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CHAPTER 13. APPLICATIONS OF
PARTIAL DERIVATIVES

Section 13.1 Extreme Values (page 714)

1. f (x, y) = x2 + 2y2 − 4x + 4y

f1(x, y) = 2x − 4 = 0 if x = 2

f2(x, y) = 4y + 4 = 0 if y = −1.

Critical point is (2, −1). Since f (x, y) → ∞ as
x2 + y2 → ∞, f has a local (and absolute) minimum
value at that critical point.

2. f (x, y) = xy − x + y, f1 = y − 1, f2 = x + 1
A = f11 = 0, B = f12 = 1, C = f22 = 0.
Critical point (−1, 1) is a saddle point since
B2 − AC > 0.

3. f (x, y) = x3 + y3 − 3xy

f1(x, y) = 3(x2 − y), f2(x, y) = 3(y2 − x).

For critical points: x2 = y and y2 = x . Thus x4 − x = 0,
that is, x(x − 1)(x2 + x + 1) = 0. Thus x = 0 or x = 1.
The critical points are (0, 0) and (1, 1). We have

A = f11(x, y) = 6x, B = f12(x, y) = −3,

C = f22(x, y) = 6y.

At (0, 0): A = C = 0, B = −3. Thus AC < B2, and
(0, 0) is a saddle point of f .
At (1, 1): A = C = 6, B = −3, so AC > B2. Thus f
has a local minimum value at (1, 1).

4. f (x, y) = x4+y4−4xy, f1 = 4(x3−y), f2 = 4(y3−x)

A = f11 = 12x2, B = f12 = −4, C = f22 = 12y2.
For critical points: x3 = y and y3 = x . Thus x9 = x , or
x(x8 − 1) = 0, and x = 0, 1, or −1. The critical points
are (0, 0), (1, 1) and (−1,−1).
At (0, 0), B2 − AC = 16 − 0 > 0, so (0, 0) is a saddle
point.
At (1, 1) and (−1,−1), B2 − AC = 16 − 144 < 0, A > 0,
so f has local minima at these points.

5. f (x, y) = x

y
+ 8

x
− y

f1(x, y) = 1

y
− 8

x2 = 0 if 8y = x2

f2(x, y) = − x

y2 − 1 = 0 if x = −y2.

For critical points: 8y = x2 = y4, so y = 0 or y = 2.
f (x, y) is not defined when y = 0, so the only critical
point is (−4, 2). At (−4, 2) we have

A = f11 = 16

x3 = −1

4
, B = f12 = − 1

y2 = −1

4
,

C = f22 = 2x

y3 = −1.

Thus B2 − AC = 1

16
− 1

4
< 0, and (−4, 2) is a local

maximum.

6. f (x, y) = cos(x + y), f1 = − sin(x + y) = f2.
All points on the lines x + y = nπ (n is an integer) are
critical points. If n is even, f = 1 at such points; if n is
odd, f = −1 there. Since −1 ≤ f (x, y) ≤ 1 at all points
in �2, f must have local and absolute maximum values
at points x + y = nπ with n even, and local and absolute
minimum values at such points with n odd.

7. f (x, y) = x sin y. For critical points we have

f1 = sin y = 0, f2 = x cos y = 0.

Since sin y and cos y cannot vanish at the same point, the
only critical points correspond to x = 0 and sin y = 0.
They are (0, nπ), for all integers n. All are saddle
points.

8. f (x, y) = cos x + cos y, f1 = − sin x, f2 = − sin y
A = f11 = − cos x, B = f12 = 0, C = f22 = − cos y.
The critical points are points (mπ, nπ), where m and n
are integers.
Here B2 − AC = − cos(mπ) cos(nπ) = (−1)m+n+1 which
is negative if m + n is even, and positive if m + n is odd.
If m + n is odd then f has a saddle point at (mπ, nπ).
If m + n is even and m is odd then f has a local (and
absolute) minimum value, −2, at (mπ, nπ). If m + n
is even and m is even then f has a local (and absolute)
maximum value, 2, at (mπ, nπ).

9. f (x, y) = x2 ye−(x2+y2)

f1(x, y) = 2xy(1 − x2)e−(x2+y2)

f2(x, y) = x2(1 − 2y2)e−(x2+y2)

A = f11(x, y) = 2y(1 − 5x2 + 2x4)e−(x2+y2)

B = f12(x, y) = 2x(1 − x2)(1 − 2y2)e−(x2+y2)

C = f22(x, y) = 2x2 y(2y2 − 3)e−(x2+y2).

For critical points:

xy(1 − x2) = 0

x2(1 − 2y2) = 0.

The critical points are (0, y) for all y, (±1, 1/
√

2), and
(±1,−1/

√
2).

Evidently, f (0, y) = 0. Also f (x, y) > 0 if y > 0 and
x �= 0, and f (x, y) < 0 if y < 0 and x �= 0. Thus f has
a local minimum at (0, y) if y > 0, and a local maximum
if y < 0. The origin is a saddle point.

At (±1, 1/
√

2): A = C = −2
√

2e−3/2, B = 0, and so
AC > B2. Thus f has local maximum values at these
two points.
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At (±1, −1/
√

2): A = C = 2
√

2e−3/2, B = 0, and so
AC > B2. Thus f has local minimum values at these
two points.

Since f (x, y) → 0 as x2 + y2 → ∞, the value
f (±1, 1/

√
2) = e−3/2/

√
2 is the absolute maximum

value for f , and the value f (±1,−1/
√

2) = −e−3/2/
√

2
is the absolute minimum value.

10. f (x, y) = xy

2 + x4 + y4

f1 = (2 + x4 + y4)y − xy4x3

(2 + x4 + y4)2 = y(2 + y4 − 3x4)

(2 + x4 + y4)2

f2 = x(2 + x4 − 3y4)

(2 + x4 + y4)2 .

For critical points, y(2 + y4 − 3x4) = 0 and
x(2 + x4 − 3y4) = 0.
One critical point is (0, 0). Since f (0, 0) = 0 but
f (x, y) > 0 in the first quadrant and f (x, y) < 0 in
the second quadrant, (0, 0) must be a saddle point of f .
Any other critical points must satisfy 2 + y4 − 3x4 = 0
and 2 + x4 − 3y4 = 0, that is, y4 = x4, or y = ±x . Thus
2 − 2x4 = 0 and x = ±1. Therefore there are four other
critical points: (1, 1), (−1, −1), (1,−1) and (−1, 1). f
is positive at the first two of these, and negative at the
other two. Since f (x, y) → 0 as x2 + y2 → ∞, f
must have maximum values at (1, 1) and (−1,−1), and
minimum values at (1,−1) and (−1, 1).

11. f (x, y) = xe−x3+y3

f1(x, y) = (1 − 3x3)e−x3+y3

f2(x, y) = 3xy2e−x3+y3

A = f11(x, y) = 3x2(3x3 − 4)e−x3+y3

B = f12(x, y) = −3y2(3x3 − 1)e−x3+y3

C = f22(x, y) = 3xy(3y3 + 2)e−x3+y3

For critical points: 3x3 = 1 and 3xy2 = 0. The only crit-
ical point is (3−1/3, 0). At that point we have B = C = 0
so the second derivative test is inconclusive.
However, note that f (x, y) = f (x, 0)ey3

, and ey3
has an

inflection point at y = 0. Therefore f (x, y) has neither
a maximum nor a minimum value at (3−1/3, 0), so has a
saddle point there.

12. f (x, y) = x2

x2 + y2

f1(x, y) = (x2 + y2)2x − 2x3

(x2 + y2)2 = 2xy2

(x2 + y2)2

f2(x, y) = − 2x2 y

(x2 + y2)2 .

Both partial derivatives are zero at all points of the coor-
dinate axes. Also f (x, 0) = 1 for x �= 0, and f (0, y) = 0
for y �= 0.
Evidently 0 ≤ f (x, y) ≤ 1 for all (x, y) �= (0, 0).
Thus, f has absolute maximum value 1 at all points

(x, 0) for x �= 0, and absolute minimum value 0 at all
points (0, y) for all y �= 0.

13. f (x, y) = xy

x2 + y2

f1(x, y) = (x2 + y2)y − 2x2 y

(x2 + y2)2

= y(y2 − x2)

(x2 + y2)2

f2(x, y) = x(x2 − y2)

(x2 + y2)2 (by symmetry).

Both partial derivatives are zero at all points of the
lines y = ±x for x �= 0. Also f (x, x) = 1

2 , and
f (x,−x) = − 1

2 for x �= 0.
Since x2 ± 2xy + y2 = (x ± y)2 ≥ 0, we have
|xy| ≤ 1

2 (x2 + y2) for all (x, y) �= (0, 0), so | f (x, y)| ≤ 1
2

on its domain.
Thus, f has absolute maximum value 1

2 at all points
(x, x) for x �= 0, and absolute minimum value −1

2 at
all points (x, −x) for all x �= 0.

14. f (x, y) = 1

1 − x + y + x2 + y2

= 1(
x − 1

2

)2

+
(

y + 1

2

)2

+ 1

2

.

Evidently f has absolute maximum value 2 at

(
1

2
,−1

2

)
.

Since

f1(x, y) = 1 − 2x

(1 − x + y + x2 + y2)2

f2(x, y) = − 1 + 2y

(1 − x + y + x2 + y2)2 ,

(
1

2
,−1

2

)
is the only critical point of f .

15. f (x, y) =
(

1 + 1

x

)(
1 + 1

y

)(
1

x
+ 1

y

)

= (x + 1)(y + 1)(x + y)

x2 y2

f1(x, y) = − (y + 1)(xy + x + 2y)

x3 y2

f2(x, y) = − (x + 1)(xy + y + 2x)

x2 y3

A = f11(x, y) = 2(y + 1)(xy + x + 3y)

x4 y2

B = f12(x, y) = 2(xy + x + y)

x3 y3

C = f22(x, y) = 2(x + 1)(xy + y + 3x)

x2 y4 .
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For critical points:

y = −1 or xy + x + 2y = 0,

and x = −1 or xy + y + 2x = 0.

If y = −1, then x = −1 or x − 1 = 0.
If x = −1, then y = −1 or y − 1 = 0.
If x �= −1 and y �= −1, then x − y = 0, so x2 + 3x = 0.
Thus x = 0 or x = −3. However, the definition of f
excludes x = 0. Thus, the only critical points are

(1, −1), (−1, 1), (−1, −1), and (−3,−3).

At (1, −1), (−1, 1), and (−1, −1) we have AC = 0 and
B �= 0. Therefore these three points are saddle points of
f .
At (−3, −3), A = C = 4/243 and B = 2/243, so
AC > B2. Therefore f has a local minimum value at
(−3, −3).

16. f (x, y, z) = xyz − x 2 − y2 − z2. For critical points we
have

0 = f1 = yz−2x, 0 = f2 = xz−2y, 0 = f3 = xy−2z.

Thus xyz = 2x2 = 2y2 = 2z2, so x2 = y2 = z2.
Hence x3 = ±2x2, and x = ±2 or 0. Similarly for
y and z. The only critical points are (0, 0, 0), (2, 2, 2),
(−2, −2, 2), (−2, 2,−2), and (2, −2,−2).

Let u = ui + vj + wk, where u2 + v2 + w2 = 1. Then

Du f (x, y, z) = (yz − 2x)u + (xz − 2y)v + (xy − 2z)w

Du

(
Du f (x, y, z)

)
= (−2u + zv + yw)u

+ (zu − 2v + xw)v + (yu + xv − 2w)w.

At (0, 0, 0), Du

(
Du f (0, 0, 0)

)
= −2u2 − 2v2 − 2w2 < 0

for u �= 0, so f has a local maximum value at (0, 0, 0).

At (2, 2, 2), we have

Du

(
Du f (2, 2, 2)

)
= (−2u + 2v + 2w)u + (2u − 2v + 2w)v

+ (2u + 2v − 2w)w

= −2(u2 + v2 + w2) + 4(uv + vw + wu)

= −2[(u − v − w)2 − 4vw]{
< 0 if v = w = 0, u �= 0
> 0 if v = w �= 0, u − v − w = 0.

Thus (2, 2, 2) is a saddle point.

At (2, −2, −2), we have

Du

(
Du f

)
= −2(u2 + v2 + w2 + 2uv + 2uw − 2vw)

= −2[(u + v + w)2 − 4vw]{
< 0 if v = w = 0, u �= 0
> 0 if v = w �= 0, u + v + w = 0.

Thus (2, −2,−2) is a saddle point. By symmetry, so are
the remaining two critical points.

17. f (x, y, z) = xy + x 2z − x2 − y − z2

f1(x, y, z) = y + 2x(z − 1)

f2(x, y, z) = x − 1

f3(x, y, z) = x2 − 2z.

The only critical point is
(
1, 1, 1

2

)
. We have

D = f
(
1 + h, 1 + k, 1

2 + m
)− f

(
1, 1, 1

2

)

= 1 + h + k + hk + 1 + 2h + h2

2
+ (1 + 2h + h2)m

− 1 − 2h − h2 − 1 − k − 1

4
− m − m2 −

(
−3

4

)

= h2(2m − 1) + 2h(k + 2m) − 2m2

2
.

If m = h and k = 0, then D = h2(1 + 2h)

2
> 0 for small

|h|.
If h = k = 0, then D = −m2 < 0 for m �= 0.
Thus f has a saddle point at

(
1, 1, 1

2

)
.

18. f (x, y, z) = 4xyz − x 4 − y4 − z4

D = f (1 + h, 1 + k, 1 + m) − f (1, 1, 1)

= 4(1 + h)(1 + k)(1 + m) − (1 + h)4 − (1 + k)4

− (1 + m)4 − 1

= 4(1 + h + k + m + hk + hm + km + hkm)

− (1 + 4h + 6h2 + 4h3 + h4)

− (1 + 4k + 6k2 + 4k3 + k4)

− (1 + 4m + 6m2 + 4m3 + m4) − 1

= 4(hk + hm + km) − 6(h2 + k2 + m2) + · · · ,
where · · · stands for terms of degree 3 and 4 in the vari-
ables h, k, and m. Completing some squares among the
quadratic terms we obtain

D = −2
[
(h−k)2+(k−m)2 +(h−m)2+h2+k2+m2

]
+· · ·

which is negative if |h|, |k| and |m| are small and not
all 0. (This is because the terms of degree 3 and 4 are
smaller in size than the quadratic terms for small values
of the variables.)
Hence f has a local maximum value at (1, 1, 1).

19. f (x, y) = xye−(x2+y4)

f1(x, y) = y(1 − 2x2)e−(x2+y4)

f2(x, y) = x(1 − 4y4)e−(x2+y4)
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For critical points y(1 − 2x2) = 0 and x(1 − 4y4) = 0.
The critical points are

(0, 0),

(
± 1√

2
,

1√
2

)
,

(
± 1√

2
,− 1√

2

)
.

We have

f (0, 0) = 0

f

(
1√
2
,

1√
2

)
= f

(
− 1√

2
,− 1√

2

)
= 1

2
e−3/4 > 0

f

(
− 1√

2
,

1√
2

)
= f

(
1√
2
,− 1√

2

)
= −1

2
e−3/4 < 0

Since f (x, y) → 0 as x2 + y2 → ∞, the maximum and

minimum values of f are
1

2
e−3/4 and −1

2
e−3/4 respec-

tively.

20. f (x, y) = x

1 + x2 + y2

f1(x, y) = 1 + y2 − x2

(1 + x2 + y2)2

f2(x, y) = −2xy

(1 + x2 + y2)2
.

For critical points, x2 − y2 = 1, and xy = 0. The critical
points are (±1, 0). f (±1, 0) = ±1

2 .
Since f (x, y) → 0 as x2 + y2 → ∞, the maximum and
minimum values of f are 1/2 and −1/2 respectively.

21. f (x, y, z) = xyze−(x2+y2+z2)

f1(x, y, z) = yz(1 − 2x2)e−(x2+y2+z2)

f2(x, y, z) = xz(1 − 2y2)e−(x2+y2+z2)

f3(x, y, z) = xy(1 − 2z2)e−(x2+y2+z2).

Any critical point must satisfy

yz(1 − 2x2) = 0 i.e., y = 0 or z = 0 or x = ± 1√
2

xz(1 − 2y2) = 0 i.e., x = 0 or z = 0 or y = ± 1√
2

xy(1 − 2z2) = 0 i.e., x = 0 or y = 0 or z = ± 1√
2
.

Since f (x, y, z) is positive at some points, negative at
others, and approaches 0 as (x, y, z) recedes to infinity,
f must have maximum and minimum values at critical
points. Since f (x, y, z) = 0 if x = 0 or y = 0 or z = 0,
the maximum and minimum values must occur among
the eight critical points where x = ±1/

√
2, y = ±1/

√
2,

and z = ±1/
√

2. At four of these points, f has the value
1

2
√

2
e−3/2, the maximum value. At the other four f has

the value − 1

2
√

2
e−3/2, the minimum value.

22. f (x, y) = x + 8y + 1

xy
, (x > 0, y > 0)

f1(x, y) = 1 − 1

x2 y
= 0 ⇒ x2 y = 1

f2(x, y) = 8 − 1

xy2 = 0 ⇒ 8xy2 = 1.

The critical points must satisfy

x

y
= x2 y

xy2 = 8,

that is, x = 8y. Also, x2 y = 1, so 64y3 = 1.
Thus y = 1/4, and x = 2; the critical point is

(
2, 1

4

)
.

Since f (x, y) → ∞ if x → 0+, y → 0+,
or x2 + y2 → ∞, the critical point must give
a minimum value for f . The minimum value is
f
(
2, 1

4

) = 2 + 2 + 2 = 6.

23. Let the length, width, and height of the box be x , y, and
z, respectively. Then V = xyz. The total surface area of
the bottom and sides is

S = xy + 2xz + 2yz = xy + 2(x + y)
V

xy

= xy + 2V

x
+ 2V

y
,

where x > 0 and y > 0. Since S → ∞ as x → 0+ or
y → 0+ or x2 + y2 → ∞, S must have a minimum value
at a critical point in the first quadrant. For CP:

0 = ∂S

∂x
= y − 2V

x2

0 = ∂S

∂y
= x − 2V

y2
.

Thus x2 y = 2V = xy2, so that x = y = (2V )1/3 and
z = V/(2V )2/3 = 2−2/3V 1/3.

24. Let the length, width, and height of the box be x , y, and
z, respectively. Then V = xyz. If the top and side walls
cost $k per unit area, then the total cost of materials for
the box is

C = 2kxy + kxy + 2kxz + 2kyz

= k

[
3xy + 2(x + y)

V

xy

]
= k

[
3xy + 2V

x
+ 2V

y

]
,

where x > 0 and y > 0. Since C → ∞ as x → 0+
or y → 0+ or x2 + y2 → ∞, C must have a minimum
value at a critical point in the first quadrant. For CP:

0 = ∂C

∂x
= k

(
3y − 2V

x2

)

0 = ∂C

∂y
= k

(
3x − 2V

y2

)
.
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Thus 3x2 y = 2V = 3xy2, so that x = y = (2V/3)1/3 and
z = V/(2V/3)2/3 = (9V/4)1/3.

25. Let (x, y, z) be the coordinates of the corner of the box
that is in the first octant of space. Thus x, y, z ≥ 0, and

x2

a2
+ y2

b2
+ z2

c2
= 1.

The volume of the box is

V = (2x)(2y)(2z) = 8cxy

√
1 − x2

a2 − y2

b2

for x ≥ 0, y ≥ 0, and (x2/a2)+(y2/b2) ≤ 1. For analysis
it is easier to deal with V 2 than with V :

V 2 = 64c2
(

x2 y2 − x4 y2

a2 − x2 y4

b2

)
.

