/* * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util.stream; import java.util.AbstractMap; import java.util.AbstractSet; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.Comparator; import java.util.DoubleSummaryStatistics; import java.util.EnumSet; import java.util.HashMap; import java.util.HashSet; import java.util.IntSummaryStatistics; import java.util.Iterator; import java.util.List; import java.util.LongSummaryStatistics; import java.util.Map; import java.util.Objects; import java.util.Optional; import java.util.Set; import java.util.StringJoiner; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ConcurrentMap; import java.util.function.BiConsumer; import java.util.function.BiFunction; import java.util.function.BinaryOperator; import java.util.function.Consumer; import java.util.function.Function; import java.util.function.Predicate; import java.util.function.Supplier; import java.util.function.ToDoubleFunction; import java.util.function.ToIntFunction; import java.util.function.ToLongFunction; /** * Implementations of {@link Collector} that implement various useful reduction * operations, such as accumulating elements into collections, summarizing * elements according to various criteria, etc. * *

The following are examples of using the predefined collectors to perform * common mutable reduction tasks: * *

{@code
 *     // Accumulate names into a List
 *     List list = people.stream().map(Person::getName).collect(Collectors.toList());
 *
 *     // Accumulate names into a TreeSet
 *     Set set = people.stream().map(Person::getName).collect(Collectors.toCollection(TreeSet::new));
 *
 *     // Convert elements to strings and concatenate them, separated by commas
 *     String joined = things.stream()
 *                           .map(Object::toString)
 *                           .collect(Collectors.joining(", "));
 *
 *     // Compute sum of salaries of employee
 *     int total = employees.stream()
 *                          .collect(Collectors.summingInt(Employee::getSalary)));
 *
 *     // Group employees by department
 *     Map> byDept
 *         = employees.stream()
 *                    .collect(Collectors.groupingBy(Employee::getDepartment));
 *
 *     // Compute sum of salaries by department
 *     Map totalByDept
 *         = employees.stream()
 *                    .collect(Collectors.groupingBy(Employee::getDepartment,
 *                                                   Collectors.summingInt(Employee::getSalary)));
 *
 *     // Partition students into passing and failing
 *     Map> passingFailing =
 *         students.stream()
 *                 .collect(Collectors.partitioningBy(s -> s.getGrade() >= PASS_THRESHOLD));
 *
 * }
* * @since 1.8 */ public final class Collectors { static final Set CH_CONCURRENT_ID = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.CONCURRENT, Collector.Characteristics.UNORDERED, Collector.Characteristics.IDENTITY_FINISH)); static final Set CH_CONCURRENT_NOID = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.CONCURRENT, Collector.Characteristics.UNORDERED)); static final Set CH_ID = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.IDENTITY_FINISH)); static final Set CH_UNORDERED_ID = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.UNORDERED, Collector.Characteristics.IDENTITY_FINISH)); static final Set CH_NOID = Collections.emptySet(); private Collectors() { } /** * Returns a merge function, suitable for use in * {@link Map#merge(Object, Object, BiFunction) Map.merge()} or * {@link #toMap(Function, Function, BinaryOperator) toMap()}, which always * throws {@code IllegalStateException}. This can be used to enforce the * assumption that the elements being collected are distinct. * * @param the type of input arguments to the merge function * @return a merge function which always throw {@code IllegalStateException} */ private static BinaryOperator throwingMerger() { return (u,v) -> { throw new IllegalStateException(String.format("Duplicate key %s", u)); }; } @SuppressWarnings("unchecked") private static Function castingIdentity() { return i -> (R) i; } /** * Simple implementation class for {@code Collector}. * * @param the type of elements to be collected * @param the type of the result */ static class CollectorImpl implements Collector { private final Supplier supplier; private final BiConsumer accumulator; private final BinaryOperator combiner; private final Function finisher; private final Set characteristics; CollectorImpl(Supplier supplier, BiConsumer accumulator, BinaryOperator combiner, Function finisher, Set characteristics) { this.supplier = supplier; this.accumulator = accumulator; this.combiner = combiner; this.finisher = finisher; this.characteristics = characteristics; } CollectorImpl(Supplier supplier, BiConsumer accumulator, BinaryOperator combiner, Set characteristics) { this(supplier, accumulator, combiner, castingIdentity(), characteristics); } @Override public BiConsumer accumulator() { return accumulator; } @Override public Supplier supplier() { return supplier; } @Override public BinaryOperator combiner() { return combiner; } @Override public Function finisher() { return finisher; } @Override public Set characteristics() { return characteristics; } } /** * Returns a {@code Collector} that accumulates the input elements into a * new {@code Collection}, in encounter order. The {@code Collection} is * created by the provided factory. * * @param the type of the input elements * @param the type of the resulting {@code Collection} * @param collectionFactory a {@code Supplier} which returns a new, empty * {@code Collection} of the appropriate type * @return a {@code Collector} which collects all the input elements into a * {@code Collection}, in encounter order */ public static > Collector toCollection(Supplier collectionFactory) { return new CollectorImpl<>(collectionFactory, Collection::add, (r1, r2) -> { r1.addAll(r2); return r1; }, CH_ID); } /** * Returns a {@code Collector} that accumulates the input elements into a * new {@code List}. There are no guarantees on the type, mutability, * serializability, or thread-safety of the {@code List} returned; if more * control over the returned {@code List} is required, use {@link #toCollection(Supplier)}. * * @param the type of the input elements * @return a {@code Collector} which collects all the input elements into a * {@code List}, in encounter order */ public static Collector> toList() { return new CollectorImpl<>((Supplier>) ArrayList::new, List::add, (left, right) -> { left.addAll(right); return left; }, CH_ID); } /** * Returns a {@code Collector} that accumulates the input elements into a * new {@code Set}. There are no guarantees on the type, mutability, * serializability, or thread-safety of the {@code Set} returned; if more * control over the returned {@code Set} is required, use * {@link #toCollection(Supplier)}. * *

