/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package java.util.concurrent; import java.io.ObjectStreamField; import java.util.Random; import java.util.Spliterator; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicLong; import java.util.function.DoubleConsumer; import java.util.function.IntConsumer; import java.util.function.LongConsumer; import java.util.stream.DoubleStream; import java.util.stream.IntStream; import java.util.stream.LongStream; import java.util.stream.StreamSupport; /** * A random number generator isolated to the current thread. Like the * global {@link java.util.Random} generator used by the {@link * java.lang.Math} class, a {@code ThreadLocalRandom} is initialized * with an internally generated seed that may not otherwise be * modified. When applicable, use of {@code ThreadLocalRandom} rather * than shared {@code Random} objects in concurrent programs will * typically encounter much less overhead and contention. Use of * {@code ThreadLocalRandom} is particularly appropriate when multiple * tasks (for example, each a {@link ForkJoinTask}) use random numbers * in parallel in thread pools. * *
Usages of this class should typically be of the form: * {@code ThreadLocalRandom.current().nextX(...)} (where * {@code X} is {@code Int}, {@code Long}, etc). * When all usages are of this form, it is never possible to * accidently share a {@code ThreadLocalRandom} across multiple threads. * *
This class also provides additional commonly used bounded random * generation methods. * *
Instances of {@code ThreadLocalRandom} are not cryptographically
* secure. Consider instead using {@link java.security.SecureRandom}
* in security-sensitive applications. Additionally,
* default-constructed instances do not use a cryptographically random
* seed unless the {@linkplain System#getProperty system property}
* {@code java.util.secureRandomSeed} is set to {@code true}.
*
* @since 1.7
* @author Doug Lea
*/
public class ThreadLocalRandom extends Random {
/*
* This class implements the java.util.Random API (and subclasses
* Random) using a single static instance that accesses random
* number state held in class Thread (primarily, field
* threadLocalRandomSeed). In doing so, it also provides a home
* for managing package-private utilities that rely on exactly the
* same state as needed to maintain the ThreadLocalRandom
* instances. We leverage the need for an initialization flag
* field to also use it as a "probe" -- a self-adjusting thread
* hash used for contention avoidance, as well as a secondary
* simpler (xorShift) random seed that is conservatively used to
* avoid otherwise surprising users by hijacking the
* ThreadLocalRandom sequence. The dual use is a marriage of
* convenience, but is a simple and efficient way of reducing
* application-level overhead and footprint of most concurrent
* programs.
*
* Even though this class subclasses java.util.Random, it uses the
* same basic algorithm as java.util.SplittableRandom. (See its
* internal documentation for explanations, which are not repeated
* here.) Because ThreadLocalRandoms are not splittable
* though, we use only a single 64bit gamma.
*
* Because this class is in a different package than class Thread,
* field access methods use Unsafe to bypass access control rules.
* To conform to the requirements of the Random superclass
* constructor, the common static ThreadLocalRandom maintains an
* "initialized" field for the sake of rejecting user calls to
* setSeed while still allowing a call from constructor. Note
* that serialization is completely unnecessary because there is
* only a static singleton. But we generate a serial form
* containing "rnd" and "initialized" fields to ensure
* compatibility across versions.
*
* Implementations of non-core methods are mostly the same as in
* SplittableRandom, that were in part derived from a previous
* version of this class.
*
* The nextLocalGaussian ThreadLocal supports the very rarely used
* nextGaussian method by providing a holder for the second of a
* pair of them. As is true for the base class version of this
* method, this time/space tradeoff is probably never worthwhile,
* but we provide identical statistical properties.
*/
private static long mix64(long z) {
z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
return z ^ (z >>> 33);
}
private static int mix32(long z) {
z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
}
/**
* Field used only during singleton initialization.
* True when constructor completes.
*/
boolean initialized;
/** Constructor used only for static singleton */
private ThreadLocalRandom() {
initialized = true; // false during super() call
}
/**
* Initialize Thread fields for the current thread. Called only
* when Thread.threadLocalRandomProbe is zero, indicating that a
* thread local seed value needs to be generated. Note that even
* though the initialization is purely thread-local, we need to
* rely on (static) atomic generators to initialize the values.
*/
static final void localInit() {
int p = probeGenerator.addAndGet(PROBE_INCREMENT);
int probe = (p == 0) ? 1 : p; // skip 0
long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
Thread t = Thread.currentThread();
U.putLong(t, SEED, seed);
U.putInt(t, PROBE, probe);
}
/**
* Returns the current thread's {@code ThreadLocalRandom}.
