/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group. Adapted and released, under explicit permission,
* from JDK ArrayList.java which carries the following copyright:
*
* Copyright 1997 by Sun Microsystems, Inc.,
* 901 San Antonio Road, Palo Alto, California, 94303, U.S.A.
* All rights reserved.
*/
package java.util.concurrent;
import java.util.AbstractList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Comparator;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.List;
import java.util.ListIterator;
import java.util.NoSuchElementException;
import java.util.Objects;
import java.util.RandomAccess;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.function.Consumer;
import java.util.function.Predicate;
import java.util.function.UnaryOperator;
// BEGIN android-note
// removed link to collections framework docs
// fixed framework docs link to "Collection#optional"
// END android-note
/**
* A thread-safe variant of {@link java.util.ArrayList} in which all mutative
* operations ({@code add}, {@code set}, and so on) are implemented by
* making a fresh copy of the underlying array.
*
*
This is ordinarily too costly, but may be more efficient
* than alternatives when traversal operations vastly outnumber
* mutations, and is useful when you cannot or don't want to
* synchronize traversals, yet need to preclude interference among
* concurrent threads. The "snapshot" style iterator method uses a
* reference to the state of the array at the point that the iterator
* was created. This array never changes during the lifetime of the
* iterator, so interference is impossible and the iterator is
* guaranteed not to throw {@code ConcurrentModificationException}.
* The iterator will not reflect additions, removals, or changes to
* the list since the iterator was created. Element-changing
* operations on iterators themselves ({@code remove}, {@code set}, and
* {@code add}) are not supported. These methods throw
* {@code UnsupportedOperationException}.
*
*
All elements are permitted, including {@code null}.
*
*
Memory consistency effects: As with other concurrent
* collections, actions in a thread prior to placing an object into a
* {@code CopyOnWriteArrayList}
* happen-before
* actions subsequent to the access or removal of that element from
* the {@code CopyOnWriteArrayList} in another thread.
*
* @since 1.5
* @author Doug Lea
* @param the type of elements held in this list
*/
public class CopyOnWriteArrayList
implements List, RandomAccess, Cloneable, java.io.Serializable {
private static final long serialVersionUID = 8673264195747942595L;
/**
* The lock protecting all mutators. (We have a mild preference
* for builtin monitors over ReentrantLock when either will do.)
*/
final transient Object lock = new Object();
/** The array, accessed only via getArray/setArray. */
// Android-changed: renamed array -> elements for backwards compatibility b/33916927
private transient volatile Object[] elements;
/**
* Gets the array. Non-private so as to also be accessible
* from CopyOnWriteArraySet class.
*/
final Object[] getArray() {
return elements;
}
/**
* Sets the array.
*/
final void setArray(Object[] a) {
elements = a;
}
/**
* Creates an empty list.
*/
public CopyOnWriteArrayList() {
setArray(new Object[0]);
}
/**
* Creates a list containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*
* @param c the collection of initially held elements
* @throws NullPointerException if the specified collection is null
*/
public CopyOnWriteArrayList(Collection extends E> c) {
Object[] elements;
if (c.getClass() == CopyOnWriteArrayList.class)
elements = ((CopyOnWriteArrayList>)c).getArray();
else {
elements = c.toArray();
// defend against c.toArray (incorrectly) not returning Object[]
// (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
if (elements.getClass() != Object[].class)
elements = Arrays.copyOf(elements, elements.length, Object[].class);
}
setArray(elements);
}
/**
* Creates a list holding a copy of the given array.
*
* @param toCopyIn the array (a copy of this array is used as the
* internal array)
* @throws NullPointerException if the specified array is null
*/
public CopyOnWriteArrayList(E[] toCopyIn) {
setArray(Arrays.copyOf(toCopyIn, toCopyIn.length, Object[].class));
}
/**
* Returns the number of elements in this list.
*
* @return the number of elements in this list
*/
public int size() {
return getArray().length;
}
/**
* Returns {@code true} if this list contains no elements.
*
* @return {@code true} if this list contains no elements
*/
public boolean isEmpty() {
return size() == 0;
}
/**
* static version of indexOf, to allow repeated calls without
* needing to re-acquire array each time.
* @param o element to search for
* @param elements the array
* @param index first index to search
* @param fence one past last index to search
* @return index of element, or -1 if absent
*/
private static int indexOf(Object o, Object[] elements,
int index, int fence) {
if (o == null) {
for (int i = index; i < fence; i++)
if (elements[i] == null)
return i;
} else {
for (int i = index; i < fence; i++)
if (o.equals(elements[i]))
return i;
}
return -1;
}
/**
* static version of lastIndexOf.
* @param o element to search for
* @param elements the array
* @param index first index to search
* @return index of element, or -1 if absent
*/
private static int lastIndexOf(Object o, Object[] elements, int index) {
if (o == null) {
for (int i = index; i >= 0; i--)
if (elements[i] == null)
return i;
} else {
for (int i = index; i >= 0; i--)
if (o.equals(elements[i]))
return i;
}
return -1;
}
/**
* Returns {@code true} if this list contains the specified element.
