has been hidden. By default fragments
* are shown. You can find out about changes to this state with
* {@link #onHiddenChanged}. Note that the hidden state is orthogonal
* to other states -- that is, to be visible to the user, a fragment
* must be both started and not hidden.
*/
final public boolean isHidden() {
return mHidden;
}
/** @hide */
@RestrictTo(GROUP_ID)
final public boolean hasOptionsMenu() {
return mHasMenu;
}
/** @hide */
@RestrictTo(GROUP_ID)
final public boolean isMenuVisible() {
return mMenuVisible;
}
/**
* Called when the hidden state (as returned by {@link #isHidden()} of
* the fragment has changed. Fragments start out not hidden; this will
* be called whenever the fragment changes state from that.
* @param hidden True if the fragment is now hidden, false otherwise.
*/
public void onHiddenChanged(boolean hidden) {
}
/**
* Control whether a fragment instance is retained across Activity
* re-creation (such as from a configuration change). This can only
* be used with fragments not in the back stack. If set, the fragment
* lifecycle will be slightly different when an activity is recreated:
* An app may set this to false to indicate that the fragment's UI is
* scrolled out of visibility or is otherwise not directly visible to the user.
* This may be used by the system to prioritize operations such as fragment lifecycle updates
* or loader ordering behavior. Note: This method may be called outside of the fragment lifecycle.
* and thus has no ordering guarantees with regard to fragment lifecycle method calls.
* Normal permissions {@link android.content.pm.PermissionInfo#PROTECTION_NORMAL}
* are granted at install time if requested in the manifest. Signature permissions
* {@link android.content.pm.PermissionInfo#PROTECTION_SIGNATURE} are granted at
* install time if requested in the manifest and the signature of your app matches
* the signature of the app declaring the permissions.
*
* If your app does not have the requested permissions the user will be presented
* with UI for accepting them. After the user has accepted or rejected the
* requested permissions you will receive a callback on {@link
* #onRequestPermissionsResult(int, String[], int[])} reporting whether the
* permissions were granted or not.
*
* Note that requesting a permission does not guarantee it will be granted and
* your app should be able to run without having this permission.
*
* This method may start an activity allowing the user to choose which permissions
* to grant and which to reject. Hence, you should be prepared that your activity
* may be paused and resumed. Further, granting some permissions may require
* a restart of you application. In such a case, the system will recreate the
* activity stack before delivering the result to {@link
* #onRequestPermissionsResult(int, String[], int[])}.
*
* When checking whether you have a permission you should use {@link
* android.content.Context#checkSelfPermission(String)}.
*
* Calling this API for permissions already granted to your app would show UI
* to the user to decided whether the app can still hold these permissions. This
* can be useful if the way your app uses the data guarded by the permissions
* changes significantly.
*
* A sample permissions request looks like this:
*
* private void showContacts() {
* if (getActivity().checkSelfPermission(Manifest.permission.READ_CONTACTS)
* != PackageManager.PERMISSION_GRANTED) {
* requestPermissions(new String[]{Manifest.permission.READ_CONTACTS},
* PERMISSIONS_REQUEST_READ_CONTACTS);
* } else {
* doShowContacts();
* }
* }
*
* {@literal @}Override
* public void onRequestPermissionsResult(int requestCode, String[] permissions,
* int[] grantResults) {
* if (requestCode == PERMISSIONS_REQUEST_READ_CONTACTS
* && grantResults[0] == PackageManager.PERMISSION_GRANTED) {
* doShowContacts();
* }
* }
*
*
*
*/
public class Fragment implements ComponentCallbacks, OnCreateContextMenuListener {
private static final SimpleArrayMapfname
is android.support.v4.app.Fragment
* or a subclass, false otherwise.
*/
static boolean isSupportFragmentClass(Context context, String fname) {
try {
Class> clazz = sClassMap.get(fname);
if (clazz == null) {
// Class not found in the cache, see if it's real, and try to add it
clazz = context.getClassLoader().loadClass(fname);
sClassMap.put(fname, clazz);
}
return Fragment.class.isAssignableFrom(clazz);
} catch (ClassNotFoundException e) {
return false;
}
}
final void restoreViewState(Bundle savedInstanceState) {
if (mSavedViewState != null) {
mInnerView.restoreHierarchyState(mSavedViewState);
mSavedViewState = null;
}
mCalled = false;
onViewStateRestored(savedInstanceState);
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onViewStateRestored()");
}
}
final void setIndex(int index, Fragment parent) {
mIndex = index;
if (parent != null) {
mWho = parent.mWho + ":" + mIndex;
} else {
mWho = "android:fragment:" + mIndex;
}
}
final boolean isInBackStack() {
return mBackStackNesting > 0;
}
/**
* Subclasses can not override equals().
*/
@Override final public boolean equals(Object o) {
return super.equals(o);
}
/**
* Subclasses can not override hashCode().
*/
@Override final public int hashCode() {
return super.hashCode();
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder(128);
DebugUtils.buildShortClassTag(this, sb);
if (mIndex >= 0) {
sb.append(" #");
sb.append(mIndex);
}
if (mFragmentId != 0) {
sb.append(" id=0x");
sb.append(Integer.toHexString(mFragmentId));
}
if (mTag != null) {
sb.append(" ");
sb.append(mTag);
}
sb.append('}');
return sb.toString();
}
/**
* Return the identifier this fragment is known by. This is either
* the android:id value supplied in a layout or the container view ID
* supplied when adding the fragment.
*/
final public int getId() {
return mFragmentId;
}
/**
* Get the tag name of the fragment, if specified.
*/
final public String getTag() {
return mTag;
}
/**
* Supply the construction arguments for this fragment. This can only
* be called before the fragment has been attached to its activity; that
* is, you should call it immediately after constructing the fragment. The
* arguments supplied here will be retained across fragment destroy and
* creation.
*/
public void setArguments(Bundle args) {
if (mIndex >= 0) {
throw new IllegalStateException("Fragment already active");
}
mArguments = args;
}
/**
* Return the arguments supplied when the fragment was instantiated,
* if any.
