/* * Copyright (c) 2012, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Copyright (c) 2007-2012, Stephen Colebourne & Michael Nascimento Santos * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * * Neither the name of JSR-310 nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package java.time; import static java.time.temporal.ChronoField.ERA; import static java.time.temporal.ChronoField.MONTH_OF_YEAR; import static java.time.temporal.ChronoField.PROLEPTIC_MONTH; import static java.time.temporal.ChronoField.YEAR; import static java.time.temporal.ChronoField.YEAR_OF_ERA; import static java.time.temporal.ChronoUnit.CENTURIES; import static java.time.temporal.ChronoUnit.DECADES; import static java.time.temporal.ChronoUnit.ERAS; import static java.time.temporal.ChronoUnit.MILLENNIA; import static java.time.temporal.ChronoUnit.MONTHS; import static java.time.temporal.ChronoUnit.YEARS; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.io.InvalidObjectException; import java.io.ObjectInputStream; import java.io.Serializable; import java.time.chrono.Chronology; import java.time.chrono.IsoChronology; import java.time.format.DateTimeFormatter; import java.time.format.DateTimeFormatterBuilder; import java.time.format.DateTimeParseException; import java.time.format.SignStyle; import java.time.temporal.ChronoField; import java.time.temporal.ChronoUnit; import java.time.temporal.Temporal; import java.time.temporal.TemporalAccessor; import java.time.temporal.TemporalAdjuster; import java.time.temporal.TemporalAmount; import java.time.temporal.TemporalField; import java.time.temporal.TemporalQueries; import java.time.temporal.TemporalQuery; import java.time.temporal.TemporalUnit; import java.time.temporal.UnsupportedTemporalTypeException; import java.time.temporal.ValueRange; import java.util.Objects; // Android-changed: removed ValueBased paragraph. /** * A year-month in the ISO-8601 calendar system, such as {@code 2007-12}. *

* {@code YearMonth} is an immutable date-time object that represents the combination * of a year and month. Any field that can be derived from a year and month, such as * quarter-of-year, can be obtained. *

* This class does not store or represent a day, time or time-zone. * For example, the value "October 2007" can be stored in a {@code YearMonth}. *

* The ISO-8601 calendar system is the modern civil calendar system used today * in most of the world. It is equivalent to the proleptic Gregorian calendar * system, in which today's rules for leap years are applied for all time. * For most applications written today, the ISO-8601 rules are entirely suitable. * However, any application that makes use of historical dates, and requires them * to be accurate will find the ISO-8601 approach unsuitable. * * @implSpec * This class is immutable and thread-safe. * * @since 1.8 */ public final class YearMonth implements Temporal, TemporalAdjuster, Comparable, Serializable { /** * Serialization version. */ private static final long serialVersionUID = 4183400860270640070L; /** * Parser. */ private static final DateTimeFormatter PARSER = new DateTimeFormatterBuilder() .appendValue(YEAR, 4, 10, SignStyle.EXCEEDS_PAD) .appendLiteral('-') .appendValue(MONTH_OF_YEAR, 2) .toFormatter(); /** * The year. */ private final int year; /** * The month-of-year, not null. */ private final int month; //----------------------------------------------------------------------- /** * Obtains the current year-month from the system clock in the default time-zone. *

* This will query the {@link Clock#systemDefaultZone() system clock} in the default * time-zone to obtain the current year-month. *

* Using this method will prevent the ability to use an alternate clock for testing * because the clock is hard-coded. * * @return the current year-month using the system clock and default time-zone, not null */ public static YearMonth now() { return now(Clock.systemDefaultZone()); } /** * Obtains the current year-month from the system clock in the specified time-zone. *

* This will query the {@link Clock#system(ZoneId) system clock} to obtain the current year-month. * Specifying the time-zone avoids dependence on the default time-zone. *

* Using this method will prevent the ability to use an alternate clock for testing * because the clock is hard-coded. * * @param zone the zone ID to use, not null * @return the current year-month using the system clock, not null */ public static YearMonth now(ZoneId zone) { return now(Clock.system(zone)); } /** * Obtains the current year-month from the specified clock. *