*
* @return the current thread's {@code ThreadLocalRandom}
*/
public static ThreadLocalRandom current() {
if (U.getInt(Thread.currentThread(), PROBE) == 0)
localInit();
return instance;
}
/**
* Throws {@code UnsupportedOperationException}. Setting seeds in
* this generator is not supported.
*
* @throws UnsupportedOperationException always
*/
public void setSeed(long seed) {
// only allow call from super() constructor
if (initialized)
throw new UnsupportedOperationException();
}
final long nextSeed() {
Thread t; long r; // read and update per-thread seed
U.putLong(t = Thread.currentThread(), SEED,
r = U.getLong(t, SEED) + GAMMA);
return r;
}
// We must define this, but never use it.
protected int next(int bits) {
return (int)(mix64(nextSeed()) >>> (64 - bits));
}
/**
* The form of nextLong used by LongStream Spliterators. If
* origin is greater than bound, acts as unbounded form of
* nextLong, else as bounded form.
*
* @param origin the least value, unless greater than bound
* @param bound the upper bound (exclusive), must not equal origin
* @return a pseudorandom value
*/
final long internalNextLong(long origin, long bound) {
long r = mix64(nextSeed());
if (origin < bound) {
long n = bound - origin, m = n - 1;
if ((n & m) == 0L) // power of two
r = (r & m) + origin;
else if (n > 0L) { // reject over-represented candidates
for (long u = r >>> 1; // ensure nonnegative
u + m - (r = u % n) < 0L; // rejection check
u = mix64(nextSeed()) >>> 1) // retry
;
r += origin;
}
else { // range not representable as long
while (r < origin || r >= bound)
r = mix64(nextSeed());
}
}
return r;
}
/**
* The form of nextInt used by IntStream Spliterators.
* Exactly the same as long version, except for types.
*
* @param origin the least value, unless greater than bound
* @param bound the upper bound (exclusive), must not equal origin
* @return a pseudorandom value
*/
final int internalNextInt(int origin, int bound) {
int r = mix32(nextSeed());
if (origin < bound) {
int n = bound - origin, m = n - 1;
if ((n & m) == 0)
r = (r & m) + origin;
else if (n > 0) {
for (int u = r >>> 1;
u + m - (r = u % n) < 0;
u = mix32(nextSeed()) >>> 1)
;
r += origin;
}
else {
while (r < origin || r >= bound)
r = mix32(nextSeed());
}
}
return r;
}
/**
* The form of nextDouble used by DoubleStream Spliterators.
*
* @param origin the least value, unless greater than bound
* @param bound the upper bound (exclusive), must not equal origin
* @return a pseudorandom value
*/
final double internalNextDouble(double origin, double bound) {
double r = (nextLong() >>> 11) * DOUBLE_UNIT;
if (origin < bound) {
r = r * (bound - origin) + origin;
if (r >= bound) // correct for rounding
r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
}
return r;
}
/**
* Returns a pseudorandom {@code int} value.
*
* @return a pseudorandom {@code int} value
*/
public int nextInt() {
return mix32(nextSeed());
}
/**
* Returns a pseudorandom {@code int} value between zero (inclusive)
* and the specified bound (exclusive).
*
* @param bound the upper bound (exclusive). Must be positive.
* @return a pseudorandom {@code int} value between zero
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code bound} is not positive
*/
public int nextInt(int bound) {
if (bound <= 0)
throw new IllegalArgumentException(BAD_BOUND);
int r = mix32(nextSeed());
int m = bound - 1;
if ((bound & m) == 0) // power of two
r &= m;
else { // reject over-represented candidates
for (int u = r >>> 1;
u + m - (r = u % bound) < 0;
u = mix32(nextSeed()) >>> 1)
;
}
return r;
}
/**
* Returns a pseudorandom {@code int} value between the specified
* origin (inclusive) and the specified bound (exclusive).
*
* @param origin the least value returned
* @param bound the upper bound (exclusive)
* @return a pseudorandom {@code int} value between the origin
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code origin} is greater than
* or equal to {@code bound}
*/
public int nextInt(int origin, int bound) {
if (origin >= bound)
throw new IllegalArgumentException(BAD_RANGE);
return internalNextInt(origin, bound);
}
/**
* Returns a pseudorandom {@code long} value.
