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CHAPTER 2. DIFFERENTIATION

Section 2.1 Tangent Lines and Their Slopes
(page 98)

1. Slope of y = 3x − 1 at (1, 2) is

m = lim
h→0

3(1 + h) − 1 − (3 × 1 − 1)

h
= lim

h→0

3h

h
= 3.

The tangent line is y − 2 = 3(x − 1), or y = 3x − 1. (The
tangent to a straight line at any point on it is the same
straight line.)

2. Since y = x/2 is a straight line, its tangent at any point
(a, a/2) on it is the same line y = x/2.

3. Slope of y = 2x2 − 5 at (2, 3) is

m = lim
h→0

2(2 + h)2 − 5 − (2(22) − 5)

h

= lim
h→0

8 + 8h + 2h2 − 8

h
= lim

h→0
(8 + 2h) = 8

Tangent line is y − 3 = 8(x − 2) or y = 8x − 13.

4. The slope of y = 6 − x − x2 at x = −2 is

m = lim
h→0

6 − (−2 + h) − (−2 + h)2 − 4

h

= lim
h→0

3h − h2

h
= lim

h→0
(3 − h) = 3.

The tangent line at (−2, 4) is y = 3x + 10.

5. Slope of y = x3 + 8 at x = −2 is

m = lim
h→0

(−2 + h)3 + 8 − (−8 + 8)

h

= lim
h→0

−8 + 12h − 6h2 + h3 + 8 − 0

h

= lim
h→0

(
12 − 6h + h2

)
= 12

Tangent line is y − 0 = 12(x + 2) or y = 12x + 24.

6. The slope of y = 1

x2 + 1
at (0, 1) is

m = lim
h→0

1

h

(
1

h2 + 1
− 1

)
= lim

h→0

−h

h2 + 1
= 0.

The tangent line at (0, 1) is y = 1.

7. Slope of y = √
x + 1 at x = 3 is

m = lim
h→0

√
4 + h − 2

h
·
√

4 + h + 2√
4 + h + 2

= lim
h→0

4 + h − 4

h
(√

h + h + 2
)

= lim
h→0

1√
4 + h + 2

= 1

4
.

Tangent line is y − 2 = 1

4
(x − 3), or x − 4y = −5.

8. The slope of y = 1√
x

at x = 9 is

m = lim
h→0

1

h

(
1√

9 + h
− 1

3

)

= lim
h→0

3 − √
9 + h

3h
√

9 + h
· 3 + √

9 + h

3 + √
9 + h

= lim
h→0

9 − 9 − h

3h
√

9 + h(3 + √
9 + h)

= − 1

3(3)(6)
= − 1

54
.

The tangent line at (9, 1
3 ) is y = 1

3 − 1
54 (x − 9), or

y = 1
2 − 1

54 x .

9. Slope of y = 2x

x + 2
at x = 2 is

m = lim
h→0

2(2 + h)

2 + h + 2
− 1

h

= lim
h→0

4 + 2h − 2 − h − 2

h(2 + h + 2)

= lim
h→0

h

h(4 + h)
= 1

4
.

Tangent line is y − 1 = 1

4
(x − 2),

or x − 4y = −2.

10. The slope of y = √
5 − x2 at x = 1 is

m = lim
h→0

√
5 − (1 + h)2 − 2

h

= lim
h→0

5 − (1 + h)2 − 4

h
(√

5 − (1 + h)2 + 2
)

= lim
h→0

−2 − h√
5 − (1 + h)2 + 2

= −1

2

The tangent line at (1, 2) is y = 2 − 1
2 (x − 1), or

y = 5
2 − 1

2 x .
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11. Slope of y = x2 at x = x0 is

m = lim
h→0

(x0 + h)2 − x2
0

h
= lim

h→0

2x0h + h2

h
= 2x0.

Tangent line is y − x2
0 = 2x0(x − x0),

or y = 2x0x − x2
0 .

12. The slope of y = 1

x
at (a, 1

a ) is

m = lim
h→0

1

h

(
1

a + h
+ 1

a

)
= lim

h→0

a − a − h

h(a + h)(a)
= − 1

a2
.

The tangent line at (a,
1

a
) is y = 1

a
− 1

a2 (x − a), or

y = 2

a
− x

a2 .

13. Since limh→0

√|0 + h| − 0

h
= lim

h→0

1

|h|sgn (h)
does not

exist (and is not ∞ or −∞), the graph of f (x) = √|x |
has no tangent at x = 0.

14. The slope of f (x) = (x − 1)4/3 at x = 1 is

m = lim
h→0

(1 + h − 1)4/3 − 0

h
= lim

h→0
h1/3 = 0.

The graph of f has a tangent line with slope 0 at x = 1.
Since f (1) = 0, the tangent has equation y = 0

15. The slope of f (x) = (x + 2)3/5 at x = −2 is

m = lim
h→0

(−2 + h + 2)3/5 − 0

h
= lim

h→0
h−2/5 = ∞.

The graph of f has vertical tangent x = −2 at x = −2.

16. The slope of f (x) = |x2 − 1| at x = 1 is

m = limh→0
|(1 + h)2 − 1| − |1 − 1|

h
= lim

h→0

|2h + h2|
h

,

which does not exist, and is not −∞ or ∞. The graph
of f has no tangent at x = 1.

17. If f (x) =
{√

x if x ≥ 0
−√−x if x < 0

, then

lim
h→0+

f (0 + h) − f (0)

h
= lim

h→0+

√
h

h
= ∞

lim
h→0−

f (0 + h) − f (0)

h
= lim

h→0−
−√−h

h
= ∞

Thus the graph of f has a vertical tangent x = 0.

18. The slope of y = x2 − 1 at x = x0 is

m = lim
h→0

[(x0 + h)2 − 1] − (x2
0 − 1)

h

= lim
h→0

2x0h + h2

h
= 2x0.

If m = −3, then x0 = − 3
2 . The tangent line with slope

m = −3 at (− 3
2 , 5

4 ) is y = 5
4 − 3(x + 3

2 ), that is,
y = −3x − 13

4 .

19. a) Slope of y = x3 at x = a is

m = lim
h→0

(a + h)3 − a3

h

= lim
h→0

a3 + 3a2h + 3ah2 + h3 − a3

h
= lim

h→0
(3a2 + 3ah + h2) = 3a2

b) We have m = 3 if 3a2 = 3, i.e., if a = ±1.
Lines of slope 3 tangent to y = x3 are
y = 1 + 3(x − 1) and y = −1 + 3(x + 1), or
y = 3x − 2 and y = 3x + 2.

20. The slope of y = x3 − 3x at x = a is

m = lim
h→0

1

h

[
(a + h)3 − 3(a + h) − (a3 − 3a)

]

= lim
h→0

1

h

[
a3 + 3a2h + 3ah2 + h3 − 3a − 3h − a3 + 3a

]

= lim
h→0

[3a2 + 3ah + h2 − 3] = 3a2 − 3.

At points where the tangent line is parallel to the x-axis,
the slope is zero, so such points must satisfy 3a2 − 3 = 0.
Thus, a = ±1. Hence, the tangent line is parallel to the
x-axis at the points (1, −2) and (−1, 2).

21. The slope of the curve y = x3 − x + 1 at x = a is

m = lim
h→0

(a + h)3 − (a + h) + 1 − (a3 − a + 1)

h

= lim
h→0

3a2h + 3ah2 + a3 − h

h
= lim

h→0
(3a2 + 3ah + h2 − 1) = 3a2 − 1.

The tangent at x = a is parallel to the line y = 2x + 5 if
3a2 − 1 = 2, that is, if a = ±1. The corresponding points
on the curve are (−1, 1) and (1, 1).

22. The slope of the curve y = 1/x at x = a is

m = lim
h→0

1

a + h
− 1

a
h

= lim
h→0

a − (a + h)

ah(a + h)
= − 1

a2 .

The tangent at x = a is perpendicular to the line
y = 4x − 3 if −1/a2 = −1/4, that is, if a = ±2. The
corresponding points on the curve are (−2,−1/2) and
(2, 1/2).
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23. The slope of the curve y = x2 at x = a is

m = lim
h→0

(a + h)2 − a2

h
= lim

h→0
(2a + h) = 2a.

The normal at x = a has slope −1/(2a), and has equa-
tion

y − a2 = − 1

2a
(x − a), or

x

2a
+ y = 1

2
+ a2.

This is the line x + y = k if 2a = 1, and so
k = (1/2) + (1/2)2 = 3/4.

24. The curves y = kx2 and y = k(x − 2)2 intersect at (1, k).
The slope of y = kx2 at x = 1 is

m1 = lim
h→0

k(1 + h)2 − k

h
= lim

h→0
(2 + h)k = 2k.

The slope of y = k(x − 2)2 at x = 1 is

m2 = lim
h→0

k(2 − (1 + h))2 − k

h
= lim

h→0
(−2 + h)k = −2k.

The two curves intersect at right angles if
2k = −1/(−2k), that is, if 4k2 = 1, which is satisfied
if k = ±1/2.

25. Horizontal tangents at (0, 0), (3, 108), and (5, 0).
y

-20

20

40

60

80

100

x-1 1 2 3 4 5

(3, 108)

y = x3(5 − x)2

Fig. 2.1.25

26. Horizontal tangent at (−1, 8) and (2, −19).
y

-30

-20

-10

10

20

x-2 -1 1 2 3

(−1, 8)

(2, −19)

y = 2x3 − 3x2 − 12x + 1

Fig. 2.1.26

27. Horizontal tangent at (−1/2, 5/4). No tangents at
(−1, 1) and (1, −1).

y

-3

-2

-1

1

2

x-3 -2 -1 1 2

y = |x2 − 1| − x

Fig. 2.1.27

28. Horizontal tangent at (a, 2) and (−a, −2) for all a > 1.
No tangents at (1, 2) and (−1,−2).

y

-3

-2

-1

1

2

x-3 -2 -1 1 2

y = |x + 1| − |x − 1|

Fig. 2.1.28

29. Horizontal tangent at (0,−1). The tangents at (±1, 0)

are vertical.
y

-3

-2

-1

1

2

x-3 -2 -1 1 2

y = (x2 − 1)1/3

Fig. 2.1.29

30. Horizontal tangent at (0, 1). No tangents at (−1, 0) and
(1, 0).
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y

1

2

x-2 -1 1 2

y = ((x2 − 1)2)1/3

Fig. 2.1.30

31. The graph of the function f (x) = x2/3 (see Figure 2.1.7
in the text) has a cusp at the origin O, so does not have
a tangent line there. However, the angle between O P
and the positive y-axis does → 0 as P approaches 0
along the graph. Thus the answer is NO.

32. The slope of P(x) at x = a is

m = lim
h→0

P(a + h) − P(a)

h
.

Since P(a + h) = a0 + a1h + a2h2 + · · · + anhn and
P(a) = a0, the slope is

m = lim
h→0

a0 + a1h + a2h2 + · · · + anhn − a0

h
= lim

h→0
a1 + a2h + · · · + anhn−1 = a1.

Thus the line y = �(x) = m(x − a) + b is tangent to
y = P(x) at x = a if and only if m = a1 and b = a0,
that is, if and only if

P(x)−�(x) = a2(x − a)2 + a3(x − a)3 + · · · + an(x − a)n

= (x − a)2
[
a2 + a3(x − a) + · · · + an(x − a)n−2

]

= (x − a)2 Q(x)

where Q is a polynomial.

Section 2.2 The Derivative (page 105)

1.
y

x

y = f ′(x)

2.
y

xy = g′(x)

3.
y

x

y = h ′(x)

4.
y

x

y = k′(x)

5. Assuming the tick marks are spaced 1 unit apart, the
function f is differentiable on the intervals (−2,−1),
(−1, 1), and (1, 2).

6. Assuming the tick marks are spaced 1 unit apart, the
function g is differentiable on the intervals (−2, −1),
(−1, 0), (0, 1), and (1, 2).

7. y = f (x) has its minimum at x = 3/2 where f ′(x) = 0
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y

x

y

x

y = f (x) = 3x − x2 − 1

y = f ′(x)

Fig. 2.2.7

8. y = f (x) has horizontal tangents at the points near 1/2
and 3/2 where f ′(x) = 0

y

x

y

x

y = f (x) = x3 − 3x2 + 2x + 1

y = f ′(x)

Fig. 2.2.8

9. y = f (x) fails to be differentiable at x = −1, x = 0,
and x = 1. It has horizontal tangents at two points, one
between −1 and 0 and the other between 0 and 1.

y

x

y

x

y = f (x) = |x3 − 1|

y = f ′(x)

Fig. 2.2.9

10. y = f (x) is constant on the intervals (−∞,−2), (−1, 1),
and (2, ∞). It is not differentiable at x = ±2 and
x = ±1.

y

x

y

x

y = f (x) = |x2 − 1| − |x2 − 4|

y = f ′(x)

Fig. 2.2.10

11. y = x2 − 3x

y ′ = lim
h→0

(x + h)2 − 3(x + h) − (x2 − 3x)

h

= lim
h→0

2xh + h2 − 3h

h
= 2x − 3
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12. f (x) = 1 + 4x − 5x2

f ′(x) = lim
h→0

1 + 4(x + h) − 5(x + h)2 − (1 + 4x − 5x2)

h

= lim
h→0

4h − 10xh − 5h2

h
= 4 − 10x

13. f (x) = x3

f ′(x) = lim
h→0

(x + h)3 − x3

h

= lim
h→0

3x2h + 3xh2 + h3

h
= 3x2

14. s = 1

3 + 4t
ds

dt
= lim

h→0

1

h

[
1

3 + 4(t + h)
− 1

3 + 4t

]

= lim
h→0

3 + 4t − 3 − 4t − 4h

h(3 + 4t)[3 + (4t + h)]
= − 4

(3 + 4t)2

15. F(t) = √
2t + 1

F ′(t) = lim
h→0

√
2(t + h) + 1 − √

2t + 1

h

= lim
h→0

2t + 2h + 1 − 2t − 1

h
(√

2(t + h) + 1 + √
2t + 1

)

= lim
h→0

2√
2(t + h) + 1 + √

2t + 1

= 1√
2t + 1

16. f (x) = 3
4

√
2 − x

f ′(x) = lim
h→0

3
4

√
2 − (x + h) − 3

4

√
2 − x

h

= lim
h→0

3

4

[
2 − x − h − 2 + x

h(
√

2 − (x + h) + √
2 − x)

]

= − 3

8
√

2 − x

17. y = x + 1

x

y ′ = lim
h→0

x + h + 1

x + h
− x − 1

x
h

= lim
h→0

(
1 + x − x − h

h(x + h)x

)

= 1 + lim
h→0

−1

(x + h)x
= 1 − 1

x2

18. z = s

1 + s
dz

ds
= lim

h→0

1

h

[
s + h

1 + s + h
− s

1 + s

]

= lim
h→0

(s + h)(1 + s) − s(1 + s + h)

h(1 + s)(1 + s + h)
= 1

(1 + s)2

19. F(x) = 1√
1 + x2

F ′(x) = lim
h→0

1√
1 + (x + h)2

− 1√
1 + x2

h

= lim
h→0

√
1 + x2 −√

1 + (x + h)2

h
√

1 + (x + h)2
√

1 + x2

= lim
h→0

1 + x2 − 1 − x2 − 2hx − h2

h
√

1 + (x + h)2
√

1 + x2
(√

1 + x2 +√
1 + (x + h)2

)

= −2x

2(1 + x2)3/2 = − x

(1 + x2)3/2

20. y = 1

x2

y ′ = lim
h→0

1

h

[
1

(x + h)2 − 1

x2

]

= lim
h→0

x2 − (x + h)2

hx2(x + h)2 = − 2

x3

21. y = 1√
1 + x

y ′(x) = lim
h→0

1√
1 + x + h

− 1√
1 + x

h

= lim
h→0

√
1 + x − √

1 + x + h

h
√

1 + x + h
√

1 + x

= lim
h→0

1 + x − 1 − x − h

h
√

1 + x + h
√

1 + x
(√

1 + x + √
1 + x + h

)

= lim
h→0

− 1√
1 + x + h

√
1 + x

(√
1 + x + √

1 + x + h
)

= − 1

2(1 + x)3/2

22. f (t) = t2 − 3

t2 + 3

f ′(t) = lim
h→0

1

h

(
(t + h)2 − 3

(t + h)2 + 3
− t2 − 3

t2 + 3

)

= lim
h→0

[(t + h)2 − 3](t2 + 3) − (t2 − 3)[(t + h)2 + 3]

h(t2 + 3)[(t + h)2 + 3]

= lim
h→0

12th + 6h2

h(t2 + 3)[(t + h)2 + 3]
= 12t

(t2 + 3)2

23. Since f (x) = x sgn x = |x |, for x �= 0, f will become
continuous at x = 0 if we define f (0) = 0. However,
f will still not be differentiable at x = 0 since |x | is not
differentiable at x = 0.

