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CHAPTER 15. VECTOR FIELDS

Section 15.1 Vector and Scalar Fields
(page 811)

1. F = x i + xj.

The field lines satisfy
dx

x
= dy

x
, i.e., dy = dx . The field

lines are y = x + C , straight lines parallel to y = x .
y

x

Fig. 15.1.1

2. F = x i + yj.

The field lines satisfy
dx

x
= dy

y
.

Thus ln y = ln x + ln C , or y = Cx . The field lines are
straight half-lines emanating from the origin.

y

x

Fig. 15.1.2

3. F = yi + xj.

The field lines satisfy
dx

y
= dy

x
.

Thus x dx = y dy. The field lines are the rectangular
hyperbolas (and their asymptotes) given by x2 − y2 = C .

y

x

Fig. 15.1.3

4. F = i + sin xj.

The field lines satisfy dx = dy

sin x
.

Thus
dy

dx
= sin x . The field lines are the curves

y = − cos x + C .
y

x

Fig. 15.1.4

5. F = ex i + e−x j.

The field lines satisfy
dx

ex
= dy

e−x
.

Thus
dy

dx
= e−2x . The field lines are the curves

y = −1

2
e−2x + C .

y

x

Fig. 15.1.5

6. F = ∇(x2 − y) = 2x i − j.

The field lines satisfy
dx

2x
= dy

−1
. They are the curves

y = −1

2
ln x + C .

y

x

Fig. 15.1.6
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7. F = ∇ ln(x2 + y2) = 2x i + 2yj
x2 + y2

.

The field lines satisfy
dx

x
= dy

y
. Thus they are radial

lines y = Cx (and x = 0)
y

x

Fig. 15.1.7

8. F = cos yi − cos xj.

The field lines satisfy
dx

cos y
= − dy

cos x
, that is,

cos x dx + cos y dy = 0. Thus they are the curves
sin x + sin y = C .

y

x

Fig. 15.1.8

9. v(x, y, z) = yi − yj − yk.
The streamlines satisfy dx = −dy = −dz. Thus
y + x = C1, z + x = C2. The streamlines are straight
lines parallel to i − j − k.

10. v(x, y, z) = x i + yj − xk.

The streamlines satisfy
dx

x
= dy

y
= −dz

x
. Thus

z + x = C1, y = C2x . The streamlines are straight half-
lines emanating from the z-axis and perpendicular to the
vector i + k.

11. v(x, y, z) = yi − xj + k.

The streamlines satisfy
dx

y
= −dy

x
= dz. Thus

x dx + y dy = 0, so x2 + y2 = C2
1 . Therefore,

dz

dx
= 1

y
= 1√

C2
1 − x2

.

This implies that z = sin−1 x

C1
+ C2. The streamlines

are the spirals in which the surfaces x = C1 sin(z − C2)

intersect the cylinders x2 + y2 = C2
1 .

12. v = x i + yj
(1 + z2)(x2 + y2)

.

The streamlines satisfy dz = 0 and
dx

x
= dy

y
. Thus

z = C1 and y = C2x . The streamlines are horizontal
half-lines emanating from the z-axis.

13. v = xzi + yzj + xk. The field lines satisfy

dx

xz
= dy

yz
= dz

x
,

or, equivalently, dx/x = dy/y and dx = z dz. Thus the
field lines have equations y = C1x , 2x = z2 + C2, and are
therefore parabolas.

14. v = exyz(x i + y2j + zk). The field lines satisfy

dx

x
= dy

y2 = dz

z
,

so they are given by z = C1x , ln |x | = ln |C2| − (1/y) (or,
equivalently, x = C2e−1/y).

15. v(x, y) = x2i − yj. The field lines sat-
isfy dx/x2 = −dy/y, so they are given by
ln |y| = (1/x)+ ln |C |, or y = Ce1/x .

16. v(x, y) = x i + (x + y)j. The field lines satisfy

dx

x
= dy

x + y
dy

dx
= x + y

x
Let y = xv(x)
dy

dx
= v + x

dv

dx

v + x
dv

dx
= x(1 + v)

x
= 1 + v.

Thus dv/dx = 1/x , and so v(x) = ln |x | + C . The field
lines have equations y = x ln |x | + Cx .

17. F = r̂ + r θ̂. The field lines satisfy dr = dθ , so they are
the spirals r = θ + C .

18. F = r̂ + θ θ̂. The field lines satisfy dr = r dθ/θ , or
dr/r = dθ/θ , so they are the spirals r = Cθ .

19. F = 2r̂ + θ θ̂. The field lines satisfy dr/2 = r dθ/θ , or
dr/r = 2dθ/θ , so they are the spirals r = Cθ2.

20. F = r r̂ − θ̂. The field lines satisfy dr/r = −r dθ , or
−dr/r2 = dθ , so they are the spirals 1/r = θ + C , or
r = 1/(θ + C).

571



SECTION 15.1 (PAGE 811) R. A. ADAMS: CALCULUS

Section 15.2 Conservative Fields
(page 819)

1. F = x i − 2yj + 3zk, F1 = x , F2 = −2y, F3 = 3z. We
have

∂F1

∂y
= 0 = ∂F2

∂x
,

∂F1

∂z
= 0 = ∂F3

∂x
,

∂F2

∂z
= 0 = ∂F3

∂y
.

Therefore, F may be conservative. If F = ∇φ, then

∂φ

∂x
= x,

∂φ

∂y
= −2y,

∂φ

∂z
= 3z.

Evidently φ(x, y, z) = x2

2
− y2 + 3z2

2
is a potential for F.

Thus F is conservative on �3.

2. F = yi + xj + z2k, F1 = y, F2 = x , F3 = z2. We have

∂F1

∂y
= 1 = ∂F2

∂x
,

∂F1

∂z
= 0 = ∂F3

∂x
,

∂F2

∂z
= 0 = ∂F3

∂y
.

Therefore, F may be conservative. If F = ∇φ, then

∂φ

∂x
= y,

∂φ

∂y
= x,

∂φ

∂z
= z2.

Therefore,

φ(x, y, z) =
∫

y dx = xy + C1(y, z)

x = ∂φ

∂y
= x + ∂C1

∂y
⇒ ∂C1

∂y
= 0

C1(y, z) = C2(z), φ(x, y, z) = xy + C2(z)

z2 = ∂φ

∂z
= C ′

2(z) ⇒ C2(z) = z3

3
.

Thus φ(x, y, z) = xy + z3

3
is a potential for F, and F is

conservative on �3.

3. F = x i − yj
x2 + y2

, F1 = x

x2 + y2
, F2 = − y

x2 + y2
. We have

∂F1

∂y
= − 2xy

(x2 + y2)2
,

∂F2

∂x
= 2xy

(x2 + y2)2
.

Thus F cannot be conservative.

4. F = x i + yj
x2 + y2

, F1 = x

x2 + y2
, F2 = y

x2 + y2
. We have

∂F1

∂y
= − 2xy

(x2 + y2)2
= ∂F2

∂x
.

Therefore, F may be conservative. If F = ∇φ, then

∂φ

∂x
= x

x2 + y2 ,
∂φ

∂y
= y

x2 + y2 .

Therefore,

φ(x, y) =
∫

x

x2 + y2 dx = ln(x2 + y2)

2
+ C1(y)

y

x2 + y2
= ∂φ

∂y
= y

x2 + y2
+ c′

1(y) ⇒ c′
1(y) = 0.

Thus we can choose C1(y) = 0, and

φ(x, y) = 1

2
ln(x2 + y2)

is a scalar potential for F, and F is conservative every-
where on �2 except at the origin.

5. F = (2xy − z2)i + (2yz + x2)j − (2zx − y2)k,
F1 = 2xy − z2, F2 = 2yz + x2, F3 = y2 − 2zx . We have

∂F1

∂y
= 2x = ∂F2

∂x
,

∂F1

∂z
= −2z = ∂F3

∂x
,

∂F2

∂z
= 2y = ∂F3

∂y
.

Therefore, F may be conservative. If F = ∇φ, then

∂φ

∂x
= 2xy − z2,

∂φ

∂y
= 2yz + x2,

∂φ

∂z
= y2 − 2zx .

Therefore,

φ(x, y, z) =
∫
(2xy − z2) dx = x2 y − xz2 + C1(y, z)

2yz + x2 = ∂φ

∂y
= x2 + ∂C1

∂y

⇒ ∂C1

∂y
= 2yz ⇒ C1(y, z) = y2z + C2(z)

φ(x, y, z) = x2 y − xz2 + y2z + C2(z)

y2 − 2zx = ∂φ

∂z
= −2xz + y2 + C ′

2(z)

⇒ C ′
2(z) = 0.

Thus φ(x, y, z) = x2 y − xz2 + y2z is a scalar potential
for F, and F is conservative on �3.
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6. F = ex2+y2+z2
(xzi + yzj + xyk).

F1 = xzex2+y2+z2
, F2 = yzex2+y2+z2

,
F3 = xyex2+y2+z2

. We have

∂F1

∂y
= 2xyzex2+y2+z2 = ∂F2

∂x
,

∂F1

∂z
= (x + 2xz2)ex2+y2+z2

,

∂F3

∂x
= (y + 2x2 y)ex2+y2+z2 �= ∂F1

∂z
.

Thus F cannot be conservative.

7. φ(r) = 1

|r − r0|2
∂φ

∂x
= − 2

|r − r0|3
∂

∂x
|r − r0|

= − 2

|r − r0|3
(r − r0) • ∂r

∂x
|r − r0|

= −2(x − x0)

|r − r0|4 .
Since similar formulas hold for the other first partials of
φ, we have

F = ∇φ
= − 2

|r − r0|4
[
(x − x0)i + (y − y0)j + (z − z0)k

]

= −2
r − r0

|r − r0|4 .

This is the vector field whose scalar potential is φ.

8.
∂

∂x
ln |r| = 1

|r|
r • ∂r

∂x
|r| = x

|r|2
∇ ln |r| = x i + yj + zk

|r|2 = r
|r|2 .

9. F = 2x

z
i + 2y

z
j − x2 + y2

z2 k,

F1 = 2x

z
, F2 = 2y

z
, F3 = − x2 + y2

z2
. We have

∂F1

∂y
= 0 = ∂F2

∂x
,

∂F1

∂z
= −2x

z2 = ∂F3

∂x
,

∂F2

∂z
= −2y

z2
= ∂F3

∂y
.

Therefore, F may be conservative in �3 except on the
plane z = 0 where it is not defined. If F = ∇φ, then

∂φ

∂x
= 2x

z
,

∂φ

∂y
= 2y

z
,

∂φ

∂z
= − x2 + y2

z2 .

Therefore,

φ(x, y, z) =
∫

2x

z
dx = x2

z
+ C1(y, z)

2y

z
= ∂φ

∂y
= ∂C1

∂y
⇒ C1(y, z) = y2

z
+ C2(z)

φ(x, y, z) = x2 + y2

z
+ C2(z)

− x2 + y2

z2
= ∂φ

∂z
= − x2 + y2

z2
+ C ′

2(z)

⇒ C2(z) = 0.

Thus φ(x, y, z) = x2 + y2

z
is a potential for F, and F is

conservative on �3 except on the plane z = 0.

The equipotential surfaces have equations

x2 + y2

z
= C, or Cz = x2 + y2.

Thus the equipotential surfaces are circular paraboloids.

The field lines of F satisfy

dx
2x

z

= dy
2y

z

= dz

− x2 + y2

z2

.

From the first equation,
dx

x
= dy

y
, so y = Ax for an

arbitrary constant A. Therefore

dx

2x
= z dz

−(x2 + y2)
= z dz

−x2(1 + A2)
,

so −(1 + A2)x dx = 2z dz. Hence

1 + A2

2
x2 + z2 = B

2
,

or x2 + y2 + 2z2 = B, where B is a second arbitrary
constant. The field lines of F are the ellipses in which
the vertical planes containing the z-axis intersect the el-
lipsoids x2 + y2 + 2z2 = B. These ellipses are orthogonal
to all the equipotential surfaces of F.

10. F = 2x

z
i + 2y

z
j − x2 + y2

z2
k = G + k,

where G is the vector field F of Exercise 9. Since G is
conservative (except on the plane z = 0), so is F, which
has scalar potential

φ(x, y, z) = x2 + y2

z
+ z = x2 + y2 + z2

z
,
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since
x2 + y2

z
is a potential for G and z is a potential for

the vector k.

The equipotential surfaces of F are φ(x, y, z) = C ,
or

x2 + y2 + z2 = Cz

which are spheres tangent to the xy-plane having centres
on the z-axis.

The field lines of F satisfy

dx
2x

z

= dy
2y

z

= dz

1 − x2 + y2

z2

.

