/* * Copyright (C) 2006 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.graphics; import android.annotation.FloatRange; import android.annotation.NonNull; import android.annotation.Nullable; import android.annotation.Size; import dalvik.annotation.optimization.CriticalNative; import dalvik.annotation.optimization.FastNative; /** * The Path class encapsulates compound (multiple contour) geometric paths * consisting of straight line segments, quadratic curves, and cubic curves. * It can be drawn with canvas.drawPath(path, paint), either filled or stroked * (based on the paint's Style), or it can be used for clipping or to draw * text on a path. */ public class Path { /** * @hide */ public long mNativePath; /** * @hide */ public boolean isSimplePath = true; /** * @hide */ public Region rects; private Direction mLastDirection = null; /** * Create an empty path */ public Path() { mNativePath = nInit(); } /** * Create a new path, copying the contents from the src path. * * @param src The path to copy from when initializing the new path */ public Path(Path src) { long valNative = 0; if (src != null) { valNative = src.mNativePath; isSimplePath = src.isSimplePath; if (src.rects != null) { rects = new Region(src.rects); } } mNativePath = nInit(valNative); } /** * Clear any lines and curves from the path, making it empty. * This does NOT change the fill-type setting. */ public void reset() { isSimplePath = true; mLastDirection = null; if (rects != null) rects.setEmpty(); // We promised not to change this, so preserve it around the native // call, which does now reset fill type. final FillType fillType = getFillType(); nReset(mNativePath); setFillType(fillType); } /** * Rewinds the path: clears any lines and curves from the path but * keeps the internal data structure for faster reuse. */ public void rewind() { isSimplePath = true; mLastDirection = null; if (rects != null) rects.setEmpty(); nRewind(mNativePath); } /** Replace the contents of this with the contents of src. */ public void set(@NonNull Path src) { if (this == src) { return; } isSimplePath = src.isSimplePath; nSet(mNativePath, src.mNativePath); if (!isSimplePath) { return; } if (rects != null && src.rects != null) { rects.set(src.rects); } else if (rects != null && src.rects == null) { rects.setEmpty(); } else if (src.rects != null) { rects = new Region(src.rects); } } /** * The logical operations that can be performed when combining two paths. * * @see #op(Path, android.graphics.Path.Op) * @see #op(Path, Path, android.graphics.Path.Op) */ public enum Op { /** * Subtract the second path from the first path. */ DIFFERENCE, /** * Intersect the two paths. */ INTERSECT, /** * Union (inclusive-or) the two paths. */ UNION, /** * Exclusive-or the two paths. */ XOR, /** * Subtract the first path from the second path. */ REVERSE_DIFFERENCE } /** * Set this path to the result of applying the Op to this path and the specified path. * The resulting path will be constructed from non-overlapping contours. * The curve order is reduced where possible so that cubics may be turned * into quadratics, and quadratics maybe turned into lines. * * @param path The second operand (for difference, the subtrahend) * * @return True if operation succeeded, false otherwise and this path remains unmodified. * * @see Op * @see #op(Path, Path, android.graphics.Path.Op) */ public boolean op(Path path, Op op) { return op(this, path, op); } /** * Set this path to the result of applying the Op to the two specified paths. * The resulting path will be constructed from non-overlapping contours. * The curve order is reduced where possible so that cubics may be turned * into quadratics, and quadratics maybe turned into lines. * * @param path1 The first operand (for difference, the minuend) * @param path2 The second operand (for difference, the subtrahend) * * @return True if operation succeeded, false otherwise and this path remains unmodified. * * @see Op * @see #op(Path, android.graphics.Path.Op) */ public boolean op(Path path1, Path path2, Op op) { if (nOp(path1.mNativePath, path2.mNativePath, op.ordinal(), this.mNativePath)) { isSimplePath = false; rects = null; return true; } return false; } /** * Returns the path's convexity, as defined by the content of the path. *
* A path is convex if it has a single contour, and only ever curves in a * single direction. *
* This function will calculate the convexity of the path from its control
* points, and cache the result.
*
* @return True if the path is convex.
*/
public boolean isConvex() {
return nIsConvex(mNativePath);
}
/**
* Enum for the ways a path may be filled.
*/
public enum FillType {
// these must match the values in SkPath.h
/**
* Specifies that "inside" is computed by a non-zero sum of signed
* edge crossings.