24. Since g(x) = x2 sgn x = x |x | =
{

x2 if x > 0
−x2 if x < 0

, g

will become continuous and differentiable at x = 0 if we
define g(0) = 0.
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25. h(x) = |x2 + 3x + 2| fails to be differentiable where
x2 + 3x + 2 = 0, that is, at x = −2 and x = −1. Note:
both of these are single zeros of x2 + 3x + 2. If they
were higher order zeros (i.e. if (x + 2)n or (x + 1)n were
a factor of x2 + 3x + 2 for some integer n ≥ 2) then h
would be differentiable at the corresponding point.

26. y = x3 − 2x

x
f (x) − f (1)

x − 1
0.9 0.71000
0.99 0.97010
0.999 0.99700
0.9999 0.99970

x
f (x) − f (1)

x − 1
1.1 1.31000
1.01 1.03010
1.001 1.00300
1.0001 1.00030

d

dx
(x3 − 2x)

∣∣∣∣
x=1

= lim
h→0

(1 + h)3 − 2(1 + h) − (−1)

h

= lim
h→0

h + 3h2 + h3

h
= lim

h→0
1 + 3h + h2 = 1

27. f (x) = 1/x

x
f (x) − f (2)

x − 2
1.9 −0.26316
1.99 −0.25126
1.999 −0.25013
1.9999 −0.25001

x
f (x) − f (2)

x − 2
2.1 −0.23810
2.01 −0.24876
2.001 −0.24988
2.0001 −0.24999

f ′(2) = lim
h→0

1

2 + h
− 2

h
= lim

h→0

2 − (2 + h)

h(2 + h)2

= lim
h→0

− 1

(2 + h)2
= −1

4

28. The slope of y = 5 + 4x − x2 at x = 2 is

dy

dx

∣∣∣∣
x=2

= lim
h→0

5 + 4(2 + h) − (2 + h)2 − 9

h

= lim
h→0

−h2

h
= 0.

Thus, the tangent line at x = 2 has the equation y = 9.

29. y = √
x + 6. Slope at (3, 3) is

m = lim
h→0

√
9 + h − 3

h
= lim

h→0

9 + h − 9

h
(√

9 + h + 3
) = 1

6
.

Tangent line is y − 3 = 1

6
(x − 3), or x − 6y = −15.

30. The slope of y = t

t2 − 2
at t = −2 and y = −1 is

dy

dt

∣∣∣∣
t=−2

= lim
h→0

1

h

[ −2 + h

(−2 + h)2 − 2
− (−1)

]

= lim
h→0

−2 + h + [(−2 + h)2 − 2]

h[(−2 + h)2 − 2]
= −3

2
.

Thus, the tangent line has the equation
y = −1 − 3

2 (t + 2), that is, y = − 3
2 t − 4.

31. y = 2

t2 + t
Slope at t = a is

m = lim
h→0

2

(a + h)2 + (a + h)
− 2

a2 + a
h

= lim
h→0

2(a2 + a − a2 − 2ah − h2 − a − h)

h[(a + h)2 + a + h](a2 + a)

= lim
h→0

−4a − 2h − 2

[(a + h)2 + a + h](a2 + a)

= − 4a + 2

(a2 + a)2

Tangent line is y = 2

a2 + a
− 2(2a + 1)

(a2 + a)2 (t − a)

32. f ′(x) = −17x−18 for x �= 0

33. g′(t) = 22t21 for all t

34.
dy

dx
= 1

3
x−2/3 for x �= 0

35.
dy

dx
= −1

3
x−4/3 for x �= 0

36.
d

dt
t−2.25 = −2.25t−3.25 for t > 0

37.
d

ds
s119/4 = 119

4
s115/4 for s > 0

38.
d

ds

√
s

∣∣∣∣
s=9

= 1

2
√

s

∣∣∣∣
s=9

= 1

6
.

39. F(x) = 1

x
, F ′(x) = − 1

x2 , F ′
(

1

4

)
= −16

40. f ′(8) = −2

3
x−5/3

∣∣∣∣
x=8

= − 1

48

41.
dy

dt

∣∣∣∣
t=4

= 1

4
t−3/4

∣∣∣∣
t=4

= 1

8
√

2

42. The slope of y = √
x at x = x0 is

dy

dx

∣∣∣∣
x=x0

= 1

2
√

x0
.

Thus, the equation of the tangent line is

y = √
x0 + 1

2
√

x0
(x − x0), that is, y = x + x0

2
√

x0
.
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43. Slope of y = 1

x
at x = a is − 1

x2

∣∣∣∣
x=a

= 1

a2
.

Normal has slope a2, and equation y − 1

a
= a2(x − a),

or y = a2x − a3 + 1

a

44. The intersection points of y = x2 and x + 4y = 18 satisfy

4x2 + x − 18 = 0

(4x + 9)(x − 2) = 0.

Therefore x = − 9
4 or x = 2.

The slope of y = x2 is m1 = dy

dx
= 2x .

At x = −9

4
, m1 = −9

2
. At x = 2, m1 = 4.

The slope of x + 4y = 18, i.e. y = − 1
4 x + 18

4 , is
m2 = − 1

4 .
Thus, at x = 2, the product of these slopes is
(4)(− 1

4 ) = −1. So, the curve and line intersect at right
angles at that point.

45. Let the point of tangency be (a, a2). Slope of tangent is
d

dx
x2
∣∣∣∣
x=a

= 2a

This is the slope from (a, a2) to (1, −3), so
a2 + 3

a − 1
= 2a, and

a2 + 3 = 2a2 − 2a

a2 − 2a − 3 = 0

a = 3 or − 1

The two tangent lines are
(for a = 3): y − 9 = 6(x − 3) or 6x − 9
(for a = −1): y − 1 = −2(x + 1) or y = −2x − 1

y

x

(a,a2)

(1,−3)

y = x2

Fig. 2.2.45

46. The slope of y = 1

x
at x = a is

dy

dx

∣∣∣∣
x=a

= − 1

a2
.

If the slope is −2, then − 1

a2 = −2, or a = ± 1√
2

.

Therefore, the equations of the two straight lines are

y = √
2 − 2

(
x − 1√

2

)
and y = −√

2 − 2

(
x + 1√

2

)
,

or y = −2x ± 2
√

2.

47. Let the point of tangency be (a,
√

a)

Slope of tangent is
d

dx

√
x

∣∣∣∣
x=a

= 1

2
√

a

Thus
1

2
√

a
=

√
a − 0

a + 2
, so a + 2 = 2a, and a = 2.

The required slope is
1

2
√

2
.

y

x

(a,
√

a)

y=√
x

−2

Fig. 2.2.47

48. If a line is tangent to y = x2 at (t, t2), then its slope is
dy

dx

∣∣∣∣
x=t

= 2t . If this line also passes through (a, b), then

its slope satisfies

t2 − b

t − a
= 2t, that is t2 − 2at + b = 0.

Hence t = 2a ± √
4a2 − 4b

2
= a ±

√
a2 − b.

If b < a2, i.e. a2 − b > 0, then t = a ± √
a2 − b

has two real solutions. Therefore, there will be two dis-
tinct tangent lines passing through (a, b) with equations

y = b + 2
(

a ± √
a2 − b

)
(x − a). If b = a2, then t = a.

There will be only one tangent line with slope 2a and
equation y = b + 2a(x − a).
If b > a2, then a2 − b < 0. There will be no real solution
for t . Thus, there will be no tangent line.
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49. Suppose f is odd: f (−x) = − f (x). Then

f ′(−x) = lim
h→0

f (−x + h) − f (−x)

h

= lim
h→0

− f (x − h) − f (x)

h
(let h = −k)

= lim
k→0

f (x + k) − f (x)

k
= f ′(x)

Thus f ′ is even.
Now suppose f is even: f (−x) = f (x). Then

f ′(−x) = lim
h→0

f (−x + h) − f (−x)

h

= lim
h→0

f (x − h) − f (x)

h

= lim
k→0

f (x + k) − f (x)

−k
= − f ′(x)

so f ′ is odd.

50. Let f (x) = x−n . Then

f ′(x) = lim
h→0

(x + h)−n − x−n

h

= lim
h→0

1

h

(
1

(x + h)n
− 1

xn

)

= lim
h→0

xn − (x + h)n

hxn(x + h)n

= lim
h→0

x − (x + h)

hxn((x + h)n
×

(
xn−1 + xn−2(x + h) + · · · + (x + h)n−1

)

= − 1

x2n
× nxn−1 = −nx−(n+1).

51. f (x) = x1/3

f ′(x) = lim
h→0

(x + h)1/3 − x1/3

h

= lim
h→0

(x + h)1/3 − x1/3

h

× (x + h)2/3 + (x + h)1/3x1/3 + x2/3

(x + h)2/3 + (x + h)1/3x1/3 + x2/3

= lim
h→0

x + h − x

h[(x + h)2/3 + (x + h)1/3x1/3 + x2/3]

= lim
h→0

1

(x + h)2/3 + (x + h)1/3x1/3 + x2/3

= 1

3x2/3 = 1

3
x−2/3

52. Let f (x) = x1/n . Then

f ′(x) = lim
h→0

(x + h)1/n − x1/n

h
(let x + h = an , x = bn)

= lim
a→b

a − b

an − bn

= lim
a→b

1

an−1 + an−2b + an−3b2 + · · · + bn−1

= 1

nbn−1
= 1

n
x (1/n)−1.

53.
d

dx
xn = lim

h→0

(x + h)n − xn

h

= lim
h→0

1

h

[
xn + n

1
xn−1h + n(n − 1)

1 × 2
xn−2h2

+ n(n − 1)(n − 2)

1 × 2 × 3
xn−3h3 + · · · + hn − xn

]

= lim
h→0

(
nxn−1 + h

[
n(n − 1)

1 × 2
xn−2h

+ n(n − 1)(n − 2)

1 × 2 × 3
xn−3h2 + · · · + hn−1

])

= nxn−1

54. Let

f ′(a+) = lim
h→0+

f (a + h) − f (a)

h

f ′(a−) = lim
h→0−

f (a + h) − f (a)

h

If f ′(a+) is finite, call the half-line with equation
y = f (a) + f ′(a+)(x − a), (x ≥ a), the right tangent
line to the graph of f at x = a. Similarly, if f ′(a−)

is finite, call the half-line y = f (a) + f ′(a−)(x − a),
(x ≤ a), the left tangent line. If f ′(a+) = ∞ (or −∞),
the right tangent line is the half-line x = a, y ≥ f (a) (or
x = a, y ≤ f (a)). If f ′(a−) = ∞ (or −∞), the right
tangent line is the half-line x = a, y ≤ f (a) (or x = a,
y ≥ f (a)).
The graph has a tangent line at x = a if and only if
f ′(a+) = f ′(a−). (This includes the possibility that both
quantities may be +∞ or both may be −∞.) In this
case the right and left tangents are two opposite halves of
the same straight line. For f (x) = x2/3, f ′(x) = 2

3 x−1/3.

At (0, 0), we have f ′(0+) = +∞ and f ′(0−) = −∞.
In this case both left and right tangents are the positive
y-axis, and the curve does not have a tangent line at the
origin.
For f (x) = |x |, we have

f ′(x) = sgn (x) =
{

1 if x > 0
−1 if x < 0.

At (0, 0), f ′(0+) = 1, and f ′(0−) = −1. In this case
the right tangent is y = x , (x ≥ 0), and the left tangent is
y = −x , (x ≤ 0). There is no tangent line.
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Section 2.3 Differentiation Rules
(page 113)

1. y = 3x2 − 5x − 7, y ′ = 6x − 5.

2. y = 4x1/2 − 5

x
, y ′ = 2x−1/2 + 5x−2

3. f (x) = Ax2 + Bx + C, f ′(x) = 2Ax + B.

4. f (x) = 6

x3 + 2

x2 − 2, f ′(x) = −18

x4 − 4

x3

5. z = s5 − s3

15
,

dz

dx
= 1

3
s4 − 1

5
s2.

6. y = x45 − x−45 y ′ = 45x44 + 45x−46

7. g(t) = t1/3 + 2t1/4 + 3t1/5

g′(t) = 1

3
t−2/3 + 1

2
t−3/4 + 3

5
t−4/5

8. y = 3
3
√

t2 − 2√
t3

= 3t2/3 − 2t−3/2

dy

dt
= 2t−1/3 + 3t−5/2

9. u = 3

5
x5/3 − 5

3
x−3/5

du

dx
= x2/3 + x−8/5

10. F(x) = (3x − 2)(1 − 5x)

F ′(x) = 3(1 − 5x) + (3x − 2)(−5) = 13 − 30x

11. y = √
x

(
5 − x − x2

3

)
= 5

√
x − x3/2 − 1

3
x5/2

y ′ = 5

2
√

x
− 3

2

√
x − 5

6
x3/2

12. g(t) = 1

2t − 3
, g′(t) = − 2

(2t − 3)2

13. y = 1

x2 + 5x

y ′ = − 1

(x2 + 5x)2
(2x + 5) = − 2x + 5

(x2 + 5x)2

14. y = 4

3 − x
, y ′ = 4

(3 − x)2

15. f (t) = π

2 − π t

f ′(t) = − π

(2 − π t)2 (−π) = π2

(2 − π t)2

16. g(y) = 2

1 − y2
, g′(y) = 4y

(1 − y2)2

17. f (x) = 1 − 4x2

x3
= x−3 − 4

x

f ′(x) = −3x−4 + 4x−2 = 4x2 − 3

x4

18. g(u) = u
√

u − 3

u2 = u−1/2 − 3u−2

g′(u) = −1

2
u−3/2 + 6u−3 = 12 − u

√
u

2u3

19. y = 2 + t + t2
√

t
= 2t−1/2 + √

t + t3/2

dy

dt
= −t−3/2 + 1

2
√

t
+ 3

2

√
t = 3t2 + t − 2

2t
√

t

20. z = x − 1

x2/3 = x1/3 − x−2/3

dz

dx
= 1

3
x−2/3 + 2

3
x−5/3 = x + 2

3x5/3

21. f (x) = 3 − 4x

3 + 4x

f ′(x) = (3 + 4x)(−4) − (3 − 4x)(4)

(3 + 4x)2

= − 24

(3 + 4x)2

22. z = t2 + 2t

t2 − 1

z′ = (t2 − 1)(2t + 2) − (t2 + 2t)(2t)

(t2 − 1)2

= −2(t2 + t + 1)

(t2 − 1)2

23. s = 1 + √
t

1 − √
t

ds

dt
=

(1 − √
t)

1

2
√

t
− (1 + √

t)(− 1

2
√

t
)

