CHAPTER 1. LIMITS AND CONTINUITY

Section 1.1 Examples of Velocity, Growth Rate, and Area (page 61)

1. Average velocity = $\frac{\Delta x}{\Delta t} = \frac{(t+h)^2 - t^2}{h}$ m/s.

2.

- **3.** Guess velocity is $v = 4$ m/s at $t = 2$ s.
- **4.** Average volocity on $[2, 2+h]$ is

$$
\frac{(2+h)^2 - 4}{(2+h) - 2} = \frac{4 + 4h + h^2 - 4}{h} = \frac{4h + h^2}{h} = 4 + h.
$$

As *h* approaches 0 this average velocity approaches 4 m/s

- **5.** $x = 3t^2 12t + 1$ m at time t s. Average velocity over interval [1, 2] is $\frac{(3 \times 2^2 - 12 \times 2 + 1) - (3 \times 1^2 - 12 \times 1 + 1)}{2 - 1} = -3$ m/s. Average velocity over interval [2, 3] is $(3 \times 3^2 - 12 \times 3 + 1) - (3 \times 2^2 - 12 \times 2 + 1)$ $\frac{3-2}{3-2}$ = 3 m/s. Average velocity over interval [1, 3] is $\frac{(3 \times 3^2 - 12 \times 3 + 1) - (3 \times 1^2 - 12 \times 1 + 1)}{3 - 1} = 0$ m/s.
- **6.** Average velocity over $[t, t+h]$ is

$$
\frac{3(t+h)^2 - 12(t+h) + 1 - (3t^2 - 12t + 1)}{(t+h) - t}
$$

$$
= \frac{6th + 3h^2 - 12h}{h} = 6t + 3h - 12 \text{ m/s}.
$$

This average velocity approaches 6*t* − 12 m/s as *h* approaches 0.

At $t = 1$ the velocity is $6 \times 1 - 12 = -6$ m/s. At $t = 2$ the velocity is $6 \times 2 - 12 = 0$ m/s. At $t = 3$ the velocity is $6 \times 3 - 12 = 6$ m/s.

- **7.** At $t = 1$ the velocity is $v = -6 < 0$ so the particle is moving to the left. At $t = 2$ the velocity is $v = 0$ so the particle is stationary. At $t = 3$ the velocity is $v = 6 > 0$ so the particle is moving to the right.
- **8.** Average velocity over $[t k, t + k]$ is

$$
\frac{3(t+k)^2 - 12(t+k) + 1 - [3(t-k)^2 - 12(t-k) + 1]}{(t+k) - (t-k)}
$$

=
$$
\frac{1}{2k} \left(3t^2 + 6tk + 3k^2 - 12t - 12k + 1 - 3t^2 + 6tk - 3k^2 + 12t - 12k + 1 \right)
$$

=
$$
\frac{12tk - 24k}{2k} = 6t - 12 \text{ m/s},
$$

which is the velocity at time *t* from Exercise 7.

At $t = 1$ the height is $y = 2$ ft and the weight is moving downward.

10. Average velocity over $[1, 1+h]$ is

 \blacksquare

$$
\frac{2 + \frac{1}{\pi} \sin \pi (1 + h) - (2 + \frac{1}{\pi} \sin \pi)}{h}
$$
\n
$$
= \frac{\sin(\pi + \pi h)}{\pi h} = \frac{\sin \pi \cos(\pi h) + \cos \pi \sin(\pi h)}{\pi h}
$$
\n
$$
= -\frac{\sin(\pi h)}{\pi h}.
$$
\n1.0000

\n0.1000

\n0.9983631643

\n0.0100

\n0.99998355

11. The velocity at $t = 1$ is about $v = -1$ ft/s. The "−" indicates that the weight is moving downward.

- **12.** We sketched a tangent line to the graph on page 55 in the text at $t = 20$. The line appeared to pass through the points $(10, 0)$ and $(50, 1)$. On day 20 the biomass is growing at about $(1 - 0)/(50 - 10) = 0.025$ mm²/d.
- **13.** The curve is steepest, and therefore the biomass is growing most rapidly, at about day 45.

b) Average rate of increase in profits between 2002 and $\frac{2004 \text{ is}}{174 - 62} = \frac{112}{2}$

$$
\frac{171 - 62}{2004 - 2002} = \frac{172}{2} = 56
$$
 (thousand\$/yr).

c) Drawing a tangent line to the graph in (a) at $t = 2002$ and measuring its slope, we find that the rate of increase of profits in 1992 is about 43 thousand\$/year.

Section 1.2 Limits of Functions (page 68)

1. From inspecting the graph

we see that

$$
\lim_{x \to -1} f(x) = 1, \quad \lim_{x \to 0} f(x) = 0, \quad \lim_{x \to 1} f(x) = 1.
$$

2. From inspecting the graph

we see that

 $\lim_{x\to 1} g(x)$ does not exist (left limit is 1, right limit is 0) $\lim_{x \to 2} g(x) = 1, \qquad \lim_{x \to 2} g(x) = 1$ $\lim_{x \to 3} g(x) = 0.$

- **3.** $\lim_{x \to 1^-} g(x) = 1$
- **4.** $\lim_{x \to 1+} g(x) = 0$
- **5.** $\lim_{x \to 3+} g(x) = 0$
- **6.** $\lim_{x \to 3^-} g(x) = 0$
- 7. $\lim_{x \to 4} (x^2 4x + 1) = 4^2 4(4) + 1 = 1$
- **8.** $\lim_{x \to 2} 3(1 x)(2 x) = 3(-1)(2 2) = 0$
- **9.** $\lim_{x\to 3}$ $\frac{x+3}{x+6} = \frac{3+3}{3+6} = \frac{2}{3}$

10.
$$
\lim_{t \to -4} \frac{t^2}{4 - t} = \frac{(-4)^2}{4 + 4} = 2
$$

11. $\lim_{x\to 1}$ $\frac{x^2 - 1}{x + 1} = \frac{1^2 - 1}{1 + 1} = \frac{0}{2} = 0$

12.
$$
\lim_{x \to -1} \frac{x^2 - 1}{x + 1} = \lim_{x \to -1} (x - 1) = -2
$$

- 13. $\lim_{x\to 3}$ $rac{x^2 - 6x + 9}{x^2 - 9} = \lim_{x \to 3}$ $(x - 3)^2$ $(x - 3)(x + 3)$ $=\lim_{x\to 3}$ $\frac{x-3}{x+3} = \frac{0}{6} = 0$
- 14. $\lim_{x\to -2}$ $\frac{x^2 + 2x}{x^2 - 4} = \lim_{x \to -2}$ $\frac{x}{x-2} = \frac{-2}{-4} = \frac{1}{2}$
- **15.** $\lim_{h \to 2} \frac{1}{4 h^2}$ does not exist; denominator approaches 0 but numerator does not approach 0.
- **16.** $\lim_{h\to 0} \frac{3h + 4h^2}{h^2 h^3} = \lim_{h\to 0}$ $\frac{3 + 4h}{h - h^2}$ does not exist; denominator approaches 0 but numerator does not approach 0.

17.
$$
\lim_{x\to 9} \frac{\sqrt{x} - 3}{x - 9} = \lim_{x\to 9} \frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{(x - 9)(\sqrt{x} + 3)} = \lim_{x\to 9} \frac{x - 9}{(x - 9)(\sqrt{x} + 3)} = \lim_{x\to 9} \frac{1}{\sqrt{x} + 3} = \frac{1}{6}
$$

\n18.
$$
\lim_{h\to 0} \frac{4 + h - 2}{h + h - 2} = \lim_{h\to 0} \frac{4 + h - 4}{h(\sqrt{4 + h} + 2)} = \lim_{h\to 0} \frac{1}{\sqrt{4 + h} + 2} = \frac{1}{4}
$$

\n
$$
= \lim_{h\to 0} \frac{1}{\sqrt{4 + h} + 2} = \frac{1}{4}
$$

\n19.
$$
\lim_{x\to \pi} \frac{(x - \pi)^2}{\pi x} = \frac{9^2}{\pi^2} = 0
$$

\n20.
$$
\lim_{x\to -2} |x - 2| = |-4| = 4
$$

\n21.
$$
\lim_{x\to 2} \frac{|x - 2|}{x - 2} = \lim_{x\to 2} \left\{ 1, \text{ if } x > 2
$$

\nHence,
$$
\lim_{x\to 2} \frac{|x - 2|}{x - 2} = \lim_{x\to 2} \left\{ 1, \text{ if } x < 2.
$$

\nHence,
$$
\lim_{h\to 1} \frac{x^2 - 1}{x - 2} = \lim_{x\to 2} \left\{ 1, \text{ if } x < 2.
$$

\n23.
$$
\lim_{h\to 1} \frac{t^2 - 1}{t^2 - 2t + 1}
$$

\n
$$
\lim_{h\to 1} \frac{(t - 1)(t + 1)}{(t - 1)^2} = \lim_{h\to 1} \frac{t + 1}{t - 1} \text{ does not exist.}
$$

\n(denominator $\to 0$, numerator $\to 2$.)
\n24.
$$
\lim_{x\to 2} \frac{\sqrt{4 - 4x + x^2}}{x - 2}
$$

\n<math display="block</p>

29.
$$
\lim_{y \to 1} \frac{\frac{y^2 - 1}{y^2 - 1}}{\frac{y^2 - 1}{y^2 - 1} \left(\frac{y}{\sqrt{y} - 1}\right)\left(\frac{y}{\sqrt{y} + 1}\right)} = \frac{-2}{4} = \frac{-1}{2}
$$

30.
$$
\lim_{x \to -1} \frac{x^3 + 1}{x + 1} = \lim_{x \to -1} \frac{(x + 1)(x^2 - x + 1)}{x + 1} = 3
$$

31.
$$
\lim_{x \to 2} \frac{x^4 - 16}{x^3 - 8}
$$

=
$$
\lim_{x \to 2} \frac{(x - 2)(x + 2)(x^2 + 4)}{(x - 2)(x^2 + 2x + 4)}
$$

=
$$
\frac{(4)(8)}{4 + 4 + 4} = \frac{8}{3}
$$

32.
$$
\lim_{x \to 8} \frac{x^{2/3} - 4}{x^{1/3} - 2}
$$

=
$$
\lim_{x \to 8} \frac{(x^{1/3} - 2)(x^{1/3} + 2)}{(x^{1/3} - 2)}
$$

=
$$
\lim_{x \to 8} (x^{1/3} + 2) = 4
$$

33.
$$
\lim_{x \to 2} \left(\frac{1}{x - 2} - \frac{4}{x^2 - 4} \right)
$$

=
$$
\lim_{x \to 2} \frac{x + 2 - 4}{(x - 2)(x + 2)} = \lim_{x \to 2} \frac{1}{x + 2} = \frac{1}{4}
$$

34.
$$
\lim_{x \to 2} \left(\frac{1}{x - 2} - \frac{1}{x^2 - 4} \right)
$$

=
$$
\lim_{x \to 2} \frac{x + 2 - 1}{(x - 2)(x + 2)}
$$

=
$$
\lim_{x \to 2} \frac{x + 1}{(x - 2)(x + 2)}
$$
 does not exist.