As in Exercise 9, the first equation has solutions y = Ax ,
representing vertical planes containing the z-axis. The
remaining equations can then be written in the form

dz

dx
= z2 − x2 − y2

2xz
= z2 − (1 + A2)x2

2zx
.

This first order DE is of homogeneous type (see Section
9.2), and can be solved by a change of dependent vari-
able: z = xv(x). We have

v + x
dv

dx
= dz

dx
= x2v2 − (1 + A2)x2

2x2v

x
dv

dx
= v2 − (1 + A2)

2v
− v = −v

2 + (1 + A2)

2v
2v dv

v2 + (1 + A2)
= −dx

x

ln
(
v2 + (1 + A2)

)
= − ln x + ln B

v2 + 1 + A2 = B

x
z2

x2 + 1 + A2 = B

x
z2 + x2 + y2 = Bx .

These are spheres centred on the x-axis and passing
through the origin. The field lines are the intersections
of the planes y = Ax with these spheres, so they are ver-
tical circles passing through the origin and having centres
in the xy-plane. (The technique used to find these circles
excludes those circles with centres on the y-axis, but they
are also field lines of F.)

Note: In two dimensions, circles passing through the
origin and having centres on the x-axis intersect perpen-
dicularly circles passing through the origin and having
centres on the y-axis. Thus the nature of the field lines
of F can be determined geometrically from the nature of
the equipotential surfaces.

11. The scalar potential for the two-source system is

φ(x, y, z) = φ(r) = − m

|r − �k| − m

|r + �k| .

Hence the velocity field is given by

v(r) = ∇φ(r)
= m(r − �k)

|r − �k|3 + m(r + �k)
|r + �k|3

= m(x i + yj + (z − �)k)
[x2 + y2 + (z − �)2]3/2 + m(x i + yj + (z + �)k)

[x2 + y2 + (z − �)2]3/2 .

Observe that v1 = 0 if and only if x = 0, and v2 = 0 if
and only if y = 0. Also

v(0, 0, z) = m

(
z − �

|z − �|3 + z + �

|z + �|3
)

k,

which is 0 if and only if z = 0. Thus v = 0 only at the
origin.

At points in the xy-plane we have

v(x, y, 0) = 2m(x i + yj)
(x2 + y2 + �2)3/2

.

The velocity is radially away from the origin in the
xy-plane, as is appropriate by symmetry. The speed at
(x, y, 0) is

v(x, y, 0) = 2m
√

x2 + y2

(x2 + y2 + �2)3/2
= 2ms

(s2 + �2)3/2
= g(s),

where s = √
x2 + y2. For maximum g(s) we set

0 = g′(s) = 2m
(s2 + �2)3/2 − 3

2
s(s2 + �2)1/22s

(s2 + �2)3

= 2m(�2 − 2s2)

(s2 + �2)5/2
.

Thus, the speed in the xy-plane is greatest at points of
the circle x2 + y2 = �2/2.

12. The scalar potential for the source-sink system is

φ(x, y, z) = φ(r) = − 2

|r| + 1

|r − k| .

Thus, the velocity field is

v = ∇φ = 2r
|r|3 − r − k

|r − k|3
= 2(x i + yj + zk)
(x2 + y2 + z2)3/2

− x i + yj + (z − 1)k
(x2 + y2 + (z − 1)2)3/2

.

574



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 15.2 (PAGE 819)

For vertical velocity we require

2x

(x2 + y2 + z2)3/2
= x

(x2 + y2 + (z − 1)2)3/2
,

and a similar equation for y. Both equations will be sat-
isfied at all points of the z-axis, and also wherever

2
(

x2 + y2 + (z − 1)2
)3/2 =

(
x2 + y2 + z2

)3/2

22/3
(

x2 + y2 + (z − 1)2
)

= x2 + y2 + z2

x2 + y2 + (z − K )2 = K 2 − K ,

where K = 22/3/(22/3−1). This latter equation represents
a sphere, S, since K 2 − K > 0. The velocity is vertical at
all points on S, as well as at all points on the z-axis.

Since the source at the origin is twice as strong as
the sink at (0, 0, 1), only half the fluid it emits will be
sucked into the sink. By symmetry, this half will the half
emitted into the half-space z > 0. The rest of the fluid
emitted at the origin will flow outward to infinity. There
is one point where v = 0. This point (which is easily
calculated to be (0, 0, 2 + √

2)) lies inside S. Streamlines
emerging from the origin parallel to the xy-plane lead to
this point. Streamlines emerging into z > 0 cross S and
approach the sink. Streamlines emerging into z < 0 flow
to infinity. Some of these cross S twice, some others are
tangent to S, some do not intersect S anywhere.

z

x

Fig. 15.2.12

13. Fluid emitted by interval �z in time interval [0, t] occu-
pies, at time t , a cylinder of radius r , where

πr2�Z = vol. of cylinder = 2πmt�z.

Thus r 2 = 2mt , and r
dr

dt
= m. The surface of this

cylinder is moving away from the z-axis at rate

dr

dt
= m

r
= m√

x2 + y2
,

so the velocity at any point (x, y, z) is

v = m√
x2 + y2

× unit vector in direction x i + yj

= m(x i + yj)
x2 + y2 .

14. For v(x, y) = m(x i + yj)
x2 + y2 , we have

∂v1

∂y
= − 2mxy

(x2 + y2)2
= ∂v2

∂x
,

so v may be conservative, except at (0, 0). We have

φ(x, y) = m
∫

x dx

x2 + y2 = m

2
ln(x2 + y2)+ C1(y)

my

x2 + y2
= ∂φ

∂y
= my

x2 + y2
+ dC1

dy
.

Thus we may take C1(y) = 0, and obtain

φ(x, y) = m

2
ln(x2 + y2) = m ln |r|,

as a scalar potential for the velocity field v of a line
source of strength of m.

15. The two-dimensional dipole of strength µ has potential

φ(x, y)

= lim
�→0

m�=µ

m

2

[
ln

(
x2 +

(
y − �

2

)2
)

− ln

(
x2 +

(
y + �

2

)2
)]

= µ

2
lim
�→0

ln

(
x2 +

(
y − �

2

)2
)

− ln

(
x2 +

(
y + �

2

)2
)

�

(apply l’Hôpital’s Rule)

= µ

2
lim
�→0

−
(

y − �

2

)

x2 +
(

y − �

2

)2 −

(
y + �

2

)

x2 +
(

y + �

2

)2

= − µy

x2 + y2
= −µy

r2
.

Now

∂φ

∂x
= 2µy

r3

∂r

∂x
= 2µxy

r4

∂φ

∂y
= −µ

r2 − 2yr
y

r
r4 = µ(y2 − x2)

r4 .

Thus

F = ∇φ = µ

(x2 + y2)2

(
2xyi + (y2 − x2)j

)
.
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16. The equipotential curves for the two-dimensional dipole
have equations y = 0 or

− µy

x2 + y2 = 1

C

x2 + y2 + µCy = 0

x2 +
(

y + µC

2

)2

= µ2C2

4
.

These equipotentials are circles tangent to the x-axis at
the origin.

17. All circles tangent to the y-axis at the origin intersect all
circles tangent to the x-axis at the origin at right angles,
so they must be the streamlines of the two-dimensional
dipole.

As an alternative derivation of this fact, the streamlines
must satisfy

dx

2xy
= dy

y2 − x2
,

or, equivalently,

dy

dx
= y2 − x2

2xy
.

This homogeneous DE can be solved (as was that in
Exercise 10) by a change in dependent variable. Let
y = xv(x). Then

v + x
dv

dx
= dy

dx
= v2x2 − x2

2vx2

x
dv

dx
= v2 − 1

2v
− v = −v

2 + 1

2v
2v dv

v2 + 1
= −dx

x
ln(v2 + 1) = − ln x + ln C

v2 + 1 = C

x
⇒ y2

x2 + 1 = C

x
x2 + y2 = Cx

(x − C)2 + y2 = C2.

These streamlines are circles tangent to the y-axis at the
origin.

18. The velocity field for a point source of strength m dt at
(0, 0, t) is

vt (x, y, z) =
m
(

x i + yj + (z − t)k
)

(
x2 + y2 + (z − t)2

)3/2
.

Hence we have
∫ ∞

−∞
vt (x, y, z) dt

= m
∫ ∞

−∞
x i + yj + (z − t)k(

x2 + y2 + (z − t)2
)3/2 dt

= m(x i + yj)
∫ ∞

−∞
dt(

x2 + y2 + (z − t)2
)3/2

Let z − t = √
x2 + y2 tan θ

−dt = √
x2 + y2 sec2 θ dθ

= m(x i + yj)
x2 + y2

∫ π/2

−π/2
cos θ dθ

= 2m(x i + yj)
x2 + y2 ,

which is the velocity field of a line source of strength 2m
along the z-axis.

The definition of strength of a point source in 3-space
was made to ensure that the velocity field of a source
of strength 1 had speed 1 at distance 1 from the source.
This corresponds to fluid being emitted from the source
at a volume rate of 4π . Similarly, the definition of
strength of a line source guaranteed that a source of
strength 1 gives rise to fluid speed of 1 at unit distance
1 from the line source. This corresponds to a fluid
emission at a volume rate 2π per unit length along the
line. Thus, the integral of a 3-dimensional source gives
twice the volume rate of a 2-dimensional source, per unit
length along the line.

The potential of a point source m dt at (0, 0, t) is

φ(x, y, z) = − m√
x2 + y2 + (x − t)2

.

This potential cannot be integrated to give the potential
for a line source along the z-axis because the integral

−m
∫ ∞

−∞
dt√

x2 + y2 + (z − t)2

does not converge, in the usual sense in which conver-
gence of improper integrals was defined.

19. Since x = r cos θ and y = r sin θ , we have

∂φ

∂r
= cos θ

∂φ

∂x
+ sin θ

∂φ

∂y
∂φ

∂θ
= −r sin θ

∂φ

∂x
+ r cos θ

∂φ

∂y
.

Also,

r̂ = x i + yj
r

= (cos θ)i + (sin θ)j

θ̂ = −yi + xj
r

= −(sin θ)i + (cos θ)j.
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Therefore,

∂φ

∂r
r̂ + 1

r

∂φ

∂θ
θ̂

=
(

cos2 θ
∂φ

∂x
+ sin θ cos θ

∂φ

∂y

)
i

+
(

cos θ sin θ
∂φ

∂x
+ sin2 θ

∂φ

∂y

)
j

+
(

sin2 θ
∂φ

∂x
− sin θ cos θ

∂φ

∂y

)
i

+
(

− cos θ sin θ
∂φ

∂x
+ cos2 θ

∂φ

∂y

)
j

= ∂φ

∂x
i + ∂φ

∂y
j = ∇φ.

20. If F = Fr (r, θ)r̂ + Fθ (r, θ)θ̂ is conservative, then F = ∇φ
for some scalar field φ(r, θ), and by Exercise 19,

∂φ

∂r
= Fr ,

1

r

∂φ

∂θ
= Fθ .

For the equality of the mixed second partial derivatives of
φ, we require that

∂Fr

∂θ
= ∂

∂r
(r Fθ ) = Fθ + r

∂Fθ
∂r

,

that is,
∂Fr

∂θ
− r

∂Fθ
∂r

= Fθ .

21. If F = r sin(2θ)r̂ + r cos(2θ)θ̂ = ∇φ(r, θ), then we must
have

∂φ

∂r
= r sin(2θ),

1

r

∂φ

∂θ
= r cos(2θ).

Both of these equations are satisfied by

φ(rθ) = 1

2
r2 sin(2θ)+ C,

so F is conservative and this φ is a potential for it.

22. If F = r 2 cos θ r̂ + αrβ sin θ θ̂ = ∇φ(r, θ), then we must
have

∂φ

∂r
= r2 cos θ,

1

r

∂φ

∂θ
= αrβ sin θ.

From the first equation

φ(r, θ) = r3

3
cos θ + C(θ).

The second equation then gives

C ′(θ)− r3

3
sin θ = ∂φ

∂θ
= αrβ+1 sin θ.

This equation can be solved for a function C(θ) indepen-
dent of r only if α = −1/3 and β = 2. In this case,
C(θ) = C (a constant). F is conservative if α and β have
these values, and a potential for it is φ = 1

3r3 cos θ + C .

Section 15.3 Line Integrals (page 824)

1. C: r = a cos t sin t i + a sin2 tj + a cos tk, 0 ≤ t ≤ π/2.
Since

|r|2 = a2(cos2 t sin2 t + sin4 t + cos2 t) = a2

for all t , C must lie on the sphere of radius a centred at
the origin. We have

ds = a
√
(cos2 t − sin2 t)2 + 4 sin2 t cos2 t + sin2 t dt

= a
√

cos2 2t + sin2 2t + sin2 t dt

= a
√

1 + sin2 t dt.