(1 − √
t)2

= 1√
t(1 − √

t)2

24. f (x) = x3 − 4

x + 1

f ′(x) = (x + 1)(3x2) − (x3 − 4)(1)

(x + 1)2

= 2x3 + 3x2 + 4

(x + 1)2

25. f (x) = ax + b

cx + d

f ′(x) = (cx + d)a − (ax + b)c

(cx + d)2

= ad − bc

(cx + d)2
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26. F(t) = t2 + 7t − 8

t2 − t + 1

F ′(t) = (t2 − t + 1)(2t + 7) − (t2 + 7t − 8)(2t − 1)

(t2 − t + 1)2

= −8t2 + 18t − 1

(t2 − t + 1)2

27. f (x) = (1 + x)(1 + 2x)(1 + 3x)(1 + 4x)

f ′(x) = (1 + 2x)(1 + 3x)(1 + 4x) + 2(1 + x)(1 + 3x)(1 + 4x)

+ 3(1 + x)(1 + 2x)(1 + 4x) + 4(1 + x)(1 + 2x)(1 + 3x)

OR

f (x) = [(1 + x)(1 + 4x)] [(1 + 2x)(1 + 3x)]

= (1 + 5x + 4x2)(1 + 5x + 6x2)

= 1 + 10x + 25x2 + 10x2(1 + 5x) + 24x4

= 1 + 10x + 35x2 + 50x3 + 24x4

f ′(x) = 10 + 70x + 150x2 + 96x3

28. f (r) = (r−2 + r−3 − 4)(r2 + r3 + 1)

f ′(r) = (−2r−3 − 3r−4)(r2 + r3 + 1)

+ (r−2 + r−3 − 4)(2r + 3r2)

or

f (r) = −2 + r−1 + r−2 + r−3 + r − 4r2 − 4r3

f ′(r) = −r−2 − 2r−3 − 3r−4 + 1 − 8r − 12r2

29. y = (x2 + 4)(
√

x + 1)(5x2/3 − 2)

y ′ = 2x(
√

x + 1)(5x2/3 − 2)

+ 1

2
√

x
(x2 + 4)(5x2/3 − 2)

+ 10

3
x−1/3(x2 + 4)(

√
x + 1)

30. y = (x2 + 1)(x3 + 2)

(x2 + 2)(x3 + 1)

= x5 + x3 + 2x2 + 2

x5 + 2x3 + x2 + 2

y ′ = (x5 + 2x3 + x2 + 2)(5x4 + 3x2 + 4x)

(x5 + 2x3 + x2 + 2)2

− (x5 + x3 + 2x2 + 2)(5x4 + 6x2 + 2x)

(x5 + 2x3 + x2 + 2)2

= 2x7 − 3x6 − 3x4 − 6x2 + 4x

(x5 + 2x3 + x2 + 2)2

= 2x7 − 3x6 − 3x4 − 6x2 + 4x

(x2 + 2)2(x3 + 1)2

31. y = x

2x + 1

3x + 1

= 3x2 + x

6x2 + 2x + 1

y ′ = (6x2 + 2x + 1)(6x + 1) − (3x2 + x)(12x + 2)

(6x2 + 2x + 1)2

= 6x + 1

(6x2 + 2x + 1)2

32. f (x) = (
√

x − 1)(2 − x)(1 − x2)√
x(3 + 2x)

=
(

1 − 1√
x

)
· 2 − x − 2x2 + x3

3 + 2x

f ′(x) =
(

1

2
x−3/2

)
2 − x − 2x2 + x3

3 + 2x
+
(

1 − 1√
x

)

× (3 + 2x)(−1 − 4x + 3x2) − (2 − x − 2x2 + x3)(2)

(3 + 2x)2

= (2 − x)(1 − x2)

2x3/2(3 + 2x)

+
(

1 − 1√
x

)
4x3 + 5x2 − 12x − 7

(3 + 2x)2

33.
d

dx

(
x2

f (x)

)∣∣∣∣
x=2

= f (x)(2x) − x2 f ′(x)

[ f (x)]2

∣∣∣∣
x=2

= 4 f (2) − 4 f ′(2)

[ f (2)]2 = −4

4
= −1

34.
d

dx

(
f (x)

x2

)∣∣∣∣
x=2

= x2 f ′(x) − 2x f (x)

x4

∣∣∣∣
x=2

= 4 f ′(2) − 4 f (2)

16
= 4

16
= 1

4

35.
d

dx

(
x2 f (x)

)∣∣∣∣
x=2

=
(

2x f (x) + x2 f ′(x)
)∣∣∣∣

x=2

= 4 f (2) + 4 f ′(2) = 20

36.
d

dx

(
f (x)

x2 + f (x)

)∣∣∣∣
x=2

= (x2 + f (x)) f ′(x) − f (x)(2x + f ′(x))

(x2 + f (x))2

∣∣∣∣
x=2

= (4 + f (2)) f ′(2) − f (2)(4 + f ′(2))

(4 + f (2))2 = 18 − 14

62 = 1

9

37.
d

dx

(
x2 − 4

x2 + 4

)
|x=−2 = d

dx

(
1 − 8

x2 + 4

)∣∣∣∣
x=−2

= 8

(x2 + 4)2
(2x)

∣∣∣∣
x=−2

= −32

64
= −1

2

38.
d

dt

[
t (1 + √

t)

5 − t

] ∣∣∣∣
t=4

= d

dt

[
t + t3/2

5 − t

] ∣∣∣∣
t=4

= (5 − t)(1 + 3
2 t1/2) − (t + t3/2)(−1)

(5 − t)2

∣∣∣∣
t=4

= (1)(4) − (12)(−1)

(1)2 = 16
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39. f (x) =
√

x

x + 1

f ′(x) =
(x + 1)

1

2
√

x
− √

x(1)

(x + 1)2

f ′(2) =
3

2
√

2
− √

2

9
= − 1

18
√

2

40.
d

dt
[(1 + t)(1 + 2t)(1 + 3t)(1 + 4t)]

∣∣∣∣
t=0

= (1)(1 + 2t)(1 + 3t)(1 + 4t) + (1 + t)(2)(1 + 3t)(1 + 4t)+
(1 + t)(1 + 2t)(3)(1 + 4t) + (1 + t)(1 + 2t)(1 + 3t)(4)

∣∣∣∣
t=0

= 1 + 2 + 3 + 4 = 10

41. y = 2

3 − 4
√

x
, y ′ = − 2(

3 − 4
√

x
)2

(
− 4

2
√

x

)

Slope of tangent at (1, −2) is m = 8

(−1)22
= 4

Tangent line has the equation y = −2 + 4(x − 1) or
y = 4x − 6

42. For y = x + 1

x − 1
we calculate

y ′ = (x − 1)(1) − (x + 1)(1)

(x − 1)2 = − 2

(x − 1)2 .

At x = 2 we have y = 3 and y′ = −2. Thus, the
equation of the tangent line is y = 3 − 2(x − 2), or
y = −2x + 7. The normal line is y = 3 + 1

2 (x − 2), or
y = 1

2 x + 2.

43. y = x + 1

x
, y ′ = 1 − 1

x2

For horizontal tangent: 0 = y′ = 1 − 1

x2 so x2 = 1 and

x = ±1
The tangent is horizontal at (1, 2) and at (−1,−2)

44. If y = x2(4 − x2), then

y ′ = 2x(4 − x2) + x2(−2x) = 8x − 4x3 = 4x(2 − x2).

The slope of a horizontal line must be zero, so
4x(2 − x2) = 0, which implies that x = 0 or x = ±√

2.
At x = 0, y = 0 and at x = ±√

2, y = 4.
Hence, there are two horizontal lines that are tangent to
the curve. Their equations are y = 0 and y = 4.

45. y = 1

x2 + x + 1
, y ′ = − 2x + 1

(x2 + x + 1)2

For horizon-

tal tangent we want 0 = y′ = − 2x + 1

(x2 + x + 1)2
. Thus

2x + 1 = 0 and x = −1

2

The tangent is horizontal only at

(
−1

2
,

4

3

)
.

46. If y = x + 1

x + 2
, then

y ′ = (x + 2)(1) − (x + 1)(1)

(x + 2)2 = 1

(x + 2)2 .

In order to be parallel to y = 4x , the tangent line must
have slope equal to 4, i.e.,

1

(x + 2)2 = 4, or (x + 2)2 = 1
4 .

Hence x + 2 = ± 1
2 , and x = − 3

2 or − 5
2 . At x = − 3

2 ,

y = −1, and at x = − 5
2 , y = 3.

Hence, the tangent is parallel to y = 4x at the points(− 3
2 ,−1

)
and

(
− 5

2 , 3
)

.

47. Let the point of tangency be (a, 1
a ). The slope of the

tangent is − 1

a2
= b − 1

a

0 − a
. Thus b − 1

a = 1
a and a = 2

b
.

Tangent has slope −b2

4
so has equation y = b − b2

4
x .

y

x

(
a,

1
a

)

y = 1

x

b

Fig. 2.3.47

48. Since
1√
x

= y = x2 ⇒ x5/2 = 1, therefore x = 1 at

the intersection point. The slope of y = x2 at x = 1 is

2x

∣∣∣∣
x=1

= 2. The slope of y = 1√
x

at x = 1 is

dy

dx

∣∣∣∣
x=1

= −1

2
x−3/2

∣∣∣∣
x=1

= −1

2
.

The product of the slopes is (2)
(− 1

2

) = −1. Hence, the
two curves intersect at right angles.
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49. The tangent to y = x3 at (a, a3) has equation
y = a3 + 3a2(x − a), or y = 3a2x − 2a3. This line
passes through (2, 8) if 8 = 6a2 − 2a3 or, equivalently, if
a3 −3a2 +4 = 0. Since (2, 8) lies on y = x3, a = 2 must
be a solution of this equation. In fact it must be a double
root; (a − 2)2 must be a factor of a3 − 3a2 + 4. Dividing
by this factor, we find that the other factor is a + 1, that
is,

a3 − 3a2 + 4 = (a − 2)2(a + 1).

The two tangent lines to y = x3 passing through (2, 8)

correspond to a = 2 and a = −1, so their equations are
y = 12x − 16 and y = 3x + 2.

50. The tangent to y = x2/(x −1) at (a, a2/(a−1)) has slope

m = (x − 1)2x − x2(1)

(x − 1)2

∣∣∣∣
x=a

= a2 − 2a

(a − 1)2 .

The equation of the tangent is

y − a2

a − 1
= a2 − 2a

(a − 1)2 (x − a).

This line passes through (2, 0) provided

0 − a2

a − 1
= a2 − 2a

(a − 1)2 (2 − a),

or, upon simplification, 3a2 − 4a = 0. Thus we can have
either a = 0 or a = 4/3. There are two tangents through
(2, 0). Their equations are y = 0 and y = −8x + 16.

51.
d

dx

√
f (x) = lim

h→0

√
f (x + h) − √

f (x)

h

= lim
h→0

f (x + h) − f (x)

h

1√
f (x + h) + √

f (x)

= f ′(x)

2
√

f (x)

d

dx

√
x2 + 1 = 2x

2
√

x2 + 1
= x√

x2 + 1

52. f (x) = |x3| =
{

x3 if x ≥ 0
−x3 if x < 0

. Therefore f is differen-

tiable everywhere except possibly at x = 0, However,

lim
h→0+

f (0 + h) − f (0)

h
= lim

h→0+ h2 = 0

lim
h→0−

f (0 + h) − f (0)

h
= lim

h→0−(−h2) = 0.

Thus f ′(0) exists and equals 0. We have

f ′(x) =
{

3x2 if x ≥ 0
−3x2 if x < 0.

53. To be proved:
d

dx
xn/2 = n

2
x (n/2)−1 for n = 1, 2, 3, . . . .

Proof: It is already known that the case n = 1 is true:
the derivative of x1/2 is (1/2)x−1/2.
Assume that the formula is valid for n = k for some
positive integer k:

d

dx
xk/2 = k

2
x (k/2)−1.

Then, by the Product Rule and this hypothesis,

d

dx
x (k+1)/2 = d

dx
x1/2xk/2

= 1

2
x−1/2xk/2 + k

2
x1/2x (k/2)−1 = k + 1

2
x (k+1)/2−1.

Thus the formula is also true for n = k + 1. Therefore it
is true for all positive integers n by induction.
For negative n = −m (where m > 0) we have

d

dx
xn/2 = d

dx

1

xm/2

= −1

xm

m

2
x (m/2)−1

= −m

2
x−(m/2)−1 = n

2
x (n/2)−1.

54. To be proved:

( f1 f2 · · · fn)′

= f ′
1 f2 · · · fn + f1 f ′

2 · · · fn + · · · + f1 f2 · · · f ′
n

Proof: The case n = 2 is just the Product Rule. Assume
the formula holds for n = k for some integer k > 2.
Using the Product Rule and this hypothesis we calculate

( f1 f2 · · · fk fk+1)
′

= [( f1 f2 · · · fk) fk+1]′

= ( f1 f2 · · · fk)
′ fk+1 + ( f1 f2 · · · fk) f ′

k+1

= ( f ′
1 f2 · · · fk + f1 f ′

2 · · · fk + · · · + f1 f2 · · · f ′
k) fk+1

+ ( f1 f2 · · · fk) f ′
k+1

= f ′
1 f2 · · · fk fk+1 + f1 f ′

2 · · · fk fk+1 + · · ·
+ f1 f2 · · · f ′

k fk+1 + f1 f2 · · · fk f ′
k+1

so the formula is also true for n = k + 1. The formula is
therefore for all integers n ≥ 2 by induction.

