/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.support.v4.util; import android.util.Log; import java.util.ConcurrentModificationException; import java.util.Map; /** * Base implementation of {@link ArrayMap} that doesn't include any standard Java * container API interoperability. These features are generally heavier-weight ways * to interact with the container, so discouraged, but they can be useful to make it * easier to use as a drop-in replacement for HashMap. If you don't need them, this * class can be preferrable since it doesn't bring in any of the implementation of those * APIs, allowing that code to be stripped by ProGuard. */ public class SimpleArrayMap { private static final boolean DEBUG = false; private static final String TAG = "ArrayMap"; /** * Attempt to spot concurrent modifications to this data structure. * * It's best-effort, but any time we can throw something more diagnostic than an * ArrayIndexOutOfBoundsException deep in the ArrayMap internals it's going to * save a lot of development time. * * Good times to look for CME include after any allocArrays() call and at the end of * functions that change mSize (put/remove/clear). */ private static final boolean CONCURRENT_MODIFICATION_EXCEPTIONS = true; /** * The minimum amount by which the capacity of a ArrayMap will increase. * This is tuned to be relatively space-efficient. */ private static final int BASE_SIZE = 4; /** * Maximum number of entries to have in array caches. */ private static final int CACHE_SIZE = 10; /** * Caches of small array objects to avoid spamming garbage. The cache * Object[] variable is a pointer to a linked list of array objects. * The first entry in the array is a pointer to the next array in the * list; the second entry is a pointer to the int[] hash code array for it. */ static Object[] mBaseCache; static int mBaseCacheSize; static Object[] mTwiceBaseCache; static int mTwiceBaseCacheSize; int[] mHashes; Object[] mArray; int mSize; private static int binarySearchHashes(int[] hashes, int N, int hash) { try { return ContainerHelpers.binarySearch(hashes, N, hash); } catch (ArrayIndexOutOfBoundsException e) { if (CONCURRENT_MODIFICATION_EXCEPTIONS) { throw new ConcurrentModificationException(); } else { throw e; // the cache is poisoned at this point, there's not much we can do } } } int indexOf(Object key, int hash) { final int N = mSize; // Important fast case: if nothing is in here, nothing to look for. if (N == 0) { return ~0; } int index = binarySearchHashes(mHashes, N, hash); // If the hash code wasn't found, then we have no entry for this key. if (index < 0) { return index; } // If the key at the returned index matches, that's what we want. if (key.equals(mArray[index<<1])) { return index; } // Search for a matching key after the index. int end; for (end = index + 1; end < N && mHashes[end] == hash; end++) { if (key.equals(mArray[end << 1])) return end; } // Search for a matching key before the index. for (int i = index - 1; i >= 0 && mHashes[i] == hash; i--) { if (key.equals(mArray[i << 1])) return i; } // Key not found -- return negative value indicating where a // new entry for this key should go. We use the end of the // hash chain to reduce the number of array entries that will // need to be copied when inserting. return ~end; } int indexOfNull() { final int N = mSize; // Important fast case: if nothing is in here, nothing to look for. if (N == 0) { return ~0; } int index = binarySearchHashes(mHashes, N, 0); // If the hash code wasn't found, then we have no entry for this key. if (index < 0) { return index; } // If the key at the returned index matches, that's what we want. if (null == mArray[index<<1]) { return index; } // Search for a matching key after the index. int end; for (end = index + 1; end < N && mHashes[end] == 0; end++) { if (null == mArray[end << 1]) return end; } // Search