Since V = 0 if x = 0 or y = 0 or (x2/a2) + (y2/b2) = 1,
the maximum value of V2, and hence of V , will occur at
a critical point of V 2 where x > 0 and y > 0. For CP:

0 = ∂V 2

∂x
= 64c2

(
2xy2 − 4x3 y2

a2 − 2xy4

b2

)

= 128c2xy2
(

1 − 2x2

a2 − y2

b2

)

0 = ∂V 2

∂y
= 128c2x2 y

(
1 − x2

a2
− 2y2

b2

)
.

Hence we must have

2x2

a2 + y2

b2 = 1 = x2

a2 + 2y2

b2 ,

so that x2/a2 = y2/b2 = 1/3, and x = a/
√

3, y = b/
√

3.
The largest box has volume

V = 8abc

3

√
1 − 1

3
− 1

3
= 8abc

3
√

3
cubic units.

26. Given that a > 0, b > 0, c > 0, and a + b + c = 30, we
want to maximize

P = ab2c3 = (30 − b − c)b2c3 = 30b2c3 − b3c3 − b2c4.

Since P = 0 if b = 0 or c = 0 or b + c = 30 (i.e.,
a = 0), the maximum value of P will occur at a critical
point (b, c) satisfying b > 0, c > 0, and b + c < 30. For
CP:

0 = ∂ P

∂b
= 60bc3 − 3b2c3 − 2bc4 = bc3(60 − 3b − 2c)

0 = ∂ P

∂c
= 90b2c2 − 3b3c2 − 4b2c3 = b2c2(90 − 3b − 4c).

Hence 9b + 6c = 180 = 6b + 8c, from which we obtain
3b = 2c = 30. The three numbers are b = 10, c = 15,
and a = 30 − 10 − 15 = 5.

27. Differentiate the given equation

e2zx−x2 − 3e2zy+y2 = 2

with respect to x and y, regarding z as a function of x
and y:

e2zx−x2
(

2x
∂z

∂x
+ 2z − 2x

)
− 3e2zy+y2

(
2y

∂z

∂x

)
= 0 (∗)

e2zx−x2
(

2x
∂z

∂y

)
− 3e2zy+y2

(
2y

∂z

∂y
+ 2z + 2y

)
= 0 (∗∗)

For a critical point we have
∂z

∂x
= 0 and

∂z

∂y
= 0, and it

follows from the equations above that z = x and z = −y.
Substituting these into the given equation, we get

ez2 − 3e−z2 = 2

(ez2
)2 − 2ez2 − 3 = 0

(ez2 − 3)(ez2 + 1) = 0.

Thus ez2 = 3 or ez2 = −1. Since ez2 = −1 is not possi-
ble, we have ez2 = 3, so z = ±√

ln 3.
The critical points are (

√
ln 3,−√

ln 3), and
(−√

ln 3,
√

ln 3).

28. We will use the second derivative test to classify the two
critical points calculated in Exercise 25. To calculate the
second partials

A = ∂2z

∂x2 , B = ∂2z

∂x∂y
, C = ∂2z

∂y2 ,

we differentiate the expressions (∗), and (∗∗) obtained in
Exercise 25.
Differentiating (∗) with respect to x , we obtain

e2zx−x2
[(

2x
∂z

∂x
+ 2z − 2x

)2

+ 4
∂z

∂x
+ 2x

∂2z

∂x2 − 2

]

− 3e2zy+y2
[(

2y
∂z

∂x

)2

+ 2y
∂2z

∂x2

]
= 0.
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At a critical point,
∂z

∂x
= 0, z = x , z = −y, and

z2 = ln 3, so

3

(
2x

∂2z

∂x2 − 2

)
− 3

3

(
2y

∂2z

∂x2

)
= 0,

A = ∂2z

∂x2 = 6

6x − 2y
.

Differentiating (∗∗) with respect to y gives

e2zx−x2
[(

2x
∂z

∂y

)2

+ 2x
∂2z

∂y2

]

− 3e2zy+y2
[(

2y
∂z

∂y
+ 2z + 2y

)2

+ 4
∂z

∂y
+ 2y

∂2z

∂y2 + 2

]
= 0,

and evaluation at a critical point gives

3

(
2x

∂2z

∂y2

)
− 3

3

(
2y

∂2z

∂y2 + 2

)
= 0,

C = ∂2z

∂y2 = 2

6x − 2y
.

Finally, differentiating (∗) with respect to y gives

e2zx−x2
[(

2x
∂z

∂x
+ 2z − 2x

)(
2x

∂z

∂y

)

+ 2x
∂2z

∂x∂y
+ 2

∂z

∂y

]

− 3e2zy+y2
[(

2y
∂z

∂y
+ 2z + 2y

)(
2y

∂z

∂x

)

+ 2
∂z

∂x
+ 2y

∂2z

∂x∂y

]
= 0,

and, evaluating at a critical point,

(6x − 2y)
∂2z

∂x∂y
= 0,

so that

B = ∂2z

∂x∂y
= 0.

At the critical point (
√

ln 3,−√
ln 3) we have

A = 6

8 ln 3
, B = 0, C = 2

8 ln 3
,

so B2 − AC < 0, and f has a local minimum at that
critical point.
At the critical point (−√

ln 3,
√

ln 3) we have

A = − 6

8 ln 3
, B = 0, C = − 2

8 ln 3
,

so B2 − AC < 0, and f has a local maximum at that
critical point.

29. f (x, y) = (y − x2)(y − 3x2) = y2 − 4x2 y + 3x4

f1(x, y) = −8xy + 12x3 = 4x(3x2 − 2y)

f2(x, y) = 2y − 4x2.

Since f1(0, 0) = f2(0, 0) = 0, therefore (0, 0) is a critical
point of f .
Let g(x) = f (x, kx) = k2x2 − 4kx3 + 3x4. Then

g′(x) = 2k2x − 12kx2 + 12x3

g′′(x) = 2k2 − 24kx + 36x2.

Since g′(0) = 0 and g′′(0) = 2k2 > 0 for k �= 0, g has a
local minimum value at x = 0. Thus f (x, kx) has a local
minimum at x = 0 if k �= 0. Since f (x, 0) = 3x4 and
f (0, y) = y2 both have local minimum values at (0, 0),
f has a local minimum at (0, 0) when restricted to any
straight line through the origin.
However, on the curve y = 2x2 we have

f (x, 2x2) = x2(−x2) = −x4,

which has a local maximum value at the origin. There-
fore f does not have an (unrestricted) local minimum
value at (0, 0).

Note that A = f11(0, 0) = (−8y + 36x2)

∣∣∣∣
(0,0)

= 0

B = f12(0, 0) = −8x

∣∣∣∣
(0,0)

= 0.

Thus AC = B2, and the second derivative test is indeter-
minate at the origin.

30. We have

Q(u, v) = Au2 + 2Buv + Cv2

= A

(
u2 + 2B

A
uv + B2

A2 v2
)

+
(

C − B2

A

)
v2

= A

(
u + Bv

A

)2

+ AC − B2

A
v2.

If

∣∣∣∣ A B
B C

∣∣∣∣ = AC − B2 > 0, both terms above have

the same sign, positive if A > 0 and negative if A < 0,
ensuring that Q is positive definite or negative definite
respectively, since the two terms cannot both vanish if
(u, v) �= (0, 0). If AC − B2 < 0, Q(u, v) is a difference
of squares, and must be indefinite.

31. Let

Q(u, v, w) = Au2 + Bv2 + Cw2 + 2Duv + 2Euw + 2Fvw
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and let

K1 = A, K2 =
∣∣∣∣ A D

D B

∣∣∣∣ = AB − D2

K3 =
∣∣∣∣∣

A D E
D B F
E F C

∣∣∣∣∣ = ABC + 2DE F − B E 2 − C D2 − AF2.

Suppose that K1 �= 0, K2 �= 0, and K3 �= 0. We have

Q(u, v, w)

= A

[
u2 + 2u

Dv + Ew

A
+
(

Dv + Ew

A

)2
]

+ AB − D2

A
v2 + AC − E2

A
w2 + 2(AF − DE)

A
vw

= A

(
u + Dv + Ew

A

)2

+ AB − D2

A

(
v2 + 2(AF − DE)

AB − D2 vw +
(

AF − DE

AB − D2

)2

w2

)

+
[

AC − E2

A
− (AF − DE)2

A(AB − D2)

]
w2

= A

(
u + Dv + Ew

A

)2

+ AB − D2

A

(
v + AF − DE

AB − D2
w

)2

+ A(ABC − B E 2 − AF2 − C D2 + 2DE F)

A(AB − D2)
w2

= K1

(
u + Dv + Ew

A

)2

+ K2

K1

(
v + AF − DE

AB − D2
w

)2

+ K3

K2
w2.

If K1 > 0, K2 > 0, and K3 > 0, then all three squares
the last expression above have positive coefficients, and
so Q is positive definite. If K1 < 0, K2 > 0, and
K3 < 0, then all three squares the last expression above
have negative coefficients, and so Q is negative definite.
In all other cases where none of the Ki = 0, the co-
efficients of the squares are not all of the same sign so
choices of (u, v, w) can be made which make the expres-
sion either positive or negative, and Q is indefinite.

If f has continuous partial derivatives of order two
and (a, b, c) is a critical point of f (x, y, z), let

A = f11(a, b, c),

B = f22(a, b, c),

C = f33(a, b, c),

D = f12(a, b, c),

E = f23(a, b, c),

F = f23(a, b, c).

Then f has a local minimum value at (a, b, c) if K1 > 0,
K2 > 0, and K3 > 0, a local maximum value at (a, b, c)
if K1 < 0, K2 > 0, and K3 < 0, and a saddle point at
(a, b, c) if K1, K2, K3 are all nonzero but satisfy neither
of the above conditions.

Section 13.2 Extreme Values of Functions
Defined on Restricted Domains (page 720)

1. f (x, y) = x − x2 + y2 on
R = {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 1}.
For critical points:

0 = f1(x, y) = 1 − 2x, 0 = f2(x, y) = 2y.

The only CP is (1/2, 0), which lies on the boundary of
R.
The boundary consists of four segments; we investigate
each.
On x = 0 we have f (x, y) = f (0, y) = y2 for
0 ≤ y ≤ 1, which has minimum value 0 and maximum
value 1.
On y = 0 we have f (x, y) = f (x, 0) = x − x2 = g(x)

for 0 ≤ x ≤ 2. Since g′(x) = 1 − 2x = 0 at x = 1/2,
g(1/2) = 1/4, g(0) = 0, and g(2) = −2, the maxi-
mum and minimum values of f on the boundary segment
y = 0 are 1/4 and −2 respectively.
On x = 2 we have f (x, y) = f (2, y) = −2 + y2 for
0 ≤ y ≤ 1, which has minimum value −2 and maximum
value −1.
On y = 1, f (x, y) = f (x, 1) = x − x2 + 1 = g(x) + 1
for 0 ≤ x ≤ 2. Thus the maximum and minimum values
of f on the boundary segment y = 1 are 5/4 and −1
respectively.
Overall, f has maximum value 5/4 and minimum value
−2 on the rectangle R.

2. f (x, y) = xy − 2x on
R = {(x, y) : −1 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
For critical points:

0 = f1(x, y) = y − 2, 0 = f2(x, y) = x .

The only CP is (0, 2), which lies outside R. Therefore
the maximum and minimum values of f on R lie on one
of the four boundary segments of R.
On x = −1 we have f (−1, y) = 2 − y for 0 ≤ y ≤ 1,
which has maximum value 2 and minimum value 1.
On x = 1 we have f (1, y) = y − 2 for 0 ≤ y ≤ 1, which
has maximum value −1 and minimum value −2.
On y = 0 we have f (x, 0) = −2x for −1 ≤ x ≤ 1,
which has maximum value 2 and minimum value −2.
On y = 1 we have f (x, 1) = −x for −1 ≤ x ≤ 1, which
has maximum value 1 and minimum value −1.
Thus the maximum and minimum values of f on the
rectangle R are 2 and −2 respectively.

3. f (x, y) = xy − y2 on D = {(x, y) : x2 + y2 ≤ 1}.
For critical points:

0 = f1(x, y) = y, 0 = f2(x, y) = x − 2y.
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The only CP is (0, 0), which lies inside D. We have
f (0, 0) = 0.
The boundary of D is the circle x = cos t , y = sin t ,
−π ≤ t ≤ π . On this circle we have

g(t) = f (cos t, sin t) = cos t sin t − sin2 t

= 1

2

[
sin 2t + cos 2t − 1

]
, (−π ≤ t ≤ π).

g(0) = g(2π) = 0

g′(t) = cos 2t − sin 2t.

The critical points of g satisfy cos 2t = sin 2t , that is,

tan 2t = 1, so 2t = ±π

4
or ±5π

4
, and t = ±π

8
or ±5π

8
.

We have

g
(π

8

)
= 1

2
√

2
− 1

2
+ 1

2
√

2
= 1√

2
− 1

2
> 0

g
(
−π

8

)
= − 1

2
√

2
− 1

2
+ 1

2
√

2
= −1

2

g

(
5π

8

)
= − 1

2
√

2
− 1

2
− 1

2
√

2
= − 1√

2
− 1

2

g

(
−5π

8

)
= 1

2
√

2
− 1

2
− 1

2
√

2
= −1

2
.

Thus the maximum and minimum values of f on the

disk D are
1√
2

− 1

2
and − 1√

2
− 1

2
respectively.

4. f (x, y) = x + 2y on the closed disk x2 + y2 ≤ 1. Since
f1 = 1 and f2 = 2, f has no critical points, and the
maximum and minimum values of f , which must exist
because f is continuous on a closed, bounded set in the
plane, must occur at boundary points of the domain, that
is, points of the circle x2 + y2 = 1. This circle can be
parametrized x = cos t , y = sin t , so that

f (x, y) = f (cos t, sin t) = cos t + 2 sin t = g(t), say.

For critical points of g: 0 = g′(t) = − sin t + 2 cos t .
Thus tan t = 2, and x = ±1/

√
5, y = ±2/

√
5. The

critical points are (−1/
√

5,−2/
√

5), where f has value
−√

5, and (1/
√

5, 2/
√

5), where f has value
√

5. Thus
the maximum and minimum values of f (x, y) on the
disk are

√
5 and −√

5 respectively.

5. f (x, y) = xy − x3 y2 on the square S: 0 ≤ x ≤ 1,
0 ≤ y ≤ 1.
f1 = y − 3x2 y2 = y(1 − 3x2 y),

f2 = x − 2x3 y = x(1 − 2x2 y).
(0, 0) is a critical point. Any other critical points must
satisfy 3x2 y = 1 and 2x2 y = 1, that is, x2 y = 0.
Therefore (0, 0) is the only critical point, and it is on the
boundary of S. We need therefore only consider the val-
ues of f on the boundary of S.
On the sides x = 0 and y = 0 of S, f (x, y) = 0.

On the side x = 1 we have f (1, y) = y − y2 = g(y),
(0 ≤ y ≤ 1). g has maximum value 1/4 at its critical
point y = 1/2.
On the side y = 1 we have f (x, 1) = x − x3 = h(x),
(0 ≤ x ≤ 1). h has critical point given by 1 − 3x2 = 0;
only x = 1/

√
3 is on the side of S.

h

(
1√
3

)
= 2

3
√

3
>

1

4
.

On the square S, f (x, y) has minimum value 0 (on the
sides x = 0 and y = 0 and at the corner (1, 1) of
the square), and maximum value 2/(3

√
3) at the point

(1/
√

3, 1). There is a smaller local maximum value at
(1, 1/2).

6. f (x, y) = xy(1 − x − y) on the triangle T shown in
the figure. Evidently f (x, y) = 0 on all three bound-
ary segements of T , and f (x, y) > 0 inside T . Thus
the minimum value of f on T is 0, and the maximum
value must occur at an interior critical point. For critical
points:

0 = f1(x, y) = y(1−2x−y), 0 = f2(x, y) = x(1−x−2y).

The only critical points are (0, 0), (1, 0) and (0, 1),
which are on the boundary of T , and (1/3, 1/3),
which is inside T . The maximum value of f over T
is f (1/3, 1/3) = 1/27.

y

x

1

x+y=1

T

1

Fig. 13.2.6

7. Since −1 ≤ f (x, y) = sin x cos y ≤ 1 everywhere, and
since f (π/2, 0) = 1, f (3π/2, 0) = −1, and both (π/2, 0)

and (3π/2, 0) belong to the triangle bounded by x = 0,
y = 0 and x + y = 2π , therefore the maximum and
minimum values of f over that triangle must be 1 and
−1 respectively.

8. f (x, y) = sin x sin y sin(x + y) on the triangle T shown
in the figure. Evidently f (x, y) = 0 on the boundary
of T , and f (x, y) > 0 at all points inside T . Thus the
minimum value of f on T is zero, and the maximum
value must occur at an interior critical point. For critical
points inside T we must have

0 = f1(x, y) = cos x sin y sin(x + y) + sin x sin y cos(x + y)

0 = f2(x, y) = sin x cos y sin(x + y) + sin x sin y cos(x + y).
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Therefore cos x sin y = cos y sin x , which implies x = y
for points inside T , and

cos x sin x sin 2x + sin2 x cos 2x = 0

2 sin2 x cos2 x + 2 sin2 x cos2 x − sin2 x = 0

4 cos2 x = 1.

Thus cos x = ±1/2, and x = ±π/3. The interior critical
point is (π/3, π/3), where f has the value 3

√
3/8. This

is the maximum value of f on T .
y

x

T

π

z+y=π

π

Fig. 13.2.8

9. T = (x + y)e−x2−y2
on D = {(x, y) : x2 + y2 ≤ 1}.

For critical points:

0 = ∂T

∂x
=
(

1 − 2x(x + y)
)

e−x2−y2

0 = ∂T

∂y
=
(

1 − 2y(x + y)
)

e−x2−y2
.

The critical points are given by
2x(x + y) = 1 = 2y(x + y), which forces x = y and

4x2 = 1, so x = y = ±1

2
.

The two critical points are

(
1

2
,

1

2

)
and

(
−1

2
,−1

2

)
,

both of which lie inside D. T takes the values ±e−1/2 at
these points.

On the boundary of D, x = cos t , y = sin t , 0 ≤ t ≤ 2π ,
so that

T = (cos t + sin t)e−1 = g(t), (0 ≤ t ≤ 2π).

We have g(0) = g(2π) = e−1. For critical points of g:

0 = g′(t) = (cos t − sin t)e−1,

so tan t = 1 and t = π/4 or t = 5π/4. Observe that
g(π/4) = √

2e−1, and g(5π/4) = −√
2e−1.

Since e−1/2 >
√

2e−1 (because e > 2), the maximum and
minimum values of T on the disk are ±e−1/2, the values
at the interior critical points.

10. f (x, y) = x − y

1 + x2 + y2 on the half-plane y ≥ 0.

For critical points:

0 = f1(x, y) = 1 − x2 + y2 + 2xy

(1 + x2 + y2)2

0 = f2(x, y) = −1 − x2 + y2 − 2xy

(1 + x2 + y2)2 .

Any critical points must satisfy 1 − x2 + y2 + 2xy = 0
and −1 − x2 + y2 − 2xy = 0, and hence x2 = y2 and
2xy = −1. Therefore y = −x = ±1/

√
2. The only

critical point in the region y ≥ 0 is (−1/
√

2, 1/
√

2),
where f has the value −1/

√
2.

On the boundary y = 0 we have

f (x, 0) = x

1 + x2 = g(x), (−∞ < x < ∞).