Thus

∫

C
z ds =

∫ π/2

0
a cos t a

√
1 + sin2 t dt Let u = sin t

du = cos t dt

= a2
∫ 1

0

√
1 + u2 du Let u = tanφ

du = sec2 φ dφ

= a2
∫ π/4

0
sec3 φ dφ

= a2

2

[
secφ tanφ + ln | secφ + tanφ|

]∣∣∣∣
π/4

0

= a2

2

(√
2 + ln(1 + √

2)
)
.

2. C: x = t cos t , y = t sin t , z = t , (0 ≤ t ≤ 2π). We have

ds =
√
(cos t − t sin t)2 + (sin t + t cos t)2 + 1 dt

=
√

2 + t2 dt.

Thus

∫

C
z ds =

∫ 2π

0
t
√

2 + t2 dt Let u = 2 + t2

du = 2t dt

= 1

2

∫ 2+4π2

2
u1/2 du

= 1

3
u3/2

∣∣∣∣
2+4π2

2
= (2 + 4π2)3/2 − 23/2

3
.
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3. Wire: r = 3t i + 3t2j + 2t3k, (0 ≤ t ≤ 1)

v = 3i + 6tj + 6t2k

v = 3
√

1 + 4t2 + 4t4 = 3(1 + 2t2).

If the wire has density δ(t) = 1 + t g/unit length, then its
mass is

m = 3
∫ 1

0
(1 + 2t2)(1 + t) dt

= 3

(
t + t2

2
+ 2t3

3
+ t4

2

)∣∣∣∣
1

0
= 8 g.

4. The wire of Example 3 lies in the first octant on the sur-
faces z = x2 and z = 2− x2 − 2y2, and, therefore, also on
the surface x2 = 2 − x2 − 2y2, or x2 + y2 = 1, a circular
cylinder. Since it goes from (1, 0, 1) to (0, 1, 0) it can be
parametrized

r = cos t i + sin tj + cos2 k, (0 ≤ t ≤ π/2)

v = − sin t i + cos tj − 2 cos t sin tk

v =
√

1 + sin2(2t) =
√

2 − cos2(2t).

Since
the wire has density δ = xy = sin t cos t = 1

2 sin(2t),
its mass is

m = 1

2

∫ π/2

0

√
2 − cos2(2t) sin(2t) dt Let v = cos(2t)

dv = −2 sin(2t) dt

= 1

4

∫ 1

−1

√
2 − v2 dv = 1

2

∫ 1

0

√
2 − v2 dv,

which is the same integral obtained in Example 3, and
has value (π + 2)/8.

5. C: r = et cos t i + et sin tj + tk, 0 ≤ t ≤ 2π).

ds =
√

e2t (cos t − sin t)2 + e2t (sin t + cos t)2 + 1 dt

=
√

1 + 2e2t dt.

The moment of inertia of C about the z-axis is

I = δ

∫

C
(x2 + y2) ds

= δ

∫ 2π

0
e2t
√

1 + 2e2t dt Let u = 1 + 2e2t

du = 4e2t dt

= δ

4

∫ 1+2e4π

3

√
u du

= δ

6
u3/2

∣∣∣∣
1+2e4π

3
= δ

6

[
(1 + 2e4π )3/2 − 33/2

]
.

6. C is the same curve as in Exercise 5. We have

∫

C
ez ds =

∫ 2π

0
et
√

1 + 2e2t dt Let
√

2et = tan θ√
2et dt = sec2 θ dθ

= 1√
2

∫ t=2π

t=0
sec3 θ dθ

= 1

2
√

2

[
sec θ tan θ + ln | sec θ + tan θ |

]∣∣∣∣
t=2π

t=0

=
√

2et
√

1 + 2e2t + ln(
√

2et + √
1 + 2e2t )

2
√

2

∣∣∣∣
2π

0

= e2π
√

1 + 2e4π − √
3

2

+ 1

2
√

2
ln

√
2e2π + √

1 + 2e4π
√

2 + √
3

.

7. The line of intersection of the planes x − y + z = 0
and x + y + 2z = 0 from (0, 0, 0) to (3, 1,−2) can be
parametrized

r = 3t i + tj − 2tk, (0 ≤ t ≤ 1).

Thus ds = √
14 dt and

∫

C
x2 ds = √

14
∫ 1

0
9t2 dt = 3

√
14.

8. The curve C of intersection of x2 + z2 = 1 and y = x2

can be parametrized

r = cos t i + cos2 tj + sin tk, (0 ≤ t ≤ 2π).

Thus

ds =
√

sin2 t + 4 sin2 t cos2 t + cos2 t dt =
√

1 + sin2 2t dt.

We have

∫

C

√
1 + 4x2z2 ds

=
∫ 2π

0

√
1 + 4 cos2 t sin2 t

√
1 + sin2 2t dt

=
∫ 2π

0
(1 + sin2 2t) dt

=
∫ 2π

0

(
1 + 1 − cos 4t

2

)
dt

= 3

2
(2π) = 3π.
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9. r = cos t i + sin tj + tk, (0 ≤ t ≤ 2π)

v = − sin t i + cos tj + k, v = √
2.

If the density is δ = z = t , then

m = √
2
∫ 2π

0
t dt = 2π2

√
2

Mx=0 = √
2
∫ 2π

0
t cos t dt = 0

My=0 = √
2
∫ 2π

0
t sin t dt = −2π

√
2

Mz=0 = √
2
∫ 2π

0
t2 dt = 8π3

√
2

3
.

(We have omitted the details of the evaluation of these

integrals.) The centre of mass is

(
0,− 1

π
,

4π

3

)
.

10. Here the wire of Exercise 9 extends only from t = 0 to
t = π :

m = √
2
∫ π

0
t dt = π2

√
2

2

Mx=0 = √
2
∫ π

0
t cos t dt = −2

√
2

My=0 = √
2
∫ π

0
t sin t dt = π

√
2

Mz=0 = √
2
∫ π

0
t2 dt = π3

√
2

3
.

The centre of mass is

(
− 4

π2
,

2

π
,

2π

3

)
.

11. r = et i + √
2tj + e−t k, (0 ≤ t ≤ 1)

v = et i + √
2j − e−t k

v =
√

e2t + 2 + e−2t = et + e−t

∫

C
(x2 + z2) ds =

∫ 1

0
(e2t + e−2t )(et + e−t ) dt

=
∫ 1

0
(e3t + et + e−t + e−3t ) dt

= e3

3
+ e − 1

e
− 1

3e3
.

12. m =
∫ 1

0
(et + e−t ) dt = e2 − 1

e

Mx=0 =
∫ 1

0
et (et + e−t ) dt = e2 + 1

2

My=0 =
∫ 1

0

√
2t (et + e−t ) dt = 2

√
2(e − 1)

e

Mz=0 =
∫ 1

0
e−t (et + e−t ) dt = 3e2 − 1

2e2

The centroid is

(
e3 + e

2e2 − 2
,

2
√

2

e + 1
,

3e2 − 1

2e3 − 2e

)
.

13. The first octant part C of the curve x2 + y2 = a2, z = x ,
can be parametrized

r = a cos t i + a sin tj + a cos tk, (0 ≤ t ≤ π/2).

We have ds = a
√

1 + sin2 t dt , so

∫

C
x ds = a2

∫ π/2

0
cos t

√
1 + sin2 t dt Let sin t = tan θ

cos t dt = sec2 θ dθ

= a2
∫ t=π/2

t=0
sec3 θ dθ

= a2

2

[
sec θ tan θ + ln | sec θ + tan θ |

]∣∣∣∣
t=π/2

t=0

= a2

2

[
sin t

√
1 + sin2 t + ln | sin t +

√
1 + sin2 t |

]∣∣∣∣
π/2

0

= a2

2

[√
2 + ln(1 + √

2)
]
.

14. On C, we have

z =
√

1 − x2 − y2 =
√

1 − x2 − (1 − x)2 =
√

2(x − x2).

Thus C can be parametrized

r = t i + (1 − t)j +
√

2(t − t2)k, (0 ≤ t ≤ 1).

Hence

ds =
√

1 + 1 + (1 − 2t)2

2(t − t2)
dt = dt√

2(t − t2)
.

We have
∫

C
z ds =

∫ 1

0

√
2(t − t2)

dt√
2(t − t2)

= 1.

15. The parabola z2 = x2+ y2, x +z = 1, can be parametrized
in terms of y = t since

(1 − x)2 = z2 = x2 + y2 = x2 + t2

⇒ 1 − 2x = t2 ⇒ x = 1 − t2

2

⇒ z = 1 − x = 1 + t2

2
.

Thus ds = √
t2 + 1 + t2 dt = √

1 + 2t2 dt , and

∫

C

ds

(2y2 + 1)3/2
=
∫ ∞

−∞

√
1 + 2t2

(2t2 + 1)3/2
dt

= 2
∫ ∞

0

dt

1 + 2t2

= √
2 tan−1(

√
2t)

∣∣∣∣
∞

0
= √

2
π

2
= π√

2
.

579



SECTION 15.3 (PAGE 824) R. A. ADAMS: CALCULUS

16. C: y = x2, z = y2, from (0, 0, 0) to (2, 4, 16).
Parametrize C by

r = t i + t2j + t4k, (0 ≤ t ≤ 2).

Since ds = √
1 + 4t2 + 16t6 dt , we have

∫

C
xyz ds =

∫ 2

0
t7
√

1 + 4t2 + 16t6 dt.

17. Helix: x = a cos t , y = b sin t , z = ct (0 < a < b).

ds =
√

a2 sin2 t + b2 cos2 t + c2 dt

=
√

c2 + b2 − (b2 − a2) sin2 t dt

=
√

b2 + c2
√

1 − k2 sin2 t dt (k2 = b2 − a2

b2 + c2 ).

One complete revolution of the helix corresponds to
0 ≤ t ≤ 2π , and has length

L =
√

b2 + c2

∫ 2π

0

√
1 − k2 sin2 t dt

= 4
√

b2 + c2

∫ π/2

0

√
1 − k2 sin2 t dt

= 4
√

b2 + c2 E(k) = 4
√

b2 + c2 E

⎛
⎝
√

b2 − a2

b2 + c2

⎞
⎠ units.

The length of the part of the helix from t = 0 to
t = T < π/2 is

L =
√

b2 + c2

∫ T

0

√
1 − k2 sin2 t dt

=
√

b2 + c2 E(k, T ) =
√

b2 + c2E

⎛
⎝
√

b2 − a2

b2 + c2 , T

⎞
⎠ units.

18. The straight line L with equation Ax + By = C , (C �= 0),
lies at distance D = √|C |/√A2 + B2 from the origin.
So does the line L1 with equation y = D. Since x2 + y2

depends only on distance from the origin, we have, by
symmetry,

∫

L

ds

x2 + y2
=
∫

L1

ds

x2 + y2

=
∫ ∞

−∞
dx

x2 + D2

= 2

D
tan−1 x

D

∣∣∣∣
∞

0
= 2

D

(π
2

− 0
)

= π

D
= π

√
A2 + B2

|C | .

Section 15.4 Line Integrals of Vector Fields
(page 831)

1. F = xyi − x2j.

C : r = t i + t2j, (0 ≤ t ≤ 1).∫

C
F • dr =

∫ 1

0
[t3 − t2(2t)] dt = −

∫ 1

0
t3 dt = −1

4
.

2. F = cos x i − yj = ∇
(

sin x − y2

2

)
.

C : y = sin x from (0,0) to (π, 0).
∫

C
F • dr =

(
sin x − y2

2

)∣∣∣∣
(π,0)

(0,0)
= 0.

3. F = yi + zj − xk.
C : r = t i + tj + tk, (0 ≤ t ≤ 1).
∫

C
F • dr =

∫ 1

0
(t + t − t) dt = t2

2

∣∣∣∣
1

0
= 1

2
.

4. F = zi − yj + 2xk.
C: r = t i + t2j + t3k, (0 ≤ t ≤ 1).

∫

C
F • dr =

∫ 1

0
[t3 − t2(2t)+ 2t (3t2)] dt

=
∫ 1

0
5t3 dt = 5t4

4

∣∣∣∣
1

0
= 5

4
.

5. F = yzi + xzj + xyk = ∇(xyz).
C: a curve from (−1, 0, 0) to (1, 0, 0). (Since F is con-
servative, it doesn’t matter what curve.)

∫

C
F • dr = xyz

∣∣∣∣
(1,0,0)

(−1,0,0)
= 0 − 0 = 0.

