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CHAPTER 1. LIMITS AND CONTINUITY

Section 1.1 Examples of Velocity, Growth
Rate, and Area (page 61)

1. Average velocity =
�x

�t
= (t + h)2 − t2

h
m/s.

2.
h Avg. vel. over [2, 2 + h]

1 5.0000
0.1 4.1000
0.01 4.0100

0.001 4.0010
0.0001 4.0001

3. Guess velocity is v = 4 m/s at t = 2 s.

4. Average volocity on [2, 2 + h] is

(2 + h)2 − 4

(2 + h) − 2
= 4 + 4h + h2 − 4

h
= 4h + h2

h
= 4 + h.

As h approaches 0 this average velocity approaches 4
m/s

5. x = 3t2 − 12t + 1 m at time t s.
Average velocity over interval [1, 2] is
(3 × 22 − 12 × 2 + 1) − (3 × 12 − 12 × 1 + 1)

2 − 1
= −3

m/s.
Average velocity over interval [2, 3] is
(3 × 32 − 12 × 3 + 1) − (3 × 22 − 12 × 2 + 1)

3 − 2
= 3 m/s.

Average velocity over interval [1, 3] is
(3 × 32 − 12 × 3 + 1) − (3 × 12 − 12 × 1 + 1)

3 − 1
= 0 m/s.

6. Average velocity over [t, t + h] is

3(t + h)2 − 12(t + h) + 1 − (3t2 − 12t + 1)

(t + h) − t

= 6th + 3h2 − 12h

h
= 6t + 3h − 12 m/s.

This average velocity approaches 6t − 12 m/s as h ap-
proaches 0.
At t = 1 the velocity is 6 × 1 − 12 = −6 m/s.
At t = 2 the velocity is 6 × 2 − 12 = 0 m/s.
At t = 3 the velocity is 6 × 3 − 12 = 6 m/s.

7. At t = 1 the velocity is v = −6 < 0 so the particle is
moving to the left.
At t = 2 the velocity is v = 0 so the particle is station-
ary.
At t = 3 the velocity is v = 6 > 0 so the particle is
moving to the right.

8. Average velocity over [t − k, t + k] is

3(t + k)2 − 12(t + k) + 1 − [3(t − k)2 − 12(t − k) + 1]

(t + k) − (t − k)

= 1

2k

(
3t2 + 6tk + 3k2 − 12t − 12k + 1 − 3t2 + 6tk − 3k2

+ 12t − 12k + 1
)

= 12tk − 24k

2k
= 6t − 12 m/s,

which is the velocity at time t from Exercise 7.

9.
y

1

2

t1 2 3 4 5

y = 2 + 1

π
sin(π t)

Fig. 1.1.9

At t = 1 the height is y = 2 ft and the weight is
moving downward.

10. Average velocity over [1, 1 + h] is

2 + 1

π
sin π(1 + h) −

(
2 + 1

π
sin π

)

h

= sin(π + πh)

πh
= sin π cos(πh) + cos π sin(πh)

πh

= − sin(πh)

πh
.

h Avg. vel. on [1, 1 + h]

1.0000 0
0.1000 -0.983631643
0.0100 -0.999835515
0.0010 -0.999998355

11. The velocity at t = 1 is about v = −1 ft/s. The “−”
indicates that the weight is moving downward.
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12. We sketched a tangent line to the graph on page 55 in
the text at t = 20. The line appeared to pass through
the points (10, 0) and (50, 1). On day 20 the biomass is
growing at about (1 − 0)/(50 − 10) = 0.025 mm2/d.

13. The curve is steepest, and therefore the biomass is grow-
ing most rapidly, at about day 45.

14. a)
profit

25
50
75

100
125
150
175

year
2000 2001 2002 2003 2004

Fig. 1.1.14

b) Average rate of increase in profits between 2002 and
2004 is

174 − 62

2004 − 2002
= 112

2
= 56 (thousand$/yr).

c) Drawing a tangent line to the graph in (a) at
t = 2002 and measuring its slope, we find that
the rate of increase of profits in 1992 is about 43
thousand$/year.

Section 1.2 Limits of Functions (page 68)

1. From inspecting the graph
y

x−1 1

1

y = f (x)

Fig. 1.2.1

we see that

lim
x→−1

f (x) = 1, lim
x→0

f (x) = 0, lim
x→1

f (x) = 1.

2. From inspecting the graph

y

x
1 2 3

1
y = g(x)

Fig. 1.2.2

we see that

lim
x→1

g(x) does not exist

(left limit is 1, right limit is 0)

lim
x→2

g(x) = 1, lim
x→3

g(x) = 0.

3. lim
x→1− g(x) = 1

4. lim
x→1+ g(x) = 0

5. lim
x→3+ g(x) = 0

6. lim
x→3− g(x) = 0

7. lim
x→4

(x2 − 4x + 1) = 42 − 4(4) + 1 = 1

8. lim
x→2

3(1 − x)(2 − x) = 3(−1)(2 − 2) = 0

9. lim
x→3

x + 3

x + 6
= 3 + 3

3 + 6
= 2

3

10. lim
t→−4

t2

4 − t
= (−4)2

4 + 4
= 2

11. lim
x→1

x2 − 1

x + 1
= 12 − 1

1 + 1
= 0

2
= 0

12. lim
x→−1

x2 − 1

x + 1
= lim

x→−1
(x − 1) = −2

13. lim
x→3

x2 − 6x + 9

x2 − 9
= lim

x→3

(x − 3)2

(x − 3)(x + 3)

= lim
x→3

x − 3

x + 3
= 0

6
= 0

14. lim
x→−2

x2 + 2x

x2 − 4
= lim

x→−2

x

x − 2
= −2

−4
= 1

2

15. limh→2
1

4 − h2
does not exist; denominator approaches 0

but numerator does not approach 0.

16. limh→0
3h + 4h2

h2 − h3
= lim

h→0

3 + 4h

h − h2
does not exist; denomi-

nator approaches 0 but numerator does not approach 0.
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17. lim
x→9

√
x − 3

x − 9
= lim

x→9

(
√

x − 3)(
√

x + 3)

(x − 9)(
√

x + 3)

= lim
x→9

x − 9

(x − 9)(
√

x + 3)
= lim

x→9

1√
x + 3

= 1

6

18. lim
h→0

√
4 + h − 2

h

= lim
h→0

4 + h − 4

h(
√

4 + h + 2)

= lim
h→0

1√
4 + h + 2

= 1

4

19. lim
x→π

(x − π)2

πx
= 02

π2
= 0

20. lim
x→−2

|x − 2| = | − 4| = 4

21. lim
x→0

|x − 2|
x − 2

= | − 2|
−2

= −1

22. lim
x→2

|x − 2|
x − 2

= lim
x→2

{
1, if x > 2
−1, if x < 2.

Hence, lim
x→2

|x − 2|
x − 2

does not exist.

23. lim
t→1

t2 − 1

t2 − 2t + 1

lim
t→1

(t − 1)(t + 1)

(t − 1)2 = lim
t→1

t + 1

t − 1
does not exist

(denominator → 0, numerator → 2.)

24. lim
x→2

√
4 − 4x + x2

x − 2

= lim
x→2

|x − 2|
x − 2

does not exist.

