/* * Copyright (c) 2012, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util.stream; import java.util.Collections; import java.util.EnumSet; import java.util.Iterator; import java.util.Set; import java.util.Spliterator; import java.util.function.Consumer; import java.util.function.Function; /** * Test scenarios for reference streams. * * Each scenario is provided with a data source, a function that maps a fresh * stream (as provided by the data source) to a new stream, and a sink to * receive results. Each scenario describes a different way of computing the * stream contents. The test driver will ensure that all scenarios produce * the same output (modulo allowable differences in ordering). */ @SuppressWarnings({"rawtypes", "unchecked"}) public enum StreamTestScenario implements OpTestCase.BaseStreamTestScenario { STREAM_FOR_EACH_WITH_CLOSE(false) { > void _run(TestData data, Consumer b, Function> m) { Stream s = m.apply(data.stream()); if (s.isParallel()) { s = s.sequential(); } s.forEach(b); s.close(); } }, // Collec to list STREAM_COLLECT(false) { > void _run(TestData data, Consumer b, Function> m) { for (U t : m.apply(data.stream()).collect(Collectors.toList())) { b.accept(t); } } }, // To array STREAM_TO_ARRAY(false) { > void _run(TestData data, Consumer b, Function> m) { for (Object t : m.apply(data.stream()).toArray()) { b.accept((U) t); } } }, // Wrap as stream, and iterate in pull mode STREAM_ITERATOR(false) { > void _run(TestData data, Consumer b, Function> m) { for (Iterator seqIter = m.apply(data.stream()).iterator(); seqIter.hasNext(); ) b.accept(seqIter.next()); } }, // Wrap as stream, and spliterate then iterate in pull mode STREAM_SPLITERATOR(false) { > void _run(TestData data, Consumer b, Function> m) { for (Spliterator spl = m.apply(data.stream()).spliterator(); spl.tryAdvance(b); ) { } } }, // Wrap as stream, spliterate, then split a few times mixing advances with forEach STREAM_SPLITERATOR_WITH_MIXED_TRAVERSE_AND_SPLIT(false) { > void _run(TestData data, Consumer b, Function> m) { SpliteratorTestHelper.mixedTraverseAndSplit(b, m.apply(data.stream()).spliterator()); } }, // Wrap as stream, and spliterate then iterate in pull mode STREAM_SPLITERATOR_FOREACH(false) { > void _run(TestData data, Consumer b, Function> m) { m.apply(data.stream()).spliterator().forEachRemaining(b); } }, // Wrap as parallel stream + sequential PAR_STREAM_SEQUENTIAL_FOR_EACH(true) { > void _run(TestData data, Consumer b, Function> m) { m.apply(data.parallelStream()).sequential().forEach(b); } }, // Wrap as parallel stream + forEachOrdered PAR_STREAM_FOR_EACH_ORDERED(true) { > void _run(TestData data, Consumer b, Function> m) { // @@@ Want to explicitly select ordered equalator m.apply(data.parallelStream()).forEachOrdered(b); } }, // Wrap as stream, and spliterate then iterate sequentially PAR_STREAM_SPLITERATOR(true) { > void _run(TestData data, Consumer b, Function> m) { for (Spliterator spl = m.apply(data.parallelStream()).spliterator(); spl.tryAdvance(b); ) { } } }, // Wrap as stream, and spliterate then iterate sequentially PAR_STREAM_SPLITERATOR_FOREACH(true) { > void _run(TestData data, Consumer b, Function> m) { m.apply(data.parallelStream()).spliterator().forEachRemaining(b); } }, // Wrap as parallel stream + toArray PAR_STREAM_TO_ARRAY(true) { > void _run(TestData data, Consumer b, Function> m) { for (Object t : m.apply(data.parallelStream()).toArray()) b.accept((U) t); } }, // Wrap as parallel stream, get the spliterator, wrap as a stream + toArray PAR_STREAM_SPLITERATOR_STREAM_TO_ARRAY(true) { > void _run(TestData data, Consumer b, Function> m) { Stream s = m.apply(data.parallelStream()); Spliterator sp = s.spliterator(); Stream ss = StreamSupport.stream(() -> sp, StreamOpFlag.toCharacteristics(OpTestCase.getStreamFlags(s)) | (sp.getExactSizeIfKnown() < 0 ? 0 : Spliterator.SIZED), true); for (Object t : ss.toArray()) b.accept((U) t); } }, // Wrap as parallel stream + toArray and clear SIZED flag PAR_STREAM_TO_ARRAY_CLEAR_SIZED(true) { > void _run(TestData data, Consumer b, Function> m) { S_IN pipe1 = (S_IN) OpTestCase.chain(data.parallelStream(), new FlagDeclaringOp(StreamOpFlag.NOT_SIZED, data.getShape())); Stream pipe2 = m.apply(pipe1); for (Object t : pipe2.toArray()) b.accept((U) t); } }, // Wrap as parallel + collect to list PAR_STREAM_COLLECT_TO_LIST(true) { > void _run(TestData data, Consumer b, Function> m) { for (U u : m.apply(data.parallelStream()).collect(Collectors.toList())) b.accept(u); } }, // Wrap sequential as parallel, + collect to list STREAM_TO_PAR_STREAM_COLLECT_TO_LIST(true) { > void _run(TestData data, Consumer b, Function> m) { for (U u : m.apply(data.stream().parallel()).collect(Collectors.toList())) b.accept(u); } }, // Wrap parallel as sequential,, + collect PAR_STREAM_TO_STREAM_COLLECT_TO_LIST(true) { > void _run(TestData data, Consumer b, Function> m) { for (U u : m.apply(data.parallelStream().sequential()).collect(Collectors.toList())) b.accept(u); } }, // Wrap as parallel stream + forEach synchronizing PAR_STREAM_FOR_EACH(true, false) { > void _run(TestData data, Consumer b, Function> m) { m.apply(data.parallelStream()).forEach(e -> { synchronized (data) { b.accept(e); } }); } }, // Wrap as parallel stream + forEach synchronizing and clear SIZED flag PAR_STREAM_FOR_EACH_CLEAR_SIZED(true, false) { > void _run(TestData data, Consumer b, Function> m) { S_IN pipe1 = (S_IN) OpTestCase.chain(data.parallelStream(), new FlagDeclaringOp(StreamOpFlag.NOT_SIZED, data.getShape())); m.apply(pipe1).forEach(e -> { synchronized (data) { b.accept(e); } }); } }, ; // The set of scenarios that clean the SIZED flag public static final Set CLEAR_SIZED_SCENARIOS = Collections.unmodifiableSet( EnumSet.of(PAR_STREAM_TO_ARRAY_CLEAR_SIZED, PAR_STREAM_FOR_EACH_CLEAR_SIZED)); private final boolean isParallel; private final boolean isOrdered; StreamTestScenario(boolean isParallel) { this(isParallel, true); } StreamTestScenario(boolean isParallel, boolean isOrdered) { this.isParallel = isParallel; this.isOrdered = isOrdered; } public StreamShape getShape() { return StreamShape.REFERENCE; } public boolean isParallel() { return isParallel; } public boolean isOrdered() { return isOrdered; } public , S_OUT extends BaseStream> void run(TestData data, Consumer b, Function m) { _run(data, b, (Function>) m); } abstract > void _run(TestData data, Consumer b, Function> m); }