*/
final public Bundle getArguments() {
return mArguments;
}
/**
* Set the initial saved state that this Fragment should restore itself
* from when first being constructed, as returned by
* {@link FragmentManager#saveFragmentInstanceState(Fragment)
* FragmentManager.saveFragmentInstanceState}.
*
* @param state The state the fragment should be restored from.
*/
public void setInitialSavedState(SavedState state) {
if (mIndex >= 0) {
throw new IllegalStateException("Fragment already active");
}
mSavedFragmentState = state != null && state.mState != null
? state.mState : null;
}
/**
* Optional target for this fragment. This may be used, for example,
* if this fragment is being started by another, and when done wants to
* give a result back to the first. The target set here is retained
* across instances via {@link FragmentManager#putFragment
* FragmentManager.putFragment()}.
*
* @param fragment The fragment that is the target of this one.
* @param requestCode Optional request code, for convenience if you
* are going to call back with {@link #onActivityResult(int, int, Intent)}.
*/
public void setTargetFragment(Fragment fragment, int requestCode) {
mTarget = fragment;
mTargetRequestCode = requestCode;
}
/**
* Return the target fragment set by {@link #setTargetFragment}.
*/
final public Fragment getTargetFragment() {
return mTarget;
}
/**
* Return the target request code set by {@link #setTargetFragment}.
*/
final public int getTargetRequestCode() {
return mTargetRequestCode;
}
/**
* Return the {@link Context} this fragment is currently associated with.
*/
public Context getContext() {
return mHost == null ? null : mHost.getContext();
}
/**
* Return the {@link FragmentActivity} this fragment is currently associated with.
* May return {@code null} if the fragment is associated with a {@link Context}
* instead.
*/
final public FragmentActivity getActivity() {
return mHost == null ? null : (FragmentActivity) mHost.getActivity();
}
/**
* Return the host object of this fragment. May return {@code null} if the fragment
* isn't currently being hosted.
*/
final public Object getHost() {
return mHost == null ? null : mHost.onGetHost();
}
/**
* Return getActivity().getResources()
.
*/
final public Resources getResources() {
if (mHost == null) {
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
}
return mHost.getContext().getResources();
}
/**
* Return a localized, styled CharSequence from the application's package's
* default string table.
*
* @param resId Resource id for the CharSequence text
*/
public final CharSequence getText(@StringRes int resId) {
return getResources().getText(resId);
}
/**
* Return a localized string from the application's package's
* default string table.
*
* @param resId Resource id for the string
*/
public final String getString(@StringRes int resId) {
return getResources().getString(resId);
}
/**
* Return a localized formatted string from the application's package's
* default string table, substituting the format arguments as defined in
* {@link java.util.Formatter} and {@link java.lang.String#format}.
*
* @param resId Resource id for the format string
* @param formatArgs The format arguments that will be used for substitution.
*/
public final String getString(@StringRes int resId, Object... formatArgs) {
return getResources().getString(resId, formatArgs);
}
/**
* Return the FragmentManager for interacting with fragments associated
* with this fragment's activity. Note that this will be non-null slightly
* before {@link #getActivity()}, during the time from when the fragment is
* placed in a {@link FragmentTransaction} until it is committed and
* attached to its activity.
*
*
*
*/
public void setRetainInstance(boolean retain) {
mRetainInstance = retain;
}
final public boolean getRetainInstance() {
return mRetainInstance;
}
/**
* Report that this fragment would like to participate in populating
* the options menu by receiving a call to {@link #onCreateOptionsMenu}
* and related methods.
*
* @param hasMenu If true, the fragment has menu items to contribute.
*/
public void setHasOptionsMenu(boolean hasMenu) {
if (mHasMenu != hasMenu) {
mHasMenu = hasMenu;
if (isAdded() && !isHidden()) {
mHost.onSupportInvalidateOptionsMenu();
}
}
}
/**
* Set a hint for whether this fragment's menu should be visible. This
* is useful if you know that a fragment has been placed in your view
* hierarchy so that the user can not currently seen it, so any menu items
* it has should also not be shown.
*
* @param menuVisible The default is true, meaning the fragment's menu will
* be shown as usual. If false, the user will not see the menu.
*/
public void setMenuVisibility(boolean menuVisible) {
if (mMenuVisible != menuVisible) {
mMenuVisible = menuVisible;
if (mHasMenu && isAdded() && !isHidden()) {
mHost.onSupportInvalidateOptionsMenu();
}
}
}
/**
* Set a hint to the system about whether this fragment's UI is currently visible
* to the user. This hint defaults to true and is persistent across fragment instance
* state save and restore.
*
*
* Note: It is possible that the permissions request interaction * with the user is interrupted. In this case you will receive empty permissions * and results arrays which should be treated as a cancellation. *
* * @param requestCode The request code passed in {@link #requestPermissions(String[], int)}. * @param permissions The requested permissions. Never null. * @param grantResults The grant results for the corresponding permissions * which is either {@link android.content.pm.PackageManager#PERMISSION_GRANTED} * or {@link android.content.pm.PackageManager#PERMISSION_DENIED}. Never null. * * @see #requestPermissions(String[], int) */ public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions, @NonNull int[] grantResults) { /* callback - do nothing */ } /** * Gets whether you should show UI with rationale for requesting a permission. * You should do this only if you do not have the permission and the context in * which the permission is requested does not clearly communicate to the user * what would be the benefit from granting this permission. ** For example, if you write a camera app, requesting the camera permission * would be expected by the user and no rationale for why it is requested is * needed. If however, the app needs location for tagging photos then a non-tech * savvy user may wonder how location is related to taking photos. In this case * you may choose to show UI with rationale of requesting this permission. *
* * @param permission A permission your app wants to request. * @return Whether you can show permission rationale UI. * * @see Context#checkSelfPermission(String) * @see #requestPermissions(String[], int) * @see #onRequestPermissionsResult(int, String[], int[]) */ public boolean shouldShowRequestPermissionRationale(@NonNull String permission) { if (mHost != null) { return mHost.onShouldShowRequestPermissionRationale(permission); } return false; } /** * Hack so that DialogFragment can make its Dialog before creating * its views, and the view construction can use the dialog's context for * inflation. Maybe this should become a public API. Note sure. * @hide */ @RestrictTo(GROUP_ID) public LayoutInflater getLayoutInflater(Bundle savedInstanceState) { LayoutInflater result = mHost.onGetLayoutInflater(); getChildFragmentManager(); // Init if needed; use raw implementation below. LayoutInflaterCompat.setFactory(result, mChildFragmentManager.getLayoutInflaterFactory()); return result; } /** * Called when a fragment is being created as part of a view layout * inflation, typically from setting the content view of an activity. This * may be called immediately after the fragment is created from aThis is called every time the fragment is inflated, even if it is * being inflated into a new instance with saved state. It typically makes * sense to re-parse the parameters each time, to allow them to change with * different configurations.
