/* * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.security.cert; import java.io.InputStream; import java.util.Collection; import java.util.Iterator; import java.util.List; import java.security.Provider; import java.security.Security; import java.security.AccessController; import java.security.PrivilegedAction; import java.security.NoSuchAlgorithmException; import java.security.NoSuchProviderException; import sun.security.jca.*; import sun.security.jca.GetInstance.Instance; /** * This class defines the functionality of a certificate factory, which is * used to generate certificate, certification path ({@code CertPath}) * and certificate revocation list (CRL) objects from their encodings. * *
For encodings consisting of multiple certificates, use * {@code generateCertificates} when you want to * parse a collection of possibly unrelated certificates. Otherwise, * use {@code generateCertPath} when you want to generate * a {@code CertPath} (a certificate chain) and subsequently * validate it with a {@code CertPathValidator}. * *
A certificate factory for X.509 must return certificates that are an * instance of {@code java.security.cert.X509Certificate}, and CRLs * that are an instance of {@code java.security.cert.X509CRL}. * *
The following example reads a file with Base64 encoded certificates, * which are each bounded at the beginning by -----BEGIN CERTIFICATE-----, and * bounded at the end by -----END CERTIFICATE-----. We convert the * {@code FileInputStream} (which does not support {@code mark} * and {@code reset}) to a {@code BufferedInputStream} (which * supports those methods), so that each call to * {@code generateCertificate} consumes only one certificate, and the * read position of the input stream is positioned to the next certificate in * the file: * *
{@code * FileInputStream fis = new FileInputStream(filename); * BufferedInputStream bis = new BufferedInputStream(fis); * * CertificateFactory cf = CertificateFactory.getInstance("X.509"); * * while (bis.available() > 0) { * Certificate cert = cf.generateCertificate(bis); * System.out.println(cert.toString()); * } * }* *
The following example parses a PKCS#7-formatted certificate reply stored * in a file and extracts all the certificates from it: * *
* FileInputStream fis = new FileInputStream(filename); * CertificateFactory cf = CertificateFactory.getInstance("X.509"); * Collection c = cf.generateCertificates(fis); * Iterator i = c.iterator(); * while (i.hasNext()) { * Certificate cert = (Certificate)i.next(); * System.out.println(cert); * } ** *
Android provides the following CertificateFactory
types:
*
Algorithm | *Supported API Levels | *
---|---|
X.509 | *1+ | *
CertPath
encodings:
* Name | *Supported (API Levels) | *
---|---|
PKCS7 | *1+ | *
PkiPath | *1+ | *
This method traverses the list of registered security Providers, * starting with the most preferred Provider. * A new CertificateFactory object encapsulating the * CertificateFactorySpi implementation from the first * Provider that supports the specified type is returned. * *
Note that the list of registered providers may be retrieved via * the {@link Security#getProviders() Security.getProviders()} method. * * @param type the name of the requested certificate type. * See the CertificateFactory section in the * Java Cryptography Architecture Standard Algorithm Name Documentation * for information about standard certificate types. * * @return a certificate factory object for the specified type. * * @exception CertificateException if no Provider supports a * CertificateFactorySpi implementation for the * specified type. * * @see java.security.Provider */ public static final CertificateFactory getInstance(String type) throws CertificateException { try { Instance instance = GetInstance.getInstance("CertificateFactory", CertificateFactorySpi.class, type); return new CertificateFactory((CertificateFactorySpi)instance.impl, instance.provider, type); } catch (NoSuchAlgorithmException e) { throw new CertificateException(type + " not found", e); } } /** * Returns a certificate factory object for the specified * certificate type. * *
A new CertificateFactory object encapsulating the * CertificateFactorySpi implementation from the specified provider * is returned. The specified provider must be registered * in the security provider list. * *