25. lim
t→0

t√
4 + t − √

4 − t
= lim

t→0

t (
√

4 + t + √
4 − t)

(4 + t) − (4 − t)

= lim
t→0

√
4 + t + √

4 − t

2
= 2

26. lim
x→1

x2 − 1√
x + 3 − 2

= lim
x→1

(x − 1)(x + 1)(
√

x + 3 + 2)

(x + 3) − 4

= lim
x→1

(x + 1)(
√

x + 3 + 2) = (2)(
√

4 + 2) = 8

27. lim
t→0

t2 + 3t

(t + 2)2 − (t − 2)2

= lim
t→0

t (t + 3)

t2 + 4t + 4 − (t2 − 4t + 4)

= lim
t→0

t + 3

8
= 3

8

28. lim
s→0

(s + 1)2 − (s − 1)2

s
= lim

s→0

4s

s
= 4

29. lim
y→1

y − 4
√

y + 3

y2 − 1

= lim
y→1

(
√

y − 1)(
√

y − 3)

(
√

y − 1)(
√

y + 1)(y + 1)
= −2

4
= −1

2

30. lim
x→−1

x3 + 1

x + 1

= lim
x→−1

(x + 1)(x2 − x + 1)

x + 1
= 3

31. lim
x→2

x4 − 16

x3 − 8

= lim
x→2

(x − 2)(x + 2)(x2 + 4)

(x − 2)(x2 + 2x + 4)

= (4)(8)

4 + 4 + 4
= 8

3

32. lim
x→8

x2/3 − 4

x1/3 − 2

= lim
x→8

(x1/3 − 2)(x1/3 + 2)

(x1/3 − 2)

= lim
x→8

(x1/3 + 2) = 4

33. lim
x→2

(
1

x − 2
− 4

x2 − 4

)

= lim
x→2

x + 2 − 4

(x − 2)(x + 2)
= lim

x→2

1

x + 2
= 1

4

34. lim
x→2

(
1

x − 2
− 1

x2 − 4

)

= lim
x→2

x + 2 − 1

(x − 2)(x + 2)

= lim
x→2

x + 1

(x − 2)(x + 2)
does not exist.

35. lim
x→0

√
2 + x2 − √

2 − x2

x2

= lim
x→0

(2 + x2) − (2 − x2)

x2(
√

2 + x2 + √
2 − x2)

= lim
x→0

2x2

x2
(√

2 + x2) + √
2 − x2

)

= 2√
2 + √

2
= 1√

2

36. lim
x→0

|3x − 1| − |3x + 1|
x

= lim
x→0

(3x − 1)2 − (3x + 1)2

x (|3x − 1| + |3x + 1|)
= lim

x→0

−12x

x (|3x − 1| + |3x + 1|) = −12

1 + 1
= −6

37. f (x) = x2

lim
h→0

f (x + h) − f (x)

h
= lim

h→0

(x + h)2 − x2

h

= lim
h→0

2hx + h2

h
= lim

h→0
2x + h = 2x
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38. f (x) = x3

lim
h→0

f (x + h) − f (x)

h
= lim

h→0

(x + h)3 − x3

h

= lim
h→0

3x2h + 3xh2 + h3

h
= lim

h→0
3x2 + 3xh + h2 = 3x2

39. f (x) = 1/x

lim
h→0

f (x + h) − f (x)

h
= lim

h→0

1

x + h
− 1

x
h

= lim
h→0

x − (x + h)

h(x + h)x

= lim
h→0

− 1

(x + h)x
= − 1

x2

40. f (x) = 1/x2

lim
h→0

f (x + h) − f (x)

h
= lim

h→0

1

(x + h)2
− 1

x2

h

= lim
h→0

x2 − (x2 + 2xh + h2)

h(x + h)2x2

= lim
h→0

− 2x + h

(x + h)2x2
= −2x

x4
= − 2

x3

41. f (x) = √
x

lim
h→0

f (x + h) − f (x)

h
= lim

h→0

√
x + h − √

x

h

= lim
h→0

x + h − x

h(
√

x + h + √
x)

= lim
h→0

1√
x + h + √

x
= 1

2
√

x

42. f (x) = 1/
√

x

lim
h→0

f (x + h) − f (x)

h
= lim

h→0

1√
x + h

− 1√
x

h

= lim
h→0

√
x − √

x + h

h
√

x
√

x + h

= lim
h→0

x − (x + h)

h
√

x
√

x + h(
√

x + √
x + h)

= lim
h→0

−1√
x
√

x + h(
√

x + √
x + h)

= −1

2x3/2

43. lim
x→π/2

sin x = sin π/2 = 1

44. lim
x→π/4

cos x = cos π/4 = 1/
√

2

45. lim
x→π/3

cos x = cos π/3 = 1/2

46. lim
x→2π/3

sin x = sin 2π/3 = √
3/2

47.
x (sin x)/x

±1.0 0.84147098
±0.1 0.99833417
±0.01 0.99998333
±0.001 0.99999983
0.0001 1.00000000

It appears that lim
x→0

sin x

x
= 1.

48.
x (1 − cos x)/x2

±1.0 0.45969769
±0.1 0.49958347
±0.01 0.49999583
±0.001 0.49999996
0.0001 0.50000000

It appears that lim
x→0

1 − cos x

x2 = 1

2
.

49. lim
x→2−

√
2 − x = 0

50. lim
x→2+

√
2 − x does not exist.

51. lim
x→−2−

√
2 − x = 2

52. lim
x→−2+

√
2 − x = 2

53. lim
x→0

√
x3 − x does not exist.

(x3 − x < 0 if 0 < x < 1)

54. lim
x→0−

√
x3 − x = 0

55. lim
x→0+

√
x3 − x does not exist. (See # 9.)

56. lim
x→0+

√
x2 − x4 = 0

57. lim
x→a−

|x − a|
x2 − a2

= lim
x→a−

|x − a|
(x − a)(x + a)

= − 1

2a
(a �= 0)

58. lim
x→a+

|x − a|
x2 − a2 = lim

x→a+
x − a

x2 − a2 = 1

2a

59. lim
x→2−

x2 − 4

|x + 2| = 0

4
= 0

60. lim
x→2+

x2 − 4

|x + 2| = 0

4
= 0
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61. f (x) =
{ x − 1 if x ≤ −1

x2 + 1 if −1 < x ≤ 0
(x + π)2 if x > 0

lim
x→−1− f (x) = lim

x→−1− x − 1 = −1 − 1 = −2

62. lim
x→−1+ f (x) = lim

x→−1+ x2 + 1 = 1 + 1 = 2

63. lim
x→0+ f (x) = lim

x→0+(x + π)2 = π2

64. lim
x→0− f (x) = lim

x→0− x2 + 1 = 1

65. If lim
x→4

f (x) = 2 and lim
x→4

g(x) = −3, then

a) lim
x→4

(
g(x) + 3

)
= −3 + 3 = 0

b) lim
x→4

x f (x) = 4 × 2 = 8

c) lim
x→4

(
g(x)

)2 = (−3)2 = 9

d) lim
x→4

g(x)

f (x) − 1
= −3

2 − 1
= −3

66. If lim x → a f (x) = 4 and lim
x→a

g(x) = −2, then

a) lim
x→a

(
f (x) + g(x)

)
= 4 + (−2) = 2

b) lim
x→a

f (x) · g(x) = 4 × (−2) = −8

c) lim
x→a

4g(x) = 4(−2) = −8

d) lim
x→a

f (x)

g(x)
= 4

−2
= −2

67. If lim
x→2

f (x) − 5

x − 2
= 3, then

lim
x→2

(
f (x) − 5

)
= lim

x→2

f (x) − 5

x − 2
(x − 2) = 3(2 − 2) = 0.

Thus limx→2 f (x) = 5.

68. If lim
x→0

f (x)

x2 = −2 then

limx→0 f (x) = limx→0 x2 f (x)

x2 = 0 × (−2) = 0,

and similarly,

limx→0
f (x)

x
= lim

x→0
x

f (x)

x2
= 0 × (−2) = 0.

69.

y

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

x-3 -2 -1 1 2

y = sin x

x

Fig. 1.2.69

lim
x→0

sin x

x
= 1

70.
y

-0.4

-0.2

0.2

0.4

0.6

0.8

x-0.08 -0.04 0.04 0.08

y = sin(2πx)

sin(3πx)

Fig. 1.2.70

limx→0 sin(2πx)/ sin(3πx) = 2/3

71.
y

-0.1

0.1

0.2
0.3
0.4
0.5

0.6
0.7
0.8

x0.2 0.4 0.6 0.8 1.0

y = sin
√

1 − x√
1 − x2

Fig. 1.2.71

lim
x→1−

sin
√

1 − x√
1 − x2

≈ 0.7071

72.
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y

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

x0.2 0.4 0.6 0.8

y = x − √
x√

sin x

Fig. 1.2.72

lim
x→0+

x − √
x√

sin x
= −1

73.
y

-0.2

-0.1

0.1

x-0.2 -0.1 0.1

y = −x

y = x sin(1/x)

y = x

Fig. 1.2.73

f (x) = x sin(1/x) oscillates infinitely often as x ap-
proaches 0, but the amplitude of the oscillations decreases
and, in fact, limx→0 f (x) = 0. This is predictable be-
cause |x sin(1/x)| ≤ |x |. (See Exercise 95 below.)

