/* * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util; import java.util.function.Consumer; import java.util.function.DoubleConsumer; import java.util.function.IntConsumer; import java.util.function.LongConsumer; /** * An object for traversing and partitioning elements of a source. The source * of elements covered by a Spliterator could be, for example, an array, a * {@link Collection}, an IO channel, or a generator function. * *
A Spliterator may traverse elements individually ({@link * #tryAdvance tryAdvance()}) or sequentially in bulk * ({@link #forEachRemaining forEachRemaining()}). * *
A Spliterator may also partition off some of its elements (using * {@link #trySplit}) as another Spliterator, to be used in * possibly-parallel operations. Operations using a Spliterator that * cannot split, or does so in a highly imbalanced or inefficient * manner, are unlikely to benefit from parallelism. Traversal * and splitting exhaust elements; each Spliterator is useful for only a single * bulk computation. * *
A Spliterator also reports a set of {@link #characteristics()} of its * structure, source, and elements from among {@link #ORDERED}, * {@link #DISTINCT}, {@link #SORTED}, {@link #SIZED}, {@link #NONNULL}, * {@link #IMMUTABLE}, {@link #CONCURRENT}, and {@link #SUBSIZED}. These may * be employed by Spliterator clients to control, specialize or simplify * computation. For example, a Spliterator for a {@link Collection} would * report {@code SIZED}, a Spliterator for a {@link Set} would report * {@code DISTINCT}, and a Spliterator for a {@link SortedSet} would also * report {@code SORTED}. Characteristics are reported as a simple unioned bit * set. * * Some characteristics additionally constrain method behavior; for example if * {@code ORDERED}, traversal methods must conform to their documented ordering. * New characteristics may be defined in the future, so implementors should not * assign meanings to unlisted values. * *
A Spliterator that does not report {@code IMMUTABLE} or * {@code CONCURRENT} is expected to have a documented policy concerning: * when the spliterator binds to the element source; and detection of * structural interference of the element source detected after binding. A * late-binding Spliterator binds to the source of elements at the * point of first traversal, first split, or first query for estimated size, * rather than at the time the Spliterator is created. A Spliterator that is * not late-binding binds to the source of elements at the point of * construction or first invocation of any method. Modifications made to the * source prior to binding are reflected when the Spliterator is traversed. * After binding a Spliterator should, on a best-effort basis, throw * {@link ConcurrentModificationException} if structural interference is * detected. Spliterators that do this are called fail-fast. The * bulk traversal method ({@link #forEachRemaining forEachRemaining()}) of a * Spliterator may optimize traversal and check for structural interference * after all elements have been traversed, rather than checking per-element and * failing immediately. * *
Spliterators can provide an estimate of the number of remaining elements * via the {@link #estimateSize} method. Ideally, as reflected in characteristic * {@link #SIZED}, this value corresponds exactly to the number of elements * that would be encountered in a successful traversal. However, even when not * exactly known, an estimated value value may still be useful to operations * being performed on the source, such as helping to determine whether it is * preferable to split further or traverse the remaining elements sequentially. * *
Despite their obvious utility in parallel algorithms, spliterators are not * expected to be thread-safe; instead, implementations of parallel algorithms * using spliterators should ensure that the spliterator is only used by one * thread at a time. This is generally easy to attain via serial * thread-confinement, which often is a natural consequence of typical * parallel algorithms that work by recursive decomposition. A thread calling * {@link #trySplit()} may hand over the returned Spliterator to another thread, * which in turn may traverse or further split that Spliterator. The behaviour * of splitting and traversal is undefined if two or more threads operate * concurrently on the same spliterator. If the original thread hands a * spliterator off to another thread for processing, it is best if that handoff * occurs before any elements are consumed with {@link #tryAdvance(Consumer) * tryAdvance()}, as certain guarantees (such as the accuracy of * {@link #estimateSize()} for {@code SIZED} spliterators) are only valid before * traversal has begun. * *
Primitive subtype specializations of {@code Spliterator} are provided for * {@link OfInt int}, {@link OfLong long}, and {@link OfDouble double} values. * The subtype default implementations of * {@link Spliterator#tryAdvance(java.util.function.Consumer)} * and {@link Spliterator#forEachRemaining(java.util.function.Consumer)} box * primitive values to instances of their corresponding wrapper class. Such * boxing may undermine any performance advantages gained by using the primitive * specializations. To avoid boxing, the corresponding primitive-based methods * should be used. For example, * {@link Spliterator.OfInt#tryAdvance(java.util.function.IntConsumer)} * and {@link Spliterator.OfInt#forEachRemaining(java.util.function.IntConsumer)} * should be used in preference to * {@link Spliterator.OfInt#tryAdvance(java.util.function.Consumer)} and * {@link Spliterator.OfInt#forEachRemaining(java.util.function.Consumer)}. * Traversal of primitive values using boxing-based methods * {@link #tryAdvance tryAdvance()} and * {@link #forEachRemaining(java.util.function.Consumer) forEachRemaining()} * does not affect the order in which the values, transformed to boxed values, * are encountered. * * @apiNote *