6. F = (x − z)i + (y − z)j − (x + y)k

= ∇
(

x2 + y2

2
− (x + y)z

)
.

C is a given polygonal path from (0,0,0) to (1,1,1) (but
any other piecewise smooth path from the first point to
the second would do as well).
∫

C
F • dr =

(
x2 + y2

2
− (x + y)z

)∣∣∣∣
(1,1,1)

(0,0,0)
= 1 − 2 = −1.

7. F = (x + y)i + (x − z)j + (z − y)k

= ∇
(

x2 + z2

2
+ y(x − z)

)
.

The work done by F in moving an object from (1, 0,−1)
to (0,−2, 3) is

W =
∫

C
F • dr =

(
x2 + z2

2
+ y(x − z)

)∣∣∣∣
(0,−2,3)

(1,0,−1)

= 9

2
− 2(−3)− (1 + 0) = 19

2
units.
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8. C is made up of four segments as shown in the figure.
On C1, y = 0, dy = 0, and x goes from 0 to 1.
On C2, x = 1, dx = 0, and y goes from 0 to 1.
On C3, y = 1, dy = 0, and x goes from 1 to 0.
On C4, x = 0, dx = 0, and y goes from 1 to 0.
Thus

∫

C1

x2 y2 dx + x3 y dy = 0

∫

C2

x2 y2 dx + x3 y dy =
∫ 1

0
y dy = 1

2∫

C3

x2 y2 dx + x3 y dy =
∫ 0

1
x2 dx = −1

3∫

C4

x2 y2 dx + x3 y dy = 0.

Finally, therefore,
∫

C
x2 y2 dx + x3 y dy = 0 + 1

2
− 1

3
+ 0 = 1

6
.

y

x

(1,1)

C2

C3

C4

C1

Fig. 15.4.8

9. Observe that if φ = ex+y sin(y + z), then

∇φ = ex+y sin(y + z)i + ex+y
(

sin(y + z)+ cos(y + z)
)

j

+ ex+y cos(y + z)k.

Thus, for any piecewise smooth path from (0, 0, 0) to(
1, π4 ,

π
4

)
, we have

∫

C
ex+y sin(y + z) dx + ex+y

(
sin(y + z)+ cos(y + z)

)
dy

+ ex+y cos(y + z) dz

=
∫

C
∇φ • dr = φ(x, y, z)

∣∣∣∣
(1,π/4,π/4)

(0,0,0)
= e1+(π/4).

10. F = (axy + z)i + x 2j + (bx + 2z)k is conservative if

∂F1

∂y
= ∂F2

∂x
⇔ a = 2

∂F1

∂z
= ∂F3

∂x
⇔ b = 1

∂F2

∂z
= ∂F3

∂y
⇔ 0 = 0.

If a = 2 and b = 1, then F = ∇φ where

φ =
∫
(2xy + z) dx = x2 y + xz + C2(y, z)

∂C1

∂y
+ x2 = F2 = x2 ⇒ C1(y, z) = C2(z)

dC2

dz
+ x = F3 = x + 2z ⇒ C2(z) = z2 + C.

Thus φ = x2 y + xz + z2 + C is a potential for F.

11. F = Ax ln zi + By2zj +
(

x2

z
+ y3

)
k is conservative if

∂F1

∂y
= ∂F2

∂x
⇔ 0 = 0

∂F1

∂z
= ∂F3

∂x
⇔ A = 2

∂F2

∂z
= ∂F3

∂y
⇔ B = 3.

If A = 2 and B = 3, then F = ∇φ where
φ = x2 ln z + y3z. If C is the straight line x = t + 1,
y = 1, z = t + 1, (0 ≤ t ≤ 1), from (1, 1, 1) to (2, 1, 2),
then

∫

C
2x ln z dx + 2y2z dy + y3 dz

=
∫

C
∇φ • dr −

∫

C
y2z dy + x2

z
dz

= (x2 ln z + y3z)

∣∣∣∣
(2,1,2)

(1,1,1)
−
∫ 1

0
[(t + 1)(0) + (t + 1)] dt

= 4 ln 2 + 2 − 1 −
(

t2

2
+ t

)∣∣∣∣
1

0
= 4 ln 2 − 1

2
.

12. F = (y2 cos x + z3)i + (2y sin x − 4)j + (3xz2 + 2)k

= ∇(y2 sin x + xz3 − 4y + 2z).
The curve C: x = sin−1t , y = 1 − 2t , z = 3t − 1,
(0 ≤ t ≤ 1), goes from (0, 1,−1) to (π/2,−1, 2). The
work done by F in moving a particle along C is

W =
∫

C
F • dr

= (y2 sin x + xz3 − 4y + 2z)

∣∣∣∣
(π/2,−1,2)

(0,1,−1)

= 1 + 4π + 4 + 4 − 0 − 0 + 4 + 2 = 15 + 4π.
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13. For z = ln(1 + x), y = x , from x = 0 to x = 1, we have

∫

C

[
(2x sin(πy)− ez) dx

+ (πx2 cos(πy)− 3ez) dy − xez dz
]

=
∫

C
∇
(

x2 sin(πy)− xez
)

• dr − 3
∫

C
ez dy

=
(

x2 sin(πy)− xez
)∣∣∣∣
(1,1,ln 2)

(0,0,0)
− 3

∫ 1

0
(1 + x) dx

= −2 − 3

(
x + x2

2

)∣∣∣∣
1

0
= −2 − 9

2
= −13

2
.

14. a) S = {(x, y) : x > 0, y ≥ 0} is a simply connected
domain.

b) S = {(x, y) : x = 0, y ≥ 0} is not a domain. (It has
empty interior.)

c) S = {(x, y) : x �= 0, y > 0} is a domain but is
not connected. There is no path in S from (−1, 1)
to (1, 1).

d) S = {(x, y, z) : x2 > 1} is a domain but is not
connected. There is no path in S from (−2, 0, 0) to
(2, 0, 0).

e) S = {(x, y, z) : x2 + y2 > 1} is a connected domain
but is not simply connected. The circle x2 + y2 = 2,
z = 0 lies in S, but cannot be shrunk through S to
a point since it surrounds the cylinder x2 + y2 ≤ 1
which is outside S.

f) S = {(x, y, z) : x2 + y2 + z2 > 1} is a simply
connected domain even though it has a ball-shaped
“hole” in it.

15. C is the curve r = a cos t i + a sin tj, (0 ≤ t ≤ 2π).

∮

C
x dy =

∫ 2π

0
a cos t a cos t dt = πa2

∮

C
y dx =

∫ 2π

0
a sin t (−a sin t) dt = −πa2.

16. C is the curve r = a cos t i + b sin tj, (0 ≤ t ≤ 2π).

∮

C
x dy =

∫ 2π

0
a cos t b cos t dt = πab

∮

C
y dx =

∫ 2π

0
b sin t (−a sin t) dt = −πab.

17. C consists of two parts:
On C1, y = 0, dy = 0, and x goes from −a to a.
On C2, x = a cos t , y = a sin t , t goes from 0 to π .

∮

C
x dy =

∫

C1

x dy +
∫

C2

x dy

= 0 +
∫ π

0
a2 cos2 t dt = πa2

2
,

∮

C
y dx =

∫

C1

y dx +
∫

C2

y dx

= 0 +
∫ π

0
(−a2 cos2 t) dt = −πa2

2
.

y

x

C1

C2

−a a

Fig. 15.4.17

18. C is made up of four segments as shown in the figure.
On C1, y = 0, dy = 0, and x goes from 0 to 1.
On C2, x = 1, dx = 0, and y goes from 0 to 1.
On C3, y = 1, dy = 0, and x goes from 1 to 0.
On C4, x = 0, dx = 0, and y goes from 1 to 0.

∮

C
x dy =

∫

C1

+
∫

C2

+
∫

C3

+
∫

C4

= 0 +
∫ 1

0
dy + 0 + 0 = 1

∮

C
y dx =

∫

C1

+
∫

C2

+
∫

C3

+
∫

C4

= 0 + 0 +
∫ 0

1
dx + 0 = −1.

y

x

(1,1)

C2

C3

C4

C1

Fig. 15.4.18
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19. C is made up of three segments as shown in the figure.
On C1, y = 0, dy = 0, and x goes from 0 to a.
On C2, y = bt , x = a(1 − t), and t goes from 0 to 1.
On C3, x = 0, dx = 0, and y goes from b to 0.

∮

C
x dy =

∫

C1

+
∫

C2

+
∫

C3

= 0 +
∫ 1

0
a(1 − t) b dt + 0 = ab

2∮

C
y dx =

∫

C1

+
∫

C2

+
∫

C3

= 0 +
∫ 1

0
bt (−a dt)+ 0 = −ab

2
.

y

x

C1

C2C3

b

a

Fig. 15.4.19

20. Conjecture: If D is a domain in �2 whose boundary is
a closed, non-self-intersecting curve C, oriented counter-
clockwise, then

∮

C
x dy = area of D,

∮

C
y dx = − area of D.

Proof for a domain D that is x-simple and y-simple:
Since D is x-simple, it can be specified by the inequali-
ties

c ≤ y ≤ d, f (y) ≤ x ≤ g(y).

Let C consist of the four parts shown in the figure. On
C1 and C3, dy = 0.
On C2, x = g(y), where y goes from c to d .
On C2, x = f (y), where y goes from d to c. Thus

∮

C
x dy =

∫

C1

+
∫

C2

+
∫

C3

+
∫

C4

= 0 +
∫ d

c
g(y) dy + 0 +

∫ c

d
f (y) dy

=
(

g(y)− f (y)
)

dy = area of D.

The proof that
∮

C
y dx = −(area of D) is similar, and

uses the fact that D is y-simple.

y

x

C2

C3

C4

C1
x=g(y)

D

x= f (y)

c

d

Fig. 15.4.20

21. ∇( f g) = +
(

f
∂g

∂x
+ ∂ f

∂x
g

)
i +

(
f
∂g

∂y
+ ∂ f

∂y
g

)
j

+
(

f
∂g

∂z
+ ∂ f

∂z
g

)
k

= g∇ f + f ∇g.
Thus, since C goes from P to Q,

∫

C
f ∇g • dr +

∫

C
g∇ f • dr

=
∫

C
∇( f g) • dr = ( f g)

∣∣∣∣
Q

P

= f (Q)g(Q)− f (P)g(P).

22. a) C: x = a cos t , x = a sin t , 0 ≤ t ≤ 2π .

1

2π

∮

C

x dy − y dx

x2 + y2

= 1

2π

∫ 2π

0

a2 cos2 t + a2 sin2 t

a2 cos2 t + a2 sin2 t
dt = 1.

y

x

C

a

y

x
C3

C2

C1

C4

1

1−1

−1

Fig. 15.4.22(a) Fig. 15.4.22(b)
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b) See the figure. C has four parts.
On C1, x = 1, dx = 0, y goes from 1 to −1.
On C2, y = −1, dy = 0, x goes from 1 to −1.
On C3, x = −1, dx = 0, y goes from −1 to 1.
On C4, x = 1, dx = 0, y goes from 1 to −1.

1

2π

∮

C

x dy − y dx

x2 + y2

= 1

2π

[∫ −1

1

dy

1 + y2
+
∫ −1

1

dx

x2 + 1∫ 1

−1

−dy

1 + y2
+
∫ 1

−1

−dx

x2 + 1

]

= − 2

π

∫ 1

−1

dt

1 + t2

= − 2

π
tan−1 t

∣∣∣∣
1

−1
= − 2

π

(π
4

+ π

4

)
= −1.

y

x

C2

C1

C4

C3

−2 −1 1 2

Fig. 15.4.22

c) See the figure. C has four parts.
On C1, y = 0, dy = 0, x goes from 1 to 2.
On C2, x = 2 cos t , y = 2 sin t , t goes from 0 to π .
On C3, y = 0, dy = 0, x goes from −2 to −1.
On C4, x = cos t , y = sin t , t goes from π to 0.

1

2π

∮

C

x dy − y dx

x2 + y2

= 1

2π

[
0 +

∫ π

0

4 cos2 t + 4 sin2 t

4 cos2 t + 4 sin2 t
dt

+ 0 +
∫ 0

π

cos2 t + sin2 t

cos2 t + sin2 t
dt

]

= 1

2π
(π − π) = 0.

23. Although

∂

∂y

( −y

x2 + y2

)
= ∂

∂x

(
x

x2 + y2

)

for all (x, y) �= (0, 0), Theorem 1 does not imply that∮

C

x dy − y dx

x2 + y2
is zero for all closed curves C in �2.