Evidently, g(x) → 0 as x → ±∞.

Since g′(x) = 1 − x2

(1 + x2)2 , the critical points of g are

x = ±1. We have g(±1) = ±1

2
.

The maximum and minimum values of f on the upper
half-plane y ≥ 0 are 1/2 and −1/

√
2 respectively.

11. Let f (x, y, z) = xy2+yz2 on the ball B: x2+y2+z2 ≤ 1.
First look for interior critical points:

0 = f1 = y2, 0 = f2 = 2xy + z2, 0 = f3 = 2yz.

All points on the x-axis are CPs, and f = 0 at all such
points.

Now consider the boundary sphere z2 = 1 − x2 − y2. On
it

f (x, y, z) = xy2+y(1−x2−y2) = xy2+y−x2y−y3 = g(x, y),

where g is defined for x2 + y2 ≤ 1. Look for interior CPs
of g:

0 = g1 = y2 − 2xy = y(y − 2x)

0 = g2 = 2xy + 1 − x2 − 3y2.

Case I: y = 0. Then g = 0 and f = 0.
Case II: y = 2x . Then 4x2 + 1 − x2 − 12x2 = 0, so
9x2 = 1 and x = ±1/3. This case produces critical
points

(
1

3
,

2

3
,±2

3

)
, where f = 4

9
, and

(
−1

3
,−2

3
,±2

3

)
, where f = −4

9
.

Now we must consider the boundary x2 + y2 = 1 of the
domain of g. Here

g(x, y) = xy2 = x(1 − x2) = x − x3 = h(x)
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for −1 ≤ x ≤ 1. At the endpoints x = ±1, h = 0, so
g = 0 and f = 0. For CPs of h:

0 = h′(x) = 1 − 3x2,

so x = ±1/
√

3 and y = ±√
2/3. The value of h at such

points is ±2/(3
√

3). However 2/(3
√

3) < 4/9, so the
maximum value of f is 4/9, and the minimum value is
−4/9.

12. Let f (x, y, z) = xz + yz on the ball x2 + y2 + z2 ≤ 1.
First look for interior critical points:

0 = f1 = z, 0 = f2 = z, 0 = f3 = x + y.

All points on the line z = 0, x + y = 0 are CPs, and
f = 0 at all such points.

Now consider the boundary sphere x2 + y2 + z2 = 1. On
it

f (x, y, z) = (x + y)z = ±(x + y)

√
1 − x2 − y2 = g(x, y),

where g has domain x2 + y2 ≤ 1. On the boundary of its
domain, g is identically 0, although g takes both positive
and negative values at some points inside its domain.
Therefore, we need consider only critical points of g in
x2 + y2 < 1. For such CPs:

0 = g1 =
√

1 − x2 − y2 + (x + y)(−2x)

2
√

1 − x2 − y2

= 1 − x2 − y2 − x2 − xy√
1 − x2 − y2

0 = g2 = 1 − x2 − y2 − xy − y2√
1 − x2 − y2

.

Therefore 2x2 + y2 + xy = 1 = x2 +2y2 + xy, from which
x2 = y2.
Case I: x = −y. Then g = 0, so f = 0.
Case II: x = y. Then 2x2 + x2 + x2 = 1, so x2 = 1/4 and
x = ±1/2. g (which is really two functions depending
on our choice of the “+” or “−” sign) has four CPs, two
corresponding to x = y = 1/2 and two to x = y = −1/2.
The values of g at these four points are ±1/

√
2.

Since we have considered all points where f can have
extreme values, we conclude that the maximum value
of f on the ball is 1/

√
2 (which occurs at the boundary

points ±( 1
2 , 1

2 , 1√
2
)) and minimum value −1/

√
2 (which

occurs at the boundary points ±(1
2 , 1

2 ,− 1√
2
)).

13. f (x, y) = xye−xy on Q = {(x, y) : x ≥ 0, y ≥ 0}.
Since f (x, kx) = kx2e−kx2 → 0 as x → ∞ if k > 0, and
f (x, 0) = f (0, y) = 0, we have f (x, y) → 0 as (x, y)

recedes to infinity along any straight line from the origin
lying in the first quadrant Q.

However, f

(
x,

1

x

)
= 1 and f (x, 0) = 0 for all x > 0,

even though the points

(
x,

1

x

)
and (x, 0) become ar-

bitrarily close together as x increases. Thus f does not
have a limit as x2 + y2 → ∞.
Observe that f (x, y) = re−r = g(r) on the hyperbola
xy = r > 0. Since g(r) → 0 as r approaches 0 or ∞,
and

g′(r) = (1 − r)e−r = 0 ⇒ r = 1,

f (x, y) is everywhere on Q less than g(1) = 1/e. Thus
f does have a maximum value on Q.

14. f (x, y) = xy2e−xy on Q = {(x, y) : x ≥ 0, y ≥ 0}.
As in Exercise 13, f (x, 0) = f (0, y) = 0 and
limx→∞ f (x, kx) = k2x3e−x2 = 0.

Also, f (0, y) = 0 while f

(
1

y
, y

)
= y

e
→ ∞ as

y → ∞, so that f has no limit as x2 + y2 → ∞ in Q,
and f has no maximum value on Q.

15. If brewery A produces x litres per month and brewery B
produces y litres per month, then the monthly profits of
the two breweries are given by

P = 2x − 2x2 + y2

106 , Q = 2y − 4y2 + x2

2 × 106 .

STRATEGY I. Each brewery selects its production level
to maximize its own profit, and assumes its competitor
does the same.
Then A chooses x to satisfy

0 = ∂ P

∂x
= 2 − 4x

106
⇒ x = 5 × 105.

B chooses y to satisfy

0 = ∂Q

∂y
= 2 − 8y

2 × 106 ⇒ y = 5 × 105.

The total profit of the two breweries under this strategy is

P + Q = 106 − 3 × 25 × 1010

106 + 106 − 5 × 25 × 1010

2 × 106

= $625, 000.

STRATEGY II. The two breweries cooperate to maximize
the total profit

T = P + Q = 2x + 2y − 5x2 + 6y2

2 × 106
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by choosing x and y to satisfy

0 = ∂T

∂x
= 2 − 10x

2 × 106 ,

0 = ∂T

∂y
= 2 − 12y

2 × 106 .

Thus x = 4 × 105 and y = 1

3
× 106.

In this case the total monthly profit is

P + Q = 8 × 105 + 2

3
× 106 −

80 × 1010 + 2

3
× 1012

2 × 106

≈ $733, 333.

Observe that the total profit is larger if the two breweries
cooperate and fix prices to maximize it.

16. Let the dimensions be as shown in the figure. Then
2x + y = 100, the length of the fence. For maximum area
A of the enclosure we will have x > 0 and 0 < θ < π/2.
Since h = x cos θ , the area A is

A = xy cos θ + 2 × 1

2
(x sin θ)(x cos θ)

= x(100 − 2x) cos θ + x2 sin θ cos θ

= (100x − 2x2) cos θ + 1

2
x2 sin 2θ.

We look for a critical point of A satisfying x > 0 and
0 < θ < π/2.

wall

h
h

x

y

x

θ θ

Fig. 13.2.16

0 = ∂ A

∂x
= (100 − 4x) cos θ + x sin 2θ

⇒ cos θ(100 − 4x + 2x sin θ) = 0

⇒ 4x − 2x sin θ = 100 ⇒ x = 50

2 − sin θ

0 = ∂ A

∂θ
= −(100x − 2x2) sin θ + x2 cos 2θ

⇒ x(1 − 2 sin2 θ) + 2x sin θ − 100 sin θ = 0.

Substituting the first equation into the second we obtain

50

2 − sin θ

(
1 − 2 sin2 θ + 2 sin θ

)
− 100 sin θ = 0

50(1 − 2 sin2 θ + 2 sin θ) = 100(2 sin θ − sin2 θ)

50 = 100 sin θ.

Thus sin θ = 1/2, and θ = π/6.

Therefore x = 50

2 − (1/2)
= 100

3
, and

y = 100 − 2x = 100

3
.

The maximum area for the enclosure is

A =
(

100

3

)2 √
3

2
+
(

100

3

)2 1

2

√
3

2
= 2500√

3

square units. All three segments of the fence will be the
same length, and the bend angles will be 120◦.

17. To maximize Q(x, y) = 2x + 3y subject to

x ≥ 0, y ≥ 0, y ≤ 5, x + 2y ≤ 12, 4x + y ≤ 12.

The constraint region is shown in the figure.
y

x

4x+y=12

y=5

x+2y=12

(
7
4 ,5
)

Fig. 13.2.17

Observe that any point satisfying y ≤ 5 and 4x + y ≤ 12
automatically satisfies x + 2y ≤ 12. Since y = 5 and

4x + y = 12 intersect at

(
7

4
, 5

)
, the maximum value of

Q(x, y) subject to the given constraints is

Q

(
7

4
, 5

)
= 7

2
+ 15 = 37

2
.

18. Minimize F(x, y, z) = 2x + 3y + 4z subject to

x ≥ 0,

x + y ≥ 2,

y ≥ 0,

y + z ≥ 2,

z ≥ 0,

x + z ≥ 2.
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Here the constraint region has vertices (1, 1, 1),
(2, 2, 0), (2, 0, 2), and (0, 2, 2). Since F(1, 1, 1) = 9,
F(2, 2, 0) = 10, F(2, 0, 2) = 12, and F(0, 2, 2) = 14, the
minimum value of F subject to the constraints is 9.

x

y

z

(0,2,2)

(2,2,0)

(1,1,1)

(2,0,2)

x+y=2

x+z=2

x=0

z=0

y+z=2

y=0

Fig. 13.2.18

19. Suppose that x kg of deluxe fabric and y kg of standard
fabric are produced. Then the total revenue is

R = 3x + 2y.

The constraints imposed by raw material availability are

20

100
x + 10

100
y ≤ 2, 000, ⇔ 2x + y ≤ 20, 000

50

100
x + 40

100
y ≤ 6, 000, ⇔ 5x + 4y ≤ 60, 000

30

100
x + 50

100
y ≤ 6, 000, ⇔ 3x + 5y ≤ 60, 000.

The lines 2x + y = 20, 000 and 5x + 4y = 60, 000

intersect at the point

(
20, 000

3
,

20, 000

3

)
, which satisfies

3x + 5y ≤ 60, 000, so lies in the constraint region. We
have

f

(
20, 000

3
,

20, 000

3

)
≈ 33, 333.

The lines 2x + y = 20, 000 and 3x + 5y = 60, 000 in-

tersect at the point

(
40, 000

7
,

60, 000

7

)
, which does not

satisfy 5x + 4y ≤ 60, 000 and so does not lie in the con-
straint region.
The lines 5x + 4y = 60, 000 and 3x + 5y = 60, 000 in-

tersect at the point

(
60, 000

13
,

120, 000

13

)
, which satisfies

2x + y ≤ 20, 000 and so lies in the constraint region. We
have

f

(
60, 000

13
,

120, 000

13

)
≈ 32, 307.

To produce the maximum revenue, the manufacturer
should produce 20, 000/3 ≈ 6, 667 kg of each grade
of fabric.

20. If the developer builds x houses, y duplex units, and z
apartments, his profit will be

P = 40, 000x + 20, 000y + 16, 000z.

The legal constraints imposed require that

x

6
+ y

8
+ z

12
≤ 10, that is 4x + 3y + 2z ≤ 240,

and also
z ≥ x + y.

Evidently we must also have x ≥ 0, y ≥ 0, and z ≥ 0.
The planes 4x + 3y + 2z = 240 and z = x + y intersect
where 6x + 5y = 240. Thus the constraint region has
vertices (0, 0, 0), (40, 0, 40), (0, 48, 48), and (0, 0, 120),
which yield revenues of $0, $2,240,000, $1,728,000, and
$1,920,000 respectively.
For maximum profit, the developer should build 40
houses, no duplex units, and 40 apartments.

Section 13.3 Lagrange Multipliers
(page 728)

1. First we observe that f (x, y) = x3 y5 must have a max-
imum value on the line x + y = 8 because if x → −∞
then y → ∞ and if x → ∞ then y → −∞. In either
case f (x, y) → −∞.
Let L = x3 y5 + λ(x + y − 8). For CPs of L :

0 = ∂L

∂x
= 3x2 y5 + λ

0 = ∂L

∂y
= 5x3 y4 + λ

0 = ∂L

∂λ
= x + y − 8.

The first two equations give 3x2 y5 = 5x3 y4, so that ei-
ther x = 0 or y = 0 or 3y = 5x . If x = 0 or y = 0 then
f (x, y) = 0. If 3y = 5x , then x + 5

3 x = 8, so 8x = 24
and x = 3. Then y = 5, and f (x, y) = 3355 = 84, 375.
This is the maximum value of f on the line.

2. a) Let D be the distance from (3, 0) to the point (x, y)

on the curve y = x2. Then

D2 = (x − 3)2 + y2 = (x − 3)2 + x4.

For a minimum, 0 = d D2

dx
= 2(x − 3) + 4x3. Thus

2x3 + x − 3 = 0. Clearly x = 1 is a root of this
cubic equation. Since

2x3 + x − 3

x − 1
= 2x2 + 2x + 3,

496



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 13.3 (PAGE 728)

and 2x2 + 2x + 3 has negative discriminant, x = 1 is
the only critical point. Thus the minimum distance
from (3, 0) to y = x2 is D =

√
(−2)2 + 14 = √

5
units.

b) We want to minimize D2 = (x − 3)2 + y2

subject to the constraint y = x2. Let
L = (x − 3)2 + y2 + λ(x2 − y). For critical points of
L we want

0 = ∂L

∂x
= 2(x − 3) + 2λx

⇒ (1 + λ)x − 3 = 0 (A)

0 = ∂L

∂y
= 2y − λ (B)

0 = ∂L

∂λ
= x2 − y. (C)

Eliminating λ from (A) and (B), we get
x + 2xy − 3 = 0.
Substituting (C) then leads to 2x3 + x − 3 = 0, or
(x − 1)(2x2 + 2x + 3) = 0. The only real solution
is x = 1, so the point on y = x2 closest to (3, 0) is
(1, 1).
Thus the minimum distance from (3, 0) to y = x2 is
D = √

(1 − 3)2 + 12 = √
5 units.

3. Let (X, Y, Z) be the point on the plane x + 2y + 2z = 3
closest to (0, 0, 0).

a) The vector ∇(x + 2y + 2z) = i + 2j + 2k is perpen-
dicular to the plane, so must be parallel to the vector
X i + Y j + Zk from the origin to (X, Y, Z). Thus

X i + Y j + Zk = t (i + 2j + 2k),

for some scalar t . Thus X = t , Y = 2t , Z = 2t , and,
since (X, Y, Z) lies on the plane,

3 = X + 2Y + 2Z = t + 4t + 4t = 9t.

Thus t = 1
3 , and we have X = 1

3 and Y = Z = 2
3 .

The minimum distance from the origin to the plane
is therefore 1

3

√
1 + 4 + 4 = 1 unit.

b) (X, Y, Z) must minimize the square of the distance
from the origin to (x, y, z) on the plane. Thus it is a
critical point of S = x2 + y2 + z2. Since
x + 2y + 2z = 3, we have x = 3 − 2(y + z), and

S = S(y, z) =
(

3 − 2(y + z)
)2 + y2 + z2.

The critical points of this function are given by

0 = ∂S

∂y
= −4

(
3 − 2(y + z)

)
+ 2y = −12 + 10y + 8z

0 = ∂S

∂z
= −4

(
3 − 2(y + z)

)
+ 2z = −12 + 8y + 10z.

Therefore Y = Z = 2
3 and X = 1

3 , and the distance
is 1 unit as in part (a).

c) The point (X, Y, Z) must be a critical point of the
Lagrangian function

L = x2 + y2 + z2 + λ(x + 2y + 2z − 3).

To find these critical points we have

0 = ∂L

∂x
= 2x + λ

0 = ∂L

∂y
= 2y + 2λ

0 = ∂L

∂z
= 2z + 2λ

0 = ∂L

∂λ
= x + 2y + 2z − 3.

The first three equations yield y = z = −λ,
x = −λ/2. Substituting these into the fourth equa-
tion we get λ = − 2

3 , so that the critical point is once
again

( 1
3 , 2

3 , 2
3

)
, whose distance from the origin is 1

unit.

4. Let f (x, y, z) = x + y − z, and define the Lagrangian

L = x + y − z + λ(x2 + y2 + z2 − 1).

Solutions to the constrained problem will be found
among the critical points of L . To find these we have

0 = ∂L

∂x
= 1 + 2λx,

0 = ∂L

∂y
= 1 + 2λy,

0 = ∂L

∂z
= −1 + 2λz,

0 = ∂L

∂λ
= x2 + y2 + z2 − 1.

Therefore 2λx = 2λy = −2λz. Either λ = 0 or
x = y = −z. λ = 0 is not possible. (It implies 0 = 1
from the first equation.) From x = y = −z we obtain

1 = x2 + y2 + z2 = 3x2, so x = ± 1√
3

. L has critical

points at

(
1√
3
,

1√
3
,− 1√

3

)
and

(
1

−√
3
,− 1√

3
,

1√
3

)
.

At the first f = √
3, which is the maximum value of

f on the sphere; at the second f = −√
3, which is the

minimum value.

5. The distance D from (2, 1,−2) to (x, y, z) is given by

D2 = (x − 2)2 + (y − 1)2 + (z + 2)2.
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We can extremize D by extremizing D2. If (x, y, z) lies
on the sphere x2+ y2+z2 = 1, we should look for critical
points of the Lagrangian

L = (x − 2)2 + (y − 1)2 + (z + 2)2 + λ(x2 + y2 + z2 − 1).

Thus

0 = ∂L

∂x
= 2(x − 2) + 2λx ⇔ x = 2

1 + λ

0 = ∂L

∂y
= 2(y − 1) + 2λy ⇔ y = 1

1 + λ

0 = ∂L

∂z
= 2(z + 2) + 2λz ⇔ z = −2

1 + λ

0 = ∂L

∂λ
= x2 + y2 + z2 − 1.

Substituting the solutions of the first three equations into
the fourth, we obtain

1

(1 + λ)2
(4 + 1 + 4) = 1

(1 + λ)2 = 9

1 + λ = ±3.

Thus we must consider the two points P = ( 2
3 , 1

3 ,− 2
3

)
,

and Q = (− 2
3 ,− 1

3 , 2
3

)
for giving extreme values for D.

At P, D = 2. At Q, D = 4. Thus the greatest and least
distances from (2, 1,−2) to the sphere x2 + y2 + z2 = 1
are 4 units and 2 units respectively.

6. Let L = x2 + y2 + z2 + λ(xyz2 − 2). For critical points:

0 = ∂L

∂x
= 2x + λyz2 ⇔ −λxyz2 = 2x2

0 = ∂L

∂y
= 2y + λxz2 ⇔ −λxyz2 = 2y2

0 = ∂L

∂z
= 2z + 2λxyz ⇔ −λxyz2 = z2

0 = ∂L

∂λ
= xyz2 − 2.

From the first three equations, x2 = y2 and z2 = 2x2.
The fourth equation then gives x2 y24z4 = 4, or x8 = 1.
Thus x2 = y2 = 1 and z2 = 2.
The shortest distance from the origin to the surface
xyz2 = 2 is √

1 + 1 + 2 = 2 units.

7. We want to minimize V = 4πabc

3
subject to the con-

straint
1

a2 + 4

b2 + 1

c2 = 1. Note that abc cannot be zero.