Section 2.4 The Chain Rule (page 118)

1. y = (2x + 3)6, y ′ = 6(2x + 3)52 = 12(2x + 3)5

2. y =
(

1 − x

3

)99

y ′ = 99
(

1 − x

3

)98
(

−1

3

)
= −33

(
1 − x

3

)98
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3. f (x) = (4 − x2)10

f ′(x) = 10(4 − x2)9(−2x) = −20x(4 − x2)9

4.
dy

dx
= d

dx

√
1 − 3x2 = −6x

2
√

1 − 3x2
= − 3x√

1 − 3x2

5. F(t) =
(

2 + 3

t

)−10

F ′(t) = −10

(
2 + 3

t

)−11 −3

t2
= 30

t2

(
2 + 3

t

)−11

6. z = (1 + x2/3)3/2

z′ = 3
2 (1 + x2/3)1/2( 2

3 x−1/3) = x−1/3(1 + x2/3)1/2

7. y = 3

5 − 4x

y ′ = − 3

(5 − 4x)2 (−4) = 12

(5 − 4x)2

8. y = (1 − 2t2)−3/2

y ′ = − 3
2 (1 − 2t2)−5/2(−4t) = 6t (1 − 2t2)−5/2

9. y = |1 − x2|, y ′ = −2xsgn (1 − x2) = 2x3 − 2x

|1 − x2|
10. f (t) = |2 + t3|

f ′(t) = [sgn (2 + t3)](3t2) = 3t2(2 + t3)

|2 + t3|
11. y = 4x + |4x − 1|

y ′ = 4 + 4(sgn (4x − 1))

=
{

8 if x > 1
4

0 if x < 1
4

12. y = (2 + |x |3)1/3

y ′ = 1
3 (2 + |x |3)−2/3(3|x |2)sgn (x)

= |x |2(2 + |x |3)−2/3
(

x

|x |
)

= x |x |(2 + |x |3)−2/3

13. y = 1

2 + √
3x + 4

y ′ = − 1(
2 + √

3x + 4
)2

(
3

2
√

3x + 4

)

= − 3

2
√

3x + 4
(

2 + √
3x + 4

)2

14. f (x) =
(

1 +
√

x − 2

3

)4

f ′(x) = 4

(
1 +

√
x − 2

3

)3
(

1

2

√
3

x − 2

)(
1

3

)

= 2

3

√
3

x − 2

(
1 +

√
x − 2

3

)3

15. z =
(

u + 1

u − 1

)−5/3

dz

du
= −5

3

(
u + 1

u − 1

)−8/3 (
1 − 1

(u − 1)2

)

= −5

3

(
1 − 1

(u − 1)2

)(
u + 1

u − 1

)−8/3

16. y = x5
√

3 + x6

(4 + x2)3

y ′ = 1

(4 + x2)6

(
(4 + x2)3

[
5x4

√
3 + x6 + x5

(
3x5

√
3 + x6

)]

− x5
√

3 + x6
[
3(4 + x2)2(2x)

])

=
(4 + x2)

[
5x4(3 + x6) + 3x10

]
− x5(3 + x6)(6x)

(4 + x2)4
√

3 + x6

= 60x4 − 3x6 + 32x10 + 2x12

(4 + x2)4
√

3 + x6

17.
y

t−21/3

y=|2+t3 |

18.
y

x

(
1
4 ,1
)

slope 8

slope 0

y=4x+|4x−1|

19.
d

dx
x1/4 = d

dx

√√
x = 1

2
√√

x
× 1

2
√

x
= 1

4
x−3/4

20.
d

dx
x3/4 = d

dx

√
x
√

x = 1

2
√

x
√

x

(√
x + x

2
√

x

)
= 3

4
x−1/4

21.
d

dx
x3/2 = d

dx

√
x3 = 1

2
√

x3
(3x2) = 3

2
x1/2

22.
d

dt
f (2t + 3) = 2 f ′(2t + 3)

23.
d

dx
f (5x − x2) = (5 − 2x) f ′(5x − x2)
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24.
d

dx

[
f

(
2

x

)]3

= 3

[
f

(
2

x

)]2

f ′
(

2

x

)(−2

x2

)

= − 2

x2
f ′
(

2

x

)[
f

(
2

x

)]2

25.
d

dx

√
3 + 2 f (x) = 2 f ′(x)

2
√

3 + 2 f (x)
= f ′(x)√

3 + 2 f (x)

26.
d

dt
f (

√
3 + 2t) = f ′(

√
3 + 2t)

2

2
√

3 + 2t

= 1√
3 + 2t

f ′(
√

3 + 2t)

27.
d

dx
f (3 + 2

√
x) = 1√

x
f ′(3 + 2

√
x)

28.
d

dt
f

(
2 f
(

3 f (x)
))

= f ′
(

2 f
(

3 f (x)
))

· 2 f ′(3 f (x)
)

· 3 f ′(x)

= 6 f ′(x) f ′(3 f (x)
)

f ′
(

2 f
(

3 f (x)
))

29.
d

dx
f
(

2 − 3 f (4 − 5t)
)

= f ′(2 − 3 f (4 − 5t)
)(

−3 f ′(4 − 5t)
)
(−5)

= 15 f ′(4 − 5t) f ′(2 − 3 f (4 − 5t)
)

30.
d

dx

(√
x2 − 1

x2 + 1

) ∣∣∣∣
x=−2

=
(x2 + 1)

x√
x2 − 1

−
√

x2 − 1(2x)

(x2 + 1)2

∣∣∣∣
x=−2

=
(5)

(
− 2√

3

)
− √

3(−4)

25
= 2

25
√

3

31.
d

dt

√
3t − 7

∣∣∣∣
t=3

= 3

2
√

3t − 7

∣∣∣∣
t=3

= 3

2
√

2

32. f (x) = 1√
2x + 1

f ′(4) = − 1

(2x + 1)3/2

∣∣∣∣
x=4

= − 1

27

33. y = (x3 + 9)17/2

y ′
∣∣∣∣
x=−2

= 17

2
(x3 + 9)15/23x2

∣∣∣∣
x=−2

= 17

2
(12) = 102

34. F(x) = (1 + x)(2 + x)2(3 + x)3(4 + x)4

F ′(x) = (2 + x)2(3 + x)3(4 + x)4+
2(1 + x)(2 + x)(3 + x)3(4 + x)4+
3(1 + x)(2 + x)2(3 + x)2(4 + x)4+
4(1 + x)(2 + x)2(3 + x)3(4 + x)3

F ′(0) = (22)(33)(44) + 2(1)(2)(33)(44)+
3(1)(22)(32)(44) + 4(1)(22)(33)(43)

= 4(22 · 33 · 44) = 110, 592

35. y =
(

x +
(
(3x)5 − 2

)−1/2)−6

y ′ = −6

(
x +

(
(3x)5 − 2

)−1/2
)−7

×
(

1 − 1

2

(
(3x)5 − 2

)−3/2(
5(3x)43

))

= −6

(
1 − 15

2
(3x)4

(
(3x)5 − 2

)−3/2
)

×
(

x +
(
(3x)5 − 2

)−1/2
)−7

36. The slope of y = √
1 + 2x2 at x = 2 is

dy

dx

∣∣∣∣
x=2

= 4x

2
√

1 + 2x2

∣∣∣∣
x=2

= 4

3
.

Thus, the equation of the tangent line at (2, 3) is
y = 3 + 4

3 (x − 2), or y = 4
3 x + 1

3 .

37. Slope of y = (1 + x2/3)3/2 at x = −1 is
3

2
(1 + x2/3)1/2

(
2

3
x−1/3

)∣∣∣∣
x=−1

= −√
2

The tangent line at (−1, 23/2) has equation
y = 23/2 − √

2(x + 1).

38. The slope of y = (ax + b)8 at x = b

a
is

dy

dx

∣∣∣∣
x=b/a

= 8a(ax + b)7
∣∣∣∣
x=b/a

= 1024ab7.

The equation of the tangent line at x = b

a
and

y = (2b)8 = 256b8 is

y = 256b8+1024ab7
(

x − b

a

)
, or y = 210ab7x−3×28b8.

39. Slope of y = 1/(x2 − x + 3)3/2 at x = −2 is

−3

2
(x2−x+3)−5/2(2x−1)

∣∣∣∣
x=−2

= −3

2
(9−5/2)(−5) = 5

162

The tangent line at (−2,
1

27
) has equation

y = 1

27
+ 5

162
(x + 2).
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40. Given that f (x) = (x − a)m (x − b)n then

f ′(x) = m(x − a)m−1(x − b)n + n(x − a)m (x − b)n−1

= (x − a)m−1(x − b)n−1(mx − mb + nx − na).

If x �= a and x �= b, then f ′(x) = 0 if and only if

mx − mb + nx − na = 0,

which is equivalent to

x = n

m + n
a + m

m + n
b.

This point lies lies between a and b.

41. x(x4 + 2x2 − 2)/(x2 + 1)5/2

42. 4(7x4 − 49x2 + 54)/x7

43. 857, 592

44. 5/8

45. The Chain Rule does not enable you to calculate the
derivatives of |x |2 and |x2| at x = 0 directly as a compo-
sition of two functions, one of which is |x |, because |x |
is not differentiable at x = 0. However, |x |2 = x2 and
|x2| = x2, so both functions are differentiable at x = 0
and have derivative 0 there.

46. It may happen that k = g(x + h) − g(x) = 0 for values
of h arbitrarily close to 0 so that the division by k in the
“proof” is not justified.

Section 2.5 Derivatives of Trigonometric
Functions (page 123)

1.
d

dx
csc x = d

dx

1

sin x
= − cos x

sin2 x
= − csc x cot x

2.
d

dx
cot x = d

dx

cos x

sin x
= − cos2 x − sin2 x

sin2 x
= −csc2x

3. y = cos 3x, y ′ = −3 sin 3x

4. y = sin
x

5
, y ′ = 1

5
cos

x

5
.

5. y = tan πx, y ′ = π sec2 πx

6. y = sec ax, y ′ = a sec ax tan ax .

7. y = cot(4 − 3x), y ′ = 3 csc2(4 − 3x)

8.
d

dx
sin

π − x

3
= −1

3
cos

π − x

3

9. f (x) = cos(s − r x), f ′(x) = r sin(s − r x)

10. y = sin(Ax + B), y ′ = A cos(Ax + B)

11.
d

dx
sin(πx2) = 2πx cos(πx2)

12.
d

dx
cos(

√
x) = − 1

2
√

x
sin(

√
x)

13. y = √
1 + cos x, y ′ = − sin x

2
√

1 + cos x

14.
d

dx
sin(2 cos x) = cos(2 cos x)(−2 sin x)

= −2 sin x cos(2 cos x)

15. f (x) = cos(x + sin x)

f ′(x) = −(1 + cos x) sin(x + sin x)

16. g(θ) = tan(θ sin θ)

g′(θ) = (sin θ + θ cos θ) sec2(θ sin θ)

17. u = sin3(πx/2), u′ = 3π

2
cos(πx/2) sin2(πx/2)

18. y = sec(1/x), y ′ = −(1/x2) sec(1/x) tan(1/x)

19. F(t) = sin at cos at (= 1

2
sin 2at)

F ′(t) = a cos at cos at − a sin at sin at

( = a cos 2at)

20. G(θ) = sin aθ

cos bθ

G ′(θ) = a cos bθ cos aθ + b sin aθ sin bθ

cos2 bθ
.

21.
d

dx

(
sin(2x) − cos(2x)

)
= 2 cos(2x) + 2 sin(2x)

22.
d

dx
(cos2 x − sin2 x) = d

dx
cos(2x)

= −2 sin(2x) = −4 sin x cos x

23.
d

dx
(tan x + cot x) = sec2 x − csc2 x

24.
d

dx
(sec x − csc x) = sec x tan x + csc x cot x

25.
d

dx
(tan x − x) = sec2 x − 1 = tan2 x

26.
d

dx
tan(3x) cot(3x) = d

dx
(1) = 0

27.
d

dt
(t cos t − sin t) = cos t − t sin t − cos t = −t sin t

28.
d

dt
(t sin t + cos t) = sin t + t cos t − sin t = t cos t

29.
d

dx

sin x

1 + cos x
= (1 + cos x)(cos x) − sin(x)(− sin x)

(1 + cos x)2

= cos x + 1

(1 + cos x)2 = 1

1 + cos x

30.
d

dx

cos x

1 + sin x
= (1 + sin x)(− sin x) − cos(x)(cos x)

(1 + sin x)2

= − sin x − 1

(1 + sin x)2 = −1

1 + sin x
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31.
d

dx
x2 cos(3x) = 2x cos(3x) − 3x2 sin(3x)

32. g(t) = √
(sin t)/t

g′(t) = 1

2
√

(sin t)/t
× t cos t − sin t

t2

= t cos t − sin t

2t3/2
√

sin t

33. v = sec(x 2) tan(x2)

v′ = 2x sec(x2) tan2(x2) + 2x sec3(x2)

34. z = sin
√

x

1 + cos
√

x

z′ = (1 + cos
√

x)(cos
√

x/2
√

x) − (sin
√

x)(− sin
√

x/2
√

x)

(1 + cos
√

x)2

= 1 + cos
√

x

2
√

x(1 + cos
√

x)2
= 1

2
√

x(1 + cos
√

x)

35.
d

dt
sin(cos(tan t)) = −(sec2 t)(sin(tan t)) cos(cos(tan t))

36. f (s) = cos(s + cos(s + cos s))

f ′(s) = −[sin(s + cos(s + cos s))]

× [1 − (sin(s + cos s))(1 − sin s)]

37. Differentiate both sides of sin(2x) = 2 sin x cos x and
divide by 2 to get cos(2x) = cos2 x − sin2 x .

38. Differentiate both sides of cos(2x) = cos2 x − sin2 x and
divide by −2 to get sin(2x) = 2 sin x cos x .

39. Slope of y = sin x at (π, 0) is cos π = −1. Therefore
the tangent and normal lines to y = sin x at (π, 0) have
equations y = −(x − π) and y = x − π , respectively.

40. The slope of y = tan(2x) at (0, 0) is 2 sec2(0) = 2.
Therefore the tangent and normal lines to y = tan(2x) at
(0, 0) have equations y = 2x and y = −x/2, respectively.

41. The slope of y = √
2 cos(x/4) at (π, 1) is

−(
√

2/4) sin(π/4) = −1/4. Therefore the tangent and
normal lines to y = √

2 cos(x/4) at (π, 1) have equations
y = 1 − (x − π)/4 and y = 1 + 4(x − π), respectively.

42. The slope of y = cos2 x at (π/3, 1/4) is
− sin(2π/3) = −√

3/2. Therefore the tangent and normal
lines to y = tan(2x) at (0, 0) have equations
y = (1/4) − (

√
3/2)(x − (π/3)) and

y = (1/4) + (2/
√

3)(x − (π/3)), respectively.

43. Slope of y = sin(x◦) = sin
( πx

180

)
is

y ′ = π

180
cos

( πx

180

)
. At x = 45 the tangent line has

equation

y = 1√
2

+ π

180
√

2
(x − 45).

44. For y = sec (x◦) = sec
( xπ

180

)
we have

dy

dx
= π

180
sec

( xπ

180

)
tan

( xπ

180

)
.

At x = 60 the slope is
π

180
(2

√
3) = π

√
3

90
.

Thus, the normal line has slope − 90

π
√

3
and has equation

y = 2 − 90

π
√

3
(x − 60).

45. The slope of y = tan x at x = a is sec2 a. The tan-
gent there is parallel to y = 2x if sec2 a = 2, or
cos a = ±1/

√
2. The only solutions in (−π/2, π/2)

are a = ±π/4. The corresponding points on the graph
are (π/4, 1) and (−π/4, 1).

46. The slope of y = tan(2x) at x = a is 2 sec2(2a). The
tangent there is normal to y = −x/8 if 2 sec2(2a) = 8, or
cos(2a) = ±1/2. The only solutions in (−π/4, π/4) are
a = ±π/6. The corresponding points on the graph are
(π/6,

√
3) and (−π/6,−√

3).

47.
d

dx
sin x = cos x = 0 at odd multiples of π/2.

d

dx
cos x = − sin x = 0 at multiples of π .

d

dx
sec x = sec x tan x = 0 at multiples of π .

d

dx
csc x = − csc x cot x = 0 at odd multiples of π/2.

Thus each of these functions has horizontal tangents at
infinitely many points on its graph.

48.
d

dx
tan x = sec2 x = 0 nowhere.

d

dx
cot x = − csc2 x = 0 nowhere.

Thus neither of these functions has a horizontal tangent.

49. y = x + sin x has a horizontal tangent at x = π because
dy/dx = 1 + cos x = 0 there.

50. y = 2x + sin x has no horizontal tangents because
dy/dx = 2 + cos x ≥ 1 everywhere.

51. y = x + 2 sin x has horizontal tangents at x = 2π/3 and
x = 4π/3 because dy/dx = 1 + 2 cos x = 0 at those
points.

52. y = x + 2 cos x has horizontal tangents at x = π/6 and
x = 5π/6 because dy/dx = 1 − 2 sin x = 0 at those
points.

53. lim
x→0

tan(2x)

x
= lim

x→0

sin(2x)

2x

2

cos(2x)
= 1 × 2 = 2

54. lim
x→π

sec(1 + cos x) = sec(1 − 1) = sec 0 = 1

55. lim
x→0

x2 csc x cot x = lim
x→0

( x

sin x

)2
cos x = 12 × 1 = 1
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56. lim
x→0

cos

(
π − π cos2 x

x2

)
= lim

x→0
cos π

( sin x

x

)2 = cos π = −1

57. lim
h→0

1 − cos h

h2 = lim
h→0

2 sin2(h/2)

h2 = lim
h→0

1

2

(
sin(h/2)

h/2

)2

= 1

2

58. f will be differentiable at x = 0 if

2 sin 0 + 3 cos 0 = b, and

d

dx
(2 sin x + 3 cos x)

∣∣∣∣
x=0

= a.