35.
$$
\lim_{x \to 0} \frac{\sqrt{2 + x^2} - \sqrt{2 - x^2}}{x^2}
$$

=
$$
\lim_{x \to 0} \frac{(2 + x^2) - (2 - x^2)}{x^2(\sqrt{2 + x^2} + \sqrt{2 - x^2})}
$$

=
$$
\lim_{x \to 0} \frac{2x^2}{x^2(\sqrt{2 + x^2}) + \sqrt{2 - x^2}}
$$

=
$$
\frac{2}{\sqrt{2} + \sqrt{2}} = \frac{1}{\sqrt{2}}
$$

36.
$$
\lim_{x \to 0} \frac{|3x - 1| - |3x + 1|}{x}
$$

=
$$
\lim_{x \to 0} \frac{(3x - 1)^2 - (3x + 1)^2}{x (|3x - 1| + |3x + 1|)}
$$

=
$$
\lim_{x \to 0} \frac{-12x}{x (|3x - 1| + |3x + 1|)} = \frac{-12}{1 + 1} = -6
$$

37.
$$
f(x) = x^2
$$

$$
\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}
$$

$$
= \lim_{h \to 0} \frac{2hx + h^2}{h} = \lim_{h \to 0} 2x + h = 2x
$$

38.
$$
f(x) = x^3
$$

$$
\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}
$$

$$
= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}
$$

$$
= \lim_{h \to 0} 3x^2 + 3xh + h^2 = 3x^2
$$

39. $f(x) = 1/x$

$$
\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}
$$

$$
= \lim_{h \to 0} \frac{x - (x+h)}{h(x+h)x}
$$

$$
= \lim_{h \to 0} -\frac{1}{(x+h)x} = -\frac{1}{x^2}
$$

40. $f(x) = 1/x^2$

$$
\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}
$$

$$
= \lim_{h \to 0} \frac{x^2 - (x^2 + 2xh + h^2)}{h(x+h)^2 x^2}
$$

$$
= \lim_{h \to 0} -\frac{2x + h}{(x+h)^2 x^2} = -\frac{2x}{x^4} = -\frac{2}{x^3}
$$

41. $f(x) = \sqrt{x}$

$$
\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}
$$

$$
= \lim_{h \to 0} \frac{x+h - x}{h(\sqrt{x+h} + \sqrt{x})}
$$

$$
= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}
$$
42.
$$
f(x) = 1/\sqrt{x}
$$

$$
\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}}}{h}
$$

\n
$$
= \lim_{h \to 0} \frac{\sqrt{x} - \sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}}
$$

\n
$$
= \lim_{h \to 0} \frac{x - (x+h)}{h\sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})}
$$

\n
$$
= \lim_{h \to 0} \frac{-1}{\sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})}
$$

\n
$$
= \frac{-1}{2x^{3/2}}
$$

- **43.** $\lim_{x \to \pi/2} \sin x = \sin \pi/2 = 1$
- **44.** $\lim_{x \to \pi/4} \cos x = \cos \pi/4 = 1/$ √ 2

45.
$$
\lim_{x \to \pi/3} \cos x = \cos \pi/3 = 1/2
$$

46.
$$
\lim_{x \to 2\pi/3} \sin x = \sin 2\pi/3 = \sqrt{3}/2
$$

50. $\lim_{x \to 2+}$ **51.** $\lim_{x \to -2^{-}} \sqrt{2-x} = 2$

52.
$$
\lim_{x \to -2+} \sqrt{2 - x} = 2
$$

53.
$$
\lim_{x \to 0} \sqrt{x^3 - x} \text{ does not exist.}
$$

$$
(x^3 - x < 0 \text{ if } 0 < x < 1)
$$

- **54.** $\lim_{x\to 0-}$ $\sqrt{x^3 - x} = 0$
- 55. $\lim_{x\to 0+}$ $\sqrt{x^3 - x}$ does not exist. (See # 9.)

$$
56. \quad \lim_{x \to 0+} \sqrt{x^2 - x^4} = 0
$$

57.
$$
\lim_{x \to a^{-}} \frac{|x - a|}{x^{2} - a^{2}}
$$

=
$$
\lim_{x \to a^{-}} \frac{|x - a|}{(x - a)(x + a)} = -\frac{1}{2a}
$$
 $(a \neq 0)$

$$
58. \quad \lim_{x \to a+} \frac{|x-a|}{x^2 - a^2} = \lim_{x \to a+} \frac{x-a}{x^2 - a^2} = \frac{1}{2a}
$$

59.
$$
\lim_{x \to 2^{-}} \frac{x^2 - 4}{|x + 2|} = \frac{0}{4} = 0
$$

60.
$$
\lim_{x \to 2^{+}} \frac{x^2 - 4}{|x + 2|} = \frac{0}{4} = 0
$$

61. $f(x) =$ $\int_{0}^{x} \frac{x-1}{y^2}$ if $x \leq -1$ $x^2 + 1$ if $-1 < x \le 0$ $(x + \pi)^2$ if $x > 0$ $\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} x - 1 = -1 - 1 = -2$

62.
$$
\lim_{x \to -1+} f(x) = \lim_{x \to -1+} x^2 + 1 = 1 + 1 = 2
$$

63.
$$
\lim_{x \to 0+} f(x) = \lim_{x \to 0+} (x + \pi)^2 = \pi^2
$$

64.
$$
\lim_{x \to 0-} f(x) = \lim_{x \to 0-} x^2 + 1 = 1
$$

- **65.** If $\lim_{x \to 4} f(x) = 2$ and $\lim_{x \to 4} g(x) = -3$, then a) $\lim_{x \to 4} (g(x) + 3) = -3 + 3 = 0$ b) $\lim_{x \to 4} x f(x) = 4 \times 2 = 8$ c) $\lim_{x \to 4} (g(x))^2 = (-3)^2 = 9$ d) $\lim_{x \to 4} \frac{g(x)}{f(x) - 1} = \frac{-3}{2 - 1} = -3$
- **66.** If $\lim x \to af(x) = 4$ and $\lim_{x \to a} g(x) = -2$, then a) $\lim_{x \to a} (f(x) + g(x)) = 4 + (-2) = 2$ b) $\lim_{x \to a} f(x) \cdot g(x) = 4 \times (-2) = -8$ c) $\lim_{x \to a} 4g(x) = 4(-2) = -8$ d) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{4}{-2} = -2$
- **67.** If $\lim_{x \to 2} \frac{f(x) 5}{x 2} = 3$, then lim *x*→2 $f(x) - 5 = \lim_{x \to 2}$ $\frac{f(x)-5}{x-2}(x-2) = 3(2-2) = 0.$ Thus $\lim_{x\to 2} f(x) = 5$.
- **68.** If $\lim_{x \to 0} \frac{f(x)}{x^2} = -2$ then lim_{*x*→0} $f(x) = \lim_{x\to 0} x^2 \frac{f(x)}{x^2} = 0 \times (-2) = 0$, and similarly, lim_{*x*→0} $\frac{f(x)}{x}$ = lim_{*x*} *x* $\frac{f(x)}{x^2}$ = 0 × (−2) = 0.

71.

 $\lim_{x\to 0} \frac{\sin(2\pi x)}{\sin(3\pi x)} = 2/3$

69.

72.

73.

 $f(x) = x \sin(1/x)$ oscillates infinitely often as *x* approaches 0, but the amplitude of the oscillations decreases and, in fact, $\lim_{x\to 0} f(x) = 0$. This is predictable because $|x \sin(1/x)| \le |x|$. (See Exercise 95 below.)

- **74.** Since $\sqrt{5 2x^2} \le f(x) \le \sqrt{5 x^2}$ for $-1 \le x \le 1$, and $lim_{x\to 0}$ $\sqrt{5 - 2x^2} \le f(x) \le \sqrt{5 - x^2}$ for $-1 \le x \le 1$, a
 $\sqrt{5 - 2x^2} = \lim_{x \to 0} \sqrt{5 - x^2} = \sqrt{5}$, we have $\lim_{x\to 0} \sqrt{5 - 2x^2} = \lim_{x\to 0} \sqrt{5 - x^2} = \sqrt{\frac{2}{3}}$
 $\lim_{x\to 0} f(x) = \sqrt{5}$ by the squeeze theorem.
- **75.** Since $2 x^2 \le g(x) \le 2 \cos x$ for all *x*, and since $\lim_{x\to 0} (2 - x^2) = \lim_{x\to 0} 2 \cos x = 2$, we have $\lim_{x\to 0} g(x) = 2$ by the squeeze theorem.

