/*
* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.security.cert;
import java.security.InvalidAlgorithmParameterException;
import java.security.KeyStore;
import java.security.KeyStoreException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Set;
/**
* Parameters used as input for the PKIX CertPathValidator
* algorithm.
*
* A PKIX CertPathValidator
uses these parameters to
* validate a CertPath
according to the PKIX certification path
* validation algorithm.
*
*
To instantiate a PKIXParameters
object, an
* application must specify one or more most-trusted CAs as defined by
* the PKIX certification path validation algorithm. The most-trusted CAs
* can be specified using one of two constructors. An application
* can call {@link #PKIXParameters(Set) PKIXParameters(Set)},
* specifying a Set
of TrustAnchor
objects, each
* of which identify a most-trusted CA. Alternatively, an application can call
* {@link #PKIXParameters(KeyStore) PKIXParameters(KeyStore)}, specifying a
* KeyStore
instance containing trusted certificate entries, each
* of which will be considered as a most-trusted CA.
*
* Once a PKIXParameters
object has been created, other parameters
* can be specified (by calling {@link #setInitialPolicies setInitialPolicies}
* or {@link #setDate setDate}, for instance) and then the
* PKIXParameters
is passed along with the CertPath
* to be validated to {@link CertPathValidator#validate
* CertPathValidator.validate}.
*
* Any parameter that is not set (or is set to null
) will
* be set to the default value for that parameter. The default value for the
* date
parameter is null
, which indicates
* the current time when the path is validated. The default for the
* remaining parameters is the least constrained.
*
* Concurrent Access *
* Unless otherwise specified, the methods defined in this class are not
* thread-safe. Multiple threads that need to access a single
* object concurrently should synchronize amongst themselves and
* provide the necessary locking. Multiple threads each manipulating
* separate objects need not synchronize.
*
* @see CertPathValidator
*
* @since 1.4
* @author Sean Mullan
* @author Yassir Elley
*/
public class PKIXParameters implements CertPathParameters {
private Set
* Note that the
* Note that the
* Note that the
* Note that the
* When a When a
* Note that the PKIX certification path validation algorithm specifies
* that any policy qualifier in a certificate policies extension that is
* marked critical must be processed and validated. Otherwise the
* certification path must be rejected. If the policyQualifiersRejected flag
* is set to false, it is up to the application to validate all policy
* qualifiers in this manner in order to be PKIX compliant.
*
* @param qualifiersRejected the new value of the PolicyQualifiersRejected
* flag
* @see #getPolicyQualifiersRejected
* @see PolicyQualifierInfo
*/
public void setPolicyQualifiersRejected(boolean qualifiersRejected) {
policyQualifiersRejected = qualifiersRejected;
}
/**
* Gets the PolicyQualifiersRejected flag. If this flag is true,
* certificates that include policy qualifiers in a certificate policies
* extension that is marked critical are rejected.
* If the flag is false, certificates are not rejected on this basis.
*
* When a
* Note that the
* Note that the
* Each
* This method allows sophisticated applications to extend a PKIX
*
* Regardless of whether these additional
* Note that the
* Note that the Note that the Note that the PKIXParameters
with the specified
* Set
of most-trusted CAs. Each element of the
* set is a {@link TrustAnchor TrustAnchor}.
* Set
is copied to protect against
* subsequent modifications.
*
* @param trustAnchors a Set
of TrustAnchor
s
* @throws InvalidAlgorithmParameterException if the specified
* Set
is empty (trustAnchors.isEmpty() == true)
* @throws NullPointerException if the specified Set
is
* null
* @throws ClassCastException if any of the elements in the Set
* are not of type java.security.cert.TrustAnchor
*/
public PKIXParameters(SetPKIXParameters
that
* populates the set of most-trusted CAs from the trusted
* certificate entries contained in the specified KeyStore
.
* Only keystore entries that contain trusted X509Certificates
* are considered; all other certificate types are ignored.
