/*
* Copyright (C) 2008-2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.gesture;
import android.graphics.RectF;
import android.util.Log;
import java.util.ArrayList;
import java.util.Arrays;
import java.io.Closeable;
import java.io.IOException;
import static android.gesture.GestureConstants.*;
/**
* Utility functions for gesture processing & analysis, including methods for:
*
* - feature extraction (e.g., samplers and those for calculating bounding
* boxes and gesture path lengths);
*
- geometric transformation (e.g., translation, rotation and scaling);
*
- gesture similarity comparison (e.g., calculating Euclidean or Cosine
* distances between two gestures).
*
*/
public final class GestureUtils {
private static final float SCALING_THRESHOLD = 0.26f;
private static final float NONUNIFORM_SCALE = (float) Math.sqrt(2);
private GestureUtils() {
}
/**
* Closes the specified stream.
*
* @param stream The stream to close.
*/
static void closeStream(Closeable stream) {
if (stream != null) {
try {
stream.close();
} catch (IOException e) {
Log.e(LOG_TAG, "Could not close stream", e);
}
}
}
/**
* Samples the gesture spatially by rendering the gesture into a 2D
* grayscale bitmap. Scales the gesture to fit the size of the bitmap.
* The scaling does not necessarily keep the aspect ratio of the gesture.
*
* @param gesture the gesture to be sampled
* @param bitmapSize the size of the bitmap
* @return a bitmapSize x bitmapSize grayscale bitmap that is represented
* as a 1D array. The float at index i represents the grayscale
* value at pixel [i%bitmapSize, i/bitmapSize]
*/
public static float[] spatialSampling(Gesture gesture, int bitmapSize) {
return spatialSampling(gesture, bitmapSize, false);
}
/**
* Samples the gesture spatially by rendering the gesture into a 2D
* grayscale bitmap. Scales the gesture to fit the size of the bitmap.
*
* @param gesture the gesture to be sampled
* @param bitmapSize the size of the bitmap
* @param keepAspectRatio if the scaling should keep the gesture's
* aspect ratio
*
* @return a bitmapSize x bitmapSize grayscale bitmap that is represented
* as a 1D array. The float at index i represents the grayscale
* value at pixel [i%bitmapSize, i/bitmapSize]
*/
public static float[] spatialSampling(Gesture gesture, int bitmapSize,
boolean keepAspectRatio) {
final float targetPatchSize = bitmapSize - 1;
float[] sample = new float[bitmapSize * bitmapSize];
Arrays.fill(sample, 0);
RectF rect = gesture.getBoundingBox();
final float gestureWidth = rect.width();
final float gestureHeight = rect.height();
float sx = targetPatchSize / gestureWidth;
float sy = targetPatchSize / gestureHeight;
if (keepAspectRatio) {
float scale = sx < sy ? sx : sy;
sx = scale;
sy = scale;
} else {
float aspectRatio = gestureWidth / gestureHeight;
if (aspectRatio > 1) {
aspectRatio = 1 / aspectRatio;
}
if (aspectRatio < SCALING_THRESHOLD) {
float scale = sx < sy ? sx : sy;
sx = scale;
sy = scale;
} else {
if (sx > sy) {
float scale = sy * NONUNIFORM_SCALE;
if (scale < sx) {
sx = scale;
}
} else {
float scale = sx * NONUNIFORM_SCALE;
if (scale < sy) {
sy = scale;
}
}
}
}
float preDx = -rect.centerX();
float preDy = -rect.centerY();
float postDx = targetPatchSize / 2;
float postDy = targetPatchSize / 2;
final ArrayList strokes = gesture.getStrokes();
final int count = strokes.size();
int size;
float xpos;
float ypos;
for (int index = 0; index < count; index++) {
final GestureStroke stroke = strokes.get(index);