for a matching key before the index. for (int i = index - 1; i >= 0 && mHashes[i] == 0; i--) { if (null == mArray[i << 1]) return i; } // Key not found -- return negative value indicating where a // new entry for this key should go. We use the end of the // hash chain to reduce the number of array entries that will // need to be copied when inserting. return ~end; } @SuppressWarnings("ArrayToString") private void allocArrays(final int size) { if (size == (BASE_SIZE*2)) { synchronized (ArrayMap.class) { if (mTwiceBaseCache != null) { final Object[] array = mTwiceBaseCache; mArray = array; mTwiceBaseCache = (Object[])array[0]; mHashes = (int[])array[1]; array[0] = array[1] = null; mTwiceBaseCacheSize--; if (DEBUG) Log.d(TAG, "Retrieving 2x cache " + mHashes + " now have " + mTwiceBaseCacheSize + " entries"); return; } } } else if (size == BASE_SIZE) { synchronized (ArrayMap.class) { if (mBaseCache != null) { final Object[] array = mBaseCache; mArray = array; mBaseCache = (Object[])array[0]; mHashes = (int[])array[1]; array[0] = array[1] = null; mBaseCacheSize--; if (DEBUG) Log.d(TAG, "Retrieving 1x cache " + mHashes + " now have " + mBaseCacheSize + " entries"); return; } } } mHashes = new int[size]; mArray = new Object[size<<1]; } @SuppressWarnings("ArrayToString") private static void freeArrays(final int[] hashes, final Object[] array, final int size) { if (hashes.length == (BASE_SIZE*2)) { synchronized (ArrayMap.class) { if (mTwiceBaseCacheSize < CACHE_SIZE) { array[0] = mTwiceBaseCache; array[1] = hashes; for (int i=(size<<1)-1; i>=2; i--) { array[i] = null; } mTwiceBaseCache = array; mTwiceBaseCacheSize++; if (DEBUG) Log.d(TAG, "Storing 2x cache " + array + " now have " + mTwiceBaseCacheSize + " entries"); } } } else if (hashes.length == BASE_SIZE) { synchronized (ArrayMap.class) { if (mBaseCacheSize < CACHE_SIZE) { array[0] = mBaseCache; array[1] = hashes; for (int i=(size<<1)-1; i>=2; i--) { array[i] = null; } mBaseCache = array; mBaseCacheSize++; if (DEBUG) Log.d(TAG, "Storing 1x cache " + array + " now have " + mBaseCacheSize + " entries"); } } } } /** * Create a new empty ArrayMap. The default capacity of an array map is 0, and * will grow once items are added to it. */ public SimpleArrayMap() { mHashes = ContainerHelpers.EMPTY_INTS; mArray = ContainerHelpers.EMPTY_OBJECTS; mSize = 0; } /** * Create a new ArrayMap with a given initial capacity. */ public SimpleArrayMap(int capacity) { if (capacity == 0) { mHashes = ContainerHelpers.EMPTY_INTS; mArray = ContainerHelpers.EMPTY_OBJECTS; } else { allocArrays(capacity); } mSize = 0; } /** * Create a new ArrayMap with the mappings from the given ArrayMap. */ public SimpleArrayMap(SimpleArrayMap map) { this(); if (map != null) { putAll(map); } } /** * Make the array map empty. All storage is released. */ public void clear() { if (mSize > 0) { final int[] ohashes = mHashes; final Object[] oarray = mArray; final int osize = mSize; mHashes = ContainerHelpers.EMPTY_INTS; mArray = ContainerHelpers.EMPTY_OBJECTS; mSize = 0; freeArrays(ohashes, oarray, osize); } if (CONCURRENT_MODIFICATION_EXCEPTIONS && mSize > 0) { throw new ConcurrentModificationException(); } } /** * Ensure the array map can hold at least minimumCapacity * items. */ public void ensureCapacity(int minimumCapacity) { final int osize = mSize; if (mHashes.length < minimumCapacity) { final int[] ohashes = mHashes; final Object[] oarray = mArray; allocArrays(minimumCapacity); if (mSize > 0) { System.arraycopy(ohashes, 0, mHashes, 0, osize); System.arraycopy(oarray, 0, mArray, 0, osize<<1); } freeArrays(ohashes, oarray, osize); } if (CONCURRENT_MODIFICATION_EXCEPTIONS && mSize != osize) { throw new ConcurrentModificationException(); } } /** * Check whether a key exists in the array. * * @param key The key to search for. * @return Returns true if the key exists, else false. */ public boolean