This is an {@link Collector.Characteristics#UNORDERED unordered} * Collector. * * @param the type of the input elements * @return a {@code Collector} which collects all the input elements into a * {@code Set} */ public static Collector> toSet() { return new CollectorImpl<>((Supplier>) HashSet::new, Set::add, (left, right) -> { left.addAll(right); return left; }, CH_UNORDERED_ID); } /** * Returns a {@code Collector} that concatenates the input elements into a * {@code String}, in encounter order. * * @return a {@code Collector} that concatenates the input elements into a * {@code String}, in encounter order */ public static Collector joining() { return new CollectorImpl( StringBuilder::new, StringBuilder::append, (r1, r2) -> { r1.append(r2); return r1; }, StringBuilder::toString, CH_NOID); } /** * Returns a {@code Collector} that concatenates the input elements, * separated by the specified delimiter, in encounter order. * * @param delimiter the delimiter to be used between each element * @return A {@code Collector} which concatenates CharSequence elements, * separated by the specified delimiter, in encounter order */ public static Collector joining(CharSequence delimiter) { return joining(delimiter, "", ""); } /** * Returns a {@code Collector} that concatenates the input elements, * separated by the specified delimiter, with the specified prefix and * suffix, in encounter order. * * @param delimiter the delimiter to be used between each element * @param prefix the sequence of characters to be used at the beginning * of the joined result * @param suffix the sequence of characters to be used at the end * of the joined result * @return A {@code Collector} which concatenates CharSequence elements, * separated by the specified delimiter, in encounter order */ public static Collector joining(CharSequence delimiter, CharSequence prefix, CharSequence suffix) { return new CollectorImpl<>( () -> new StringJoiner(delimiter, prefix, suffix), StringJoiner::add, StringJoiner::merge, StringJoiner::toString, CH_NOID); } /** * {@code BinaryOperator} that merges the contents of its right * argument into its left argument, using the provided merge function to * handle duplicate keys. * * @param type of the map keys * @param type of the map values * @param type of the map * @param mergeFunction A merge function suitable for * {@link Map#merge(Object, Object, BiFunction) Map.merge()} * @return a merge function for two maps */ private static > BinaryOperator mapMerger(BinaryOperator mergeFunction) { return (m1, m2) -> { for (Map.Entry e : m2.entrySet()) m1.merge(e.getKey(), e.getValue(), mergeFunction); return m1; }; } /** * Adapts a {@code Collector} accepting elements of type {@code U} to one * accepting elements of type {@code T} by applying a mapping function to * each input element before accumulation. * * @apiNote * The {@code mapping()} collectors are most useful when used in a * multi-level reduction, such as downstream of a {@code groupingBy} or * {@code partitioningBy}. For example, given a stream of * {@code Person}, to accumulate the set of last names in each city: *

{@code
     *     Map> lastNamesByCity
     *         = people.stream().collect(groupingBy(Person::getCity,
     *                                              mapping(Person::getLastName, toSet())));
     * }
* * @param the type of the input elements * @param type of elements accepted by downstream collector * @param
intermediate accumulation type of the downstream collector * @param result type of collector * @param mapper a function to be applied to the input elements * @param downstream a collector which will accept mapped values * @return a collector which applies the mapping function to the input * elements and provides the mapped results to the downstream collector */ public static Collector mapping(Function mapper, Collector downstream) { BiConsumer downstreamAccumulator = downstream.accumulator(); return new CollectorImpl<>(downstream.supplier(), (r, t) -> downstreamAccumulator.accept(r, mapper.apply(t)), downstream.combiner(), downstream.finisher(), downstream.characteristics()); } /** * Adapts a {@code Collector} to perform an additional finishing * transformation. For example, one could adapt the {@link #toList()} * collector to always produce an immutable list with: *
{@code
     *     List people
     *         = people.stream().collect(collectingAndThen(toList(), Collections::unmodifiableList));
     * }
* * @param the type of the input elements * @param
intermediate accumulation type of the downstream collector * @param result type of the downstream collector * @param result type of the resulting collector * @param downstream a collector * @param finisher a function to be applied to the final result of the downstream collector * @return a collector which performs the action of the downstream collector, * followed by an additional finishing step */ public static Collector collectingAndThen(Collector downstream, Function finisher) { Set characteristics = downstream.characteristics(); if (characteristics.contains(Collector.Characteristics.IDENTITY_FINISH)) { if (characteristics.size() == 1) characteristics = Collectors.CH_NOID; else { characteristics = EnumSet.copyOf(characteristics); characteristics.remove(Collector.Characteristics.IDENTITY_FINISH); characteristics = Collections.unmodifiableSet(characteristics); } } return new CollectorImpl<>(downstream.supplier(), downstream.accumulator(), downstream.combiner(), downstream.finisher().andThen(finisher), characteristics); } /** * Returns a {@code Collector} accepting elements of type {@code T} that * counts the number of input elements. If no elements are present, the * result is 0. * * @implSpec * This produces a result equivalent to: *
{@code
     *     reducing(0L, e -> 1L, Long::sum)
     * }
* * @param the type of the input elements * @return a {@code Collector} that counts the input elements */ public static Collector counting() { return reducing(0L, e -> 1L, Long::sum); } /** * Returns a {@code Collector} that produces the minimal element according * to a given {@code Comparator}, described as an {@code Optional}. * * @implSpec * This produces a result equivalent to: *
{@code
     *     reducing(BinaryOperator.minBy(comparator))
     * }
* * @param the type of the input elements * @param comparator a {@code Comparator} for comparing elements * @return a {@code Collector} that produces the minimal value */ public static Collector> minBy(Comparator comparator) { return reducing(BinaryOperator.minBy(comparator)); } /** * Returns a {@code Collector} that produces the maximal element according * to a given {@code Comparator}, described as an {@code Optional}. * * @implSpec * This produces a result equivalent to: *
{@code
     *     reducing(BinaryOperator.maxBy(comparator))
     * }
* * @param the type of the input elements * @param comparator a {@code Comparator} for comparing elements * @return a {@code Collector} that produces the maximal value */ public static Collector> maxBy(Comparator comparator) { return reducing(BinaryOperator.maxBy(comparator)); } /** * Returns a {@code Collector} that produces the sum of a integer-valued * function applied to the input elements. If no elements are present, * the result is 0. * * @param the type of the input elements * @param mapper a function extracting the property to be summed * @return a {@code Collector} that produces the sum of a derived property */ public static Collector summingInt(ToIntFunction mapper) { return new CollectorImpl<>( () -> new int[1], (a, t) -> { a[0] += mapper.applyAsInt(t); }, (a, b) -> { a[0] += b[0]; return a; }, a -> a[0], CH_NOID); } /** * Returns a {@code Collector} that produces the sum of a long-valued * function applied to the input elements. If no elements are present, * the result is 0. * * @param the type of the input elements * @param mapper a function extracting the property to be summed * @return a {@code Collector} that produces the sum of a derived property */ public static Collector summingLong(ToLongFunction mapper) { return new CollectorImpl<>( () -> new long[1], (a, t) -> { a[0] += mapper.applyAsLong(t); }, (a, b) -> { a[0] += b[0]; return a; }, a -> a[0], CH_NOID); } /** * Returns a {@code Collector} that produces the sum of a double-valued * function applied to the input elements. If no elements are present, * the result is 0. * *