The set consisting of points in � except the origin is not
simply connected, and the vector field

F = −yi + xj
x2 + y2

is not conservative on any domain in �2 that contains
the origin in its interior. (See Example 5.) However, the
integral will be 0 for any closed curve that does not con-
tain the origin in its interior. (An example is the curve in
Exercise 22(c).)

24. If C is a closed, piecewise smooth curve in �2 having
equation r = r(t), a ≤ t ≤ b, and if C does not
pass through the origin, then the polar angle function

θ = θ
(

x(t), y(t)
)

= θ(t) can be defined so as to vary

continuously on C. Therefore,

θ(x, y)

∣∣∣∣
t=b

t=a
= 2π ×w(C),

where w(C) is the number of times C winds around the
origin in a counterclockwise direction. For example,
w(C) equals 1, −1 and 0 respectively, for the curves C
in parts (a), (b) and (c) of Exercise 22. Since

∇θ = ∂θ

∂x
i + ∂θ

∂y
j

= −yi + xj
x2 + y2 ,

we have

1

2π

∮

C

x dy − y dx

x2 + y2 = 1

2π

∮

C
∇θ • dr

= 1

2π
θ(x, y)

∣∣∣∣
t=b

t=a
= w(C).

Section 15.5 Surfaces and Surface Integrals
(page 842)

1. The polar curve r = g(θ) is parametrized by

x = g(θ) cos θ, y = g(θ) sin θ.

Hence its arc length element is

ds =
√(

dx

dθ

)2

+
(

dy

dθ

)2

dθ

=
√(

g′(θ) cos θ − g(θ) sin θ
)2 +

(
g′(θ) sin θ + g(θ) cos θ

)2
dθ

=
√(

g(θ)
)2 +

(
g′(θ)

)2
dθ.
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The area element on the vertical cylinder r = g(θ) is

d S = ds dz =
√(

g(θ)
)2 +

(
g′(θ)

)2
dθ dz.

2. The area element d S is bounded by the curves in which
the coordinate planes at θ and θ + dθ and the coordinate
cones at φ and φ + dφ intersect the sphere R = a. (See
the figure.) The element is rectangular with sides a dφ
and a sinφ dθ . Thus

d S = a2 sinφ dφ dθ.

x

y

z

θ

dθ

φ

dφ

dS

a

a sinφ

Fig. 15.5.2

3. The plane Ax + By + Cz = D has normal
n = Ai + Bj + Ck, and so an area element on it is
given by

d S = |n|
|n • k| dx dy =

√
A2 + B2 + C2

|C | dx dy.

Hence the area S of that part of the plane lying inside
the elliptic cylinder

x2

a2 + y2

b2 = 1

is given by

S =
∫∫

x2

a2 + y2

b2 ≤1

√
A2 + B2 + C2

|C | dx dy

= πab
√

A2 + B2 + C2

|C | sq. units.

4. One-quarter of the required area is shown in the figure.
It lies above the semicircular disk R bounded by
x2 + y2 = 2ay, or, in terms of polar coordinates,
r = 2a sin θ . On the sphere x2 + y2 + z2 = 4a2, we have

2z
∂z

∂x
= −2x, or

∂z

∂x
= − x

z
.

Similarly,
∂z

∂y
= − y

z
, so the surface area element on the

sphere can be written

d S =
√

1 + x2 + y2

z2
dx dy = 2a dx dy√

4a2 − x2 − y2
.

The required area is

S = 4
∫∫

R

2a√
4a2 − x2 − y2

dx dy

= 8a
∫ π/2

0
dθ
∫ 2a sin θ

0

r dr√
4a2 − r2

Let u = 4a2 − r2

du = −2r dr

= 4a
∫ π/2

0
dθ
∫ 4a2

4a2 cos2 θ

u−1/2 du

= 8a
∫ π/2

0
(2a − 2a cos θ) dθ

= 16a2(θ − sin θ)

∣∣∣∣
π/2

0
= 8a2(π − 2) sq. units.

x

y

z

z2=4a2−x2−y22a

2a

r=2a sin θ

2a

Fig. 15.5.4

5. d S =
∣∣∣∣
∇F(x, y, z)

F2(x, y, z)

∣∣∣∣ dx dz

d S =
∣∣∣∣
∇F(x, y, z)

F1(x, y, z)

∣∣∣∣ dy dz

6. The cylinder x2 + y2 = 2ay intersects the sphere
x2 + y2 + z2 = 4a2 on the parabolic cylinder
2ay + z2 = 4a2. By Exercise 5, the area element on
x2 + y2 − 2ay = 0 is

d S =
∣∣∣∣
2x i + (2y − 2a)j

2x

∣∣∣∣ dy dz

=
√

1 + (y − a)2

2ay − y2 dy dz

=
√

2ay − y2 + y2 − 2ay + a2

2ay − y2 dy dz = a√
2ay − y2

dy dz.
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The area of the part of the cylinder inside the sphere
is 4 times the part shown in Figure 15.23 in the text,
that is, 4 times the double integral of d S over the region
0 ≤ y ≤ 2a, 0 ≤ z ≤ √

4a2 − 2ay, or

S = 4
∫ 2a

0

a dy√
2ay − y2

∫ √
4a2−2ay

0
dz

= 4a
∫ 2a

0

√
2a(2a − y)√
y(2a − y)

dy = 4
√

2a3/2
∫ 2a

0

dy√
y

= 4
√

2a3/2(2
√

y)

∣∣∣∣
2a

0
= 16a2 sq. units.

7. On the surface S with equation z = x2/2 we have
∂z/∂x = x and ∂z/∂y = 0. Thus

d S =
√

1 + x2 dx dy.

If R is the first quadrant part of the disk x2 + y2 ≤ 1,
then the required surface integral is

∫∫

S
x d S =

∫∫

R
x
√

1 + x2 dx dy

=
∫ 1

0
x
√

1 + x2 dx
∫ √

1−x2

0
dy

=
∫ 1

0
x
√

1 − x4 dx Let u = x2

du = 2x dx

= 1

2

∫ 1

0

√
1 − u2 du = 1

2

π

4
= π

8
.

8. The normal to the cone z2 = x2 + y2 makes a 45◦ angle
with the vertical, so d S = √

2 dx dy is a surface area
element for the cone. Both nappes (halves) of the cone
pass through the interior of the cylinder x2 + y2 = 2ay,
so the area of that part of the cone inside the cylinder is
2
√

2πa2 square units, since the cylinder has a circular
cross-section of radius a.

9. One-quarter of the required area lies in the first octant.
(See the figure.) In polar coordinates, the Cartesian equa-
tion x2 + y2 = 2ay becomes r = 2a sin θ . The arc length
element on this curve is

ds =
√

r2 +
(

dr

dθ

)2

dθ = 2a dθ.

Thus d S = √
x2 + y2 ds = 2ar dθ = 4a2 sin θ dθ on

the cylinder. The area of that part of the cylinder lying
between the nappes of the cone is

4
∫ π/2

0
4a2 sin θ dθ = 16a2 sq. units..

x

y

z

dS

x2+y2=2yds

z2=x2+y2

Fig. 15.5.9

10. One-eighth of the required area lies in the first octant,
above the triangle T with vertices (0, 0, 0), (a, 0, 0) and
(a, a, 0). (See the figure.)
The surface x2 + z2 = a2 has normal n = x i + zk, so an
area element on it can be written

d S = |n|
|n • k| dx dy = a

z
dx dy = a dx dy√

a2 − x2
.

The area of the part of that cylinder lying inside the
cylinder y2 + z2 = a2 is

S = 8
∫∫

T

a dx dy√
a2 − x2

= 8a
∫ a

0

dx√
a2 − x2

∫ x

0
dy

= 8a
∫ a

0

x dx√
a2 − x2

= −8a
√

a2 − x2

∣∣∣∣
a

0
= 8a2 sq. units.

x

y

z

y2+z2=a2x2+z2=a2

T

(a,a,0)

Fig. 15.5.10
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11. Let the sphere be x2 + y2 + z2 = R2, and the cylinder be
x2 + y2 = R2. Let S1 and S2 be the parts of the sphere
and the cylinder, respectively, lying between the planes
z = a and z = b, where −R ≤ a ≤ b ≤ R.
Evidently, the area of S2 is S2 = 2π R(b−a) square units.
An area element on the sphere is given in terms of spher-
ical coordinates by

d S = R2 sinφ dφ dθ.

On S1 we have z = R cosφ, so S1 lies between
φ = cos−1(b/R) and φ = cos−1(a/R). Thus the area of
S1 is

S1 = R2
∫ 2π

0
dθ
∫ cos−1(a/R)

cos−1(b/R)
sinφ dφ

= 2π R2(− cosφ)

∣∣∣∣
cos−1(a/R)

cos−1(b/R)
= 2π R(b − a) sq. units.

Observe that S1 and S2 have the same area.

x

y

z

z=b

z=a

z=R

z=−R

Fig. 15.5.11

12. We want to find A1, the area of that part of the cylinder
x2 + z2 = a2 inside the cylinder y2 + z2 = b2, and A2,
the area of that part of y2 + z2 = b2 inside x2 + z2 = a2.
We have

A1 = 8 × (area of S1),

A2 = 8 × (area of S2),

where S1 and S2 are the parts of these surfaces lying in
the first octant, as shown in the figure.
A normal to S1 is n1 = x i + zk, and the area element on
S1 is

d S1 = |n1|
|n1 • i| dy dz = a dy dz√

a2 − z2
.

x
y

z

y2+z2=b2

S1

S2

R2
R1

a

bx2+z2=a2

Fig. 15.5.12

A normal to S2 is n2 = xj + zk, and the area element on
S2 is

d S2 = |n2|
|n2 • j| dx dz = b dx dz√

b2 − z2
.

Let R1 be the region of the first quadrant of the yz-plane
bounded by y2 + z2 = b2, y = 0, z = 0, and z = a.
Let R2 be the quarter-disk in the first quadrant of the xz-
plane bounded by x2 + z2 = a2, x = 0, and z = 0.
Then

A1 = 8
∫∫

R1

d S1 = 8a
∫ a

0

dz√
a2 − z2

∫ √
b2−z2

0
dy

= 8a
∫ a

0

√
b2 − z2

√
a2 − z2

dz Let z = a sin t

dz = a cos t dt

= 8a
∫ π/2

0

√
b2 − a2 sin2 t dt

= 8ab
∫ π/2

0

√
1 − a2

b2
sin2 t dt

= 8abE
(a

b

)
sq. units.

A2 = 8
∫∫

R2

d S2 = 8b
∫ a

0

dz√
b2 − z2

∫ √
a2−z2

0
dx

= 8b
∫ a

0

√
a2 − z2

√
b2 − z2

dz Let z = b sin t

dz = b cos t dt

= 8b
∫ sin−1(a/b)

0

√
a2 − b2 sin2 t dt

= 8ab
∫ sin−1(a/b)

0

√
1 − b2

a2
sin2 t dt

= 8abE

(
b

a
, sin−1 a

b

)
sq. units.
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13. The intersection of the plane z = 1 + y and the cone
z = √

2(x2 + y2) has projection onto the xy-plane the
elliptic disk E bounded by

(1 + y)2 = 2(x2 + y2)

1 + 2y + y2 = 2x2 + 2y2

2x2 + y2 − 2y + 1 = 2

x2 + (y − 1)2

2
= 1.

Note that E has area A = π(1)(
√

2) and centroid (0, 1).
If S is the part of the plane lying inside the cone, then
the area element on S is

d S =
√

1 +
(
∂z

∂y

)2

dx dy = √
2 dx dy.

Thus
∫∫

S
y d S = √

2
∫∫

E
y dx dy = √

2Aȳ = 2π.

14. Continuing the above solution, the cone z = √
2(x2 + y2)

has area element

d S =
√

1 +
(
∂z

∂x

)2

+
(
∂z

∂y

)2

dx dy

=
√

1 + 4(x2 + y2)

z2 dx dy = √
3 dx dy.

If S is the part of the cone lying below the plane
z = 1 + y, then

∫∫

S
y d S = √

3
∫∫

E
y dx dy = √

3Aȳ = √
6π.

15. If S is the part of z = x2 in the first octant and inside
(that is, below) z = 1 − 3x2 − y2, then S has projection
E onto the xy-plane bounded by x2 = 1 − 3x2 − y2, or
4x2 + y2 = 1, an ellipse. Since z = x2 has area element
d S = √

1 + 4x2 dx dy, we have

∫∫

S
xz d S =

∫∫

E
x3
√

1 + 4x2 dx dy

=
∫ 1/2

0
x3
√

1 + 4x2 dx
∫ √

1−4x2

0
dy

=
∫ 1/2

0
x3
√

1 − 16x4 dx Let u = 1 − 16x4

du = −64x3 dx

= 1

64

∫ 1

0
u1/2 du = 1

96
.