*
* @param keystore a KeyStore
from which the set of
* most-trusted CAs will be populated
* @throws KeyStoreException if the keystore has not been initialized
* @throws InvalidAlgorithmParameterException if the keystore does
* not contain at least one trusted certificate entry
* @throws NullPointerException if the keystore is null
*/
public PKIXParameters(KeyStore keystore)
throws KeyStoreException, InvalidAlgorithmParameterException
{
if (keystore == null)
throw new NullPointerException("the keystore parameter must be " +
"non-null");
SetSet
of the most-trusted
* CAs.
*
* @return an immutable Set
of TrustAnchor
s
* (never null
)
*
* @see #setTrustAnchors
*/
public SetSet
of most-trusted CAs.
* Set
is copied to protect against
* subsequent modifications.
*
* @param trustAnchors a Set
of TrustAnchor
s
* @throws InvalidAlgorithmParameterException if the specified
* Set
is empty (trustAnchors.isEmpty() == true)
* @throws NullPointerException if the specified Set
is
* null
* @throws ClassCastException if any of the elements in the set
* are not of type java.security.cert.TrustAnchor
*
* @see #getTrustAnchors
*/
public void setTrustAnchors(SetSet
of initial
* policy identifiers (OID strings), indicating that any one of these
* policies would be acceptable to the certificate user for the purposes of
* certification path processing. The default return value is an empty
* Set
, which is interpreted as meaning that any policy would
* be acceptable.
*
* @return an immutable Set
of initial policy OIDs in
* String
format, or an empty Set
(implying any
* policy is acceptable). Never returns null
.
*
* @see #setInitialPolicies
*/
public SetSet
of initial policy identifiers
* (OID strings), indicating that any one of these
* policies would be acceptable to the certificate user for the purposes of
* certification path processing. By default, any policy is acceptable
* (i.e. all policies), so a user that wants to allow any policy as
* acceptable does not need to call this method, or can call it
* with an empty Set
(or null
).
* Set
is copied to protect against
* subsequent modifications.
*
* @param initialPolicies a Set
of initial policy
* OIDs in String
format (or null
)
* @throws ClassCastException if any of the elements in the set are
* not of type String
*
* @see #getInitialPolicies
*/
public void setInitialPolicies(SetCertStore
s to be used in finding
* certificates and CRLs. May be null
, in which case
* no CertStore
s will be used. The first
* CertStore
s in the list may be preferred to those that
* appear later.
* List
is copied to protect against
* subsequent modifications.
*
* @param stores a List
of CertStore
s (or
* null
)
* @throws ClassCastException if any of the elements in the list are
* not of type java.security.cert.CertStore
*
* @see #getCertStores
*/
public void setCertStores(ListCertStore
to the end of the list of
* CertStore
s used in finding certificates and CRLs.
*
* @param store the CertStore
to add. If null
,
* the store is ignored (not added to list).
*/
public void addCertStore(CertStore store) {
if (store != null) {
this.certStores.add(store);
}
}
/**
* Returns an immutable List
of CertStore
s that
* are used to find certificates and CRLs.
*
* @return an immutable List
of CertStore
s
* (may be empty, but never null
)
*
* @see #setCertStores
*/
public ListPKIXParameters
object is created, this flag is set
* to true. This setting reflects the most common strategy for checking
* revocation, since each service provider must support revocation
* checking to be PKIX compliant. Sophisticated applications should set
* this flag to false when it is not practical to use a PKIX service
* provider's default revocation checking mechanism or when an alternative
* revocation checking mechanism is to be substituted (by also calling the
* {@link #addCertPathChecker addCertPathChecker} or {@link
* #setCertPathCheckers setCertPathCheckers} methods).
*
* @param val the new value of the RevocationEnabled flag
*/
public void setRevocationEnabled(boolean val) {
revocationEnabled = val;
}
/**
* Checks the RevocationEnabled flag. If this flag is true, the default
* revocation checking mechanism of the underlying PKIX service provider
* will be used. If this flag is false, the default revocation checking
* mechanism will be disabled (not used). See the {@link
* #setRevocationEnabled setRevocationEnabled} method for more details on
* setting the value of this flag.