Thus we need b = 3 and a = 2.

59. There are infinitely many lines through the origin that
are tangent to y = cos x . The two with largest slope are
shown in the figure.

y

x

y = cos x

−π π 2π

Fig. 2.5.59

The tangent to y = cos x at x = a has equation
y = cos a − (sin a)(x − a). This line passes through
the origin if cos a = −a sin a. We use a calculator with
a “solve” function to find solutions of this equation near
a = −π and a = 2π as suggested in the figure. The
solutions are a ≈ −2.798386 and a ≈ 6.121250. The
slopes of the corresponding tangents are given by − sin a,
so they are 0.336508 and 0.161228 to six decimal places.

60. 1

61. −√
2π + 3(2π3/2 − 4π + 3)/π

62. a) As suggested by the figure in the problem,
the square of the length of chord AP is
(1 − cos θ)2 + (0 − sin θ)2, and the square of the
length of arc AP is θ2. Hence

(1 + cos θ)2 + sin2 θ < θ2,

and, since squares cannot be negative, each term in
the sum on the left is less than θ2. Therefore

0 ≤ |1 − cos θ | < |θ |, 0 ≤ | sin θ | < |θ |.

Since limθ→0 |θ | = 0, the squeeze theorem implies
that

lim
θ→0

1 − cos θ = 0, lim
θ→0

sin θ = 0.

From the first of these, limθ→0 cos θ = 1.

b) Using the result of (a) and the addition formulas for
cosine and sine we obtain

lim
h→0

cos(θ0 + h) = lim
h→0

(cos θ0 cos h − sin θ0 sin h) = cos θ0

lim
h→0

sin(θ0 + h) = lim
h→0

(sin θ0 cos h + cos θ0 sin h) = sin θ0.

This says that cosine and sine are continuous at any
point θ0.

Section 2.6 The Mean-Value Theorem
(page 131)

1. f (x) = x2, f ′(x) = 2x

b + a = b2 − a2

b − a
= f (b) − f (a)

b − a

= f ′(c) = 2c ⇒ c = b + a

2

2. If f (x) = 1

x
, and f ′(x) = − 1

x2
then

f (2) − f (1)

2 − 1
= 1

2
− 1 = −1

2
= − 1

c2 = f ′(c)

where c = √
2 lies between 1 and 2.

3. f (x) = x3 − 3x + 1, f ′(x) = 3x2 − 3, a = −2, b = 2
f (b) − f (a)

b − a
= f (2) − f (−2)

4

= 8 − 6 + 1 − (−8 + 6 + 1)

4

= 4

4
= 1

f ′(c) = 3c2 − 3

3c2 − 3 = 1 ⇒ 3c2 = 4 ⇒ c = ± 2√
3

(Both points will be in (−2, 2).)

4. If f (x) = cos x + (x2/2), then f ′(x) = x − sin x > 0
for x > 0. By the MVT, if x > 0, then
f (x) − f (0) = f ′(c)(x − 0) for some c > 0, so
f (x) > f (0) = 1. Thus cos x + (x2/2) > 1 and
cos x > 1 − (x2/2) for x > 0. Since both sides of
the inequality are even functions, it must hold for x < 0
as well.

5. Let f (x) = tan x . If 0 < x < π/2, then by the MVT
f (x) − f (0) = f ′(c)(x − 0) for some c in (0, π/2).
Thus tan x = x sec2 c > x , since secc > 1.

6. Let f (x) = (1 + x)r − 1 − r x where r > 1.
Then f ′(x) = r(1 + x)r−1 − r .
If −1 ≤ x < 0 then f ′(x) < 0; if x > 0, then f ′(x) > 0.
Thus f (x) > f (0) = 0 if −1 ≤ x < 0 or x > 0.
Thus (1 + x)r > 1 + r x if −1 ≤ x < 0 or x > 0.
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7. Let f (x) = (1 + x)r where 0 < r < 1. Thus,
f ′(x) = r(1 + x)r−1. By the Mean-Value Theorem, for
x ≥ −1, and x �= 0,

f (x) − f (0)

x − 0
= f ′(c)

⇒ (1 − x)r − 1

x
= r(1 + c)r−1

for some c between 0 and x . Thus,
(1 + x)r = 1 + r x(1 + c)r−1.
If −1 ≤ x < 0, then c < 0 and 0 < 1 + c < 1. Hence

(1 + c)r−1 > 1 (since r − 1 < 0),

r x(1 + c)r−1 < r x (since x < 0).

Hence, (1 + x)r < 1 + r x .
If x > 0, then

c > 0

1 + c > 1

(1 + c)r−1 < 1

r x(1 + c)r−1 < r x .

Hence, (1 + x)r < 1 + r x in this case also.
Hence, (1 + x)r < 1 + r x for either −1 ≤ x < 0 or x > 0.

8. If f (x) = x2 + 2x + 2 then f ′(x) = 2x + 2 = 2(x + 1).
Evidently, f ′(x) > 0 if x > −1 and f ′(x) < 0 if x < −1.
Therefore, f is increasing on (−1,∞) and decreasing on
(−∞, −1).

9. f (x) = x3 − 4x + 1
f ′(x) = 3x2 − 4

f ′(x) > 0 if |x | >
2√
3

f ′(x) < 0 if |x | <
2√
3

f is increasing on (−∞,− 2√
3
) and (

2√
3
,∞).

f is decreasing on (− 2√
3
,

2√
3
).

10. If f (x) = x3 + 4x + 1, then f ′(x) = 3x2 + 4. Since
f ′(x) > 0 for all real x , hence f (x) is increasing on the
whole real line, i.e., on (−∞,∞).

11. f (x) = (x2 − 4)2

f ′(x) = 2x2(x2 − 4) = 4x(x − 2)(x + 2)

f ′(x) > 0 if x > 2 or −2 < x < 0
f ′(x) < 0 if x < −2 or 0 < x < 2
f is increasing on (−2, 0) and (2, ∞).
f is decreasing on (−∞,−2) and (0, 2).

12. If f (x) = 1

x2 + 1
then f ′(x) = −2x

(x2 + 1)2 . Evidently,

f ′(x) > 0 if x < 0 and f ′(x) < 0 if x > 0. Therefore, f
is increasing on (−∞, 0) and decreasing on (0, ∞).

13. f (x) = x3(5 − x)2

f ′(x) = 3x2(5 − x)2 + 2x3(5 − x)(−1)

= x2(5 − x)(15 − 5x)

= 5x2(5 − x)(3 − x)

f ′(x) > 0 if x < 0, 0 < x < 3, or x > 5
f ′(x) < 0 if 3 < x < 5
f is increasing on (−∞, 3) and (5, ∞).
f is decreasing on (3, 5).

14. If f (x) = x − 2 sin x , then f ′(x) = 1 − 2 cos x = 0 at
x = ±π/3 + 2nπ for n = 0,±1,±2, . . ..
f is decreasing on (−π/3 + 2nπ,π + 2nπ).
f is increasing on (π/3 + 2nπ,−π/3 + 2(n + 1)π) for
integers n.

15. If f (x) = x + sin x , then f ′(x) = 1 + cos x ≥ 0
f ′(x) = 0 only at isolated points x = ±π, ±3π, ....
Hence f is increasing everywhere.

16. If x1 < x2 < . . . < xn belong to I , and f (xi ) = 0,
(1 ≤ i ≤ n), then there exists yi in (xi , xi+1) such that
f ′(yi ) = 0, (1 ≤ i ≤ n − 1) by MVT.

17. There is no guarantee that the MVT applications for f
and g yield the same c.

18. For x �= 0, we have f ′(x) = 2x sin(1/x) − cos(1/x)

which has no limit as x → 0. However,
f ′(0) = limh→0 f (h)/h = limh→0 h sin(1/h) = 0
does exist even though f ′ cannot be continuous at 0.

19. If f ′ exists on [a, b] and f ′(a) �= f ′(b), let us assume,
without loss of generality, that f ′(a) > k > f ′(b). If
g(x) = f (x) − kx on [a, b], then g is continuous on
[a, b] because f , having a derivative, must be contin-
uous there. By the Max-Min Theorem, g must have a
maximum value (and a minimum value) on that interval.
Suppose the maximum value occurs at c. Since g′(a) > 0
we must have c > a; since g′(b) < 0 we must have
c < b. By Theorem 14, we must have g′(c) = 0 and so
f ′(c) = k. Thus f ′ takes on the (arbitrary) intermediate
value k.

20. f (x) =
{

x + 2x2 sin(1/x) if x �= 0
0 if x = 0.

a) f ′(0) = lim
h→0

f (0 + h) − f (0)

h

= lim
h→0

h + 2h2 sin(1/h)

h
= lim

h→0
(1 + 2h sin(1/h) = 1,

because |2h sin(1/h)| ≤ 2|h| → 0 as h → 0.

b) For x �= 0, we have

f ′(x) = 1 + 4x sin(1/x) − 2 cos(1/x).
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There are numbers x arbitrarily close to 0 where
f ′(x) = −1; namely, the numbers x = ±1/(2nπ),
where n = 1, 2, 3, . . . . Since f ′(x) is continuous at
every x �= 0, it is negative in a small interval about
every such number. Thus f cannot be increasing on
any interval containing x = 0.

Section 2.7 Using Derivatives (page 136)

1. If y = x2, then �y ≈ 2x �x . If �x = (2/100)x , then
�y ≈ (4/100)x2 = (4/100)y, so y increases by about
4%.

2. If y = 1/x , then �y ≈ (−1/x2)�x . If �x = (2/100)x ,
then �y ≈ (−2/100)/x = (−2/100)y, so y decreases by
about 2%.

3. If y = 1/x2, then �y ≈ (−2/x3)�x . If �x = (2/100)x ,
then �y ≈ (−4/100)/x2 = (−4/100)y, so y decreases by
about 4%.

4. If y = x3, then �y ≈ 3x2 �x . If �x = (2/100)x , then
�y ≈ (6/100)x3 = (6/100)y, so y increases by about
6%.

5. If y = √
x , then �y ≈ (1/2

√
x) �x . If �x = (2/100)x ,

then �y ≈ (1/100)
√

x = (1/100)y, so y increases by
about 1%.

6. If y = x−2/3, then �y ≈ (−2/3)x−5/3 �x . If
�x = (2/100)x , then �y ≈ (−4/300)x2/3 = (−4/300)y,
so y decreases by about 1.33%.

7. If V = 4
3πr3, then �V = 4πr2 �r . If r increases by

2%, then �r = 2r/100 and �V ≈ 8πr3/100. Therefore
�V/V ≈ 6/100. The volume increases by about 6%.

8. If V is the volume and x is the edge length of the cube
then V = x3. Thus �V ≈ 3x2 �x . �V = −(6/100)V ,
then −6x3/100 = 3x2 �x , so �x ≈ −(2/100)x . The
edge of the cube decreases by about 2%.

9. Rate change of Area A with respect to side s, where

A = s2, is
d A

ds
= 2s. When s = 4 ft, the area is changing

at rate 8 ft2/ft.

10. If A = s2, then s = √
A and ds/d A = 1/(2

√
A).

If A = 16 m2, then the side is changing at rate
ds/d A = 1/8 m/m2.

11. The diameter D and area A of a circle are related by
D = 2

√
A/π . The rate of change of diameter with re-

spect to area is d D/d A = √
1/(π A) units per square

unit.

12. Since A = π D2/4, the rate of change of area with re-
spect to diameter is d A/d D = π D/2 square units per
unit.

13. Rate of change of V = 4

3
πr3 with respect to radius r is

dV

dr
= 4πr2. When r = 2 m, this rate of change is 16π

m3/m.

14. Let A be the area of a square, s be its side length and L
be its diagonal. Then, L2 = s2 + s2 = 2s2 and

A = s2 = 1
2 L2, so

d A

d L
= L . Thus, the rate of change of

the area of a square with respect to its diagonal L is L .

15. If the radius of the circle is r then C = 2πr and
A = πr 2.

Thus C = 2π

√
A

π
= 2

√
π

√
A.

Rate of change of C with respect to A is
dC

d A
=

√
π√
A

= 1

r
.

16. Let s be the side length and V be the volume of a cube.

Then V = s3 ⇒ s = V 1/3 and
ds

dV
= 1

3 V −2/3. Hence,

the rate of change of the side length of a cube with re-
spect to its volume V is 1

3 V −2/3.

17. If f (x) = x2 − 4, then f ′(x) = 2x . The critical point of
f is x = 0. f is increasing on (0, ∞) and decreasing on
(−∞, 0).

18. If f (x) = x3 − 12x + 1, then f ′(x) = 3(x2 − 4).
The critical points of f are x = ±2. f is increasing on
(−∞,−2) and (2, ∞) where f ′(x) > 0, and is decreas-
ing on (−2, 2) where f ′(x) < 0.

19. If y = x3 + 6x2, then y′ = 3x2 + 12x = 3x(x + 4).
The critical points of y are x = 0 and x = −4. y is
increasing on (−∞,−4) and (0,∞) where y′ > 0, and is
decreasing on (−4, 0) where y′ < 0.

20. If y = 1− x − x5, then y′ = −1−5x4 < 0 for all x . Thus
y has no critical points and is decreasing on the whole
real line.

21. f (x) = x3 is increasing on (−∞, 0) and (0,∞) because
f ′(x) = 3x2 > 0 there. But f (x1) < f (0) = 0 < f (x2)

whenever x1 < 0 < x2, so f is also increasing on inter-
vals containing the origin.

22. If f (x) = x + 2 sin x , then f ′(x) = 1 + 2 cos x > 0
if cos x > −1/2. Thus f is increasing on the intervals
(−(4π/3) + 2nπ, (4π/3) + 2nπ) where n is any integer.

23. CPs x = 0.535898 and x = 7.464102

24. CPs x = −1.366025 and x = 0.366025

25. CPs x = −0.518784 and x = 0

26. CP x = 0.521350

27. Volume in tank is V (t) = 350(20 − t)2 L at t min.
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a) At t = 5, water volume is changing at rate

dV

dt

∣∣∣∣
t=5

= −700(20 − t)

∣∣∣∣
t=5

= −10, 500.

Water is draining out at 10,500 L/min at that time.
At t = 15, water volume is changing at rate

dV

dt

∣∣∣∣
t=15

= −700(20 − t)

∣∣∣∣
t=15

= −3, 500.

Water is draining out at 3,500 L/min at that time.

b) Average rate of change between t = 5 and t = 15 is

V (15) − V (5)

15 − 5
= 350 × (25 − 225)

10
= −7, 000.

The average rate of draining is 7,000 L/min over that
interval.

28. Flow rate F = kr 4, so �F ≈ 4kr 3 �r . If �F = F/10,
then

�r ≈ F

40kr3 = kr4

40kr3 = 0.025r.

The flow rate will increase by 10% if the radius is in-
creased by about 2.5%.

29. F = k/r 2 implies that d F/dr = −2k/r3. Since
d F/dr = 1 pound/mi when r = 4, 000 mi, we have
2k = 4, 0003. If r = 8, 000, we have
d F/dr = −(4, 000/8, 000)3 = −1/8. At r = 8, 000
mi F decreases with respect to r at a rate of 1/8
pounds/mi.

30. If price = $p, then revenue is $R = 4, 000p − 10p2.

a) Sensitivity of R to p is d R/dp = 4, 000 − 20p. If
p = 100, 200, and 300, this sensitivity is 2,000 $/$,
0 $/$, and −2, 000 $/$ respectively.

b) The distributor should charge $200. This maximizes
the revenue.

31. Cost is $C(x) = 8, 000 + 400x − 0.5x2 if x units are
manufactured.

a) Marginal cost if x = 100 is
C ′(100) = 400 − 100 = $300.

b) C(101) − C(100) = 43, 299.50 − 43, 000 = $299.50
which is approximately C′(100).