float[] strokepoints = stroke.points;
size = strokepoints.length;
final float[] pts = new float[size];
for (int i = 0; i < size; i += 2) {
pts[i] = (strokepoints[i] + preDx) * sx + postDx;
pts[i + 1] = (strokepoints[i + 1] + preDy) * sy + postDy;
}
float segmentEndX = -1;
float segmentEndY = -1;
for (int i = 0; i < size; i += 2) {
float segmentStartX = pts[i] < 0 ? 0 : pts[i];
float segmentStartY = pts[i + 1] < 0 ? 0 : pts[i + 1];
if (segmentStartX > targetPatchSize) {
segmentStartX = targetPatchSize;
}
if (segmentStartY > targetPatchSize) {
segmentStartY = targetPatchSize;
}
plot(segmentStartX, segmentStartY, sample, bitmapSize);
if (segmentEndX != -1) {
// Evaluate horizontally
if (segmentEndX > segmentStartX) {
xpos = (float) Math.ceil(segmentStartX);
float slope = (segmentEndY - segmentStartY) /
(segmentEndX - segmentStartX);
while (xpos < segmentEndX) {
ypos = slope * (xpos - segmentStartX) + segmentStartY;
plot(xpos, ypos, sample, bitmapSize);
xpos++;
}
} else if (segmentEndX < segmentStartX){
xpos = (float) Math.ceil(segmentEndX);
float slope = (segmentEndY - segmentStartY) /
(segmentEndX - segmentStartX);
while (xpos < segmentStartX) {
ypos = slope * (xpos - segmentStartX) + segmentStartY;
plot(xpos, ypos, sample, bitmapSize);
xpos++;
}
}
// Evaluate vertically
if (segmentEndY > segmentStartY) {
ypos = (float) Math.ceil(segmentStartY);
float invertSlope = (segmentEndX - segmentStartX) /
(segmentEndY - segmentStartY);
while (ypos < segmentEndY) {
xpos = invertSlope * (ypos - segmentStartY) + segmentStartX;
plot(xpos, ypos, sample, bitmapSize);
ypos++;
}
} else if (segmentEndY < segmentStartY) {
ypos = (float) Math.ceil(segmentEndY);
float invertSlope = (segmentEndX - segmentStartX) /
(segmentEndY - segmentStartY);
while (ypos < segmentStartY) {
xpos = invertSlope * (ypos - segmentStartY) + segmentStartX;
plot(xpos, ypos, sample, bitmapSize);
ypos++;
}
}
}
segmentEndX = segmentStartX;
segmentEndY = segmentStartY;
}
}
return sample;
}
private static void plot(float x, float y, float[] sample, int sampleSize) {
x = x < 0 ? 0 : x;
y = y < 0 ? 0 : y;
int xFloor = (int) Math.floor(x);
int xCeiling = (int) Math.ceil(x);
int yFloor = (int) Math.floor(y);
int yCeiling = (int) Math.ceil(y);
// if it's an integer
if (x == xFloor && y == yFloor) {
int index = yCeiling * sampleSize + xCeiling;
if (sample[index] < 1){
sample[index] = 1;
}
} else {
final double xFloorSq = Math.pow(xFloor - x, 2);
final double yFloorSq = Math.pow(yFloor - y, 2);
final double xCeilingSq = Math.pow(xCeiling - x, 2);
final double yCeilingSq = Math.pow(yCeiling - y, 2);
float topLeft = (float) Math.sqrt(xFloorSq + yFloorSq);
float topRight = (float) Math.sqrt(xCeilingSq + yFloorSq);
float btmLeft = (float) Math.sqrt(xFloorSq + yCeilingSq);
float btmRight = (float) Math.sqrt(xCeilingSq + yCeilingSq);
float sum = topLeft + topRight + btmLeft + btmRight;
float value = topLeft / sum;
int index = yFloor * sampleSize + xFloor;
if (value > sample[index]){
sample[index] = value;
}
value = topRight / sum;
index = yFloor * sampleSize + xCeiling;
if (value > sample[index]){
sample[index] = value;
}
value = btmLeft / sum;
index = yCeiling * sampleSize + xFloor;
if (value > sample[index]){
sample[index] = value;
}
value = btmRight / sum;
index = yCeiling * sampleSize + xCeiling;
if (value > sample[index]){
sample[index] = value;
}
}
}
/**
* Samples a stroke temporally into a given number of evenly-distributed
* points.