The sum returned can vary depending upon the order in which * values are recorded, due to accumulated rounding error in * addition of values of differing magnitudes. Values sorted by increasing * absolute magnitude tend to yield more accurate results. If any recorded * value is a {@code NaN} or the sum is at any point a {@code NaN} then the * sum will be {@code NaN}. * * @param the type of the input elements * @param mapper a function extracting the property to be summed * @return a {@code Collector} that produces the sum of a derived property */ public static Collector summingDouble(ToDoubleFunction mapper) { /* * In the arrays allocated for the collect operation, index 0 * holds the high-order bits of the running sum, index 1 holds * the low-order bits of the sum computed via compensated * summation, and index 2 holds the simple sum used to compute * the proper result if the stream contains infinite values of * the same sign. */ return new CollectorImpl<>( () -> new double[3], (a, t) -> { sumWithCompensation(a, mapper.applyAsDouble(t)); a[2] += mapper.applyAsDouble(t);}, (a, b) -> { sumWithCompensation(a, b[0]); a[2] += b[2]; return sumWithCompensation(a, b[1]); }, a -> computeFinalSum(a), CH_NOID); } /** * Incorporate a new double value using Kahan summation / * compensation summation. * * High-order bits of the sum are in intermediateSum[0], low-order * bits of the sum are in intermediateSum[1], any additional * elements are application-specific. * * @param intermediateSum the high-order and low-order words of the intermediate sum * @param value the name value to be included in the running sum */ static double[] sumWithCompensation(double[] intermediateSum, double value) { double tmp = value - intermediateSum[1]; double sum = intermediateSum[0]; double velvel = sum + tmp; // Little wolf of rounding error intermediateSum[1] = (velvel - sum) - tmp; intermediateSum[0] = velvel; return intermediateSum; } /** * If the compensated sum is spuriously NaN from accumulating one * or more same-signed infinite values, return the * correctly-signed infinity stored in the simple sum. */ static double computeFinalSum(double[] summands) { // Better error bounds to add both terms as the final sum double tmp = summands[0] + summands[1]; double simpleSum = summands[summands.length - 1]; if (Double.isNaN(tmp) && Double.isInfinite(simpleSum)) return simpleSum; else return tmp; } /** * Returns a {@code Collector} that produces the arithmetic mean of an integer-valued * function applied to the input elements. If no elements are present, * the result is 0. * * @param the type of the input elements * @param mapper a function extracting the property to be summed * @return a {@code Collector} that produces the sum of a derived property */ public static Collector averagingInt(ToIntFunction mapper) { return new CollectorImpl<>( () -> new long[2], (a, t) -> { a[0] += mapper.applyAsInt(t); a[1]++; }, (a, b) -> { a[0] += b[0]; a[1] += b[1]; return a; }, a -> (a[1] == 0) ? 0.0d : (double) a[0] / a[1], CH_NOID); } /** * Returns a {@code Collector} that produces the arithmetic mean of a long-valued * function applied to the input elements. If no elements are present, * the result is 0. * * @param the type of the input elements * @param mapper a function extracting the property to be summed * @return a {@code Collector} that produces the sum of a derived property */ public static Collector averagingLong(ToLongFunction mapper) { return new CollectorImpl<>( () -> new long[2], (a, t) -> { a[0] += mapper.applyAsLong(t); a[1]++; }, (a, b) -> { a[0] += b[0]; a[1] += b[1]; return a; }, a -> (a[1] == 0) ? 0.0d : (double) a[0] / a[1], CH_NOID); } /** * Returns a {@code Collector} that produces the arithmetic mean of a double-valued * function applied to the input elements. If no elements are present, * the result is 0. * *

The average returned can vary depending upon the order in which * values are recorded, due to accumulated rounding error in * addition of values of differing magnitudes. Values sorted by increasing * absolute magnitude tend to yield more accurate results. If any recorded * value is a {@code NaN} or the sum is at any point a {@code NaN} then the * average will be {@code NaN}. * * @implNote The {@code double} format can represent all * consecutive integers in the range -253 to * 253. If the pipeline has more than 253 * values, the divisor in the average computation will saturate at * 253, leading to additional numerical errors. * * @param the type of the input elements * @param mapper a function extracting the property to be summed * @return a {@code Collector} that produces the sum of a derived property */ public static Collector averagingDouble(ToDoubleFunction mapper) { /* * In the arrays allocated for the collect operation, index 0 * holds the high-order bits of the running sum, index 1 holds * the low-order bits of the sum computed via compensated * summation, and index 2 holds the number of values seen. */ return new CollectorImpl<>( () -> new double[4], (a, t) -> { sumWithCompensation(a, mapper.applyAsDouble(t)); a[2]++; a[3]+= mapper.applyAsDouble(t);}, (a, b) -> { sumWithCompensation(a, b[0]); sumWithCompensation(a, b[1]); a[2] += b[2]; a[3] += b[3]; return a; }, a -> (a[2] == 0) ? 0.0d : (computeFinalSum(a) / a[2]), CH_NOID); } /** * Returns a {@code Collector} which performs a reduction of its * input elements under a specified {@code BinaryOperator} using the * provided identity. * * @apiNote * The {@code reducing()} collectors are most useful when used in a * multi-level reduction, downstream of {@code groupingBy} or * {@code partitioningBy}. To perform a simple reduction on a stream, * use {@link Stream#reduce(Object, BinaryOperator)}} instead. * * @param element type for the input and output of the reduction * @param identity the identity value for the reduction (also, the value * that is returned when there are no input elements) * @param op a {@code BinaryOperator} used to reduce the input elements * @return a {@code Collector} which implements the reduction operation * * @see #reducing(BinaryOperator) * @see #reducing(Object, Function, BinaryOperator) */ public static Collector reducing(T identity, BinaryOperator op) { return new CollectorImpl<>( boxSupplier(identity), (a, t) -> { a[0] = op.apply(a[0], t); }, (a, b) -> { a[0] = op.apply(a[0], b[0]); return a; }, a -> a[0], CH_NOID); } @SuppressWarnings("unchecked") private static Supplier boxSupplier(T identity) { return () -> (T[]) new Object[] { identity }; } /** * Returns a {@code Collector} which performs a reduction of its * input elements under a specified {@code BinaryOperator}. The result * is described as an {@code Optional}. * * @apiNote * The {@code reducing()} collectors are most useful when used in a * multi-level reduction, downstream of {@code groupingBy} or * {@code partitioningBy}. To perform a simple reduction on a stream, * use {@link Stream#reduce(BinaryOperator)} instead. * *