*
* @return the current value of the RevocationEnabled flag
*/
public boolean isRevocationEnabled() {
return revocationEnabled;
}
/**
* Sets the ExplicitPolicyRequired flag. If this flag is true, an
* acceptable policy needs to be explicitly identified in every certificate.
* By default, the ExplicitPolicyRequired flag is false.
*
* @param val true
if explicit policy is to be required,
* false
otherwise
*/
public void setExplicitPolicyRequired(boolean val) {
explicitPolicyRequired = val;
}
/**
* Checks if explicit policy is required. If this flag is true, an
* acceptable policy needs to be explicitly identified in every certificate.
* By default, the ExplicitPolicyRequired flag is false.
*
* @return true
if explicit policy is required,
* false
otherwise
*/
public boolean isExplicitPolicyRequired() {
return explicitPolicyRequired;
}
/**
* Sets the PolicyMappingInhibited flag. If this flag is true, policy
* mapping is inhibited. By default, policy mapping is not inhibited (the
* flag is false).
*
* @param val true
if policy mapping is to be inhibited,
* false
otherwise
*/
public void setPolicyMappingInhibited(boolean val) {
policyMappingInhibited = val;
}
/**
* Checks if policy mapping is inhibited. If this flag is true, policy
* mapping is inhibited. By default, policy mapping is not inhibited (the
* flag is false).
*
* @return true if policy mapping is inhibited, false otherwise
*/
public boolean isPolicyMappingInhibited() {
return policyMappingInhibited;
}
/**
* Sets state to determine if the any policy OID should be processed
* if it is included in a certificate. By default, the any policy OID
* is not inhibited ({@link #isAnyPolicyInhibited isAnyPolicyInhibited()}
* returns false
).
*
* @param val true
if the any policy OID is to be
* inhibited, false
otherwise
*/
public void setAnyPolicyInhibited(boolean val) {
anyPolicyInhibited = val;
}
/**
* Checks whether the any policy OID should be processed if it
* is included in a certificate.
*
* @return true
if the any policy OID is inhibited,
* false
otherwise
*/
public boolean isAnyPolicyInhibited() {
return anyPolicyInhibited;
}
/**
* Sets the PolicyQualifiersRejected flag. If this flag is true,
* certificates that include policy qualifiers in a certificate
* policies extension that is marked critical are rejected.
* If the flag is false, certificates are not rejected on this basis.
*
* PKIXParameters
object is created, this flag is
* set to true. This setting reflects the most common (and simplest)
* strategy for processing policy qualifiers. Applications that want to use
* a more sophisticated policy must set this flag to false.
* PKIXParameters
object is created, this flag is
* set to true. This setting reflects the most common (and simplest)
* strategy for processing policy qualifiers. Applications that want to use
* a more sophisticated policy must set this flag to false.
*
* @return the current value of the PolicyQualifiersRejected flag
* @see #setPolicyQualifiersRejected
*/
public boolean getPolicyQualifiersRejected() {
return policyQualifiersRejected;
}
/**
* Returns the time for which the validity of the certification path
* should be determined. If null
, the current time is used.
* Date
returned is copied to protect against
* subsequent modifications.
*
* @return the Date
, or null
if not set
* @see #setDate
*/
public Date getDate() {
if (date == null)
return null;
else
return (Date) this.date.clone();
}
/**
* Sets the time for which the validity of the certification path
* should be determined. If null
, the current time is used.
* Date
supplied here is copied to protect
* against subsequent modifications.
*
* @param date the Date
, or null
for the
* current time
* @see #getDate
*/
public void setDate(Date date) {
if (date != null)
this.date = (Date) date.clone();
else
date = null;
}
/**
* Sets a List
of additional certification path checkers. If
* the specified List
contains an object that is not a
* PKIXCertPathChecker
, it is ignored.