16. The surface z = √
2xy has area element

d S =
√

1 + y

2x
+ x

2y
dx dy

=
√

2xy + y2 + x2

2xy
dx dy = |x + y|√

2xy
dx dy.

If its density is kz, the mass of the specified part of the
surface is

m =
∫ 5

0
dx
∫ 2

0
k
√

2xy
x + y√

2xy
dy

= k
∫ 5

0
dx
∫ 2

0
(x + y) dy

= k
∫ 5

0
(2x + 2) dx = 35k units.

17. The surface S is given by x = eu cos v, y = eu sin v,
z = u, for 0 ≤ u ≤ 1, 0 ≤ v ≤ π . Since

∂(y, z)

∂(u, v)
=
∣∣∣∣
eu sin v eu cos v

1 0

∣∣∣∣ = −eu cos v

∂(z, x)

∂(u, v)
=
∣∣∣∣

1 0
eu cos v −eu sin v

∣∣∣∣ = −eu sin v

∂(x, y)

∂(u, v)
=
∣∣∣∣
eu cos v −eu sin v
eu sin v eu cos v

∣∣∣∣ = e2u

the area element on S is

d S =
√

e2u cos2 v + e2u sin2 v + e4u du dv = eu
√

1 + e2u du dv.

If the charge density on S is
√

1 + e2u , then the total
charge is

∫∫

S

√
1 + e2u d S =

∫ 1

0
eu(1 + e2u) du

∫ π

0
dv

= π

(
eu + e3u

3

)∣∣∣∣
1

0
= π

3
(3e + e3 − 4).

18. The upper half of the spheroid
x2

a2
+ y2

a2
+ z2

c2
= 1 has a

circular disk of radius a as projection onto the xy-plane.
Since

2x

a2 + 2z

c2

∂z

∂x
= 0 ⇒ ∂z

∂x
= − c2x

a2z
,
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and, similarly,
∂z

∂y
= − c2y

a2z
, the area element on the

spheroid is

d S =
√

1 + c4

a4

x2 + y2

z2 dx dy

=
√

1 + c2

a2

x2 + y2

a2 − x2 − y2 dx dy

=
√

a4 + (c2 − a2)r2

a2(a2 − r2)
r dr dθ

in polar coordinates. Thus the area of the spheroid is

S = 2

a

∫ 2π

0
dθ
∫ a

0

√
a4 + (c2 − a2)r2

a2 − r2 r dr

Let u2 = a2 − r2

u du = −r dr

= 4π

a

∫ a

0

√
a4 + (c2 − a2)(a2 − u2) du

= 4π

a

∫ a

0

√
a2c2 − (c2 − a2)u2 du

= 4πc
∫ a

0

√
1 − c2 − a2

a2c2
u2 du.

For the case of a prolate spheroid 0 < a < c, let

k2 = c2 − a2

a2c2 . Then

S = 4πc
∫ a

0

√
1 − k2u2 du Let ku = sin v

k du = cos v dv

= 4πc

k

∫ sin−1
(ka)

0
cos2 v dv

= 2πc

k
(v + sin v cos v)

∣∣∣∣
sin−1

(ka)

0

= 2πac2
√

c2 − a2
sin−1

√
c2 − a2

c
+ 2πa2 sq. units.

19. We continue from the formula for the surface area of a
spheroid developed part way through the solution above.
For the case of an oblate spheroid 0 < c < a, let

k2 = a2 − c2

a2c2
. Then

S = 4πc
∫ a

0

√
1 + k2u2 du Let ku = tan v

k du = sec2 v dv

= 4πc

k

∫ tan−1
(ka)

0
sec3 v dv

= 2πc

k

(
sec v tan v + ln(sec v + tan v)

)∣∣∣∣
tan−1

(ka)

0

= 2πac2
√

a2 − c2

[
a
√

a2 − c2

c2 + ln

(
a

c
+

√
a2 − c2

c

)]

= 2πa2 + 2πac2
√

a2 − c2
ln

(
a + √

a2 − c2

c

)
sq. units.

20. x = au cos v, y = au sin v, z = bv,
(0 ≤ u ≤ 1, 0 ≤ v ≤ 2π). This surface is a spiral
(helical) ramp of radius a and height 2πb, wound around
the z-axis. (It’s like a circular staircase with a ramp in-
stead of stairs.) We have

∂(x, y)

∂(u, v)
=
∣∣∣∣
a cos v −au sin v
a sin v au cos v

∣∣∣∣ = a2u

∂(y, z)

∂(u, v)
=
∣∣∣∣
a sin v au cos v

0 b

∣∣∣∣ = ab sin v

∂(z, x)

∂(u, v)
=
∣∣∣∣

0 b
a cos v −au sin v

∣∣∣∣ = −ab cos v

d S =
√

a4u2 + a2b2 sin2 v + a2b2 cos2 v du dv

= a
√

a2u2 + b2 du dv.

The area of the ramp is

A = a
∫ 1

0

√
a2u2 + b2 du

∫ 2π

0
dv

= 2πa
∫ 1

0

√
a2u2 + b2 du Let au = b tan θ

a du = b sec2 θ dθ

= 2πb2
∫ u=1

u=0
sec3 θ dθ

= πb2
(

sec θ tan θ + ln | sec θ + tan θ |
)∣∣∣∣

u=1

u=0

= πb2

(
au

√
a2u2 + b2

b2 + ln

∣∣∣∣∣
au + √

a2u2 + b2

b

∣∣∣∣∣

)∣∣∣∣
1

0

= πa
√

a2 + b2 + πb2 ln

(
a + √

a2 + b2

b

)
sq. units.
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x y

z

a

2πb

Fig. 15.5.20

21. The distance from the origin to the plane P with equation
Ax + By + Cz = D, (D �= 0) is

δ = |D|√
A2 + B2 + C2

.

If P1 is the plane z = δ, then, since the integrand de-
pends only on distance from the origin, we have

∫∫

P

d S

(x2 + y2 + z2)3/2

=
∫∫

P1

d S

(x2 + y2 + z2)3/2

=
∫ 2π

0
dθ
∫ ∞

0

r dr

(r2 + δ2)3/2
Let u = r2 + δ2

du = 2r dr

= 2π × 1

2

∫ ∞

δ2

du

u3/2

= π

(
− 2√

u

)∣∣∣∣
∞

δ2

= 2π

δ
= 2π

√
A2 + B2 + C2

|D| .

22. Use spherical coordinates. The area of the eighth-sphere
S is

A = 1

8
(4πa2) = πa2

2
sq. units.

The moment about z = 0 is

Mz=0 =
∫∫

S
z d S

=
∫ π/2

0
dθ
∫ π/2

0
a cosφ a2 sinφ dφ

= πa3

2

∫ π/2

0

sin 2φ

2
dφ = πa3

4
.

Thus z̄ = Mz=0

A
= a

2
. By symmetry, x̄ = ȳ = z̄,

so the centroid of that part of the surface of the sphere

x2 + y2 + z2 = a2 lying in the first octant is
(a

2
,

a

2
,

a

2

)
.

23. The cone z = h

(
1 −

√
x2 + y2

a

)
has normal

n = − ∂z

∂x
i − ∂z

∂y
j + k

= −h

a

(
x i + yj√
x2 + y2

)
+ k,

so its surface area element is

d S =
√

h2

a2 + 1 dx dy =
√

a2 + h2

a
dx dy.

The mass of the conical shell is

m = σ

∫∫

x2+y2≤a2
d S = σ

√
a2 + h2

a
(πa2) = πσa

√
a2 + h2.

The moment about z = 0 is

Mz=0 = σ

∫∫

x2+y2≤a2
h

(
1 −

√
x2 + y2

a

) √
a2 + h2

a
dx dy

= 2πσh
√

a2 + h2

a

∫ a

0

(
1 − r

a

)
r dr

= πσha
√

a2 + h2

3
.

Thus z̄ = h

3
. By symmetry, x̄ = ȳ = 0. The centre

of mass is on the axis of the cone, one-third of the way
from the base towards the vertex.

x y

z

h

a a

z=h− h
a

√
x2+y2

Fig. 15.5.23

24. By symmetry, the force of attraction of the hemisphere
shown in the figure on the mass m at the origin is verti-
cal. The vertical component of the force exerted by area
element d S = a2 sinφ dφ dθ at the position with spheri-
cal coordinates (a, φ, θ) is

d F = kmσ d S

a2 cosφ = kmσ sinφ cosφ dφ dθ.
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Thus, the total force on m is

F = kmσ
∫ 2π

0
dθ
∫ π/2

0
sinφ cosφ dφ = πkmσ units.

x y

z

φ

dS

a a

a

m

Fig. 15.5.24

25. The surface element d S = a dθ dz at the point with
cylindrical coordinates (a, θ, z) attracts mass m at point
(0, 0, b) with a force whose vertical component (see the
figure) is

d F = kmσ d S

D2 cosψ = kmσa(b − z) dθ dz

D3

= kmσa(b − z) dθ dz(
a2 + (b − z)2

)3/2 .

The total force exerted by the cylindrical surface on the
mass m is

F = −
∫ 2π

0
dθ
∫ h

0

kmσa(b − z) dz(
a2 + (b − z)2

)3/2 Let b − z = a tan t

−dz = a sec2 t dt

= 2πkmσa
∫ z=h

z=0

a tan t a sec2 t dt

a3 sec3 t

= 2πkmσ
∫ z=h

z=0
sin t dt

= 2πkmσ(− cos t)

∣∣∣∣
z=h

z=0

= 2πkmσ
a√

a2 + (b − z)2

∣∣∣∣
h

0

= 2πkmσa

(
1√

a2 + (b − h)2
− 1√

a2 + b2

)
.

x y

z

ψ

a a

dS

a

D

(0,0,b)
m

h

Fig. 15.5.25

26. S is the cylindrical surface x2 + y2 = a2, 0 ≤ z ≤ h,
with areal density σ . Its mass is m = 2πahσ . Since all
surface elements are at distance a from the z-axis, the
radius of gyration of the cylindrical surface about the z-
axis is D̄ = a. Therefore the moment of inertia about
that axis is

I = m D̄2 = ma2 = 2πσa3h.

27. S is the spherical shell, x2 + y2 + z2 = a2, with areal den-
sity σ . Its mass is 4πσa2. Its moment of inertia about
the z-axis is

I = σ

∫∫

S
(x2 + y2) d S

= σ

∫ 2π

0
dθ
∫ π

0
a2 sin2 φ a2 sinφ dφ

= 2πσa4
∫ π

0
sinφ(1 − cos2 φ) dφ Let u = cosφ

du = − sinφ dφ

= 2πσa4
∫ 1

−1
(1 − u2) du = 8πσa4

3
.

The radius of gyration is D̄ = √
I/m =

√
2

3
a.

28. The surface area element for a conical surface S,

z = h

(
1 −

√
x2 + y2

a

)
,

having base radius a and height h, was determined in the
solution to Exercise 23 to be

d S =
√

a2 + h2

a
dx dy.
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The mass of S, which has areal density σ , was also de-
termined in that exercise: m = πσa

√
a2 + h2. The

moment of inertia of S about the z-axis is

I = σ

∫∫

S
(x2 + y2) d S

= σ
√

a2 + h2

a

∫ 2π

0
dθ
∫ a

0
r2 r dr

= 2πσ
√

a2 + h2

a

a4

4
= πσa3

√
a2 + h2

2
.

The radius of gyration is D̄ = √
I/m = a√

2
.

29. By Exercise 27, the moment of inertia of a spherical

shell of radius a about its diameter is I = 2

3
ma2. Fol-

lowing the argument given in Example 4(b) of Section
5.7, the kinetic energy of the sphere, rolling with speed
v down a plane inclined at angle α above the horizontal
(and therefore rotating with angular speed � = v/a) is

K .E . = 1

2
mv2 + 1

2
I�2

= 1

2
mv2 + 1

2

2

3
ma2 v

2

a2

= 5

6
mv2.

The potential energy is P.E . = mgh, so, by conservation
of total energy,

5

6
mv2 + mgh = constant.

Differentiating with respect to time t , we get

0 = 5

6
m 2v

dv

dt
+ mg

dh

dt
= 5

3
mv

dv

dt
+ mgv sinα.

Thus the sphere rolls with acceleration

dv

dt
= 3

5
g sinα.

Section 15.6 Oriented Surfaces and
Flux Integrals (page 848)

1. F = x i + zj.
The surface S of the tetrahedron has four faces:
On S1, x = 0, N̂ = −i, F • N̂ = 0.
On S2, y = 0, N̂ = −j, F • N̂ = −z, d S = dx dz.
On S3, z = 0, N̂ = −k, F • N̂ = 0.