*/
WINDING (0),
/**
* Specifies that "inside" is computed by an odd number of edge
* crossings.
*/
EVEN_ODD (1),
/**
* Same as {@link #WINDING}, but draws outside of the path, rather than inside.
*/
INVERSE_WINDING (2),
/**
* Same as {@link #EVEN_ODD}, but draws outside of the path, rather than inside.
*/
INVERSE_EVEN_ODD(3);
FillType(int ni) {
nativeInt = ni;
}
final int nativeInt;
}
// these must be in the same order as their native values
static final FillType[] sFillTypeArray = {
FillType.WINDING,
FillType.EVEN_ODD,
FillType.INVERSE_WINDING,
FillType.INVERSE_EVEN_ODD
};
/**
* Return the path's fill type. This defines how "inside" is
* computed. The default value is WINDING.
*
* @return the path's fill type
*/
public FillType getFillType() {
return sFillTypeArray[nGetFillType(mNativePath)];
}
/**
* Set the path's fill type. This defines how "inside" is computed.
*
* @param ft The new fill type for this path
*/
public void setFillType(FillType ft) {
nSetFillType(mNativePath, ft.nativeInt);
}
/**
* Returns true if the filltype is one of the INVERSE variants
*
* @return true if the filltype is one of the INVERSE variants
*/
public boolean isInverseFillType() {
final int ft = nGetFillType(mNativePath);
return (ft & FillType.INVERSE_WINDING.nativeInt) != 0;
}
/**
* Toggles the INVERSE state of the filltype
*/
public void toggleInverseFillType() {
int ft = nGetFillType(mNativePath);
ft ^= FillType.INVERSE_WINDING.nativeInt;
nSetFillType(mNativePath, ft);
}
/**
* Returns true if the path is empty (contains no lines or curves)
*
* @return true if the path is empty (contains no lines or curves)
*/
public boolean isEmpty() {
return nIsEmpty(mNativePath);
}
/**
* Returns true if the path specifies a rectangle. If so, and if rect is
* not null, set rect to the bounds of the path. If the path does not
* specify a rectangle, return false and ignore rect.
*
* @param rect If not null, returns the bounds of the path if it specifies
* a rectangle
* @return true if the path specifies a rectangle
*/
public boolean isRect(RectF rect) {
return nIsRect(mNativePath, rect);
}
/**
* Compute the bounds of the control points of the path, and write the
* answer into bounds. If the path contains 0 or 1 points, the bounds is
* set to (0,0,0,0)
*
* @param bounds Returns the computed bounds of the path's control points.
* @param exact This parameter is no longer used.
*/
@SuppressWarnings({"UnusedDeclaration"})
public void computeBounds(RectF bounds, boolean exact) {
nComputeBounds(mNativePath, bounds);
}
/**
* Hint to the path to prepare for adding more points. This can allow the
* path to more efficiently allocate its storage.
*
* @param extraPtCount The number of extra points that may be added to this
* path
*/
public void incReserve(int extraPtCount) {
nIncReserve(mNativePath, extraPtCount);
}
/**
* Set the beginning of the next contour to the point (x,y).
*
* @param x The x-coordinate of the start of a new contour
* @param y The y-coordinate of the start of a new contour
*/
public void moveTo(float x, float y) {
nMoveTo(mNativePath, x, y);
}
/**
* Set the beginning of the next contour relative to the last point on the
* previous contour. If there is no previous contour, this is treated the
* same as moveTo().
*
* @param dx The amount to add to the x-coordinate of the end of the
* previous contour, to specify the start of a new contour
* @param dy The amount to add to the y-coordinate of the end of the
* previous contour, to specify the start of a new contour
*/
public void rMoveTo(float dx, float dy) {
nRMoveTo(mNativePath, dx, dy);
}
/**
* Add a line from the last point to the specified point (x,y).
* If no moveTo() call has been made for this contour, the first point is
* automatically set to (0,0).
*
* @param x The x-coordinate of the end of a line
* @param y The y-coordinate of the end of a line
*/
public void lineTo(float x, float y) {
isSimplePath = false;
nLineTo(mNativePath, x, y);
}
/**
* Same as lineTo, but the coordinates are considered relative to the last
* point on this contour. If there is no previous point, then a moveTo(0,0)
* is inserted automatically.