74. Since
√

5 − 2x2 ≤ f (x) ≤ √
5 − x2 for −1 ≤ x ≤ 1, and

limx→0
√

5 − 2x2 = limx→0
√

5 − x2 = √
5, we have

limx→0 f (x) = √
5 by the squeeze theorem.

75. Since 2 − x2 ≤ g(x) ≤ 2 cos x for all x , and since
limx→0(2 − x2) = limx→0 2 cos x = 2, we have
limx→0 g(x) = 2 by the squeeze theorem.

76. a)

y

1

2

3

x-2 -1 1

y = x2

y = x4

(−1, 1) (1, 1)

Fig. 1.2.76

b) Since the graph of f lies between those of x2 and
x4, and since these latter graphs come together at
(±1, 1) and at (0, 0), we have limx→±1 f (x) = 1
and limx→0 f (x) = 0 by the squeeze theorem.

77. x1/3 < x3 on (−1, 0) and (1, ∞). x1/3 > x3 on
(−∞,−1) and (0, 1). The graphs of x1/3 and x3 inter-
sect at (−1,−1), (0, 0), and (1, 1). If the graph of h(x)

lies between those of x1/3 and x3, then we can determine
limx→a h(x) for a = −1, a = 0, and a = 1 by the
squeeze theorem. In fact

lim
x→−1

h(x) = −1, lim
x→0

h(x) = 0, lim
x→1

h(x) = 1.

78. f (x) = s sin
1

x
is defined for all x �= 0; its domain is

(−∞, 0) ∪ (0, ∞). Since | sin t | ≤ 1 for all t , we have
| f (x)| ≤ |x | and −|x | ≤ f (x) ≤ |x | for all x �= 0.
Since limx→0 = (−|x |) = 0 = limx→0 |x |, we have
limx→0 f (x) = 0 by the squeeze theorem.

79. | f (x)| ≤ g(x) ⇒ −g(x) ≤ f (x) ≤ g(x)

Since lim
x→a

g(x) = 0, therefore 0 ≤ lim
x→a

f (x) ≤ 0.

Hence, lim
x→a

f (x) = 0.

If lim
x→a

g(x) = 3, then either −3 ≤ lim
x→a

f (x) ≤ 3 or

limx→a f (x) does not exist.

Section 1.3 Limits at Infinity and Infinite
Limits (page 75)

1. lim
x→∞

x

2x − 3
= lim

x→∞
1

2 − (3/x)
= 1

2

2. lim
x→∞

x

x2 − 4
= lim

x→∞
1/x

1 − (4/x2)
= 0

1
= 0

3. lim
x→∞

3x3 − 5x2 + 7

8 + 2x − 5x3

= lim
x→∞

3 − 5

x
+ 7

x3

8

x3 + 2

x2 − 5
= −3

5
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4. lim
x→−∞

x2 − 2

x − x2

= lim
x→−∞

1 − 2

x2

1

x
− 1

= 1

−1
= −1

5. lim
x→−∞

x2 + 3

x3 + 2
= lim

x→−∞

1

x
+ 3

x3

1 + 2

x3

= 0

6. lim
x→∞

x2 + sin x

x2 + cos x
= lim

x→∞
1 + sin x

x2

1 + cos x

x2

= 1

1
= 1

We have used the fact that limx→∞
sin x

x2 = 0 (and simi-

larly for cosine) because the numerator is bounded while
the denominator grows large.

7. lim
x→∞

3x + 2
√

x

1 − x

= lim
x→∞

3 + 2√
x

1

x
− 1

= −3

8. lim
x→∞

2x − 1√
3x2 + x + 1

= lim
x→∞

x

(
2 − 1

x

)

|x |
√

3 + 1

x
+ 1

x2

(but |x | = x as x → ∞)

= lim
x→∞

2 − 1

x√
3 + 1

x
+ 1

x2

= 2√
3

9. lim
x→−∞

2x − 1√
3x2 + x + 1

= lim
x→−∞

2 − 1

x

−
√

3 + 1

x
+ 1

x2

= − 2√
3

,

because x → −∞ implies that x < 0 and so
√

x2 = −x .

10. lim
x→−∞

2x − 5

|3x + 2| = lim
x→−∞

2x − 5

−(3x + 2)
= −2

3

11. lim
x→3

1

3 − x
does not exist.

12. lim
x→3

1

(3 − x)2 = ∞

13. lim
x→3−

1

3 − x
= ∞

14. lim
x→3+

1

3 − x
= −∞

15. lim
x→−5/2

2x + 5

5x + 2
= 0

−25

2
+ 2

= 0

16. lim
x→−2/5

2x + 5

5x + 2
does not exist.

17. lim
x→−(2/5)−

2x + 5

5x + 2
= −∞

18. lim
x→−2/5+

2x + 5

5x + 2
= ∞

19. lim
x→2+

x

(2 − x)3 = −∞

20. lim
x→1−

x√
1 − x2

= ∞

21. lim
x→1+

1

|x − 1| = ∞

22. lim
x→1−

1

|x − 1| = ∞

23. lim
x→2

x − 3

x2 − 4x + 4
= lim

x→2

x − 3

(x − 2)2 = −∞

24. lim
x→1+

√
x2 − x

x − x2
= lim

x→1+
−1√

x2 − x
= −∞

25. lim
x→∞

x + x3 + x5

1 + x2 + x3

= lim
x→∞

1

x2
+ 1 + x2

1

x3
+ 1

x
+ 1

= ∞

26. lim
x→∞

x3 + 3

x2 + 2
= lim

x→∞
x + 3

x2

1 + 2

x2

= ∞

27. lim
x→∞

x
√

x + 1
(
1 − √

2x + 3
)

7 − 6x + 4x2

= lim
x→∞

x2

(√
1 + 1

x

)(
1√
x

−
√

2 + 3

x

)

x2

(
7

x2 − 6

x
+ 4

)

= 1(−√
2)

4
= −1

4

√
2

28. lim
x→∞

(
x2

x + 1
− x2

x − 1

)
= lim

x→∞
−2x2

x2 − 1
= −2
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29. lim
x→−∞

(√
x2 + 2x −

√
x2 − 2x

)

= lim
x→−∞

(x2 + 2x) − (x2 − 2x)√
x2 + 2x + √

x2 − 2x

= lim
x→−∞

4x

(−x)

(√
1 + 2

x
+

√
1 − 2

x

)

= − 4

1 + 1
= −2

30. lim
x→∞

(√
x2 + 2x −

√
x2 − 2x

)

= lim
x→∞

x2 + 2x − x2 + 2x√
x2 + 2x + √

x2 − 2x

= lim
x→∞

4x

x

√
1 + 2

x
+ x

√
1 − 2

x

= lim
x→∞

4√
1 + 2

x
+

√
1 − 2

x

= 4

2
= 2

31. lim
x→∞

1√
x2 − 2x − x

= lim
x→∞

√
x2 − 2x + x

(
√

x2 − 2x + x)(
√

x2 − 2x − x)

= lim
x→∞

√
x2 − 2x + x

x2 − 2x − x2

= lim
x→∞

x(
√

1 − (2/x) + 1)

−2x
= 2

−2
= −1

32. lim
x→−∞

1√
x2 + 2x − x

= lim
x→−∞

1

|x |(√1 + (2/x) + 1
= 0

33. By Exercise 35, y = −1 is a horizontal asymptote (at the

right) of y = 1√
x2 − 2x − x

. Since

lim
x→−∞

1√
x2 − 2x − x

= lim
x→−∞

1

|x |(√1 − (2/x) + 1
= 0,

y = 0 is also a horizontal asymptote (at the left).
Now

√
x2 − 2x − x = 0 if and only if x2 − 2x = x2, that

is, if and only if x = 0. The given function is undefined
at x = 0, and where x2 − 2x < 0, that is, on the interval
[0, 2]. Its only vertical asymptote is at x = 0, where

limx→0−
1√

x2 − 2x − x
= ∞.