* *Here is a typical implementation of a fragment that can take parameters * both through attributes supplied here as well from {@link #getArguments()}:
* * {@sample frameworks/support/samples/Support4Demos/src/com/example/android/supportv4/app/FragmentArgumentsSupport.java * fragment} * *Note that parsing the XML attributes uses a "styleable" resource. The * declaration for the styleable used here is:
* * {@sample frameworks/support/samples/Support4Demos/res/values/attrs.xml fragment_arguments} * *The fragment can then be declared within its activity's content layout * through a tag like this:
* * {@sample frameworks/support/samples/Support4Demos/res/layout/fragment_arguments_support.xml from_attributes} * *This fragment can also be created dynamically from arguments given * at runtime in the arguments Bundle; here is an example of doing so at * creation of the containing activity:
* * {@sample frameworks/support/samples/Support4Demos/src/com/example/android/supportv4/app/FragmentArgumentsSupport.java * create} * * @param context The Activity that is inflating this fragment. * @param attrs The attributes at the tag where the fragment is * being created. * @param savedInstanceState If the fragment is being re-created from * a previous saved state, this is the state. */ @CallSuper public void onInflate(Context context, AttributeSet attrs, Bundle savedInstanceState) { mCalled = true; final Activity hostActivity = mHost == null ? null : mHost.getActivity(); if (hostActivity != null) { mCalled = false; onInflate(hostActivity, attrs, savedInstanceState); } } /** * Called when a fragment is being created as part of a view layout * inflation, typically from setting the content view of an activity. * * @deprecated See {@link #onInflate(Context, AttributeSet, Bundle)}. */ @Deprecated @CallSuper public void onInflate(Activity activity, AttributeSet attrs, Bundle savedInstanceState) { mCalled = true; } /** * Called when a fragment is attached as a child of this fragment. * *This is called after the attached fragment's onAttach
and before
* the attached fragment's onCreate
if the fragment has not yet had a previous
* call to onCreate
.
Note that this can be called while the fragment's activity is * still in the process of being created. As such, you can not rely * on things like the activity's content view hierarchy being initialized * at this point. If you want to do work once the activity itself is * created, see {@link #onActivityCreated(Bundle)}. * *
Any restored child fragments will be created before the base
* Fragment.onCreate
method returns.
Postcondition: if there were child fragments to restore, * the child FragmentManager will be instantiated and brought to the {@link #CREATED} state. *
* * @param savedInstanceState the savedInstanceState potentially containing fragment info */ void restoreChildFragmentState(@Nullable Bundle savedInstanceState) { if (savedInstanceState != null) { Parcelable p = savedInstanceState.getParcelable( FragmentActivity.FRAGMENTS_TAG); if (p != null) { if (mChildFragmentManager == null) { instantiateChildFragmentManager(); } mChildFragmentManager.restoreAllState(p, mChildNonConfig); mChildNonConfig = null; mChildFragmentManager.dispatchCreate(); } } } /** * Called to have the fragment instantiate its user interface view. * This is optional, and non-graphical fragments can return null (which * is the default implementation). This will be called between * {@link #onCreate(Bundle)} and {@link #onActivityCreated(Bundle)}. * *If you return a View from here, you will later be called in * {@link #onDestroyView} when the view is being released. * * @param inflater The LayoutInflater object that can be used to inflate * any views in the fragment, * @param container If non-null, this is the parent view that the fragment's * UI should be attached to. The fragment should not add the view itself, * but this can be used to generate the LayoutParams of the view. * @param savedInstanceState If non-null, this fragment is being re-constructed * from a previous saved state as given here. * * @return Return the View for the fragment's UI, or null. */ @Nullable public View onCreateView(LayoutInflater inflater, @Nullable ViewGroup container, @Nullable Bundle savedInstanceState) { return null; } /** * Called immediately after {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)} * has returned, but before any saved state has been restored in to the view. * This gives subclasses a chance to initialize themselves once * they know their view hierarchy has been completely created. The fragment's * view hierarchy is not however attached to its parent at this point. * @param view The View returned by {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}. * @param savedInstanceState If non-null, this fragment is being re-constructed * from a previous saved state as given here. */ public void onViewCreated(View view, @Nullable Bundle savedInstanceState) { } /** * Get the root view for the fragment's layout (the one returned by {@link #onCreateView}), * if provided. * * @return The fragment's root view, or null if it has no layout. */ @Nullable public View getView() { return mView; } /** * Called when the fragment's activity has been created and this * fragment's view hierarchy instantiated. It can be used to do final * initialization once these pieces are in place, such as retrieving * views or restoring state. It is also useful for fragments that use * {@link #setRetainInstance(boolean)} to retain their instance, * as this callback tells the fragment when it is fully associated with * the new activity instance. This is called after {@link #onCreateView} * and before {@link #onViewStateRestored(Bundle)}. * * @param savedInstanceState If the fragment is being re-created from * a previous saved state, this is the state. */ @CallSuper public void onActivityCreated(@Nullable Bundle savedInstanceState) { mCalled = true; } /** * Called when all saved state has been restored into the view hierarchy * of the fragment. This can be used to do initialization based on saved * state that you are letting the view hierarchy track itself, such as * whether check box widgets are currently checked. This is called * after {@link #onActivityCreated(Bundle)} and before * {@link #onStart()}. * * @param savedInstanceState If the fragment is being re-created from * a previous saved state, this is the state. */ @CallSuper public void onViewStateRestored(@Nullable Bundle savedInstanceState) { mCalled = true; } /** * Called when the Fragment is visible to the user. This is generally * tied to {@link Activity#onStart() Activity.onStart} of