Note that the list of registered providers may be retrieved via * the {@link Security#getProviders() Security.getProviders()} method. * * @param type the certificate type. * See the CertificateFactory section in the * Java Cryptography Architecture Standard Algorithm Name Documentation * for information about standard certificate types. * * @param provider the name of the provider. * * @return a certificate factory object for the specified type. * * @exception CertificateException if a CertificateFactorySpi * implementation for the specified algorithm is not * available from the specified provider. * * @exception NoSuchProviderException if the specified provider is not * registered in the security provider list. * * @exception IllegalArgumentException if the provider name is null * or empty. * * @see java.security.Provider */ public static final CertificateFactory getInstance(String type, String provider) throws CertificateException, NoSuchProviderException { try { Instance instance = GetInstance.getInstance("CertificateFactory", CertificateFactorySpi.class, type, provider); return new CertificateFactory((CertificateFactorySpi)instance.impl, instance.provider, type); } catch (NoSuchAlgorithmException e) { throw new CertificateException(type + " not found", e); } } /** * Returns a certificate factory object for the specified * certificate type. * *
A new CertificateFactory object encapsulating the * CertificateFactorySpi implementation from the specified Provider * object is returned. Note that the specified Provider object * does not have to be registered in the provider list. * * @param type the certificate type. * See the CertificateFactory section in the * Java Cryptography Architecture Standard Algorithm Name Documentation * for information about standard certificate types. * @param provider the provider. * * @return a certificate factory object for the specified type. * * @exception CertificateException if a CertificateFactorySpi * implementation for the specified algorithm is not available * from the specified Provider object. * * @exception IllegalArgumentException if the {@code provider} is * null. * * @see java.security.Provider * * @since 1.4 */ public static final CertificateFactory getInstance(String type, Provider provider) throws CertificateException { try { Instance instance = GetInstance.getInstance("CertificateFactory", CertificateFactorySpi.class, type, provider); return new CertificateFactory((CertificateFactorySpi)instance.impl, instance.provider, type); } catch (NoSuchAlgorithmException e) { throw new CertificateException(type + " not found", e); } } /** * Returns the provider of this certificate factory. * * @return the provider of this certificate factory. */ public final Provider getProvider() { return this.provider; } /** * Returns the name of the certificate type associated with this * certificate factory. * * @return the name of the certificate type associated with this * certificate factory. */ public final String getType() { return this.type; } /** * Generates a certificate object and initializes it with * the data read from the input stream {@code inStream}. * *
In order to take advantage of the specialized certificate format * supported by this certificate factory, * the returned certificate object can be typecast to the corresponding * certificate class. For example, if this certificate * factory implements X.509 certificates, the returned certificate object * can be typecast to the {@code X509Certificate} class. * *
In the case of a certificate factory for X.509 certificates, the * certificate provided in {@code inStream} must be DER-encoded and * may be supplied in binary or printable (Base64) encoding. If the * certificate is provided in Base64 encoding, it must be bounded at * the beginning by -----BEGIN CERTIFICATE-----, and must be bounded at * the end by -----END CERTIFICATE-----. * *
Note that if the given input stream does not support * {@link java.io.InputStream#mark(int) mark} and * {@link java.io.InputStream#reset() reset}, this method will * consume the entire input stream. Otherwise, each call to this * method consumes one certificate and the read position of the * input stream is positioned to the next available byte after * the inherent end-of-certificate marker. If the data in the input stream * does not contain an inherent end-of-certificate marker (other * than EOF) and there is trailing data after the certificate is parsed, a * {@code CertificateException} is thrown. * * @param inStream an input stream with the certificate data. * * @return a certificate object initialized with the data * from the input stream. * * @exception CertificateException on parsing errors. */ public final Certificate generateCertificate(InputStream inStream) throws CertificateException { return certFacSpi.engineGenerateCertificate(inStream); } /** * Returns an iteration of the {@code CertPath} encodings supported * by this certificate factory, with the default encoding first. See * the CertPath Encodings section in the * Java Cryptography Architecture Standard Algorithm Name Documentation * for information about standard encoding names and their formats. *
* Attempts to modify the returned {@code Iterator} via its
* {@code remove} method result in an
* {@code UnsupportedOperationException}.
*
* @return an {@code Iterator} over the names of the supported
* {@code CertPath} encodings (as {@code String}s)
* @since 1.4
*/
public final Iterator
* The certificates supplied must be of a type supported by the
* {@code CertificateFactory}. They will be copied out of the supplied
* {@code List} object.