*
* @param dx The amount to add to the x-coordinate of the previous point on
* this contour, to specify a line
* @param dy The amount to add to the y-coordinate of the previous point on
* this contour, to specify a line
*/
public void rLineTo(float dx, float dy) {
isSimplePath = false;
nRLineTo(mNativePath, dx, dy);
}
/**
* Add a quadratic bezier from the last point, approaching control point
* (x1,y1), and ending at (x2,y2). If no moveTo() call has been made for
* this contour, the first point is automatically set to (0,0).
*
* @param x1 The x-coordinate of the control point on a quadratic curve
* @param y1 The y-coordinate of the control point on a quadratic curve
* @param x2 The x-coordinate of the end point on a quadratic curve
* @param y2 The y-coordinate of the end point on a quadratic curve
*/
public void quadTo(float x1, float y1, float x2, float y2) {
isSimplePath = false;
nQuadTo(mNativePath, x1, y1, x2, y2);
}
/**
* Same as quadTo, but the coordinates are considered relative to the last
* point on this contour. If there is no previous point, then a moveTo(0,0)
* is inserted automatically.
*
* @param dx1 The amount to add to the x-coordinate of the last point on
* this contour, for the control point of a quadratic curve
* @param dy1 The amount to add to the y-coordinate of the last point on
* this contour, for the control point of a quadratic curve
* @param dx2 The amount to add to the x-coordinate of the last point on
* this contour, for the end point of a quadratic curve
* @param dy2 The amount to add to the y-coordinate of the last point on
* this contour, for the end point of a quadratic curve
*/
public void rQuadTo(float dx1, float dy1, float dx2, float dy2) {
isSimplePath = false;
nRQuadTo(mNativePath, dx1, dy1, dx2, dy2);
}
/**
* Add a cubic bezier from the last point, approaching control points
* (x1,y1) and (x2,y2), and ending at (x3,y3). If no moveTo() call has been
* made for this contour, the first point is automatically set to (0,0).
*
* @param x1 The x-coordinate of the 1st control point on a cubic curve
* @param y1 The y-coordinate of the 1st control point on a cubic curve
* @param x2 The x-coordinate of the 2nd control point on a cubic curve
* @param y2 The y-coordinate of the 2nd control point on a cubic curve
* @param x3 The x-coordinate of the end point on a cubic curve
* @param y3 The y-coordinate of the end point on a cubic curve
*/
public void cubicTo(float x1, float y1, float x2, float y2,
float x3, float y3) {
isSimplePath = false;
nCubicTo(mNativePath, x1, y1, x2, y2, x3, y3);
}
/**
* Same as cubicTo, but the coordinates are considered relative to the
* current point on this contour. If there is no previous point, then a
* moveTo(0,0) is inserted automatically.
*/
public void rCubicTo(float x1, float y1, float x2, float y2,
float x3, float y3) {
isSimplePath = false;
nRCubicTo(mNativePath, x1, y1, x2, y2, x3, y3);
}
/**
* Append the specified arc to the path as a new contour. If the start of
* the path is different from the path's current last point, then an
* automatic lineTo() is added to connect the current contour to the
* start of the arc. However, if the path is empty, then we call moveTo()
* with the first point of the arc.
*
* @param oval The bounds of oval defining shape and size of the arc
* @param startAngle Starting angle (in degrees) where the arc begins
* @param sweepAngle Sweep angle (in degrees) measured clockwise, treated
* mod 360.
* @param forceMoveTo If true, always begin a new contour with the arc
*/
public void arcTo(RectF oval, float startAngle, float sweepAngle,
boolean forceMoveTo) {
arcTo(oval.left, oval.top, oval.right, oval.bottom, startAngle, sweepAngle, forceMoveTo);
}
/**
* Append the specified arc to the path as a new contour. If the start of
* the path is different from the path's current last point, then an
* automatic lineTo() is added to connect the current contour to the
* start of the arc. However, if the path is empty, then we call moveTo()
* with the first point of the arc.
*
* @param oval The bounds of oval defining shape and size of the arc
* @param startAngle Starting angle (in degrees) where the arc begins
* @param sweepAngle Sweep angle (in degrees) measured clockwise
*/
public void arcTo(RectF oval, float startAngle, float sweepAngle) {
arcTo(oval.left, oval.top, oval.right, oval.bottom, startAngle, sweepAngle, false);
}
/**
* Append the specified arc to the path as a new contour. If the start of
* the path is different from the path's current last point, then an
* automatic lineTo() is added to connect the current contour to the
* start of the arc. However, if the path is empty, then we call moveTo()
* with the first point of the arc.