* More formally, returns {@code true} if and only if this list contains
* at least one element {@code e} such that {@code Objects.equals(o, e)}.
*
* @param o element whose presence in this list is to be tested
* @return {@code true} if this list contains the specified element
*/
public boolean contains(Object o) {
Object[] elements = getArray();
return indexOf(o, elements, 0, elements.length) >= 0;
}
/**
* {@inheritDoc}
*/
public int indexOf(Object o) {
Object[] elements = getArray();
return indexOf(o, elements, 0, elements.length);
}
/**
* Returns the index of the first occurrence of the specified element in
* this list, searching forwards from {@code index}, or returns -1 if
* the element is not found.
* More formally, returns the lowest index {@code i} such that
* {@code i >= index && Objects.equals(get(i), e)},
* or -1 if there is no such index.
*
* @param e element to search for
* @param index index to start searching from
* @return the index of the first occurrence of the element in
* this list at position {@code index} or later in the list;
* {@code -1} if the element is not found.
* @throws IndexOutOfBoundsException if the specified index is negative
*/
public int indexOf(E e, int index) {
Object[] elements = getArray();
return indexOf(e, elements, index, elements.length);
}
/**
* {@inheritDoc}
*/
public int lastIndexOf(Object o) {
Object[] elements = getArray();
return lastIndexOf(o, elements, elements.length - 1);
}
/**
* Returns the index of the last occurrence of the specified element in
* this list, searching backwards from {@code index}, or returns -1 if
* the element is not found.
* More formally, returns the highest index {@code i} such that
* {@code i <= index && Objects.equals(get(i), e)},
* or -1 if there is no such index.
*
* @param e element to search for
* @param index index to start searching backwards from
* @return the index of the last occurrence of the element at position
* less than or equal to {@code index} in this list;
* -1 if the element is not found.
* @throws IndexOutOfBoundsException if the specified index is greater
* than or equal to the current size of this list
*/
public int lastIndexOf(E e, int index) {
Object[] elements = getArray();
return lastIndexOf(e, elements, index);
}
/**
* Returns a shallow copy of this list. (The elements themselves
* are not copied.)
*
* @return a clone of this list
*/
public Object clone() {
try {
@SuppressWarnings("unchecked")
CopyOnWriteArrayList clone =
(CopyOnWriteArrayList) super.clone();
clone.resetLock();
return clone;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
}
/**
* Returns an array containing all of the elements in this list
* in proper sequence (from first to last element).
*
* The returned array will be "safe" in that no references to it are
* maintained by this list. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
*
This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all the elements in this list
*/
public Object[] toArray() {
Object[] elements = getArray();
return Arrays.copyOf(elements, elements.length);
}
/**
* Returns an array containing all of the elements in this list in
* proper sequence (from first to last element); the runtime type of
* the returned array is that of the specified array. If the list fits
* in the specified array, it is returned therein. Otherwise, a new
* array is allocated with the runtime type of the specified array and
* the size of this list.
*
*
If this list fits in the specified array with room to spare
* (i.e., the array has more elements than this list), the element in
* the array immediately following the end of the list is set to
* {@code null}. (This is useful in determining the length of this
* list only if the caller knows that this list does not contain
* any null elements.)
*
*
Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
*
Suppose {@code x} is a list known to contain only strings.
* The following code can be used to dump the list into a newly
* allocated array of {@code String}:
*
*
{@code String[] y = x.toArray(new String[0]);}
*
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the list are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose.
* @return an array containing all the elements in this list
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this list
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public T[] toArray(T[] a) {
Object[] elements = getArray();
int len = elements.length;
if (a.length < len)
return (T[]) Arrays.copyOf(elements, len, a.getClass());
else {
System.arraycopy(elements, 0, a, 0, len);
if (a.length > len)
a[len] = null;
return a;
}
}
// Positional Access Operations
@SuppressWarnings("unchecked")
private E get(Object[] a, int index) {
return (E) a[index];
}
static String outOfBounds(int index, int size) {
return "Index: " + index + ", Size: " + size;
}
/**
* {@inheritDoc}
*
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E get(int index) {
return get(getArray(), index);
}
/**
* Replaces the element at the specified position in this list with the
* specified element.
*
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E set(int index, E element) {
synchronized (lock) {
Object[] elements = getArray();
E oldValue = get(elements, index);
if (oldValue != element) {
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len);
newElements[index] = element;
setArray(newElements);
} else {
// Not quite a no-op; ensures volatile write semantics
setArray(elements);
}
return oldValue;
}
}
/**
* Appends the specified element to the end of this list.
*
* @param e element to be appended to this list
* @return {@code true} (as specified by {@link Collection#add})
*/
public boolean add(E e) {
synchronized (lock) {
Object[] elements = getArray();
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len + 1);
newElements[len] = e;
setArray(newElements);
return true;
}
}
/**
* Inserts the specified element at the specified position in this
* list. Shifts the element currently at that position (if any) and
* any subsequent elements to the right (adds one to their indices).