76. a)

- b) Since the graph of f lies between those of x^2 and $x⁴$, and since these latter graphs come together at $(\pm 1, 1)$ and at $(0, 0)$, we have $\lim_{x \to \pm 1} f(x) = 1$ and $\lim_{x\to 0} f(x) = 0$ by the squeeze theorem.
- **77.** $x^{1/3} < x^3$ on (−1, 0) and (1, ∞). $x^{1/3} > x^3$ on $(-\infty, -1)$ and $(0, 1)$. The graphs of $x^{1/3}$ and x^3 intersect at $(-1, -1)$, $(0, 0)$, and $(1, 1)$. If the graph of $h(x)$ lies between those of $x^{1/3}$ and x^3 , then we can determine $\lim_{x\to a} h(x)$ for $a = -1$, $a = 0$, and $a = 1$ by the squeeze theorem. In fact

$$
\lim_{x \to -1} h(x) = -1, \quad \lim_{x \to 0} h(x) = 0, \quad \lim_{x \to 1} h(x) = 1.
$$

- **78.** $f(x) = s \sin \frac{1}{x}$ is defined for all $x \neq 0$; its domain is $(-\infty, 0) \cup (0, \infty)$. Since $|\sin t| \leq 1$ for all *t*, we have $| f(x) | ≤ |x|$ and $-|x| ≤ f(x) ≤ |x|$ for all $x ≠ 0$. Since $\lim_{x\to 0} = (-|x|) = 0 = \lim_{x\to 0} |x|$, we have $\lim_{x\to 0} f(x) = 0$ by the squeeze theorem.
- **79.** $|f(x)| \le g(x) \Rightarrow -g(x) \le f(x) \le g(x)$ Since $\lim_{x \to a} g(x) = 0$, therefore $0 \le \lim_{x \to a} f(x) \le 0$. Hence, $\lim_{x \to a} f(x) = 0$. If $\lim_{x \to a} g(x) = 3$, then either $-3 \le \lim_{x \to a} f(x) \le 3$ or $\lim_{x\to a} f(x)$ does not exist.

Section 1.3 Limits at Infinity and Infinite Limits (page 75)

1. $\lim_{x\to\infty}$ $\frac{x}{2x-3} = \lim_{x \to \infty}$ $\frac{1}{2-(3/x)} = \frac{1}{2}$

2.
$$
\lim_{x \to \infty} \frac{x}{x^2 - 4} = \lim_{x \to \infty} \frac{1/x}{1 - (4/x^2)} = \frac{0}{1} = 0
$$

3.
$$
\lim_{x \to \infty} \frac{3x^3 - 5x^2 + 7}{8 + 2x - 5x^3}
$$

$$
= \lim_{x \to \infty} \frac{3 - \frac{5}{x} + \frac{7}{x^3}}{\frac{8}{x^3} + \frac{2}{x^2} - 5} = -\frac{3}{5}
$$

4.
$$
\lim_{x \to -\infty} \frac{x^2 - 2}{x - x^2}
$$

\n
$$
= \lim_{x \to -\infty} \frac{1 - \frac{2}{x^2}}{\frac{1}{x} - 1} = \frac{1}{-1} = -1
$$

\n5.
$$
\lim_{x \to -\infty} \frac{x^2 + 3}{x^3 + 2} = \lim_{x \to -\infty} \frac{\frac{1}{x} + \frac{3}{x^3}}{1 + \frac{2}{x^3}} = 0
$$

\n6.
$$
\lim_{x \to \infty} \frac{x^2 + \sin x}{x^2 + \cos x} = \lim_{x \to \infty} \frac{1 + \frac{\sin x}{x^2}}{1 + \frac{\cos x}{x^2}} = \frac{1}{1} = 1
$$

\nWe have used the fact that $\lim_{x \to \infty} \frac{\sin x}{x^2} = 0$ (and s
\nlarly for cosine) because the numerator is bounded v

*x*² imi-
while larly for cosine) because the numerator is bounded while the denominator grows large.

7.
$$
\lim_{x \to \infty} \frac{3x + 2\sqrt{x}}{1 - x}
$$

=
$$
\lim_{x \to \infty} \frac{3 + \frac{2}{\sqrt{x}}}{\frac{1}{x} - 1} = -3
$$

8.
$$
\lim_{x \to \infty} \frac{2x - 1}{\sqrt{3x^2 + x + 1}}
$$

\n
$$
= \lim_{x \to \infty} \frac{x(2 - \frac{1}{x})}{|x|\sqrt{3 + \frac{1}{x} + \frac{1}{x^2}}} \quad \text{(but } |x| = x \text{ as } x \to \infty)
$$

\n
$$
= \lim_{x \to \infty} \frac{2 - \frac{1}{x}}{\sqrt{3 + \frac{1}{x} + \frac{1}{x^2}}} = \frac{2}{\sqrt{3}}
$$

\n9.
$$
\lim_{x \to -\infty} \frac{2x - 1}{\sqrt{3x^2 + x + 1}}
$$

\n
$$
2 - \frac{1}{x}
$$

$$
= \lim_{x \to -\infty} \frac{2 - \frac{1}{x}}{-\sqrt{3 + \frac{1}{x} + \frac{1}{x^2}}} = -\frac{2}{\sqrt{3}},
$$

because $x \to -\infty$ implies that $x < 0$ and so $\sqrt{x^2} = -x$.

10.
$$
\lim_{x \to -\infty} \frac{2x - 5}{|3x + 2|} = \lim_{x \to -\infty} \frac{2x - 5}{-(3x + 2)} = -\frac{2}{3}
$$

11. $\lim_{x\to 3}$ $\frac{1}{3-x}$ does not exist.

12.
$$
\lim_{x \to 3} \frac{1}{(3 - x)^2} = \infty
$$

13.
$$
\lim_{x \to 3^-} \frac{1}{3 - x} = \infty
$$

14.
$$
\lim_{x \to 3+} \frac{1}{3-x} = -\infty
$$

15.
$$
\lim_{x \to -5/2} \frac{2x+5}{5x+2} = \frac{0}{\frac{-25}{2}+2} = 0
$$

16.
$$
\lim_{x \to -2/5} \frac{2x+5}{5x+2} \text{ does not exist.}
$$

17.
$$
\lim_{x \to - (2/5)-} \frac{2x+5}{5x+2} = -\infty
$$

18.
$$
\lim_{x \to -2/5+} \frac{2x+5}{5x+2} = \infty
$$

19.
$$
\lim_{x \to 2+} \frac{x}{(2-x)^3} = -\infty
$$

20.
$$
\lim_{x \to 1^{-}} \frac{x}{\sqrt{1 - x^2}} = \infty
$$

21.
$$
\lim_{x \to 1+} \frac{1}{|x-1|} = \infty
$$

22.
$$
\lim_{x \to 1-} \frac{1}{|x-1|} = \infty
$$

23.
$$
\lim_{x \to 2} \frac{x-3}{x^2 - 4x + 4} = \lim_{x \to 2} \frac{x-3}{(x-2)^2} = -\infty
$$

24.
$$
\lim_{x \to 1+} \frac{\sqrt{x^2 - x}}{x - x^2} = \lim_{x \to 1+} \frac{-1}{\sqrt{x^2 - x}} = -\infty
$$

25.
$$
\lim_{x \to \infty} \frac{x + x^3 + x^5}{1 + x^2 + x^3}
$$

$$
= \lim_{x \to \infty} \frac{\frac{1}{x^2} + 1 + x^2}{\frac{1}{x^3} + \frac{1}{x} + 1} = \infty
$$

26.
$$
\lim_{x \to \infty} \frac{x^3 + 3}{x^2 + 2} = \lim_{x \to \infty} \frac{x + \frac{3}{x^2}}{1 + \frac{2}{x^2}} = \infty
$$

27.
$$
\lim_{x \to \infty} \frac{x\sqrt{x+1} (1 - \sqrt{2x+3})}{7 - 6x + 4x^2}
$$

=
$$
\lim_{x \to \infty} \frac{x^2 \left(\sqrt{1 + \frac{1}{x}} \right) \left(\frac{1}{\sqrt{x}} - \sqrt{2 + \frac{3}{x}} \right)}{x^2 \left(\frac{7}{x^2} - \frac{6}{x} + 4 \right)}
$$

=
$$
\frac{1(-\sqrt{2})}{4} = -\frac{1}{4}\sqrt{2}
$$

28.
$$
\lim_{x \to \infty} \left(\frac{x^2}{x+1} - \frac{x^2}{x-1} \right) = \lim_{x \to \infty} \frac{-2x^2}{x^2 - 1} = -2
$$

29.
$$
\lim_{x \to -\infty} \left(\sqrt{x^2 + 2x} - \sqrt{x^2 - 2x} \right)
$$

\n
$$
= \lim_{x \to -\infty} \frac{(x^2 + 2x) - (x^2 - 2x)}{\sqrt{x^2 + 2x} + \sqrt{x^2 - 2x}}
$$

\n
$$
= \lim_{x \to -\infty} \frac{4x}{(-x) \left(\sqrt{1 + \frac{2}{x}} + \sqrt{1 - \frac{2}{x}} \right)}
$$

\n
$$
= -\frac{4}{1 + 1} = -2
$$

\n30.
$$
\lim_{x \to \infty} \left(\sqrt{x^2 + 2x} - \sqrt{x^2 - 2x} \right)
$$

\n
$$
= \lim_{x \to \infty} \frac{x^2 + 2x - x^2 + 2x}{\sqrt{x^2 + 2x} + \sqrt{x^2 - 2x}}
$$

\n
$$
= \lim_{x \to \infty} \frac{4x}{\sqrt{1 + \frac{2}{x}} + x\sqrt{1 - \frac{2}{x}}}
$$

\n
$$
= \lim_{x \to \infty} \frac{4}{\sqrt{1 + \frac{2}{x}} + \sqrt{1 - \frac{2}{x}}} = \frac{4}{2} = 2
$$

31.
$$
\lim_{x \to \infty} \frac{1}{\sqrt{x^2 - 2x} - x}
$$

\n
$$
= \lim_{x \to \infty} \frac{\sqrt{x^2 - 2x} + x}{(\sqrt{x^2 - 2x} + x)(\sqrt{x^2 - 2x} - x)}
$$

\n
$$
= \lim_{x \to \infty} \frac{\sqrt{x^2 - 2x} + x}{x^2 - 2x - x^2}
$$

\n
$$
= \lim_{x \to \infty} \frac{x(\sqrt{1 - (2/x)} + 1)}{-2x} = \frac{2}{-2} = -1
$$

32.
$$
\lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 2x} - x} = \lim_{x \to -\infty} \frac{1}{|x|(\sqrt{1 + (2/x)} + 1)} = 0
$$

33. By Exercise 35, $y = -1$ is a horizontal asymptote (at the right) of $y = \frac{1}{\sqrt{x^2 - 2x} - x}$. Since

$$
\lim_{x \to -\infty} \frac{1}{\sqrt{x^2 - 2x} - x} = \lim_{x \to -\infty} \frac{1}{|x|(\sqrt{1 - (2/x)} + 1)} = 0,
$$

- $y = 0$ is also a horizontal asymptote (at the left). Now $\sqrt{x^2 - 2x} - x = 0$ if and only if $x^2 - 2x = x^2$, that is, if and only if $x = 0$. The given function is undefined at $x = 0$, and where $x^2 - 2x < 0$, that is, on the interval [0, 2]. Its only vertical asymptote is at $x = 0$, where lim_{*x*→0−} $\frac{1}{\sqrt{x^2 - 2x} - x} = \infty$.
- **34.** Since $\lim_{x \to \infty} \frac{2x 5}{|3x + 2|} = \frac{2}{3}$ and $\lim_{x \to \infty} \frac{2x 5}{|3x + 2|} = -\frac{2}{3}$, $y = \pm (2/3)$ are horizontal asymptotes of $y = (2x - 5)/|3x + 2|$. The only vertical asymptote is $x = -2/3$, which makes the denominator zero.