*
* @return a pseudorandom {@code long} value
*/
public long nextLong() {
return mix64(nextSeed());
}
/**
* Returns a pseudorandom {@code long} value between zero (inclusive)
* and the specified bound (exclusive).
*
* @param bound the upper bound (exclusive). Must be positive.
* @return a pseudorandom {@code long} value between zero
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code bound} is not positive
*/
public long nextLong(long bound) {
if (bound <= 0)
throw new IllegalArgumentException(BAD_BOUND);
long r = mix64(nextSeed());
long m = bound - 1;
if ((bound & m) == 0L) // power of two
r &= m;
else { // reject over-represented candidates
for (long u = r >>> 1;
u + m - (r = u % bound) < 0L;
u = mix64(nextSeed()) >>> 1)
;
}
return r;
}
/**
* Returns a pseudorandom {@code long} value between the specified
* origin (inclusive) and the specified bound (exclusive).
*
* @param origin the least value returned
* @param bound the upper bound (exclusive)
* @return a pseudorandom {@code long} value between the origin
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code origin} is greater than
* or equal to {@code bound}
*/
public long nextLong(long origin, long bound) {
if (origin >= bound)
throw new IllegalArgumentException(BAD_RANGE);
return internalNextLong(origin, bound);
}
/**
* Returns a pseudorandom {@code double} value between zero
* (inclusive) and one (exclusive).
*
* @return a pseudorandom {@code double} value between zero
* (inclusive) and one (exclusive)
*/
public double nextDouble() {
return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
}
/**
* Returns a pseudorandom {@code double} value between 0.0
* (inclusive) and the specified bound (exclusive).
*
* @param bound the upper bound (exclusive). Must be positive.
* @return a pseudorandom {@code double} value between zero
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code bound} is not positive
*/
public double nextDouble(double bound) {
if (!(bound > 0.0))
throw new IllegalArgumentException(BAD_BOUND);
double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
return (result < bound) ? result : // correct for rounding
Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
}
/**
* Returns a pseudorandom {@code double} value between the specified
* origin (inclusive) and bound (exclusive).
*
* @param origin the least value returned
* @param bound the upper bound (exclusive)
* @return a pseudorandom {@code double} value between the origin
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code origin} is greater than
* or equal to {@code bound}
*/
public double nextDouble(double origin, double bound) {
if (!(origin < bound))
throw new IllegalArgumentException(BAD_RANGE);
return internalNextDouble(origin, bound);
}
/**
* Returns a pseudorandom {@code boolean} value.
*
* @return a pseudorandom {@code boolean} value
*/
public boolean nextBoolean() {
return mix32(nextSeed()) < 0;
}
/**
* Returns a pseudorandom {@code float} value between zero
* (inclusive) and one (exclusive).
*
* @return a pseudorandom {@code float} value between zero
* (inclusive) and one (exclusive)
*/
public float nextFloat() {
return (mix32(nextSeed()) >>> 8) * FLOAT_UNIT;
}
public double nextGaussian() {
// Use nextLocalGaussian instead of nextGaussian field
Double d = nextLocalGaussian.get();
if (d != null) {
nextLocalGaussian.set(null);
return d.doubleValue();
}
double v1, v2, s;
do {
v1 = 2 * nextDouble() - 1; // between -1 and 1
v2 = 2 * nextDouble() - 1; // between -1 and 1
s = v1 * v1 + v2 * v2;
} while (s >= 1 || s == 0);
double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
nextLocalGaussian.set(new Double(v2 * multiplier));
return v1 * multiplier;
}
// stream methods, coded in a way intended to better isolate for
// maintenance purposes the small differences across forms.
/**
* Returns a stream producing the given {@code streamSize} number of
* pseudorandom {@code int} values.
*
* @param streamSize the number of values to generate
* @return a stream of pseudorandom {@code int} values
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero
* @since 1.8
*/
public IntStream ints(long streamSize) {
if (streamSize < 0L)
throw new IllegalArgumentException(BAD_SIZE);
return StreamSupport.intStream
(new RandomIntsSpliterator
(0L, streamSize, Integer.MAX_VALUE, 0),
false);
}
/**
* Returns an effectively unlimited stream of pseudorandom {@code int}
* values.
*
* @implNote This method is implemented to be equivalent to {@code
* ints(Long.MAX_VALUE)}.