On S4, x +2y+3z = 6, N̂ = i + 2j + 3k√
14

, F•N̂ = x + 2z√
14

,

d S = dx dy

|N̂ • j| =
√

14

2
dx dz.

We have

∫∫

S1

F • N̂ d S =
∫∫

S3

F • N̂ d S = 0

∫∫

S2

F • N̂ d S = −
∫ 2

0
z dz

∫ 6−3z

0
dx

= −
∫ 2

0
(6z − 3z2) dz = −4

∫∫

S4

F • N̂ d S =
√

14

2

1√
14

∫ 2

0
dz
∫ 6−3z

0
(x + 2z) dx

= 1

2

∫ 2

0

(
(6 − 3z)2

2
+ 2z(6 − 3z)

)
dz

= 1

4

∫ 2

0
(6 − 3z)(6 + z) dz

= 1

4
(36z − 6z2 − z3)

∣∣∣∣
2

0
= 10.

The flux of F out of the tetrahedron is
∫∫

S
F • N̂ d S = 0 − 4 + 0 + 10 = 6.

x

y

z

S1

S3

S4

2

3

6

S2

Fig. 15.6.1

2. On the sphere S with equation x2 + y2 + z2 = a2 we have

N̂ = x i + yj + zk
a

.
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If F = x i + yj + zk, then F • N̂ = a on S. Thus the flux
of F out of S is

∫∫

S
F • N̂ d S = a × 4πa2 = 4πa3.

3. F = x i + yj + zk.
The box has six faces. F • N̂ = 0 on the three faces
x = 0, y = 0, and z = 0. On the face x = a, we have
N̂ = i, so F • N̂ = a. Thus the flux of F out of that face
is

a × (area of the face) = abc.

By symmetry, the flux of F out of the faces y = b and
z = c are also each abc. Thus the total flux of F out of
the box is 3abc.

x y

z

c

ba

Fig. 15.6.3

4. F = yi + zk. Let S1 be the conical surface and S2 be the
base disk. The flux of F outward through the surface of
the cone is ∫∫

S
F • N̂ =

∫∫

S1

+
∫∫

S2

.

On S1: N̂ = 1√
2

(
x i + yj√
x2 + y2

+ k

)
, d S = √

2 dx dy.

Thus

∫∫

S1

F • N̂ d S

=
∫∫

x2+y2≤1

(
xy√

x2 + y2
+ 1 −

√
x2 + y2

)
dx dy

= 0 + π × 12 −
∫ 2π

0
dθ
∫ 1

0
r2 dr

= π − 2π

3
= π

3
.

On S2: N̂ = −k and z = 0, so F • N̂ = 0. Thus, the total
flux of F out of the cone is π/3.

x y

z

N̂

N̂

z=1−
√

x2+y2

1

S1

S2

1

Fig. 15.6.4

5. The part S of z = a − x2 − y2 lying above z = b < a
lies inside the vertical cylinder x2 + y2 = a − b. For
z = a − x2 − y2, the upward vector surface element is

N̂ d S = 2x i + 2yj + k
1

dx dy.

Thus the flux of F = x i + yj + zk upward through S is
∫∫

S
F • N̂ d S

=
∫∫

x2+y2≤a−b
[2(x2 + y2)+ a − x2 − y2] dx dy

=
∫ 2π

0
dθ
∫ √

a−b

0
(r2 + a)r dr

= 2π

(
(a − b)2

4
+ a(a − b)

2

)
= π

2
(a − b)(3a − b).

6. For z = x2 − y2 the upward surface element is

N̂ d S = −2x i + 2yj + k
1

dx dy.

The flux of F = x i + xj + k upward through S, the part
of z = x2 − y2 inside x2 + y2 = a2 is
∫∫

S
F • N̂ d S =

∫∫

x2+y2≤a2
(−2x2 + 2xy + 1) dx dy

= −2
∫ 2π

0
cos2 θ dθ

∫ a

0
r3 dr + 0 + πa2

= πa2 − 2(π)
a4

4
= π

2
a2(2 − a2).

7. The part S of z = 4 − x2 − y2 lying above z = 2x + 1 has
projection onto the xy-plane the disk D bounded by

2x + 1 = 4 − x2 − y2, or (x + 1)2 + y2 = 4.

Note that D has area 4π and centroid (−1, 0). For
z = 4 − x2 − y2, the downward vector surface element is

N̂ d S = −2x i − 2yj − k
1

dx dy.
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Thus the flux of F = y3i + z2j + xk downward through S
is
∫∫

S
F • N̂ d S = −

∫∫

D

(
2xy3 + 2y(4 − x2 − y2)2 + x

)
dx dy

(use the symmetry of D about the x-axis)

= −
∫∫

D
x d A = −(4π)(−1) = 4π.

8. The upward vector surface element on the top half of
x2 + y2 + z2 = a2 is

N̂ d S = 2x i + 2yj + 2zk
2z

dx dy =
(

x i + yj
z

+ k
)

dx dy.

The flux of F = z2k upward through the first octant part
S of the sphere is

∫∫

S
F • N̂ d S =

∫ π/2

0
dθ
∫ a

0
(a2 − r2)r dr = πa4

8
.

9. The upward vector surface element on z = 2 − x2 − 2y2

is

N̂ d S = 2x i + 4yj + k
1

dx dy.

If E is the elliptic disk bounded by
x2

2
+ y2 = 1, then the

flux of F = x i + yj through the required surface S is
∫∫

S
F • N̂ d S

=
∫∫

E
(2x2 + 4y2) dx dy Let x = √

2u, y = v

dx dy = √
2 du dv

= 4
√

2
∫∫

u2+v2≤1
(u2 + v2) du dv (now use polars)

= 4
√

2
∫ 2π

0
dθ
∫ 1

0
r3 dr = 2

√
2π.

10. S: r = u2vi + uv2j + v3k, (0 ≤ u ≤ 1, 0 ≤ v ≤ 1), has
upward surface element

N̂ d S = ∂r
∂u

× ∂r
∂v

du dv

= (2uvi + v2j)× (u2i + 2uvj + 3v2k) du dv

= (3v4i − 6uv3j + 3u2v2k) du dv.

The flux of F = 2x i + yj + zk upward through S is
∫∫

S
F • N̂ d S

=
∫ 1

0
du
∫ 1

0
(6u2v5 − 6u2v5 + 3u2v5) dv

= 1

2

∫ 1

0
u2 du = 1

6
.

11. S: r = u cos vi + u sin vj + uk, (0 ≤ u ≤ 2, 0 ≤ v ≤ π),
has upward surface element

N̂ d S = ∂r
∂u

× ∂r
∂v

du dv

= (−u cos vi − u sin vj + uk) du dv.

The flux of F = x i + yj + z2k upward through S is

∫∫

S
F • N̂ d S

=
∫ 2

0
du
∫ π

0
(−u2 cos2 v − u2 sin2 v + u3) dv

=
∫ 2

0
(u3 − u2) du

∫ π

0
dv = 4π

3
.

12. S: r = eu cos vi + eu sin vj + uk, (0 ≤ u ≤ 1, 0 ≤ v ≤ π),
has upward surface element

N̂ d S = ∂r
∂u

× ∂r
∂v

du dv

= (−eu cos vi − eu sin vj + e2uk) du dv.

The flux of F = yzi − xzj + (x2 + y2)k upward through S
is
∫∫

S
F • N̂ d S

=
∫ 1

0
du
∫ π

0
(−ue2u sin v cos v + ue2u sin v cos v + e4u) dv

=
∫ 1

0
e4u du

∫ π

0
dv = π

(e4 − 1)

4
.

13. F = mr
|r|3 = m(x i + yj + zk)

(x2 + y2 + z2)3/2
.

By symmetry, the flux of F out of the cube
−a ≤ x, y, z ≤ a is 6 times the flux out of the top
face, z = a, where N̂ = k and d S = dx dy. The total flux
is

y

x

a

a

R
−a

−a

Fig. 15.6.13
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6ma
∫

−a≤x≤a
−a≤y≤a

dx dy

(x2 + y2 + a2)3/2

= 48ma
∫∫

R

r dr dθ

(r2 + a2)3/2

(R as shown in the figure)

= 48ma
∫ π/4

0
dθ
∫ a sec θ

0

r dr

(r2 + a2)3/2

Let u = r2 + a2

du = 2r dr

= 24ma
∫ π/4

0
dθ
∫ a2(1+sec2 θ)

a2

du

u3/2

= 48ma
∫ π/4

0

(
1

a
− 1

a
√

1 + sec2 θ

)
dθ

= 48m

(
π

4
−
∫ π/4

0

cos θ dθ√
cos2 θ + 1

)

= 48m

(
π

4
−
∫ π/4

0

cos θ dθ√
2 − sin2 θ

)

Let
√

2 sin v = sin θ√
2 cos v dv = cos θ dθ

= 48m

(
π

4
−
∫ π/6

0

√
2 cos v dv√

2 cos v

)

= 48m
(π

4
− π

6

)
= 4πm.

14. The flux of F = mr
|r|3 out of the cube 1 ≤ x, y, z ≤ 2

is equal to three times the total flux out of the pair of
opposite faces z = 1 and z = 2, which have outward
normals −k and k respectively. This latter flux is
2m I2 − m I1, where

Ik =
∫ 2

1
dx
∫ 2

1

dy

(x2 + y2 + k2)3/2

Let y = √
x2 + k2 tan u

dy = √
x2 + k2 sec2 u du

=
∫ 2

1

dx

x2 + k2

∫ y=2

y=1
cos u du

=
∫ 2

1

dx

x2 + k2

(
sin u

)∣∣∣∣
y=2

y=1

=
∫ 2

1

dx

x2 + k2

(
y√

x2 + y2 + k2

∣∣∣∣
2

1

)
= Jk2 − Jk1,

where

Jkn = n
∫ 2

1

dx

(x2 + k2)
√

x2 + n2 + k2

Let x = √
n2 + k2 tan v

dx = √
n2 + k2 sec2 v dv

= n
∫ x=2

x=1

sec2 v dv[
(n2 + k2) tan2 v + k2

]
sec v

= n
∫ x=2

x=1

cos v dv

(n2 + k2) sin2 v + k2 cos2 v

= n
∫ x=2

x=1

cos v dv

k2 + n2 sin2 v
Let w = n sin v

dw = n cos v dv

=
∫ x=2

x=1

dw

k2 + w2 = 1

k
tan−1 w

k

∣∣∣∣
x=2

x=1

= 1

k
tan−1 n sin v

k

∣∣∣∣
x=2

x=1

= 1

k
tan−1 nx

k
√

x2 + n2 + k2

∣∣∣∣
2

1

= 1

k

(
tan−1 2n

k
√

4 + n2 + k2
− tan−1 n

k
√

1 + n2 + k2

)
.

Thus

Ik = 1

k

[
tan−1 4

k
√

8 + k2
− 2 tan−1 2

k
√

5 + k2

+ tan−1 1

k
√

2 + k2

]
.

The contribution to the total flux from the pair of sur-
faces z = 1 and z = 2 of the cube is

2m I2 − m I1

= m

[
tan−1 1√

3
− 2 tan−1 1

3
+ tan−1 1

2
√

6

− tan−1 4

3
+ 2 tan−1 2√

6
− tan−1 1√

3

]
.

Using the identities

2 tan−1 a = tan−1 2a

1 − a2 , and

tan−1 a = π

2
− tan−1 1

a
,

we calculate

− 2 tan−1 1

3
= − tan−1 3

4
= −π

2
+ tan−1 4

3

2 tan−1 2√
6

= tan−1 12√
6

= π

2
− tan−1 1

2
√

6
.

Thus the net flux out of the pair of opposite faces is 0.
By symmetry this holds for each pair, and the total flux
out of the cube is 0. (You were warned this would be a
difficult calculation!)
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15. The flux of the plane vector field F across the piecewise
smooth curve C, in the direction of the unit normal N̂ to
the curve, is ∫

C
F • n ds.

The flux of F = x i + yj outward across

a) the circle x2 + y2 = a2 is

∮

C
F •

(
x i + yj

a

)
ds = a2

a
× 2πa = 2πa2.

b) the boundary of the square −1 ≤ x, y ≤ 1 is

4
∫ 1

−1
(i + yj) • i dy = 4

∫ 1

−1
dy = 8.