Spliterators, like {@code Iterators}s, are for traversing the elements of * a source. The {@code Spliterator} API was designed to support efficient * parallel traversal in addition to sequential traversal, by supporting * decomposition as well as single-element iteration. In addition, the * protocol for accessing elements via a Spliterator is designed to impose * smaller per-element overhead than {@code Iterator}, and to avoid the inherent * race involved in having separate methods for {@code hasNext()} and * {@code next()}. * *
For mutable sources, arbitrary and non-deterministic behavior may occur if * the source is structurally interfered with (elements added, replaced, or * removed) between the time that the Spliterator binds to its data source and * the end of traversal. For example, such interference will produce arbitrary, * non-deterministic results when using the {@code java.util.stream} framework. * *
Structural interference of a source can be managed in the following ways * (in approximate order of decreasing desirability): *
Example. Here is a class (not a very useful one, except * for illustration) that maintains an array in which the actual data * are held in even locations, and unrelated tag data are held in odd * locations. Its Spliterator ignores the tags. * *
{@code * class TaggedArray* *{ * private final Object[] elements; // immutable after construction * TaggedArray(T[] data, Object[] tags) { * int size = data.length; * if (tags.length != size) throw new IllegalArgumentException(); * this.elements = new Object[2 * size]; * for (int i = 0, j = 0; i < size; ++i) { * elements[j++] = data[i]; * elements[j++] = tags[i]; * } * } * * public Spliterator spliterator() { * return new TaggedArraySpliterator<>(elements, 0, elements.length); * } * * static class TaggedArraySpliterator implements Spliterator { * private final Object[] array; * private int origin; // current index, advanced on split or traversal * private final int fence; // one past the greatest index * * TaggedArraySpliterator(Object[] array, int origin, int fence) { * this.array = array; this.origin = origin; this.fence = fence; * } * * public void forEachRemaining(Consumer super T> action) { * for (; origin < fence; origin += 2) * action.accept((T) array[origin]); * } * * public boolean tryAdvance(Consumer super T> action) { * if (origin < fence) { * action.accept((T) array[origin]); * origin += 2; * return true; * } * else // cannot advance * return false; * } * * public Spliterator trySplit() { * int lo = origin; // divide range in half * int mid = ((lo + fence) >>> 1) & ~1; // force midpoint to be even * if (lo < mid) { // split out left half * origin = mid; // reset this Spliterator's origin * return new TaggedArraySpliterator<>(array, lo, mid); * } * else // too small to split * return null; * } * * public long estimateSize() { * return (long)((fence - origin) / 2); * } * * public int characteristics() { * return ORDERED | SIZED | IMMUTABLE | SUBSIZED; * } * } * }}
As an example how a parallel computation framework, such as the * {@code java.util.stream} package, would use Spliterator in a parallel * computation, here is one way to implement an associated parallel forEach, * that illustrates the primary usage idiom of splitting off subtasks until * the estimated amount of work is small enough to perform * sequentially. Here we assume that the order of processing across * subtasks doesn't matter; different (forked) tasks may further split * and process elements concurrently in undetermined order. This * example uses a {@link java.util.concurrent.CountedCompleter}; * similar usages apply to other parallel task constructions. * *
{@code * static* * @implNote * If the boolean system property {@code org.openjdk.java.util.stream.tripwire} * is set to {@code true} then diagnostic warnings are reported if boxing of * primitive values occur when operating on primitive subtype specializations. * * @paramvoid parEach(TaggedArray a, Consumer action) { * Spliterator s = a.spliterator(); * long targetBatchSize = s.estimateSize() / (ForkJoinPool.getCommonPoolParallelism() * 8); * new ParEach(null, s, action, targetBatchSize).invoke(); * } * * static class ParEach extends CountedCompleter { * final Spliterator spliterator; * final Consumer action; * final long targetBatchSize; * * ParEach(ParEach parent, Spliterator spliterator, * Consumer action, long targetBatchSize) { * super(parent); * this.spliterator = spliterator; this.action = action; * this.targetBatchSize = targetBatchSize; * } * * public void compute() { * Spliterator sub; * while (spliterator.estimateSize() > targetBatchSize && * (sub = spliterator.trySplit()) != null) { * addToPendingCount(1); * new ParEach<>(this, sub, action, targetBatchSize).fork(); * } * spliterator.forEachRemaining(action); * propagateCompletion(); * } * }}
If this Spliterator is {@link #ORDERED}, the returned Spliterator * must cover a strict prefix of the elements. * *
Unless this Spliterator covers an infinite number of elements, * repeated calls to {@code trySplit()} must eventually return {@code null}. * Upon non-null return: *
This method may return {@code null} for any reason,
* including emptiness, inability to split after traversal has
* commenced, data structure constraints, and efficiency
* considerations.