*
* @param startAngle Starting angle (in degrees) where the arc begins
* @param sweepAngle Sweep angle (in degrees) measured clockwise, treated
* mod 360.
* @param forceMoveTo If true, always begin a new contour with the arc
*/
public void arcTo(float left, float top, float right, float bottom, float startAngle,
float sweepAngle, boolean forceMoveTo) {
isSimplePath = false;
nArcTo(mNativePath, left, top, right, bottom, startAngle, sweepAngle, forceMoveTo);
}
/**
* Close the current contour. If the current point is not equal to the
* first point of the contour, a line segment is automatically added.
*/
public void close() {
isSimplePath = false;
nClose(mNativePath);
}
/**
* Specifies how closed shapes (e.g. rects, ovals) are oriented when they
* are added to a path.
*/
public enum Direction {
/** clockwise */
CW (0), // must match enum in SkPath.h
/** counter-clockwise */
CCW (1); // must match enum in SkPath.h
Direction(int ni) {
nativeInt = ni;
}
final int nativeInt;
}
private void detectSimplePath(float left, float top, float right, float bottom, Direction dir) {
if (mLastDirection == null) {
mLastDirection = dir;
}
if (mLastDirection != dir) {
isSimplePath = false;
} else {
if (rects == null) rects = new Region();
rects.op((int) left, (int) top, (int) right, (int) bottom, Region.Op.UNION);
}
}
/**
* Add a closed rectangle contour to the path
*
* @param rect The rectangle to add as a closed contour to the path
* @param dir The direction to wind the rectangle's contour
*/
public void addRect(RectF rect, Direction dir) {
addRect(rect.left, rect.top, rect.right, rect.bottom, dir);
}
/**
* Add a closed rectangle contour to the path
*
* @param left The left side of a rectangle to add to the path
* @param top The top of a rectangle to add to the path
* @param right The right side of a rectangle to add to the path
* @param bottom The bottom of a rectangle to add to the path
* @param dir The direction to wind the rectangle's contour
*/
public void addRect(float left, float top, float right, float bottom, Direction dir) {
detectSimplePath(left, top, right, bottom, dir);
nAddRect(mNativePath, left, top, right, bottom, dir.nativeInt);
}
/**
* Add a closed oval contour to the path
*
* @param oval The bounds of the oval to add as a closed contour to the path
* @param dir The direction to wind the oval's contour
*/
public void addOval(RectF oval, Direction dir) {
addOval(oval.left, oval.top, oval.right, oval.bottom, dir);
}
/**
* Add a closed oval contour to the path
*
* @param dir The direction to wind the oval's contour
*/
public void addOval(float left, float top, float right, float bottom, Direction dir) {
isSimplePath = false;
nAddOval(mNativePath, left, top, right, bottom, dir.nativeInt);
}
/**
* Add a closed circle contour to the path
*
* @param x The x-coordinate of the center of a circle to add to the path
* @param y The y-coordinate of the center of a circle to add to the path
* @param radius The radius of a circle to add to the path
* @param dir The direction to wind the circle's contour
*/
public void addCircle(float x, float y, float radius, Direction dir) {
isSimplePath = false;
nAddCircle(mNativePath, x, y, radius, dir.nativeInt);
}
/**
* Add the specified arc to the path as a new contour.
*
* @param oval The bounds of oval defining the shape and size of the arc
* @param startAngle Starting angle (in degrees) where the arc begins
* @param sweepAngle Sweep angle (in degrees) measured clockwise
*/
public void addArc(RectF oval, float startAngle, float sweepAngle) {
addArc(oval.left, oval.top, oval.right, oval.bottom, startAngle, sweepAngle);
}
/**
* Add the specified arc to the path as a new contour.