For example, given a stream of {@code Person}, to calculate tallest * person in each city: *

{@code
     *     Comparator byHeight = Comparator.comparing(Person::getHeight);
     *     Map tallestByCity
     *         = people.stream().collect(groupingBy(Person::getCity, reducing(BinaryOperator.maxBy(byHeight))));
     * }
* * @param element type for the input and output of the reduction * @param op a {@code BinaryOperator} used to reduce the input elements * @return a {@code Collector} which implements the reduction operation * * @see #reducing(Object, BinaryOperator) * @see #reducing(Object, Function, BinaryOperator) */ public static Collector> reducing(BinaryOperator op) { class OptionalBox implements Consumer { T value = null; boolean present = false; @Override public void accept(T t) { if (present) { value = op.apply(value, t); } else { value = t; present = true; } } } return new CollectorImpl>( OptionalBox::new, OptionalBox::accept, (a, b) -> { if (b.present) a.accept(b.value); return a; }, a -> Optional.ofNullable(a.value), CH_NOID); } /** * Returns a {@code Collector} which performs a reduction of its * input elements under a specified mapping function and * {@code BinaryOperator}. This is a generalization of * {@link #reducing(Object, BinaryOperator)} which allows a transformation * of the elements before reduction. * * @apiNote * The {@code reducing()} collectors are most useful when used in a * multi-level reduction, downstream of {@code groupingBy} or * {@code partitioningBy}. To perform a simple map-reduce on a stream, * use {@link Stream#map(Function)} and {@link Stream#reduce(Object, BinaryOperator)} * instead. * *

For example, given a stream of {@code Person}, to calculate the longest * last name of residents in each city: *

{@code
     *     Comparator byLength = Comparator.comparing(String::length);
     *     Map longestLastNameByCity
     *         = people.stream().collect(groupingBy(Person::getCity,
     *                                              reducing(Person::getLastName, BinaryOperator.maxBy(byLength))));
     * }
* * @param the type of the input elements * @param the type of the mapped values * @param identity the identity value for the reduction (also, the value * that is returned when there are no input elements) * @param mapper a mapping function to apply to each input value * @param op a {@code BinaryOperator} used to reduce the mapped values * @return a {@code Collector} implementing the map-reduce operation * * @see #reducing(Object, BinaryOperator) * @see #reducing(BinaryOperator) */ public static Collector reducing(U identity, Function mapper, BinaryOperator op) { return new CollectorImpl<>( boxSupplier(identity), (a, t) -> { a[0] = op.apply(a[0], mapper.apply(t)); }, (a, b) -> { a[0] = op.apply(a[0], b[0]); return a; }, a -> a[0], CH_NOID); } /** * Returns a {@code Collector} implementing a "group by" operation on * input elements of type {@code T}, grouping elements according to a * classification function, and returning the results in a {@code Map}. * *

The classification function maps elements to some key type {@code K}. * The collector produces a {@code Map>} whose keys are the * values resulting from applying the classification function to the input * elements, and whose corresponding values are {@code List}s containing the * input elements which map to the associated key under the classification * function. * *

There are no guarantees on the type, mutability, serializability, or * thread-safety of the {@code Map} or {@code List} objects returned. * @implSpec * This produces a result similar to: *

{@code
     *     groupingBy(classifier, toList());
     * }
* * @implNote * The returned {@code Collector} is not concurrent. For parallel stream * pipelines, the {@code combiner} function operates by merging the keys * from one map into another, which can be an expensive operation. If * preservation of the order in which elements appear in the resulting {@code Map} * collector is not required, using {@link #groupingByConcurrent(Function)} * may offer better parallel performance. * * @param the type of the input elements * @param the type of the keys * @param classifier the classifier function mapping input elements to keys * @return a {@code Collector} implementing the group-by operation * * @see #groupingBy(Function, Collector) * @see #groupingBy(Function, Supplier, Collector) * @see #groupingByConcurrent(Function) */ public static Collector>> groupingBy(Function classifier) { return groupingBy(classifier, toList()); } /** * Returns a {@code Collector} implementing a cascaded "group by" operation * on input elements of type {@code T}, grouping elements according to a * classification function, and then performing a reduction operation on * the values associated with a given key using the specified downstream * {@code Collector}. * *

The classification function maps elements to some key type {@code K}. * The downstream collector operates on elements of type {@code T} and * produces a result of type {@code D}. The resulting collector produces a * {@code Map}. * *

There are no guarantees on the type, mutability, * serializability, or thread-safety of the {@code Map} returned. * *

For example, to compute the set of last names of people in each city: *

{@code
     *     Map> namesByCity
     *         = people.stream().collect(groupingBy(Person::getCity,
     *                                              mapping(Person::getLastName, toSet())));
     * }
* * @implNote * The returned {@code Collector} is not concurrent. For parallel stream * pipelines, the {@code combiner} function operates by merging the keys * from one map into another, which can be an expensive operation. If * preservation of the order in which elements are presented to the downstream * collector is not required, using {@link #groupingByConcurrent(Function, Collector)} * may offer better parallel performance. * * @param the type of the input elements * @param the type of the keys * @param
the intermediate accumulation type of the downstream collector * @param the result type of the downstream reduction * @param classifier a classifier function mapping input elements to keys * @param downstream a {@code Collector} implementing the downstream reduction * @return a {@code Collector} implementing the cascaded group-by operation * @see #groupingBy(Function) * * @see #groupingBy(Function, Supplier, Collector) * @see #groupingByConcurrent(Function, Collector) */ public static Collector> groupingBy(Function classifier, Collector downstream) { return groupingBy(classifier, HashMap::new, downstream); } /** * Returns a {@code Collector} implementing a cascaded "group by" operation * on input elements of type {@code T}, grouping elements according to a * classification function, and then performing a reduction operation on * the values associated with a given key using the specified downstream * {@code Collector}. The {@code Map} produced by the Collector is created * with the supplied factory function. * *