*
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public void add(int index, E element) {
synchronized (lock) {
Object[] elements = getArray();
int len = elements.length;
if (index > len || index < 0)
throw new IndexOutOfBoundsException(outOfBounds(index, len));
Object[] newElements;
int numMoved = len - index;
if (numMoved == 0)
newElements = Arrays.copyOf(elements, len + 1);
else {
newElements = new Object[len + 1];
System.arraycopy(elements, 0, newElements, 0, index);
System.arraycopy(elements, index, newElements, index + 1,
numMoved);
}
newElements[index] = element;
setArray(newElements);
}
}
/**
* Removes the element at the specified position in this list.
* Shifts any subsequent elements to the left (subtracts one from their
* indices). Returns the element that was removed from the list.
*
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E remove(int index) {
synchronized (lock) {
Object[] elements = getArray();
int len = elements.length;
E oldValue = get(elements, index);
int numMoved = len - index - 1;
if (numMoved == 0)
setArray(Arrays.copyOf(elements, len - 1));
else {
Object[] newElements = new Object[len - 1];
System.arraycopy(elements, 0, newElements, 0, index);
System.arraycopy(elements, index + 1, newElements, index,
numMoved);
setArray(newElements);
}
return oldValue;
}
}
/**
* Removes the first occurrence of the specified element from this list,
* if it is present. If this list does not contain the element, it is
* unchanged. More formally, removes the element with the lowest index
* {@code i} such that {@code Objects.equals(o, get(i))}
* (if such an element exists). Returns {@code true} if this list
* contained the specified element (or equivalently, if this list
* changed as a result of the call).
*
* @param o element to be removed from this list, if present
* @return {@code true} if this list contained the specified element
*/
public boolean remove(Object o) {
Object[] snapshot = getArray();
int index = indexOf(o, snapshot, 0, snapshot.length);
return (index < 0) ? false : remove(o, snapshot, index);
}
/**
* A version of remove(Object) using the strong hint that given
* recent snapshot contains o at the given index.
*/
private boolean remove(Object o, Object[] snapshot, int index) {
synchronized (lock) {
Object[] current = getArray();
int len = current.length;
if (snapshot != current) findIndex: {
int prefix = Math.min(index, len);
for (int i = 0; i < prefix; i++) {
if (current[i] != snapshot[i]
&& Objects.equals(o, current[i])) {
index = i;
break findIndex;
}
}
if (index >= len)
return false;
if (current[index] == o)
break findIndex;
index = indexOf(o, current, index, len);
if (index < 0)
return false;
}
Object[] newElements = new Object[len - 1];
System.arraycopy(current, 0, newElements, 0, index);
System.arraycopy(current, index + 1,
newElements, index,
len - index - 1);
setArray(newElements);
return true;
}
}
/**
* Removes from this list all of the elements whose index is between
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
* Shifts any succeeding elements to the left (reduces their index).
* This call shortens the list by {@code (toIndex - fromIndex)} elements.
* (If {@code toIndex==fromIndex}, this operation has no effect.)
*
* @param fromIndex index of first element to be removed
* @param toIndex index after last element to be removed
* @throws IndexOutOfBoundsException if fromIndex or toIndex out of range
* ({@code fromIndex < 0 || toIndex > size() || toIndex < fromIndex})
*/
void removeRange(int fromIndex, int toIndex) {
synchronized (lock) {
Object[] elements = getArray();
int len = elements.length;
if (fromIndex < 0 || toIndex > len || toIndex < fromIndex)
throw new IndexOutOfBoundsException();
int newlen = len - (toIndex - fromIndex);
int numMoved = len - toIndex;
if (numMoved == 0)
setArray(Arrays.copyOf(elements, newlen));
else {
Object[] newElements = new Object[newlen];
System.arraycopy(elements, 0, newElements, 0, fromIndex);
System.arraycopy(elements, toIndex, newElements,
fromIndex, numMoved);
setArray(newElements);
}
}
}
/**
* Appends the element, if not present.
*
* @param e element to be added to this list, if absent
* @return {@code true} if the element was added
*/
public boolean addIfAbsent(E e) {
Object[] snapshot = getArray();
return indexOf(e, snapshot, 0, snapshot.length) >= 0 ? false :
addIfAbsent(e, snapshot);
}
/**
* A version of addIfAbsent using the strong hint that given
* recent snapshot does not contain e.
*/
private boolean addIfAbsent(E e, Object[] snapshot) {
synchronized (lock) {
Object[] current = getArray();
int len = current.length;
if (snapshot != current) {
// Optimize for lost race to another addXXX operation
int common = Math.min(snapshot.length, len);
for (int i = 0; i < common; i++)
if (current[i] != snapshot[i]
&& Objects.equals(e, current[i]))
return false;
if (indexOf(e, current, common, len) >= 0)
return false;
}
Object[] newElements = Arrays.copyOf(current, len + 1);
newElements[len] = e;
setArray(newElements);
return true;
}
}
/**
* Returns {@code true} if this list contains all of the elements of the
* specified collection.