34. Since lim
x→∞

2x − 5

|3x + 2| = 2

3
and lim

x→−∞
2x − 5

|3x + 2| = −2

3
,

y = ±(2/3) are horizontal asymptotes of
y = (2x − 5)/|3x + 2|. The only vertical asymptote
is x = −2/3, which makes the denominator zero.

35. lim
x→0+ f (x) = 1

36. lim
x→1

f (x) = ∞
37.

y

-1

1

2

3

x1 2 3 4 5 6

y = f (x)

Fig. 1.3.37

limx→2+ f (x) = 1

38. lim
x→2− f (x) = 2

39. lim
x→3− f (x) = −∞

40. lim
x→3+ f (x) = ∞

41. lim
x→4+ f (x) = 2

42. lim
x→4− f (x) = 0

43. lim
x→5−

f (x) = −1

44. lim
x→5+

f (x) = 0

45. lim
x→∞ f (x) = 1

46. horizontal: y = 1; vertical: x = 1, x = 3.

47. lim
x→3+	x
 = 3

48. lim
x→3−	x
 = 2

49. lim
x→3

	x
 does not exist

50. lim
x→2.5

	x
 = 2

51. lim
x→0+	2 − x
 = lim

x→2−	x
 = 1

52. lim
x→−3−	x
 = −4

53. lim
t→t0

C(t) = C(t0) except at integers t0

lim
t→t0−

C(t) = C(t0) everywhere

lim
t→t0+

C(t) = C(t0) if t0 �= an integer

lim
t→t0+

C(t) = C(t0) + 1.5 if t0 is an integer
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y

x

6.00

4.50

3.00

1.50

1 2 3 4

y = C(t)

Fig. 1.3.53

54. lim
x→0+ f (x) = L

(a) If f is even, then f (−x) = f (x).
Hence, lim

x→0− f (x) = L .

(b) If f is odd, then f (−x) = − f (x).
Therefore, lim

x→0− f (x) = −L .

55. lim
x→0+ f (x) = A, lim

x→0− f (x) = B

a) lim
x→0+ f (x3 − x) = B (since x3 − x < 0 if 0 < x < 1)

b) lim
x→0− f (x3 − x) = A (because x3 − x > 0 if

−1 < x < 0)

c) lim
x→0− f (x2 − x4) = A

d) lim
x→0+ f (x2 − x4) = A (since x2 − x4 > 0 for

0 < |x | < 1)

Section 1.4 Continuity (page 85)

1. g is continuous at x = −2, discontinuous at
x = −1, 0, 1, and 2. It is left continuous at x = 0
and right continuous at x = 1.

y

1

2

x-2 -1 1 2

(1, 2)

(−1, 1)
y = g(x)

Fig. 1.4.1

2. g has removable discontinuities at x = −1 and x = 2.
Redefine g(−1) = 1 and g(2) = 0 to make g continuous
at those points.

3. g has no absolute maximum value on [−2, 2]. It takes
on every positive real value less than 2, but does not take
the value 2. It has absolute minimum value 0 on that
interval, assuming this value at the three points x = −2,
x = −1, and x = 1.

4. Function f is discontinuous at x = 1, 2, 3, 4, and 5. f
is left continuous at x = 4 and right continuous at x = 2
and x = 5.
y

-1

1

2

3

x1 2 3 4 5 6

y = f (x)

Fig. 1.4.4

5. f cannot be redefined at x = 1 to become continuous
there because limx→1 f (x) (= ∞) does not exist. (∞ is
not a real number.)

6. sgn x is not defined at x = 0, so cannot be either continu-
ous or discontinuous there. (Functions can be continuous
or discontinuous only at points in their domains!)

7. f (x) =
{

x if x < 0
x2 if x ≥ 0

is continuous everywhere on the

real line, even at x = 0 where its left and right limits are
both 0, which is f (0).

8. f (x) =
{

x if x < −1
x2 if x ≥ −1

is continuous everywhere on the

real line except at x = −1 where it is right continuous,
but not left continuous.

lim
x→−1− f (x) = lim

x→−1− x = −1 �= 1

= f (−1) = lim
x→−1+ x2 = lim

x→−1+ f (x).

9. f (x) =
{

1/x2 if x �= 0
0 if x = 0

is continuous everywhere ex-

cept at x = 0, where it is neither left nor right continuous
since it does not have a real limit there.

10. f (x) =
{

x2 if x ≤ 1
0.987 if x > 1

is continuous everywhere

except at x = 1, where it is left continuous but not right
continuous because 0.987 �= 1. Close, as they say, but no
cigar.
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11. The least integer function �x is continuous everywhere
on � except at the integers, where it is left continuous
but not right continuous.

12. C(t) is discontinuous only at the integers. It is continu-
ous on the left at the integers, but not on the right.

13. Since
x2 − 4

x − 2
= x + 2 for x �= 2, we can define the

function to be 2 + 2 = 4 at x = 2 to make it continuous
there. The continuous extension is x + 2.

14. Since
1 + t3

1 − t2
= (1 + t)(1 − t + t2)

(1 + t)(1 − t)
= 1 − t + t2

1 − t
for

t �= −1, we can define the function to be 3/2 at t = −1
to make it continuous there. The continuous extension is
1 − t + t2

1 − t
.

15. Since
t2 − 5t + 6

t2 − t − 6
= (t − 2)(t − 3)

(t + 2)(t − 3)
= t − 2

t + 2
for t �= 3,

we can define the function to be 1/5 at t = 3 to make it

continuous there. The continuous extension is
t − 2

t + 2
.

16. Since
x2 − 2

x4 − 4
= (x − √

2)(x + √
2)

(x − √
2)(x + √

2)(x2 + 2)
= x + √

2

(x + √
2)(x2 + 2)

for x �= √
2, we can define the function to be 1/4 at

x = √
2 to make it continuous there. The continuous

extension is
x + √

2

(x + √
2)(x2 + 2)

. (Note: cancelling the

x + √
2 factors provides a further continuous extension to

x = −√
2.

17. limx→2+ f (x) = k − 4 and limx→2− f (x) = 4 = f (2).
Thus f will be continuous at x = 2 if k − 4 = 4, that is,
if k = 8.

18. limx→3− g(x) = 3 − m and
limx→3+ g(x) = 1 − 3m = g(3). Thus g will be con-
tinuous at x = 3 if 3 − m = 1 − 3m, that is, if m = −1.

19. x2 has no maximum value on −1 < x < 1; it takes all
positive real values less than 1, but it does not take the
value 1. It does have a minimum value, namely 0 taken
on at x = 0.

20. The Max-Min Theorem says that a continuous function
defined on a closed, finite interval must have maximum
and minimum values. It does not say that other functions
cannot have such values. The Heaviside function is not
continuous on [−1, 1] (because it is discontinuous at
x = 0), but it still has maximum and minimum values.
Do not confuse a theorem with its converse.

21. Let the numbers be x and y, where x ≥ 0, y ≥ 0, and
x + y = 8. If P is the product of the numbers, then

P = xy = x(8 − x) = 8x − x2 = 16 − (x − 4)2.

Therefore P ≤ 16, so P is bounded. Clearly P = 16 if
x = y = 4, so the largest value of P is 16.

22. Let the numbers be x and y, where x ≥ 0, y ≥ 0, and
x + y = 8. If S is the sum of their squares then

S = x2 + y2 = x2 + (8 − x)2

= 2x2 − 16x + 64 = 2(x − 4)2 + 32.

Since 0 ≤ x ≤ 8, the maximum value of S occurs at
x = 0 or x = 8, and is 64. The minimum value occurs at
x = 4 and is 32.

23. Since T = 100 − 30x + 3x2 = 3(x − 5)2 + 25, T will
be minimum when x = 5. Five programmers should be
assigned, and the project will be completed in 25 days.

24. If x desks are shipped, the shipping cost per desk is

C = 245x − 30x2 + x3

x
= x2 − 30x + 245

= (x − 15)2 + 20.

This cost is minimized if x = 15. The manufacturer
should send 15 desks in each shipment, and the shipping
cost will then be $20 per desk.