*
* @param startAngle Starting angle (in degrees) where the arc begins
* @param sweepAngle Sweep angle (in degrees) measured clockwise
*/
public void addArc(float left, float top, float right, float bottom, float startAngle,
float sweepAngle) {
isSimplePath = false;
nAddArc(mNativePath, left, top, right, bottom, startAngle, sweepAngle);
}
/**
* Add a closed round-rectangle contour to the path
*
* @param rect The bounds of a round-rectangle to add to the path
* @param rx The x-radius of the rounded corners on the round-rectangle
* @param ry The y-radius of the rounded corners on the round-rectangle
* @param dir The direction to wind the round-rectangle's contour
*/
public void addRoundRect(RectF rect, float rx, float ry, Direction dir) {
addRoundRect(rect.left, rect.top, rect.right, rect.bottom, rx, ry, dir);
}
/**
* Add a closed round-rectangle contour to the path
*
* @param rx The x-radius of the rounded corners on the round-rectangle
* @param ry The y-radius of the rounded corners on the round-rectangle
* @param dir The direction to wind the round-rectangle's contour
*/
public void addRoundRect(float left, float top, float right, float bottom, float rx, float ry,
Direction dir) {
isSimplePath = false;
nAddRoundRect(mNativePath, left, top, right, bottom, rx, ry, dir.nativeInt);
}
/**
* Add a closed round-rectangle contour to the path. Each corner receives
* two radius values [X, Y]. The corners are ordered top-left, top-right,
* bottom-right, bottom-left
*
* @param rect The bounds of a round-rectangle to add to the path
* @param radii Array of 8 values, 4 pairs of [X,Y] radii
* @param dir The direction to wind the round-rectangle's contour
*/
public void addRoundRect(RectF rect, float[] radii, Direction dir) {
if (rect == null) {
throw new NullPointerException("need rect parameter");
}
addRoundRect(rect.left, rect.top, rect.right, rect.bottom, radii, dir);
}
/**
* Add a closed round-rectangle contour to the path. Each corner receives
* two radius values [X, Y]. The corners are ordered top-left, top-right,
* bottom-right, bottom-left
*
* @param radii Array of 8 values, 4 pairs of [X,Y] radii
* @param dir The direction to wind the round-rectangle's contour
*/
public void addRoundRect(float left, float top, float right, float bottom, float[] radii,
Direction dir) {
if (radii.length < 8) {
throw new ArrayIndexOutOfBoundsException("radii[] needs 8 values");
}
isSimplePath = false;
nAddRoundRect(mNativePath, left, top, right, bottom, radii, dir.nativeInt);
}
/**
* Add a copy of src to the path, offset by (dx,dy)
*
* @param src The path to add as a new contour
* @param dx The amount to translate the path in X as it is added
*/
public void addPath(Path src, float dx, float dy) {
isSimplePath = false;
nAddPath(mNativePath, src.mNativePath, dx, dy);
}
/**
* Add a copy of src to the path
*
* @param src The path that is appended to the current path
*/
public void addPath(Path src) {
isSimplePath = false;
nAddPath(mNativePath, src.mNativePath);
}
/**
* Add a copy of src to the path, transformed by matrix
*
* @param src The path to add as a new contour
*/
public void addPath(Path src, Matrix matrix) {
if (!src.isSimplePath) isSimplePath = false;
nAddPath(mNativePath, src.mNativePath, matrix.native_instance);
}
/**
* Offset the path by (dx,dy)
*
* @param dx The amount in the X direction to offset the entire path
* @param dy The amount in the Y direction to offset the entire path
* @param dst The translated path is written here. If this is null, then
* the original path is modified.
*/
public void offset(float dx, float dy, @Nullable Path dst) {
if (dst != null) {
dst.set(this);
} else {
dst = this;
}
dst.offset(dx, dy);
}
/**
* Offset the path by (dx,dy)
*
* @param dx The amount in the X direction to offset the entire path
* @param dy The amount in the Y direction to offset the entire path
*/
public void offset(float dx, float dy) {
if (isSimplePath && rects == null) {
// nothing to offset
return;
}
if (isSimplePath && dx == Math.rint(dx) && dy == Math.rint(dy)) {
rects.translate((int) dx, (int) dy);
} else {
isSimplePath = false;
}
nOffset(mNativePath, dx, dy);
}
/**
* Sets the last point of the path.
*
* @param dx The new X coordinate for the last point
* @param dy The new Y coordinate for the last point
*/
public void setLastPoint(float dx, float dy) {
isSimplePath = false;
nSetLastPoint(mNativePath, dx, dy);
}
/**
* Transform the points in this path by matrix, and write the answer
* into dst. If dst is null, then the the original path is modified.