32. Daily profit if production is x sheets per day is $P(x)

where
P(x) = 8x − 0.005x2 − 1, 000.

a) Marginal profit P′(x) = 8 − 0.01x . This is positive
if x < 800 and negative if x > 800.

b) To maximize daily profit, production should be 800
sheets/day.

33. C = 80, 000

n
+ 4n + n2

100
dC

dn
= −80, 000

n2 + 4 + n

50
.

(a) n = 100,
dC

dn
= −2. Thus, the marginal cost of

production is −$2.

(b) n = 300,
dC

dn
= 82

9
≈ 9.11. Thus, the marginal cost

of production is approximately $9.11.

34. Daily profit P = 13x − Cx = 13x − 10x − 20 − x2

1000

= 3x − 20 − x2

1000
Graph of P is a parabola opening downward. P will be
maximum where the slope is zero:

0 = d P

dx
= 3 − 2x

1000
so x = 1500

Should extract 1500 tonnes of ore per day to maximize
profit.

35. One of the components comprising C(x) is usually a
fixed cost, $S, for setting up the manufacturing opera-
tion. On a per item basis, this fixed cost $S/x , decreases
as the number x of items produced increases, especially
when x is small. However, for large x other components
of the total cost may increase on a per unit basis, for
instance labour costs when overtime is required or main-
tenance costs for machinery when it is over used.

Let the average cost be A(x) = C(x)

x
. The minimal av-

erage cost occurs at point where the graph of A(x) has a
horizontal tangent:

0 = d A

dx
= xC ′(x) − C(x)

x2 .

Hence, xC ′(x) − C(x) = 0 ⇒ C ′(x) = C(x)

x
= A(x).

Thus the marginal cost C ′(x) equals the average cost at
the minimizing value of x .

36. If y = Cp−r , then the elasticity of y is

− p

y

dy

dp
= − p

Cp−r
(−r)Cp−r−1 = r.
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Section 2.8 Higher-Order Derivatives
(page 140)

1. y = (3 − 2x)7

y ′ = −14(3 − 2x)6

y ′′ = 168(3 − 2x)5

y ′′′ = −1680(3 − 2x)4

2. y = x2 − 1

x

y ′ = 2x + 1

x2

y ′′ = 2 − 2

x3

y ′′′ = 6

x4

3. y = 6

(x − 1)2
= 6(x − 1)−2

y ′ = −12(x − 1)−3

y ′′ = 36(x − 1)−4

y ′′′ = −144(x − 1)−5

4. y = √
ax + b

y ′ = a

2
√

ax + b

y ′′ = − a2

4(ax + b)3/2

y ′′′ = 3a3

8(ax + b)5/2

5. y = x1/3 − x−1/3

y ′ = 1

3
x−2/3 + 1

3
x−4/3

y ′′ = −2

9
x−5/3 − 4

9
x−7/3

y ′′′ = 10

27
x−8/3 + 28

27
x−10/3

6. y = x10 + 2x8

y ′ = 10x9 + 16x7

y ′′ = 90x8 + 112x6

y ′′′ = 720x7 + 672x5

7. y = (x2 + 3)
√

x = x5/2 + 3x1/2

y ′ = 5

2
x3/2 + 3

2
x−1/2

y ′′ = 15

4
x1/2 − 3

4
x−3/2

y ′′′ = 15

8
x−1/2 + 9

8
x−5/2

8. y = x − 1

x + 1

y ′ = 2

(x + 1)2

y ′′ = − 4

(x + 1)3

y ′′′ = 12

(x + 1)4

9. y = tan x

y ′ = sec2 x

y ′′ = 2 sec2 x tan x

y ′′′ = 2 sec4 x + 4 sec2 x tan2 x

10. y = sec x

y ′ = sec x tan x

y ′′ = sec x tan2 x + sec3 x

y ′′′ = sec x tan3 x + 5 sec3 x tan x

11. y = cos(x 2)

y ′ = −2x sin(x2)

y ′′ = −2 sin(x2) − 4x2 cos(x2)

y ′′′ = −12x cos(x2) + 8x3 sin(x2)

12. y = sin x

x

y ′ = cos x

x
− sin x

x2

y ′′ = (2 − x2) sin x

x3
− 2 cos x

x2

y ′′′ = (6 − x2) cos x

x3 + 3(x2 − 2) sin x

x4

13. f (x) = 1

x
= x−1

f ′(x) = −x−2

f ′′(x) = 2x−3

f ′′′(x) = −3!x−4

f (4)(x) = 4!x−5

Guess: f (n)(x) = (−1)nn!x−(n+1) (∗)

Proof: (*) is valid for n = 1 (and 2, 3, 4).
Assume f (k)(x) = (−1)kk!x−(k+1) for some k ≥ 1

Then f (k+1)(x) = (−1)k k!
(
−(k + 1)

)
x−(k+1)−1

= (−1)k+1(k + 1)!x−((k+1)+1) which is (*) for n = k + 1.
Therefore, (*) holds for n = 1, 2, 3, . . . by induction.

14. f (x) = 1

x2 = x−2

f ′(x) = −2x−3

f ′′(x) = −2(−3)x−4 = 3!x−4

f (3)(x) = −2(−3)(−4)x−5 = −4!x−5

Conjecture:

f (n)(x) = (−1)n(n + 1)!x−(n+2) for n = 1, 2, 3, . . .

Proof: Evidently, the above formula holds for n = 1, 2
and 3. Assume it holds for n = k,
i.e., f (k)(x) = (−1)k (k + 1)!x−(k+2) . Then

f (k+1)(x) = d

dx
f (k)(x)

= (−1)k(k + 1)![(−1)(k + 2)]x−(k+2)−1

= (−1)k+1(k + 2)!x−[(k+1)+2] .

Thus, the formula is also true for n = k + 1. Hence it is
true for n = 1, 2, 3, . . . by induction.

15. f (x) = 1

2 − x
= (2 − x)−1

f ′(x) = +(2 − x)−2

f ′′(x) = 2(2 − x)−3

f ′′′(x) = +3!(2 − x)−4

Guess: f (n)(x) = n!(2 − x)−(n+1) (∗)

Proof: (*) holds for n = 1, 2, 3.
Assume f (k)(x) = k!(2 − x)−(k+1) (i.e., (*) holds for
n = k)

Then f (k+1)(x) = k!
(
−(k + 1)(2 − x)−(k+1)−1(−1)

)

= (k + 1)!(2 − x)−((k+1)+1).
Thus (*) holds for n = k + 1 if it holds for k.
Therefore, (*) holds for n = 1, 2, 3, . . . by induction.
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16. f (x) = √
x = x1/2

f ′(x) = 1
2 x−1/2

f ′′(x) = 1
2 (− 1

2 )x−3/2

f ′′′(x) = 1
2 (− 1

2 )(− 3
2 )x−5/2

f (4)(x) = 1
2 (− 1

2 )(− 3
2 )(− 5

2 )x−7/2

Conjecture:

f (n)(x) = (−1)n−1 1 · 3 · 5 · · · (2n − 3)

2n
x−(2n−1)/2 (n ≥ 2).

Proof: Evidently, the above formula holds for n = 2, 3
and 4. Assume that it holds for n = k, i.e.

f (k)(x) = (−1)k−1 1 · 3 · 5 · · · (2k − 3)

2k
x−(2k−1)/2.

Then

f (k+1)(x) = d

dx
f (k)(x)

= (−1)k−1 1 · 3 · 5 · · · (2k − 3)

2k
·
[−(2k − 1)

2

]
x−[(2k−1)/2]−1

= (−1)(k+1)−1 1 · 3 · 5 · · · (2k − 3)[2(k + 1) − 3]

2k+1 x−[2(k+1)−1]/2.

Thus, the formula is also true for n = k + 1. Hence, it is
true for n ≥ 2 by induction.

17. f (x) = 1

a + bx
= (a + bx)−1

f ′(x) = −b(a + bx)−2

f ′′(x) = 2b2(a + bx)−3

f ′′′(x) = −3!b3(a + bx)−4

Guess: f (n)(x) = (−1)nn!bn(a + bx)−(n+1) (∗)

Proof: (*) holds for n = 1, 2, 3
Assume (*) holds for n = k:
f (k)(x) = (−1)k k!bk (a + bx)−(k+1)

Then
f (k+1)(x) = (−1)kk!bk

(
−(k + 1)

)
(a + bx)−(k+1)−1(b)

= (−1)k+1(k + 1)!bk+1(a + bx)((k+1)+1)

So (*) holds for n = k + 1 if it holds for n = k.
Therefore, (*) holds for n = 1, 2, 3, 4, . . . by induction.

18. f (x) = x2/3

f ′(x) = 2
3 x−1/3

f ′′(x) = 2
3 (− 1

3 )x−4/3

f ′′′(x) = 2
3 (− 1

3 )(− 4
3 )x−7/3

Conjecture:

f (n)(x) = 2(−1)n−1 1 · 4 · 7 · · · · (3n − 5)

3n
x−(3n−2)/3 for

n ≥ 2.
Proof: Evidently, the above formula holds for n = 2 and
3. Assume that it holds for n = k, i.e.

f (k)(x) = 2(−1)k−1 1 · 4 · 7 · · · · (3k − 5)

3k
x−(3k−2)/3.

Then,

f (k+1)(x) = d

dx
f (k)(x)

= 2(−1)k−1 1 · 4 · 7 · · · · (3k − 5)

3k
·
[−(3k − 2)

3

]
x−[(3k−2)/3]−1

= 2(−1)(k+1)−1 1 · 4 · 7 · · · · (3k − 5)[3(k + 1) − 5]

3(k + 1)
x−[3(k+1)−2]/3.

Thus, the formula is also true for n = k + 1. Hence, it is
true for n ≥ 2 by induction.

19. f (x) = cos(ax)

f ′(x) = −a sin(ax)

f ′′(x) = −a2 cos(ax)

f ′′′(x) = a3 sin(ax)

f (4)(x) = a4 cos(ax) = a4 f (x)

It follows that f (n)(x) = a4 f (n−4)(x) for n ≥ 4, and

f (n)(x) =

⎧
⎪⎨
⎪⎩

an cos(ax) if n = 4k
−an sin(ax) if n = 4k + 1
−an cos(ax) if n = 4k + 2
an sin(ax) if n = 4k + 3

(k = 0, 1, 2, . . .)

Differentiating any of these four formulas produces the
one for the next higher value of n, so induction confirms
the overall formula.

20. f (x) = x cos x

f ′(x) = cos x − x sin x

f ′′(x) = −2 sin x − x cos x

f ′′′(x) = −3 cos x + x sin x

f (4)(x) = 4 sin x + x cos x
This suggests the formula (for k = 0, 1, 2, . . .)

f (n)(x) =

⎧
⎪⎨
⎪⎩

n sin x + x cos x if n = 4k
n cos x − x sin x if n = 4k + 1
−n sin x − x cos x if n = 4k + 2
−n cos x + x sin x if n = 4k + 3

Differentiating any of these four formulas produces the
one for the next higher value of n, so induction confirms
the overall formula.

21. f (x) = x sin(ax)

f ′(x) = sin(ax) + ax cos(ax)

f ′′(x) = 2a cos(ax) − a2x sin(ax)

f ′′′(x) = −3a2 sin(ax) − a3x cos(ax)

f 4)(x) = −4a3 cos(ax) + a4x sin(ax)
This suggests the formula

f (n)(x) =

⎧
⎪⎨
⎪⎩

−nan−1 cos(ax) + an x sin(ax) if n = 4k
nan−1 sin(ax) + an x cos(ax) if n = 4k + 1
nan−1 cos(ax) − an x sin(ax) if n = 4k + 2
−nan−1 sin(ax) − an x cos(ax) if n = 4k + 3
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for k = 0, 1, 2, . . .. Differentiating any of these four
formulas produces the one for the next higher value of n,
so induction confirms the overall formula.

22. f (x) = 1

|x | = |x |−1. Recall that
d

dx
|x | = sgn x , so

f ′(x) = −|x |−2sgn x .

If x �= 0 we have

d

dx
sgn x = 0 and (sgn x)2 = 1.

Thus we can calculate successive derivatives of f using
the product rule where necessary, but will get only one
nonzero term in each case:

f ′′(x) = 2|x |−3(sgn x)2 = 2|x |−3

f (3)(x) = −3!|x |−4sgn x

f (4)(x) = 4!|x |−5.

The pattern suggests that

f (n)(x) =
{−n!|x |−(n+1)sgn x if n is odd

n!|x |−(n+1) if n is even

Differentiating this formula leads to the same formula
with n replaced by n + 1 so the formula is valid for all
n ≥ 1 by induction.

23. f (x) = √
1 − 3x = (1 − 3x)1/2

f ′(x) = 1

2
(−3)(1 − 3x)−1/2

f ′′(x) = 1

2

(
−1

2

)
(−3)2(1 − 3x)−3/2

f ′′′(x) = 1

2

(
−1

2

)(
−3

2

)
(−3)3(1 − 3x)−5/2

f (4)(x) = 1

2

(
−1

2

)(
−3

2

)(
−5

2

)
(−3)4(1 − 3x)7/2

Guess: f (n)(x) = −1 × 3 × 5 × · · · × (2n − 3)

2n
3n

(1 − 3x)−(2n−1)/2 (∗)

Proof: (*) is valid for n = 2, 3, 4, (but not n = 1)
Assume (*) holds for n = k for some integer k ≥ 2

i.e., f (k)(x) = −1 × 3 × 5 × . . . × (2k − 3)

2k
3k

(1 − 3x)−(2k−1)/2

Then f (k+1)(x) = −1 × 3 × 5 × · · · × (2k − 3)

2k
3k

(
−2(k − 1)

2

)
(1 − 3x)−(2k−1)/2−1(−3)

= −
1 × 3 × 5 × · · ·

(
2(k + 1) − 1

)

2k+1
3k+1

(1 − 3x)−(2(k+1)−1)/2

Thus (*) holds for n = k + 1 if it holds for n = k.
Therefore, (*) holds for n = 2, 3, 4, . . . by induction.

24. If y = tan(kx), then y ′ = k sec2(kx) and

y ′′ = 2k2sec2(kx)tan(kx)

= 2k2(1 + tan2(kx)) tan(kx) = 2k2 y(1 + y2).

25. If y = sec(kx), then y ′ = k sec(kx) tan(kx) and

y ′′ = k2(sec2(kx) tan2(kx) + sec3(kx))

= k2 y(2 sec2(kx) − 1) = k2 y(2y2 − 1).

26. To be proved: if f (x) = sin(ax + b), then

f (n)(x) =
{

(−1)kan sin(ax + b) if n = 2k
(−1)kan cos(ax + b) if n = 2k + 1

for k = 0, 1, 2, . . . Proof: The formula works for k = 0
(n = 2 × 0 = 0 and n = 2 × 0 + 1 = 1):

{
f (0)(x) = f (x) = (−1)0a0 sin(ax + b) = sin(ax + b)

f (1)(x) = f ′(x) = (−1)0a1 cos(ax + b) = a cos(ax + b)

Now assume the formula holds for some k ≥ 0.
If n = 2(k + 1), then

f (n)(x) = d

dx
f (n−1)(x) = d

dx
f (2k+1)(x)

= d

dx

(
(−1)ka2k+1 cos(ax + b)

)

= (−1)k+1a2k+2 sin(ax + b)

and if n = 2(k + 1) + 1 = 2k + 3, then

f (n)(x) = d

dx

(
(−1)k+1a2k+2 sin(ax + b)

= (−1)k+1a2k+3 cos(ax + b).

Thus the formula also holds for k + 1. Therefore it holds
for all positive integers k by induction.