*
* @param c collection to be checked for containment in this list
* @return {@code true} if this list contains all of the elements of the
* specified collection
* @throws NullPointerException if the specified collection is null
* @see #contains(Object)
*/
public boolean containsAll(Collection> c) {
Object[] elements = getArray();
int len = elements.length;
for (Object e : c) {
if (indexOf(e, elements, 0, len) < 0)
return false;
}
return true;
}
/**
* Removes from this list all of its elements that are contained in
* the specified collection. This is a particularly expensive operation
* in this class because of the need for an internal temporary array.
*
* @param c collection containing elements to be removed from this list
* @return {@code true} if this list changed as a result of the call
* @throws ClassCastException if the class of an element of this list
* is incompatible with the specified collection
* (optional)
* @throws NullPointerException if this list contains a null element and the
* specified collection does not permit null elements
* (optional),
* or if the specified collection is null
* @see #remove(Object)
*/
public boolean removeAll(Collection> c) {
if (c == null) throw new NullPointerException();
synchronized (lock) {
Object[] elements = getArray();
int len = elements.length;
if (len != 0) {
// temp array holds those elements we know we want to keep
int newlen = 0;
Object[] temp = new Object[len];
for (int i = 0; i < len; ++i) {
Object element = elements[i];
if (!c.contains(element))
temp[newlen++] = element;
}
if (newlen != len) {
setArray(Arrays.copyOf(temp, newlen));
return true;
}
}
return false;
}
}
/**
* Retains only the elements in this list that are contained in the
* specified collection. In other words, removes from this list all of
* its elements that are not contained in the specified collection.
*
* @param c collection containing elements to be retained in this list
* @return {@code true} if this list changed as a result of the call
* @throws ClassCastException if the class of an element of this list
* is incompatible with the specified collection
* (optional)
* @throws NullPointerException if this list contains a null element and the
* specified collection does not permit null elements
* (optional),
* or if the specified collection is null
* @see #remove(Object)
*/
public boolean retainAll(Collection> c) {
if (c == null) throw new NullPointerException();
synchronized (lock) {
Object[] elements = getArray();
int len = elements.length;
if (len != 0) {
// temp array holds those elements we know we want to keep
int newlen = 0;
Object[] temp = new Object[len];
for (int i = 0; i < len; ++i) {
Object element = elements[i];
if (c.contains(element))
temp[newlen++] = element;
}
if (newlen != len) {
setArray(Arrays.copyOf(temp, newlen));
return true;
}
}
return false;
}
}
/**
* Appends all of the elements in the specified collection that
* are not already contained in this list, to the end of
* this list, in the order that they are returned by the
* specified collection's iterator.
*
* @param c collection containing elements to be added to this list
* @return the number of elements added
* @throws NullPointerException if the specified collection is null
* @see #addIfAbsent(Object)
*/
public int addAllAbsent(Collection extends E> c) {
Object[] cs = c.toArray();
if (cs.length == 0)
return 0;
synchronized (lock) {
Object[] elements = getArray();
int len = elements.length;
int added = 0;
// uniquify and compact elements in cs
for (int i = 0; i < cs.length; ++i) {
Object e = cs[i];
if (indexOf(e, elements, 0, len) < 0 &&
indexOf(e, cs, 0, added) < 0)
cs[added++] = e;
}
if (added > 0) {
Object[] newElements = Arrays.copyOf(elements, len + added);
System.arraycopy(cs, 0, newElements, len, added);
setArray(newElements);
}
return added;
}
}
/**
* Removes all of the elements from this list.
* The list will be empty after this call returns.
*/
public void clear() {
synchronized (lock) {
setArray(new Object[0]);
}
}
/**
* Appends all of the elements in the specified collection to the end
* of this list, in the order that they are returned by the specified
* collection's iterator.
*
* @param c collection containing elements to be added to this list
* @return {@code true} if this list changed as a result of the call
* @throws NullPointerException if the specified collection is null
* @see #add(Object)
*/
public boolean addAll(Collection extends E> c) {
Object[] cs = (c.getClass() == CopyOnWriteArrayList.class) ?
((CopyOnWriteArrayList>)c).getArray() : c.toArray();
if (cs.length == 0)
return false;
synchronized (lock) {
Object[] elements = getArray();
int len = elements.length;
if (len == 0 && cs.getClass() == Object[].class)
setArray(cs);
else {
Object[] newElements = Arrays.copyOf(elements, len + cs.length);
System.arraycopy(cs, 0, newElements, len, cs.length);
setArray(newElements);
}
return true;
}
}
/**
* Inserts all of the elements in the specified collection into this
* list, starting at the specified position. Shifts the element
* currently at that position (if any) and any subsequent elements to
* the right (increases their indices). The new elements will appear
* in this list in the order that they are returned by the
* specified collection's iterator.