* This will query the specified clock to obtain the current year-month. * Using this method allows the use of an alternate clock for testing. * The alternate clock may be introduced using {@link Clock dependency injection}. * * @param clock the clock to use, not null * @return the current year-month, not null */ public static YearMonth now(Clock clock) { final LocalDate now = LocalDate.now(clock); // called once return YearMonth.of(now.getYear(), now.getMonth()); } //----------------------------------------------------------------------- /** * Obtains an instance of {@code YearMonth} from a year and month. * * @param year the year to represent, from MIN_YEAR to MAX_YEAR * @param month the month-of-year to represent, not null * @return the year-month, not null * @throws DateTimeException if the year value is invalid */ public static YearMonth of(int year, Month month) { Objects.requireNonNull(month, "month"); return of(year, month.getValue()); } /** * Obtains an instance of {@code YearMonth} from a year and month. * * @param year the year to represent, from MIN_YEAR to MAX_YEAR * @param month the month-of-year to represent, from 1 (January) to 12 (December) * @return the year-month, not null * @throws DateTimeException if either field value is invalid */ public static YearMonth of(int year, int month) { YEAR.checkValidValue(year); MONTH_OF_YEAR.checkValidValue(month); return new YearMonth(year, month); } //----------------------------------------------------------------------- /** * Obtains an instance of {@code YearMonth} from a temporal object. *

* This obtains a year-month based on the specified temporal. * A {@code TemporalAccessor} represents an arbitrary set of date and time information, * which this factory converts to an instance of {@code YearMonth}. *

* The conversion extracts the {@link ChronoField#YEAR YEAR} and * {@link ChronoField#MONTH_OF_YEAR MONTH_OF_YEAR} fields. * The extraction is only permitted if the temporal object has an ISO * chronology, or can be converted to a {@code LocalDate}. *

* This method matches the signature of the functional interface {@link TemporalQuery} * allowing it to be used as a query via method reference, {@code YearMonth::from}. * * @param temporal the temporal object to convert, not null * @return the year-month, not null * @throws DateTimeException if unable to convert to a {@code YearMonth} */ public static YearMonth from(TemporalAccessor temporal) { if (temporal instanceof YearMonth) { return (YearMonth) temporal; } Objects.requireNonNull(temporal, "temporal"); try { if (IsoChronology.INSTANCE.equals(Chronology.from(temporal)) == false) { temporal = LocalDate.from(temporal); } return of(temporal.get(YEAR), temporal.get(MONTH_OF_YEAR)); } catch (DateTimeException ex) { throw new DateTimeException("Unable to obtain YearMonth from TemporalAccessor: " + temporal + " of type " + temporal.getClass().getName(), ex); } } //----------------------------------------------------------------------- /** * Obtains an instance of {@code YearMonth} from a text string such as {@code 2007-12}. *

* The string must represent a valid year-month. * The format must be {@code uuuu-MM}. * Years outside the range 0000 to 9999 must be prefixed by the plus or minus symbol. * * @param text the text to parse such as "2007-12", not null * @return the parsed year-month, not null * @throws DateTimeParseException if the text cannot be parsed */ public static YearMonth parse(CharSequence text) { return parse(text, PARSER); } /** * Obtains an instance of {@code YearMonth} from a text string using a specific formatter. *

* The text is parsed using the formatter, returning a year-month. * * @param text the text to parse, not null * @param formatter the formatter to use, not null * @return the parsed year-month, not null * @throws DateTimeParseException if the text cannot be parsed */ public static YearMonth parse(CharSequence text, DateTimeFormatter formatter) { Objects.requireNonNull(formatter, "formatter"); return formatter.parse(text, YearMonth::from); } //----------------------------------------------------------------------- /** * Constructor. * * @param year the year to represent, validated from MIN_YEAR to MAX_YEAR * @param month the month-of-year to represent, validated from 1 (January) to 12 (December) */ private YearMonth(int year, int month) { this.year = year; this.month = month; } /** * Returns a copy of this year-month with the new year and month, checking * to see if a new object is in fact required. * * @param newYear the year to represent, validated from MIN_YEAR to MAX_YEAR * @param newMonth the month-of-year to represent, validated not null * @return the year-month, not null */ private YearMonth with(int newYear, int newMonth) { if (year == newYear && month == newMonth) { return this; } return new YearMonth(newYear, newMonth); } //----------------------------------------------------------------------- /** * Checks if the specified field is supported. *

* This checks if this year-month can be queried for the specified field. * If false, then calling the {@link #range(TemporalField) range}, * {@link #get(TemporalField) get} and {@link #with(TemporalField, long)} * methods will throw an exception. *

* If the field is a {@link ChronoField} then the query is implemented here. * The supported fields are: *