*
* @return a stream of pseudorandom {@code int} values
* @since 1.8
*/
public IntStream ints() {
return StreamSupport.intStream
(new RandomIntsSpliterator
(0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
false);
}
/**
* Returns a stream producing the given {@code streamSize} number
* of pseudorandom {@code int} values, each conforming to the given
* origin (inclusive) and bound (exclusive).
*
* @param streamSize the number of values to generate
* @param randomNumberOrigin the origin (inclusive) of each random value
* @param randomNumberBound the bound (exclusive) of each random value
* @return a stream of pseudorandom {@code int} values,
* each with the given origin (inclusive) and bound (exclusive)
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero, or {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
* @since 1.8
*/
public IntStream ints(long streamSize, int randomNumberOrigin,
int randomNumberBound) {
if (streamSize < 0L)
throw new IllegalArgumentException(BAD_SIZE);
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BAD_RANGE);
return StreamSupport.intStream
(new RandomIntsSpliterator
(0L, streamSize, randomNumberOrigin, randomNumberBound),
false);
}
/**
* Returns an effectively unlimited stream of pseudorandom {@code
* int} values, each conforming to the given origin (inclusive) and bound
* (exclusive).
*
* @implNote This method is implemented to be equivalent to {@code
* ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
*
* @param randomNumberOrigin the origin (inclusive) of each random value
* @param randomNumberBound the bound (exclusive) of each random value
* @return a stream of pseudorandom {@code int} values,
* each with the given origin (inclusive) and bound (exclusive)
* @throws IllegalArgumentException if {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
* @since 1.8
*/
public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BAD_RANGE);
return StreamSupport.intStream
(new RandomIntsSpliterator
(0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
false);
}
/**
* Returns a stream producing the given {@code streamSize} number of
* pseudorandom {@code long} values.
*
* @param streamSize the number of values to generate
* @return a stream of pseudorandom {@code long} values
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero
* @since 1.8
*/
public LongStream longs(long streamSize) {
if (streamSize < 0L)
throw new IllegalArgumentException(BAD_SIZE);
return StreamSupport.longStream
(new RandomLongsSpliterator
(0L, streamSize, Long.MAX_VALUE, 0L),
false);
}
/**
* Returns an effectively unlimited stream of pseudorandom {@code long}
* values.
*
* @implNote This method is implemented to be equivalent to {@code
* longs(Long.MAX_VALUE)}.
*
* @return a stream of pseudorandom {@code long} values
* @since 1.8
*/
public LongStream longs() {
return StreamSupport.longStream
(new RandomLongsSpliterator
(0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
false);
}
/**
* Returns a stream producing the given {@code streamSize} number of
* pseudorandom {@code long}, each conforming to the given origin
* (inclusive) and bound (exclusive).
*
* @param streamSize the number of values to generate
* @param randomNumberOrigin the origin (inclusive) of each random value
* @param randomNumberBound the bound (exclusive) of each random value
* @return a stream of pseudorandom {@code long} values,
* each with the given origin (inclusive) and bound (exclusive)
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero, or {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
* @since 1.8
*/
public LongStream longs(long streamSize, long randomNumberOrigin,
long randomNumberBound) {
if (streamSize < 0L)
throw new IllegalArgumentException(BAD_SIZE);
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BAD_RANGE);
return StreamSupport.longStream
(new RandomLongsSpliterator
(0L, streamSize, randomNumberOrigin, randomNumberBound),
false);
}
/**
* Returns an effectively unlimited stream of pseudorandom {@code
* long} values, each conforming to the given origin (inclusive) and bound
* (exclusive).
*
* @implNote This method is implemented to be equivalent to {@code
* longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
*
* @param randomNumberOrigin the origin (inclusive) of each random value
* @param randomNumberBound the bound (exclusive) of each random value
* @return a stream of pseudorandom {@code long} values,
* each with the given origin (inclusive) and bound (exclusive)
* @throws IllegalArgumentException if {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
* @since 1.8
*/
public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BAD_RANGE);
return StreamSupport.longStream
(new RandomLongsSpliterator
(0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
false);
}
/**
* Returns a stream producing the given {@code streamSize} number of
* pseudorandom {@code double} values, each between zero
* (inclusive) and one (exclusive).
*
* @param streamSize the number of values to generate
* @return a stream of {@code double} values
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero
* @since 1.8
*/
public DoubleStream doubles(long streamSize) {
if (streamSize < 0L)
throw new IllegalArgumentException(BAD_SIZE);
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(0L, streamSize, Double.MAX_VALUE, 0.0),
false);
}
/**
* Returns an effectively unlimited stream of pseudorandom {@code
* double} values, each between zero (inclusive) and one
* (exclusive).