*
* @param index index at which to insert the first element
* from the specified collection
* @param c collection containing elements to be added to this list
* @return {@code true} if this list changed as a result of the call
* @throws IndexOutOfBoundsException {@inheritDoc}
* @throws NullPointerException if the specified collection is null
* @see #add(int,Object)
*/
public boolean addAll(int index, Collection extends E> c) {
Object[] cs = c.toArray();
synchronized (lock) {
Object[] elements = getArray();
int len = elements.length;
if (index > len || index < 0)
throw new IndexOutOfBoundsException(outOfBounds(index, len));
if (cs.length == 0)
return false;
int numMoved = len - index;
Object[] newElements;
if (numMoved == 0)
newElements = Arrays.copyOf(elements, len + cs.length);
else {
newElements = new Object[len + cs.length];
System.arraycopy(elements, 0, newElements, 0, index);
System.arraycopy(elements, index,
newElements, index + cs.length,
numMoved);
}
System.arraycopy(cs, 0, newElements, index, cs.length);
setArray(newElements);
return true;
}
}
public void forEach(Consumer super E> action) {
if (action == null) throw new NullPointerException();
for (Object x : getArray()) {
@SuppressWarnings("unchecked") E e = (E) x;
action.accept(e);
}
}
public boolean removeIf(Predicate super E> filter) {
if (filter == null) throw new NullPointerException();
synchronized (lock) {
final Object[] elements = getArray();
final int len = elements.length;
int i;
for (i = 0; i < len; i++) {
@SuppressWarnings("unchecked") E e = (E) elements[i];
if (filter.test(e)) {
int newlen = i;
final Object[] newElements = new Object[len - 1];
System.arraycopy(elements, 0, newElements, 0, newlen);
for (i++; i < len; i++) {
@SuppressWarnings("unchecked") E x = (E) elements[i];
if (!filter.test(x))
newElements[newlen++] = x;
}
setArray((newlen == len - 1)
? newElements // one match => one copy
: Arrays.copyOf(newElements, newlen));
return true;
}
}
return false; // zero matches => zero copies
}
}
public void replaceAll(UnaryOperator operator) {
if (operator == null) throw new NullPointerException();
synchronized (lock) {
Object[] elements = getArray();
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len);
for (int i = 0; i < len; ++i) {
@SuppressWarnings("unchecked") E e = (E) elements[i];
newElements[i] = operator.apply(e);
}
setArray(newElements);
}
}
public void sort(Comparator super E> c) {
synchronized (lock) {
Object[] elements = getArray();
Object[] newElements = Arrays.copyOf(elements, elements.length);
@SuppressWarnings("unchecked") E[] es = (E[])newElements;
Arrays.sort(es, c);
setArray(newElements);
}
}
/**
* Saves this list to a stream (that is, serializes it).
*
* @param s the stream
* @throws java.io.IOException if an I/O error occurs
* @serialData The length of the array backing the list is emitted
* (int), followed by all of its elements (each an Object)
* in the proper order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
s.defaultWriteObject();
Object[] elements = getArray();
// Write out array length
s.writeInt(elements.length);
// Write out all elements in the proper order.
for (Object element : elements)
s.writeObject(element);
}
/**
* Reconstitutes this list from a stream (that is, deserializes it).
* @param s the stream
* @throws ClassNotFoundException if the class of a serialized object
* could not be found
* @throws java.io.IOException if an I/O error occurs
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
// bind to new lock
resetLock();
// Read in array length and allocate array
int len = s.readInt();
Object[] elements = new Object[len];
// Read in all elements in the proper order.
for (int i = 0; i < len; i++)
elements[i] = s.readObject();
setArray(elements);
}
/**
* Returns a string representation of this list. The string
* representation consists of the string representations of the list's
* elements in the order they are returned by its iterator, enclosed in
* square brackets ({@code "[]"}). Adjacent elements are separated by
* the characters {@code ", "} (comma and space). Elements are
* converted to strings as by {@link String#valueOf(Object)}.
*
* @return a string representation of this list
*/
public String toString() {
return Arrays.toString(getArray());
}
/**
* Compares the specified object with this list for equality.
* Returns {@code true} if the specified object is the same object
* as this object, or if it is also a {@link List} and the sequence
* of elements returned by an {@linkplain List#iterator() iterator}
* over the specified list is the same as the sequence returned by
* an iterator over this list. The two sequences are considered to
* be the same if they have the same length and corresponding
* elements at the same position in the sequence are equal.
* Two elements {@code e1} and {@code e2} are considered
* equal if {@code Objects.equals(e1, e2)}.