35.
$$
\lim_{x \to 0+} f(x) = 1
$$

- **38.** $\lim_{x \to 2^{-}} f(x) = 2$
- **39.** $\lim_{x \to 3^-} f(x) = -\infty$
- **40.** lim $f(x) = \infty$ *x*→3+
- **41.** $\lim_{x \to 4+} f(x) = 2$
- **42.** $\lim_{x \to 4^{-}} f(x) = 0$
- **43.** $\lim_{x \to 5^{-}} f(x) = -1$
- **44.** $\lim_{x \to 5+} f(x) = 0$
- **45.** $\lim_{x \to \infty} f(x) = 1$
- **46.** horizontal: $y = 1$; vertical: $x = 1$, $x = 3$.
- **47.** $\lim_{x \to 3+} |x| = 3$
- **48.** $\lim |x| = 2$ *x*→3−
- **49.** $\lim_{x\to 3} |x|$ does not exist
- **50.** $\lim_{x \to 2.5} |x| = 2$
- **51.** $\lim_{x \to 0+} [2-x] = \lim_{x \to 2-} [x] = 1$
- **52.** $\lim_{x \to -3-} |x| = -4$
- **53.** $\lim_{t \to t_0} C(t) = C(t_0)$ except at integers t_0 $\lim_{t \to t_0^-} C(t) = C(t_0)$ everywhere $\lim_{t \to t_0+} C(t) = C(t_0)$ if $t_0 \neq \text{an integer}$ $\lim_{t \to t_0^+} C(t) = C(t_0) + 1.5$ if t_0 is an integer

- **54.** $\lim_{x \to 0+} f(x) = L$ (a) If *f* is even, then $f(-x) = f(x)$. Hence, $\lim_{x \to 0^{-}} f(x) = L$. (b) If *f* is odd, then $f(-x) = -f(x)$. Therefore, $\lim_{x \to 0^-} f(x) = -L$.
- **55.** $\lim_{x \to 0+} f(x) = A$, $\lim_{x \to 0-} f(x) = B$
	- a) $\lim_{x \to 0+} f(x^3 x) = B$ (since $x^3 x < 0$ if $0 < x < 1$)
	- b) $\lim_{x \to 0^{-}} f(x^3 x) = A$ (because $x^3 x > 0$ if $-1 < x < 0$
	- c) $\lim_{x \to 0^-} f(x^2 x^4) = A$
	- d) $\lim_{x \to 0+} f(x^2 x^4) = A$ (since $x^2 x^4 > 0$ for $0 < |x| < 1$

Section 1.4 Continuity (page 85)

1. *g* is continuous at $x = -2$, discontinuous at $x = -1$, 0, 1, and 2. It is left continuous at $x = 0$ and right continuous at $x = 1$.

2. *g* has removable discontinuities at $x = -1$ and $x = 2$. Redefine $g(-1) = 1$ and $g(2) = 0$ to make g continuous at those points.

- **3.** *g* has no absolute maximum value on [−2, 2]. It takes on every positive real value less than 2, but does not take the value 2. It has absolute minimum value 0 on that interval, assuming this value at the three points $x = -2$, $x = -1$, and $x = 1$.
- **4.** Function f is discontinuous at $x = 1$, 2, 3, 4, and 5. f is left continuous at $x = 4$ and right continuous at $x = 2$ and $x = 5$.

- **5.** *f* cannot be redefined at $x = 1$ to become continuous there because $\lim_{x\to 1} f(x)$ (= ∞) does not exist. (∞ is not a real number.)
- **6.** sgn *x* is not defined at $x = 0$, so cannot be either continuous or discontinuous there. (Functions can be continuous or discontinuous only at points in their domains!)
- **7.** $f(x) = \begin{cases} x & \text{if } x < 0 \\ x^2 & \text{if } x \ge 0 \end{cases}$ is continuous everywhere on the real line, even at $x = 0$ where its left and right limits are both 0, which is $f(0)$.
- **8.** $f(x) = \begin{cases} x & \text{if } x < -1 \\ x^2 & \text{if } x \ge -1 \end{cases}$ is continuous everywhere on the real line except at $x = -1$ where it is right continuous, but not left continuous.

$$
\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} x = -1 \neq 1
$$

= $f(-1) = \lim_{x \to -1^{+}} x^{2} = \lim_{x \to -1^{+}} f(x).$

- **9.** $f(x) = \begin{cases} 1/x^2 & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ is continuous everywhere except at $x = 0$, where it is neither left nor right continuous since it does not have a real limit there.
- **10.** $f(x) = \begin{cases} x^2 & \text{if } x \le 1 \\ 0.987 & \text{if } x > 1 \end{cases}$ is continuous everywhere except at $x = 1$, where it is left continuous but not right continuous because $0.987 \neq 1$. Close, as they say, but no cigar.
- **11.** The least integer function $\lceil x \rceil$ is continuous everywhere on $\mathbb R$ except at the integers, where it is left continuous but not right continuous.
- **12.** $C(t)$ is discontinuous only at the integers. It is continuous on the left at the integers, but not on the right.
- **13.** Since $\frac{x^2 4}{x 2} = x + 2$ for $x \neq 2$, we can define the function to be $2 + 2 = 4$ at $x = 2$ to make it continuous there. The continuous extension is $x + 2$.
- **14.** Since $\frac{1+t^3}{1-t^2} = \frac{(1+t)(1-t+t^2)}{(1+t)(1-t)} = \frac{1-t+t^2}{1-t}$ $\frac{t}{1-t}$ for $t \neq -1$, we can define the function to be 3/2 at $t = -1$ to make it continuous there. The continuous extension is $1 - t + t^2$ $\frac{1-t}{1-t}$.
- **15.** Since $\frac{t^2 5t + 6}{t^2 t 6} = \frac{(t 2)(t 3)}{(t + 2)(t 3)} = \frac{t 2}{t + 2}$ for $t \neq 3$, we can define the function to be $1/5$ at $t = 3$ to make it continuous there. The continuous extension is $\frac{t-2}{t-2}$ $\frac{t}{t+2}$.
- **16.** Since
	- $\frac{x^2 2}{x^4 4} = \frac{(x \sqrt{2})(x + \sqrt{2})}{(x \sqrt{2})(x + \sqrt{2})(x^2 + 2)}$ Since
 $\frac{x^2 - 2}{x^4 - 4} = \frac{(x - \sqrt{2})(x + \sqrt{2})}{(x - \sqrt{2})(x + \sqrt{2})(x^2 + 2)} = \frac{x + \sqrt{2}}{(x + \sqrt{2})(x^2 + 2)}$

	for $x \neq \sqrt{2}$, we can define the function to be 1/4 at $x = \sqrt{2}$ to make it continuous there. The continuous $x = \sqrt{2}$ to make it continuously $x + \sqrt{2}$
extension is $\frac{x + \sqrt{2}}{2}$ $\frac{x+1}{(x+\sqrt{2})(x^2+2)}$. (Note: cancelling the $(x + \sqrt{2})(x^2 + 2)$
x + $\sqrt{2}$ factors provides a further continuous extension to

 $x + \sqrt{2}$ ta
 $x = -\sqrt{2}$.

- **17.** $\lim_{x\to 2^+} f(x) = k 4$ and $\lim_{x\to 2^-} f(x) = 4 = f(2)$. Thus *f* will be continuous at $x = 2$ if $k - 4 = 4$, that is, if $k = 8$.
- **18.** $\lim_{x \to 3^-} g(x) = 3 m$ and lim_{*x*→3+} $g(x) = 1 - 3m = g(3)$. Thus *g* will be continuous at $x = 3$ if $3 - m = 1 - 3m$, that is, if $m = -1$.
- **19.** x^2 has no maximum value on $-1 < x < 1$; it takes all positive real values less than 1, but it does not take the value 1. It does have a minimum value, namely 0 taken on at $x = 0$.
- **20.** The Max-Min Theorem says that a continuous function defined on a closed, finite interval must have maximum and minimum values. It does not say that other functions cannot have such values. The Heaviside function is not continuous on $[-1, 1]$ (because it is discontinuous at $x = 0$, but it still has maximum and minimum values. Do not confuse a theorem with its converse.
- **21.** Let the numbers be *x* and *y*, where $x \ge 0$, $y \ge 0$, and $x + y = 8$. If *P* is the product of the numbers, then

$$
P = xy = x(8 - x) = 8x - x2 = 16 - (x - 4)2.
$$

Therefore $P \le 16$, so *P* is bounded. Clearly $P = 16$ if $x = y = 4$, so the largest value of *P* is 16.

22. Let the numbers be *x* and *y*, where $x \ge 0$, $y \ge 0$, and $x + y = 8$. If *S* is the sum of their squares then

$$
S = x2 + y2 = x2 + (8 - x)2
$$

= 2x² - 16x + 64 = 2(x - 4)² + 32.

Since $0 \le x \le 8$, the maximum value of *S* occurs at $x = 0$ or $x = 8$, and is 64. The minimum value occurs at $x = 4$ and is 32.