Let

L = 4πabc

3
+ λ

(
1

a2 + 4

b2 + 1

c2 − 1

)
.

For critical points of L :

0 = ∂L

∂a
= 4πbc

3
− 2λ

a3 ⇔ 2πabc

3
= λ

a2

0 = ∂L

∂b
= 4πac

3
− 8λ

b3
⇔ 2πabc

3
= 4λ

b2

0 = ∂L

∂c
= 4πab

3
− 2λ

c3 ⇔ 2πabc

3
= λ

c2

0 = ∂L

∂λ
= 1

a2 + 4

b2 + 1

c2 − 1.

abc �= 0 implies λ �= 0, and so we must have

1

a2
= 4

b2
= 1

c2
= 1

3
,

so a = ±√
3, b = ±2

√
3, and c = ±√

3.

8. Let L = x2 + y2 + λ(3x2 + 2xy + 3y2 − 16). We have

0 = ∂L

∂x
= 2x + 6λx + 2λy (A)

0 = ∂L

∂y
= 2y + 6λy + 2λx . (B)

Multiplying (A) by y and (B) by x and subtracting we
get

2λ(y2 − x2) = 0.

Thus, either λ = 0, or y = x , or y = −x .
λ = 0 is not possible, since it implies x = 0 and y = 0,
and the point (0, 0) does not lie on the given ellipse.
If y = x , then 8x2 = 16, so x = y = ±√

2.
If y = −x , then 4x2 = 16, so x = −y = ±2.
The points on the ellipse nearest the origin are (

√
2,

√
2)

and (−√
2,−√

2). The points farthest from the origin are
(2, −2) and (−2, 2). The major axis of the ellipse lies
along y = −x and has length 4

√
2. The minor axis lies

along y = x and has length 4.

9. Let L = xyz + λ(x2 + y2 + z2 − 12). For CPs of L :

0 = ∂L

∂x
= yz + 2λx (A)

0 = ∂L

∂y
= xz + 2λy (B)

0 = ∂L

∂z
= xy + 2λz (C)

0 = ∂L

∂λ
= x2 + y2 + z2 − 12. (D)

Multiplying equations (A), (B), and (C) by x , y, and z,
respectively, and subtracting in pairs, we conclude that
λx2 = λy2 = λz2, so that either λ = 0 or x2 = y2 = z2.
If λ = 0, then (A) implies that yz = 0, so xyz = 0. If
x2 = y2 = z2, then (D) gives 3x2 = 12, so x2 = 4.
We obtain eight points (x, y, z) where each coordinate is
either 2 or −2. At four of these points xyz =8, which is
the maximum value of xyz on the sphere. At the other
four xyz = −8, which is the minimum value.
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10. Let L = x + 2y − 3z + λ(x2 + 4y2 + 9z2 − 108). For CPs
of L :

0 = ∂L

∂x
= 1 + 2λx (A)

0 = ∂L

∂y
= 2 + 8λy (B)

0 = ∂L

∂z
= −3 + 18λz (C)

0 = ∂L

∂λ
= x2 + 4y2 + 9z2 − 108. (D)

From (A), (B), and (C),

λ = − 1

2x
= − 2

8y
= 3

18z
,

so x = 2y = −3z. From (D):

x2 + 4

(
x2

4

)
+ 9

(
x2

9

)
= 108,

so x2 = 36, and x = ±6. There are two CPs: (6, 3, −2)

and (−6, −3, 2). At the first, x + 2y − 3z = 18, the
maximum value, and at the second, x + 2y − 3z = −18,
the minimum value.

11. Let L = x + λ(x + y − z) + µ(x 2 + 2y2 + 2z2 − 8). For
critical points of L :

0 = ∂L

∂x
= 1 + λ + 2µx (A)

0 = ∂L

∂y
= λ + 4µy (B)

0 = ∂L

∂z
= −λ + 4µz (C)

0 = ∂L

∂λ
= x + y − z (D)

0 = ∂L

∂µ
= x2 + 2y2 + 2z2 − 8. (E)

From (B) and (C) we have µ(y + z) = 0. Thus µ = 0 or
y + z = 0.

CASE I. µ = 0. Then λ = 0 by (B), and 1 = 0 by (A),
so this case is not possible.

CASE II. y + z = 0. Then z = −y and, by (D),
x = −2y. Therefore, by (E), 4y2 + 2y2 + 2y2 = 8, and so
y = ±1. From this case we obtain two points: (2, −1, 1)

and (−2, 1, −1).
The function f (x, y, z) = x has maximum value 2
and minimum value −2 when restricted to the curve
x + y = z, x2 + 2y2 + 2z2 = 8.

12. Let L = x2 + y2 + z2 + λ(x2 + y2 − z2) + µ(x − 2z − 3).
For critical points of L :

0 = ∂L

∂x
= 2x(1 + λ) + µ (A)

0 = ∂L

∂y
= 2y(1 + λ) (B)

0 = ∂L

∂z
= 2z(1 − λ) − 2µ (C)

0 = ∂L

∂λ
= x2 + y2 − z2 (D)

0 = ∂L

∂µ
= x − 2z − 3. (E)

From (B), either y = 0 or λ = −1.

CASE I. y = 0. Then (D) implies x = ±z.
If x = z then (E) implies z = −3, so we get the point
(−3, 0,−3).
If x = −z then (E) implies z = −1, so we get the point
(1, 0,−1).

CASE II. λ = −1. Then (A) implies µ = 0 and (C)
implies z = 0. By (D), x = y = 0, and this contradicts
(E), so this case is not possible.

If f (x, y, z) = x2 + y2 + z2, then f (−3, 0,−3) = 18
is the maximum value of f on the ellipse x2 + y2 = z2,
x − 2z = 3, and f (1, 0,−1) = 2 is the minimum value.

13. Let L = 4 − z + λ(x2 + y2 − 8) + µ(x + y + z − 1). For
critical points of L :

0 = ∂L

∂x
= 2λx + µ (A)

0 = ∂L

∂y
= 2λy + µ (B)

0 = ∂L

∂z
= −1 + µ (C)

0 = ∂L

∂λ
= x2 + y2 − 8 (D)

0 = ∂L

∂µ
= x + y + z − 1. (E)

From (C), µ = 1. From (A) and (B), λ(x − y) = 0, so
either λ = 0 or x = y.

CASE I. λ = 0. Then µ = 0 by (A), and this contradicts
(C), so this case is not possible.

CASE II. x = y. Then x = y = ±2 by (D).
If x = y = 2, then z = −3 by (E).
If x = y = −2, then z = 5 by (E).
Thus we have two points, (2, 2,−3) and (−2,−2, 5),
where f (x, y, z) = 4 − z takes the values 7 (maximum),
and −1 (minimum) respectively.

14. The max and min values of f (x, y, z) = x + y2z subject
to the constraints y2 + z2 = 2 and z = x will be found
among the critical points of

L = x + y2z + λ(y2 + z2 − 2) + µ(z − x).
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Thus

0 = ∂L

∂x
= 1 − µ = 0,

0 = ∂L

∂y
= 2yz + 2λy = 0,

0 = ∂L

∂z
= y2 + 2λz + µ = 0,

0 = ∂L

∂λ
= y2 + z2 − 2,

0 = ∂L

∂µ
= z − x .

From the first equation µ = 1. From the second, either
y = 0 or z = −λ.
If y = 0 then z2 = 2, z = x , so critical points are
(
√

2, 0,
√

2) and (−√
2, 0, −√

2). f has the values ±√
2

at these points. If z = −λ then y2 − 2z2 + 1 = 0. Thus
2z2 −1 = 2− z2, or z2 = 1, z = ±1. This leads to critical
points (1, ±1, 1) and (−1,±1,−1) where f has values
±2. The maximum value of f subject to the constraints
is 2; the minimum value is −2.

15. Let

L = (x − a)2 + (y − b)2 + (z − c)2 + λ(x − y) + µ(y − z)

+ σ(a + b) + τ(c − 2).

For critical points of L , we have

0 = ∂L

∂x
= 2(x − a) + λ (A)

0 = ∂L

∂y
= 2(y − b) − λ + µ (B)

0 = ∂L

∂z
= 2(z − c) − µ (C)

0 = ∂L

∂a
= −2(x − a) + σ (D)

0 = ∂L

∂b
= −2(y − b) + σ (E)

0 = ∂L

∂c
= −2(z − c) + τ (F)

0 = ∂L

∂λ
= x − y (G)

0 = ∂L

∂µ
= y − z (H)

0 = ∂L

∂σ
= a + b (I )

0 = ∂L

∂τ
= c − 2. (J )

Subtracting (D) and (E) we get x − y = a − b. From (G),
x = y, and therefore a = b. From (I), a = b = 0, and
from (J), c = 2.
Adding (A), (B) and (C), we get x + y+z = a+b+c = 2.
From (G) and (H), x = y = z = 2/3.
The minimum distance between the two lines is√(

2

3
− 0

)2

+
(

2

3
− 0

)2

+
(

2

3
− 2

)2

=
√

24

9
= 2

√
6

3
units.

16. Let L = x1 + x2 + · · · + xn + λ(x2
1 + x2

2 + · · · + x2
n − 1).

For critical points of L we have

0 = ∂L

∂x1
= 1 + 2λx1, . . . 0 = ∂L

∂xn
= 1 + 2λxn

0 = ∂L

∂λ
= x2

1 + x2
2 + · · · + x2

n − 1.

The first n equations give

x1 = x2 = · · · = xn = − 1

2λ
,

and the final equation gives

1

4λ2 + 1

4λ2 + · · · + 1

4λ2 = 1,

so that 4λ2 = n, and λ = ±√
n/2.

The maximum and minimum values of x1 + x2 + · · · + xn

subject to x2
1 + · · · + x2

n = 1 are ± n

2λ
, that is,

√
n and

−√
n respectively.

17. Let L = x1 + 2x2 + · · · + nxn + λ(x2
1 + x2

2 + · · · + x2
n − 1).

For critical points of L we have

0 = ∂L

∂x1
= 1 + 2λx1 ⇔ x1 = − 1

2λ

0 = ∂L

∂x2
= 2 + 2λx2 ⇔ x2 = − 2

2λ

0 = ∂L

∂x3
= 3 + 2λx3 ⇔ x3 = − 3

2λ

...

0 = ∂L

∂xn
= n + 2λxn ⇔ xn = − n

2λ

0 = ∂L

∂λ
= x2

1 + x2
2 + · · · + x2

n − 1.

Thus

1

4λ2
+ 4

4λ2
+ 9

4λ2
+ · · · + n2

4λ2
= 1

4λ2 = 1 + 4 + 9 + · · · + n2 = n(n + 1)(2n + 1)

6

λ = ±1

2

√
n(n + 1)(2n + 1)

6
.
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Thus the maximum and minimum values of
x1 + 2x2 + · · · + nxn over the hypersphere
x2

1 + x2
2 + · · · + x2

n = 1 are

±
√

6

n(n + 1)(2n + 1)
(12 + 22 + 32 + · · · + n2)

= ±
√

n(n + 1)(2n + 1)

6
.

18. Let the width, depth, and height of the box be x , y and z
respectively. We want to minimize the surface area

S = xy + 2xz + 2yz

subject to the constraint that xyz = V , where V is a
given positive volume. Let

L = xy + 2xz + 2yz + λ(xyz − V ).

For critical points of L ,

0 = ∂L

∂x
= y + 2z + λyz ⇔ −λxyz = xy + 2xz

0 = ∂L

∂y
= x + 2z + λxz ⇔ −λxyz = xy + 2yz

0 = ∂L

∂z
= 2x + 2y + λxy ⇔ −λxyz = 2xz + 2yz

0 = ∂L

∂λ
= xyz − V .

From the first three equations, xy = 2xz = 2yz. Since
x , y, and z are all necessarily positive, we must therefore
have x = y = 2z. Thus the most economical box with no
top has width and depth equal to twice the height.

19. We want to maximize V = xyz subject to 4x+2y+z = 2.
Let

L = xyz + λ(4x + 2y + z − 2).

For critical points of L ,

0 = ∂L

∂x
= yz + 4λ ⇔ xyz + 4λx = 0

0 = ∂L

∂y
= xz + 2λ ⇔ xyz + 2λy = 0

0 = ∂L

∂z
= xy + λ ⇔ xyz + λz = 0

0 = ∂L

∂λ
= 4x + 2y + z − 2 = 0.

The first three equations imply that z = 2y = 4x (since
we cannot have λ = 0 if V is positive). The fourth equa-
tion then implies that 12x = 2. Hence x = 1/6, y = 1/3,
and z = 2/3.
The largest box has volume

V = 1

6
× 1

3
× 2

3
= 1

27
cubic units.

20. We want to maximize xyz subject to xy+2yz+3xz = 18.
Let

L = xyz + λ(xy + 2yz + 3xz − 18).

For critical points of L ,

0 = ∂L

∂x
= yz + λ(y + 3z) ⇔ −xyz = λ(xy + 3xz)

0 = ∂L

∂y
= xz + λ(x + 2z) ⇔ −xyz = λ(xy + 2yz)

0 = ∂L

∂z
= xy + λ(2y + 3x) ⇔ −xyz = λ(2yz + 3xz)

0 = ∂L

∂λ
= xy + 2yz + 3xz − 18.

From the first three equations xy = 2yz = 3xz. From the
fourth equation, the sum of these expressions is 18. Thus

xy = 2yz = 3xz = 6.

Thus the maximum volume of the box is

V = xyz = √
(xy)(yz)(xz) = √

6 × 3 × 2 = 6 cubic units.

21. Let the width, depth, and height of the box be x , y, and
z as shown in the figure. Let the cost per unit area of the
back and sides be $k. Then the cost per unit area of the
front and bottom is $5k. We want to minimize

C = 5k(xz + xy) + k(2yz + xz)

subject to the constraint xyz = V (constant). Let

L = k(5xy + 6xz + 2yz) + λ(xyz − V ).

For critical points of L ,

0 = ∂L

∂x
= 5ky + 6kz + λyz ⇔ −λxyz = 5kxy + 6kxz

0 = ∂L

∂y
= 5kx + 2kz + λxz ⇔ −λxyz = 5kxy + 2kyz

0 = ∂L

∂z
= 6kx + 2ky + λxy ⇔ −λxyz = 6kxz + 2kyz

0 = ∂L

∂λ
= xyz − V .

From the first three of these equations we obtain

5xy = 6xz = 2yz. Thus y = 3x and z = 5x

2
. From the

fourth equation, V = xyz = 15

2
x3.

The largest box has width

(
2V

15

)1/3

, depth 3

(
2V

15

)1/3

,

and height
5

2

(
2V

15

)1/3

.
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z

yx

bottom

front side

side

back

Fig. 13.3.21

22. f (x, y, z) = xy + z2 on B = {(x, y, z) : x2 + y2 + z2 ≤ 1}.
For critical points of f ,

0 = f1(x, y, z) = y, 0 = f2(x, y, z) = x,

0 = f3(x, y, z) = 2z.

Thus the only critical point is the interior point (0, 0, 0),
where f has the value 0, evidently neither a maximum
nor a minimum. The maximum and minimum must
therefore occur on the boundary of B, that is, on the
sphere
x2 + y2 + z2 = 1. Let

L = xy + z2 + λ(x2 + y2 + z2 − 1).

For critical points of L ,

0 = ∂L

∂x
= y + 2λx (A)

0 = ∂L

∂y
= x + 2λy (B)

0 = ∂L

∂z
= 2z(1 + λ) (C)

0 = ∂L

∂λ
= x2 + y2 + z2 − 1. (D)

From (C) either z = 0 or λ = −1.

CASE I. z = 0. (A) and (B) imply that y2 = x2 and (D)
then implies that x2 = y2 = 1/2. At the four points

(
1√
2
, ± 1√

2
, 0

)
and

(
− 1√

2
,± 1√

2
, 0

)

f takes the values
1

2
and −1

2
.

CASE II. λ = −1. (A) and (B) imply that x = y = 0,
and so by (D), z = ±1. f has the value 1 at the points
(0, 0, ±1).
Thus the maximum and minimum values of f on B are
1 and −1/2 respectively.

23. In this problem we do the boundary analysis for Exercise
22 using the suggested parametrization of the sphere
x2 + y2 + z2 = 1. We have

f (x, y, z) = xy + z2

= sin2 φ sin θ cos θ + cos2 φ

= 1

2
sin2 φ sin 2θ + cos2 φ

= g(φ, θ)

for 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π . For critical points of g,

0 = g1(φ, θ) = sin φ cos φ sin 2θ − 2 sin φ cos φ

= sin φ cos φ(sin 2θ − 2)

0 = g2(φ, θ) = sin2 φ cos 2θ.

The first of these equations implies that either sin φ = 0
or cos φ = 0.
If sin φ = 0, then both equations are satisfied. Since
cos φ = ±1 in this case, we have g(φ, θ) = 1.
If cos φ = 0, then sin φ = ±1, and the second equation

requires cos 2θ = 0. Thus θ = ±π

4
or ±3π

4
. In this case

g(φ, θ) = ±1

2
.

Again we find that f (x, y, z) = xy + z2 has maximum

value 1 and minimum value −1

2
when restricted to the

surface of the ball B. These are the maximum and mini-
mum values for the whole ball as noted in Exercise 22.

24. Let L = sin
x

2
sin

y

2
sin

z

2
+ λ(x + y + z − π). Then

0 = ∂L

∂x
= 1

2
cos

x

2
sin

y

2
sin

z

2
+ λ (A)

0 = ∂L

∂y
= 1

2
sin

x

2
cos

y

2
sin

z

2
+ λ (B)

0 = ∂L

∂z
= 1

2
sin

x

2
sin

y

2
cos

z

2
+ λ. (C)

For any triangle we must have 0 ≤ x ≤ π , 0 ≤ y ≤ π

and 0 ≤ z ≤ π . Also

P = sin
x

2
sin

y

2
sin

z

2

is 0 if any of x , y or z is 0 or π . Subtracting equations
(A) and (B) gives

1

2
sin

z

2
sin

x − y

2
= 0.

It follows that we must have x = y; all other possibilities
lead to a zero value for P. Similarly, y = z. Thus the
triangle for which P is maximum must be equilateral:
x = y = z = π/3. Since sin(π/3) = 1/2, the maximum
value of P is 1/8.
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25. We are given that g2(a, b) �= 0, and therefore that the
equation g(x, y) = C has a solution of the form y = h(x)

valid near (a, b). Since g
(

x, h(x)
)

= C holds identically

for x near a, we must have

0 =
(

d

dx
g
(

x, h(x)
))∣∣∣∣

x=a
= g1(a, b) + g2(a, b)h′(a).

If f (x, y), subject to the constraint g(x, y) = C , has an

extreme value at (a, b), then F(x) = f
(

x, h(x)
)

has an

extreme value at x = a, so

0 = F ′(a) = f1(a, b) + f2(a, b)h′(a).

Together these equations imply that
g1(a, b) f2(a, b) = g2(a, b) f1(a, b), and therefore that

f1(a, b)

g1(a, b)
= f2(a, b)

g2(a, b)
= −λ (say).

(Since g2(a, b) �= 0, therefore, if g1(a, b) = 0, then
f1(a, b) = 0 also.) It follows that

0 = f1(a, b) + λg1(a, b), 0 = f2(a, b) + λg2(a, b),

so (a, b) is a critical point of L = f (x, y) + λg(x, y).

