/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util; /** * This class provides a skeletal implementation of the {@link List} * interface to minimize the effort required to implement this interface * backed by a "random access" data store (such as an array). For sequential * access data (such as a linked list), {@link AbstractSequentialList} should * be used in preference to this class. * *
To implement an unmodifiable list, the programmer needs only to extend * this class and provide implementations for the {@link #get(int)} and * {@link List#size() size()} methods. * *
To implement a modifiable list, the programmer must additionally * override the {@link #set(int, Object) set(int, E)} method (which otherwise * throws an {@code UnsupportedOperationException}). If the list is * variable-size the programmer must additionally override the * {@link #add(int, Object) add(int, E)} and {@link #remove(int)} methods. * *
The programmer should generally provide a void (no argument) and collection * constructor, as per the recommendation in the {@link Collection} interface * specification. * *
Unlike the other abstract collection implementations, the programmer does * not have to provide an iterator implementation; the iterator and * list iterator are implemented by this class, on top of the "random access" * methods: * {@link #get(int)}, * {@link #set(int, Object) set(int, E)}, * {@link #add(int, Object) add(int, E)} and * {@link #remove(int)}. * *
The documentation for each non-abstract method in this class describes its * implementation in detail. Each of these methods may be overridden if the * collection being implemented admits a more efficient implementation. * *
This class is a member of the
*
* Java Collections Framework.
*
* @author Josh Bloch
* @author Neal Gafter
* @since 1.2
*/
public abstract class AbstractList Lists that support this operation may place limitations on what
* elements may be added to this list. In particular, some
* lists will refuse to add null elements, and others will impose
* restrictions on the type of elements that may be added. List
* classes should clearly specify in their documentation any restrictions
* on what elements may be added.
*
* This implementation calls {@code add(size(), e)}.
*
* Note that this implementation throws an
* {@code UnsupportedOperationException} unless
* {@link #add(int, Object) add(int, E)} is overridden.
*
* @param e element to be appended to this list
* @return {@code true} (as specified by {@link Collection#add})
* @throws UnsupportedOperationException if the {@code add} operation
* is not supported by this list
* @throws ClassCastException if the class of the specified element
* prevents it from being added to this list
* @throws NullPointerException if the specified element is null and this
* list does not permit null elements
* @throws IllegalArgumentException if some property of this element
* prevents it from being added to this list
*/
public boolean add(E e) {
add(size(), e);
return true;
}
/**
* {@inheritDoc}
*
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
abstract public E get(int index);
/**
* {@inheritDoc}
*
* This implementation always throws an
* {@code UnsupportedOperationException}.
*
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E set(int index, E element) {
throw new UnsupportedOperationException();
}
/**
* {@inheritDoc}
*
* This implementation always throws an
* {@code UnsupportedOperationException}.
*
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public void add(int index, E element) {
throw new UnsupportedOperationException();
}
/**
* {@inheritDoc}
*
* This implementation always throws an
* {@code UnsupportedOperationException}.
*
* @throws UnsupportedOperationException {@inheritDoc}
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E remove(int index) {
throw new UnsupportedOperationException();
}
// Search Operations
/**
* {@inheritDoc}
*
* This implementation first gets a list iterator (with
* {@code listIterator()}). Then, it iterates over the list until the
* specified element is found or the end of the list is reached.
*
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public int indexOf(Object o) {
ListIterator This implementation first gets a list iterator that points to the end
* of the list (with {@code listIterator(size())}). Then, it iterates
* backwards over the list until the specified element is found, or the
* beginning of the list is reached.
*
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public int lastIndexOf(Object o) {
ListIterator This implementation calls {@code removeRange(0, size())}.
*
* Note that this implementation throws an
* {@code UnsupportedOperationException} unless {@code remove(int
* index)} or {@code removeRange(int fromIndex, int toIndex)} is
* overridden.
*
* @throws UnsupportedOperationException if the {@code clear} operation
* is not supported by this list
*/
public void clear() {
removeRange(0, size());
}
/**
* {@inheritDoc}
*
* This implementation gets an iterator over the specified collection
* and iterates over it, inserting the elements obtained from the
* iterator into this list at the appropriate position, one at a time,
* using {@code add(int, E)}.
* Many implementations will override this method for efficiency.
*
* Note that this implementation throws an
* {@code UnsupportedOperationException} unless
* {@link #add(int, Object) add(int, E)} is overridden.
*
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public boolean addAll(int index, Collection extends E> c) {
rangeCheckForAdd(index);
boolean modified = false;
for (E e : c) {
add(index++, e);
modified = true;
}
return modified;
}
// Iterators
/**
* Returns an iterator over the elements in this list in proper sequence.
*
* This implementation returns a straightforward implementation of the
* iterator interface, relying on the backing list's {@code size()},
* {@code get(int)}, and {@code remove(int)} methods.
*
* Note that the iterator returned by this method will throw an
* {@link UnsupportedOperationException} in response to its
* {@code remove} method unless the list's {@code remove(int)} method is
* overridden.
*
* This implementation can be made to throw runtime exceptions in the
* face of concurrent modification, as described in the specification
* for the (protected) {@link #modCount} field.
*
* @return an iterator over the elements in this list in proper sequence
*/
public Iterator This implementation returns {@code listIterator(0)}.