The classification function maps elements to some key type {@code K}. * The downstream collector operates on elements of type {@code T} and * produces a result of type {@code D}. The resulting collector produces a * {@code Map}. * *

For example, to compute the set of last names of people in each city, * where the city names are sorted: *

{@code
     *     Map> namesByCity
     *         = people.stream().collect(groupingBy(Person::getCity, TreeMap::new,
     *                                              mapping(Person::getLastName, toSet())));
     * }
* * @implNote * The returned {@code Collector} is not concurrent. For parallel stream * pipelines, the {@code combiner} function operates by merging the keys * from one map into another, which can be an expensive operation. If * preservation of the order in which elements are presented to the downstream * collector is not required, using {@link #groupingByConcurrent(Function, Supplier, Collector)} * may offer better parallel performance. * * @param the type of the input elements * @param the type of the keys * @param
the intermediate accumulation type of the downstream collector * @param the result type of the downstream reduction * @param the type of the resulting {@code Map} * @param classifier a classifier function mapping input elements to keys * @param downstream a {@code Collector} implementing the downstream reduction * @param mapFactory a function which, when called, produces a new empty * {@code Map} of the desired type * @return a {@code Collector} implementing the cascaded group-by operation * * @see #groupingBy(Function, Collector) * @see #groupingBy(Function) * @see #groupingByConcurrent(Function, Supplier, Collector) */ public static > Collector groupingBy(Function classifier, Supplier mapFactory, Collector downstream) { Supplier downstreamSupplier = downstream.supplier(); BiConsumer downstreamAccumulator = downstream.accumulator(); BiConsumer, T> accumulator = (m, t) -> { K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key"); A container = m.computeIfAbsent(key, k -> downstreamSupplier.get()); downstreamAccumulator.accept(container, t); }; BinaryOperator> merger = Collectors.>mapMerger(downstream.combiner()); @SuppressWarnings("unchecked") Supplier> mangledFactory = (Supplier>) mapFactory; if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) { return new CollectorImpl<>(mangledFactory, accumulator, merger, CH_ID); } else { @SuppressWarnings("unchecked") Function downstreamFinisher = (Function) downstream.finisher(); Function, M> finisher = intermediate -> { intermediate.replaceAll((k, v) -> downstreamFinisher.apply(v)); @SuppressWarnings("unchecked") M castResult = (M) intermediate; return castResult; }; return new CollectorImpl<>(mangledFactory, accumulator, merger, finisher, CH_NOID); } } /** * Returns a concurrent {@code Collector} implementing a "group by" * operation on input elements of type {@code T}, grouping elements * according to a classification function. * *

This is a {@link Collector.Characteristics#CONCURRENT concurrent} and * {@link Collector.Characteristics#UNORDERED unordered} Collector. * *

The classification function maps elements to some key type {@code K}. * The collector produces a {@code ConcurrentMap>} whose keys are the * values resulting from applying the classification function to the input * elements, and whose corresponding values are {@code List}s containing the * input elements which map to the associated key under the classification * function. * *

There are no guarantees on the type, mutability, or serializability * of the {@code Map} or {@code List} objects returned, or of the * thread-safety of the {@code List} objects returned. * @implSpec * This produces a result similar to: *

{@code
     *     groupingByConcurrent(classifier, toList());
     * }
* * @param the type of the input elements * @param the type of the keys * @param classifier a classifier function mapping input elements to keys * @return a concurrent, unordered {@code Collector} implementing the group-by operation * * @see #groupingBy(Function) * @see #groupingByConcurrent(Function, Collector) * @see #groupingByConcurrent(Function, Supplier, Collector) */ public static Collector>> groupingByConcurrent(Function classifier) { return groupingByConcurrent(classifier, ConcurrentHashMap::new, toList()); } /** * Returns a concurrent {@code Collector} implementing a cascaded "group by" * operation on input elements of type {@code T}, grouping elements * according to a classification function, and then performing a reduction * operation on the values associated with a given key using the specified * downstream {@code Collector}. * *

This is a {@link Collector.Characteristics#CONCURRENT concurrent} and * {@link Collector.Characteristics#UNORDERED unordered} Collector. * *

The classification function maps elements to some key type {@code K}. * The downstream collector operates on elements of type {@code T} and * produces a result of type {@code D}. The resulting collector produces a * {@code Map}. * *

For example, to compute the set of last names of people in each city, * where the city names are sorted: *

{@code
     *     ConcurrentMap> namesByCity
     *         = people.stream().collect(groupingByConcurrent(Person::getCity,
     *                                                        mapping(Person::getLastName, toSet())));
     * }
* * @param the type of the input elements * @param the type of the keys * @param
the intermediate accumulation type of the downstream collector * @param the result type of the downstream reduction * @param classifier a classifier function mapping input elements to keys * @param downstream a {@code Collector} implementing the downstream reduction * @return a concurrent, unordered {@code Collector} implementing the cascaded group-by operation * * @see #groupingBy(Function, Collector) * @see #groupingByConcurrent(Function) * @see #groupingByConcurrent(Function, Supplier, Collector) */ public static Collector> groupingByConcurrent(Function classifier, Collector downstream) { return groupingByConcurrent(classifier, ConcurrentHashMap::new, downstream); } /** * Returns a concurrent {@code Collector} implementing a cascaded "group by" * operation on input elements of type {@code T}, grouping elements * according to a classification function, and then performing a reduction * operation on the values associated with a given key using the specified * downstream {@code Collector}. The {@code ConcurrentMap} produced by the * Collector is created with the supplied factory function. * *

This is a {@link Collector.Characteristics#CONCURRENT concurrent} and * {@link Collector.Characteristics#UNORDERED unordered} Collector. * *