25. f (x) = x2 − 1

x
= (x − 1)(x + 1)

x
f = 0 at x = ±1. f is not defined at 0.
f (x) > 0 on (−1, 0) and (1, ∞).
f (x) < 0 on (−∞,−1) and (0, 1).

26. f (x) = x2 + 4x + 3 = (x + 1)(x + 3)

f (x) > 0 on (−∞,−3) and (−1,∞)

f (x) < 0 on (−3,−1).

27. f (x) = x2 − 1

x2 − 4
= (x − 1)(x + 1)

(x − 2)(x + 2)
f = 0 at x = ±1.
f is not defined at x = ±2.
f (x) > 0 on (−∞,−2), (−1, 1), and (2, ∞).
f (x) < 0 on (−2,−1) and (1, 2).

28. f (x) = x2 + x − 2

x3 = (x + 2)(x − 1)

x3

f (x) > 0 on (−2, 0) and (1, ∞)

f (x) < 0 on (−∞,−2) and (0, 1).

29. f (x) = x3 + x − 1, f (0) = −1, f (1) = 1.
Since f is continuous and changes sign between 0 and 1,
it must be zero at some point between 0 and 1 by IVT.

30. f (x) = x3 − 15x + 1 is continuous everywhere.
f (−4) = −3, f (−3) = 19, f (1) = −13, f (4) = 5.

Because of the sign changes f has a zero between −4
and −3, another zero between −3 and 1, and another
between 1 and 4.
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31. F(x) = (x − a)2(x − b)2 + x . Without loss of generality,
we can assume that a < b. Being a polynomial, F is
continuous on [a, b]. Also F(a) = a and F(b) = b.
Since a < 1

2 (a + b) < b, the Intermediate-Value Theorem
guarantees that there is an x in (a, b) such that
F(x) = (a + b)/2.

32. Let g(x) = f (x) − x . Since 0 ≤ f (x) ≤ 1 if 0 ≤ x ≤ 1,
therefore, g(0) ≥ 0 and g(1) ≤ 0. If g(0) = 0 let c = 0,
or if g(1) = 0 let c = 1. (In either case f (c) = c.)
Otherwise, g(0) > 0 and g(1) < 0, and, by IVT, there
exists c in (0, 1) such that g(c) = 0, i.e., f (c) = c.

33. The domain of an even function is symmetric about the
y-axis. Since f is continuous on the right at x = 0,
therefore it must be defined on an interval [0, h] for
some h > 0. Being even, f must therefore be defined
on [−h, h]. If x = −y, then

lim
x→0− f (x) = lim

y→0+ f (−y) = lim
y→0+ f (y) = f (0).

Thus, f is continuous on the left at x = 0. Being contin-
uous on both sides, it is therefore continuous.

34. f odd ⇔ f (−x) = − f (x)

f continuous on the right ⇔ lim
x→0+ f (x) = f (0)

Therefore, letting t = −x , we obtain

lim
x→0− f (x) = lim

t→0+ f (−t) = lim
t→0+ − f (t)

= − f (0) = f (−0) = f (0).

Therefore f is continuous at 0 and f (0) = 0.

35. max 1.593 at −0.831, min −0.756 at 0.629

36. max 0.133 at x = 1.437; min −0.232 at x = −1.805

37. max 10.333 at x = 3; min 4.762 at x = 1.260

38. max 1.510 at x = 0.465; min 0 at x = 0 and x = 1

39. root x = 0.682

40. root x = 0.739

41. roots x = −0.637 and x = 1.410

42. roots x = −0.7244919590 and x = 1.220744085

43. fsolve gives an approximation to the single real root to
10 significant figures; solve gives the three roots (includ-
ing a complex conjugate pair) in exact form involving the

quantity
(

108 + 12
√

69
)1/3

; evalf(solve) gives approxi-

mations to the three roots using 10 significant figures for
the real and imaginary parts.

Section 1.5 The Formal Definition of Limit
(page 90)

1. We require 39.9 ≤ L ≤ 40.1. Thus

39.9 ≤ 39.6 + 0.025T ≤ 40.1

0.3 ≤ 0.025T ≤ 0.5

12 ≤ T ≤ 20.

The temperature should be kept between 12 ◦C and 20 ◦C.

2. Since 1.2% of 8,000 is 96, we require the edge length x
of the cube to satisfy 7904 ≤ x3 ≤ 8096. It is sufficient
that 19.920 ≤ x ≤ 20.079. The edge of the cube must be
within 0.079 cm of 20 cm.

3. 3 − 0.02 ≤ 2x − 1 ≤ 3 + 0.02

3.98 ≤ 2x ≤ 4.02

1.99 ≤ x ≤ 2.01

4. 4 − 0.1 ≤ x2 ≤ 4 + 0.1

1.9749 ≤ x ≤ 2.0024

5. 1 − 0.1 ≤ √
x ≤ 1.1

0.81 ≤ x ≤ 1.21

6. −2 − 0.01 ≤ 1

x
≤ −2 + 0.01

− 1

2.01
≥ x ≥ − 1

1.99
−0.5025 ≤ x ≤ −0.4975

7. We need −0.03 ≤ (3x +1)−7 ≤ 0.03, which is equivalent
to −0.01 ≤ x − 2 ≤ 0.01 Thus δ = 0.01 will do.

8. We need −0.01 ≤ √
2x + 3 − 3 ≤ 0.01. Thus

2.99 ≤ √
2x + 3 ≤ 3.01

8.9401 ≤ 2x + 3 ≤ 9.0601

2.97005 ≤ x ≤ 3.03005

3 − 0.02995 ≤ x − 3 ≤ 0.03005.

Here δ = 0.02995 will do.

9. We need 8 − 0.2 ≤ x3 ≤ 8.2, or 1.9832 ≤ x ≤ 2.0165.
Thus, we need −0.0168 ≤ x − 2 ≤ 0.0165. Here
δ = 0.0165 will do.

10. We need 1 − 0.05 ≤ 1/(x + 1) ≤ 1 + 0.05,
or 1.0526 ≥ x + 1 ≥ 0.9524. This will occur if
−0.0476 ≤ x ≤ 0.0526. In this case we can take
δ = 0.0476.

11. To be proved: lim
x→1

(3x + 1) = 4.

Proof: Let ε > 0 be given. Then |(3x + 1) − 4| < ε holds
if 3|x −1| < ε, and so if |x −1| < δ = ε/3. This confirms
the limit.
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12. To be proved: lim
x→2

(5 − 2x) = 1.

Proof: Let ε > 0 be given. Then |(5 − 2x) − 1| < ε holds
if |2x −4| < ε, and so if |x −2| < δ = ε/2. This confirms
the limit.

13. To be proved: lim
x→0

x2 = 0.

Let ε > 0 be given. Then |x2 − 0| < ε holds if
|x − 0| = |x | < δ = √

ε.

14. To be proved: lim
x→2

x − 2

1 + x2
= 0.

Proof: Let ε > 0 be given. Then

∣∣∣∣
x − 2

1 + x2
− 0

∣∣∣∣ = |x − 2|
1 + x2

≤ |x − 2| < ε

provided |x − 2| < δ = ε.

15. To be proved: lim
x→1/2

1 − 4x2

1 − 2x
= 2.

Proof: Let ε > 0 be given. Then if x �= 1/2 we have

∣∣∣∣
1 − 4x2

1 − 2x
− 2

∣∣∣∣ = |(1+2x)−2| = |2x −1| = 2

∣∣∣∣x − 1

2

∣∣∣∣ < ε

provided |x − 1
2 | < δ = ε/2.

16. To be proved: lim
x→−2

x2 + 2x

x + 2
= −2.

Proof: Let ε > 0 be given. For x �= −2 we have

∣∣∣∣
x2 + 2x

x + 2
− (−2)

∣∣∣∣ = |x + 2| < ε

provided |x + 2| < δ = ε. This completes the proof.

17. To be proved: lim
x→1

1

x + 1
= 1

2
.

Proof: Let ε > 0 be given. We have

∣∣∣∣
1

x + 1
− 1

2

∣∣∣∣ =
∣∣∣∣

1 − x

2(x + 1)

∣∣∣∣ = |x − 1|
2|x + 1| .