*
* @param certificates a {@code List} of {@code Certificate}s
* @return a {@code CertPath} initialized with the supplied list of
* certificates
* @exception CertificateException if an exception occurs
* @since 1.4
*/
public final CertPath
generateCertPath(List extends Certificate> certificates)
throws CertificateException
{
return(certFacSpi.engineGenerateCertPath(certificates));
}
/**
* Returns a (possibly empty) collection view of the certificates read
* from the given input stream {@code inStream}.
*
* In order to take advantage of the specialized certificate format
* supported by this certificate factory, each element in
* the returned collection view can be typecast to the corresponding
* certificate class. For example, if this certificate
* factory implements X.509 certificates, the elements in the returned
* collection can be typecast to the {@code X509Certificate} class.
*
* In the case of a certificate factory for X.509 certificates,
* {@code inStream} may contain a sequence of DER-encoded certificates
* in the formats described for
* {@link #generateCertificate(java.io.InputStream) generateCertificate}.
* In addition, {@code inStream} may contain a PKCS#7 certificate
* chain. This is a PKCS#7 SignedData object, with the only
* significant field being certificates. In particular, the
* signature and the contents are ignored. This format allows multiple
* certificates to be downloaded at once. If no certificates are present,
* an empty collection is returned.
*
* Note that if the given input stream does not support
* {@link java.io.InputStream#mark(int) mark} and
* {@link java.io.InputStream#reset() reset}, this method will
* consume the entire input stream.
*
* @param inStream the input stream with the certificates.
*
* @return a (possibly empty) collection view of
* java.security.cert.Certificate objects
* initialized with the data from the input stream.
*
* @exception CertificateException on parsing errors.
*/
public final Collection extends Certificate> generateCertificates
(InputStream inStream) throws CertificateException {
return certFacSpi.engineGenerateCertificates(inStream);
}
/**
* Generates a certificate revocation list (CRL) object and initializes it
* with the data read from the input stream {@code inStream}.
*
* In order to take advantage of the specialized CRL format
* supported by this certificate factory,
* the returned CRL object can be typecast to the corresponding
* CRL class. For example, if this certificate
* factory implements X.509 CRLs, the returned CRL object
* can be typecast to the {@code X509CRL} class.
*
* Note that if the given input stream does not support
* {@link java.io.InputStream#mark(int) mark} and
* {@link java.io.InputStream#reset() reset}, this method will
* consume the entire input stream. Otherwise, each call to this
* method consumes one CRL and the read position of the input stream
* is positioned to the next available byte after the inherent
* end-of-CRL marker. If the data in the
* input stream does not contain an inherent end-of-CRL marker (other
* than EOF) and there is trailing data after the CRL is parsed, a
* {@code CRLException} is thrown.
*
* @param inStream an input stream with the CRL data.
*
* @return a CRL object initialized with the data
* from the input stream.
*
* @exception CRLException on parsing errors.
*/
public final CRL generateCRL(InputStream inStream)
throws CRLException
{
return certFacSpi.engineGenerateCRL(inStream);
}
/**
* Returns a (possibly empty) collection view of the CRLs read
* from the given input stream {@code inStream}.
*
* In order to take advantage of the specialized CRL format
* supported by this certificate factory, each element in
* the returned collection view can be typecast to the corresponding
* CRL class. For example, if this certificate
* factory implements X.509 CRLs, the elements in the returned
* collection can be typecast to the {@code X509CRL} class.
*
* In the case of a certificate factory for X.509 CRLs,
* {@code inStream} may contain a sequence of DER-encoded CRLs.
* In addition, {@code inStream} may contain a PKCS#7 CRL
* set. This is a PKCS#7 SignedData object, with the only
* significant field being crls. In particular, the
* signature and the contents are ignored. This format allows multiple
* CRLs to be downloaded at once. If no CRLs are present,
* an empty collection is returned.
*
* Note that if the given input stream does not support
* {@link java.io.InputStream#mark(int) mark} and
* {@link java.io.InputStream#reset() reset}, this method will
* consume the entire input stream.
*
* @param inStream the input stream with the CRLs.
*
* @return a (possibly empty) collection view of
* java.security.cert.CRL objects initialized with the data from the input
* stream.
*
* @exception CRLException on parsing errors.
*/
public final Collection extends CRL> generateCRLs(InputStream inStream)
throws CRLException {
return certFacSpi.engineGenerateCRLs(inStream);
}
}