* PKIXCertPathChecker
specified implements
* additional checks on a certificate. Typically, these are checks to
* process and verify private extensions contained in certificates.
* Each PKIXCertPathChecker
should be instantiated with any
* initialization parameters needed to execute the check.
* CertPathValidator
or CertPathBuilder
.
* Each of the specified PKIXCertPathChecker
s will be called,
* in turn, by a PKIX CertPathValidator
or
* CertPathBuilder
for each certificate processed or
* validated.
* PKIXCertPathChecker
s
* are set, a PKIX CertPathValidator
or
* CertPathBuilder
must perform all of the required PKIX
* checks on each certificate. The one exception to this rule is if the
* RevocationEnabled flag is set to false (see the {@link
* #setRevocationEnabled setRevocationEnabled} method).
* List
supplied here is copied and each
* PKIXCertPathChecker
in the list is cloned to protect
* against subsequent modifications.
*
* @param checkers a List
of PKIXCertPathChecker
s.
* May be null
, in which case no additional checkers will be
* used.
* @throws ClassCastException if any of the elements in the list
* are not of type java.security.cert.PKIXCertPathChecker
* @see #getCertPathCheckers
*/
public void setCertPathCheckers(ListList
of certification path checkers.
* The returned List
is immutable, and each
* PKIXCertPathChecker
in the List
is cloned
* to protect against subsequent modifications.
*
* @return an immutable List
of
* PKIXCertPathChecker
s (may be empty, but not
* null
)
* @see #setCertPathCheckers
*/
public ListPKIXCertPathChecker
to the list of certification
* path checkers. See the {@link #setCertPathCheckers setCertPathCheckers}
* method for more details.
* PKIXCertPathChecker
is cloned to protect
* against subsequent modifications.
*
* @param checker a PKIXCertPathChecker
to add to the list of
* checks. If null
, the checker is ignored (not added to list).
*/
public void addCertPathChecker(PKIXCertPathChecker checker) {
if (checker != null) {
certPathCheckers.add((PKIXCertPathChecker)checker.clone());
}
}
/**
* Returns the signature provider's name, or null
* if not set.
*
* @return the signature provider's name (or null
)
* @see #setSigProvider
*/
public String getSigProvider() {
return this.sigProvider;
}
/**
* Sets the signature provider's name. The specified provider will be
* preferred when creating {@link java.security.Signature Signature}
* objects. If null
or not set, the first provider found
* supporting the algorithm will be used.
*
* @param sigProvider the signature provider's name (or null
)
* @see #getSigProvider
*/
public void setSigProvider(String sigProvider) {
this.sigProvider = sigProvider;
}
/**
* Returns the required constraints on the target certificate.
* The constraints are returned as an instance of CertSelector
.
* If null
, no constraints are defined.
*
* CertSelector
returned is cloned
* to protect against subsequent modifications.
*
* @return a CertSelector
specifying the constraints
* on the target certificate (or null
)
* @see #setTargetCertConstraints
*/
public CertSelector getTargetCertConstraints() {
if (certSelector != null) {
return (CertSelector) certSelector.clone();
} else {
return null;
}
}
/**
* Sets the required constraints on the target certificate.
* The constraints are specified as an instance of
* CertSelector
. If null
, no constraints are
* defined.
*
* CertSelector
specified is cloned
* to protect against subsequent modifications.
*
* @param selector a CertSelector
specifying the constraints
* on the target certificate (or null
)
* @see #getTargetCertConstraints
*/
public void setTargetCertConstraints(CertSelector selector) {
if (selector != null)
certSelector = (CertSelector) selector.clone();
else
certSelector = null;
}
/**
* Makes a copy of this PKIXParameters
object. Changes
* to the copy will not affect the original and vice versa.
*
* @return a copy of this PKIXParameters
object
*/
public Object clone() {
try {
PKIXParameters copy = (PKIXParameters)super.clone();
// must clone these because addCertStore, et al. modify them
if (certStores != null) {
copy.certStores = new ArrayList