- **23.** Since $T = 100 30x + 3x^2 = 3(x 5)^2 + 25$, *T* will be minimum when $x = 5$. Five programmers should be assigned, and the project will be completed in 25 days.
- **24.** If *x* desks are shipped, the shipping cost per desk is

$$
C = \frac{245x - 30x^2 + x^3}{x} = x^2 - 30x + 245
$$

$$
= (x - 15)^2 + 20.
$$

This cost is minimized if $x = 15$. The manufacturer should send 15 desks in each shipment, and the shipping cost will then be \$20 per desk.

- **25.** $f(x) = \frac{x^2 1}{x} = \frac{(x 1)(x + 1)}{x}$ $f = 0$ at $x = \pm 1$. *f* is not defined at 0. $f(x) > 0$ on (−1, 0) and (1, ∞). $f(x) < 0$ on $(-\infty, -1)$ and $(0, 1)$.
- **26.** $f(x) = x^2 + 4x + 3 = (x + 1)(x + 3)$ $f(x) > 0$ on $(-\infty, -3)$ and $(-1, \infty)$ $f(x) < 0$ on $(-3, -1)$.

27.
$$
f(x) = \frac{x^2 - 1}{x^2 - 4} = \frac{(x - 1)(x + 1)}{(x - 2)(x + 2)}
$$

\n $f = 0$ at $x = \pm 1$.
\n f is not defined at $x = \pm 2$.
\n $f(x) > 0$ on $(-\infty, -2)$, $(-1, 1)$, and $(2, \infty)$.
\n $f(x) < 0$ on $(-2, -1)$ and $(1, 2)$.

28.
$$
f(x) = \frac{x^2 + x - 2}{x^3} = \frac{(x + 2)(x - 1)}{x^3}
$$

$$
f(x) > 0 \text{ on } (-2, 0) \text{ and } (1, \infty)
$$

$$
f(x) < 0 \text{ on } (-\infty, -2) \text{ and } (0, 1).
$$

- **29.** $f(x) = x^3 + x 1$, $f(0) = -1$, $f(1) = 1$. Since *f* is continuous and changes sign between 0 and 1, it must be zero at some point between 0 and 1 by IVT.
- **30.** $f(x) = x^3 15x + 1$ is continuous everywhere. $f(-4) = -3$, $f(-3) = 19$, $f(1) = -13$, $f(4) = 5$. Because of the sign changes f has a zero between -4 and −3, another zero between −3 and 1, and another between 1 and 4.
- **31.** $F(x) = (x a)^2(x b)^2 + x$. Without loss of generality, we can assume that $a < b$. Being a polynomial, *F* is continuous on [a , b]. Also $F(a) = a$ and $F(b) = b$. Since $a < \frac{1}{2}(a + b) < b$, the Intermediate-Value Theorem guarantees that there is an x in (a, b) such that $F(x) = (a + b)/2.$
- **32.** Let $g(x) = f(x) x$. Since $0 \le f(x) \le 1$ if $0 \le x \le 1$, therefore, $g(0) \ge 0$ and $g(1) \le 0$. If $g(0) = 0$ let $c = 0$, or if $g(1) = 0$ let $c = 1$. (In either case $f(c) = c$.) Otherwise, $g(0) > 0$ and $g(1) < 0$, and, by IVT, there exists *c* in (0, 1) such that $g(c) = 0$, i.e., $f(c) = c$.
- **33.** The domain of an even function is symmetric about the *y*-axis. Since *f* is continuous on the right at $x = 0$, therefore it must be defined on an interval [0, *h*] for some $h > 0$. Being even, f must therefore be defined on $[-h, h]$. If $x = -y$, then

$$
\lim_{x \to 0-} f(x) = \lim_{y \to 0+} f(-y) = \lim_{y \to 0+} f(y) = f(0).
$$

Thus, f is continuous on the left at $x = 0$. Being continuous on both sides, it is therefore continuous.

34. *f* odd ⇔ $f(-x) = -f(x)$ *f* continuous on the right \Leftrightarrow $\lim_{x \to 0+} f(x) = f(0)$ Therefore, letting $t = -x$, we obtain

$$
\lim_{x \to 0^-} f(x) = \lim_{t \to 0^+} f(-t) = \lim_{t \to 0^+} -f(t)
$$

$$
= -f(0) = f(-0) = f(0).
$$

Therefore *f* is continuous at 0 and $f(0) = 0$.

- **35.** max 1.593 at −0.831, min −0.756 at 0.629
- **36.** max 0.133 at *x* = 1.437; min −0.232 at *x* = −1.805
- **37.** max 10.333 at $x = 3$; min 4.762 at $x = 1.260$
- **38.** max 1.510 at $x = 0.465$; min 0 at $x = 0$ and $x = 1$
- **39.** root $x = 0.682$
- 40. root $x = 0.739$
- **41.** roots $x = -0.637$ and $x = 1.410$
- **42.** roots *x* = −0.7244919590 and *x* = 1.220744085
- **43.** fsolve gives an approximation to the single real root to 10 significant figures; solve gives the three roots (including a complex conjugate pair) in exact form involving the quantity $\left(108 + 12\sqrt{69}\right)^{1/3}$; evalf(solve) gives approximations to the three roots using 10 significant figures for the real and imaginary parts.

Section 1.5 The Formal Definition of Limit (page 90)

1. We require $39.9 \le L \le 40.1$. Thus

$$
39.9 \le 39.6 + 0.025T \le 40.1
$$

$$
0.3 \le 0.025T \le 0.5
$$

$$
12 \le T \le 20.
$$

The temperature should be kept between $12°C$ and $20°C$.

- **2.** Since 1.2% of 8,000 is 96, we require the edge length *x* of the cube to satisfy 7904 $\leq x^3 \leq 8096$. It is sufficient that $19.920 \le x \le 20.079$. The edge of the cube must be within 0.079 cm of 20 cm.
- **3.** $3 0.02 < 2x 1 < 3 + 0.02$ $3.98 < 2x < 4.02$ $1.99 \le x \le 2.01$
- **4.** $4 0.1 \le x^2 \le 4 + 0.1$ $1.9749 < x < 2.0024$

5.
$$
1 - 0.1 \le \sqrt{x} \le 1.1
$$

 $0.81 \le x \le 1.21$

6.
$$
-2 - 0.01 \le \frac{1}{x} \le -2 + 0.01
$$

$$
-\frac{1}{2.01} \ge x \ge -\frac{1}{1.99}
$$

$$
-0.5025 \le x \le -0.4975
$$

- **7.** We need $-0.03 \le (3x+1)-7 \le 0.03$, which is equivalent to $-0.01 \le x - 2 \le 0.01$ Thus $δ = 0.01$ will do.
- **8.** We need $-0.01 < \sqrt{2x + 3} 3 < 0.01$. Thus

$$
2.99 \le \sqrt{2x + 3} \le 3.01
$$

8.9401 \le 2x + 3 \le 9.0601
2.97005 \le x \le 3.03005
3 - 0.02995 \le x - 3 \le 0.03005.

Here $\delta = 0.02995$ will do.

- **9.** We need $8 0.2 \le x^3 \le 8.2$, or $1.9832 \le x \le 2.0165$. Thus, we need $-0.0168 \le x - 2 \le 0.0165$. Here $\delta = 0.0165$ will do.
- **10.** We need $1 0.05 \le 1/(x + 1) \le 1 + 0.05$, or $1.0526 \ge x + 1 \ge 0.9524$. This will occur if $-0.0476 \le x \le 0.0526$. In this case we can take $\delta = 0.0476$.
- **11.** To be proved: $\lim_{x \to 1} (3x + 1) = 4$. Proof: Let $\epsilon > 0$ be given. Then $|(3x+1)-4| < \epsilon$ holds if $3|x-1| < \epsilon$, and so if $|x-1| < \delta = \epsilon/3$. This confirms the limit.
- **12.** To be proved: $\lim_{x \to 2} (5 2x) = 1$. Proof: Let $\epsilon > 0$ be given. Then $|(5 - 2x) - 1| < \epsilon$ holds if $|2x-4| < \epsilon$, and so if $|x-2| < \delta = \epsilon/2$. This confirms the limit.
- **13.** To be proved: $\lim_{x \to 0} x^2 = 0$. Let $\epsilon > 0$ be given. Then $|x^2 - 0| < \epsilon$ holds if $|x-0|=|x|<\delta=\sqrt{\epsilon}.$
- **14.** To be proved: $\lim_{x \to 2} \frac{x-2}{1+x^2} = 0.$ Proof: Let $\epsilon > 0$ be given. Then

$$
\left| \frac{x-2}{1+x^2} - 0 \right| = \frac{|x-2|}{1+x^2} \le |x-2| < \epsilon
$$

provided $|x-2| < \delta = \epsilon$.

15. To be proved: $\lim_{x \to 1/2} \frac{1 - 4x^2}{1 - 2x} = 2$. Proof: Let $\epsilon > 0$ be given. Then if $x \neq 1/2$ we have

$$
\left|\frac{1-4x^2}{1-2x} - 2\right| = |(1+2x) - 2| = |2x - 1| = 2\left|x - \frac{1}{2}\right| < \epsilon
$$

provided $|x - \frac{1}{2}| < \delta = \epsilon/2$.

16. To be proved: $\lim_{x \to -2} \frac{x^2 + 2x}{x + 2} = -2.$ Proof: Let $\epsilon > 0$ be given. For $x \neq -2$ we have

$$
\left| \frac{x^2 + 2x}{x + 2} - (-2) \right| = |x + 2| < \epsilon
$$

provided $|x + 2| < \delta = \epsilon$. This completes the proof.

17. To be proved: $\lim_{x \to 1} \frac{1}{x+1} = \frac{1}{2}$. Proof: Let $\epsilon > 0$ be given. We have

$$
\left|\frac{1}{x+1} - \frac{1}{2}\right| = \left|\frac{1-x}{2(x+1)}\right| = \frac{|x-1|}{2|x+1|}.
$$

If $|x-1| < 1$, then $0 < x < 2$ and $1 < x + 1 < 3$, so that $|x+1| > 1$. Let $\delta = \min(1, 2\epsilon)$. If $|x-1| < \delta$, then

$$
\left|\frac{1}{x+1} - \frac{1}{2}\right| = \frac{|x-1|}{2|x+1|} < \frac{2\epsilon}{2} = \epsilon.
$$

This establishes the required limit.