*
* @apiNote
* An ideal {@code trySplit} method efficiently (without
* traversal) divides its elements exactly in half, allowing
* balanced parallel computation. Many departures from this ideal
* remain highly effective; for example, only approximately
* splitting an approximately balanced tree, or for a tree in
* which leaf nodes may contain either one or two elements,
* failing to further split these nodes. However, large
* deviations in balance and/or overly inefficient {@code
* trySplit} mechanics typically result in poor parallel
* performance.
*
* @return a {@code Spliterator} covering some portion of the
* elements, or {@code null} if this spliterator cannot be split
*/
Spliterator If this Spliterator is {@link #SIZED} and has not yet been partially
* traversed or split, or this Spliterator is {@link #SUBSIZED} and has
* not yet been partially traversed, this estimate must be an accurate
* count of elements that would be encountered by a complete traversal.
* Otherwise, this estimate may be arbitrarily inaccurate, but must decrease
* as specified across invocations of {@link #trySplit}.
*
* @apiNote
* Even an inexact estimate is often useful and inexpensive to compute.
* For example, a sub-spliterator of an approximately balanced binary tree
* may return a value that estimates the number of elements to be half of
* that of its parent; if the root Spliterator does not maintain an
* accurate count, it could estimate size to be the power of two
* corresponding to its maximum depth.
*
* @return the estimated size, or {@code Long.MAX_VALUE} if infinite,
* unknown, or too expensive to compute.
*/
long estimateSize();
/**
* Convenience method that returns {@link #estimateSize()} if this
* Spliterator is {@link #SIZED}, else {@code -1}.
* @implSpec
* The default implementation returns the result of {@code estimateSize()}
* if the Spliterator reports a characteristic of {@code SIZED}, and
* {@code -1} otherwise.
*
* @return the exact size, if known, else {@code -1}.
*/
default long getExactSizeIfKnown() {
return (characteristics() & SIZED) == 0 ? -1L : estimateSize();
}
/**
* Returns a set of characteristics of this Spliterator and its
* elements. The result is represented as ORed values from {@link
* #ORDERED}, {@link #DISTINCT}, {@link #SORTED}, {@link #SIZED},
* {@link #NONNULL}, {@link #IMMUTABLE}, {@link #CONCURRENT},
* {@link #SUBSIZED}. Repeated calls to {@code characteristics()} on
* a given spliterator, prior to or in-between calls to {@code trySplit},
* should always return the same result.
*
* If a Spliterator reports an inconsistent set of
* characteristics (either those returned from a single invocation
* or across multiple invocations), no guarantees can be made
* about any computation using this Spliterator.
*
* @apiNote The characteristics of a given spliterator before splitting
* may differ from the characteristics after splitting. For specific
* examples see the characteristic values {@link #SIZED}, {@link #SUBSIZED}
* and {@link #CONCURRENT}.
*
* @return a representation of characteristics
*/
int characteristics();
/**
* Returns {@code true} if this Spliterator's {@link
* #characteristics} contain all of the given characteristics.
*
* @implSpec
* The default implementation returns true if the corresponding bits
* of the given characteristics are set.
*
* @param characteristics the characteristics to check for
* @return {@code true} if all the specified characteristics are present,
* else {@code false}
*/
default boolean hasCharacteristics(int characteristics) {
return (characteristics() & characteristics) == characteristics;
}
/**
* If this Spliterator's source is {@link #SORTED} by a {@link Comparator},
* returns that {@code Comparator}. If the source is {@code SORTED} in
* {@linkplain Comparable natural order}, returns {@code null}. Otherwise,
* if the source is not {@code SORTED}, throws {@link IllegalStateException}.
*
* @implSpec
* The default implementation always throws {@link IllegalStateException}.
*
* @return a Comparator, or {@code null} if the elements are sorted in the
* natural order.
* @throws IllegalStateException if the spliterator does not report
* a characteristic of {@code SORTED}.