* All other {@code ChronoField} instances will return false. *

* If the field is not a {@code ChronoField}, then the result of this method * is obtained by invoking {@code TemporalField.isSupportedBy(TemporalAccessor)} * passing {@code this} as the argument. * Whether the field is supported is determined by the field. * * @param field the field to check, null returns false * @return true if the field is supported on this year-month, false if not */ @Override public boolean isSupported(TemporalField field) { if (field instanceof ChronoField) { return field == YEAR || field == MONTH_OF_YEAR || field == PROLEPTIC_MONTH || field == YEAR_OF_ERA || field == ERA; } return field != null && field.isSupportedBy(this); } /** * Checks if the specified unit is supported. *

* This checks if the specified unit can be added to, or subtracted from, this year-month. * If false, then calling the {@link #plus(long, TemporalUnit)} and * {@link #minus(long, TemporalUnit) minus} methods will throw an exception. *

* If the unit is a {@link ChronoUnit} then the query is implemented here. * The supported units are: *

* All other {@code ChronoUnit} instances will return false. *

* If the unit is not a {@code ChronoUnit}, then the result of this method * is obtained by invoking {@code TemporalUnit.isSupportedBy(Temporal)} * passing {@code this} as the argument. * Whether the unit is supported is determined by the unit. * * @param unit the unit to check, null returns false * @return true if the unit can be added/subtracted, false if not */ @Override public boolean isSupported(TemporalUnit unit) { if (unit instanceof ChronoUnit) { return unit == MONTHS || unit == YEARS || unit == DECADES || unit == CENTURIES || unit == MILLENNIA || unit == ERAS; } return unit != null && unit.isSupportedBy(this); } //----------------------------------------------------------------------- /** * Gets the range of valid values for the specified field. *

* The range object expresses the minimum and maximum valid values for a field. * This year-month is used to enhance the accuracy of the returned range. * If it is not possible to return the range, because the field is not supported * or for some other reason, an exception is thrown. *

* If the field is a {@link ChronoField} then the query is implemented here. * The {@link #isSupported(TemporalField) supported fields} will return * appropriate range instances. * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}. *

* If the field is not a {@code ChronoField}, then the result of this method * is obtained by invoking {@code TemporalField.rangeRefinedBy(TemporalAccessor)} * passing {@code this} as the argument. * Whether the range can be obtained is determined by the field. * * @param field the field to query the range for, not null * @return the range of valid values for the field, not null * @throws DateTimeException if the range for the field cannot be obtained * @throws UnsupportedTemporalTypeException if the field is not supported */ @Override public ValueRange range(TemporalField field) { if (field == YEAR_OF_ERA) { return (getYear() <= 0 ? ValueRange.of(1, Year.MAX_VALUE + 1) : ValueRange.of(1, Year.MAX_VALUE)); } return Temporal.super.range(field); } /** * Gets the value of the specified field from this year-month as an {@code int}. *

* This queries this year-month for the value of the specified field. * The returned value will always be within the valid range of values for the field. * If it is not possible to return the value, because the field is not supported * or for some other reason, an exception is thrown. *

* If the field is a {@link ChronoField} then the query is implemented here. * The {@link #isSupported(TemporalField) supported fields} will return valid * values based on this year-month, except {@code PROLEPTIC_MONTH} which is too * large to fit in an {@code int} and throw a {@code DateTimeException}. * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}. *

* If the field is not a {@code ChronoField}, then the result of this method * is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)} * passing {@code this} as the argument. Whether the value can be obtained, * and what the value represents, is determined by the field. * * @param field the field to get, not null * @return the value for the field * @throws DateTimeException if a value for the field cannot be obtained or * the value is outside the range of valid values for the field * @throws UnsupportedTemporalTypeException if the field is not supported or * the range of values exceeds an {@code int} * @throws ArithmeticException if numeric overflow occurs */ @Override // override for Javadoc public int get(TemporalField field) { return range(field).checkValidIntValue(getLong(field), field); } /** * Gets the value of the specified field from this year-month as a {@code long}. *

* This queries this year-month for the value of the specified field. * If it is not possible to return the value, because the field is not supported * or for some other reason, an exception is thrown. *

* If the field is a {@link ChronoField} then the query is implemented here. * The {@link #isSupported(TemporalField) supported fields} will return valid * values based on this year-month. * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}. *

* If the field is not a {@code ChronoField}, then the result of this method * is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)} * passing {@code this} as the argument. Whether the value can be obtained, * and what the value represents, is determined by the field. * * @param field the field to get, not null * @return the value for the field * @throws DateTimeException if a value for the field cannot be obtained * @throws UnsupportedTemporalTypeException if the field is not supported * @throws ArithmeticException if numeric overflow occurs */ @Override public long getLong(TemporalField field) { if (field instanceof ChronoField) { switch ((ChronoField) field) { case MONTH_OF_YEAR: return month; case PROLEPTIC_MONTH: return getProlepticMonth(); case YEAR_OF_ERA: return (year < 1 ? 1 - year : year); case YEAR: return year; case ERA: return (year < 1 ? 0 : 1); } throw new UnsupportedTemporalTypeException("Unsupported field: " + field); } return field.getFrom(this); } private long getProlepticMonth() { return (year * 12L + month - 1); } //----------------------------------------------------------------------- /** * Gets the year field. *