If |x − 1| < 1, then 0 < x < 2 and 1 < x + 1 < 3, so that
|x + 1| > 1. Let δ = min(1, 2ε). If |x − 1| < δ, then

∣∣∣∣
1

x + 1
− 1

2

∣∣∣∣ = |x − 1|
2|x + 1| <

2ε

2
= ε.

This establishes the required limit.

18. To be proved: lim
x→−1

x + 1

x2 − 1
= −1

2
.

Proof: Let ε > 0 be given. If x �= −1, we have

∣∣∣∣
x + 1

x2 − 1
− 1

2

∣∣∣∣ =
∣∣∣∣

1

x − 1
−

(
−1

2

)∣∣∣∣ = |x + 1|
2|x − 1| .

If |x +1| < 1, then −2 < x < 0, so −3 < x −1 < −1 and
|x − 1| > 1. Ler δ = min(1, 2ε). If 0 < |x − (−1)| < δ

then |x − 1| > 1 and |x + 1| < 2ε. Thus
∣∣∣∣

x + 1

x2 − 1
− 1

2

∣∣∣∣ = |x + 1|
2|x − 1| <

2ε

2
= ε.

This completes the required proof.

19. To be proved: lim
x→1

√
x = 1.

Proof: Let ε > 0 be given. We have

|√x − 1| =
∣∣∣∣

x − 1√
x + 1

∣∣∣∣ ≤ |x − 1| < ε

provided |x − 1| < δ = ε. This completes the proof.

20. To be proved: lim
x→2

x3 = 8.

Proof: Let ε > 0 be given. We have
|x3 − 8| = |x − 2||x2 + 2x + 4|. If |x − 2| < 1,
then 1 < x < 3 and x2 < 9. Therefore
|x2 + 2x + 4| ≤ 9 + 2 × 3 + 4 = 19. If
|x − 2| < δ = min(1, ε/19), then

|x3 − 8| = |x − 2||x2 + 2x + 4| <
ε

19
× 19 = ε.

This completes the proof.

21. We say that limx→a− f (x) = L if the following condition
holds: for every number ε > 0 there exists a number
δ > 0, depending on ε, such that

a − δ < x < a implies | f (x) − L | < ε.

22. We say that limx→−∞ f (x) = L if the following condi-
tion holds: for every number ε > 0 there exists a number
R > 0, depending on ε, such that

x < −R implies | f (x) − L | < ε.

23. We say that limx→a f (x) = −∞ if the following con-
dition holds: for every number B > 0 there exists a
number δ > 0, depending on B, such that

0 < |x − a| < δ implies f (x) < −B.

24. We say that limx→∞ f (x) = ∞ if the following condition
holds: for every number B > 0 there exists a number
R > 0, depending on B, such that

x > R implies f (x) > B.

25. We say that limx→a+ f (x) = −∞ if the following con-
dition holds: for every number B > 0 there exists a
number δ > 0, depending on R, such that

a < x < a + δ implies f (x) < −B.
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26. We say that limx→a− f (x) = ∞ if the following con-
dition holds: for every number B > 0 there exists a
number δ > 0, depending on B, such that

a − δ < x < a implies f (x) > B.

27. To be proved: limx→1+
1

x − 1
= ∞. Proof: Let B > 0

be given. We have
1

x − 1
> B if 0 < x − 1 < 1/B, that

is, if 1 < x < 1 + δ, where δ = 1/B. This completes the
proof.

28. To be proved: limx→1−
1

x − 1
= −∞. Proof: Let B > 0

be given. We have
1

x − 1
< −B if 0 > x − 1 > −1/B,

that is, if 1 − δ < x < 1, where δ = 1/B.. This completes
the proof.

29. To be proved: limx→∞
1√

x2 + 1
= 0. Proof: Let ε > 0

be given. We have

∣∣∣∣
1√

x2 + 1

∣∣∣∣ = 1√
x2 + 1

<
1

x
< ε

provided x > R, where R = 1/ε. This completes the
proof.

30. To be proved: limx→∞
√

x = ∞. Proof: Let B > 0 be
given. We have

√
x > B if x > R where R = B2. This

completes the proof.

31. To be proved: if lim
x→a

f (x) = L and lim
x→a

f (x) = M , then

L = M .
Proof: Suppose L �= M . Let ε = |L − M|/3. Then
ε > 0. Since lim

x→a
f (x) = L , there exists δ1 > 0 such that

| f (x)−L | < ε if |x−a| < δ1. Since lim
x→a

f (x) = M , there

exists δ2 > 0 such that | f (x) − M| < ε if |x − a| < δ2.
Let δ = min(δ1, δ2). If |x − a| < δ, then

3ε = |L − M| = |( f (x) − M) + (L − f (x)|
≤ | f (x) − M| + | f (x) − L | < ε + ε = 2ε.

This implies that 3 < 2, a contradiction. Thus the origi-
nal assumption that L �= M must be incorrect. Therefore
L = M .

32. To be proved: if lim
x→a

g(x) = M , then there exists δ > 0

such that if 0 < |x − a| < δ, then |g(x)| < 1 + |M|.
Proof: Taking ε = 1 in the definition of limit, we obtain
a number δ > 0 such that if 0 < |x − a| < δ, then
|g(x) − M| < 1. It follows from this latter inequality that

|g(x)| = |(g(x)− M)+ M| ≤ |G(x)− M|+|M| < 1+|M|.

33. To be proved: if lim
x→a

f (x) = L and lim
x→a

g(x) = M , then

lim
x→a

f (x)g(x) = L M .

Proof: Let ε > 0 be given. Since lim
x→a

f (x) = L , there

exists δ1 > 0 such that | f (x) − L | < ε/(2(1 + |M|))
if 0 < |x − a| < δ1. Since lim

x→a
g(x) = M , there ex-

ists δ2 > 0 such that |g(x) − M| < ε/(2(1 + |L |)) if
0 < |x − a| < δ2. By Exercise 32, there exists δ3 > 0
such that |g(x)| < 1 + |M| if 0 < |x − a| < δ3. Let
δ = min(δ1, δ2, δ3). If |x − a| < δ, then

| f (x)g(x) − L M = | f (x)g(x) − Lg(x) + Lg(x) − L M|
= |( f (x) − L)g(x) + L(g(x) − M)|
≤ |( f (x) − L)g(x)| + |L(g(x) − M)|
= | f (x) − L ||g(x)| + |L ||g(x) − M|
<

ε

2(1 + |M|) (1 + |M|) + |L | ε

2(1 + |L |)
≤ ε

2
+ ε

2
= ε.

Thus lim
x→a

f (x)g(x) = L M .

34. To be proved: if lim
x→a

g(x) = M where M �= 0, then

there exists δ > 0 such that if 0 < |x − a| < δ, then
|g(x)| > |M|/2.
Proof: By the definition of limit, there exists δ > 0 such
that if 0 < |x − a| < δ, then |g(x) − M| < |M|/2
(since |M|/2 is a positive number). This latter inequality
implies that

|M| = |g(x)+(M−g(x))| ≤ |g(x)|+|g(x)−M| < |g(x)|+ |M|
2

.

It follows that |g(x)| > |M| − (|M|/2) = |M|/2, as
required.

35. To be proved: if lim
x→a

g(x) = M where M �= 0, then

lim
x→a

1

g(x)
= 1

M
.

Proof: Let ε > 0 be given. Since lim
x→a

g(x) = M �= 0,

there exists δ1 > 0 such that |g(x) − M| < ε|M|2/2 if
0 < |x − a| < δ1. By Exercise 34, there exists δ2 > 0
such that |g(x)| > |M|/2 if 0 < |x − a| < δ3. Let
δ = min(δ1, δ2). If 0 < |x − a| < δ, then

∣∣∣∣
1

g(x)
− 1

M

∣∣∣∣ = |M − g(x)|
|M||g(x)| <

ε|M|2
2

2

|M|2 = ε.

This completes the proof.

36. To be proved: if lim
x→a

f (x) = L and lim
x→a

f (x) = M �= 0,

then lim
x→a

f (x)

g(x)
= L

M
.