18. To be proved: $\lim_{x \to -1} \frac{x+1}{x^2-1} = -\frac{1}{2}$. Proof: Let $\epsilon > 0$ be given. If $x \neq -1$, we have

$$
\left|\frac{x+1}{x^2-1} - \frac{1}{2}\right| = \left|\frac{1}{x-1} - \left(-\frac{1}{2}\right)\right| = \frac{|x+1|}{2|x-1|}.
$$

If $|x+1| < 1$, then $-2 < x < 0$, so $-3 < x - 1 < -1$ and $|x-1| > 1$. Ler $\delta = \min(1, 2\epsilon)$. If $0 < |x-(-1)| < \delta$ then $|x - 1| > 1$ and $|x + 1| < 2\epsilon$. Thus

$$
\left|\frac{x+1}{x^2-1} - \frac{1}{2}\right| = \frac{|x+1|}{2|x-1|} < \frac{2\epsilon}{2} = \epsilon.
$$

This completes the required proof.

19. To be proved: $\lim_{x \to 1} \sqrt{x} = 1$. Proof: Let $\epsilon > 0$ be given. We have

$$
|\sqrt{x} - 1| = \left|\frac{x - 1}{\sqrt{x} + 1}\right| \le |x - 1| < \epsilon
$$

provided $|x-1| < \delta = \epsilon$. This completes the proof.

20. To be proved: $\lim_{x \to 2} x^3 = 8$.

Proof: Let $\epsilon > 0$ be given. We have $|x^3 - 8| = |x - 2||x^2 + 2x + 4|$. If $|x - 2| < 1$, then $1 \lt x \lt 3$ and $x^2 \lt 9$. Therefore $|x^2 + 2x + 4| \leq 9 + 2 \times 3 + 4 = 19$. If $|x - 2| < \delta = \min(1, \frac{\epsilon}{19})$, then

$$
|x^3 - 8| = |x - 2||x^2 + 2x + 4| < \frac{\epsilon}{19} \times 19 = \epsilon.
$$

This completes the proof.

21. We say that $\lim_{x\to a^-} f(x) = L$ if the following condition holds: for every number $\epsilon > 0$ there exists a number $\delta > 0$, depending on ϵ , such that

 $a - \delta < x < a$ implies $|f(x) - L| < \epsilon$.

22. We say that $\lim_{x \to -\infty} f(x) = L$ if the following condition holds: for every number $\epsilon > 0$ there exists a number $R > 0$, depending on ϵ , such that

$$
x < -R \quad \text{implies} \quad |f(x) - L| < \epsilon.
$$

23. We say that $\lim_{x \to a} f(x) = -\infty$ if the following condition holds: for every number $B > 0$ there exists a number $\delta > 0$, depending on *B*, such that

 $0 < |x - a| < \delta$ implies $f(x) < -B$.

24. We say that $\lim_{x\to\infty} f(x) = \infty$ if the following condition holds: for every number $B > 0$ there exists a number $R > 0$, depending on *B*, such that

$$
x > R \quad \text{implies} \quad f(x) > B.
$$

25. We say that $\lim_{x\to a+} f(x) = -\infty$ if the following condition holds: for every number $B > 0$ there exists a number $\delta > 0$, depending on *R*, such that

$$
a < x < a + \delta \quad \text{implies} \quad f(x) < -B.
$$

26. We say that $\lim_{x\to a^-} f(x) = \infty$ if the following condition holds: for every number $B > 0$ there exists a number $\delta > 0$, depending on *B*, such that

$$
a - \delta < x < a \quad \text{implies} \quad f(x) > B.
$$

- **27.** To be proved: $\lim_{x \to 1+} \frac{1}{x-1} = \infty$. Proof: Let $B > 0$ be given. We have $\frac{1}{x-1} > B$ if $0 < x - 1 < 1/B$, that is, if $1 < x < 1 + \delta$, where $\delta = 1/B$. This completes the proof.
- **28.** To be proved: $\lim_{x \to 1^-} \frac{1}{x-1} = -\infty$. Proof: Let *B* > 0 be given. We have $\frac{1}{x-1} < -B$ if $0 > x - 1 > -1/B$, that is, if $1 - \delta < x < 1$, where $\delta = 1/B$.. This completes the proof.
- **29.** To be proved: $\lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1}} = 0$. Proof: Let $\epsilon > 0$ be given. We have

$$
\left| \frac{1}{\sqrt{x^2 + 1}} \right| = \frac{1}{\sqrt{x^2 + 1}} < \frac{1}{x} < \epsilon
$$

provided $x > R$, where $R = 1/\epsilon$. This completes the proof.

- **30.** To be proved: $\lim_{x\to\infty} \sqrt{x} = \infty$. Proof: Let $B > 0$ be given. We have $\sqrt{x} > B$ if $x > R$ where $R = B^2$. This completes the proof.
- **31.** To be proved: if $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} f(x) = M$, then $L = M$. Proof: Suppose $L \neq M$. Let $\epsilon = |L - M|/3$. Then $\epsilon > 0$. Since $\lim_{x \to \infty} f(x) = L$, there exists $\delta_1 > 0$ such that $| f(x) - L | < \epsilon$ if $|x - a| < \delta_1$. Since lim $f(x) = M$, there exists $\delta_2 > 0$ such that $|f(x) - M| < \epsilon$ if $|x - a| < \delta_2$. Let $\delta = \min(\delta_1, \delta_2)$. If $|x - a| < \delta$, then

$$
3\epsilon = |L - M| = |(f(x) - M) + (L - f(x))|
$$

\n
$$
\leq |f(x) - M| + |f(x) - L| < \epsilon + \epsilon = 2\epsilon.
$$

This implies that $3 < 2$, a contradiction. Thus the original assumption that $L \neq M$ must be incorrect. Therefore $L = M$.

32. To be proved: if $\lim_{x \to a} g(x) = M$, then there exists $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|g(x)| < 1 + |M|$. Proof: Taking $\epsilon = 1$ in the definition of limit, we obtain a number $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|g(x) - M| < 1$. It follows from this latter inequality that

$$
|g(x)| = |(g(x) - M) + M| \le |G(x) - M| + |M| < 1 + |M|.
$$

33. To be proved: if $\lim f(x) = L$ and $\lim g(x) = M$, then $\lim_{x \to a} f(x)g(x) = LM.$ Proof: Let $\epsilon > 0$ be given. Since $\lim f(x) = L$, there exists $\delta_1 > 0$ such that $|f(x) - L| < \epsilon/(2(1 + |M|))$ if $0 < |x - a| < \delta_1$. Since $\lim g(x) = M$, there exists $\delta_2 > 0$ such that $|g(x) - M| < \epsilon/(2(1 + |L|))$ if $0 < |x - a| < \delta_2$. By Exercise 32, there exists $\delta_3 > 0$ such that $|g(x)| < 1 + |M|$ if $0 < |x - a| < \delta_3$. Let $\delta = \min(\delta_1, \delta_2, \delta_3)$. If $|x - a| < \delta$, then

$$
|f(x)g(x) - LM| = |f(x)g(x) - Lg(x) + Lg(x) - LM|
$$

= |(f(x) - L)g(x) + L(g(x) - M)|

$$
\le |(f(x) - L)g(x)| + |L(g(x) - M)|
$$

= |f(x) - L||g(x)| + |L||g(x) - M|

$$
< \frac{\epsilon}{2(1 + |M|)}(1 + |M|) + |L|\frac{\epsilon}{2(1 + |L|)}
$$

$$
\le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
$$

Thus $\lim_{x \to a} f(x)g(x) = LM$.

34. To be proved: if $\lim g(x) = M$ where $M \neq 0$, then there exists $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|g(x)| > |M|/2.$ Proof: By the definition of limit, there exists $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|g(x) - M| < |M|/2$ (since $|M|/2$ is a positive number). This latter inequality implies that

$$
|M| = |g(x) + (M - g(x))| \le |g(x)| + |g(x) - M| < |g(x)| + \frac{|M|}{2}.
$$

It follows that $|g(x)| > |M| - (|M|/2) = |M|/2$, as required.

35. To be proved: if $\lim g(x) = M$ where $M \neq 0$, then

lim *x*→*a* $\frac{1}{g(x)} = \frac{1}{M}.$ Proof: Let $\epsilon > 0$ be given. Since $\lim_{x \to a} g(x) = M \neq 0$, there exists $\delta_1 > 0$ such that $|g(x) - M| < \epsilon |M|^2/2$ if $0 < |x - a| < \delta_1$. By Exercise 34, there exists $\delta_2 > 0$ such that $|g(x)| > |M|/2$ if $0 < |x - a| < \delta_3$. Let $\delta = \min(\delta_1, \delta_2)$. If $0 < |x - a| < \delta$, then

$$
\left|\frac{1}{g(x)} - \frac{1}{M}\right| = \frac{|M - g(x)|}{|M||g(x)|} < \frac{\epsilon |M|^2}{2} \frac{2}{|M|^2} = \epsilon.
$$

This completes the proof.

36. To be proved: if $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} f(x) = M \neq 0$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$. Proof: By Exercises 33 and 35 we have

$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} f(x) \times \frac{1}{g(x)} = L \times \frac{1}{M} = \frac{L}{M}.
$$

- **37.** To be proved: if *f* is continuous at *L* and $\lim_{x \to c} g(x) = L$, then $\lim f(g(x)) = f(L)$. Proof: Let $\epsilon > 0$ be given. Since f is continuous at L, there exists a number $\gamma > 0$ such that if $|y - L| < \gamma$, then $| f(y) - f(L) | < \epsilon$. Since $\lim_{x \to c} g(x) = L$, there exists δ > 0 such that if 0 < |*x* − *c*| < δ, then $|g(x) - L|$ < γ. Taking $y = g(x)$, it follows that if $0 < |x - c| < \delta$, then $|f(g(x)) - f(L)| < \epsilon$, so that $\lim_{x \to c} f(g(x)) = f(L)$.
- **38.** To be proved: if $f(x) \leq g(x) \leq h(x)$ in an open interval containing $x = a$ (say, for $a - \delta_1 < x < a + \delta_1$, where $\delta_1 > 0$, and if $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then also $\lim_{x\to a} g(x) = L$. Proof: Let $\epsilon > 0$ be given. Since $\lim_{x \to a} f(x) = L$, there exists $\delta_2 > 0$ such that if $0 < |x - a| < \delta_2$, then $|f(x) - L| < \epsilon/3$. Since $\lim_{x \to a} h(x) = L$, there exists $\delta_3 > 0$ such that if $0 < |x - a| < \delta_3$, then $|h(x) - L| < \epsilon/3$. Let $\delta = \min(\delta_1, \delta_2, \delta_3)$. If $0 < |x - a| < \delta$, then

$$
|g(x) - L| = |g(x) - f(x) + f(x) - L|
$$

\n
$$
\leq |g(x) - f(x)| + |f(x) - L|
$$

\n
$$
\leq |h(x) - f(x)| + |f(x) - L|
$$

\n
$$
= |h(x) - L + L - f(x)| + |f(x) - L|
$$

\n
$$
\leq |h(x) - L| + |f(x) - L| + |f(x) - L|
$$

\n
$$
< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.
$$

Thus $\lim_{x\to a} g(x) = L$.