26. As can be seen in the figure, the minimum distance
from (0, −1) to points of the semicircle y = √

1 − x2

is
√

2, the closest points to (0, −1) on the semicircle
being (±1, 0). These points will not be found by the
method of Lagrange multipliers because the level curve
f (x, y) = 2 of the function f giving the square of the
distance from (x, y) to (0, −1) is not tangent to the semi-
circle at (±1, 0). This could only have happened because
(±1, 0) are endpoints of the semicircle.

y

x

y=
√

1−x2

(1,0)

(0,−1)

(−1,0)

Fig. 13.3.26

27. If f (x, y) has an extreme value on g(x, y) = 0 at a point
(x0, y0) where ∇g �= 0, and if ∇ f exists at that point,
then ∇ f (x0, y0) must be parallel to ∇g(x0, y0);

∇ f (x0, y0) + λ∇g(x0, y0) = 0

as shown in the text. The argument given there holds
whether or not ∇ f (x0, y0) is 0. However, if

∇ f (x0, y0) = 0

then we will have λ = 0.

Section 13.4 The Method of Least Squares
(page 734)

1. If the power plant is located at (x, y), then x and y
should minimize (and hence be a critical point of)

S =
n∑

i=1

[
(x − xi )

2 + (y − y2)
2
]
.

Thus we must have

0 = ∂S

∂x
= 2

n∑
i=1

(x − xi ) = 2

(
nx −

n∑
i=1

xi

)

0 = ∂S

∂y
= 2

n∑
i=1

(y − yi ) = 2

(
ny −

n∑
i=1

yi

)
.

Thus x = 1

n

n∑
i=1

xi = x̄ , and y = 1

n

n∑
i=1

yi = ȳ.

Place the power plant at the position whose coordinates
are the averages of the coordinates of the machines.

2. We want to minimize S =∑n
i=1(ax2

i − yi)
2. Thus

0 = d S

da
=

n∑
i=1

2(ax2
i − yi )x2

i

= 2
n∑

i=1

(ax4
i − x2

i yi ),

and a = (∑n
i=1 x2

i yi
)/(∑n

i=1 x4
i

)
.

3. We minimize S = ∑n
i=1(aexi − yi )

2. Thus

0 = d S

da
= 2

n∑
i=1

(aexi − yi )e
xi

,

and a = (∑n
i=1 yiexi

)/(∑n
i=1 e2xi

)
.

4. We choose a, b, and c to minimize

S =
n∑

i=1

(
axi + byi + c − zi

)2
.
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Thus

0 = ∂S

∂a
= 2

n∑
i=1

(axi + byi + c − zi )xi

0 = ∂S

∂b
= 2

n∑
i=1

(axi + byi + c − zi )yi

0 = ∂S

∂c
= 2

n∑
i=1

(axi + byi + c − zi ).

Let A = ∑
x2

i , B = ∑
xi yi , C = ∑

xi , D = ∑
y2

i ,
E = ∑

yi , F = ∑
xi zi , G = ∑

yi zi , and H = ∑
zi . In

terms of these quantities the above equations become

Aa + Bb + Cc = F
Ba + Db + Ec = G
Ca + Eb + nc = H.

By Cramer’s Rule (Theorem 5 of Section 1.6) the solu-
tion is

a = 1

�

∣∣∣∣∣
F B C
G D E
H E n

∣∣∣∣∣ ,

c = 1

�

∣∣∣∣∣
A B F
B D G
C E H

∣∣∣∣∣ ,

b = 1

�

∣∣∣∣∣
A F C
B G E
C H n

∣∣∣∣∣ ,

where � =
∣∣∣∣∣

A B C
B D E
C E n

∣∣∣∣∣ .

5. If x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn),
w = (1, . . . , 1), and p = ax+by+ cw, we want to choose
a, b, and c so that p is the vector projection of z onto
the subspace of �3 spanned by x, y and w. Thus p − z
must be perpendicular to each of x, y, and w:

(p − z) • x = 0, (p − z) • y = 0, (p − z) • w = 0.

When written in terms of the components of the vectors
involved, these three equations are the same as the equa-
tions for a, b, and c encountered in Exercise 4, and so
they have the same solution as given for that exercise.

6. The relationship y = p + qx2 is linear in p and q, so we
choose p and q to minimize

S =
n∑

i=1

(p + qx2
i − yi )

2.

Thus

0 = ∂S

∂p
= 2

n∑
i=1

(p + qx2
i − yi )

0 = ∂S

∂q
= 2

n∑
i=1

(p + qx2
i − yi )x

2
i ,

that is,

np + (∑
x2

i

)
q = ∑

yi(∑
x2

i

)
p + (∑

x4
i

)
q = ∑

x2
i yi ,

so

p =
(∑

yi
) (∑

x4
i

)− (∑
x2

i yi
) (∑

x2
i

)
n
(∑

x4
i

)− (∑
x2

i

)2
q = n

(∑
x2

i yi
)− (∑

yi
) (∑

x2
i

)
n
(∑

x4
i

)− (∑
x2

i

)2 .

This is the result obtained by direct linear regression.
(No transformation of variables was necessary.)

7. We transform y = peqx into the form ln y = ln p + qx ,
which is linear in ln p and q. We let ηi = ln yi and use
the regression line η = a + bx obtained from the data
(xi , ηi ), with b = q and a = ln p.
Using the formulas for a and b obtained in the text, we
have

ln p = a = n
(∑

xi ln yi
)− (∑

xi
) (∑

ln yi
)

n
(∑

x2
i

)− (∑
xi
)2

q = b =
(∑

x2
i

) (∑
ln yi

)− (∑
xi
) (∑

xi ln yi
)

n
(∑

x2
i

)− (∑
xi
)2

p = ea.

These values of p and q are not the same values that
minimize the expression

S =
n∑

i=1

(yi − peqxi )2.

8. We transform y = ln(p + qx) into the form ey = p + qx ,
which is linear in p and q. We let ηi = eyi and use the
regression line η = ax + b obtained from the data (xi , ηi ),
with a = q and b = p.
Using the formulas for a and b obtained in the text, we
have

q = a = n
(∑

xi eyi
)− (∑

xi
) (∑

eyi
)

n
(∑

x2
i

)− (∑
xi
)2

p = b =
(∑

x2
i

) (∑
eyi
)− (∑

xi
) (∑

xi eyi
)

n
(∑

x2
i

)− (∑
xi
)2 .

These values of p and q are not the same values that
minimize the expression

S =
n∑

i=1

(
ln(p + qxi ) − yi

)2
.

9. The relationship y = px + qx2 is linear in p and q, so
we choose p and q to minimize

S =
n∑

i=1

(pxi + qx2
i − yi )

2.
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Thus

0 = ∂S

∂p
= 2

n∑
i=1

(pxi + qx2
i − yi)xi

0 = ∂S

∂q
= 2

n∑
i=1

(pxi + qx2
i − yi)x

2
i ,

that is,

(∑
x2

i

)
p + (∑

x3
i

)
q = ∑

xi yi(∑
x3

i

)
p + (∑

x4
i

)
q = ∑

x2
i yi ,

so

p =
(∑

xi yi
) (∑

x4
i

)− (∑
x2

i yi
) (∑

x3
i

)
(∑

x2
i

) (∑
x4

i

)− (∑
x3

i

)2
q =

(∑
x2

i

) (∑
x2

i yi
)− (∑

xi yi
) (∑

x3
i

)
(∑

x2
i

) (∑
x4

i

)− (∑
x3

i

)2 .

This is the result obtained by direct linear regression.
(No transformation of variables was necessary.)

10. We transform y = √
(px + q) into the form y2 = px + q,

which is linear in p and q. We let ηi = y2
i and use the

regression line η = ax + b obtained from the data (xi , ηi ),
with a = p and b = q.
Using the formulas for a and b obtained in the text, we
have

p = a = n
(∑

xi y2
i

)− (∑
xi
) (∑

y2
i

)
n
(∑

x2
i

)− (∑
xi
)2

q = b =
(∑

x2
i

) (∑
y2

i

)− (∑
xi
) (∑

xi y2
i

)
n
(∑

x2
i

)− (∑
xi
)2 .

These values of p and q are not the same values that
minimize the expression

S =
n∑

i=1

(√
pxi + q − yi

)2
.

11. The relationship y = pex + qe−x is linear in p and q, so
we choose p and q to minimize

S =
n∑

i=1

(
pexi + qe−xi − yi

)2
.

Thus

0 = ∂S

∂p
= 2

n∑
i=1

(
pexi + qe−xi − yi

)
exi

0 = ∂S

∂q
= 2

n∑
i=1

(
pexi + qe−xi − yi

)
e−xi .

that is,(∑
e2xi

)
p + nq = ∑

exi yi

np + (∑
e−2xi

)
q = ∑

e−xi yi ,

so

p =
(∑

e−2xi
) (∑

exi yi
)− n

(∑
e−xi yi

)
(∑

e2xi
) (∑

e−2xi
)− n2

q =
(∑

e2xi
) (∑

e−xi yi
)− n

(∑
exi yi

)
(∑

e2xi
) (∑

e−2xi
)− n2

.

This is the result obtained by direct linear regression.
(No transformation of variables was necessary.)

12. We use the result of Exercise 6. We have n = 6 and
∑

x2
i = 115,∑

yi = 55.18,

∑
x4

i = 4051,∑
x2

i yi = 1984.50.

Therefore

p =
(∑

yi
) (∑

x4
i

)− (∑
x2

i yi
) (∑

x2
i

)
n
(∑

x4
i

)− (∑
x2

i

)2
= 55.18 × 4051 − 1984.50 × 115

6 × 4051 − 1152 ≈ −0.42

q = n
(∑

x2
i yi
)− (∑

yi
) (∑

x2
i

)
n
(∑

x4
i

)− (∑
x2

i

)2
= 6 × 1984.50 − 55.18 × 115

6 × 4051 − 1152
≈ 0.50.

We have (approximately) y = −0.42 + 0.50x2. The pre-
dicted value of y at x = 5 is −0.42 + 0.50 × 25 ≈ 12.1.

13. Choose a, b, and c to minimize

S =
n∑

i=1

(
ax2

i + bxi + c − yi

)2
.

Thus

0 = ∂S

∂a
= 2

n∑
i=1

(ax2
i + bxi + c − yi )x2

i

0 = ∂S

∂b
= 2

n∑
i=1

(ax2
i + bxi + c − yi )xi

0 = ∂S

∂c
= 2

n∑
i=1

(ax2
i + bxi + c − yi ).

Let A = ∑
x4

i , B = ∑
x3

i , C = ∑
x2

i , D = ∑
xi ,

H = ∑
x2

i yi , I = ∑
xi yi , and J = ∑

yi . In terms of
these quantities the above equations become

Aa + Bb + Cc = H
Ba + Cb + Dc = I
Ca + Db + nc = J.
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By Cramer’s Rule (Theorem 5 of Section 1.6) the solu-
tion is

a = 1

�

∣∣∣∣∣
H B C
I C D
J D n

∣∣∣∣∣ ,

c = 1

�

∣∣∣∣∣
A B H
B C I
C D J

∣∣∣∣∣ ,

b = 1

�

∣∣∣∣∣
A H C
B I D
C J n

∣∣∣∣∣ ,

where � =
∣∣∣∣∣

A B C
B C D
C D n

∣∣∣∣∣ .

14. Since y = pex + q + re−x is equivalent to

ex y = p(ex )2 + qex + r,

we let ξi = exi and ηi = exi yi for i = 1, 2, . . . , n. We
then have p = a, q = b, and r = c, where a, b, and c are
the values calculated by the formulas in Exercise 13, but
for the data (ξi , ηi ) instead of (xi , yi ).

15. To minimize I =
∫ 1

0
(ax2 − x3)2 dx , we choose a so that

0 = d I

da
=
∫ 1

0
2(ax2 − x3)x2 dx

=
(

2a
x5

5
− 2x6

6

)∣∣∣∣
1

0
= 2a

5
− 1

3
.

Thus a = 5/6, and the minimum value of I is

∫ 1

0

(
25x4

36
− 5x5

3
+ x6

)
dx

= 5

36
− 5

18
+ 1

7
= 1

252
.

16. To maximize I =
∫ π

0

(
ax(π − x) − sin x

)2
dx , we choose

a so that

0 = d I

da
=
∫ π

0
2
(

ax(π − x) − sin x
)

x(π − x) dx

= 2a
∫ π

0
x2(π − x)2 dx − 2

∫ π

0
x(π − x) sin x dx

= π5a

15
− 8.

(We have omited the details of evaluation of these inte-
grals.) Hence a = 120/π5. The minimum value of I
is

∫ π

0

(
120

π5
x(π − x) − sin x

)2

dx = π

2
− 480

π5
≈ 0.00227.

17. To minimize I =
∫ 1

0
(ax2 + b − x3)2 dx , we choose a and

b so that

0 = ∂ I

∂a
=
∫ 1

0
2(ax2 + b − x3)x2 dx = 2a

5
+ 2b

3
− 1

3

0 = ∂ I

∂b
=
∫ 1

0
2(ax2 + b − x3) dx = 2a

3
+ 2b − 1

2
.

Solving these two equations, we get a = 15/16 and
b = −1/16. The minimum value of I is

∫ 1

0

(
15x2

16
− 1

16
− x3

)2

dx = 1

448
.

18. To minimize
∫ 1

0
(x3 − ax2 − bx − c)2 dx , choose a, b and

c so that

0 = 2
∫ 1

0
(x3 − ax2 − bx − c)(−x2) dx

0 = 2
∫ 1

0
(x3 − ax2 − bx − c)(−x) dx

0 = 2
∫ 1

0
(x3 − ax2 − bx − c)(−1) dx,

that is,
a

5
+ b

4
+ c

3
= 1

6
a

4
+ b

3
+ c

2
= 1

5
a

3
+ b

2
+ c = 1

4

for which the solution is a = 3

2
, b = −3

5
, and c = 1

20
.

19. To minimize
∫ π

0
(sin x − ax2 − bx)2 dx we choose a and

b so that

0 = 2
∫ π

0
(sin x − ax2 − bx)(−x2) dx

0 = 2
∫ π

0
(sin x − ax2 − bx)(−x) dx .

We omit the details of the evaluation of the integrals.
The result of the evaluation is that a and b satisfy

π5

5
a + π4

4
b = π2 − 4

π4

4
a + π3

3
b = π,

for which the solution is

a = 20

π5
(π2 − 16)

b = 12

π4 (20 − π2).
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20. J =
∫ 1

−1
(x − a sin πx − b sin 2πx − c sin 3πx)2 dx .

To minimize J , choose a, b, and c to satisfy

0 = ∂ J

∂a

= −2
∫ 1

−1
(x − a sin πx − b sin 2πx − c sin 3πx) sin πx dx

= 2

π
(πa − 2)

0 = ∂ J

∂b

= −2
∫ 1

−1
(x − a sin πx − b sin 2πx − c sin 3πx) sin 2πx dx

= 2

π
(πb + 1)

0 = ∂ J

∂c

= −2
∫ 1

−1
(x − a sin πx − b sin 2πx − c sin 3πx) sin 3πx dx

= 2

3π
(3πc − 2).

We have omitted the details of evaluation of these inte-
grals, but note that

∫ 1

−1
sin mπx sin nπx dx = 0

if m and n are different integers.

The equations above imply that a = 2/π , b = −1/π , and
c = 2/(3π). These are the values that minimize J .

21. To minimize

I =
∫ π

0

(
f (x) − a0

2
−

n∑
k=1

ak cos kx

)2

dx

we require

0 = ∂ I

∂a0
= 2

∫ π

0

(
f (x) − a0

2
−

n∑
k=1

ak cos kx

)(
−1

2

)
dx,

and

0 = ∂ I

∂an
= 2

∫ π

0

(
f (x) − a0

2
−

n∑
k=1

ak cos kx

)
(− cos nx) dx

for n = 1, 2, . . .. Thus

a0 = 2

π

∫ π

0
f (x) dx,

and, since

∫ π

0
cos kx cos nx dx =

{
0 if k �= n
π

2
if k = n = 1, 2, . . .

we also have

an = 2

π

∫ π

0
f (x) cos nx dx (n = 1, 2, . . .).

22. The Fourier sine series coefficients for f (x) = x on
(0, π) are

bn = 2

π

∫ π

0
x sin(nx) dx = (−1)n−1 2

n

for n = 1, 2, . . .. Thus the series is

∞∑
n=0

(−1)n−1 2

n
sin nx .

Since x and the functions sin nx are all odd functions,
we would also expect the series to converge to x on
(−π, 0).

23. The Fourier cosine series coefficients for f (x) = x on
(0, π) are

a0 = 2

π

∫ π

0
x dx = π

an = 2

π

∫ π

0
x cos(nx) dx = −

2
(

1 − (−1)n
)

n2π

=
{

0 if n ≥ 2 is even

− 4

n2π
if n ≥ 1 is odd.

Thus the Fourier cosine series is

π − 4

π

∞∑
n=0

cos((2n + 1)x)

(2n + 1)2 .

Since the terms of this series are all even functions, and
the series converges to x if 0 < x < π , it will converge
to −x = |x | if −π < x < 0.

Remark: since |x | is continuous at x = 0, the series also
converges at x = 0 to 0. It follows that

1 + 1

32 + 1

52 + · · · =
∞∑

n=0

1

(2n + 1)2 = π2

4
.

24. We are given that x1 ≤ x2 ≤ x3 ≤ . . . ≤ xn .
To motivate the method, look at a special case, n = 5
say.
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x1 x2 x3 x4 x5

Fig. 13.4.24

If x = x3, then

5∑
i=1

|x − xi |

= (x3 − x1) + (x3 − x2) + 0 + (x4 − x3) + (x5 − x3)

= (x5 − x1) + (x4 − x2).

If x moves away from x3 in either direction, then

5∑
i=1

|x − xi | = (x5 − x1) + (x4 − x2) + |x − x3|.

Thus the minimum sum occurs if x = x3.
In general, if n is odd, then

∑n
i=1 |x − xi | is minimum

if x = x(n+1)/2, the middle point of the set of points
{x1, x2, . . . , xn}. The value of x is unique in this case.
If n is even and x satisfies xn/2 ≤ x ≤ x(n/2)+1, then

n∑
i=1

|x − xi | =
n/2∑
i=1

|xn+1−i − xi |,

and the sum will increase if x is outside that interval. In
this case the value of x which minimizes the sum is not
unique unless it happens that xn/2 = x(n/2)+1.

Section 13.5 Parametric Problems
(page 743)

1. F(x) =
∫ 1

0
t x dt = 1

x + 1
(x > −1)

F ′(x) =
∫ 1

0
t x ln t dt = − 1

(x + 1)2

F ′′(x) =
∫ 1

0
t x (ln t)2 dt = 2

(x + 1)3

...

F (n)(x) =
∫ 1

0
t x (ln t)n dt = (−1)nn!

(x + 1)n+1 .

2.
∫ ∞

−∞
e−u2

du = √
π Let u = xt

du = x dt∫ ∞

−∞
e−x2 t2

dt =
√

π

x
.

Differentiate with respect to x :∫ ∞

−∞
−2xt2e−t2x2

dt = −
√

π

x2∫ ∞

−∞
t2e−x2 t2

dt =
√

π

2x3 . (∗)

If x = 1 we get
∫ ∞

−∞
t2e−t2

dt =
√

π

2
.

Differentiate (∗) with respect to x again:

∫ ∞

−∞
−2xt4e−x2 t2

dt = −3
√

π

2x4 .

Divide by −2 and let x = 1:

∫ ∞

−∞
t4e−t2

dt = 3
√

π

4
.

3. Let I (x, y) =
∫ ∞

−∞
e−xt2 − e−yt2

t2 dt , where x > 0 and

y > 0. Then

∂ I

∂x
= −

∫ ∞

−∞
e−xt2

dt Let
√

xt = s√
x dt = ds

= − 1√
x

∫ ∞

−∞
e−s2

ds = −
√

π√
x

.