*
* @param stroke the gesture stroke to be sampled
* @param numPoints the number of points
* @return the sampled points in the form of [x1, y1, x2, y2, ..., xn, yn]
*/
public static float[] temporalSampling(GestureStroke stroke, int numPoints) {
final float increment = stroke.length / (numPoints - 1);
int vectorLength = numPoints * 2;
float[] vector = new float[vectorLength];
float distanceSoFar = 0;
float[] pts = stroke.points;
float lstPointX = pts[0];
float lstPointY = pts[1];
int index = 0;
float currentPointX = Float.MIN_VALUE;
float currentPointY = Float.MIN_VALUE;
vector[index] = lstPointX;
index++;
vector[index] = lstPointY;
index++;
int i = 0;
int count = pts.length / 2;
while (i < count) {
if (currentPointX == Float.MIN_VALUE) {
i++;
if (i >= count) {
break;
}
currentPointX = pts[i * 2];
currentPointY = pts[i * 2 + 1];
}
float deltaX = currentPointX - lstPointX;
float deltaY = currentPointY - lstPointY;
float distance = (float) Math.hypot(deltaX, deltaY);
if (distanceSoFar + distance >= increment) {
float ratio = (increment - distanceSoFar) / distance;
float nx = lstPointX + ratio * deltaX;
float ny = lstPointY + ratio * deltaY;
vector[index] = nx;
index++;
vector[index] = ny;
index++;
lstPointX = nx;
lstPointY = ny;
distanceSoFar = 0;
} else {
lstPointX = currentPointX;
lstPointY = currentPointY;
currentPointX = Float.MIN_VALUE;
currentPointY = Float.MIN_VALUE;
distanceSoFar += distance;
}
}
for (i = index; i < vectorLength; i += 2) {
vector[i] = lstPointX;
vector[i + 1] = lstPointY;
}
return vector;
}
/**
* Calculates the centroid of a set of points.
*
* @param points the points in the form of [x1, y1, x2, y2, ..., xn, yn]
* @return the centroid
*/
static float[] computeCentroid(float[] points) {
float centerX = 0;
float centerY = 0;
int count = points.length;
for (int i = 0; i < count; i++) {
centerX += points[i];
i++;
centerY += points[i];
}
float[] center = new float[2];
center[0] = 2 * centerX / count;
center[1] = 2 * centerY / count;
return center;
}
/**
* Calculates the variance-covariance matrix of a set of points.
*
* @param points the points in the form of [x1, y1, x2, y2, ..., xn, yn]
* @return the variance-covariance matrix
*/
private static float[][] computeCoVariance(float[] points) {
float[][] array = new float[2][2];
array[0][0] = 0;
array[0][1] = 0;
array[1][0] = 0;
array[1][1] = 0;
int count = points.length;
for (int i = 0; i < count; i++) {
float x = points[i];
i++;
float y = points[i];
array[0][0] += x * x;
array[0][1] += x * y;
array[1][0] = array[0][1];
array[1][1] += y * y;
}
array[0][0] /= (count / 2);
array[0][1] /= (count / 2);
array[1][0] /= (count / 2);
array[1][1] /= (count / 2);
return array;
}
static float computeTotalLength(float[] points) {
float sum = 0;
int count = points.length - 4;
for (int i = 0; i < count; i += 2) {
float dx = points[i + 2] - points[i];
float dy = points[i + 3] - points[i + 1];
sum += Math.hypot(dx, dy);
}
return sum;
}
static float computeStraightness(float[] points) {
float totalLen = computeTotalLength(points);
float dx = points[2] - points[0];
float dy = points[3] - points[1];
return (float) Math.hypot(dx, dy) / totalLen;
}
static float computeStraightness(float[] points, float totalLen) {
float dx = points[2] - points[0];
float dy = points[3] - points[1];
return (float) Math.hypot(dx, dy) / totalLen;
}
/**
* Calculates the squared Euclidean distance between two vectors.
*
* @param vector1
* @param vector2
* @return the distance
*/
static float squaredEuclideanDistance(float[] vector1, float[] vector2) {
float squaredDistance = 0;
int size = vector1.length;
for (int i = 0; i < size; i++) {
float difference = vector1[i] - vector2[i];
squaredDistance += difference * difference;
}
return squaredDistance / size;
}
/**
* Calculates the cosine distance between two instances.
*
* @param vector1
* @param vector2
* @return the distance between 0 and Math.PI
*/
static float cosineDistance(float[] vector1, float[] vector2) {
float sum = 0;
int len = vector1.length;
for (int i = 0; i < len; i++) {
sum += vector1[i] * vector2[i];
}
return (float) Math.acos(sum);
}
/**
* Calculates the "minimum" cosine distance between two instances.