*
* @implNote This method is implemented to be equivalent to {@code
* doubles(Long.MAX_VALUE)}.
*
* @return a stream of pseudorandom {@code double} values
* @since 1.8
*/
public DoubleStream doubles() {
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
false);
}
/**
* Returns a stream producing the given {@code streamSize} number of
* pseudorandom {@code double} values, each conforming to the given origin
* (inclusive) and bound (exclusive).
*
* @param streamSize the number of values to generate
* @param randomNumberOrigin the origin (inclusive) of each random value
* @param randomNumberBound the bound (exclusive) of each random value
* @return a stream of pseudorandom {@code double} values,
* each with the given origin (inclusive) and bound (exclusive)
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero
* @throws IllegalArgumentException if {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
* @since 1.8
*/
public DoubleStream doubles(long streamSize, double randomNumberOrigin,
double randomNumberBound) {
if (streamSize < 0L)
throw new IllegalArgumentException(BAD_SIZE);
if (!(randomNumberOrigin < randomNumberBound))
throw new IllegalArgumentException(BAD_RANGE);
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(0L, streamSize, randomNumberOrigin, randomNumberBound),
false);
}
/**
* Returns an effectively unlimited stream of pseudorandom {@code
* double} values, each conforming to the given origin (inclusive) and bound
* (exclusive).
*
* @implNote This method is implemented to be equivalent to {@code
* doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
*
* @param randomNumberOrigin the origin (inclusive) of each random value
* @param randomNumberBound the bound (exclusive) of each random value
* @return a stream of pseudorandom {@code double} values,
* each with the given origin (inclusive) and bound (exclusive)
* @throws IllegalArgumentException if {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
* @since 1.8
*/
public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
if (!(randomNumberOrigin < randomNumberBound))
throw new IllegalArgumentException(BAD_RANGE);
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
false);
}
/**
* Spliterator for int streams. We multiplex the four int
* versions into one class by treating a bound less than origin as
* unbounded, and also by treating "infinite" as equivalent to
* Long.MAX_VALUE. For splits, it uses the standard divide-by-two
* approach. The long and double versions of this class are
* identical except for types.
*/
private static final class RandomIntsSpliterator
implements Spliterator.OfInt {
long index;
final long fence;
final int origin;
final int bound;
RandomIntsSpliterator(long index, long fence,
int origin, int bound) {
this.index = index; this.fence = fence;
this.origin = origin; this.bound = bound;
}
public RandomIntsSpliterator trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomIntsSpliterator(i, index = m, origin, bound);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
public boolean tryAdvance(IntConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(ThreadLocalRandom.current().internalNextInt(origin, bound));
index = i + 1;
return true;
}
return false;
}
public void forEachRemaining(IntConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
index = f;
int o = origin, b = bound;
ThreadLocalRandom rng = ThreadLocalRandom.current();
do {
consumer.accept(rng.internalNextInt(o, b));
} while (++i < f);
}
}
}
/**
* Spliterator for long streams.
*/
private static final class RandomLongsSpliterator
implements Spliterator.OfLong {
long index;
final long fence;
final long origin;
final long bound;
RandomLongsSpliterator(long index, long fence,
long origin, long bound) {
this.index = index; this.fence = fence;
this.origin = origin; this.bound = bound;
}
public RandomLongsSpliterator trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomLongsSpliterator(i, index = m, origin, bound);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
public boolean tryAdvance(LongConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(ThreadLocalRandom.current().internalNextLong(origin, bound));
index = i + 1;
return true;
}
return false;
}
public void forEachRemaining(LongConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
index = f;
long o = origin, b = bound;
ThreadLocalRandom rng = ThreadLocalRandom.current();
do {
consumer.accept(rng.internalNextLong(o, b));
} while (++i < f);
}
}
}
/**
* Spliterator for double streams.