Similarly,
∂ I

∂y
=

√
π√
y

. Now

I (x, y) = −√
π

∫
dx√

x
= −2

√
πx + C1(y)

√
π√
y

= ∂ I

∂y
= ∂C1

∂y
⇒ C1(y) = 2

√
πy + C2

I (x, y) = 2
√

π
(√

y − √
x
)

+ C2.

But I (x, x) = 0. Therefore C2 = 0, and

I (x, y) =
∫ ∞

−∞
e−xt2 − e−yt2

t2 dt = 2
√

π
(√

y − √
x
)
.

4. Let I (x, y) =
∫ 1

0

t x − t y

ln t
dt , where x > −1 and y > −1.

Then
∂ I

∂x
=
∫ 1

0
t x dt = 1

x + 1
∂ I

∂y
= − 1

y + 1
.

Thus

I (x, y) =
∫

dx

x + 1
= ln(x + 1) + C1(y)

−1

y + 1
= ∂ I

∂y
= ∂C1

∂y
⇒ C1(y) = − ln(y + 1) + C2

I (x, y) = ln

(
x + 1

y + 1

)
+ C2.
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But I (x, x) = 0, so C2 = 0. Thus

I (x, y) =
∫ 1

0

t x − t y

ln t
dt = ln

(
x + 1

y + 1

)

for x > −1 and y > −1.

5.
∫ ∞

0
e−xt sin t dt = 1

1 + x2 if x > 0.

Multiply by −1 and differentiate with respect to x twice:

∫ ∞

0
te−xt sin t dt = 2x

(1 + x2)2∫ ∞

0
t2e−xt sin t dt = 2(3x2 − 1)

(1 + x2)3 .

6. F(x) =
∫ ∞

0
e−xt sin t

t
dt

F ′(x) =
∫ ∞

0
−e−xt sin t dt = − 1

1 + x2
(x > 0).

Therefore F(x) = −
∫

dx

1 + x2
= − tan−1 x + C .

Now, make the change of variable xt = s in the integral
defining F(x), and obtain

F(x) =
∫ ∞

0
e−s sin(s/x)

s/x

ds

x
=
∫ ∞

0

e−s

s
sin

s

x
ds.

Since | sin(s/x)| ≤ s/x if s > 0, x > 0, we have

|F(x)| ≤ 1

|x |
∫ ∞

0
e−s ds = 1

|x | → 0 as x → ∞.

Hence −π

2
+ C = 0, and C = π

2
. Therefore

F(x) =
∫ ∞

0
e−xt sin t

t
dt = π

2
− tan−1 x .

In particular,
∫∞

0
sin t

t
dt = lim

x→0
F(x) = π

2
.

7.
∫ ∞

0

dt

x2 + t2 = 1

x
tan−1 t

x

∣∣∣∣
∞

0
= π

2x
for x > 0.

Differentiate with respect to x :

∫ ∞

0

−2x dt

(x2 + t2)2 = − π

2x2∫ ∞

0

dt

(x2 + t2)2 = π

4x3 .

Differentiate with respect to x again:

∫ ∞

0

−4x dt

(x2 + t2)3
= − 3π

4x4∫ ∞

0

dt

(x2 + t2)3
= 3π

16x5
.

8.
∫ x

0

dt

x2 + t2
= 1

x
tan−1 t

x

∣∣∣∣
x

0
= π

4x
for x > 0.

Differentiate with respect to x :

1

2x2 +
∫ x

0

−2x dt

(x2 + t2)2 = − π

4x2∫ x

0

dt

(x2 + t2)2 = − 1

2x

[
− π

4x2 − 1

2x2

]

= π

8x3 + 1

4x3 .

Differentiate with respect to x again:

1

4x4 +
∫ x

0

−4x dt

(x2 + t2)3 = − 3

x4

[
π

8
+ 1

4

]
∫ x

0

dt

(x2 + t2)3 = − 1

4x

[
− 3π

8x4 − 3

4x4 − 1

4x4

]

= 3π

32x5
+ 1

4x5
.

9. f (x) = 1 +
∫ x

a
(x − t)n f (t) dt ⇒ f (a) = 1

f ′(x) = n
∫ x

a
(x − t)n−1 f (t) dt

f ′′(x) = n(n − 1)

∫ x

a
(x − t)n−2 f (t) dt

...

f (n)(x) = n!
∫ x

a
f (t) dt

f (n+1)(x) = n! f (x) ⇒ f (n+1)(a) = n! f (a) = n!.

10. f (x) = Cx + D +
∫ x

0
(x − t) f (t) dt ⇒ f (0) = D

f ′(x) = C +
∫ x

0
f (t) dt ⇒ f ′(0) = C

f ′′(x) = f (x) ⇒ f (x) = A cosh x + B sinh x

D = f (0) = A, C = f ′(0) = B

⇒ f (x) = D cosh x + C sinh x .

11. f (x) = x +
∫ x

0
(x − 2t) f (t) dt ⇒ f (0) = 0

f ′(x) = 1 − x f (x) +
∫ x

0
f (t) dt ⇒ f ′(0) = 1

f ′′(x) = − f (x) − x f ′(x) + f (x) = −x f ′(x).

If u = f ′(x), then
du

u
= −x dx , so ln u = − x2

2
+ ln C1.

Therefore
f ′(x) = u = C1e−x2/2.
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We have 1 = f ′(0) = C1, so f ′(x) = e−x2/2 and

f (x) =
∫ x

0
e−t2/2 dt + C2.

But 0 = f (0) = C2, and so

f (x) =
∫ x

0
e−t2/2 dt.

12. f (x) = 1 +
∫ 1

0
(x + t) f (t) dt

f ′(x) =
∫ 1

0
f (t) dt = C, say,

since the integral giving f ′(x) does not depend on x .
Thus f (x) = A + Cx , where A = f (0). Substituting this
expression into the given equation, we obtain

A + Cx = 1 +
∫ 1

0
(x + t)(A + Ct) dt

= 1 + Ax + A

2
+ Cx

2
+ C

3
.

Therefore

A

2
− 1 − C

3
+ x

(
C

2
− A

)
= 0.

This can hold for all x only if

A

2
− 1 − C

3
= 0 and

C

2
− A = 0.

Thus C = 2A and
A

2
− 2A

3
= 1, so that A = −6 and

C = −12. Therefore f (x) = −6 − 12x .

13. We eliminate c from the pair of equations

f (x, y, c) = 2cx − c2 − y = 0
∂

∂c
f (x, y, c) = 2x − 2c = 0.

Thus c = x and 2x2 − x2 − y = 0. The envelope is
y = x2.

14. We eliminate c from the pair of equations

f (x, y, c) = y − (x − c) cos c − sin c = 0
∂

∂c
f (x, y, c) = cos c + (x − c) sin c − cos c = 0.

Thus c = x and y − 0 − sin x = 0.
The envelope is y = sin x .

15. We eliminate c from the pair of equations

f (x, y, c) = x cos c + y sin c − 1 = 0
∂

∂c
f (x, y, c) = −x sin c + y cos c = 0.

Squaring and adding these equations yields x2 + y2 = 1,
which is the equation of the envelope.

16. We eliminate c from the pair of equations

f (x, y, c) = x

cos c
+ y

sin c
− 1 = 0

∂

∂c
f (x, y, c) = x sin c

cos2 c
− y cos c

sin2 c
= 0.

From the second equation, y = x tan3 c. Thus

x

cos c
(1 + tan2 c) = 1

which implies that x = cos3 c, and hence y = sin3 c.
The envelope is the astroid x2/3 + y2/3 = 1.

17. We eliminate c from the pair of equations

f (x, y, c) = c + (x − c)2 − y = 0
∂

∂c
f (x, y, c) = 1 + 2(c − x) = 0.

Thus c = x − 1

2
. The envelope is the line y = x − 1

4
.

18. We eliminate c from the pair of equations

f (x, y, c) = (x − c)2 + (y − c)2 − 1 = 0
∂

∂c
f (x, y, c) = 2(c − x) + 2(c − y) = 0.

Thus c = (x + y)/2, and

(
x − y

2

)2

+
(

y − x

2

)2

= 1

or x − y = ±√
2. These two parallel lines constitute the

envelope of the given family which consists of circles of
radius 1 with centres along the line y = x .

19. Not every one-parameter family of curves in the plane
has an envelope. The family of parabolas y = x2 + c ev-
idently does not. (See the figure.) If we try to calculate
the envelope by eliminating c from the equations

f (x, y, c) = y − x2 − c = 0
∂

∂c
f (x, y, c) = −1 = 0,

we fail because the second equation is contradictory.
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y

x

y=x2+c

Fig. 13.5.19

20. The curve x2+(y−c)2 = kc2 is a circle with centre (0, c)
and radius

√
kc, provided k > 0. Consider the system:

f (x, y, c) = x2 + (y − c)2 − kc2 = 0
∂

∂c
f (x, y, c) = −2(y − c) − 2kc = 0.

The second equation implies that y − c = −kc, and the
first equation then says that x2 = k(1 − k)c2. This is only
possible if 0 ≤ k ≤ 1.
The cases k = 0 and k = 1 are degenerate. If k = 0
the “curves” are just points on the y-axis. If k = 1 the
curves are circles, all of which are tangent to the x-axis
at the origin. There is no reasonable envelope in either
case. If 0 < k < 1, the envelope is the pair of lines given

by x2 = k

1 − k
y2, that is, the lines

√
1 − kx = ±√

k y.

These lines make angle sin−1
√

k with the y-axis.
y

x

circles

x2+(y−c)2=kc2

envelope
(1−k)x2=ky2

Fig. 13.5.20

21. We eliminate c from the equations

f (x, y, c) = y3 − (x + c)2 = 0
∂

∂c
f (x, y, c) = −2(x + c) = 0.

Thus x = −c, and we obtain the equation y = 0 for the
envelope. However, this is not really an envelope at all.
The curves y3 = (x + c)2 all have cusps along the x-axis;
none of them is tangent to the axis.

y

x
f (x,y,c)=y3−(x+c)2=0

Fig. 13.5.21

22. If the family of surfaces f (x, y, z, λ,µ) = 0 has an
envelope, that envelope will have parametric equations

x = x(λ,µ), y = y(λ,µ), z = z(λ, µ),

giving the point on the envelope where the envelope is
tangent to the particular surface in the family having pa-
rameter values λ and µ. Thus

f
(

x(λ, µ), y(λ,µ), z(λ,µ), λ, µ
)

= 0.

Differentiating with respect to λ, we obtain

f1
∂x

∂λ
+ f2

∂y

∂λ
+ f3

∂z

∂λ
+ f4 = 0.

However, since for fixed µ, the parametric curve

x = x(t, µ), y = y(t, µ), z = z(t, µ)

is tangent to the surface f (x, y, z, λ, µ) = 0 at t = λ, its
tangent vector there,

T = ∂x

∂λ
i + ∂y

∂λ
j + ∂z

∂λ
k,

is perpendicular to the normal

N = ∇ f = f1i + f2j + f3k,

so

f1
∂x

∂λ
+ f2

∂y

∂λ
+ f3

∂z

∂λ
= 0.

Hence we must also have
∂ f

∂λ
= f4(x, y, z, λ, µ) = 0.

Similarly,
∂ f

∂µ
= 0.

The parametric equations of the envelope must therefore
satisfy the three equations

f (x, y, z, λ, µ) = 0
∂

∂λ
f (x, y, z, λ, µ) = 0

∂

∂µ
f (x, y, z, λ, µ) = 0.
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The envelope can be found by eliminating λ and µ from
these three equations.

23. To find the envelope we eliminate λ and µ from the
equations

x sin λ cos µ + y sin λ sin µ + z cos λ = 1 (1)

x cos λ cos µ + y cos λ sin µ − z sin λ = 0 (2)

− x sin λ sin µ + y sin λ cos µ = 0. (3)

Multiplying (1) by cos λ and (2) by sin λ and subtracting
the two gives

z = cos λ.

Therefore (2) and (3) can be rewritten

x cos µ + y sin µ = sin λ

x sin µ − y cos µ = 0.

Squaring and adding these equations gives

x2 + y2 = sin2 λ.

Therefore

x2 + y2 + z2 = sin2 λ + cos2 λ = 1;

the envelope is the sphere of radius 1 centred at the ori-
gin.

24. (x − λ)2 + (y − µ)2 + z2 = λ2 + µ2

2
.

Differentiate with respect to λ and µ:

−2(x − λ) = λ, −2(y − µ) = µ.

Thus λ = 2x , µ = 2y, and

x2 + y2 + z2 = 2x2 + 2y2.

The envelope is the cone z2 = x2 + y2.

25. y + ε sin(πy) = x ⇒ y = y(ε, x)

∂y

∂ε
+ sin(πy) + πε cos(πy)

∂y

∂ε
= 0

∂2 y

∂ε2 + 2π cos(πy)
∂y

∂ε
− π2ε sin(πy)

(
∂y

∂ε

)2

+ πε cos(πy)
∂2 y

∂ε2 = 0.

If ε = 0 then y = x , so y(x, 0) = x . Also, at ε = 0,

yε(x, 0)(1 + 0) = − sin(πy(x, 0)) = − sin(πx),

that is, yε(x, 0) = − sin(πx). Also,

yεε(x, 0)(1 + 0) = −2π cos(πx)yε(x, 0) + 0

= 2π cos(πx) sin(πx) = π sin(2πx).

Thus

y = y(x, ε) = y(x, 0) + εyε(x, 0) + ε2

2!
yεε(x, 0) + · · ·

= x − ε sin(πx) + ε2

2
π sin(2πx) + · · ·

26. y2 + εe−y2 = 1 + x2

2yyε + e−y2 − 2yεe−y2
yε = 0

2y
(

1 − εe−y2
)

yε + e−y2 = 0

2yε

(
1 − εe−y2

)
yε − 2ye−y2

yε + 2y
(

2yεe−y2
yε

)
yε

+ 2y
(

1 − εe−y2
)

yεε − 2ye−y2
yε = 0.

At ε = 0 we have y(x, 0) = √
1 + x2, and

2
√

1 + x2 yε(x, 0) + e−(1+x2) = 0

yε(x, 0) = − 1

2
√

1 + x2
e−(1+x2)

2y2
ε − 4ye−y2

yε + 2yyεε = 0

yyεε = 2yyεe−y2 − y2
ε

yεε(x, 0) = −
(

1√
1 + x2

+ 1

4(1 + x2)3/2

)
e−2(1+x2).

Thus

y = y(x, ε) = y(x, 0) + εyε(x, 0) + ε2

2!
yεε(x, 0) + · · ·

=
√

1 + x2 − ε

2
√

1 + x2
e−(1+x2)

− ε2

2

(
1√

1 + x2
+ 1

4(1 + x2)3/2

)
e−2(1+x2) + · · · .

27. 2y + εx

1 + y2 = 1

2yε + x

1 + y2
− 2εxyyε

(1 + y2)2
= 0

2yεε − 4xyyε

(1 + y2)2 − ε
∂

∂ε

(
2xyyε

(1 + y2)2

)
= 0.

At ε = 0 we have y(x, 0) = 1

2
, and

yε(x, 0) = −1

2

x

1 + 1

4

= −2x

5

yεε = 1

2

4x

(
1

2

)(
−2x

5

)
(

1 + 1

4

)2
= −32x2

125
.
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Thus

y = y(x, ε) = y(x, 0) + εyε(x, 0) + ε2

2!
yεε(x, 0) + · · ·

= 1

2
− 2εx

5
− 16ε2x2

125
+ · · · .

28. Let y(x, ε) be the solution of y + εy5 = 1

2
. Then we

have

yε

(
1 + 5εy4

)
+ y5 = 0

yεε

(
1 + 5εy4

)
+ 20εy3 y2

ε + 10y4 yε = 0

yεεε

(
1 + 5εy4

)
+ yεε

(
60εy3 yε + 15y4

)
+ 60εy3

ε y2 + 60y3y2
ε = 0.

At ε = 0 we have

y(x, 0) = 1

2

yε(x, 0) = − 1

32

yεε(x, 0) = −10

16

(
− 1

32

)
= 5

162

yεεε(x, 0) = − 5

162

(
15

16

)
− 60

8

(
− 1

32

)2

= − 105

4096
.

For ε = 1

100
we have

y = 1

2
− 1

32
× 1

100
+ 5

256
× 1

2 × 1002

− 105

4096
× 1

6 × 1003 + · · ·
≈ 0.49968847

with error less than 10−8 in magnitude.

29. Let x(ε) and y(ε) be the solution of

x + 2y + εe−x = 3
x − y + εe−y = 0.

Thus

x ′ + 2y ′ + e−x − εe−x x ′ = 0
x ′ − y ′ + e−y − εe−y y ′ = 0
x ′′ + 2y ′′ − 2e−x x ′ + εe−x (x ′)2 − εe−x x ′′ = 0
x ′′ − y ′′ − 2e−y y ′ + εe−y(y ′)2 − εe−y y ′′ = 0.

At ε = 0 we have

x + 2y = 3
x − y = 0

}
⇒ x = y = 1

x ′ + 2y ′ = −1

e

x ′ − y ′ = −1

e

⎫⎪⎬
⎪⎭ ⇒ x ′ = −1

e
y ′ = 0

x ′′ + 2y ′′ = − 2

e2

x ′′ − y ′′ = 0

}
⇒ x ′′ = y ′′ = −2

3e2
.

Thus

x = 1 − ε

e
− ε2

3e2 + · · · , y = 1 − ε2

3e2 + · · · .

For ε = 1

100
we have

x = 1 − 1

100e
+ 1

30, 000e2 + · · ·

y = 1 − 1

30, 000e2 + · · · .

Section 13.6 Newton’s Method (page 746)

For each of Exercises 1–6, and 9, we sketch the graphs of the two given equations, f (x, y) = 0 and g(x, y) = 0, and use
their intersections to make initial guesses x0 and y0 for the solutions. These guesses are then refined using the formulas

xn+1 = xn − f g2 − g f2

f1g2 − g1 f2

∣∣∣∣
(xn,yn)

, yn+1 = yn − f1g − g1 f

f1g2 − g1 f2

∣∣∣∣
(xn,yn)

.

NOTE: The numerical values in the tables below were obtained by programming a microcomputer to calculate the iterations
of the above formulas. In most cases the computer was using more significant digits than appear in the tables, and did not
truncate the values obtained at one step before using them to calculate the next step. If you use a calculator, and use the
numbers as quoted on one line of a table to calculate the numbers on the next line, your results may differ slightly (in the
last one or two decimal places).
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1.
y

x

y=ex

x=sin y

Fig. 13.6.1

f (x, y) = y − ex

g(x, y) = x − sin y

f1(x, y) = −ex

f2(x, y) = 1

g1(x, y) = 1

g2(x, y) = − cos y

.

We start with x0 = 0.9, y0 = 2.0.
n xn yn f (xn, yn) g(xn, yn)

0 0.9000000 2.0000000 −0.4596031 −0.0092974
1 0.8100766 2.2384273 −0.0096529 0.0247861
2 0.7972153 2.2191669 −0.0001851 0.0001464
3 0.7971049 2.2191071 0.0000000 0.0000000
4 0.7971049 2.2191071 0.0000000 0.0000000

Thus x = 0.7971049, y = 2.2191071.

2.
y

x

x2+y2=1

y=ex

Fig. 13.6.2

f (x, y) = x2 + y2 − 1

g(x, y) = y − ex
f1(x, y) = 2x

f2(x, y) = 2y

g1(x, y) = −ex

g2(x, y) = 1

.