containsKey(Object key) { return indexOfKey(key) >= 0; } /** * Returns the index of a key in the set. * * @param key The key to search for. * @return Returns the index of the key if it exists, else a negative integer. */ public int indexOfKey(Object key) { return key == null ? indexOfNull() : indexOf(key, key.hashCode()); } int indexOfValue(Object value) { final int N = mSize*2; final Object[] array = mArray; if (value == null) { for (int i=1; i>1; } } } else { for (int i=1; i>1; } } } return -1; } /** * Check whether a value exists in the array. This requires a linear search * through the entire array. * * @param value The value to search for. * @return Returns true if the value exists, else false. */ public boolean containsValue(Object value) { return indexOfValue(value) >= 0; } /** * Retrieve a value from the array. * @param key The key of the value to retrieve. * @return Returns the value associated with the given key, * or null if there is no such key. */ public V get(Object key) { final int index = indexOfKey(key); return index >= 0 ? (V)mArray[(index<<1)+1] : null; } /** * Return the key at the given index in the array. * @param index The desired index, must be between 0 and {@link #size()}-1. * @return Returns the key stored at the given index. */ public K keyAt(int index) { return (K)mArray[index << 1]; } /** * Return the value at the given index in the array. * @param index The desired index, must be between 0 and {@link #size()}-1. * @return Returns the value stored at the given index. */ public V valueAt(int index) { return (V)mArray[(index << 1) + 1]; } /** * Set the value at a given index in the array. * @param index The desired index, must be between 0 and {@link #size()}-1. * @param value The new value to store at this index. * @return Returns the previous value at the given index. */ public V setValueAt(int index, V value) { index = (index << 1) + 1; V old = (V)mArray[index]; mArray[index] = value; return old; } /** * Return true if the array map contains no items. */ public boolean isEmpty() { return mSize <= 0; } /** * Add a new value to the array map. * @param key The key under which to store the value. Must not be null. If * this key already exists in the array, its value will be replaced. * @param value The value to store for the given key. * @return Returns the old value that was stored for the given key, or null if there * was no such key. */ public V put(K key, V value) { final int osize = mSize; final int hash; int index; if (key == null) { hash = 0; index = indexOfNull(); } else { hash = key.hashCode(); index = indexOf(key, hash); } if (index >= 0) { index = (index<<1) + 1; final V old = (V)mArray[index]; mArray[index] = value; return old; } index = ~index; if (osize >= mHashes.length) { final int n = osize >= (BASE_SIZE*2) ? (osize+(osize>>1)) : (osize >= BASE_SIZE ? (BASE_SIZE*2) : BASE_SIZE); if (DEBUG) Log.d(TAG, "put: grow from " + mHashes.length + " to " + n); final int[] ohashes = mHashes; final Object[] oarray = mArray; allocArrays(n); if (CONCURRENT_MODIFICATION_EXCEPTIONS && osize != mSize) { throw new ConcurrentModificationException(); } if (mHashes.length > 0) { if (DEBUG) Log.d(TAG, "put: copy 0-" + osize + " to 0"); System.arraycopy(ohashes, 0, mHashes, 0, ohashes.length); System.arraycopy(oarray, 0, mArray, 0, oarray.length); } freeArrays(ohashes, oarray, osize); } if (index < osize) { if (DEBUG) Log.d(TAG, "put: move " + index + "-" + (osize-index) + " to " + (index+1)); System.arraycopy(mHashes, index, mHashes, index + 1, osize - index); System.arraycopy(mArray, index << 1, mArray, (index + 1) << 1, (mSize - index) << 1); } if (CONCURRENT_MODIFICATION_EXCEPTIONS) { if (osize != mSize || index >= mHashes.length) { throw new ConcurrentModificationException(); } } mHashes[index] = hash; mArray[index<<1] = key; mArray[(index<<1)+1] = value; mSize++; return