* This method returns the primitive {@code int} value for the year. *

* The year returned by this method is proleptic as per {@code get(YEAR)}. * * @return the year, from MIN_YEAR to MAX_YEAR */ public int getYear() { return year; } /** * Gets the month-of-year field from 1 to 12. *

* This method returns the month as an {@code int} from 1 to 12. * Application code is frequently clearer if the enum {@link Month} * is used by calling {@link #getMonth()}. * * @return the month-of-year, from 1 to 12 * @see #getMonth() */ public int getMonthValue() { return month; } /** * Gets the month-of-year field using the {@code Month} enum. *

* This method returns the enum {@link Month} for the month. * This avoids confusion as to what {@code int} values mean. * If you need access to the primitive {@code int} value then the enum * provides the {@link Month#getValue() int value}. * * @return the month-of-year, not null * @see #getMonthValue() */ public Month getMonth() { return Month.of(month); } //----------------------------------------------------------------------- /** * Checks if the year is a leap year, according to the ISO proleptic * calendar system rules. *

* This method applies the current rules for leap years across the whole time-line. * In general, a year is a leap year if it is divisible by four without * remainder. However, years divisible by 100, are not leap years, with * the exception of years divisible by 400 which are. *

* For example, 1904 is a leap year it is divisible by 4. * 1900 was not a leap year as it is divisible by 100, however 2000 was a * leap year as it is divisible by 400. *

* The calculation is proleptic - applying the same rules into the far future and far past. * This is historically inaccurate, but is correct for the ISO-8601 standard. * * @return true if the year is leap, false otherwise */ public boolean isLeapYear() { return IsoChronology.INSTANCE.isLeapYear(year); } /** * Checks if the day-of-month is valid for this year-month. *

* This method checks whether this year and month and the input day form * a valid date. * * @param dayOfMonth the day-of-month to validate, from 1 to 31, invalid value returns false * @return true if the day is valid for this year-month */ public boolean isValidDay(int dayOfMonth) { return dayOfMonth >= 1 && dayOfMonth <= lengthOfMonth(); } /** * Returns the length of the month, taking account of the year. *

* This returns the length of the month in days. * For example, a date in January would return 31. * * @return the length of the month in days, from 28 to 31 */ public int lengthOfMonth() { return getMonth().length(isLeapYear()); } /** * Returns the length of the year. *

* This returns the length of the year in days, either 365 or 366. * * @return 366 if the year is leap, 365 otherwise */ public int lengthOfYear() { return (isLeapYear() ? 366 : 365); } //----------------------------------------------------------------------- /** * Returns an adjusted copy of this year-month. *

* This returns a {@code YearMonth}, based on this one, with the year-month adjusted. * The adjustment takes place using the specified adjuster strategy object. * Read the documentation of the adjuster to understand what adjustment will be made. *

* A simple adjuster might simply set the one of the fields, such as the year field. * A more complex adjuster might set the year-month to the next month that * Halley's comet will pass the Earth. *

* The result of this method is obtained by invoking the * {@link TemporalAdjuster#adjustInto(Temporal)} method on the * specified adjuster passing {@code this} as the argument. *

* This instance is immutable and unaffected by this method call. * * @param adjuster the adjuster to use, not null * @return a {@code YearMonth} based on {@code this} with the adjustment made, not null * @throws DateTimeException if the adjustment cannot be made * @throws ArithmeticException if numeric overflow occurs */ @Override public YearMonth with(TemporalAdjuster adjuster) { return (YearMonth) adjuster.adjustInto(this); } /** * Returns a copy of this year-month with the specified field set to a new value. *

* This returns a {@code YearMonth}, based on this one, with the value * for the specified field changed. * This can be used to change any supported field, such as the year or month. * If it is not possible to set the value, because the field is not supported or for * some other reason, an exception is thrown. *

* If the field is a {@link ChronoField} then the adjustment is implemented here. * The supported fields behave as follows: *

*

* In all cases, if the new value is outside the valid range of values for the field * then a {@code DateTimeException} will be thrown. *

* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}. *

* If the field is not a {@code ChronoField}, then the result of this method * is obtained by invoking {@code TemporalField.adjustInto(Temporal, long)} * passing {@code this} as the argument. In this case, the field determines * whether and how to adjust the instant. *

* This instance is immutable and unaffected by this method call. * * @param field the field to set in the result, not null * @param newValue the new value of the field in the result * @return a {@code YearMonth} based on {@code this} with the specified field set, not null * @throws DateTimeException if the field cannot be set * @throws UnsupportedTemporalTypeException if the field is not supported * @throws ArithmeticException if numeric overflow occurs */ @Override public YearMonth with(TemporalField field, long newValue) { if (field instanceof ChronoField) { ChronoField f = (ChronoField) field; f.checkValidValue(newValue); switch (f) { case MONTH_OF_YEAR: return withMonth((int) newValue); case PROLEPTIC_MONTH: return plusMonths(newValue - getProlepticMonth()); case YEAR_OF_ERA: return withYear((int) (year < 1 ? 1 - newValue : newValue)); case YEAR: return withYear((int) newValue); case ERA: return (getLong(ERA) == newValue ? this : withYear(1 - year)); } throw new UnsupportedTemporalTypeException("Unsupported field: " + field); } return field.adjustInto(this, newValue); } //----------------------------------------------------------------------- /** * Returns a copy of this {@code YearMonth} with the year altered. *

* This instance is immutable and unaffected by this method call. * * @param year the year to set in the returned year-month, from MIN_YEAR to MAX_YEAR * @return a {@code YearMonth} based on this year-month with the requested year, not null * @throws DateTimeException if the year value is invalid */ public YearMonth withYear(int year) { YEAR.checkValidValue(year); return with(year, month); } /** * Returns a copy of this {@code YearMonth} with the month-of-year altered. *

* This instance is immutable and unaffected by this method call. * * @param month the month-of-year to set in the returned year-month, from 1 (January) to 12 (December) * @return a {@code YearMonth} based on this year-month with the requested month, not null * @throws DateTimeException if the month-of-year value is invalid */ public YearMonth withMonth(int month) { MONTH_OF_YEAR.checkValidValue(month); return with(year, month); } //----------------------------------------------------------------------- /** * Returns a copy of this year-month with the specified amount added. *

* This returns a {@code YearMonth}, based on this one, with the specified amount added. * The amount is typically {@link Period} but may be any other type implementing * the {@link TemporalAmount} interface. *

* The calculation is delegated to the amount object by calling * {@link TemporalAmount#addTo(Temporal)}. The amount implementation is free * to implement the addition in any way it wishes, however it typically * calls back to {@link #plus(long, TemporalUnit)}. Consult the documentation * of the amount implementation to determine if it can be successfully added. *

* This instance is immutable and unaffected by this method call. * * @param amountToAdd the amount to add, not null * @return a {@code YearMonth} based on this year-month with the addition made, not null * @throws DateTimeException if the addition cannot be made * @throws ArithmeticException if numeric overflow occurs */ @Override public YearMonth plus(TemporalAmount amountToAdd) { return (YearMonth) amountToAdd.addTo(this); } /** * Returns a copy of this year-month with the specified amount added. *

* This returns a {@code YearMonth}, based on this one, with the amount * in terms of the unit added. If it is not possible to add the amount, because the * unit is not supported or for some other reason, an exception is thrown. *

* If the field is a {@link ChronoUnit} then the addition is implemented here. * The supported fields behave as follows: *

*

* All other {@code ChronoUnit} instances will throw an {@code UnsupportedTemporalTypeException}. *

* If the field is not a {@code ChronoUnit}, then the result of this method * is obtained by invoking {@code TemporalUnit.addTo(Temporal, long)} * passing {@code this} as the argument. In this case, the unit determines * whether and how to perform the addition. *

* This instance is immutable and unaffected by this method call. * * @param amountToAdd the amount of the unit to add to the result, may be negative * @param unit the unit of the amount to add, not null * @return a {@code YearMonth} based on this year-month with the specified amount added, not null * @throws DateTimeException if the addition cannot be made * @throws UnsupportedTemporalTypeException if the unit is not supported * @throws ArithmeticException if numeric overflow occurs */ @Override public YearMonth plus(long amountToAdd, TemporalUnit unit) { if (unit instanceof ChronoUnit) { switch ((ChronoUnit) unit) { case MONTHS: return plusMonths(amountToAdd); case YEARS: return plusYears(amountToAdd); case DECADES: return plusYears(Math.multiplyExact(amountToAdd, 10)); case CENTURIES: return plusYears(Math.multiplyExact(amountToAdd, 100)); case MILLENNIA: return plusYears(Math.multiplyExact(amountToAdd, 1000)); case ERAS: return with(ERA, Math.addExact(getLong(ERA), amountToAdd)); } throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit); } return unit.addTo(this, amountToAdd); } /** * Returns a copy of this {@code YearMonth} with the specified number of years added. *