*
* @see #listIterator(int)
*/
public ListIterator This implementation returns a straightforward implementation of the
* {@code ListIterator} interface that extends the implementation of the
* {@code Iterator} interface returned by the {@code iterator()} method.
* The {@code ListIterator} implementation relies on the backing list's
* {@code get(int)}, {@code set(int, E)}, {@code add(int, E)}
* and {@code remove(int)} methods.
*
* Note that the list iterator returned by this implementation will
* throw an {@link UnsupportedOperationException} in response to its
* {@code remove}, {@code set} and {@code add} methods unless the
* list's {@code remove(int)}, {@code set(int, E)}, and
* {@code add(int, E)} methods are overridden.
*
* This implementation can be made to throw runtime exceptions in the
* face of concurrent modification, as described in the specification for
* the (protected) {@link #modCount} field.
*
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public ListIterator This implementation returns a list that subclasses
* {@code AbstractList}. The subclass stores, in private fields, the
* offset of the subList within the backing list, the size of the subList
* (which can change over its lifetime), and the expected
* {@code modCount} value of the backing list. There are two variants
* of the subclass, one of which implements {@code RandomAccess}.
* If this list implements {@code RandomAccess} the returned list will
* be an instance of the subclass that implements {@code RandomAccess}.
*
* The subclass's {@code set(int, E)}, {@code get(int)},
* {@code add(int, E)}, {@code remove(int)}, {@code addAll(int,
* Collection)} and {@code removeRange(int, int)} methods all
* delegate to the corresponding methods on the backing abstract list,
* after bounds-checking the index and adjusting for the offset. The
* {@code addAll(Collection c)} method merely returns {@code addAll(size,
* c)}.
*
* The {@code listIterator(int)} method returns a "wrapper object"
* over a list iterator on the backing list, which is created with the
* corresponding method on the backing list. The {@code iterator} method
* merely returns {@code listIterator()}, and the {@code size} method
* merely returns the subclass's {@code size} field.
*
* All methods first check to see if the actual {@code modCount} of
* the backing list is equal to its expected value, and throw a
* {@code ConcurrentModificationException} if it is not.
*
* @throws IndexOutOfBoundsException if an endpoint index value is out of range
* {@code (fromIndex < 0 || toIndex > size)}
* @throws IllegalArgumentException if the endpoint indices are out of order
* {@code (fromIndex > toIndex)}
*/
public List
*
* This implementation first checks if the specified object is this
* list. If so, it returns {@code true}; if not, it checks if the
* specified object is a list. If not, it returns {@code false}; if so,
* it iterates over both lists, comparing corresponding pairs of elements.
* If any comparison returns {@code false}, this method returns
* {@code false}. If either iterator runs out of elements before the
* other it returns {@code false} (as the lists are of unequal length);
* otherwise it returns {@code true} when the iterations complete.
*
* @param o the object to be compared for equality with this list
* @return {@code true} if the specified object is equal to this list
*/
public boolean equals(Object o) {
if (o == this)
return true;
if (!(o instanceof List))
return false;
ListIterator This implementation uses exactly the code that is used to define the
* list hash function in the documentation for the {@link List#hashCode}
* method.
*
* @return the hash code value for this list
*/
public int hashCode() {
int hashCode = 1;
for (E e : this)
hashCode = 31*hashCode + (e==null ? 0 : e.hashCode());
return hashCode;
}
/**
* Removes from this list all of the elements whose index is between
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
* Shifts any succeeding elements to the left (reduces their index).
* This call shortens the list by {@code (toIndex - fromIndex)} elements.
* (If {@code toIndex==fromIndex}, this operation has no effect.)
*
* This method is called by the {@code clear} operation on this list
* and its subLists. Overriding this method to take advantage of
* the internals of the list implementation can substantially
* improve the performance of the {@code clear} operation on this list
* and its subLists.
*
* This implementation gets a list iterator positioned before
* {@code fromIndex}, and repeatedly calls {@code ListIterator.next}
* followed by {@code ListIterator.remove} until the entire range has
* been removed. Note: if {@code ListIterator.remove} requires linear
* time, this implementation requires quadratic time.
*
* @param fromIndex index of first element to be removed
* @param toIndex index after last element to be removed
*/
protected void removeRange(int fromIndex, int toIndex) {
ListIterator This field is used by the iterator and list iterator implementation
* returned by the {@code iterator} and {@code listIterator} methods.
* If the value of this field changes unexpectedly, the iterator (or list
* iterator) will throw a {@code ConcurrentModificationException} in
* response to the {@code next}, {@code remove}, {@code previous},
* {@code set} or {@code add} operations. This provides
* fail-fast behavior, rather than non-deterministic behavior in
* the face of concurrent modification during iteration.
*
* Use of this field by subclasses is optional. If a subclass
* wishes to provide fail-fast iterators (and list iterators), then it
* merely has to increment this field in its {@code add(int, E)} and
* {@code remove(int)} methods (and any other methods that it overrides
* that result in structural modifications to the list). A single call to
* {@code add(int, E)} or {@code remove(int)} must add no more than
* one to this field, or the iterators (and list iterators) will throw
* bogus {@code ConcurrentModificationExceptions}. If an implementation
* does not wish to provide fail-fast iterators, this field may be
* ignored.
*/
protected transient int modCount = 0;
private void rangeCheckForAdd(int index) {
if (index < 0 || index > size())
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size();
}
}
class SubList