*
* @param vector1
* @param vector2
* @param numOrientations the maximum number of orientation allowed
* @return the distance between the two instances (between 0 and Math.PI)
*/
static float minimumCosineDistance(float[] vector1, float[] vector2, int numOrientations) {
final int len = vector1.length;
float a = 0;
float b = 0;
for (int i = 0; i < len; i += 2) {
a += vector1[i] * vector2[i] + vector1[i + 1] * vector2[i + 1];
b += vector1[i] * vector2[i + 1] - vector1[i + 1] * vector2[i];
}
if (a != 0) {
final float tan = b/a;
final double angle = Math.atan(tan);
if (numOrientations > 2 && Math.abs(angle) >= Math.PI / numOrientations) {
return (float) Math.acos(a);
} else {
final double cosine = Math.cos(angle);
final double sine = cosine * tan;
return (float) Math.acos(a * cosine + b * sine);
}
} else {
return (float) Math.PI / 2;
}
}
/**
* Computes an oriented, minimum bounding box of a set of points.
*
* @param originalPoints
* @return an oriented bounding box
*/
public static OrientedBoundingBox computeOrientedBoundingBox(ArrayList originalPoints) {
final int count = originalPoints.size();
float[] points = new float[count * 2];
for (int i = 0; i < count; i++) {
GesturePoint point = originalPoints.get(i);
int index = i * 2;
points[index] = point.x;
points[index + 1] = point.y;
}
float[] meanVector = computeCentroid(points);
return computeOrientedBoundingBox(points, meanVector);
}
/**
* Computes an oriented, minimum bounding box of a set of points.
*
* @param originalPoints
* @return an oriented bounding box
*/
public static OrientedBoundingBox computeOrientedBoundingBox(float[] originalPoints) {
int size = originalPoints.length;
float[] points = new float[size];
for (int i = 0; i < size; i++) {
points[i] = originalPoints[i];
}
float[] meanVector = computeCentroid(points);
return computeOrientedBoundingBox(points, meanVector);
}
private static OrientedBoundingBox computeOrientedBoundingBox(float[] points, float[] centroid) {
translate(points, -centroid[0], -centroid[1]);
float[][] array = computeCoVariance(points);
float[] targetVector = computeOrientation(array);
float angle;
if (targetVector[0] == 0 && targetVector[1] == 0) {
angle = (float) -Math.PI/2;
} else { // -PI maxx) {
maxx = points[i];
}
i++;
if (points[i] < miny) {
miny = points[i];
}
if (points[i] > maxy) {
maxy = points[i];
}
}
return new OrientedBoundingBox((float) (angle * 180 / Math.PI), centroid[0], centroid[1], maxx - minx, maxy - miny);
}
private static float[] computeOrientation(float[][] covarianceMatrix) {
float[] targetVector = new float[2];
if (covarianceMatrix[0][1] == 0 || covarianceMatrix[1][0] == 0) {
targetVector[0] = 1;
targetVector[1] = 0;
}
float a = -covarianceMatrix[0][0] - covarianceMatrix[1][1];
float b = covarianceMatrix[0][0] * covarianceMatrix[1][1] - covarianceMatrix[0][1]
* covarianceMatrix[1][0];
float value = a / 2;
float rightside = (float) Math.sqrt(Math.pow(value, 2) - b);
float lambda1 = -value + rightside;
float lambda2 = -value - rightside;
if (lambda1 == lambda2) {
targetVector[0] = 0;
targetVector[1] = 0;
} else {
float lambda = lambda1 > lambda2 ? lambda1 : lambda2;
targetVector[0] = 1;
targetVector[1] = (lambda - covarianceMatrix[0][0]) / covarianceMatrix[0][1];
}
return targetVector;
}
static float[] rotate(float[] points, float angle) {
float cos = (float) Math.cos(angle);
float sin = (float) Math.sin(angle);
int size = points.length;
for (int i = 0; i < size; i += 2) {
float x = points[i] * cos - points[i + 1] * sin;
float y = points[i] * sin + points[i + 1] * cos;
points[i] = x;
points[i + 1] = y;
}
return points;
}
static float[] translate(float[] points, float dx, float dy) {
int size = points.length;
for (int i = 0; i < size; i += 2) {
points[i] += dx;
points[i + 1] += dy;
}
return points;
}
static float[] scale(float[] points, float sx, float sy) {
int size = points.length;
for (int i = 0; i < size; i += 2) {
points[i] *= sx;
points[i + 1] *= sy;
}
return points;
}
}