*
* @param o the object to be compared for equality with this list
* @return {@code true} if the specified object is equal to this list
*/
public boolean equals(Object o) {
if (o == this)
return true;
if (!(o instanceof List))
return false;
List> list = (List>)o;
Iterator> it = list.iterator();
Object[] elements = getArray();
for (int i = 0, len = elements.length; i < len; i++)
if (!it.hasNext() || !Objects.equals(elements[i], it.next()))
return false;
if (it.hasNext())
return false;
return true;
}
/**
* Returns the hash code value for this list.
*
* This implementation uses the definition in {@link List#hashCode}.
*
* @return the hash code value for this list
*/
public int hashCode() {
int hashCode = 1;
for (Object x : getArray())
hashCode = 31 * hashCode + (x == null ? 0 : x.hashCode());
return hashCode;
}
/**
* Returns an iterator over the elements in this list in proper sequence.
*
*
The returned iterator provides a snapshot of the state of the list
* when the iterator was constructed. No synchronization is needed while
* traversing the iterator. The iterator does NOT support the
* {@code remove} method.
*
* @return an iterator over the elements in this list in proper sequence
*/
public Iterator iterator() {
return new COWIterator(getArray(), 0);
}
/**
* {@inheritDoc}
*
* The returned iterator provides a snapshot of the state of the list
* when the iterator was constructed. No synchronization is needed while
* traversing the iterator. The iterator does NOT support the
* {@code remove}, {@code set} or {@code add} methods.
*/
public ListIterator listIterator() {
return new COWIterator(getArray(), 0);
}
/**
* {@inheritDoc}
*
* The returned iterator provides a snapshot of the state of the list
* when the iterator was constructed. No synchronization is needed while
* traversing the iterator. The iterator does NOT support the
* {@code remove}, {@code set} or {@code add} methods.
*
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public ListIterator listIterator(int index) {
Object[] elements = getArray();
int len = elements.length;
if (index < 0 || index > len)
throw new IndexOutOfBoundsException(outOfBounds(index, len));
return new COWIterator(elements, index);
}
/**
* Returns a {@link Spliterator} over the elements in this list.
*
* The {@code Spliterator} reports {@link Spliterator#IMMUTABLE},
* {@link Spliterator#ORDERED}, {@link Spliterator#SIZED}, and
* {@link Spliterator#SUBSIZED}.
*
*
The spliterator provides a snapshot of the state of the list
* when the spliterator was constructed. No synchronization is needed while
* operating on the spliterator.
*
* @return a {@code Spliterator} over the elements in this list
* @since 1.8
*/
public Spliterator spliterator() {
return Spliterators.spliterator
(getArray(), Spliterator.IMMUTABLE | Spliterator.ORDERED);
}
static final class COWIterator implements ListIterator {
/** Snapshot of the array */
private final Object[] snapshot;
/** Index of element to be returned by subsequent call to next. */
private int cursor;
COWIterator(Object[] elements, int initialCursor) {
cursor = initialCursor;
snapshot = elements;
}
public boolean hasNext() {
return cursor < snapshot.length;
}
public boolean hasPrevious() {
return cursor > 0;
}
@SuppressWarnings("unchecked")
public E next() {
if (! hasNext())
throw new NoSuchElementException();
return (E) snapshot[cursor++];
}
@SuppressWarnings("unchecked")
public E previous() {
if (! hasPrevious())
throw new NoSuchElementException();
return (E) snapshot[--cursor];
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor-1;
}
/**
* Not supported. Always throws UnsupportedOperationException.
* @throws UnsupportedOperationException always; {@code remove}
* is not supported by this iterator.
*/
public void remove() {
throw new UnsupportedOperationException();
}
/**
* Not supported. Always throws UnsupportedOperationException.
* @throws UnsupportedOperationException always; {@code set}
* is not supported by this iterator.
*/
public void set(E e) {
throw new UnsupportedOperationException();
}
/**
* Not supported. Always throws UnsupportedOperationException.
* @throws UnsupportedOperationException always; {@code add}
* is not supported by this iterator.
*/
public void add(E e) {
throw new UnsupportedOperationException();
}
@Override
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer super E> action) {
Objects.requireNonNull(action);
final int size = snapshot.length;
for (int i = cursor; i < size; i++) {
action.accept((E) snapshot[i]);
}
cursor = size;
}
}
/**
* Returns a view of the portion of this list between
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
* The returned list is backed by this list, so changes in the
* returned list are reflected in this list.
*
* The semantics of the list returned by this method become
* undefined if the backing list (i.e., this list) is modified in
* any way other than via the returned list.
*
* @param fromIndex low endpoint (inclusive) of the subList
* @param toIndex high endpoint (exclusive) of the subList
* @return a view of the specified range within this list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public List subList(int fromIndex, int toIndex) {
synchronized (lock) {
Object[] elements = getArray();
int len = elements.length;
if (fromIndex < 0 || toIndex > len || fromIndex > toIndex)
throw new IndexOutOfBoundsException();
return new COWSubList(this, fromIndex, toIndex);
}
}
/**
* Sublist for CopyOnWriteArrayList.