Review Exercises 1 (page 91)

1. The average rate of change of x^3 over [1, 3] is

$$
\frac{3^3 - 1^3}{3 - 1} = \frac{26}{2} = 13.
$$

2. The average rate of change of $1/x$ over $[-2, -1]$ is

$$
\frac{(1/(-1)) - (1/(-2))}{-1 - (-2)} = \frac{-1/2}{1} = -\frac{1}{2}.
$$

3. The rate of change of x^3 at $x = 2$ is

$$
\lim_{h \to 0} \frac{(2+h)^3 - 2^3}{h} = \lim_{h \to 0} \frac{8 + 12h + 6h^2 + h^3 - 8}{h}
$$

$$
= \lim_{h \to 0} (12 + 6h + h^2) = 12.
$$

4. The rate of change of $1/x$ at $x = -3/2$ is

$$
\lim_{h \to 0} \frac{\frac{1}{-(3/2) + h} - \left(\frac{1}{-3/2}\right)}{h} = \lim_{h \to 0} \frac{\frac{2}{2h - 3} + \frac{2}{3}}{h}
$$

$$
= \lim_{h \to 0} \frac{2(3 + 2h - 3)}{3(2h - 3)h}
$$

$$
= \lim_{h \to 0} \frac{4}{3(2h - 3)} = -\frac{4}{9}.
$$

5.
$$
\lim_{x \to 1} (x^2 - 4x + 7) = 1 - 4 + 7 = 4
$$

6.
$$
\lim_{x \to 2} \frac{x^2}{1 - x^2} = \frac{2^2}{1 - 2^2} = -\frac{4}{3}
$$

7. $\lim_{x\to 1}$ $\frac{x^2}{1-x^2}$ does not exist. The denominator approaches 0 (from both sides) while the numerator does not.

8.
$$
\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 5x + 6} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{(x - 2)(x - 3)} = \lim_{x \to 2} \frac{x + 2}{x - 3} = -4
$$

9.
$$
\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 4x + 4} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{(x - 2)^2} = \lim_{x \to 2} \frac{x + 2}{x - 2}
$$
does not exist. The denominator approaches 0 (from both sides) while the numerator does not.

10.
$$
\lim_{x \to 2^-} \frac{x^2 - 4}{x^2 - 4x + 4} = \lim_{x \to 2^-} \frac{x + 2}{x - 2} = -\infty
$$

11.
$$
\lim_{x \to -2+} \frac{x^2 - 4}{x^2 + 4x + 4} = \lim_{x \to -2+} \frac{x - 2}{x + 2} = -\infty
$$

12.
$$
\lim_{x \to 4} \frac{2 - \sqrt{x}}{x - 4} = \lim_{x \to 4} \frac{4 - x}{(2 + \sqrt{x})(x - 4)} = -\frac{1}{4}
$$

13.
$$
\lim_{x \to 3} \frac{x^2 - 9}{\sqrt{x} - \sqrt{3}} = \lim_{x \to 3} \frac{(x - 3)(x + 3)(\sqrt{x} + \sqrt{3})}{x - 3}
$$

$$
= \lim_{x \to 3} (x + 3)(\sqrt{x} + \sqrt{3}) = 12\sqrt{3}
$$

14.
$$
\lim_{h \to 0} \frac{h}{\sqrt{x+3h} - \sqrt{x}} = \lim_{h \to 0} \frac{h(\sqrt{x+3h} + \sqrt{x})}{(x+3h) - x}
$$

$$
= \lim_{h \to 0} \frac{\sqrt{x+3h} + \sqrt{x}}{3} = \frac{2\sqrt{x}}{3}
$$

15.
$$
\lim_{x \to 0+} \sqrt{x - x^2} = 0
$$

- **16.** $\lim_{x\to 0}$ $\sqrt{x - x^2}$ does not exist because $\sqrt{x - x^2}$ is not defined for $x < 0$.
- 17. $\lim_{x\to 1}$ $\sqrt{x - x^2}$ does not exist because $\sqrt{x - x^2}$ is not defined for $x > 1$.

18.
$$
\lim_{x \to 1-} \sqrt{x - x^2} = 0
$$

19.
$$
\lim_{x \to \infty} \frac{1 - x^2}{3x^2 - x - 1} = \lim_{x \to \infty} \frac{(1/x^2) - 1}{3 - (1/x) - (1/x^2)} = -\frac{1}{3}
$$

20.
$$
\lim_{x \to -\infty} \frac{2x + 100}{x^2 + 3} = \lim_{x \to -\infty} \frac{(2/x) + (100/x^2)}{1 + (3/x^2)} = 0
$$

21.
$$
\lim_{x \to -\infty} \frac{x^3 - 1}{x^2 + 4} = \lim_{x \to -\infty} \frac{x - (1/x^2)}{1 + (4/x^2)} = -\infty
$$

22.
$$
\lim_{x \to \infty} \frac{x^4}{x^2 - 4} = \lim_{x \to \infty} \frac{x^2}{1 - (4/x^2)} = \infty
$$

23.
$$
\lim_{x \to 0+} \frac{1}{\sqrt{x - x^2}} = \infty
$$

24.
$$
\lim_{x \to 1/2} \frac{1}{\sqrt{x - x^2}} = \frac{1}{\sqrt{1/4}} = 2
$$

- **25.** $\lim_{x \to \infty} \sin x$ does not exist; $\sin x$ takes the values -1 and 1 in any interval (R, ∞) , and limits, if they exist, must be unique.
- **26.** lim *x*→∞ $\frac{\cos x}{x} = 0$ by the squeeze theorem, since

$$
-\frac{1}{x} \le \frac{\cos x}{x} \le \frac{1}{x} \quad \text{for all } x > 0
$$

and $\lim_{x\to\infty}$ (-1/*x*) = $\lim_{x\to\infty}$ (1/*x*) = 0.

27. $\lim_{x\to 0} x \sin \frac{1}{x} = 0$ by the squeeze theorem, since

$$
-|x| \le x \sin \frac{1}{x} \le |x| \quad \text{for all } x \ne 0
$$

and
$$
\lim_{x \to 0} (-|x|) = \lim_{x \to 0} |x| = 0
$$
.

28. $\lim_{x\to 0} \sin \frac{1}{x^2}$ does not exist; $\sin(1/x^2)$ takes the values −1 and 1 in any interval $(-\delta, \delta)$, where $\delta > 0$, and limits, if they exist, must be unique.

29.
$$
\lim_{x \to -\infty} [x + \sqrt{x^2 - 4x + 1}]
$$

\n
$$
= \lim_{x \to -\infty} \frac{x^2 - (x^2 - 4x + 1)}{x - \sqrt{x^2 - 4x + 1}}
$$

\n
$$
= \lim_{x \to -\infty} \frac{4x - 1}{x - |x|\sqrt{1 - (4/x) + (1/x^2)}}
$$

\n
$$
= \lim_{x \to -\infty} \frac{x[4 - (1/x)]}{x + x\sqrt{1 - (4/x) + (1/x^2)}}
$$

\n
$$
= \lim_{x \to -\infty} \frac{4 - (1/x)}{1 + \sqrt{1 - (4/x) + (1/x^2)}} = 2.
$$

\nNote how we have used $|x| = -x$ (in the second last

line), because $x \to -\infty$.

$$
30. \quad \lim_{x \to \infty} [x + \sqrt{x^2 - 4x + 1}] = \infty + \infty = \infty
$$

- **31.** $f(x) = x^3 4x^2 + 1$ is continuous on the whole real line and so is discontinuous nowhere.
- **32.** $f(x) = \frac{x}{x+1}$ is continuous everywhere on its domain, which consists of all real numbers except $x = -1$. It is discontinuous nowhere.
- **33.** $f(x) = \begin{cases} x^2 & \text{if } x > 2 \\ x & \text{if } x \le 2 \end{cases}$ is defined everywhere and discontinuous at $x = 2$, where it is, however, left continuous since $\lim_{x \to 2^-} f(x) = 2 = f(2)$.
- **34.** $f(x) = \begin{cases} x^2 & \text{if } x > 1 \\ 0 & \text{if } x \neq 1 \end{cases}$ $\frac{x}{x}$ if $x \le 1$ is defined and continuous everywhere, and so discontinuous nowhere. Observe that lim_{*x*→1−} $f(x) = 1 = \lim_{x \to 1+} f(x)$.
- **35.** $f(x) = H(x 1) = \begin{cases} 1 & \text{if } x \ge 1 \\ 0 & \text{if } x < 1 \end{cases}$ is defined everywhere and discontinuous at $x = 1$ where it is, however, right continuous.
- **36.** $f(x) = H(9 x^2) = \begin{cases} 1 & \text{if } -3 \le x \le 3 \\ 0 & \text{if } x < -3 \text{ or } x > 3 \end{cases}$ is defined everywhere and discontinuous at $x = \pm 3$. It is right continuous at −3 and left continuous at 3.
- **37.** $f(x) = |x| + |x + 1|$ is defined and continuous everywhere. It is discontinuous nowhere.
- **38.** $f(x) = \begin{cases} |x|/|x+1| & \text{if } x \neq -1 \\ 1 & \text{if } x = -1 \end{cases}$ is defined everywhere and discontinuous at $x = -1$ where it is neither left nor right continuous since $\lim_{x \to -1} f(x) = \infty$, while $f(-1) = 1.$

Challenging Problems 1 (page 92)

1. Let $0 < a < b$. The average rate of change of x^3 over $[a, b]$ is

$$
\frac{b^3 - a^3}{b - a} = b^2 + ab + a^2.
$$

The instantaneous rate of change of x^3 at $x = c$ is

$$
\lim_{h \to 0} \frac{(c+h)^3 - c^3}{h} = \lim_{h \to 0} \frac{3c^2h + 3ch^2 + h^3}{h} = 3c^2.
$$

If $c = \sqrt{(a^2 + ab + b^2)/3}$, then $3c^2 = a^2 + ab + b^2$, so the average rate of change over $[a, b]$ is the instantaneous rate of change at $\sqrt{(a^2 + ab + b^2)/3}$. Claim: $\sqrt{(a^2 + ab + b^2)/3} > (a + b)/2$.