Proof: By Exercises 33 and 35 we have

lim
x→a

f (x)

g(x)
= lim

x→a
f (x) × 1

g(x)
= L × 1

M
= L

M
.
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37. To be proved: if f is continuous at L and lim
x→c

g(x) = L ,

then lim
x→c

f (g(x)) = f (L).

Proof: Let ε > 0 be given. Since f is continuous at L ,
there exists a number γ > 0 such that if |y−L | < γ , then
| f (y) − f (L)| < ε. Since limx→c g(x) = L , there exists
δ > 0 such that if 0 < |x − c| < δ, then |g(x) − L | < γ .
Taking y = g(x), it follows that if 0 < |x − c| < δ, then
| f (g(x)) − f (L)| < ε, so that limx→c f (g(x)) = f (L).

38. To be proved: if f (x) ≤ g(x) ≤ h(x) in an open interval
containing x = a (say, for a − δ1 < x < a + δ1, where
δ1 > 0), and if limx→a f (x) = limx→a h(x) = L , then
also limx→a g(x) = L .
Proof: Let ε > 0 be given. Since limx→a f (x) = L ,
there exists δ2 > 0 such that if 0 < |x − a| < δ2,
then | f (x) − L | < ε/3. Since limx→a h(x) = L ,
there exists δ3 > 0 such that if 0 < |x − a| < δ3,
then |h(x) − L | < ε/3. Let δ = min(δ1, δ2, δ3). If
0 < |x − a| < δ, then

|g(x) − L | = |g(x) − f (x) + f (x) − L |
≤ |g(x) − f (x)| + | f (x) − L |
≤ |h(x) − f (x)| + | f (x) − L |
= |h(x) − L + L − f (x)| + | f (x) − L |
≤ |h(x) − L | + | f (x) − L | + | f (x) − L |
<

ε

3
+ ε

3
+ ε

3
= ε.

Thus limx→a g(x) = L .

Review Exercises 1 (page 91)

1. The average rate of change of x3 over [1, 3] is

33 − 13

3 − 1
= 26

2
= 13.

2. The average rate of change of 1/x over [−2,−1] is

(1/(−1)) − (1/(−2))

−1 − (−2)
= −1/2

1
= −1

2
.

3. The rate of change of x3 at x = 2 is

lim
h→0

(2 + h)3 − 23

h
= lim

h→0

8 + 12h + 6h2 + h3 − 8

h
= lim

h→0
(12 + 6h + h2) = 12.

4. The rate of change of 1/x at x = −3/2 is

lim
h→0

1

−(3/2) + h
−

(
1

−3/2

)

h
= lim

h→0

2

2h − 3
+ 2

3
h

= lim
h→0

2(3 + 2h − 3)

3(2h − 3)h

= lim
h→0

4

3(2h − 3)
= −4

9
.

5. lim
x→1

(x2 − 4x + 7) = 1 − 4 + 7 = 4

6. lim
x→2

x2

1 − x2
= 22

1 − 22
= −4

3

7. lim
x→1

x2

1 − x2 does not exist. The denominator approaches

0 (from both sides) while the numerator does not.

8. lim
x→2

x2 − 4

x2 − 5x + 6
= lim

x→2

(x − 2)(x + 2)

(x − 2)(x − 3)
= lim

x→2

x + 2

x − 3
= −4

9. lim
x→2

x2 − 4

x2 − 4x + 4
= lim

x→2

(x − 2)(x + 2)

(x − 2)2 = lim
x→2

x + 2

x − 2
does not exist. The denominator approaches 0 (from both
sides) while the numerator does not.

10. lim
x→2−

x2 − 4

x2 − 4x + 4
= lim

x→2−
x + 2

x − 2
= −∞

11. lim
x→−2+

x2 − 4

x2 + 4x + 4
= lim

x→−2+
x − 2

x + 2
= −∞

12. lim
x→4

2 − √
x

x − 4
= lim

x→4

4 − x

(2 + √
x)(x − 4)

= −1

4

13. lim
x→3

x2 − 9√
x − √

3
= lim

x→3

(x − 3)(x + 3)(
√

x + √
3)

x − 3

= lim
x→3

(x + 3)(
√

x + √
3) = 12

√
3

14. lim
h→0

h√
x + 3h − √

x
= lim

h→0

h(
√

x + 3h + √
x)

(x + 3h) − x

= lim
h→0

√
x + 3h + √

x

3
= 2

√
x

3

15. lim
x→0+

√
x − x2 = 0

16. lim
x→0

√
x − x2 does not exist because

√
x − x2 is not de-

fined for x < 0.

17. lim
x→1

√
x − x2 does not exist because

√
x − x2 is not de-

fined for x > 1.

18. lim
x→1−

√
x − x2 = 0

19. lim
x→∞

1 − x2

3x2 − x − 1
= lim

x→∞
(1/x2) − 1

3 − (1/x) − (1/x2)
= −1

3
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20. lim
x→−∞

2x + 100

x2 + 3
= lim

x→−∞
(2/x) + (100/x2)

1 + (3/x2)
= 0

21. lim
x→−∞

x3 − 1

x2 + 4
= lim

x→−∞
x − (1/x2)

1 + (4/x2)
= −∞

22. lim
x→∞

x4

x2 − 4
= lim

x→∞
x2

1 − (4/x2)
= ∞

23. lim
x→0+

1√
x − x2

= ∞

24. lim
x→1/2

1√
x − x2

= 1√
1/4

= 2

25. lim
x→∞ sin x does not exist; sin x takes the values −1 and 1

in any interval (R, ∞), and limits, if they exist, must be
unique.

26. lim
x→∞

cos x

x
= 0 by the squeeze theorem, since

− 1

x
≤ cos x

x
≤ 1

x
for all x > 0

and limx→∞(−1/x) = limx→∞(1/x) = 0.

27. lim
x→0

x sin
1

x
= 0 by the squeeze theorem, since

−|x | ≤ x sin
1

x
≤ |x | for all x �= 0

and limx→0(−|x |) = limx→0 |x | = 0.

28. lim
x→0

sin
1

x2 does not exist; sin(1/x2) takes the values −1

and 1 in any interval (−δ, δ), where δ > 0, and limits, if
they exist, must be unique.

29. lim
x→−∞[x +

√
x2 − 4x + 1]

= lim
x→−∞

x2 − (x2 − 4x + 1)

x − √
x2 − 4x + 1

= lim
x→−∞

4x − 1

x − |x |√1 − (4/x) + (1/x2)

= lim
x→−∞

x[4 − (1/x)]

x + x
√

1 − (4/x) + (1/x2)

= lim
x→−∞

4 − (1/x)

1 + √
1 − (4/x) + (1/x2)

= 2.

Note how we have used |x | = −x (in the second last
line), because x → −∞.

30. lim
x→∞[x +

√
x2 − 4x + 1] = ∞ + ∞ = ∞

31. f (x) = x3 − 4x2 + 1 is continuous on the whole real line
and so is discontinuous nowhere.

32. f (x) = x

x + 1
is continuous everywhere on its domain,

which consists of all real numbers except x = −1. It is
discontinuous nowhere.

33. f (x) =
{

x2 if x > 2
x if x ≤ 2

is defined everywhere and dis-

continuous at x = 2, where it is, however, left continuous
since limx→2− f (x) = 2 = f (2).

34. f (x) =
{

x2 if x > 1
x if x ≤ 1

is defined and continuous ev-

erywhere, and so discontinuous nowhere. Observe that
limx→1− f (x) = 1 = limx→1+ f (x).

35. f (x) = H(x − 1) =
{

1 if x ≥ 1
0 if x < 1

is defined everywhere

and discontinuous at x = 1 where it is, however, right
continuous.

36. f (x) = H(9 − x2) =
{ 1 if −3 ≤ x ≤ 3

0 if x < −3 or x > 3
is defined

everywhere and discontinuous at x = ±3. It is right
continuous at −3 and left continuous at 3.

37. f (x) = |x |+|x +1| is defined and continuous everywhere.
It is discontinuous nowhere.

38. f (x) =
{ |x |/|x + 1| if x �= −1

1 if x = −1
is defined everywhere

and discontinuous at x = −1 where it is neither left nor
right continuous since limx→−1 f (x) = ∞, while
f (−1) = 1.