* This class extends AbstractList merely for convenience, to
* avoid having to define addAll, etc. This doesn't hurt, but
* is wasteful. This class does not need or use modCount
* mechanics in AbstractList, but does need to check for
* concurrent modification using similar mechanics. On each
* operation, the array that we expect the backing list to use
* is checked and updated. Since we do this for all of the
* base operations invoked by those defined in AbstractList,
* all is well. While inefficient, this is not worth
* improving. The kinds of list operations inherited from
* AbstractList are already so slow on COW sublists that
* adding a bit more space/time doesn't seem even noticeable.
*/
private static class COWSubList
extends AbstractList
implements RandomAccess
{
private final CopyOnWriteArrayList l;
private final int offset;
private int size;
private Object[] expectedArray;
// only call this holding l's lock
COWSubList(CopyOnWriteArrayList list,
int fromIndex, int toIndex) {
// assert Thread.holdsLock(list.lock);
l = list;
expectedArray = l.getArray();
offset = fromIndex;
size = toIndex - fromIndex;
}
// only call this holding l's lock
private void checkForComodification() {
// assert Thread.holdsLock(l.lock);
if (l.getArray() != expectedArray)
throw new ConcurrentModificationException();
}
// only call this holding l's lock
private void rangeCheck(int index) {
// assert Thread.holdsLock(l.lock);
if (index < 0 || index >= size)
throw new IndexOutOfBoundsException(outOfBounds(index, size));
}
public E set(int index, E element) {
synchronized (l.lock) {
rangeCheck(index);
checkForComodification();
E x = l.set(index+offset, element);
expectedArray = l.getArray();
return x;
}
}
public E get(int index) {
synchronized (l.lock) {
rangeCheck(index);
checkForComodification();
return l.get(index+offset);
}
}
public int size() {
synchronized (l.lock) {
checkForComodification();
return size;
}
}
public void add(int index, E element) {
synchronized (l.lock) {
checkForComodification();
if (index < 0 || index > size)
throw new IndexOutOfBoundsException
(outOfBounds(index, size));
l.add(index+offset, element);
expectedArray = l.getArray();
size++;
}
}
public void clear() {
synchronized (l.lock) {
checkForComodification();
l.removeRange(offset, offset+size);
expectedArray = l.getArray();
size = 0;
}
}
public E remove(int index) {
synchronized (l.lock) {
rangeCheck(index);
checkForComodification();
E result = l.remove(index+offset);
expectedArray = l.getArray();
size--;
return result;
}
}
public boolean remove(Object o) {
int index = indexOf(o);
if (index == -1)
return false;
remove(index);
return true;
}
public Iterator iterator() {
synchronized (l.lock) {
checkForComodification();
return new COWSubListIterator(l, 0, offset, size);
}
}
public ListIterator listIterator(int index) {
synchronized (l.lock) {
checkForComodification();
if (index < 0 || index > size)
throw new IndexOutOfBoundsException
(outOfBounds(index, size));
return new COWSubListIterator(l, index, offset, size);
}
}
public List subList(int fromIndex, int toIndex) {
synchronized (l.lock) {
checkForComodification();
if (fromIndex < 0 || toIndex > size || fromIndex > toIndex)
throw new IndexOutOfBoundsException();
return new COWSubList(l, fromIndex + offset,
toIndex + offset);
}
}
public void forEach(Consumer super E> action) {
if (action == null) throw new NullPointerException();
int lo = offset;
int hi = offset + size;
Object[] a = expectedArray;
if (l.getArray() != a)
throw new ConcurrentModificationException();
if (lo < 0 || hi > a.length)
throw new IndexOutOfBoundsException();
for (int i = lo; i < hi; ++i) {
@SuppressWarnings("unchecked") E e = (E) a[i];
action.accept(e);
}
}
public void replaceAll(UnaryOperator operator) {
if (operator == null) throw new NullPointerException();
synchronized (l.lock) {
int lo = offset;
int hi = offset + size;
Object[] elements = expectedArray;
if (l.getArray() != elements)
throw new ConcurrentModificationException();
int len = elements.length;
if (lo < 0 || hi > len)
throw new IndexOutOfBoundsException();
Object[] newElements = Arrays.copyOf(elements, len);
for (int i = lo; i < hi; ++i) {
@SuppressWarnings("unchecked") E e = (E) elements[i];
newElements[i] = operator.apply(e);
}
l.setArray(expectedArray = newElements);
}
}
public void sort(Comparator super E> c) {
synchronized (l.lock) {
int lo = offset;
int hi = offset + size;
Object[] elements = expectedArray;
if (l.getArray() != elements)
throw new ConcurrentModificationException();
int len = elements.length;
if (lo < 0 || hi > len)
throw new IndexOutOfBoundsException();
Object[] newElements = Arrays.copyOf(elements, len);
@SuppressWarnings("unchecked") E[] es = (E[])newElements;