* This instance is immutable and unaffected by this method call. * * @param yearsToAdd the years to add, may be negative * @return a {@code YearMonth} based on this year-month with the years added, not null * @throws DateTimeException if the result exceeds the supported range */ public YearMonth plusYears(long yearsToAdd) { if (yearsToAdd == 0) { return this; } int newYear = YEAR.checkValidIntValue(year + yearsToAdd); // safe overflow return with(newYear, month); } /** * Returns a copy of this {@code YearMonth} with the specified number of months added. *

* This instance is immutable and unaffected by this method call. * * @param monthsToAdd the months to add, may be negative * @return a {@code YearMonth} based on this year-month with the months added, not null * @throws DateTimeException if the result exceeds the supported range */ public YearMonth plusMonths(long monthsToAdd) { if (monthsToAdd == 0) { return this; } long monthCount = year * 12L + (month - 1); long calcMonths = monthCount + monthsToAdd; // safe overflow int newYear = YEAR.checkValidIntValue(Math.floorDiv(calcMonths, 12)); int newMonth = (int)Math.floorMod(calcMonths, 12) + 1; return with(newYear, newMonth); } //----------------------------------------------------------------------- /** * Returns a copy of this year-month with the specified amount subtracted. *

* This returns a {@code YearMonth}, based on this one, with the specified amount subtracted. * The amount is typically {@link Period} but may be any other type implementing * the {@link TemporalAmount} interface. *

* The calculation is delegated to the amount object by calling * {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free * to implement the subtraction in any way it wishes, however it typically * calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation * of the amount implementation to determine if it can be successfully subtracted. *

* This instance is immutable and unaffected by this method call. * * @param amountToSubtract the amount to subtract, not null * @return a {@code YearMonth} based on this year-month with the subtraction made, not null * @throws DateTimeException if the subtraction cannot be made * @throws ArithmeticException if numeric overflow occurs */ @Override public YearMonth minus(TemporalAmount amountToSubtract) { return (YearMonth) amountToSubtract.subtractFrom(this); } /** * Returns a copy of this year-month with the specified amount subtracted. *

* This returns a {@code YearMonth}, based on this one, with the amount * in terms of the unit subtracted. If it is not possible to subtract the amount, * because the unit is not supported or for some other reason, an exception is thrown. *

* This method is equivalent to {@link #plus(long, TemporalUnit)} with the amount negated. * See that method for a full description of how addition, and thus subtraction, works. *

* This instance is immutable and unaffected by this method call. * * @param amountToSubtract the amount of the unit to subtract from the result, may be negative * @param unit the unit of the amount to subtract, not null * @return a {@code YearMonth} based on this year-month with the specified amount subtracted, not null * @throws DateTimeException if the subtraction cannot be made * @throws UnsupportedTemporalTypeException if the unit is not supported * @throws ArithmeticException if numeric overflow occurs */ @Override public YearMonth minus(long amountToSubtract, TemporalUnit unit) { return (amountToSubtract == Long.MIN_VALUE ? plus(Long.MAX_VALUE, unit).plus(1, unit) : plus(-amountToSubtract, unit)); } /** * Returns a copy of this {@code YearMonth} with the specified number of years subtracted. *

* This instance is immutable and unaffected by this method call. * * @param yearsToSubtract the years to subtract, may be negative * @return a {@code YearMonth} based on this year-month with the years subtracted, not null * @throws DateTimeException if the result exceeds the supported range */ public YearMonth minusYears(long yearsToSubtract) { return (yearsToSubtract == Long.MIN_VALUE ? plusYears(Long.MAX_VALUE).plusYears(1) : plusYears(-yearsToSubtract)); } /** * Returns a copy of this {@code YearMonth} with the specified number of months subtracted. *

* This instance is immutable and unaffected by this method call. * * @param monthsToSubtract the months to subtract, may be negative * @return a {@code YearMonth} based on this year-month with the months subtracted, not null * @throws DateTimeException if the result exceeds the supported range */ public YearMonth minusMonths(long monthsToSubtract) { return (monthsToSubtract == Long.MIN_VALUE ? plusMonths(Long.MAX_VALUE).plusMonths(1) : plusMonths(-monthsToSubtract)); } //----------------------------------------------------------------------- /** * Queries this year-month using the specified query. *