the containing * Activity's lifecycle. */ @CallSuper public void onStart() { mCalled = true; if (!mLoadersStarted) { mLoadersStarted = true; if (!mCheckedForLoaderManager) { mCheckedForLoaderManager = true; mLoaderManager = mHost.getLoaderManager(mWho, mLoadersStarted, false); } if (mLoaderManager != null) { mLoaderManager.doStart(); } } } /** * Called when the fragment is visible to the user and actively running. * This is generally * tied to {@link Activity#onResume() Activity.onResume} of the containing * Activity's lifecycle. */ @CallSuper public void onResume() { mCalled = true; } /** * Called to ask the fragment to save its current dynamic state, so it * can later be reconstructed in a new instance of its process is * restarted. If a new instance of the fragment later needs to be * created, the data you place in the Bundle here will be available * in the Bundle given to {@link #onCreate(Bundle)}, * {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}, and * {@link #onActivityCreated(Bundle)}. * *
This corresponds to {@link Activity#onSaveInstanceState(Bundle) * Activity.onSaveInstanceState(Bundle)} and most of the discussion there * applies here as well. Note however: this method may be called * at any time before {@link #onDestroy()}. There are many situations * where a fragment may be mostly torn down (such as when placed on the * back stack with no UI showing), but its state will not be saved until * its owning activity actually needs to save its state. * * @param outState Bundle in which to place your saved state. */ public void onSaveInstanceState(Bundle outState) { } /** * Called when the Fragment's activity changes from fullscreen mode to multi-window mode and * visa-versa. This is generally tied to {@link Activity#onMultiWindowModeChanged} of the * containing Activity. * * @param isInMultiWindowMode True if the activity is in multi-window mode. */ public void onMultiWindowModeChanged(boolean isInMultiWindowMode) { } /** * Called by the system when the activity changes to and from picture-in-picture mode. This is * generally tied to {@link Activity#onPictureInPictureModeChanged} of the containing Activity. * * @param isInPictureInPictureMode True if the activity is in picture-in-picture mode. */ public void onPictureInPictureModeChanged(boolean isInPictureInPictureMode) { } @Override @CallSuper public void onConfigurationChanged(Configuration newConfig) { mCalled = true; } /** * Called when the Fragment is no longer resumed. This is generally * tied to {@link Activity#onPause() Activity.onPause} of the containing * Activity's lifecycle. */ @CallSuper public void onPause() { mCalled = true; } /** * Called when the Fragment is no longer started. This is generally * tied to {@link Activity#onStop() Activity.onStop} of the containing * Activity's lifecycle. */ @CallSuper public void onStop() { mCalled = true; } @Override @CallSuper public void onLowMemory() { mCalled = true; } /** * Called when the view previously created by {@link #onCreateView} has * been detached from the fragment. The next time the fragment needs * to be displayed, a new view will be created. This is called * after {@link #onStop()} and before {@link #onDestroy()}. It is called * regardless of whether {@link #onCreateView} returned a * non-null view. Internally it is called after the view's state has * been saved but before it has been removed from its parent. */ @CallSuper public void onDestroyView() { mCalled = true; } /** * Called when the fragment is no longer in use. This is called * after {@link #onStop()} and before {@link #onDetach()}. */ @CallSuper public void onDestroy() { mCalled = true; //Log.v("foo", "onDestroy: mCheckedForLoaderManager=" + mCheckedForLoaderManager // + " mLoaderManager=" + mLoaderManager); if (!mCheckedForLoaderManager) { mCheckedForLoaderManager = true; mLoaderManager = mHost.getLoaderManager(mWho, mLoadersStarted, false); } if (mLoaderManager != null) { mLoaderManager.doDestroy(); } } /** * Called by the fragment manager once this fragment has been removed, * so that we don't have any left-over state if the application decides * to re-use the instance. This only clears state that the framework * internally manages, not things the application sets. */ void initState() { mIndex = -1; mWho = null; mAdded = false; mRemoving = false; mFromLayout = false; mInLayout = false; mRestored = false; mBackStackNesting = 0; mFragmentManager = null; mChildFragmentManager = null; mHost = null; mFragmentId = 0; mContainerId = 0; mTag = null; mHidden = false; mDetached = false; mRetaining = false; mLoaderManager = null; mLoadersStarted = false; mCheckedForLoaderManager = false; } /** * Called when the fragment is no longer attached to its activity. This * is called after {@link #onDestroy()}. */ @CallSuper public void onDetach() { mCalled = true; } /** * Initialize the contents of the Fragment host's standard options menu. You * should place your menu items in to menu. For this method * to be called, you must have first called {@link #setHasOptionsMenu}. See * {@link Activity#onCreateOptionsMenu(Menu) Activity.onCreateOptionsMenu} * for more information. * * @param menu The options menu in which you place your items. * * @see #setHasOptionsMenu * @see #onPrepareOptionsMenu * @see #onOptionsItemSelected */ public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) { } /** * Prepare the Fragment host's standard options menu to be displayed. This is * called right before the menu is shown, every time it is shown. You can * use this method to efficiently enable/disable items or otherwise * dynamically modify the contents. See * {@link Activity#onPrepareOptionsMenu(Menu) Activity.onPrepareOptionsMenu} * for more information. * * @param menu The options menu as last shown or first initialized by * onCreateOptionsMenu(). * * @see #setHasOptionsMenu * @see #onCreateOptionsMenu */ public void onPrepareOptionsMenu(Menu menu) { } /** * Called when this fragment's option menu items are no longer being * included in the overall options menu. Receiving this call means that * the menu needed to be rebuilt, but this fragment's items were not * included in the newly built menu (its {@link #onCreateOptionsMenu(Menu, MenuInflater)} * was not called). */ public void onDestroyOptionsMenu() { } /** * This hook is called whenever an item in your options menu is selected. * The default implementation simply returns false to have the normal * processing happen (calling the item's Runnable or sending a message to * its Handler as appropriate). You can use this method for any items * for which you would like to do processing without those other * facilities. * *