16. F = − x i + yj
x2 + y2 .

a) The flux of F inward across the circle of Exercise
7(a) is

−
∮

C

(
− x i + yj

a2

)
• x i + yj

a
ds

=
∮

C

a2

a3
ds = 1

a
× 2πa = 2π.

b) The flux of F inward across the boundary of the
square of Exercise 7(b) is four times the flux inward
across the edge x = 1, −1 ≤ y ≤ 1. Thus it is

−4
∫ 1

−1

(
− i + yj

1 + y2

)
• i dy = 4

∫ 1

−1

dy

1 + y2

= 4 tan−1 y

∣∣∣∣
1

−1
= 2π.

17. The flux of N̂ across S is
∫∫

S
N̂ • N̂ d S =

∫∫

S
d S = area of S.

18. Let F = F1i + F2j + F3k be a constant vector field.

a) If R is a rectangular box, we can choose the origin
and coordinate axes in such a way that the box is
0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c. On the faces
x = 0 and x = a we have N̂ = −i and N̂ = i
respectively. Since F1 is constant, the total flux out
of the box through these two faces is

∫∫
0≤y≤b
0≤z≤c

(F1 − F1) dy dz = 0.

The flux out of the other two pairs of opposite faces
is also 0. Thus the total flux of F out of the box is
0.

b) If S is a sphere of radius a we can choose the origin
so that S has equation x2 + y2 + z2 = a2, and so its
outward normal is

N̂ = x i + yj + zk
a

.

Thus the flux out of S is

1

a

∫∫

S
(F1x + F2 y + F3z) ds = 0,

since the sphere S is symmetric about the origin.

Review Exercises 15 (page 848)

1. C : x = t, y = 2et , z = e2t , (−1 ≤ t ≤ 1)

v =
√

1 + 4e2t + 4e4t = 1 + 2e2t

∫

C

ds

y
=
∫ 1

−1

1 + 2e2t

2et
dt

=
(

− e−t

2
+ et

)∣∣∣∣
1

−1
= 3(e2 − 1)

2e
.

2. C can be parametrized x = t , y = 2t , z = t + 4t2,
(0 ≤ t ≤ 2). Thus

∫

C
2y dx + x dy + 2 dz

=
∫ 2

0
[4t (1) + t (2)+ 2(1 + 8t)] dt

=
∫ 2

0
(22t + 2) dt = 48.

3. The cone z = √
x2 + y2 has area element

d S =
√

1 + x2 + y2

z2 dx dy = √
2 dx dy.

If S is the part of the cone in the region 0 ≤ x ≤ 1 − y2

(which itself lies between y = −1 and y = 1), then

∫∫

S
x d S = √

2
∫ 1

−1
dy
∫ 1−y2

0
x dx

= 2
√

2
∫ 1

0

1 − 2y2 + y4

2
dy = 8

√
2

15
.
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4. The plane x + y + z = 1 has area element d S = √
3 dx dy.

If S is the part of the plane in the first octant, then the
projection of S on the xy-plane is the triangle 0 ≤ x ≤ 1,
0 ≤ y ≤ 1 − x . Thus

∫∫

S
xyz d S = √

3
∫ 1

0
x dx

∫ 1−x

0
y(1 − x − y) dy

= √
3
∫ 1

0

x(1 − x)3

6
dx Let u = 1 − x

du = −dx

=
√

3

6

∫ 1

0
u3(1 − u) du =

√
3

6

(
1

4
− 1

5

)
=

√
3

120
.

5. For z = xy, the upward vector surface element is

N̂ d S = −yi − xj + k
1

dx dy.

The flux of F = x2 yi−10xy2j upward through S, the part
of z = xy satisfying 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 is

∫∫

S
F • N̂ d S =

∫ 1

0
dx
∫ 1

0
(−x2 y2 + 10x2 y2) dy

=
∫ 1

0
3x2 dx

∫ 1

0
3y2 dy = 1.

6. The plane x + 2y + 3z = 6 has downward vector surface
element

N̂ d S = −i − 2j − 3k
3

dx dy.

If S is the part of the plane in the first octant, then the
projection of S on the xy-plane is the triangle 0 ≤ y ≤ 3,
0 ≤ x ≤ 6 − 2y. Thus

∫∫

S
(x i + yj + zk) • N̂ d S

= −1

3

∫ 3

0
dy
∫ 6−2y

0
(x + 2y + 6 − x − 2y) dx

= −2
∫ 3

0
(6 − 2y) = −36 + 18 = −18.

7. r = a sin t i + a cos tj + btk, (0 ≤ t ≤ 6π)
r(0) = aj, r(6π) = aj + 6πbk.

a) The force F = −mgk = −∇(mgz) is conserva-
tive, so the work done by F as the bead moves from
r(6π) to r(0) is

W =
∫ t=0

t=6π
F • dr = −mgz

∣∣∣∣
z=0

z=6πb
= 6πmgb.

b) v = a cos t i − a sin tj + bk, |v| = √
a2 + b2. A force

of constant magnitude R opposing the motion of the
bead is in the direction of −v, so it is

F = −R
v
|v| = − R√

a2 + b2
v.

Since dr = v dt , the work done against the resistive
force is

W =
∫ 6π

0

R√
a2 + b2

|v|2 dt = 6π R
√

a2 + b2.

8.
∫
C F • dr can be determined using only the endpoints of

C, provided

F = (axy + 3yz)i + (x2 + 3xz + by2z)j + (bxy + cy3)k

is conservative, that is, if

ax + 3z = ∂F1

∂y
= ∂F2

∂x
= 2x + 3z

3y = ∂F1

∂z
= ∂F3

∂x
= by

3x + by2 = ∂F2

∂z
= ∂F3

∂y
= bx + 3cy2.

Thus we need a = 2, b = 3, and c = 1.
With these values, F = ∇(x2 y + 3xyz + y3z). Thus

∫

C
F•dr = (x2 y + 3xyz + y3z)

∣∣∣∣
(2,1,1,)

(0,1,−1)
= 11− (−1) = 12.

9. F = (x2/y)i + yj + k.

The field lines satisfy
y dx

x2 = dy

y
= dz. Thus

dx/x2 = dy/y2 and the field lines are given by

1

x
= 1

y
+ C1, ln y = z + C2.

The field line passes through (1, 1, 0) provided
C1 = 0 and C2 = 0. In this case the field
line also passes through (e, e, 1), and the seg-
ment from (1, 1, 0) to (e, e, 1) can be parametrized
r(t) = et i + et j + tk, (0 ≤ t ≤ 1). Then

∫

C
F • dr =

∫ 1

0
(e2t + e2t + 1) dt

= (e2t + t)

∣∣∣∣
1

0
= e2.

10. a) F = (1 + x)ex+y i + (xex+y + 2y)j − 2zk

= ∇(xex+y + y2 − z2).
Thus F is conservative.
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b) G = (1 + x)ex+y i + (xex+y + 2z)j − 2yk
= F + 2(z − y)(j + k).

C : r = (1 − t)et i + tj + 2tk, (0 ≤ t ≤ 1).
r(0) = (1, 0, 0), r(1) = (0, 1, 2). Thus

∫

C
G • dr =

∫

C
F • dr +

∫

C
2(z − y)(j + k) • dr

= (xex+y + y2 − z2)

∣∣∣∣
(0,1,2)

(1,0,0)

+ 2
∫ 1

0
(2t − t)(1 + 2) dt

= −3 − e + 3t2
∣∣∣∣
1

0
= −e.

11. Since the field lines of F are xy = C , and so satisfy

y dx + x dy = 0, or
dx

x
= −dy

y
,

thus F = λ(x, y)(x i − yj). Since |F(x, y)| = 1 if
(x, y) �= (0, 0), λ(x, y) = ±1/

√
x2 + y2, and

F(x, y) = ± x i − yj√
x2 + y2

.

Since F(1, 1) = (i − j)/
√

2, we need the plus sign. Thus

F(x, y) = x i − yj√
x2 + y2

,

which is continuous everywhere except at (0, 0).

12. The first octant part of the cylinder y2 + z2 = 16 has
outward vector surface element

N̂ d S = 2yj + 2zk
2z

dx dy =
(

y√
16 − y2

j + k

)
dx dy.

The flux of 3z2x i − xj − yk outward through the specified
surface S is

F • N̂ d S =
∫ 5

0
dx
∫ 4

0

(
0 − xy√

16 − y2
− y

)
dy

=
∫ 5

0

(
x
√

16 − y2 − y2

2

)∣∣∣∣
y=4

y=0
dx

= −
∫ 5

0
(4x + 8) dx = −90.

Challenging Problems 15 (page 849)

1. Given: x = (2 + cos v) cos u, y = (2 + cos v) sin u,
z = sin v for 0 ≤ u ≤ 2π , 0 ≤ v ≤ π .
The cylindrical coordinate r satisfies

r2 = x2 + y2 = (2 + cos v)2

r = 2 + cos v

(r − 2)2 + z2 = 1.

This equation represents the surface of a torus, obtained
by rotating about the z-axis the circle of radius 1 in the
xz-plane centred at (2, 0, 0). Since 0 ≤ v ≤ π implies
that z ≥ 0, the given surface is only the top half of the
toroidal surface.
By symmetry, x̄ = 0 and ȳ = 0.
A ring-shaped strip on the surface at angular position v
with width dv has radius 2+cos v, and so its surface area
is d S = 2π(2 + cos v) dv. The area of the whole given
surface is

S =
∫ π

0
2π(2 + cos v) dv = 4π2.

The strip has moment z d S = 2π(2 + cos v) sin v dv about
z = 0, so the moment of the whole surface about z = 0 is

Mz=0 = 2π
∫ π

0
(2 + cos v) sin v dv

= 2π

(
−2 cos v − 1

4
cos(2v)

)∣∣∣∣
π

0
= 8π.

Thus z̄ = 8π

4π2
= 2

π
. The centroid is (0, 0, 2/π).

2. This is a trick question. Observe that the given
parametrization r(u, v) satisfies

r(u + π, v) = r(u,−v).

Therefore the surface S is traced out twice as u goes
from 0 to 2π . (It is a Möbius band. See Figure 15.28
in the text.) If S1 is the part of the surface correspond-
ing to 0 ≤ u ≤ π , and S2 is the part corresponding to
π ≤ u ≤ 2π , then S1 and S2 coincide as point sets,
but their normals are oppositely oriented: N̂2 = −N̂1 at
corresponding points on the two surfaces. Hence

∫∫

S1

F • N̂1 d S = −
∫∫

S2

F • N̂2 d S,
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for any smooth vector field, and∫∫

S
F • N̂ d S =

∫∫

S1

F • N̂1 d S +
∫∫

S2

F • N̂2 d S = 0.

3.

D

m

φ

d S

(0, 0, b)

ψ

a
a cosφ

b − a cosφ

Fig. C-15.3

The mass element σ d S at position [a, φ, θ ] on the
sphere is at distance D = √

a2 + b2 − 2ab cosφ from the
mass m located at (0, 0, b), and thus it attracts m with a
force of magnitude d F = kmσd S/D2. By symmetry,
the horizontal components of d F coresponding to mass
elements on opposite sides of the sphere (i.e., at [a, φ, θ ]
and [a, φ, θ + π ]) cancel, but the vertical components

d F cosψ = kmσ d S

D2

b − a cosφ

D
reinforce. The total force on the mass m is the sum of
all such vertical components. Since d S = a2 sinφ dφ dθ ,
it is

F = kmσa2
∫ 2π

0
dθ
∫ π

0

(b − a cosφ) sinφ dφ

(a2 + b2 − 2ab cosφ)3/2

= 2πkmσa2
∫ 1

−1

(b − at)dt

(a2 − 2abt + b2)3/2
.

We have made the change of variable t = cosφ to get
the last integral. This integral can be evaluated by using
another substitution. Let u = √

a2 − 2abt + b2. Thus

t = a2 + b2 − u2

2ab
, dt = − u du

ab
, b−at = u2 + b2 − a2

2b
.

When t = −1 and t = 1 we have u = a + b and
u = |a − b| respectively. Therefore

F = 2πkmσa2
∫ |a−b|

a+b

u2 + b2 − a2

2bu3

(
− u du

ab

)

= πkmσa

b2

∫ a+b

|a−b|

(
1 + b2 − a2

u2

)
du

= πkmσa

b2

(
u − b2 − a2

u

)∣∣∣∣
a+b

|a−b|
.

There are now two cases to consider. If the mass m is
outside the sphere, so that b > a and |a − b| = b − a,
then

F = πkmσa

b2

(
(a+b)−(b−a)−(b−a)+(b+a)

)
= 4πkmσ

a2

b2 .

However, if m is inside the sphere, so that b < a and
|a − b| = a − b, then

F = πkmσa

b2

(
(a + b)+ (a − b)− (a − b)− (a + b)

)
= 0.
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