Arrays.sort(es, lo, hi, c);
l.setArray(expectedArray = newElements);
}
}
public boolean removeAll(Collection> c) {
if (c == null) throw new NullPointerException();
boolean removed = false;
synchronized (l.lock) {
int n = size;
if (n > 0) {
int lo = offset;
int hi = offset + n;
Object[] elements = expectedArray;
if (l.getArray() != elements)
throw new ConcurrentModificationException();
int len = elements.length;
if (lo < 0 || hi > len)
throw new IndexOutOfBoundsException();
int newSize = 0;
Object[] temp = new Object[n];
for (int i = lo; i < hi; ++i) {
Object element = elements[i];
if (!c.contains(element))
temp[newSize++] = element;
}
if (newSize != n) {
Object[] newElements = new Object[len - n + newSize];
System.arraycopy(elements, 0, newElements, 0, lo);
System.arraycopy(temp, 0, newElements, lo, newSize);
System.arraycopy(elements, hi, newElements,
lo + newSize, len - hi);
size = newSize;
removed = true;
l.setArray(expectedArray = newElements);
}
}
}
return removed;
}
public boolean retainAll(Collection> c) {
if (c == null) throw new NullPointerException();
boolean removed = false;
synchronized (l.lock) {
int n = size;
if (n > 0) {
int lo = offset;
int hi = offset + n;
Object[] elements = expectedArray;
if (l.getArray() != elements)
throw new ConcurrentModificationException();
int len = elements.length;
if (lo < 0 || hi > len)
throw new IndexOutOfBoundsException();
int newSize = 0;
Object[] temp = new Object[n];
for (int i = lo; i < hi; ++i) {
Object element = elements[i];
if (c.contains(element))
temp[newSize++] = element;
}
if (newSize != n) {
Object[] newElements = new Object[len - n + newSize];
System.arraycopy(elements, 0, newElements, 0, lo);
System.arraycopy(temp, 0, newElements, lo, newSize);
System.arraycopy(elements, hi, newElements,
lo + newSize, len - hi);
size = newSize;
removed = true;
l.setArray(expectedArray = newElements);
}
}
}
return removed;
}
public boolean removeIf(Predicate super E> filter) {
if (filter == null) throw new NullPointerException();
boolean removed = false;
synchronized (l.lock) {
int n = size;
if (n > 0) {
int lo = offset;
int hi = offset + n;
Object[] elements = expectedArray;
if (l.getArray() != elements)
throw new ConcurrentModificationException();
int len = elements.length;
if (lo < 0 || hi > len)
throw new IndexOutOfBoundsException();
int newSize = 0;
Object[] temp = new Object[n];
for (int i = lo; i < hi; ++i) {
@SuppressWarnings("unchecked") E e = (E) elements[i];
if (!filter.test(e))
temp[newSize++] = e;
}
if (newSize != n) {
Object[] newElements = new Object[len - n + newSize];
System.arraycopy(elements, 0, newElements, 0, lo);
System.arraycopy(temp, 0, newElements, lo, newSize);
System.arraycopy(elements, hi, newElements,
lo + newSize, len - hi);
size = newSize;
removed = true;
l.setArray(expectedArray = newElements);
}
}
}
return removed;
}
public Spliterator spliterator() {
int lo = offset;
int hi = offset + size;
Object[] a = expectedArray;
if (l.getArray() != a)
throw new ConcurrentModificationException();
if (lo < 0 || hi > a.length)
throw new IndexOutOfBoundsException();
return Spliterators.spliterator
(a, lo, hi, Spliterator.IMMUTABLE | Spliterator.ORDERED);
}
}
private static class COWSubListIterator implements ListIterator {
private final ListIterator it;
private final int offset;
private final int size;
COWSubListIterator(List l, int index, int offset, int size) {
this.offset = offset;
this.size = size;
it = l.listIterator(index+offset);
}
public boolean hasNext() {
return nextIndex() < size;
}
public E next() {
if (hasNext())
return it.next();
else
throw new NoSuchElementException();
}
public boolean hasPrevious() {
return previousIndex() >= 0;
}
public E previous() {
if (hasPrevious())
return it.previous();
else
throw new NoSuchElementException();
}
public int nextIndex() {
return it.nextIndex() - offset;
}
public int previousIndex() {
return it.previousIndex() - offset;
}
public void remove() {
throw new UnsupportedOperationException();
}
public void set(E e) {
throw new UnsupportedOperationException();
}
public void add(E e) {
throw new UnsupportedOperationException();
}
@Override
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer super E> action) {
Objects.requireNonNull(action);
while (nextIndex() < size) {
action.accept(it.next());
}
}
}
// Support for resetting lock while deserializing
private void resetLock() {
U.putObjectVolatile(this, LOCK, new Object());
}
private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
private static final long LOCK;
static {
try {
LOCK = U.objectFieldOffset
(CopyOnWriteArrayList.class.getDeclaredField("lock"));
} catch (ReflectiveOperationException e) {
throw new Error(e);
}
}
}