27. If y = tan x , then

y ′ = sec2 x = 1 + tan2 x = 1 + y2 = P2(y),

where P2 is a polynomial of degree 2. Assume that
y(n) = Pn+1(y) where Pn+1 is a polynomial of degree
n + 1. The derivative of any polynomial is a polynomial
of one lower degree, so

y(n+1) = d

dx
Pn+1(y) = Pn(y)

dy

dx
= Pn(y)(1+y2) = Pn+2(y),

a polynomial of degree n + 2. By induction,
(d/dx)n tan x = Pn+1(tan x), a polynomial of degree
n + 1 in tan x .
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28. ( f g)′′ = ( f ′g + f g′) = f ′′g + f ′g′ + f ′g′ + f g′′

= f ′′g + 2 f ′g′ + f g′′

29. ( f g)(3) = d

dx
( f g)′′

= d

dx
[ f ′′g + 2 f ′g′ + f g′′]

= f (3)g + f ′′g′ + 2 f ′′g′ + 2 f ′g′′ + f ′g′′ + f g(3)

= f (3)g + 3 f ′′g′ + 3 f ′g′′ + f g(3).

( f g)(4) = d

dx
( f g)(3)

= d

dx
[ f (3)g + 3 f ′′g′ + 3 f ′g′′ + f g(3)]

= f (4)g + f (3)g′ + 3 f (3)g′ + 3 f ′′g′′ + 3 f ′′g′′

+ 3 f ′g(3) + f ′g(3) + f g(4)

= f (4)g + 4 f (3)g′ + 6 f ′′g′′ + 4 f ′g(3) + f g(4).

( f g)(n) = f (n)g + n f (n − 1)g′ + n!

2!(n − 2)!
f (n−2)g′′

+ n!

3!(n − 3)!
f (n−3)g(3) + · · · + n f ′g(n−1) + f g(n)

=
n∑

k=0

n!

k!(n − k)!
f (n−k)g(k).

30. Let a, b, and c be three points in I where f vanishes;
that is, f (a) = f (b) = f (c) = 0. Suppose a < b < c.
By the Mean-Value Theorem, there exist points r in
(a, b) and s in (b, c) such that f ′(r) = f ′(s) = 0. By
the Mean-Value Theorem applied to f ′ on [r, s], there
is some point t in (r, s) (and therefore in I ) such that
f ′′(t) = 0.

31. If f (n) exists on interval I and f vanishes at n + 1 dis-
tinct points of I , then f (n) vanishes at at least one point
of I .
Proof: True for n = 2 by Exercise 8.
Assume true for n = k. (Induction hypothesis)
Suppose n = k + 1, i.e., f vanishes at k + 2 points of I
and f (k+1) exists.
By Exercise 7, f ′ vanishes at k + 1 points of I .
By the induction hypothesis, f (k+1) = ( f ′)(k) vanishes at
a point of I so the statement is true for n = k + 1.
Therefore the statement is true for all n ≥ 2 by induction.
(case n = 1 is just MVT.)

32. Given that f (0) = f (1) = 0 and f (2) = 1:

a) By MVT,

f ′(a) = f (2) − f (0)

2 − 0
= 1 − 0

2 − 0
= 1

2

for some a in (0, 2).

b) By MVT, for some r in (0, 1),

f ′(r) = f (1) − f (0)

1 − 0
= 0 − 0

1 − 0
= 0.

Also, for some s in (1, 2),

f ′(s) = f (2) − f (1)

2 − 1
= 1 − 0

2 − 1
= 1.

Then, by MVT applied to f ′ on the interval [r, s],
for some b in (r, s),

f ′′(b) = f ′(s) − f ′(r)

s − r
= 1 − 0

s − r

= 1

s − r
>

1

2

since s − r < 2.

c) Since f ′′(x) exists on [0, 2], therefore f ′(x) is con-
tinuous there. Since f ′(r) = 0 and f ′(s) = 1, and
since 0 < 1

7 < 1, the Intermediate-Value Theorem
assures us that f ′(c) = 1

7 for some c between r and
s.

Section 2.9 Implicit Differentiation
(page 145)

1. xy − x + 2y = 1
Differentiate with respect to x :
y + xy ′ − 1 + 2y′ = 0

Thus y ′ = 1 − y

2 + x

2. x3 + y3 = 1

3x2 + 3y2y ′ = 0, so y ′ = − x2

y2 .

3. x2 + xy = y3

Differentiate with respect to x :
2x + y + xy ′ = 3y2y ′

y ′ = 2x + y

3y2 − x

4. x3 y + xy5 = 2
3x2 y + x3 y ′ + y5 + 5xy4y ′ = 0

y ′ = −3x2 y − y5

x3 + 5xy4

5. x2 y3 = 2x − y
2xy3 + 3x2 y2y ′ = 2 − y ′

y ′ = 2 − 2xy3

3x2 y2 + 1

6. x2 + 4(y − 1)2 = 4

2x + 8(y − 1)y′ = 0, so y ′ = x

4(1 − y)
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7.
x − y

x + y
= x2

y
+ 1 = x2 + y

y
Thus xy − y2 = x3 + x2y + xy + y2, or x3 + x2y +2y2 = 0
Differentiate with respect to x :
3x2 + 2xy + x2 y ′ + 4yy ′ = 0

y ′ = −3x2 + 2xy

x2 + 4y

8. x
√

x + y = 8 − xy
√

x + y + x
1

2
√

x + y
(1 + y ′) = −y − xy ′

2(x + y) + x(1 + y ′) = −2
√

x + y(y + xy ′)

y ′ = −3x + 2y + 2y
√

x + y

x + 2x
√

x + y

9. 2x2 + 3y2 = 5
4x + 6yy ′ = 0

At (1, 1): 4 + 6y′ = 0, y ′ = −2

3

Tangent line: y − 1 = −2

3
(x − 1) or 2x + 3y = 5

10. x2 y3 − x3 y2 = 12
2xy3 + 3x2 y2y ′ − 3x2 y2 − 2x3 yy ′ = 0
At (−1, 2): −16 + 12y′ − 12 + 4y′ = 0, so the slope is

y ′ = 12 + 16

12 + 4
= 28

16
= 7

4
.

Thus, the equation of the tangent line is
y = 2 + 7

4 (x + 1), or 7x − 4y + 15 = 0.

11.
x

y
+
( y

x

)3 = 2

x4 + y4 = 2x3 y
4x3 + 4y3y ′ = 6x2 y + 2x3 y ′
at (−1, −1): −4 − 4y′ = −6 − 2y′
2y ′ = 2, y ′ = 1
Tangent line: y + 1 = 1(x + 1) or y = x .

12. x + 2y + 1 = y2

x − 1

1 + 2y′ = (x − 1)2yy ′ − y2(1)

(x − 1)2

At (2, −1) we have 1 + 2y′ = −2y ′ − 1 so y ′ = − 1
2 .

Thus, the equation of the tangent is
y = −1 − 1

2 (x − 2), or x + 2y = 0.

13. 2x + y − √
2 sin(xy) = π/2

2 + y ′ − √
2 cos(xy)(y + xy ′) = 0

At (π/4, 1): 2 + y′ − (1 + (π/4)y ′) = 0, so
y ′ = −4/(4 − π). The tangent has equation

y = 1 − 4

4 − π

(
x − π

4

)
.

14. tan(xy2) = (2/π)xy
(sec2(xy2))(y2 + 2xyy ′) = (2/π)(y + xy ′).
At (−π, 1/2): 2((1/4) − π y′) = (1/π) − 2y ′, so
y ′ = (π − 2)/(4π(π − 1)). The tangent has equation

y = 1

2
+ π − 2

4π(π − 1)
(x + π).

15. x sin(xy − y2) = x2 − 1
sin(xy − y2) + x(cos(xy − y2))(y + xy ′ − 2yy ′) = 2x .
At (1, 1): 0+(1)(1)(1− y′) = 2, so y ′ = −1. The tangent
has equation y = 1 − (x − 1), or y = 2 − x .

16. cos
(πy

x

)
= x2

y
− 17

2[
− sin

(πy

x

)] π(xy ′ − y)

x2
= 2xy − x2 y ′

y2
.

At (3, 1): −
√

3

2

π(3y ′ − 1)

9
= 6 − 9y′,

so y ′ = (108 − √
3π)/(162 − 3

√
3π). The tangent has

equation

y = 1 + 108 − √
3π

162 − 3
√

3π
(x − 3).

17. xy = x + y

y + xy ′ = 1 + y ′ ⇒ y ′ = y − 1

1 − x
y ′ + y ′ + xy ′′ = y ′′

Therefore, y′′ = 2y ′

1 − x
= 2(y − 1)

(1 − x)2

18. x2 + 4y2 = 4, 2x + 8yy′ = 0, 2 + 8(y′)2 + 8yy ′′ = 0.

Thus, y ′ = −x

4y
and

y ′′ = −2 − 8(y ′)2

8y
= − 1

4y
− x2

16y3 = −4y2 − x2

16y3 = − 1

4y3 .

19. x3 − y2 + y3 = x

3x2 − 2yy ′ + 3y2y ′ = 1 ⇒ y ′ = 1 − 3x2

3y2 − 2y
6x − 2(y ′)2 − 2yy ′′ + 6y(y ′)2 + 3y2y ′′ = 0

y ′′ = (2 − 6y)(y ′)2 − 6x

3y2 − 2y
=

(2 − 6y)
(1 − 3x2)2

(3y2 − 2y)2
− 6x

3y2 − 2y

= (2 − 6y)(1 − 3x2)2

(3y2 − 2y)3 − 6x

3y2 − 2y
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20. x3 − 3xy + y3 = 1
3x2 − 3y − 3xy ′ + 3y2y ′ = 0
6x − 3y ′ − 3y ′ − 3xy ′′ + 6y(y ′)2 + 3y2y ′′ = 0
Thus

y ′ = y − x2

y2 − x

y ′′ = −2x + 2y ′ − 2y(y ′)2

y2 − x

= 2

y2 − x

[
−x +

(
y − x2

y2 − x

)
− y

(
y − x2

y2 − x

)2]

= 2

y2 − x

[ −2xy

(y2 − x)2

]
= 4xy

(x − y2)3 .

21. x2 + y2 = a2

2x + 2yy ′ = 0 so x + yy ′ = 0 and y′ = − x

y
1 + y ′y ′ + yy ′′ = 0 so

y ′′ = −1 + (y ′)2

y
= −

1 + x2

y2

y

= − y2 + x2

y3 = − a2

y3

22. Ax 2 + By2 = C

2Ax + 2Byy ′ = 0 ⇒ y ′ = − Ax

By
2A + 2B(y ′)2 + 2Byy ′′ = 0.
Thus,

y ′′ = −A − B(y ′)2

By
=

−A − B

(
Ax

By

)2

By

= −A(By2 + Ax2)

B2 y3
= − AC

B2y3
.

23. Maple gives 0 for the value.

24. Maple gives the slope as
206

55
.

25. Maple gives the value −26.

26. Maple gives the value −855, 000

371, 293
.

27. Ellipse: x2 + 2y2 = 2

2x + 4yy ′ = 0

Slope of ellipse: y′
E = − x

2y
Hyperbola: 2x2 − 2y2 = 1

4x − 4yy ′ = 0

Slope of hyperbola: y′
H = x

y

At intersection points

{
x2 + 2y2 = 2
2x2 − 2y2 = 1

3x2 = 3 so x2 = 1, y2 = 1

2

Thus y ′
E y ′

H = − x

2y

x

y
= − x2

2y2 = −1

Therefore the curves intersect at right angles.

28. The slope of the ellipse
x2

a2
+ y2

b2
= 1 is found from

2x

a2 + 2y

b2 y ′ = 0, i.e. y′ = − b2x

a2 y
.

Similarly, the slope of the hyperbola
x2

A2 − y2

B2 = 1 at

(x, y) satisfies

2x

A2
− 2y

B2
y ′ = 0, or y′ = B2x

A2 y
.

If the point (x, y) is an intersection of the two curves,
then

x2

a2 + y2

b2 = x2

A2 − y2

B2

x2
(

1

A2 − 1

a2

)
= y2

(
1

B2 + 1

b2

)
.

Thus,
x2

y2 = b2 + B2

B2b2 · A2a2

a2 − A2 .

Since a2 − b2 = A2 + B2, therefore B2 + b2 = a2 − A2,

and
x2

y2
= A2a2

B2b2
. Thus, the product of the slope of the

two curves at (x, y) is

− b2x

a2 y
· B2x

A2 y
= −b2 B2

a2 A2
· A2a2

B2b2
= −1.

Therefore, the curves intersect at right angles.

29. If z = tan(x/2), then

1 = sec2(x/2)
1

2

dx

dz
= 1 + tan2(x/2)

2

dx

dz
= 1 + z2

2

dx

dz
.

Thus dx/dz = 2/(1 + z2). Also

cos x = 2 cos2(x/2) − 1 = 2

sec2(x/2)
− 1

= 2

1 + z2
− 1 = 1 − z2

1 + z2

sin x = 2 sin(x/2) cos(x/2) = 2 tan(x/2)

1 + tan2(x/2)
= 2z

1 + z2 .

66



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 2.10 (PAGE 151)

30.
x − y

x + y
= x

y
+ 1 ⇔ xy − y2 = x2 + xy + xy + y2

⇔ x2 + 2y2 + xy = 0
Differentiate with respect to x :

2x + 4yy ′ + y + xy ′ = 0 ⇒ y ′ = −2x + y

4y + x
.

However, since x2 + 2y2 + xy = 0 can be written

x + xy + 1

4
y2 + 7

4
y2 = 0, or (x + y

2
)2 + 7

4
y2 = 0,

the only solution is x = 0, y = 0, and these values do not
satisfy the original equation. There are no points on the
given curve.

Section 2.10 Antiderivatives and
Initial-Value Problems (page 151)

1.
∫

5 dx = 5x + C

2.
∫

x2 dx = 1
3 x3 + C

3.
∫ √

x dx = 2

3
x3/2 + C

4.
∫

x12 dx = 1
13 x13 + C

5.
∫

x3 dx = 1

4
x4 + C

6.
∫

(x + cos x) dx = x2

2
+ sin x + C

7.
∫

tan x cos x dx =
∫

sin x dx = − cos x + C

8.
∫

1 + cos3 x

cos2 x
dx =

∫
(sec2 x+cos x) dx = tan x+sin x+C

9.
∫

(a2 − x2) dx = a2x − 1

3
x3 + C

10.
∫

(A + Bx + Cx2) dx = Ax + B

2
x2 + C

3
x3 + K

11.
∫

(2x1/2 + 3x1/3 dx = 4

3
x3/2 + 9

4
x4/3 + C

12.
∫

6(x − 1)

x4/3 dx =
∫

(6x−1/3 − 6x−4/3) dx

= 9x2/3 + 18x−1/3 + C

13.
∫ (

x3

3
− x2

2
+ x − 1

)
dx = 1

12
x4 − 1

6
x3 + 1

2
x2 − x + C

14. 105
∫

(1 + t2 + t4 + t6) dt

= 105(t + 1
3 t3 + 1

5 t5 + 1
7 t7) + C

= 105t + 35t3 + 21t5 + 15t7 + C

15.
∫

cos(2x) dx = 1

2
sin(2x) + C

16.
∫

sin
( x

2

)
dx = −2 cos

( x

2

)
+ C

17.
∫

dx

(1 + x)2 = − 1

1 + x
+ C

18.
∫

sec(1 − x) tan(1 − x) dx = − sec(1 − x) + C

19.
∫ √

2x + 3 dx = 1

3
(2x + 3)3/2 + C

20. Since
d

dx

√
x + 1 = 1

2
√

x + 1
, therefore

∫
4√

x + 1
dx = 8

√
x + 1 + C.