*/
default Comparator super T> getComparator() {
throw new IllegalStateException();
}
/**
* Characteristic value signifying that an encounter order is defined for
* elements. If so, this Spliterator guarantees that method
* {@link #trySplit} splits a strict prefix of elements, that method
* {@link #tryAdvance} steps by one element in prefix order, and that
* {@link #forEachRemaining} performs actions in encounter order.
*
* A {@link Collection} has an encounter order if the corresponding
* {@link Collection#iterator} documents an order. If so, the encounter
* order is the same as the documented order. Otherwise, a collection does
* not have an encounter order.
*
* @apiNote Encounter order is guaranteed to be ascending index order for
* any {@link List}. But no order is guaranteed for hash-based collections
* such as {@link HashSet}. Clients of a Spliterator that reports
* {@code ORDERED} are expected to preserve ordering constraints in
* non-commutative parallel computations.
*/
public static final int ORDERED = 0x00000010;
/**
* Characteristic value signifying that, for each pair of
* encountered elements {@code x, y}, {@code !x.equals(y)}. This
* applies for example, to a Spliterator based on a {@link Set}.
*/
public static final int DISTINCT = 0x00000001;
/**
* Characteristic value signifying that encounter order follows a defined
* sort order. If so, method {@link #getComparator()} returns the associated
* Comparator, or {@code null} if all elements are {@link Comparable} and
* are sorted by their natural ordering.
*
* A Spliterator that reports {@code SORTED} must also report
* {@code ORDERED}.
*
* @apiNote The spliterators for {@code Collection} classes in the JDK that
* implement {@link NavigableSet} or {@link SortedSet} report {@code SORTED}.
*/
public static final int SORTED = 0x00000004;
/**
* Characteristic value signifying that the value returned from
* {@code estimateSize()} prior to traversal or splitting represents a
* finite size that, in the absence of structural source modification,
* represents an exact count of the number of elements that would be
* encountered by a complete traversal.
*
* @apiNote Most Spliterators for Collections, that cover all elements of a
* {@code Collection} report this characteristic. Sub-spliterators, such as
* those for {@link HashSet}, that cover a sub-set of elements and
* approximate their reported size do not.
*/
public static final int SIZED = 0x00000040;
/**
* Characteristic value signifying that the source guarantees that
* encountered elements will not be {@code null}. (This applies,
* for example, to most concurrent collections, queues, and maps.)
*/
public static final int NONNULL = 0x00000100;
/**
* Characteristic value signifying that the element source cannot be
* structurally modified; that is, elements cannot be added, replaced, or
* removed, so such changes cannot occur during traversal. A Spliterator
* that does not report {@code IMMUTABLE} or {@code CONCURRENT} is expected
* to have a documented policy (for example throwing
* {@link ConcurrentModificationException}) concerning structural
* interference detected during traversal.
*/
public static final int IMMUTABLE = 0x00000400;
/**
* Characteristic value signifying that the element source may be safely
* concurrently modified (allowing additions, replacements, and/or removals)
* by multiple threads without external synchronization. If so, the
* Spliterator is expected to have a documented policy concerning the impact
* of modifications during traversal.
*
* A top-level Spliterator should not report both {@code CONCURRENT} and
* {@code SIZED}, since the finite size, if known, may change if the source
* is concurrently modified during traversal. Such a Spliterator is
* inconsistent and no guarantees can be made about any computation using
* that Spliterator. Sub-spliterators may report {@code SIZED} if the
* sub-split size is known and additions or removals to the source are not
* reflected when traversing.
*
* @apiNote Most concurrent collections maintain a consistency policy
* guaranteeing accuracy with respect to elements present at the point of
* Spliterator construction, but possibly not reflecting subsequent
* additions or removals.
*/
public static final int CONCURRENT = 0x00001000;
/**
* Characteristic value signifying that all Spliterators resulting from
* {@code trySplit()} will be both {@link #SIZED} and {@link #SUBSIZED}.
* (This means that all child Spliterators, whether direct or indirect, will
* be {@code SIZED}.)
*
* A Spliterator that does not report {@code SIZED} as required by
* {@code SUBSIZED} is inconsistent and no guarantees can be made about any
* computation using that Spliterator.
*
* @apiNote Some spliterators, such as the top-level spliterator for an
* approximately balanced binary tree, will report {@code SIZED} but not
* {@code SUBSIZED}, since it is common to know the size of the entire tree
* but not the exact sizes of subtrees.
*/
public static final int SUBSIZED = 0x00004000;
/**
* A Spliterator specialized for primitive values.
*
* @param