The classification function maps elements to some key type {@code K}. * The downstream collector operates on elements of type {@code T} and * produces a result of type {@code D}. The resulting collector produces a * {@code Map}. * *

For example, to compute the set of last names of people in each city, * where the city names are sorted: *

{@code
     *     ConcurrentMap> namesByCity
     *         = people.stream().collect(groupingBy(Person::getCity, ConcurrentSkipListMap::new,
     *                                              mapping(Person::getLastName, toSet())));
     * }
* * * @param the type of the input elements * @param the type of the keys * @param
the intermediate accumulation type of the downstream collector * @param the result type of the downstream reduction * @param the type of the resulting {@code ConcurrentMap} * @param classifier a classifier function mapping input elements to keys * @param downstream a {@code Collector} implementing the downstream reduction * @param mapFactory a function which, when called, produces a new empty * {@code ConcurrentMap} of the desired type * @return a concurrent, unordered {@code Collector} implementing the cascaded group-by operation * * @see #groupingByConcurrent(Function) * @see #groupingByConcurrent(Function, Collector) * @see #groupingBy(Function, Supplier, Collector) */ public static > Collector groupingByConcurrent(Function classifier, Supplier mapFactory, Collector downstream) { Supplier downstreamSupplier = downstream.supplier(); BiConsumer downstreamAccumulator = downstream.accumulator(); BinaryOperator> merger = Collectors.>mapMerger(downstream.combiner()); @SuppressWarnings("unchecked") Supplier> mangledFactory = (Supplier>) mapFactory; BiConsumer, T> accumulator; if (downstream.characteristics().contains(Collector.Characteristics.CONCURRENT)) { accumulator = (m, t) -> { K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key"); A resultContainer = m.computeIfAbsent(key, k -> downstreamSupplier.get()); downstreamAccumulator.accept(resultContainer, t); }; } else { accumulator = (m, t) -> { K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key"); A resultContainer = m.computeIfAbsent(key, k -> downstreamSupplier.get()); synchronized (resultContainer) { downstreamAccumulator.accept(resultContainer, t); } }; } if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) { return new CollectorImpl<>(mangledFactory, accumulator, merger, CH_CONCURRENT_ID); } else { @SuppressWarnings("unchecked") Function downstreamFinisher = (Function) downstream.finisher(); Function, M> finisher = intermediate -> { intermediate.replaceAll((k, v) -> downstreamFinisher.apply(v)); @SuppressWarnings("unchecked") M castResult = (M) intermediate; return castResult; }; return new CollectorImpl<>(mangledFactory, accumulator, merger, finisher, CH_CONCURRENT_NOID); } } /** * Returns a {@code Collector} which partitions the input elements according * to a {@code Predicate}, and organizes them into a * {@code Map>}. * * There are no guarantees on the type, mutability, * serializability, or thread-safety of the {@code Map} returned. * * @param the type of the input elements * @param predicate a predicate used for classifying input elements * @return a {@code Collector} implementing the partitioning operation * * @see #partitioningBy(Predicate, Collector) */ public static Collector>> partitioningBy(Predicate predicate) { return partitioningBy(predicate, toList()); } /** * Returns a {@code Collector} which partitions the input elements according * to a {@code Predicate}, reduces the values in each partition according to * another {@code Collector}, and organizes them into a * {@code Map} whose values are the result of the downstream * reduction. * *

There are no guarantees on the type, mutability, * serializability, or thread-safety of the {@code Map} returned. * * @param the type of the input elements * @param the intermediate accumulation type of the downstream collector * @param the result type of the downstream reduction * @param predicate a predicate used for classifying input elements * @param downstream a {@code Collector} implementing the downstream * reduction * @return a {@code Collector} implementing the cascaded partitioning * operation * * @see #partitioningBy(Predicate) */ public static Collector> partitioningBy(Predicate predicate, Collector downstream) { BiConsumer downstreamAccumulator = downstream.accumulator(); BiConsumer, T> accumulator = (result, t) -> downstreamAccumulator.accept(predicate.test(t) ? result.forTrue : result.forFalse, t); BinaryOperator op = downstream.combiner(); BinaryOperator> merger = (left, right) -> new Partition<>(op.apply(left.forTrue, right.forTrue), op.apply(left.forFalse, right.forFalse)); Supplier> supplier = () -> new Partition<>(downstream.supplier().get(), downstream.supplier().get()); if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) { return new CollectorImpl<>(supplier, accumulator, merger, CH_ID); } else { Function, Map> finisher = par -> new Partition<>(downstream.finisher().apply(par.forTrue), downstream.finisher().apply(par.forFalse)); return new CollectorImpl<>(supplier, accumulator, merger, finisher, CH_NOID); } } /** * Returns a {@code Collector} that accumulates elements into a * {@code Map} whose keys and values are the result of applying the provided * mapping functions to the input elements. * *

If the mapped keys contains duplicates (according to * {@link Object#equals(Object)}), an {@code IllegalStateException} is * thrown when the collection operation is performed. If the mapped keys * may have duplicates, use {@link #toMap(Function, Function, BinaryOperator)} * instead. * * @apiNote * It is common for either the key or the value to be the input elements. * In this case, the utility method * {@link java.util.function.Function#identity()} may be helpful. * For example, the following produces a {@code Map} mapping * students to their grade point average: *

{@code
     *     Map studentToGPA
     *         students.stream().collect(toMap(Functions.identity(),
     *                                         student -> computeGPA(student)));
     * }
* And the following produces a {@code Map} mapping a unique identifier to * students: *
{@code
     *     Map studentIdToStudent
     *         students.stream().collect(toMap(Student::getId,
     *                                         Functions.identity());
     * }
* * @implNote * The returned {@code Collector} is not concurrent. For parallel stream * pipelines, the {@code combiner} function operates by merging the keys * from one map into another, which can be an expensive operation. If it is * not required that results are inserted into the {@code Map} in encounter * order, using {@link #toConcurrentMap(Function, Function)} * may offer better parallel performance. * * @param the type of the input elements * @param the output type of the key mapping function * @param the output type of the value mapping function * @param keyMapper a mapping function to produce keys * @param valueMapper a mapping function to produce values * @return a {@code Collector} which collects elements into a {@code Map} * whose keys and values are the result of applying mapping functions to * the input elements * * @see #toMap(Function, Function, BinaryOperator) * @see #toMap(Function, Function, BinaryOperator, Supplier) * @see #toConcurrentMap(Function, Function) */ public static Collector> toMap(Function keyMapper, Function valueMapper) { return toMap(keyMapper, valueMapper, throwingMerger(), HashMap::new); } /** * Returns a {@code Collector} that accumulates elements into a * {@code Map} whose keys and values are the result of applying the provided * mapping functions to the input elements. * *