Derived classes should call through to the base class for it to * perform the default menu handling. * * @param item The menu item that was selected. * * @return boolean Return false to allow normal menu processing to * proceed, true to consume it here. * * @see #onCreateOptionsMenu */ public boolean onOptionsItemSelected(MenuItem item) { return false; } /** * This hook is called whenever the options menu is being closed (either by the user canceling * the menu with the back/menu button, or when an item is selected). * * @param menu The options menu as last shown or first initialized by * onCreateOptionsMenu(). */ public void onOptionsMenuClosed(Menu menu) { } /** * Called when a context menu for the {@code view} is about to be shown. * Unlike {@link #onCreateOptionsMenu}, this will be called every * time the context menu is about to be shown and should be populated for * the view (or item inside the view for {@link AdapterView} subclasses, * this can be found in the {@code menuInfo})). *
* Use {@link #onContextItemSelected(android.view.MenuItem)} to know when an * item has been selected. *
* The default implementation calls up to * {@link Activity#onCreateContextMenu Activity.onCreateContextMenu}, though * you can not call this implementation if you don't want that behavior. *
* It is not safe to hold onto the context menu after this method returns. * {@inheritDoc} */ @Override public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo menuInfo) { getActivity().onCreateContextMenu(menu, v, menuInfo); } /** * Registers a context menu to be shown for the given view (multiple views * can show the context menu). This method will set the * {@link OnCreateContextMenuListener} on the view to this fragment, so * {@link #onCreateContextMenu(ContextMenu, View, ContextMenuInfo)} will be * called when it is time to show the context menu. * * @see #unregisterForContextMenu(View) * @param view The view that should show a context menu. */ public void registerForContextMenu(View view) { view.setOnCreateContextMenuListener(this); } /** * Prevents a context menu to be shown for the given view. This method will * remove the {@link OnCreateContextMenuListener} on the view. * * @see #registerForContextMenu(View) * @param view The view that should stop showing a context menu. */ public void unregisterForContextMenu(View view) { view.setOnCreateContextMenuListener(null); } /** * This hook is called whenever an item in a context menu is selected. The * default implementation simply returns false to have the normal processing * happen (calling the item's Runnable or sending a message to its Handler * as appropriate). You can use this method for any items for which you * would like to do processing without those other facilities. *
* Use {@link MenuItem#getMenuInfo()} to get extra information set by the * View that added this menu item. *
* Derived classes should call through to the base class for it to perform
* the default menu handling.
*
* @param item The context menu item that was selected.
* @return boolean Return false to allow normal context menu processing to
* proceed, true to consume it here.
*/
public boolean onContextItemSelected(MenuItem item) {
return false;
}
/**
* When custom transitions are used with Fragments, the enter transition callback
* is called when this Fragment is attached or detached when not popping the back stack.
*
* @param callback Used to manipulate the shared element transitions on this Fragment
* when added not as a pop from the back stack.
*/
public void setEnterSharedElementCallback(SharedElementCallback callback) {
mEnterTransitionCallback = callback;
}
/**
* When custom transitions are used with Fragments, the exit transition callback
* is called when this Fragment is attached or detached when popping the back stack.
*
* @param callback Used to manipulate the shared element transitions on this Fragment
* when added as a pop from the back stack.
*/
public void setExitSharedElementCallback(SharedElementCallback callback) {
mExitTransitionCallback = callback;
}
/**
* Sets the Transition that will be used to move Views into the initial scene. The entering
* Views will be those that are regular Views or ViewGroups that have
* {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
* {@link android.transition.Visibility} as entering is governed by changing visibility from
* {@link View#INVISIBLE} to {@link View#VISIBLE}. If transition
is null,
* entering Views will remain unaffected.
*
* @param transition The Transition to use to move Views into the initial Scene.
*/
public void setEnterTransition(Object transition) {
mEnterTransition = transition;
}
/**
* Returns the Transition that will be used to move Views into the initial scene. The entering
* Views will be those that are regular Views or ViewGroups that have
* {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
* {@link android.transition.Visibility} as entering is governed by changing visibility from
* {@link View#INVISIBLE} to {@link View#VISIBLE}.
*
* @return the Transition to use to move Views into the initial Scene.
*/
public Object getEnterTransition() {
return mEnterTransition;
}
/**
* Sets the Transition that will be used to move Views out of the scene when the Fragment is
* preparing to be removed, hidden, or detached because of popping the back stack. The exiting
* Views will be those that are regular Views or ViewGroups that have
* {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
* {@link android.transition.Visibility} as entering is governed by changing visibility from
* {@link View#VISIBLE} to {@link View#INVISIBLE}. If transition
is null,
* entering Views will remain unaffected. If nothing is set, the default will be to
* use the same value as set in {@link #setEnterTransition(Object)}.
*
* @param transition The Transition to use to move Views out of the Scene when the Fragment
* is preparing to close. transition
must be an
* android.transition.Transition.
*/
public void setReturnTransition(Object transition) {
mReturnTransition = transition;
}
/**
* Returns the Transition that will be used to move Views out of the scene when the Fragment is
* preparing to be removed, hidden, or detached because of popping the back stack. The exiting
* Views will be those that are regular Views or ViewGroups that have
* {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
* {@link android.transition.Visibility} as entering is governed by changing visibility from
* {@link View#VISIBLE} to {@link View#INVISIBLE}. If transition
is null,
* entering Views will remain unaffected.