*/
private static final class RandomDoublesSpliterator
implements Spliterator.OfDouble {
long index;
final long fence;
final double origin;
final double bound;
RandomDoublesSpliterator(long index, long fence,
double origin, double bound) {
this.index = index; this.fence = fence;
this.origin = origin; this.bound = bound;
}
public RandomDoublesSpliterator trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomDoublesSpliterator(i, index = m, origin, bound);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
public boolean tryAdvance(DoubleConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(ThreadLocalRandom.current().internalNextDouble(origin, bound));
index = i + 1;
return true;
}
return false;
}
public void forEachRemaining(DoubleConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
index = f;
double o = origin, b = bound;
ThreadLocalRandom rng = ThreadLocalRandom.current();
do {
consumer.accept(rng.internalNextDouble(o, b));
} while (++i < f);
}
}
}
// Within-package utilities
/*
* Descriptions of the usages of the methods below can be found in
* the classes that use them. Briefly, a thread's "probe" value is
* a non-zero hash code that (probably) does not collide with
* other existing threads with respect to any power of two
* collision space. When it does collide, it is pseudo-randomly
* adjusted (using a Marsaglia XorShift). The nextSecondarySeed
* method is used in the same contexts as ThreadLocalRandom, but
* only for transient usages such as random adaptive spin/block
* sequences for which a cheap RNG suffices and for which it could
* in principle disrupt user-visible statistical properties of the
* main ThreadLocalRandom if we were to use it.
*
* Note: Because of package-protection issues, versions of some
* these methods also appear in some subpackage classes.
*/
/**
* Returns the probe value for the current thread without forcing
* initialization. Note that invoking ThreadLocalRandom.current()
* can be used to force initialization on zero return.
*/
static final int getProbe() {
return U.getInt(Thread.currentThread(), PROBE);
}
/**
* Pseudo-randomly advances and records the given probe value for the
* given thread.
*/
static final int advanceProbe(int probe) {
probe ^= probe << 13; // xorshift
probe ^= probe >>> 17;
probe ^= probe << 5;
U.putInt(Thread.currentThread(), PROBE, probe);
return probe;
}
/**
* Returns the pseudo-randomly initialized or updated secondary seed.
*/
static final int nextSecondarySeed() {
int r;
Thread t = Thread.currentThread();
if ((r = U.getInt(t, SECONDARY)) != 0) {
r ^= r << 13; // xorshift
r ^= r >>> 17;
r ^= r << 5;
}
else if ((r = mix32(seeder.getAndAdd(SEEDER_INCREMENT))) == 0)
r = 1; // avoid zero
U.putInt(t, SECONDARY, r);
return r;
}
// Serialization support
private static final long serialVersionUID = -5851777807851030925L;
/**
* @serialField rnd long
* seed for random computations
* @serialField initialized boolean
* always true
*/
private static final ObjectStreamField[] serialPersistentFields = {
new ObjectStreamField("rnd", long.class),
new ObjectStreamField("initialized", boolean.class),
};
/**
* Saves the {@code ThreadLocalRandom} to a stream (that is, serializes it).
* @param s the stream
* @throws java.io.IOException if an I/O error occurs
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
java.io.ObjectOutputStream.PutField fields = s.putFields();
fields.put("rnd", U.getLong(Thread.currentThread(), SEED));
fields.put("initialized", true);
s.writeFields();
}
/**
* Returns the {@link #current() current} thread's {@code ThreadLocalRandom}.
* @return the {@link #current() current} thread's {@code ThreadLocalRandom}
*/
private Object readResolve() {
return current();
}
// Static initialization
/**
* The seed increment.
*/
private static final long GAMMA = 0x9e3779b97f4a7c15L;
/**
* The increment for generating probe values.
*/
private static final int PROBE_INCREMENT = 0x9e3779b9;
/**
* The increment of seeder per new instance.
*/
private static final long SEEDER_INCREMENT = 0xbb67ae8584caa73bL;
// Constants from SplittableRandom
private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53)
private static final float FLOAT_UNIT = 0x1.0p-24f; // 1.0f / (1 << 24)
// IllegalArgumentException messages
static final String BAD_BOUND = "bound must be positive";
static final String BAD_RANGE = "bound must be greater than origin";
static final String BAD_SIZE = "size must be non-negative";
// Unsafe mechanics
private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
private static final long SEED;
private static final long PROBE;
private static final long SECONDARY;
static {
try {
SEED = U.objectFieldOffset
(Thread.class.getDeclaredField("threadLocalRandomSeed"));
PROBE = U.objectFieldOffset
(Thread.class.getDeclaredField("threadLocalRandomProbe"));
SECONDARY = U.objectFieldOffset
(Thread.class.getDeclaredField("threadLocalRandomSecondarySeed"));
} catch (ReflectiveOperationException e) {
throw new Error(e);
}
}
/** Rarely-used holder for the second of a pair of Gaussians */
private static final ThreadLocal