null; } /** * Perform a {@link #put(Object, Object)} of all key/value pairs in array * @param array The array whose contents are to be retrieved. */ public void putAll(SimpleArrayMap array) { final int N = array.mSize; ensureCapacity(mSize + N); if (mSize == 0) { if (N > 0) { System.arraycopy(array.mHashes, 0, mHashes, 0, N); System.arraycopy(array.mArray, 0, mArray, 0, N<<1); mSize = N; } } else { for (int i=0; i= 0) { return removeAt(index); } return null; } /** * Remove the key/value mapping at the given index. * @param index The desired index, must be between 0 and {@link #size()}-1. * @return Returns the value that was stored at this index. */ public V removeAt(int index) { final Object old = mArray[(index << 1) + 1]; final int osize = mSize; final int nsize; if (osize <= 1) { // Now empty. if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to 0"); freeArrays(mHashes, mArray, osize); mHashes = ContainerHelpers.EMPTY_INTS; mArray = ContainerHelpers.EMPTY_OBJECTS; nsize = 0; } else { nsize = osize - 1; if (mHashes.length > (BASE_SIZE*2) && mSize < mHashes.length/3) { // Shrunk enough to reduce size of arrays. We don't allow it to // shrink smaller than (BASE_SIZE*2) to avoid flapping between // that and BASE_SIZE. final int n = osize > (BASE_SIZE*2) ? (osize + (osize>>1)) : (BASE_SIZE*2); if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to " + n); final int[] ohashes = mHashes; final Object[] oarray = mArray; allocArrays(n); if (CONCURRENT_MODIFICATION_EXCEPTIONS && osize != mSize) { throw new ConcurrentModificationException(); } if (index > 0) { if (DEBUG) Log.d(TAG, "remove: copy from 0-" + index + " to 0"); System.arraycopy(ohashes, 0, mHashes, 0, index); System.arraycopy(oarray, 0, mArray, 0, index << 1); } if (index < nsize) { if (DEBUG) Log.d(TAG, "remove: copy from " + (index+1) + "-" + nsize + " to " + index); System.arraycopy(ohashes, index + 1, mHashes, index, nsize - index); System.arraycopy(oarray, (index + 1) << 1, mArray, index << 1, (nsize - index) << 1); } } else { if (index < nsize) { if (DEBUG) Log.d(TAG, "remove: move " + (index+1) + "-" + nsize + " to " + index); System.arraycopy(mHashes, index + 1, mHashes, index, nsize - index); System.arraycopy(mArray, (index + 1) << 1, mArray, index << 1, (nsize - index) << 1); } mArray[nsize << 1] = null; mArray[(nsize << 1) + 1] = null; } } if (CONCURRENT_MODIFICATION_EXCEPTIONS && osize != mSize) { throw new ConcurrentModificationException(); } mSize = nsize; return (V)old; } /** * Return the number of items in this array map. */ public int size() { return mSize; } /** * {@inheritDoc} * *

This implementation returns false if the object is not a Map or * SimpleArrayMap, or if the maps have different sizes. Otherwise, for each * key in this map, values of both maps are compared. If the values for any * key are not equal, the method returns false, otherwise it returns true. */ @Override public boolean equals(Object object) { if (this == object) { return true; } if (object instanceof SimpleArrayMap) { SimpleArrayMap map = (SimpleArrayMap) object; if (size() != map.size()) { return false; } try { for (int i=0; i map = (Map) object; if (size() != map.size()) { return false; } try { for (int i=0; iThis implementation composes a string by iterating over its mappings. If * this map contains itself as a key or a value, the string "(this Map)" * will appear in its place. */ @Override public String toString() { if (isEmpty()) { return "{}"; } StringBuilder buffer = new StringBuilder(mSize * 28); buffer.append('{'); for (int i=0; i 0) { buffer.append(", "); } Object key = keyAt(i); if (key != this) { buffer.append(key); } else { buffer.append("(this Map)"); } buffer.append('='); Object value = valueAt(i); if (value != this) { buffer.append(value); } else { buffer.append("(this Map)"); } } buffer.append('}'); return buffer.toString(); } }