*
* @return the Transition to use to move Views out of the Scene when the Fragment
* is preparing to close.
*/
public Object getReturnTransition() {
return mReturnTransition == USE_DEFAULT_TRANSITION ? getEnterTransition()
: mReturnTransition;
}
/**
* Sets the Transition that will be used to move Views out of the scene when the
* fragment is removed, hidden, or detached when not popping the back stack.
* The exiting Views will be those that are regular Views or ViewGroups that
* have {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
* {@link android.transition.Visibility} as exiting is governed by changing visibility
* from {@link View#VISIBLE} to {@link View#INVISIBLE}. If transition is null, the views will
* remain unaffected.
*
* @param transition The Transition to use to move Views out of the Scene when the Fragment
* is being closed not due to popping the back stack. transition
* must be an android.transition.Transition.
*/
public void setExitTransition(Object transition) {
mExitTransition = transition;
}
/**
* Returns the Transition that will be used to move Views out of the scene when the
* fragment is removed, hidden, or detached when not popping the back stack.
* The exiting Views will be those that are regular Views or ViewGroups that
* have {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
* {@link android.transition.Visibility} as exiting is governed by changing visibility
* from {@link View#VISIBLE} to {@link View#INVISIBLE}. If transition is null, the views will
* remain unaffected.
*
* @return the Transition to use to move Views out of the Scene when the Fragment
* is being closed not due to popping the back stack.
*/
public Object getExitTransition() {
return mExitTransition;
}
/**
* Sets the Transition that will be used to move Views in to the scene when returning due
* to popping a back stack. The entering Views will be those that are regular Views
* or ViewGroups that have {@link ViewGroup#isTransitionGroup} return true. Typical Transitions
* will extend {@link android.transition.Visibility} as exiting is governed by changing
* visibility from {@link View#VISIBLE} to {@link View#INVISIBLE}. If transition is null,
* the views will remain unaffected. If nothing is set, the default will be to use the same
* transition as {@link #setExitTransition(Object)}.
*
* @param transition The Transition to use to move Views into the scene when reentering from a
* previously-started Activity. transition
* must be an android.transition.Transition.
*/
public void setReenterTransition(Object transition) {
mReenterTransition = transition;
}
/**
* Returns the Transition that will be used to move Views in to the scene when returning due
* to popping a back stack. The entering Views will be those that are regular Views
* or ViewGroups that have {@link ViewGroup#isTransitionGroup} return true. Typical Transitions
* will extend {@link android.transition.Visibility} as exiting is governed by changing
* visibility from {@link View#VISIBLE} to {@link View#INVISIBLE}. If transition is null,
* the views will remain unaffected. If nothing is set, the default will be to use the same
* transition as {@link #setExitTransition(Object)}.
*
* @return the Transition to use to move Views into the scene when reentering from a
* previously-started Activity.
*/
public Object getReenterTransition() {
return mReenterTransition == USE_DEFAULT_TRANSITION ? getExitTransition()
: mReenterTransition;
}
/**
* Sets the Transition that will be used for shared elements transferred into the content
* Scene. Typical Transitions will affect size and location, such as
* {@link android.transition.ChangeBounds}. A null
* value will cause transferred shared elements to blink to the final position.
*
* @param transition The Transition to use for shared elements transferred into the content
* Scene. transition
must be an android.transition.Transition.
*/
public void setSharedElementEnterTransition(Object transition) {
mSharedElementEnterTransition = transition;
}
/**
* Returns the Transition that will be used for shared elements transferred into the content
* Scene. Typical Transitions will affect size and location, such as
* {@link android.transition.ChangeBounds}. A null
* value will cause transferred shared elements to blink to the final position.
*
* @return The Transition to use for shared elements transferred into the content
* Scene.
*/
public Object getSharedElementEnterTransition() {
return mSharedElementEnterTransition;
}
/**
* Sets the Transition that will be used for shared elements transferred back during a
* pop of the back stack. This Transition acts in the leaving Fragment.
* Typical Transitions will affect size and location, such as
* {@link android.transition.ChangeBounds}. A null
* value will cause transferred shared elements to blink to the final position.
* If no value is set, the default will be to use the same value as
* {@link #setSharedElementEnterTransition(Object)}.
*
* @param transition The Transition to use for shared elements transferred out of the content
* Scene. transition
must be an android.transition.Transition.
*/
public void setSharedElementReturnTransition(Object transition) {
mSharedElementReturnTransition = transition;
}
/**
* Return the Transition that will be used for shared elements transferred back during a
* pop of the back stack. This Transition acts in the leaving Fragment.
* Typical Transitions will affect size and location, such as
* {@link android.transition.ChangeBounds}. A null
* value will cause transferred shared elements to blink to the final position.
* If no value is set, the default will be to use the same value as
* {@link #setSharedElementEnterTransition(Object)}.
*
* @return The Transition to use for shared elements transferred out of the content
* Scene.
*/
public Object getSharedElementReturnTransition() {
return mSharedElementReturnTransition == USE_DEFAULT_TRANSITION ?
getSharedElementEnterTransition() : mSharedElementReturnTransition;
}
/**
* Sets whether the the exit transition and enter transition overlap or not.
* When true, the enter transition will start as soon as possible. When false, the
* enter transition will wait until the exit transition completes before starting.
*
* @param allow true to start the enter transition when possible or false to
* wait until the exiting transition completes.
*/
public void setAllowEnterTransitionOverlap(boolean allow) {
mAllowEnterTransitionOverlap = allow;
}
/**
* Returns whether the the exit transition and enter transition overlap or not.
* When true, the enter transition will start as soon as possible. When false, the
* enter transition will wait until the exit transition completes before starting.
*
* @return true when the enter transition should start as soon as possible or false to
* when it should wait until the exiting transition completes.
*/
public boolean getAllowEnterTransitionOverlap() {
return (mAllowEnterTransitionOverlap == null) ? true : mAllowEnterTransitionOverlap;
}
/**
* Sets whether the the return transition and reenter transition overlap or not.