Evidently one solution is x = 0, y = 1. The second solution is near (−1, 0). We try x 0 = −0.9, y0 = 0.2.
n xn yn f (xn, yn) g(xn, yn)

0 −0.9000000 0.2000000 −0.1500000 −0.2065697
1 −0.9411465 0.3898407 0.0377325 −0.0003395
2 −0.9170683 0.3995751 0.0006745 −0.0001140
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3 −0.9165628 0.3998911 0.0000004 −0.0000001
4 −0.9165626 0.3998913 0.0000000 0.0000000

The second solution is x = −0.9165626, y = 0.3998913.

3.
y

x

x4+y2=16

xy=1

2

4

Fig. 13.6.3

f (x, y) = x4 + y2 − 16

g(x, y) = xy − 1

f1(x, y) = 4x3

f2(x, y) = 2y

g1(x, y) = y

g2(x, y) = x

.

There are four solutions as shown in the figure. We will find the two in the first quadrant; the other two are the negatives of
these by symmetry.
The first quadrant solutions appear to be near (1.9, 0.5) and (0.25, 3.9).

n xn yn f (xn, yn) g(xn, yn)

0 1.9000000 0.5000000 −2.7179000 −0.0500000
1 1.9990542 0.5002489 0.2200049 0.0000247
2 1.9921153 0.5019730 0.0011548 −0.0000120
3 1.9920783 0.5019883 0.0000000 0.0000000
4 1.9920783 0.5019883 0.0000000 0.0000000

n xn yn f (xn, yn) g(xn, yn)

0 0.2500000 3.9000000 −0.7860937 −0.0250000
1 0.2499499 4.0007817 0.0101569 −0.0000050
2 0.2500305 3.9995117 0.0000016 −0.0000001
3 0.2500305 3.9995115 0.0000000 0.0000000

The four solutions are x = ±1.9920783, ±y = 0.5019883, and x = ±0.2500305, y = ±3.9995115.
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4.
y

x

x(1+y2)=1

y(1+x2)=2

1

2

Fig. 13.6.4

f (x, y) = x(1 + y2) − 1

g(x, y) = y(1 + x 2) − 2

f1(x, y) = 1 + y2

f2(x, y) = 2xy

g1(x, y) = 2xy

g2(x, y) = 1 + x2

.

The solution appears to be near x = 0.2, y = 1.8.
n xn yn f (xn, yn) g(xn, yn)

0 0.2000000 1.8000000 −0.1520000 −0.1280000
1 0.2169408 1.9113487 0.0094806 0.0013031
2 0.2148268 1.9117785 −0.0000034 0.0000081
3 0.2148292 1.9117688 0.0000000 0.0000000

The solution is x = 0.2148292, y = 1.9117688.

5.
y

x
1

−1

x2+(y+1)2=2

y=sin x

−1

Fig. 13.6.5

f (x, y) = y − sin x

g(x, y) = x2 + (y + 1)2 − 2

f1(x, y) = − cos x

f2(x, y) = 1

g1(x, y) = 2x

g2(x, y) = 2(y + 1)

.

Solutions appear to be near (0.5, 0.3) and (−1.5,−1).
n xn yn f (xn, yn) g(xn, yn)

0 0.5000000 0.3000000 −0.1794255 −0.0600000
1 0.3761299 0.3707193 0.0033956 0.0203450
2 0.3727877 0.3642151 0.0000020 0.0000535
3 0.3727731 0.3641995 0.0000000 0.0000000
4 0.3727731 0.3641995 0.0000000 0.0000000
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n xn yn f (xn, yn) g(xn, yn)

0 −1.5000000 −1.0000000 −0.0025050 0.2500000
1 −1.4166667 −0.9916002 −0.0034547 0.0070150
2 −1.4141680 −0.9877619 −0.0000031 0.0000210
3 −1.4141606 −0.9877577 0.0000000 0.0000000
4 −1.4141606 −0.9877577 0.0000000 0.0000000

The solutions are x = 0.3727731, y = 0.3641995, and x = −1.4141606, y = −0.9877577.

6.
y

x

(π,π/2)

(π/2,π)

π/2

π/2

y2=x3

sin x + sin y = 1

Fig. 13.6.6

f (x, y) = sin x + sin y − 1

g(x, y) = y2 − x3

f1(x, y) = cos x

f2(x, y) = cos y

g1(x, y) = −3x2

g2(x, y) = 2y

.

There are infinitely many solutions for the given pair of equations, since the level curve of f (x, y) = 0 is repeated
periodically throughout the plane. We will find the two solutions closest to the origin in the first quadrant. From the figure,
it appears that these solutions are near (0.6, 0.4) and (2, 3).

n xn yn f (xn, yn) g(xn, yn)

0 0.6000000 0.4000000 −0.0459392 −0.0560000
1 0.5910405 0.4579047 −0.0007050 0.0032092
2 0.5931130 0.4567721 −0.0000015 −0.0000063
3 0.5931105 0.4567761 0.0000000 0.0000000
4 0.5931105 0.4567761 0.0000000 0.0000000

n xn yn f (xn, yn) g(xn, yn)

0 2.0000000 3.0000000 0.0504174 1.0000000
1 2.0899016 3.0131366 −0.0036336 −0.0490479
2 2.0854887 3.0116804 −0.0000086 −0.0001199
3 2.0854779 3.0116770 0.0000000 0.0000000
4 2.0854779 3.0116770 0.0000000 0.0000000

The solutions are x = 0.5931105, y = 0.4567761, and x = 2.0854779, y = 3.0116770.

7. By analogy with the two-dimensional case, the Newton’s Method iteration formulas are

xn+1 = xn − 1

�

∣∣∣∣∣
f f2 f3
g g2 g3
h h2 h3

∣∣∣∣∣
∣∣∣∣
(xn,yn,zn)

zn+1 = zn − 1

�

∣∣∣∣∣
f1 f2 f
g1 g2 g
h1 h2 h

∣∣∣∣∣
∣∣∣∣
(xn,yn,zn )

yn+1 = yn − 1

�

∣∣∣∣∣
f1 f f3
g1 g g3
h1 h h3

∣∣∣∣∣
∣∣∣∣
(xn,yn,zn )

where � =
∣∣∣∣∣

f1 f2 f3
g1 g2 g3
h1 h2 h3

∣∣∣∣∣
∣∣∣∣
(xn,yn,zn )
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8. f (x, y, z) = y2 + z2 − 3

f1(x, y, z) = 0

f2(x, y, z) = 2y

f3(x, y, z) = 2z

g(x, y, z) = x2 + z2 − 2

g1(x, y, z) = 2x

g2(x, y, z) = 0

g3(x, y, z) = 2z

h(x, y, z) = x2 − z

h1(x, y, z) = 2x

h2(x, y, z) = 0

h3(x, y, z) = −1

It is easily seen that the system

f (x, y, z) = 0, g(x, y, z) = 0, h(x, y, z) = 0

has first-quadrant solution x = z = 1, y = √
2. Let us start at the “guess” x0 = y0 = z0 = 2.

n xn yn zn f (xn, yn, zn) g(xn, yn, zn) h(xn, yn, zn)

0 2.0000000 2.0000000 2.0000000 5.0000000 6.0000000 2.0000000
1 1.3000000 1.5500000 1.2000000 0.8425000 1.1300000 0.4900000
2 1.0391403 1.4239564 1.0117647 0.0513195 0.1034803 0.0680478
3 1.0007592 1.4142630 1.0000458 0.0002313 0.0016104 0.0014731
4 1.0000003 1.4142136 1.0000000 0.0000000 0.0000006 0.0000006
5 1.0000000 1.4142136 1.0000000 0.0000000 0.0000000 0.0000000

9. f (x, y) = y − x 2

g(x, y) = y − x3

f1(x, y) = −2x

f2(x, y) = 1

g1(x, y) = −3x2

g2(x, y) = 1
y

x

(1,1)

y=x3

y=x2

Fig. 13.6.9

n xn yn

0 0.1000000 0.1000000
1 0.0470588 −0.0005882
2 0.0229337 −0.0000561
3 0.0113307 −0.0000062
4 0.0056327 −0.0000007
5 0.0028083 −0.0000001
...

15 0.0000027 0.0000000
16 0.0000014 0.0000000
17 0.0000007 0.0000000
18 0.0000003 0.0000000

n xn yn

0 0.9000000 0.9000000
1 1.0285714 1.0414286
2 1.0015038 1.0022771
3 1.0000045 1.0000068
4 1.0000000 1.0000000

Eighteen iterations were needed to obtain the solution x = y = 0 correct to six decimal places, starting from x = y = 0.1.
This slow convergence is due to the fact that the curves y = x 2 and y = x 3 are tangent at (0, 0). Only four iterations were
needed to obtain the solution x = y = 1 starting from x = y = 0, because, although the angle between the curves is small
at (1, 1), it is not 0. The curves are not tangent there.
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Section 13.7 Calculations with Maple
(page 751)

1. The equation z = xy can be used to reduce the given
system of three equations in three variables to a sys-
tem of 2 equations in two variables:

x2 + y2 + x2y2 = 1

6x2y = 1.

The first equation can only be satisfied by points
(x, y) satisfying |x | ≤ 1 and |y| ≤ 1.

> Digits := 6:

> eqns := {xˆ2+yˆ2+(x*y)ˆ2=1,
6*xˆ2*y=1}:

We use plots[implicitplot] to locate suitable
starting points for fsolve.

> plots[implicitplot](eqns,x=-1..1,
y=-1..1);

The resulting plot (omitted here) shows four roots;
two in the first quadrant near (.9, .2) and (.5, .8),
and two more that are reflections of these in the y-
axis. We use fsolve to find the two first-quadrant
roots and calculate the corresponding values for z by
substitution.

> vars := {x=0.9, y=0.2}:

> xy := fsolve(eqns,vars);

> z=evalf(subs(xy,x*y));

xy := {x = 0.968971, y = 0.177512}
z = 0.172004

> vars := {x=0.5, y=0.8}:

> xy := fsolve(eqns,vars);

> z=evalf(subs(xy,x*y));

xy := {y = 0.812044, x = 0.453038}
z = 0.367887

The four solutions
are (x, y, z) = (±0.96897, 0.17751,±0.17200) and
(x, y, z) = (±0.45304, 81204,±0.36789), rounded to
five figures.

2. The equation y = sin z can be used to reduce the
given system of three equations in three variables to
a system of 2 equations in two variables:

x4 + sin2 z + z2 = 1

z + z3 + z4 = x + sin z.

The first equation can only be satisfied by points
(x, z) satisfying |x | ≤ 1 and |z| ≤ 1.

> Digits := 6:

> eqns := {xˆ4+(sin(z))ˆ2+zˆ2=1,

> z+zˆ3+z4̂=x+sin(z)}:

We use plots[implicitplot] to locate suitable
starting points for fsolve.

> plots[implicitplot](eqns,x=-1..1,
z=-1..1);

The resulting plot shows two roots in the xz-plane,
one near (0.6, 0.7) and the other near (−0.2,−0.7).
We use fsolve to find them more precisely, and
we then calculate the corresponding values for y by
substitution.

> vars := {x=0.6, z=0.7}:

> xz := fsolve(eqns,vars);

> y=evalf(subs(xz,sin(z)));

xy := {z = 0.686259, x = 0.597601}
y = 0.633648

> vars := {x=-0.2, z=-0.7}:

> xy := fsolve(eqns,vars);

> y=evalf(subs(xz,sin(z)));

xy := {z = −0.738742, x = −0.170713}
y = −0.673358

The two so-
lutions are (x, y, z) = (0.59760, 0.63365, 0.68626)

and (x, y, z) = (−0.17071,−0.67336,−0.73874),
each rounded to five figures.

3. First define the expression f :

> f := (x*y-x-2*y)/(1+xˆ2+yˆ2)ˆ2:
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Because the numerator grows much more slowly than
the denominator for large x 2 + y2, global max and
min values will be near the origin. We plot contours
of f on, say, the square |x | ≤ 2, |y| ≤ 2.

> contourplot(f(x,y), x=-2..2,
> y=-2..2, contours=16);

The resulting plot (which we omit here) indicates the
only likely critical points are near (−0.3,−0.6) and
(0.2, 0.6). We determine them using fsolve and
use substitution to evaluate f .

> Digits := 6:

> eqns := {diff(f,x), diff(f,y)}:

> vars := {x=-0.3, y=-0.6}:

> cp := fsolve(eqns,vars);

> val=evalf(subs(cp,f));

cp := {x = −.338532, y = −.520621}
val = 0.810414

> vars := {x=0.2, y=0.6}:

> cp := fsolve(eqns,vars);

> val=evalf(subs(cp,f));

cp := {x = 0.133192, y = 0.536823}
val = − .665721

There are only two critical points and the values of
f at them have opposite sign. Since f → 0 as
x2 + y2 → ∞, f has absolute maximum value
0.81041 at (−0.33853,−0.52062) and absolute min-
imum value −0.66572 at (0.13319, 0.53682), all nu-
merical values rounded to five figures.

4. We begin with

> Digits := 6:

> f := 1 - 10*xˆ4 - 8*yˆ4 - 7*zˆ4:

> g := y*z - x*y*z - x - 2*y + z:

> h := f + g:

Since h = 1 at (0, 0, 0) and h → −∞ as x 2 + y2 + z2

increases, the maximum value of g will be near
(0, 0, 0).

We can try various choices of starting points includ-
ing (0, 0, 0) itself. It turns out they all lead to the
same critical point:

> eqns :=
{diff(h,x),diff(h,y),diff(h,z)}:
> vars := x=0,y=0,z=0:
> cp := fsolve(eqns,vars); val =
evalf(subs(cp,h));

cp := {x = −.28429, y = −.372953, z = 0.265109}
val = 1.91367

The absolute maximum value of h is 1.91367 (to five
decimal places).

5. Because of the small coefficients on the xy and xz
terms and the fact that without them f would cer-
tainly have a minimum value near the origin, we can
use fsolve starting with various points near the
origin. It turns out they all lead to only one critical
point.

> Digits := 6:

> f := xˆ2 + yˆ2 + zˆ2

> +0.2*x*y-0.3*x*z+4*x-y:

> eqns :=
{diff(f,x),diff(f,y),diff(f,z)}:
> vars := x=0,y=0,z=0:
> cp := fsolve(eqns,vars); val =
evalf(subs(cp,f));

cp := {x = −2.11886, y = 0.711886, z = −.317829}
val = − 4.59368

To confirm that this CP does give a lo-
cal minimum, you can calculate Vector-
Calculus[Hessian](f,[x,y,z]) and
then evalf the result of LinearAlge-
bra[Eigenvalues](subs(cp,%)) and observe
that all three eigenvalues are positive.

The minimum value of f is −4.59368.

6. First define the function:

> f := (x+1.1y-0.9z+1)/(1+xˆ2+yˆ2);

520



INSTRUCTOR’S SOLUTIONS MANUAL REVIEW EXERCISES 13 (PAGE 752)

Since f (x, y, z) → 0 as x2 + y2 + z2 → ∞ we expect
f to have maximum and minimum values in some
neighbourhood of the origin. If the numerator were
instead x + y − z, we would expect the extreme values
to occur along the line x = y = −z by symmetry.
Accordingly, we use starting points along this line.

> Digits := 6:

> f :=
(x+1.1*y-0.9*z+1)/(1+xˆ2+yˆ2+zˆ2):

> eqns :=
{diff(f,x),diff(f,y),diff(f,z)}:
> vars := x=1,y=1,z=-1:
> cp := fsolve(eqns,vars); val =
evalf(subs(cp,f));

This attempt fails; fsolve cannot locate a solution.
We try a guess closer to the origin.

> vars := x=0.5,y=0.5,z=-0.5:
> cp := fsolve(eqns,vars); val =
evalf(subs(cp,f));

cp := {y = 0.366057, z = −.299501, x = 0.332779}
val = 1.50250

> vars := x=-0.5,y=-0.5,z=+0.5:
> cp := fsolve(eqns,vars); val =
evalf(subs(cp,f));

cp := {x = −.995031, z = 0.895528, y = −1.09453}
val = − .502494

The eigenvalues of the Hessian matrix of f at each
of these critical points confirms that the first is a
local maximum and gives f its absolute maximum
value 1.50250 and the second is a local minimum so
the absolute minimum value of f is −0.502494.

Review Exercises 13 (page 752)

1. f (x, y) = xye−x+y

f1(x, y) = (y − xy)e−x+y = y(1 − x)e−x+y

f2(x, y) = (x + xy)e−x+y = x(1 + y)e−x+y

A = f11 = (−2y + xy)e−x+y

B = f12 = (1 − x + y − xy)e−x+y

C = f22 = (2x + xy)e−x+y.

For CP: either y = 0 or x = 1, and either x = 0 or
y = −1. The CPs are (0, 0) and (1,−1).

CP A B C AC − B2 class

(0, 0) 0 1 0 −1 saddle
(1,−1) e−2 0 e−2 e−4 loc. min

2. f (x, y) = x2y − 2xy2 + 2xy

f1(x, y) = 2xy − 2y2 + 2y = 2y(x − y + 1)

f2(x, y) = x2 − 4xy + 2x = x(x − 4y + 2)

A = f11 = 2y

B = f12 = 2x − 4y + 2

C = f22 = −4x .

For CP: either y = 0 or x − y + 1 = 0, and either
x = 0 or x − 4y + 2 = 0. The CPs are (0, 0), (0, 1),
(−2, 0), and (−2/3, 1/3).

CP A B C AC − B2 class

(0, 0) 0 2 0 −4 saddle
(0, 1) 2 −2 0 −4 saddle

(−2, 0) 0 −2 8 −4 saddle
(− 2

3 , 1
3 ) 2

3 − 2
3

8
3

4
3 loc. min

3. f (x, y) = 1

x
+ 4

y
+ 9

4 − x − y

f1(x, y) = − 1

x2 + 9

(4 − x − y)2

f2(x, y) = − 4

y2 + 9

(4 − x − y)2

A = f11 = 2

x3 + 18

(4 − x − y)3

B = f12 = 18

(4 − x − y)3

C = f22 = 8

y3
+ 18

(4 − x − y)3
.

For CP: y2 = 4x2 so that y = ±2x . If y = 2x , then
9x2 = (4 − 3x)2, from which x = 2/3, y = 4/3.
If y = −2x , then 9x 2 = (4 + x)2, from which
x = −1 or x = 2. The CPs are (2/3, 4/3), (−1, 2),
and (2,−4).

CP A B C AC − B2 class

(−1, 2) − 4
3

2
3

5
3 − 8

3 saddle
(2,−4) 1

3
1
12 − 1

24 − 1
48 saddle

( 2
3 , 4

3 ) 9 9
4

45
8

729
16 loc. min
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4. f (x, y) = x2y(2 − x − y) = 2x 2y − x3y − x2y2

f1(x, y) = 4xy − 3x 2y − 2xy2 = xy(4 − 3x − 2y)

f2(x, y) = 2x2 − x3 − 2x2y = x2(2 − x − 2y)

A = f11 = 4y − 6xy − 2y2

B = f12 = 4x − 3x 2 − 4xy

C = f22 = −2x2.

(0, y) is a CP for any y. If x �= 0 but y = 0, then
x = 2 from the second equation. Thus (2, 0) is a CP.

If neither x nor y is 0, then x + 2y = 2 and
3x + 2y = 4, so that x = 1 and y = 1/2. The
third CP is (1, 1/2).