* This queries this year-month using the specified query strategy object. * The {@code TemporalQuery} object defines the logic to be used to * obtain the result. Read the documentation of the query to understand * what the result of this method will be. *

* The result of this method is obtained by invoking the * {@link TemporalQuery#queryFrom(TemporalAccessor)} method on the * specified query passing {@code this} as the argument. * * @param the type of the result * @param query the query to invoke, not null * @return the query result, null may be returned (defined by the query) * @throws DateTimeException if unable to query (defined by the query) * @throws ArithmeticException if numeric overflow occurs (defined by the query) */ @SuppressWarnings("unchecked") @Override public R query(TemporalQuery query) { if (query == TemporalQueries.chronology()) { return (R) IsoChronology.INSTANCE; } else if (query == TemporalQueries.precision()) { return (R) MONTHS; } return Temporal.super.query(query); } /** * Adjusts the specified temporal object to have this year-month. *

* This returns a temporal object of the same observable type as the input * with the year and month changed to be the same as this. *

* The adjustment is equivalent to using {@link Temporal#with(TemporalField, long)} * passing {@link ChronoField#PROLEPTIC_MONTH} as the field. * If the specified temporal object does not use the ISO calendar system then * a {@code DateTimeException} is thrown. *

* In most cases, it is clearer to reverse the calling pattern by using * {@link Temporal#with(TemporalAdjuster)}: *

     *   // these two lines are equivalent, but the second approach is recommended
     *   temporal = thisYearMonth.adjustInto(temporal);
     *   temporal = temporal.with(thisYearMonth);
     * 
*

* This instance is immutable and unaffected by this method call. * * @param temporal the target object to be adjusted, not null * @return the adjusted object, not null * @throws DateTimeException if unable to make the adjustment * @throws ArithmeticException if numeric overflow occurs */ @Override public Temporal adjustInto(Temporal temporal) { if (Chronology.from(temporal).equals(IsoChronology.INSTANCE) == false) { throw new DateTimeException("Adjustment only supported on ISO date-time"); } return temporal.with(PROLEPTIC_MONTH, getProlepticMonth()); } /** * Calculates the amount of time until another year-month in terms of the specified unit. *

* This calculates the amount of time between two {@code YearMonth} * objects in terms of a single {@code TemporalUnit}. * The start and end points are {@code this} and the specified year-month. * The result will be negative if the end is before the start. * The {@code Temporal} passed to this method is converted to a * {@code YearMonth} using {@link #from(TemporalAccessor)}. * For example, the amount in years between two year-months can be calculated * using {@code startYearMonth.until(endYearMonth, YEARS)}. *

* The calculation returns a whole number, representing the number of * complete units between the two year-months. * For example, the amount in decades between 2012-06 and 2032-05 * will only be one decade as it is one month short of two decades. *

* There are two equivalent ways of using this method. * The first is to invoke this method. * The second is to use {@link TemporalUnit#between(Temporal, Temporal)}: *

     *   // these two lines are equivalent
     *   amount = start.until(end, MONTHS);
     *   amount = MONTHS.between(start, end);
     * 
* The choice should be made based on which makes the code more readable. *

* The calculation is implemented in this method for {@link ChronoUnit}. * The units {@code MONTHS}, {@code YEARS}, {@code DECADES}, * {@code CENTURIES}, {@code MILLENNIA} and {@code ERAS} are supported. * Other {@code ChronoUnit} values will throw an exception. *

* If the unit is not a {@code ChronoUnit}, then the result of this method * is obtained by invoking {@code TemporalUnit.between(Temporal, Temporal)} * passing {@code this} as the first argument and the converted input temporal * as the second argument. *

* This instance is immutable and unaffected by this method call. * * @param endExclusive the end date, exclusive, which is converted to a {@code YearMonth}, not null * @param unit the unit to measure the amount in, not null * @return the amount of time between this year-month and the end year-month * @throws DateTimeException if the amount cannot be calculated, or the end * temporal cannot be converted to a {@code YearMonth} * @throws UnsupportedTemporalTypeException if the unit is not supported * @throws ArithmeticException if numeric overflow occurs */ @Override public long until(Temporal endExclusive, TemporalUnit unit) { YearMonth end = YearMonth.from(endExclusive); if (unit instanceof ChronoUnit) { long monthsUntil = end.getProlepticMonth() - getProlepticMonth(); // no overflow switch ((ChronoUnit) unit) { case MONTHS: return monthsUntil; case YEARS: return monthsUntil / 12; case DECADES: return monthsUntil / 120; case CENTURIES: return monthsUntil / 1200; case MILLENNIA: return monthsUntil / 12000; case ERAS: return end.getLong(ERA) - getLong(ERA); } throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit); } return unit.between(this, end); } /** * Formats this year-month using the specified formatter. *