*
* @param matrix The matrix to apply to the path
* @param dst The transformed path is written here. If dst is null,
* then the the original path is modified
*/
public void transform(Matrix matrix, Path dst) {
long dstNative = 0;
if (dst != null) {
dst.isSimplePath = false;
dstNative = dst.mNativePath;
}
nTransform(mNativePath, matrix.native_instance, dstNative);
}
/**
* Transform the points in this path by matrix.
*
* @param matrix The matrix to apply to the path
*/
public void transform(Matrix matrix) {
isSimplePath = false;
nTransform(mNativePath, matrix.native_instance);
}
protected void finalize() throws Throwable {
try {
nFinalize(mNativePath);
mNativePath = 0; // Other finalizers can still call us.
} finally {
super.finalize();
}
}
/** @hide */
public final long readOnlyNI() {
return mNativePath;
}
final long mutateNI() {
isSimplePath = false;
return mNativePath;
}
/**
* Approximate the Path
with a series of line segments.
* This returns float[] with the array containing point components.
* There are three components for each point, in order:
*
Two points may share the same fraction along its length when there is * a move action within the Path.
* * @param acceptableError The acceptable error for a line on the * Path. Typically this would be 0.5 so that * the error is less than half a pixel. * @return An array of components for points approximating the Path. */ @NonNull @Size(min = 6, multiple = 3) public float[] approximate(@FloatRange(from = 0) float acceptableError) { if (acceptableError < 0) { throw new IllegalArgumentException("AcceptableError must be greater than or equal to 0"); } return nApproximate(mNativePath, acceptableError); } // ------------------ Regular JNI ------------------------ private static native long nInit(); private static native long nInit(long nPath); private static native void nFinalize(long nPath); private static native void nSet(long native_dst, long nSrc); private static native void nComputeBounds(long nPath, RectF bounds); private static native void nIncReserve(long nPath, int extraPtCount); private static native void nMoveTo(long nPath, float x, float y); private static native void nRMoveTo(long nPath, float dx, float dy); private static native void nLineTo(long nPath, float x, float y); private static native void nRLineTo(long nPath, float dx, float dy); private static native void nQuadTo(long nPath, float x1, float y1, float x2, float y2); private static native void nRQuadTo(long nPath, float dx1, float dy1, float dx2, float dy2); private static native void nCubicTo(long nPath, float x1, float y1, float x2, float y2, float x3, float y3); private static native void nRCubicTo(long nPath, float x1, float y1, float x2, float y2, float x3, float y3); private static native void nArcTo(long nPath, float left, float top, float right, float bottom, float startAngle, float sweepAngle, boolean forceMoveTo); private static native void nClose(long nPath); private static native void nAddRect(long nPath, float left, float top, float right, float bottom, int dir); private static native void nAddOval(long nPath, float left, float top, float right, float bottom, int dir); private static native void nAddCircle(long nPath, float x, float y, float radius, int dir); private static native void nAddArc(long nPath, float left, float top, float right, float bottom, float startAngle, float sweepAngle); private static native void nAddRoundRect(long nPath, float left, float top, float right, float bottom, float rx, float ry, int dir); private static native void nAddRoundRect(long nPath, float left, float top, float right, float bottom, float[] radii, int dir); private static native void nAddPath(long nPath, long src, float dx, float dy); private static native void nAddPath(long nPath, long src); private static native void nAddPath(long nPath, long src, long matrix); private static native void nOffset(long nPath, float dx, float dy); private static native void nSetLastPoint(long nPath, float dx, float dy); private static native void nTransform(long nPath, long matrix, long dst_path); private static native void nTransform(long nPath, long matrix); private static native boolean nOp(long path1, long path2, int op, long result); private static native float[] nApproximate(long nPath, float error); // ------------------ Fast JNI ------------------------ @FastNative private static native boolean nIsRect(long nPath, RectF rect); // ------------------ Critical JNI ------------------------ @CriticalNative private static native void nReset(long nPath); @CriticalNative private static native void nRewind(long nPath); @CriticalNative private static native boolean nIsEmpty(long nPath); @CriticalNative private static native boolean nIsConvex(long nPath); @CriticalNative private static native int nGetFillType(long nPath); @CriticalNative private static native void nSetFillType(long nPath, int ft); }