Challenging Problems 1 (page 92)

1. Let 0 < a < b. The average rate of change of x3 over
[a, b] is

b3 − a3

b − a
= b2 + ab + a2.

The instantaneous rate of change of x3 at x = c is

lim
h→0

(c + h)3 − c3

h
= lim

h→0

3c2h + 3ch2 + h3

h
= 3c2.

If c = √
(a2 + ab + b2)/3, then 3c2 = a2 + ab + b2, so

the average rate of change over [a, b] is the instantaneous
rate of change at

√
(a2 + ab + b2)/3.

Claim:
√

(a2 + ab + b2)/3 > (a + b)/2.
Proof: Since a2 − 2ab + b2 = (a − b)2 > 0, we have

4a2 + 4ab + 4b2 > 3a2 + 6ab + 3b2

a2 + ab + b2

3
>

a2 + 2ab + b2

4
=

(
a + b

2

)2

√
a2 + ab + b2

3
>

a + b

2
.

2. For x near 0 we have |x − 1| = 1− x and |x + 1| = x + 1.
Thus

lim
x→0

x

|x − 1| − |x + 1| = lim
x→0

x

(1 − x) − (x + 1)
= −1

2
.
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3. For x near 3 we have |5 − 2x | = 2x − 5, |x − 2| = x − 2,
|x − 5| = 5 − x , and |3x − 7| = 3x − 7. Thus

lim
x→3

|5 − 2x | − |x − 2|
|x − 5| − |3x − 7| = lim

x→3

2x − 5 − (x − 2)

5 − x − (3x − 7)

= lim
x→3

x − 3

4(3 − x)
= −1

4
.

4. Let y = x1/6. Then we have

lim
x→64

x1/3 − 4

x1/2 − 8
= lim

y→2

y2 − 4

y3 − 8

= lim
y→2

(y − 2)(y + 2)

(y − 2)(y2 + 2y + 4)

= lim
y→2

y + 2

y2 + 2y + 4
= 4

12
= 1

3
.

5. Use a − b = a3 − b3

a2 + ab + b2 to handle the denominator.

We have

lim
x→1

√
3 + x − 2

3
√

7 + x − 2

= lim
x→1

3 + x − 4√
3 + x + 2

× (7 + x)2/3 + 2(7 + x)1/3 + 4

(7 + x) − 8

= lim
x→1

(7 + x)2/3 + 2(7 + x)1/3 + 4√
3 + x + 2

= 4 + 4 + 4

2 + 2
= 3.

6. r+(a) = −1 + √
1 + a

a
, r−(a) = −1 − √

1 + a

a
.

a) lima→0 r−(a) does not exist. Observe that the right
limit is −∞ and the left limit is ∞.

b) From the following table it appears that
lima→0 r+(a) = 1/2, the solution of the linear equa-
tion 2x − 1 = 0 which results from setting a = 0 in
the quadratic equation ax2 + 2x − 1 = 0.

a r+(a)

1 0.41421
0.1 0.48810

−0.1 0.51317
0.01 0.49876

−0.01 0.50126
0.001 0.49988

−0.001 0.50013

c) lim
a→0

r+(a) = lim
a→0

√
1 + a − 1

a

= lim
a→0

(1 + a) − 1

a(
√

1 + a + 1)

= lim
a→0

1√
1 + a + 1

= 1

2
.

7. TRUE or FALSE

a) If limx→a f (x) exists and limx→a g(x) does not

exist, then limx→a

(
f (x) + g(x)

)
does not exist.

TRUE, because if limx→a

(
f (x) + g(x)

)
were to

exist then

lim
x→a

g(x) = lim
x→a

(
f (x) + g(x) − f (x)

)

= lim
x→a

(
f (x) + g(x)

)
− lim

x→a
f (x)

would also exist.

b) If neither limx→a f (x) nor limx→a g(x) exists, then

limx→a

(
f (x) + g(x)

)
does not exist.

FALSE. Neither limx→0 1/x nor limx→0(−1/x) ex-

ist, but limx→0

(
(1/x) + (−1/x)

)
= limx→0 0 = 0

exists.

c) If f is continuous at a, then so is | f |.
TRUE. For any two real numbers u and v we have

∣∣∣|u| − |v|
∣∣∣ ≤ |u − v|.

This follows from

|u| = |u − v + v| ≤ |u − v| + |v|, and

|v| = |v − u + u| ≤ |v − u| + |u| = |u − v| + |u|.

Now we have

∣∣∣| f (x)| − | f (a)|
∣∣∣ ≤ | f (x) − f (a)|

so the left side approaches zero whenever the right
side does. This happens when x → a by the conti-
nuity of f at a.

d) If | f | is continuous at a, then so is f .

FALSE. The function f (x) =
{ −1 if x < 0

1 if x ≥ 0
is

discontinuous at x = 0, but | f (x)| = 1 everywhere,
and so is continuous at x = 0.

e) If f (x) < g(x) in an interval around a and if
limx→a f (x) = L and limx→a g(x) = M both
exist, then L < M .

FALSE. Let g(x) =
{

x2 if x �= 0
1 if x = 0

and let

f (x) = −g(x). Then f (x) < g(x) for all x , but
limx→0 f (x) = 0 = limx→0 g(x). (Note: under the
given conditions, it is TRUE that L ≤ M , but not
necessarily true that L < M .)
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8. a) To be proved: if f is a continuous function defined
on a closed interval [a, b], then the range of f is a
closed interval.
Proof: By the Max-Min Theorem there exist num-
bers u and v in [a, b] such that f (u) ≤ f (x) ≤ f (v)

for all x in [a, b]. By the Intermediate-Value The-
orem, f (x) takes on all values between f (u)

and f (v) at values of x between u and v, and
hence at points of [a, b]. Thus the range of f is
[ f (u), f (v)], a closed interval.

b) If the domain of the continuous function f is an
open interval, the range of f can be any interval
(open, closed, half open, finite, or infinite).

9. f (x) = x2 − 1

|x2 − 1| =
{−1 if −1 < x < 1

1 if x < −1 or x > 1
.

f is continuous wherever it is defined, that is at all
points except x = ±1. f has left and right limits −1
and 1, respectively, at x = 1, and has left and right limits
1 and −1, respectively, at x = −1. It is not, however,
discontinuous at any point, since −1 and 1 are not in its
domain.

10. f (x) = 1

x − x2 = 1
1
4 − ( 1

4 − x + x2
) = 1

1
4 − (

x − 1
2

)2 .

Observe that f (x) ≥ f (1/2) = 4 for all x in (0, 1).

11. Suppose f is continuous on [0, 1] and f (0) = f (1).

a) To be proved: f (a) = f (a+ 1
2 ) for some a in [0, 1

2 ].
Proof: If f (1/2) = f (0) we can take a = 0 and be
done. If not, let

g(x) = f (x + 1
2 ) − f (x).

Then g(0) �= 0 and

g(1/2) = f (1) − f (1/2) = f (0) − f (1/2) = −g(0).

Since g is continuous and has opposite signs at
x = 0 and x = 1/2, the Intermediate-Value The-
orem assures us that there exists a between 0 and
1/2 such that g(a) = 0, that is, f (a) = f (a + 1

2 ).

b) To be proved: if n > 2 is an integer, then
f (a) = f (a + 1

n ) for some a in [0, 1 − 1
n ].

Proof: Let g(x) = f (x + 1
n ) − f (x). Consider

the numbers x = 0, x = 1/n, x = 2/n, . . . ,
x = (n − 1)/n. If g(x) = 0 for any of these num-
bers, then we can let a be that number. Otherwise,
g(x) �= 0 at any of these numbers. Suppose that the
values of g at all these numbers has the same sign
(say positive). Then we have

f (1) > f ( n−1
n ) > · · · > f ( 2

n ) > 1
n > f (0),

which is a contradiction, since f (0) = f (1). There-
fore there exists j in the set {0, 1, 2, . . . , n − 1} such
that g( j/n) and g(( j + 1)/n) have opposite sign. By
the Intermediate-Value Theorem, g(a) = 0 for some
a between j/n and ( j + 1)/n, which is what we had
to prove.
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