* This year-month will be passed to the formatter to produce a string. * * @param formatter the formatter to use, not null * @return the formatted year-month string, not null * @throws DateTimeException if an error occurs during printing */ public String format(DateTimeFormatter formatter) { Objects.requireNonNull(formatter, "formatter"); return formatter.format(this); } //----------------------------------------------------------------------- /** * Combines this year-month with a day-of-month to create a {@code LocalDate}. *

* This returns a {@code LocalDate} formed from this year-month and the specified day-of-month. *

* The day-of-month value must be valid for the year-month. *

* This method can be used as part of a chain to produce a date: *

     *  LocalDate date = year.atMonth(month).atDay(day);
     * 
* * @param dayOfMonth the day-of-month to use, from 1 to 31 * @return the date formed from this year-month and the specified day, not null * @throws DateTimeException if the day is invalid for the year-month * @see #isValidDay(int) */ public LocalDate atDay(int dayOfMonth) { return LocalDate.of(year, month, dayOfMonth); } /** * Returns a {@code LocalDate} at the end of the month. *

* This returns a {@code LocalDate} based on this year-month. * The day-of-month is set to the last valid day of the month, taking * into account leap years. *

* This method can be used as part of a chain to produce a date: *

     *  LocalDate date = year.atMonth(month).atEndOfMonth();
     * 
* * @return the last valid date of this year-month, not null */ public LocalDate atEndOfMonth() { return LocalDate.of(year, month, lengthOfMonth()); } //----------------------------------------------------------------------- /** * Compares this year-month to another year-month. *

* The comparison is based first on the value of the year, then on the value of the month. * It is "consistent with equals", as defined by {@link Comparable}. * * @param other the other year-month to compare to, not null * @return the comparator value, negative if less, positive if greater */ @Override public int compareTo(YearMonth other) { int cmp = (year - other.year); if (cmp == 0) { cmp = (month - other.month); } return cmp; } /** * Checks if this year-month is after the specified year-month. * * @param other the other year-month to compare to, not null * @return true if this is after the specified year-month */ public boolean isAfter(YearMonth other) { return compareTo(other) > 0; } /** * Checks if this year-month is before the specified year-month. * * @param other the other year-month to compare to, not null * @return true if this point is before the specified year-month */ public boolean isBefore(YearMonth other) { return compareTo(other) < 0; } //----------------------------------------------------------------------- /** * Checks if this year-month is equal to another year-month. *

* The comparison is based on the time-line position of the year-months. * * @param obj the object to check, null returns false * @return true if this is equal to the other year-month */ @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj instanceof YearMonth) { YearMonth other = (YearMonth) obj; return year == other.year && month == other.month; } return false; } /** * A hash code for this year-month. * * @return a suitable hash code */ @Override public int hashCode() { return year ^ (month << 27); } //----------------------------------------------------------------------- /** * Outputs this year-month as a {@code String}, such as {@code 2007-12}. *

* The output will be in the format {@code uuuu-MM}: * * @return a string representation of this year-month, not null */ @Override public String toString() { int absYear = Math.abs(year); StringBuilder buf = new StringBuilder(9); if (absYear < 1000) { if (year < 0) { buf.append(year - 10000).deleteCharAt(1); } else { buf.append(year + 10000).deleteCharAt(0); } } else { buf.append(year); } return buf.append(month < 10 ? "-0" : "-") .append(month) .toString(); } //----------------------------------------------------------------------- /** * Writes the object using a * dedicated serialized form. * @serialData *

     *  out.writeByte(12);  // identifies a YearMonth
     *  out.writeInt(year);
     *  out.writeByte(month);
     * 
* * @return the instance of {@code Ser}, not null */ private Object writeReplace() { return new Ser(Ser.YEAR_MONTH_TYPE, this); } /** * Defend against malicious streams. * * @param s the stream to read * @throws InvalidObjectException always */ private void readObject(ObjectInputStream s) throws InvalidObjectException { throw new InvalidObjectException("Deserialization via serialization delegate"); } void writeExternal(DataOutput out) throws IOException { out.writeInt(year); out.writeByte(month); } static YearMonth readExternal(DataInput in) throws IOException { int year = in.readInt(); byte month = in.readByte(); return YearMonth.of(year, month); } }