If the mapped * keys contains duplicates (according to {@link Object#equals(Object)}), * the value mapping function is applied to each equal element, and the * results are merged using the provided merging function. * * @apiNote * There are multiple ways to deal with collisions between multiple elements * mapping to the same key. The other forms of {@code toMap} simply use * a merge function that throws unconditionally, but you can easily write * more flexible merge policies. For example, if you have a stream * of {@code Person}, and you want to produce a "phone book" mapping name to * address, but it is possible that two persons have the same name, you can * do as follows to gracefully deals with these collisions, and produce a * {@code Map} mapping names to a concatenated list of addresses: *

{@code
     *     Map phoneBook
     *         people.stream().collect(toMap(Person::getName,
     *                                       Person::getAddress,
     *                                       (s, a) -> s + ", " + a));
     * }
* * @implNote * The returned {@code Collector} is not concurrent. For parallel stream * pipelines, the {@code combiner} function operates by merging the keys * from one map into another, which can be an expensive operation. If it is * not required that results are merged into the {@code Map} in encounter * order, using {@link #toConcurrentMap(Function, Function, BinaryOperator)} * may offer better parallel performance. * * @param the type of the input elements * @param the output type of the key mapping function * @param the output type of the value mapping function * @param keyMapper a mapping function to produce keys * @param valueMapper a mapping function to produce values * @param mergeFunction a merge function, used to resolve collisions between * values associated with the same key, as supplied * to {@link Map#merge(Object, Object, BiFunction)} * @return a {@code Collector} which collects elements into a {@code Map} * whose keys are the result of applying a key mapping function to the input * elements, and whose values are the result of applying a value mapping * function to all input elements equal to the key and combining them * using the merge function * * @see #toMap(Function, Function) * @see #toMap(Function, Function, BinaryOperator, Supplier) * @see #toConcurrentMap(Function, Function, BinaryOperator) */ public static Collector> toMap(Function keyMapper, Function valueMapper, BinaryOperator mergeFunction) { return toMap(keyMapper, valueMapper, mergeFunction, HashMap::new); } /** * Returns a {@code Collector} that accumulates elements into a * {@code Map} whose keys and values are the result of applying the provided * mapping functions to the input elements. * *

If the mapped * keys contains duplicates (according to {@link Object#equals(Object)}), * the value mapping function is applied to each equal element, and the * results are merged using the provided merging function. The {@code Map} * is created by a provided supplier function. * * @implNote * The returned {@code Collector} is not concurrent. For parallel stream * pipelines, the {@code combiner} function operates by merging the keys * from one map into another, which can be an expensive operation. If it is * not required that results are merged into the {@code Map} in encounter * order, using {@link #toConcurrentMap(Function, Function, BinaryOperator, Supplier)} * may offer better parallel performance. * * @param the type of the input elements * @param the output type of the key mapping function * @param the output type of the value mapping function * @param the type of the resulting {@code Map} * @param keyMapper a mapping function to produce keys * @param valueMapper a mapping function to produce values * @param mergeFunction a merge function, used to resolve collisions between * values associated with the same key, as supplied * to {@link Map#merge(Object, Object, BiFunction)} * @param mapSupplier a function which returns a new, empty {@code Map} into * which the results will be inserted * @return a {@code Collector} which collects elements into a {@code Map} * whose keys are the result of applying a key mapping function to the input * elements, and whose values are the result of applying a value mapping * function to all input elements equal to the key and combining them * using the merge function * * @see #toMap(Function, Function) * @see #toMap(Function, Function, BinaryOperator) * @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier) */ public static > Collector toMap(Function keyMapper, Function valueMapper, BinaryOperator mergeFunction, Supplier mapSupplier) { BiConsumer accumulator = (map, element) -> map.merge(keyMapper.apply(element), valueMapper.apply(element), mergeFunction); return new CollectorImpl<>(mapSupplier, accumulator, mapMerger(mergeFunction), CH_ID); } /** * Returns a concurrent {@code Collector} that accumulates elements into a * {@code ConcurrentMap} whose keys and values are the result of applying * the provided mapping functions to the input elements. * *

If the mapped keys contains duplicates (according to * {@link Object#equals(Object)}), an {@code IllegalStateException} is * thrown when the collection operation is performed. If the mapped keys * may have duplicates, use * {@link #toConcurrentMap(Function, Function, BinaryOperator)} instead. * * @apiNote * It is common for either the key or the value to be the input elements. * In this case, the utility method * {@link java.util.function.Function#identity()} may be helpful. * For example, the following produces a {@code Map} mapping * students to their grade point average: *

{@code
     *     Map studentToGPA
     *         students.stream().collect(toMap(Functions.identity(),
     *                                         student -> computeGPA(student)));
     * }
* And the following produces a {@code Map} mapping a unique identifier to * students: *
{@code
     *     Map studentIdToStudent
     *         students.stream().collect(toConcurrentMap(Student::getId,
     *                                                   Functions.identity());
     * }
* *

This is a {@link Collector.Characteristics#CONCURRENT concurrent} and * {@link Collector.Characteristics#UNORDERED unordered} Collector. * * @param the type of the input elements * @param the output type of the key mapping function * @param the output type of the value mapping function * @param keyMapper the mapping function to produce keys * @param valueMapper the mapping function to produce values * @return a concurrent, unordered {@code Collector} which collects elements into a * {@code ConcurrentMap} whose keys are the result of applying a key mapping * function to the input elements, and whose values are the result of * applying a value mapping function to the input elements * * @see #toMap(Function, Function) * @see #toConcurrentMap(Function, Function, BinaryOperator) * @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier) */ public static Collector> toConcurrentMap(Function keyMapper, Function valueMapper) { return toConcurrentMap(keyMapper, valueMapper, throwingMerger(), ConcurrentHashMap::new); } /** * Returns a concurrent {@code Collector} that accumulates elements into a * {@code ConcurrentMap} whose keys and values are the result of applying * the provided mapping functions to the input elements. * *