Proof: Since $a^2 - 2ab + b^2 = (a - b)^2 > 0$, we have

$$
4a^{2} + 4ab + 4b^{2} > 3a^{2} + 6ab + 3b^{2}
$$

$$
\frac{a^{2} + ab + b^{2}}{3} > \frac{a^{2} + 2ab + b^{2}}{4} = \left(\frac{a+b}{2}\right)^{2}
$$

$$
\sqrt{\frac{a^{2} + ab + b^{2}}{3}} > \frac{a+b}{2}.
$$

2. For *x* near 0 we have $|x-1|=1-x$ and $|x+1|=x+1$. Thus

$$
\lim_{x \to 0} \frac{x}{|x - 1| - |x + 1|} = \lim_{x \to 0} \frac{x}{(1 - x) - (x + 1)} = -\frac{1}{2}.
$$

3. For *x* near 3 we have $|5 - 2x| = 2x - 5$, $|x - 2| = x - 2$, $|x-5|=5-x$, and $|3x-7|=3x-7$. Thus

$$
\lim_{x \to 3} \frac{|5 - 2x| - |x - 2|}{|x - 5| - |3x - 7|} = \lim_{x \to 3} \frac{2x - 5 - (x - 2)}{5 - x - (3x - 7)}
$$

$$
= \lim_{x \to 3} \frac{x - 3}{4(3 - x)} = -\frac{1}{4}.
$$

4. Let $y = x^{1/6}$. Then we have

$$
\lim_{x \to 64} \frac{x^{1/3} - 4}{x^{1/2} - 8} = \lim_{y \to 2} \frac{y^2 - 4}{y^3 - 8}
$$

=
$$
\lim_{y \to 2} \frac{(y - 2)(y + 2)}{(y - 2)(y^2 + 2y + 4)}
$$

=
$$
\lim_{y \to 2} \frac{y + 2}{y^2 + 2y + 4} = \frac{4}{12} = \frac{1}{3}.
$$

5. Use $a - b = \frac{a^3 - b^3}{a^2 + ab + b^2}$ to handle the denominator. We have

$$
\lim_{x \to 1} \frac{\sqrt{3+x} - 2}{\sqrt[3]{7+x} - 2}
$$
\n=\n
$$
\lim_{x \to 1} \frac{3+x-4}{\sqrt{3+x} + 2} \times \frac{(7+x)^{2/3} + 2(7+x)^{1/3} + 4}{(7+x) - 8}
$$
\n=\n
$$
\lim_{x \to 1} \frac{(7+x)^{2/3} + 2(7+x)^{1/3} + 4}{\sqrt{3+x} + 2} = \frac{4+4+4}{2+2} = 3.
$$

6.
$$
r_{+}(a) = \frac{-1 + \sqrt{1 + a}}{a}, r_{-}(a) = \frac{-1 - \sqrt{1 + a}}{a}.
$$

- a) $\lim_{a\to 0} r_-(a)$ does not exist. Observe that the right limit is $-\infty$ and the left limit is ∞ .
- b) From the following table it appears that $\lim_{a\to 0} r_{+}(a) = 1/2$, the solution of the linear equation $2x - 1 = 0$ which results from setting $a = 0$ in the quadratic equation $ax^2 + 2x - 1 = 0$.

c)
$$
\lim_{a \to 0} r_{+}(a) = \lim_{a \to 0} \frac{\sqrt{1+a} - 1}{a}
$$

$$
= \lim_{a \to 0} \frac{(1+a) - 1}{a(\sqrt{1+a} + 1)}
$$

$$
= \lim_{a \to 0} \frac{1}{\sqrt{1+a} + 1} = \frac{1}{2}.
$$

- **7.** TRUE or FALSE
	- a) If $\lim_{x\to a} f(x)$ exists and $\lim_{x\to a} g(x)$ does not exist, then $\lim_{x\to a} (f(x) + g(x))$ does not exist. TRUE, because if $\lim_{x\to a} (f(x) + g(x))$ were to exist then

$$
\lim_{x \to a} g(x) = \lim_{x \to a} \left(f(x) + g(x) - f(x) \right)
$$

$$
= \lim_{x \to a} \left(f(x) + g(x) \right) - \lim_{x \to a} f(x)
$$

would also exist.

- b) If neither $\lim_{x\to a} f(x)$ nor $\lim_{x\to a} g(x)$ exists, then $\lim_{x\to a} (f(x) + g(x))$ does not exist. FALSE. Neither $\lim_{x\to 0} \frac{1}{x}$ nor $\lim_{x\to 0} (-1/x)$ exist, but $\lim_{x\to 0} ((1/x) + (-1/x)) = \lim_{x\to 0} 0 = 0$ exists.
- c) If f is continuous at a , then so is $|f|$. TRUE. For any two real numbers u and v we have

$$
\Big||u|-|v|\Big|\leq |u-v|.
$$

This follows from

$$
|u| = |u - v + v| \le |u - v| + |v|
$$
, and
\n $|v| = |v - u + u| \le |v - u| + |u| = |u - v| + |u|$.

Now we have

$$
\left| |f(x)| - |f(a)| \right| \le |f(x) - f(a)|
$$

so the left side approaches zero whenever the right side does. This happens when $x \to a$ by the continuity of *f* at *a*.

- d) If $|f|$ is continuous at *a*, then so is *f*. FALSE. The function $f(x) = \begin{cases} -1 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$ is discontinuous at $x = 0$, but $|f(x)| = 1$ everywhere, and so is continuous at $x = 0$.
- e) If $f(x) < g(x)$ in an interval around *a* and if $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$ both exist, then $L < M$.

FALSE. Let $g(x) = \begin{cases} x^2 & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ x^2 if $x \neq 0$ and let
1 if $x = 0$ $f(x) = -g(x)$. Then $f(x) < g(x)$ for all *x*, but $\lim_{x\to 0} f(x) = 0 = \lim_{x\to 0} g(x)$. (Note: under the given conditions, it is TRUE that $L \leq M$, but not necessarily true that $L < M$.)

- **8.** a) To be proved: if *f* is a continuous function defined on a closed interval $[a, b]$, then the range of f is a closed interval. Proof: By the Max-Min Theorem there exist numbers *u* and *v* in [*a*, *b*] such that $f(u) \leq f(x) \leq f(v)$ for all x in $[a, b]$. By the Intermediate-Value Theorem, $f(x)$ takes on all values between $f(u)$ and $f(v)$ at values of x between u and v , and hence at points of $[a, b]$. Thus the range of f is $[f(u), f(v)]$, a closed interval.
	- b) If the domain of the continuous function *f* is an open interval, the range of *f* can be any interval (open, closed, half open, finite, or infinite).
- **9.** $f(x) = \frac{x^2 1}{|x^2 1|} = \begin{cases} -1 & \text{if } -1 < x < 1 \\ 1 & \text{if } x < -1 \text{ or } x \end{cases}$ $1 \quad \text{if } x < -1 \text{ or } x > 1$. *f* is continuous wherever it is defined, that is at all points except $x = \pm 1$. *f* has left and right limits -1 and 1, respectively, at $x = 1$, and has left and right limits 1 and -1 , respectively, at $x = -1$. It is not, however, discontinuous at any point, since −1 and 1 are not in its domain.

10.
$$
f(x) = \frac{1}{x - x^2} = \frac{1}{\frac{1}{4} - (\frac{1}{4} - x + x^2)} = \frac{1}{\frac{1}{4} - (x - \frac{1}{2})^2}
$$
.
Observe that $f(x) \ge f(1/2) = 4$ for all x in (0, 1).

- **11.** Suppose *f* is continuous on [0, 1] and $f(0) = f(1)$.
	- a) To be proved: $f(a) = f(a + \frac{1}{2})$ for some *a* in $[0, \frac{1}{2}]$. Proof: If $f(1/2) = f(0)$ we can take $a = 0$ and be done. If not, let

$$
g(x) = f(x + \frac{1}{2}) - f(x).
$$

Then $g(0) \neq 0$ and

$$
g(1/2) = f(1) - f(1/2) = f(0) - f(1/2) = -g(0).
$$

Since *g* is continuous and has opposite signs at $x = 0$ and $x = 1/2$, the Intermediate-Value Theorem assures us that there exists *a* between 0 and 1/2 such that $g(a) = 0$, that is, $f(a) = f(a + \frac{1}{2})$.

b) To be proved: if $n > 2$ is an integer, then $f(a) = f(a + \frac{1}{n})$ for some *a* in [0, 1 – $\frac{1}{n}$]. Proof: Let $g(x) = f(x + \frac{1}{n}) - f(x)$. Consider the numbers $x = 0$, $x = 1/n$, $x = 2/n$, ... $x = (n - 1)/n$. If $g(x) = 0$ for any of these numbers, then we can let *a* be that number. Otherwise, $g(x) \neq 0$ at any of these numbers. Suppose that the values of *g* at all these numbers has the same sign (say positive). Then we have

$$
f(1) > f(\frac{n-1}{n}) > \cdots > f(\frac{2}{n}) > \frac{1}{n} > f(0),
$$

which is a contradiction, since $f(0) = f(1)$. Therefore there exists *j* in the set $\{0, 1, 2, \ldots, n-1\}$ such that $g(j/n)$ and $g((j + 1)/n)$ have opposite sign. By the Intermediate-Value Theorem, $g(a) = 0$ for some *a* between j/n and $(j + 1)/n$, which is what we had to prove.