CP A B C AC − B2 class

(0, y) 4y − 2y2 0 0 0 ?
(2, 0) 0 −4 −8 −16 saddle
(1, 1

2 ) − 3
2 −1 −2 2 loc. max

The second derivative test is unable to classify the
line of critical points along the y-axis. However, di-
rect inspection of f (x, y) shows that these are local
minima if y(2 − y) > 0 (that is, if 0 < y < 2)
and local maxima if y(2 − y) < 0 (that is, if y < 0
or y > 2). The points (0, 0) and (0, 2) are neither
maxima nor minima, so they are saddle points.

5. f (x, y, z) = g(s) = s+(1/s), where s = x 2 + y2 +z2.
Since g(s) → ∞ as s → ∞ or s → 0+, g must
have a minimum value at a critical point in (0,∞).
For CP: 0 = g′(s) = 1 − (1/s2), that is, s = 1.
g(1) = 2. The minimum value of f is 2, and is
assumed at every point of the sphere x 2+ y2+z2 = 1.

6. x2 + y2 + z2 − xy − xz − yz

= 1

2

[
(x2 − 2xy + y2) + (x2 − 2xz + z2)

+ (y2 − 2yz + z2)
]

= 1

2

[
(x − y)2 + (x − z)2 + (y − z)2] ≥ 0.

The minimum value, 0, is assumed at the origin and
at all points of the line x = y = z.

7. f (x, y) = xye−x2−4y2
satisfies lim

x2+y2→∞
f (x, y) = 0.

Since f (1, 1) > 0 and f (−1, 1) < 0, f must have
maximum and minimum values and these must occur
at critical points. For CP:

0 = f1 = e−x2−4y2
(y − 2x2y) = e−x2−4y2

y(1 − 2x 2)

0 = f2 = e−x2−4y2
(x − 8xy2) = e−x2−4y2

x(1 − 8y2).

The CPs are (0, 0) (where f = 0), ±( 1√
2
, 1

2
√

2

)
(where f = 1/4e), and ±( 1√

2
,− 1

2
√

2

)
(where

f = −1/4e). Thus f has maximum value 1/4e and
minimum value −1/4e.

8. f (x, y) = (4x 2 − y2)e−x2+y2

f1(x, y) = e−x2+y2
2x(4 − 4x 2 + y2)

f2(x, y) = e−x2+y2
(−2y)(1 − 4x 2 + y2).

f has CPs (0, 0), (±1, 0). f (0, 0) = 0.
f (±1, 0) = 4/e.

a) Since f (0, y) = −y2ey2 → −∞ as y → ±∞,
and since f (x, x) = 3x 2e0 = 3x2 → ∞ as
x → ±∞, f does not have a minimum or a
maximum value on the xy-plane.

b) On y = 3x , f (x, 3x) = −5x 2e8x2 → −∞ as
x → ∞. Thus f can have no minimum value
on the wedge 0 ≤ y ≤ 3x . However, as noted in
(a), f (x, x) → ∞ as x → ∞. Since (x, x) is in
the wedge for x > 0, f cannot have a maximum
value on the wedge either.

9. Let the three pieces of wire have lengths x , y, and
L − x − y cm, respectively. The sum of areas of the
squares is

S = 1

16

(
x2 + y2 + (L − x − y)2),

for which we must find extreme values over the trian-
gle x ≥ 0, y ≥ 0, x + y ≤ L. For critical points:

0 = ∂S

∂x
= 1

8

(
x − (L − x − y)

)

0 = ∂S

∂y
= 1

8

(
y − (L − x − y)

)
,

from which we obtain x = y = L/3. This CP is
inside the triangle, and S = L 2/48 at it.

On the boundary segment x = 0, we have

S = 1

16

(
y2 + (L − y)2), (0 ≤ y ≤ L).

At y = 0 or y = L, we have S = L 2/16. For critical
points

0 = dS

dy
= 1

8

(
y − (L − y)

)
,
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so y = L/2 and S = L2/32. By symmetry the
extreme values of S on the other two boundary seg-
ments are the same.
Thus the minimum value of S is L 2/48, and corre-
sponds to three equal squares. The maximum value
of S is L2/16, and corresponds to using the whole
wire for one square.

10. Let the length, width, and height of the box be x , y,
and z in, respectively. Then the girth is g = 2x + 2y.
We require g + z ≤ 120 in. The volume V = xyz
of the box will be maximized under the constraint
2x + 2y + z = 120, so we look for CPs of

L = xyz + λ(2x + 2y + z − 120).

For CPs:

0 = ∂L

∂x
= yz + 2λ (A)

0 = ∂L

∂y
= xz + 2λ (B)

0 = ∂L

∂z
= xy + λ (C)

0 = ∂L

∂λ
= 2x + 2y + z − 120. (D)

Comparing (A), (B), and (C), we see that
x = y = z/2. Then (D) implies that 3z = 120,
so z = 40 and x = y = 20 in. The largest box has
volume

V = (20)(20)(40) = 16, 000 in3,

or, about 9.26 cubic feet.

11. The ellipse (x/a)2+(y/b)2 = 1 contains the rectangle
−1 ≤ x ≤ 1, −2 ≤ y ≤ 2, if (1/a2) + (4/b2) = 1.
The area of the ellipse is A = πab. We minimize A
by looking for critical points of

L = πab + λ

(
1

a2 + 4

b2 − 1

)
.

For CPs:

0 = ∂L

∂a
= πb − 2λ

a3 (A)

0 = ∂L

∂b
= πa − 8λ

b3 (B)

0 = ∂L

∂λ
= 1

a2 + 4

b2 − 1. (C)

Multiplying (A) by a and (B) by b, we obtain
2λ/a2 = 8λ/b2, so that either λ = 0 or b = 2a.
Now λ = 0 implies b = 0, which is inconsistent with
(C). If b = 2a, then (C) implies that 2/a 2 = 1, so
a = √

2. The smallest area of the ellipse is V = 4π

square units.

12. The ellipsoid (x/a)2 + (y/b)2 + (z/c)2 = 1 contains
the rectangle −1 ≤ x ≤ 1, −2 ≤ y ≤ 2, −3 ≤ z ≤ 3,
provided (1/a2) + (4/b2) + (9/c)2 = 1. The volume
of the ellipsoid is V = 4πabc/3. We minimize V by
looking for critical points of

L = 4π

3
abc + λ

(
1

a2 + 4

b2 + 9

c2 − 1

)
.

For CPs:

0 = ∂L

∂a
= 4π

3
bc − 2λ

a3 (A)

0 = ∂L

∂b
= 4π

3
ac − 8λ

b3 (B)

0 = ∂L

∂c
= 4π

3
ab − 18λ

c3 (C)

0 = ∂L

∂λ
= 1

a2
+ 4

b2
+ 9

c2
− 1. (D)

Multiplying (A) by a, (B) by b, and (C) by c, we
obtain 2λ/a2 = 8λ/b2 = 18λ/c2, so that either λ = 0
or b = 2a, c = 3a. Now λ = 0 implies bc = 0,
which is inconsistent with (D). If b = 2a and c = 3a,
then (D) implies that 3/a2 = 1, so a = √

3. The
smallest volume of the ellipsoid is

V = 4π

3
(
√

3)(2
√

3)(3
√

3) = 24
√

3π cubic units.

13. The box −1 ≤ x ≤ 1, −2 ≤ y ≤ 2, 0 ≤ z ≤ 2 is
contained in the region

0 ≤ z ≤ a

(
1 − x2

b2 − y2

c2

)

provided that (2/a) + (1/b2) + (4/c2) = 1. The vol-
ume of the region would normally be calculated via
a “double integral” which we have not yet encoun-
tered. (See Chapter 5.) It can also be done directly
by slicing. A horizontal plane at height z (where
0 ≤ z ≤ a) intersects the region in an elliptic disk
bounded by the ellipse

x2

b2 + y2

c2 = 1 − z

a
.
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The area of this disk is

A(z) = π

(
b

√
1 − z

a

)(
c

√
1 − z

a

)
= πbc

(
1 − z

a

)
.

Thus the region has volume

V = πbc
∫ a

0

(
1 − z

a

)
dz = πabc

2
.

Thus we look for critical points of

L = πabc

2
+ λ

(
2

a
+ 1

b2 + 4

c2 − 1

)
.

For critical points:

0 = ∂L

∂a
= π

2
bc − 2λ

a2 (A)

0 = ∂L

∂b
= π

2
ac − 2λ

b3 (B)

0 = ∂L

∂c
= π

2
ab − 8λ

c3 (C)

0 = ∂L

∂λ
= 2

a
+ 1

b2
+ 4

c2
− 1. (D)

Multiplying (A) by a, (B) by b, and (C) by c, we
obtain 2λ/a = 2λ/b2 = 8λ/c2, so that either λ = 0
or b2 = a, c2 = 4a. Now λ = 0 implies bc = 0,
which is inconsistent with (D). If b2 = a and
c2 = 4a, then (D) implies that 4/a = 1, so a = 4.
The smallest volume of the region is
V = π(4)(2)(4)/2 = 16π cubic units.

14.

z

yy

z

x

Fig. R-13.14

The area of the window is

A = xy + x

2

√
z2 − x2

4
,

or, since x + 2y + 2z = L,

A = x

2

⎛
⎝L − x − 2z +

√
z2 − x2

4

⎞
⎠ .

For maximum A, we look for critical points:

0 = ∂ A

∂x
= 1

2

⎛
⎝L − x − 2z +

√
z2 − x2

4

⎞
⎠

+ x

2

⎛
⎜⎜⎝−1 − x

4

√
z2 − x2

4

⎞
⎟⎟⎠

= L

2
− x − z + 2z2 − x2

4

√
z2 − x2

4

(A)

0 = ∂ A

∂z
= −x + xz

2

√
z2 − x2

4

. (B)

Now (B) implies that either x = 0 or
z = 2

√
z2 − (x2/4). But x = 0 gives zero area rather

than maximum area, so the second alternative must
hold, and it implies that z = x/

√
3. Then (A) gives

L

2
=
(

1 + 1√
3

)
x + x

2
√

3
,

from which we obtain x = L/(2 + √
3). The maxi-

mum area of the window is, therefore,

A

∣∣∣∣
x= L

2+√
3
, z= L/

√
3

2+√
3

= 1

4

L2

2 + √
3

≈ 0.0670L2 sq. units.

15. If $1, 000x widgets per month are manufactured and
sold for $y per widget, then the monthly profit is
$1, 000P, where

P = xy − x2y3

27
− x .

We are required to maximize P over the rectangular
region R satisfying 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2.
First look for critical points:

0 = ∂ P

∂x
= y − 2xy3

27
− 1 (A)

0 = ∂ P

∂y
= x − x2y2

9
. (B)
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(B) implies that x = 0, which yields zero profit, or
xy2 = 9, which, when substituted into (A), gives
y = 3 and x = 1. Unfortunately, the critical point
(1, 3) lies outside of R. Therefore the maximum P
must occur on the boundary of R.
We consider all four boundary segments of R.
On segment x = 0, we have P = 0.
On segment y = 0, we have P = −x ≤ 0.
On segment x = 3, 0 ≤ y ≤ 2, we have
P = 3y − (y3/3) − 3, which has values P = −3 at
y = 0 and P = 1/3 at y = 2. It also has a critical
point given by

0 = d P

dy
= 3 − y2,

so y = √
3 and P = 2

√
3 − 3 ≈ 0.4641.

On segment y = 2, 0 ≤ x ≤ 3, we have
P = x − (8x2/27), which has values P = 0 at x = 0
and P = 1/3 at x = 3. It also has a critical point
given by

0 = d P

dx
= 1 − 16x

27
,

so x = 27/16 and P = 27/32 ≈ 0.84375.
It appears that the greatest monthly profit corresponds
to manufacturing 27, 000/16 ≈ 1, 688 widgets/month
and selling them for $2 each.

16. The envelope of y = (x − c)3 + 3c is found by
eliminating c from that equation and

0 = ∂

∂c
[(x − c)3 + 3c] = −3(x − c)2 + 3.

This later equation implies that (x − c)2 = 1, so
x − c = ±1.
The envelope is y = (±1)3 + 3(x ∓ 1), or y = 3x ± 2.

17. Look for a solution of y + εxe y = −2x in the form
of a Maclaurin series

y = y(x, ε) = y(x, 0)+ εyε(x, 0)+ ε2

2!
yεε(x, 0)+· · · .

Putting ε = 0 in the given equation, we get
y(x, 0) = −2x . Now differentiate the given equation
with respect to ε twice:

yε + xey + εxey yε = 0

yεε + 2xey yε + εxey y2
ε + εxey yεε = 0.

The first of these equations gives

yε(x, 0) = −xey(x,0) = −xe−2x .

The second gives

yεε(x, 0) = −2xey(x,0)yε(x, 0) = 2x 2e−4x .

Thus y = −2x − 2εxe−2x + ε2x2e−4x + · · · .

18. a) G(y) =
∫ ∞

0

tan−1(xy)

x
dx

G′(y) =
∫ ∞

0

1

x

x

1 + x2y2 dx Let u = xy

du = y dx

= 1

y

∫ ∞

0

du

1 + u2 = π

2y
for y > 0.

b)
∫ ∞

0

tan−1(πx) − tan−1x

x
dx

= G(π) − G(1) =
∫ π

1
G′(y) dy = π

2

∫ π

1

dy

y
= π ln π

2
.

Challenging Problems 13 (page 753)

1. To minimize

In =
∫ π

−π

[
f (x) − a0

2
−

n∑
k=1

(ak cos kx + bk sin kx)

]2

dx

we choose ak and bk to satisfy

0 = ∂ In

∂a0

= −
∫ π

−π

[
f (x) − a0

2
−

n∑
k=1

(ak cos kx + bk sin kx)

]
dx

=
[
πa0 −

∫ π

−π

f (x) dx

]

0 = ∂ In

∂am

= −2
∫ π

−π

[
f (x) − a0

2
−

n∑
k=1

(ak cos kx + bk sin kx)

]

cos mx dx

= 2am

∫ π

−π

cos2 mx dx −
∫ π

−π

f (x) cos mx dx

0 = ∂ In

∂bm

= −2
∫ π

−π

[
f (x) − a0

2
−

n∑
k=1

(ak cos kx + bk sin kx)

]

sin mx dx

= 2bm

∫ π

−π

sin2 mx dx −
∫ π

−π

f (x) sin mx dx .
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The simplifications in the integrals above resulted
from the facts that for any integers k and m,

∫ π

−π

cos kx cos mx dx = 0 unless k = m
∫ π

−π

sin kx sin mx dx = 0 unless k = m, and
∫ π

−π

cos kx sin mx dx = 0.

Since

∫ π

−π

cos2 mx dx =
∫ π

−π

sin2 mx dx = π,

In is minimized when

am = 1

π

∫ π

−π

f (x) cos mx dx for 0 ≤ m ≤ n, and

bm = 1

π

∫ π

−π

f (x) sin mx dx for 1 ≤ m ≤ n.

2. If f (x) =
{

0 for −π ≤ x < 0
x for 0 ≤ x ≤ π

, then

a0 = 1

π

∫ π

0
x dx = π

2

ak = 1

π

∫ π

0
x cos kx dx

U = x

dU = dx

dV = cos kx dx

V = 1

k
sin kx

= 1

πk

(
x sin kx

∣∣∣∣
π

0
−
∫ π

0
sin kx dx

)

= cos kπ − 1

πk2 =
{

0 if k is even

− 2

πk2 if k is odd

bk = 1

π

∫ π

0
x sin kx dx

U = x

dU = dx

dV = sin kx dx

V = −1

k
cos kx

= − 1

πk

(
x cos kx

∣∣∣∣
π

0
−
∫ π

0
cos kx dx

)

= (−1)k+1

k
.

Because of the properties of trigonometric integrals
listed in the solution to Problem 1,

∫ π

−π

(
a0

2
+

n∑
k=1

(ak cos kx + bk sin kx)

)2

dx

= πa2
0

2
+ π

n∑
k=0

(a2
k + b2

k)

∫ π

−π

f (x)

(
a0

2
+

n∑
k=1

(ak cos kx + bk sin kx)

)
dx

= πa2
0

2
+ π

n∑
k=0

(a2
k + b2

k).

Therefore

In =
∫ π

−π

[
f (x) −

(
a0

2
+

n∑
k=1

(ak cos kx + bk sin kx)

)]2

dx

=
∫ π

−π

(
f (x)

)2
dx − 2

(
πa2

0

2
+ π

n∑
k=0

(a2
k + b2

k)

)

+ πa2
0

2
+ π

n∑
k=0

(a2
k + b2

k)

=
∫ π

−π

(
f (x)

)2
dx −

(
πa2

0

2
+ π

n∑
k=0

(a2
k + b2

k)

)
.

In fact, it can be shown that In → 0 as n → ∞.

3. Let I (x) =
∫ x

0

ln(1 + t x)

1 + t2 dt . Then

I ′(x) = ln(1 + x2)

1 + x2
+
∫ x

0

t

(1 + t2)(1 + t x)
dt .

If we expand the latter integrand in partial fractions
with respect to t , we obtain

t

(1 + t2)(1 + t x)
= x + t

(1 + x2)(1 + t2)
− x

(1 + x2)(1 + t x)
.
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Now we have∫ x

0

(x + t) dt

(1 + x2)(1 + t2)
= 2x tan−1t + ln(1 + t2)

2(1 + x2)

∣∣∣∣
x

0

= 2x tan−1x + ln(1 + x 2)

2(1 + x2)

= 1

2

d

dx
tan−1x ln(1 + x 2)∫ x

0

x dt

(1 + x2)(1 + t x)
= x

1 + x2

∫ x

0

dt

1 + t x
Let u = 1 + t x

du = x dt

= 1

1 + x2

∫ 1+x2

1

du

u
= ln(1 + x2)

1 + x2 .

Thus

I ′(x) = ln(1 + x2)

1 + x2 + 1

2

d

dx
tan−1x ln(1 + x 2) − ln(1 + x2)

1 + x2

= 1

2

d

dx
tan−1x ln(1 + x 2).

Therefore, I (x) = 1

2
tan−1x ln(1 + x 2) + C . Since

I (0) = 0, we have C = 0, and∫ x

0

ln(1 + t x)

1 + t2 dx = 1

2
tan−1x ln(1 + x 2).

4.
y

x

θ1

θ2

P1

P3

θ3D2

D3
P2

D1

P

Fig. C-13.4

If Di = |P Pi | for i = 1, 2, 3, then

D2
i = (x − xi )

2 + (y − yi)
2

2Di
∂ Di

∂x
= 2(x − xi )

∂ Di

∂x
= x − xi

Di
= cos θi

where θi is the angle between
−−→
P Pi and i.

Similarly ∂ Di/∂y = sin θi . To minimize
S = D1 + D2 + D3 we look for critical points:

0 = ∂S

∂x
= cos θ1 + cos θ2 + cos θ3

0 = ∂S

∂y
= sin θ1 + sin θ2 + sin θ3.

Thus cos θ1 + cos θ2 = − cos θ3 and
sin θ1 + sin θ2 = − sin θ3. Squaring and adding these
two equations we get

2 + 2(cos θ1 cos θ2 + sin θ1 sin θ2) = 1,

or cos(θ1 − θ2) = −1/2. Thus θ1 − θ2 = ±2π/3.
Similarly θ1 − θ3 = θ2 − θ3 = ±2π/3. Thus P
should be chosen so that

−−→
P P1,

−−→
P P2,and

−−→
P P3 make

120◦ angles with each other. This is possible only if
all three angles of the triangle are less than 120◦. If
the triangle has an angle of 120◦ or more (say at P1),
then P should be that point on the side P2 P3 such
that P P1 ⊥ P2 P3.
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