If the mapped keys contains duplicates (according to {@link Object#equals(Object)}), * the value mapping function is applied to each equal element, and the * results are merged using the provided merging function. * * @apiNote * There are multiple ways to deal with collisions between multiple elements * mapping to the same key. The other forms of {@code toConcurrentMap} simply use * a merge function that throws unconditionally, but you can easily write * more flexible merge policies. For example, if you have a stream * of {@code Person}, and you want to produce a "phone book" mapping name to * address, but it is possible that two persons have the same name, you can * do as follows to gracefully deals with these collisions, and produce a * {@code Map} mapping names to a concatenated list of addresses: *

{@code
     *     Map phoneBook
     *         people.stream().collect(toConcurrentMap(Person::getName,
     *                                                 Person::getAddress,
     *                                                 (s, a) -> s + ", " + a));
     * }
* *

This is a {@link Collector.Characteristics#CONCURRENT concurrent} and * {@link Collector.Characteristics#UNORDERED unordered} Collector. * * @param the type of the input elements * @param the output type of the key mapping function * @param the output type of the value mapping function * @param keyMapper a mapping function to produce keys * @param valueMapper a mapping function to produce values * @param mergeFunction a merge function, used to resolve collisions between * values associated with the same key, as supplied * to {@link Map#merge(Object, Object, BiFunction)} * @return a concurrent, unordered {@code Collector} which collects elements into a * {@code ConcurrentMap} whose keys are the result of applying a key mapping * function to the input elements, and whose values are the result of * applying a value mapping function to all input elements equal to the key * and combining them using the merge function * * @see #toConcurrentMap(Function, Function) * @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier) * @see #toMap(Function, Function, BinaryOperator) */ public static Collector> toConcurrentMap(Function keyMapper, Function valueMapper, BinaryOperator mergeFunction) { return toConcurrentMap(keyMapper, valueMapper, mergeFunction, ConcurrentHashMap::new); } /** * Returns a concurrent {@code Collector} that accumulates elements into a * {@code ConcurrentMap} whose keys and values are the result of applying * the provided mapping functions to the input elements. * *

If the mapped keys contains duplicates (according to {@link Object#equals(Object)}), * the value mapping function is applied to each equal element, and the * results are merged using the provided merging function. The * {@code ConcurrentMap} is created by a provided supplier function. * *

This is a {@link Collector.Characteristics#CONCURRENT concurrent} and * {@link Collector.Characteristics#UNORDERED unordered} Collector. * * @param the type of the input elements * @param the output type of the key mapping function * @param the output type of the value mapping function * @param the type of the resulting {@code ConcurrentMap} * @param keyMapper a mapping function to produce keys * @param valueMapper a mapping function to produce values * @param mergeFunction a merge function, used to resolve collisions between * values associated with the same key, as supplied * to {@link Map#merge(Object, Object, BiFunction)} * @param mapSupplier a function which returns a new, empty {@code Map} into * which the results will be inserted * @return a concurrent, unordered {@code Collector} which collects elements into a * {@code ConcurrentMap} whose keys are the result of applying a key mapping * function to the input elements, and whose values are the result of * applying a value mapping function to all input elements equal to the key * and combining them using the merge function * * @see #toConcurrentMap(Function, Function) * @see #toConcurrentMap(Function, Function, BinaryOperator) * @see #toMap(Function, Function, BinaryOperator, Supplier) */ public static > Collector toConcurrentMap(Function keyMapper, Function valueMapper, BinaryOperator mergeFunction, Supplier mapSupplier) { BiConsumer accumulator = (map, element) -> map.merge(keyMapper.apply(element), valueMapper.apply(element), mergeFunction); return new CollectorImpl<>(mapSupplier, accumulator, mapMerger(mergeFunction), CH_CONCURRENT_ID); } /** * Returns a {@code Collector} which applies an {@code int}-producing * mapping function to each input element, and returns summary statistics * for the resulting values. * * @param the type of the input elements * @param mapper a mapping function to apply to each element * @return a {@code Collector} implementing the summary-statistics reduction * * @see #summarizingDouble(ToDoubleFunction) * @see #summarizingLong(ToLongFunction) */ public static Collector summarizingInt(ToIntFunction mapper) { return new CollectorImpl( IntSummaryStatistics::new, (r, t) -> r.accept(mapper.applyAsInt(t)), (l, r) -> { l.combine(r); return l; }, CH_ID); } /** * Returns a {@code Collector} which applies an {@code long}-producing * mapping function to each input element, and returns summary statistics * for the resulting values. * * @param the type of the input elements * @param mapper the mapping function to apply to each element * @return a {@code Collector} implementing the summary-statistics reduction * * @see #summarizingDouble(ToDoubleFunction) * @see #summarizingInt(ToIntFunction) */ public static Collector summarizingLong(ToLongFunction mapper) { return new CollectorImpl( LongSummaryStatistics::new, (r, t) -> r.accept(mapper.applyAsLong(t)), (l, r) -> { l.combine(r); return l; }, CH_ID); } /** * Returns a {@code Collector} which applies an {@code double}-producing * mapping function to each input element, and returns summary statistics * for the resulting values. * * @param the type of the input elements * @param mapper a mapping function to apply to each element * @return a {@code Collector} implementing the summary-statistics reduction * * @see #summarizingLong(ToLongFunction) * @see #summarizingInt(ToIntFunction) */ public static Collector summarizingDouble(ToDoubleFunction mapper) { return new CollectorImpl( DoubleSummaryStatistics::new, (r, t) -> r.accept(mapper.applyAsDouble(t)), (l, r) -> { l.combine(r); return l; }, CH_ID); } /** * Implementation class used by partitioningBy. */ private static final class Partition extends AbstractMap implements Map { final T forTrue; final T forFalse; Partition(T forTrue, T forFalse) { this.forTrue = forTrue; this.forFalse = forFalse; } @Override public Set> entrySet() { return new AbstractSet>() { @Override public Iterator> iterator() { Map.Entry falseEntry = new SimpleImmutableEntry<>(false, forFalse); Map.Entry trueEntry = new SimpleImmutableEntry<>(true, forTrue); return Arrays.asList(falseEntry, trueEntry).iterator(); } @Override public int size() { return 2; } }; } } }