* When true, the reenter transition will start as soon as possible. When false, the
* reenter transition will wait until the return transition completes before starting.
*
* @param allow true to start the reenter transition when possible or false to wait until the
* return transition completes.
*/
public void setAllowReturnTransitionOverlap(boolean allow) {
mAllowReturnTransitionOverlap = allow;
}
/**
* Returns whether the the return transition and reenter transition overlap or not.
* When true, the reenter transition will start as soon as possible. When false, the
* reenter transition will wait until the return transition completes before starting.
*
* @return true to start the reenter transition when possible or false to wait until the
* return transition completes.
*/
public boolean getAllowReturnTransitionOverlap() {
return (mAllowReturnTransitionOverlap == null) ? true : mAllowReturnTransitionOverlap;
}
/**
* Print the Fragments's state into the given stream.
*
* @param prefix Text to print at the front of each line.
* @param fd The raw file descriptor that the dump is being sent to.
* @param writer The PrintWriter to which you should dump your state. This will be
* closed for you after you return.
* @param args additional arguments to the dump request.
*/
public void dump(String prefix, FileDescriptor fd, PrintWriter writer, String[] args) {
writer.print(prefix); writer.print("mFragmentId=#");
writer.print(Integer.toHexString(mFragmentId));
writer.print(" mContainerId=#");
writer.print(Integer.toHexString(mContainerId));
writer.print(" mTag="); writer.println(mTag);
writer.print(prefix); writer.print("mState="); writer.print(mState);
writer.print(" mIndex="); writer.print(mIndex);
writer.print(" mWho="); writer.print(mWho);
writer.print(" mBackStackNesting="); writer.println(mBackStackNesting);
writer.print(prefix); writer.print("mAdded="); writer.print(mAdded);
writer.print(" mRemoving="); writer.print(mRemoving);
writer.print(" mFromLayout="); writer.print(mFromLayout);
writer.print(" mInLayout="); writer.println(mInLayout);
writer.print(prefix); writer.print("mHidden="); writer.print(mHidden);
writer.print(" mDetached="); writer.print(mDetached);
writer.print(" mMenuVisible="); writer.print(mMenuVisible);
writer.print(" mHasMenu="); writer.println(mHasMenu);
writer.print(prefix); writer.print("mRetainInstance="); writer.print(mRetainInstance);
writer.print(" mRetaining="); writer.print(mRetaining);
writer.print(" mUserVisibleHint="); writer.println(mUserVisibleHint);
if (mFragmentManager != null) {
writer.print(prefix); writer.print("mFragmentManager=");
writer.println(mFragmentManager);
}
if (mHost != null) {
writer.print(prefix); writer.print("mHost=");
writer.println(mHost);
}
if (mParentFragment != null) {
writer.print(prefix); writer.print("mParentFragment=");
writer.println(mParentFragment);
}
if (mArguments != null) {
writer.print(prefix); writer.print("mArguments="); writer.println(mArguments);
}
if (mSavedFragmentState != null) {
writer.print(prefix); writer.print("mSavedFragmentState=");
writer.println(mSavedFragmentState);
}
if (mSavedViewState != null) {
writer.print(prefix); writer.print("mSavedViewState=");
writer.println(mSavedViewState);
}
if (mTarget != null) {
writer.print(prefix); writer.print("mTarget="); writer.print(mTarget);
writer.print(" mTargetRequestCode=");
writer.println(mTargetRequestCode);
}
if (mNextAnim != 0) {
writer.print(prefix); writer.print("mNextAnim="); writer.println(mNextAnim);
}
if (mContainer != null) {
writer.print(prefix); writer.print("mContainer="); writer.println(mContainer);
}
if (mView != null) {
writer.print(prefix); writer.print("mView="); writer.println(mView);
}
if (mInnerView != null) {
writer.print(prefix); writer.print("mInnerView="); writer.println(mView);
}
if (mAnimatingAway != null) {
writer.print(prefix); writer.print("mAnimatingAway="); writer.println(mAnimatingAway);
writer.print(prefix); writer.print("mStateAfterAnimating=");
writer.println(mStateAfterAnimating);
}
if (mLoaderManager != null) {
writer.print(prefix); writer.println("Loader Manager:");
mLoaderManager.dump(prefix + " ", fd, writer, args);
}
if (mChildFragmentManager != null) {
writer.print(prefix); writer.println("Child " + mChildFragmentManager + ":");
mChildFragmentManager.dump(prefix + " ", fd, writer, args);
}
}
Fragment findFragmentByWho(String who) {
if (who.equals(mWho)) {
return this;
}
if (mChildFragmentManager != null) {
return mChildFragmentManager.findFragmentByWho(who);
}
return null;
}
void instantiateChildFragmentManager() {
mChildFragmentManager = new FragmentManagerImpl();
mChildFragmentManager.attachController(mHost, new FragmentContainer() {
@Override
@Nullable
public View onFindViewById(int id) {
if (mView == null) {
throw new IllegalStateException("Fragment does not have a view");
}
return mView.findViewById(id);
}
@Override
public boolean onHasView() {
return (mView != null);
}
}, this);
}
void performCreate(Bundle savedInstanceState) {
if (mChildFragmentManager != null) {
mChildFragmentManager.noteStateNotSaved();
}
mState = CREATED;
mCalled = false;
onCreate(savedInstanceState);
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onCreate()");
}
}
View performCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
if (mChildFragmentManager != null) {
mChildFragmentManager.noteStateNotSaved();
}
return onCreateView(inflater, container, savedInstanceState);
}
void performActivityCreated(Bundle savedInstanceState) {
if (mChildFragmentManager != null) {
mChildFragmentManager.noteStateNotSaved();
}
mState = ACTIVITY_CREATED;
mCalled = false;
