/* * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.security.cert; import java.util.Arrays; import java.security.PublicKey; import java.security.NoSuchAlgorithmException; import java.security.NoSuchProviderException; import java.security.InvalidKeyException; import java.security.SignatureException; import sun.security.x509.X509CertImpl; /** *
Abstract class for managing a variety of identity certificates. * An identity certificate is a binding of a principal to a public key which * is vouched for by another principal. (A principal represents * an entity such as an individual user, a group, or a corporation.) *
* This class is an abstraction for certificates that have different * formats but important common uses. For example, different types of * certificates, such as X.509 and PGP, share general certificate * functionality (like encoding and verifying) and * some types of information (like a public key). *
* X.509, PGP, and SDSI certificates can all be implemented by
* subclassing the Certificate class, even though they contain different
* sets of information, and they store and retrieve the information in
* different ways.
*
* @see X509Certificate
* @see CertificateFactory
*
* @author Hemma Prafullchandra
*/
public abstract class Certificate implements java.io.Serializable {
private static final long serialVersionUID = -3585440601605666277L;
// the certificate type
private final String type;
/**
* Creates a certificate of the specified type.
*
* @param type the standard name of the certificate type.
* See the CertificateFactory section in the
* Java Cryptography Architecture Standard Algorithm Name Documentation
* for information about standard certificate types.
*/
protected Certificate(String type) {
this.type = type;
}
/**
* Returns the type of this certificate.
*
* @return the type of this certificate.
*/
public final String getType() {
return this.type;
}
/**
* Compares this certificate for equality with the specified
* object. If the other
object is an
* instanceof
Certificate
, then
* its encoded form is retrieved and compared with the
* encoded form of this certificate.
*
* @param other the object to test for equality with this certificate.
* @return true iff the encoded forms of the two certificates
* match, false otherwise.
*/
public boolean equals(Object other) {
if (this == other) {
return true;
}
if (!(other instanceof Certificate)) {
return false;
}
try {
byte[] thisCert = X509CertImpl.getEncodedInternal(this);
byte[] otherCert = X509CertImpl.getEncodedInternal((Certificate)other);
return Arrays.equals(thisCert, otherCert);
} catch (CertificateException e) {
return false;
}
}
/**
* Returns a hashcode value for this certificate from its
* encoded form.
*
* @return the hashcode value.
*/
public int hashCode() {
int retval = 0;
try {
byte[] certData = X509CertImpl.getEncodedInternal(this);
for (int i = 1; i < certData.length; i++) {
retval += certData[i] * i;
}
return retval;
} catch (CertificateException e) {
return retval;
}
}
/**
* Returns the encoded form of this certificate. It is
* assumed that each certificate type would have only a single
* form of encoding; for example, X.509 certificates would
* be encoded as ASN.1 DER.
*
* @return the encoded form of this certificate
*
* @exception CertificateEncodingException if an encoding error occurs.
*/
public abstract byte[] getEncoded()
throws CertificateEncodingException;
/**
* Verifies that this certificate was signed using the
* private key that corresponds to the specified public key.
*
* @param key the PublicKey used to carry out the verification.
*
* @exception NoSuchAlgorithmException on unsupported signature
* algorithms.
* @exception InvalidKeyException on incorrect key.
* @exception NoSuchProviderException if there's no default provider.
* @exception SignatureException on signature errors.
* @exception CertificateException on encoding errors.
*/
public abstract void verify(PublicKey key)
throws CertificateException, NoSuchAlgorithmException,
InvalidKeyException, NoSuchProviderException,
SignatureException;
/**
* Verifies that this certificate was signed using the
* private key that corresponds to the specified public key.
* This method uses the signature verification engine
* supplied by the specified provider.
*
* @param key the PublicKey used to carry out the verification.
* @param sigProvider the name of the signature provider.
*
* @exception NoSuchAlgorithmException on unsupported signature
* algorithms.
* @exception InvalidKeyException on incorrect key.
* @exception NoSuchProviderException on incorrect provider.
* @exception SignatureException on signature errors.
* @exception CertificateException on encoding errors.
*/
public abstract void verify(PublicKey key, String sigProvider)
throws CertificateException, NoSuchAlgorithmException,
InvalidKeyException, NoSuchProviderException,
SignatureException;
/**
* Returns a string representation of this certificate.
*
* @return a string representation of this certificate.
*/
public abstract String toString();
/**
* Gets the public key from this certificate.
*
* @return the public key.
*/
public abstract PublicKey getPublicKey();
/**
* Alternate Certificate class for serialization.
* @since 1.3
*/
protected static class CertificateRep implements java.io.Serializable {
private static final long serialVersionUID = -8563758940495660020L;
private String type;
private byte[] data;
/**
* Construct the alternate Certificate class with the Certificate
* type and Certificate encoding bytes.
*
*
* * @param type the standard name of the Certificate type.
* * @param data the Certificate data. */ protected CertificateRep(String type, byte[] data) { this.type = type; this.data = data; } /** * Resolve the Certificate Object. * *
* * @return the resolved Certificate Object * * @throws java.io.ObjectStreamException if the Certificate * could not be resolved */ protected Object readResolve() throws java.io.ObjectStreamException { try { CertificateFactory cf = CertificateFactory.getInstance(type); return cf.generateCertificate (new java.io.ByteArrayInputStream(data)); } catch (CertificateException e) { throw new java.io.NotSerializableException ("java.security.cert.Certificate: " + type + ": " + e.getMessage()); } } } /** * Replace the Certificate to be serialized. * * @return the alternate Certificate object to be serialized * * @throws java.io.ObjectStreamException if a new object representing * this Certificate could not be created * @since 1.3 */ protected Object writeReplace() throws java.io.ObjectStreamException { try { return new CertificateRep(type, getEncoded()); } catch (CertificateException e) { throw new java.io.NotSerializableException ("java.security.cert.Certificate: " + type + ": " + e.getMessage()); } } }