onActivityCreated(savedInstanceState);
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onActivityCreated()");
}
if (mChildFragmentManager != null) {
mChildFragmentManager.dispatchActivityCreated();
}
}
void performStart() {
if (mChildFragmentManager != null) {
mChildFragmentManager.noteStateNotSaved();
mChildFragmentManager.execPendingActions();
}
mState = STARTED;
mCalled = false;
onStart();
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onStart()");
}
if (mChildFragmentManager != null) {
mChildFragmentManager.dispatchStart();
}
if (mLoaderManager != null) {
mLoaderManager.doReportStart();
}
}
void performResume() {
if (mChildFragmentManager != null) {
mChildFragmentManager.noteStateNotSaved();
mChildFragmentManager.execPendingActions();
}
mState = RESUMED;
mCalled = false;
onResume();
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onResume()");
}
if (mChildFragmentManager != null) {
mChildFragmentManager.dispatchResume();
mChildFragmentManager.execPendingActions();
}
}
void performMultiWindowModeChanged(boolean isInMultiWindowMode) {
onMultiWindowModeChanged(isInMultiWindowMode);
if (mChildFragmentManager != null) {
mChildFragmentManager.dispatchMultiWindowModeChanged(isInMultiWindowMode);
}
}
void performPictureInPictureModeChanged(boolean isInPictureInPictureMode) {
onPictureInPictureModeChanged(isInPictureInPictureMode);
if (mChildFragmentManager != null) {
mChildFragmentManager.dispatchPictureInPictureModeChanged(isInPictureInPictureMode);
}
}
void performConfigurationChanged(Configuration newConfig) {
onConfigurationChanged(newConfig);
if (mChildFragmentManager != null) {
mChildFragmentManager.dispatchConfigurationChanged(newConfig);
}
}
void performLowMemory() {
onLowMemory();
if (mChildFragmentManager != null) {
mChildFragmentManager.dispatchLowMemory();
}
}
/*
void performTrimMemory(int level) {
onTrimMemory(level);
if (mChildFragmentManager != null) {
mChildFragmentManager.dispatchTrimMemory(level);
}
}
*/
boolean performCreateOptionsMenu(Menu menu, MenuInflater inflater) {
boolean show = false;
if (!mHidden) {
if (mHasMenu && mMenuVisible) {
show = true;
onCreateOptionsMenu(menu, inflater);
}
if (mChildFragmentManager != null) {
show |= mChildFragmentManager.dispatchCreateOptionsMenu(menu, inflater);
}
}
return show;
}
boolean performPrepareOptionsMenu(Menu menu) {
boolean show = false;
if (!mHidden) {
if (mHasMenu && mMenuVisible) {
show = true;
onPrepareOptionsMenu(menu);
}
if (mChildFragmentManager != null) {
show |= mChildFragmentManager.dispatchPrepareOptionsMenu(menu);
}
}
return show;
}
boolean performOptionsItemSelected(MenuItem item) {
if (!mHidden) {
if (mHasMenu && mMenuVisible) {
if (onOptionsItemSelected(item)) {
return true;
}
}
if (mChildFragmentManager != null) {
if (mChildFragmentManager.dispatchOptionsItemSelected(item)) {
return true;
}
}
}
return false;
}
boolean performContextItemSelected(MenuItem item) {
if (!mHidden) {
if (onContextItemSelected(item)) {
return true;
}
if (mChildFragmentManager != null) {
if (mChildFragmentManager.dispatchContextItemSelected(item)) {
return true;
}
}
}
return false;
}
void performOptionsMenuClosed(Menu menu) {
if (!mHidden) {
if (mHasMenu && mMenuVisible) {
onOptionsMenuClosed(menu);
}
if (mChildFragmentManager != null) {
mChildFragmentManager.dispatchOptionsMenuClosed(menu);
}
}
}
void performSaveInstanceState(Bundle outState) {
onSaveInstanceState(outState);
if (mChildFragmentManager != null) {
Parcelable p = mChildFragmentManager.saveAllState();
if (p != null) {
outState.putParcelable(FragmentActivity.FRAGMENTS_TAG, p);
}
}
}
void performPause() {
if (mChildFragmentManager != null) {
mChildFragmentManager.dispatchPause();
}
mState = STARTED;
mCalled = false;
onPause();
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onPause()");
}
}
void performStop() {
if (mChildFragmentManager != null) {
mChildFragmentManager.dispatchStop();
}
mState = STOPPED;
mCalled = false;
onStop();
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onStop()");
}
}
void performReallyStop() {
if (mChildFragmentManager != null) {
mChildFragmentManager.dispatchReallyStop();
}
mState = ACTIVITY_CREATED;
if (mLoadersStarted) {
mLoadersStarted = false;
if (!mCheckedForLoaderManager) {
mCheckedForLoaderManager = true;
mLoaderManager = mHost.getLoaderManager(mWho, mLoadersStarted, false);
}
if (mLoaderManager != null) {
if (mHost.getRetainLoaders()) {
mLoaderManager.doRetain();
} else {
mLoaderManager.doStop();
}
}
}
}
void performDestroyView() {
if (mChildFragmentManager != null) {
mChildFragmentManager.dispatchDestroyView();
}
mState = CREATED;
mCalled = false;
onDestroyView();
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onDestroyView()");
}
if (mLoaderManager != null) {
mLoaderManager.doReportNextStart();
}
}
void performDestroy() {
if (mChildFragmentManager != null) {
mChildFragmentManager.dispatchDestroy();
}
mState = INITIALIZING;
mCalled = false;
onDestroy();
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onDestroy()");
}
mChildFragmentManager = null;
}
void performDetach() {
mCalled = false;
onDetach();
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onDetach()");
}
// Destroy the child FragmentManager if we still have it here.
// We won't unless we're retaining our instance and if we do,
// our child FragmentManager instance state will have already been saved.
if (mChildFragmentManager != null) {
if (!mRetaining) {
throw new IllegalStateException("Child FragmentManager of " + this + " was not "
+ " destroyed and this fragment is not retaining instance");
}
mChildFragmentManager.dispatchDestroy();
mChildFragmentManager = null;
}
}
}