21.
∫

2x sin(x2) dx = − cos(x2) + C

22. Since
d

dx

√
x2 + 1 = x√

x2 + 1
, therefore

∫
2x√

x2 + 1
dx = 2

√
x2 + 1 + C.

23.
∫

tan2 x dx =
∫

(sec2 x − 1) dx = tan x − x + C

24.
∫

sin x cos x dx =
∫

1

2
sin(2x) dx = −1

4
cos(2x) + C

25.
∫

cos2 x dx =
∫

1 + cos(2x)

2
dx = x

2
+ sin(2x)

4
+ C

26.
∫

sin2 x dx =
∫

1 − cos(2x)

2
dx = x

2
− sin(2x)

4
+ C

27.

{
y ′ = x − 2 ⇒ y = 1

2
x2 − 2x + C

y(0) = 3 ⇒ 3 = 0 + C therefore C = 3

Thus y = 1

2
x2 − 2x + 3 for all x .

28. Given that {
y ′ = x−2 − x−3

y(−1) = 0,
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then y =
∫

(x−2 − x−3) dx = −x−1 + 1
2 x−2 + C

and 0 = y(−1) = −(−1)−1 + 1
2 (−1)−2 + C so C = − 3

2 .

Hence, y(x) = − 1

x
+ 1

2x2
− 3

2
which is valid on the

interval (−∞, 0).

29.
{

y ′ = 3
√

x ⇒ y = 2x3/2 + C
y(4) = 1 ⇒ 1 = 16 + C so C = −15

Thus y = 2x3/2 − 15 for x > 0.

30. Given that {
y ′ = x1/3

y(0) = 5,

then y =
∫

x1/3 dx = 3
4 x4/3 + C and 5 = y(0) = C .

Hence, y(x) = 3
4 x4/3 + 5 which is valid on the whole real

line.

31. Since y ′ = Ax2 + Bx + C we have

y = A

3
x3 + B

2
x2 + Cx + D. Since y(1) = 1, therefore

1 = y(1) = A

3
+ B

2
+ C + D. Thus D = 1 − A

3
− B

2
− C ,

and

y = A

3
(x3 − 1) + B

2
(x2 − 1) + C(x − 1) + 1 for all x

32. Given that {
y ′ = x−9/7

y(1) = −4,

then y =
∫

x−9/7 dx = − 7
2 x−2/7 + C .

Also, −4 = y(1) = − 7
2 + C , so C = − 1

2 . Hence,
y = − 7

2 x−2/7 − 1
2 , which is valid in the interval (0, ∞).

33. For

{
y ′ = cos x
y(π/6) = 2

, we have

y =
∫

cos x dx = sin x + C

2 = sin
π

6
+ C = 1

2
+ C ⇒ C = 3

2

y = sin x + 3

2
(for all x).

34. For

{
y ′ = sin(2x)

y(π/2) = 1
, we have

y =
∫

sin(2x) dx = −1

2
cos(2x) + C

1 = −1

2
cos π + C = 1

2
+ C ⇒ C = 1

2

y = 1

2

(
1 − cos(2x)

)
(for all x).

35. For

{
y ′ = sec2 x
y(0) = 1

, we have

y =
∫

sec2 x dx = tan x + C

1 = tan 0 + C = C ⇒ C = 1

y = tan x + 1 (for −π/2 < x < π/2).

36. For

{
y ′ = sec2 x
y(π) = 1

, we have

y =
∫

sec2 x dx = tan x + C

1 = tan π + C = C ⇒ C = 1

y = tan x + 1 (for π/2 < x < 3π/2).

37. Since y ′′ = 2, therefore y′ = 2x + C1.
Since y′(0) = 5, therefore 5 = 0 + C1, and y′ = 2x + 5.
Thus y = x2 + 5x + C2.
Since y(0) = −3, therefore −3 = 0 + 0 + C2, and
C2 = −3.
Finally, y = x2 + 5x − 3, for all x .

38. Given that ⎧⎨
⎩

y ′′ = x−4

y ′(1) = 2
y(1) = 1,

then y′ =
∫

x−4 dx = − 1
3 x−3 + C .

Since 2 = y′(1) = − 1
3 + C , therefore C = 7

3 ,
and y ′ = − 1

3 x−3 + 7
3 . Thus

y =
∫ (

− 1
3 x−3 + 7

3

)
dx = 1

6 x−2 + 7
3 x + D,

and 1 = y(1) = 1
6 + 7

3 + D, so that D = − 3
2 . Hence,

y(x) = 1
6 x−2 + 7

3 x − 3
2 , which is valid in the interval

(0, ∞).

39. Since y ′′ = x3 − 1, therefore y′ = 1

4
x4 − x + C1.

Since y′(0) = 0, therefore 0 = 0 − 0 + C1, and

y ′ = 1

4
x4 − x .

Thus y = 1

20
x5 − 1

2
x2 + C2.

Since y(0) = 8, we have 8 = 0 − 0 + C2.

Hence y = 1

20
x5 − 1

2
x2 + 8 for all x .

40. Given that ⎧⎨
⎩

y ′′ = 5x2 − 3x−1/2

y ′(1) = 2
y(1) = 0,
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we have y ′ =
∫

5x2 − 3x−1/2 dx = 5
3 x3 − 6x1/2 + C .

Also, 2 = y′(1) = 5
3 − 6 + C so that C = 19

3
. Thus,

y ′ = 5
3 x3 − 6x1/2 + 19

3 , and

y =
∫ (

5
3 x3 − 6x1/2 + 19

3

)
dx = 5

12 x4 − 4x3/2 + 19
3 x + D.

Finally, 0 = y(1) = 5
12 − 4 + 19

3 + D so that D = − 11
4 .

Hence, y(x) = 5
12 x4 − 4x3/2 + 19

3 x − 11
4 .

41. For

⎧
⎨
⎩

y ′′ = cos x
y(0) = 0
y ′(0) = 1

we have

y ′ =
∫

cos x dx = sin x + C1

1 = sin 0 + � 1 ⇒ C1 = 1

y =
∫

(sin x + 1) dx = − cos x + x + C2

0 = − cos 0 + 0 + C2 ⇒ C2 = 1

y = 1 + x − cos x .

42. For

⎧
⎨
⎩

y ′′ = x + sin x
y(0) = 2
y ′(0) = 0

we have

y ′ =
∫

(x + sin x) dx = x2

2
− cos x + C1

0 = 0 − cos 0 + � 1 ⇒ C1 = 1

y =
∫ (

x2

2
− cos x + 1

)
dx = x3

6
− sin x + x + C2

2 = 0 − sin 0 + 0 + C2 ⇒ C2 = 2

y = x3

6
− sin x + x + 2.

43. Let y = Ax + B

x
. Then y ′ = A − B

x2 , and y′′ = 2B

x3 .

Thus, for all x �= 0,

x2 y ′′ + xy ′ − y = 2B

x
+ Ax − B

x
− Ax − B

x
= 0.

We will also have y(1) = 2 and y′(1) = 4 provided

A + B = 2, and A − B = 4.

These equations have solution A = 3, B = −1, so the
initial value problem has solution y = 3x − (1/x).

44. Let r1 and r2 be distinct rational roots of the equation
ar(r − 1) + br + c = 0
Let y = Axr1 + Bxr2 (x > 0)

Then y ′ = Ar1xr1−1 + Br2xr2−1,
and y ′′ = Ar1(r1 − 1)xr1−2 + Br2(r2 − 1)xr2−2. Thus
ax2 y ′′ + bxy ′ + cy

= ax2(Ar1(r1 − 1)xr1−2 + Br2(r2 − 1)xr2−2

+ bx(Ar1xr1−1 + Br2xr2−1) + c(Axr1 + Bxr2)

= A
(

ar1(r1 − 1) + br1 + c
)

xr1

+ B(ar2(r2 − 1) + br2 + c
)

xr2

= 0xr1 + 0xr2 ≡ 0 (x > 0)

45.

⎧
⎨
⎩

4x2 y ′′ + 4xy ′ − y = 0 (∗) ⇒ a = 4, b = 4, c = −1
y(4) = 2
y ′(4) = −2

Auxilary Equation: 4r(r − 1) + 4r − 1 = 0

4r2 − 1 = 0

r = ±1

2
By #31, y = Ax1/2 + Bx−1/2 solves (∗) for x > 0.

Now y′ = A

2
x−1/2 − B

2
x−3/2

Substitute the initial conditions:

2 = 2A + B

2
⇒1 = A + B

4

−2 = A

4
− B

16
⇒ − 8 = A − B

4
.

Hence 9 = B

2
, so B = 18, A = −7

2
.

Thus y = −7

2
x1/2 + 18x−1/2 (for x > 0).

46. Consider ⎧⎨
⎩

x2 y ′′ − 6y = 0
y(1) = 1
y ′(1) = 1.

Let y = xr , y ′ = r xr−1, y ′′ = r(r − 1)xr−2. Substituting
these expressions into the differential equation we obtain

x2[r(r − 1)xr−2] − 6xr = 0

[r(r − 1) − 6]xr = 0.

Since this equation must hold for all x > 0, we must
have

r(r − 1) − 6 = 0

r2 − r − 6 = 0

(r − 3)(r + 2) = 0.

There are two roots: r1 = −2, and r2 = 3. Thus the
differential equation has solutions of the form
y = Ax−2 + Bx3. Then y ′ = −2Ax−3 + 3Bx2. Since
1 = y(1) = A + B and 1 = y ′(1) = −2A + 3B, therefore
A = 2

5 and B = 3
5 . Hence, y = 2

5 x−2 + 3
5 x3.
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Section 2.11 Velocity and Acceleration
(page 157)

1. x = t2 − 4t + 3, v = dx

dt
= 2t − 4, a = dv

dt
= 2

a) particle is moving: to the right for t > 2

b) to the left for t < 2

c) particle is always accelerating to the right

d) never accelerating to the left

e) particle is speeding up for t > 2

f) slowing down for t < 2

g) the acceleration is 2 at all times

h) average velocity over 0 ≤ t ≤ 4 is

x(4) − x(0)

4 − 0
= 16 − 16 + 3 − 3

4
= 0

2. x = 4 + 5t − t2, v = 5 − 2t , a = −2.

a) The point is moving to the right if v > 0, i.e., when
t < 5

2 .

b) The point is moving to the left if v < 0, i.e., when
t > 5

2 .

c) The point is accelerating to the right if a > 0, but
a = −2 at all t ; hence, the point never accelerates to
the right.

d) The point is accelerating to the left if a < 0, i.e., for
all t .

e) The particle is speeding up if v and a have the same
sign, i.e., for t > 5

2 .

f) The particle is slowing down if v and a have oppo-
site sign, i.e., for t < 5

2 .

g) Since a = −2 at all t , a = −2 at t = 5
2 when v = 0.

h) The average velocity over [0, 4] is
x(4) − x(0)

4
= 8 − 4

4
= 1.

3. x = t3 − 4t + 1, v = dx

dt
= 3t2 − 4, a = dv

dt
= 6t

a) particle moving: to the right for t < −2/
√

3 or
t > 2/

√
3,

b) to the left for −2/
√

3 < t < 2/
√

3

c) particle is accelerating: to the right for t > 0

d) to the left for t < 0

e) particle is speeding up for t > 2/
√

3 or for
−2/

√
3 < t < 0

f) particle is slowing down for t < −2/
√

3 or for
0 < t < 2/

√
3

g) velocity is zero at t = ±2/
√

3. Acceleration at these
times is ±12/

√
3.

h) average velocity on [0, 4] is
43 − 4 × 4 + 1 − 1

4 − 0
= 12

4. x = t

t2 + 1
, v = (t2 + 1)(1) − (t)(2t)

(t2 + 1)2
= 1 − t2

(t2 + 1)2
,

a = (t2 + 1)2(−2t) − (1 − t2)(2)(t2 + 1)(2t)

(t2 + 1)4
= 2t (t2 − 3)

(t2 + 1)3
.

a) The point is moving to the right if v > 0, i.e., when
1 − t2 > 0, or −1 < t < 1.

b) The point is moving to the left if v < 0, i.e., when
t < −1 or t > 1.

c) The point is accelerating to the right if a > 0, i.e.,
when 2t (t2 − 3) > 0, that is, when
t >

√
3 or −√

3 < t < 0.

d) The point is accelerating to the left if a < 0, i.e., for
t < −√

3 or 0 < t <
√

3.

e) The particle is speeding up if v and a have the same
sign, i.e., for t < −√

3, or −1 < t < 0 or
1 < t <

√
3.

f) The particle is slowing down if v and a have oppo-
site sign, i.e., for −√

3 < t < −1, or 0 < t < 1 or
t >

√
3.

g) v = 0 at t = ±1. At t = −1, a = −2(−2)

(2)3 = 1

2
.

At t = 1, a = 2(−2)

(2)3 = −1

2
.

h) The average velocity over [0, 4] is
x(4) − x(0)

4
=

4
17 − 0

4
= 1

17
.
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5. y = 9.8t − 4.9t2 metres (t in seconds)

velocity v = dy

dt
= 9.8 − 9.8t

acceleration a = dv

dt
= −9.8

The acceleration is 9.8 m/s2 downward at all times.
Ball is at maximum height when v = 0, i.e., at t = 1.

Thus maximum height is y
∣∣∣
t=1

= 9.8 − 4.9 = 4.9 metres.

Ball strikes the ground when y = 0, (t > 0), i.e.,
0 = t (9.8 − 4.9t) so t = 2.
Velocity at t = 2 is 9.8 − 9.8(2) = −9.8 m/s.
Ball strikes the ground travelling at 9.8 m/s (downward).

6. Given that y = 100 − 2t − 4.9t2, the time t at which
the ball reaches the ground is the positive root of the
equation y = 0, i.e., 100 − 2t − 4.9t2 = 0, namely,

t = −2 + √
4 + 4(4.9)(100)

9.8
≈ 4.318 s.

The average velocity of the ball is
−100

4.318
= −23.16 m/s.

Since −23.159 = v = −2 − 9.8t , then t � 2.159 s.

7. D = t2, D in metres, t in seconds

velocity v = d D

dt
= 2t

Aircraft becomes airborne if

v = 200 km/h = 200, 000

3600
= 500

9
m/s.

Time for aircraft to become airborne is t = 250

9
s, that

is, about 27.8 s.
Distance travelled during takeoff run is t2 ≈ 771.6 me-
tres.

8. Let y(t) be the height of the projectile t seconds after it
is fired upward from ground level with initial speed v0.
Then

y ′′(t) = −9.8, y′(0) = v0, y(0) = 0.

Two antidifferentiations give

y = −4.9t2 + v0t = t (v0 − 4.9t).

Since the projectile returns to the ground at t = 10 s,
we have y(10) = 0, so v0 = 49 m/s. On Mars, the
acceleration of gravity is 3.72 m/s2 rather than 9.8 m/s2,
so the height of the projectile would be

y = −1.86t2 + v0t = t (49 − 1.86t).

The time taken to fall back to ground level on Mars
would be t = 49/1.86 ≈ 26.3 s.

9. The height of the ball after t seconds is
y(t) = −(g/2)t2 + v0t m if its initial speed was v0
m/s. Maximum height h occurs when dy/dt = 0, that is,
at t = v0/g. Hence

h = − g

2
· v2

0

g2 + v0 · v0

g
= v2

0

2g
.

An initial speed of 2v0 means the maximum height will
be 4v2

0/2g = 4h. To get a maximum height of 2h an
initial speed of

√
2v0 is required.

10. To get to 3h metres above Mars, the ball would have to
be thrown upward with speed

vM = √
6gM h =

√
6gMv2

0/(2g) = v0
√

3gM/g.

Since gM = 3.72 and g = 9.80, we have vM ≈ 1.067v0
m/s.

11. If the cliff is h ft high, then the height of the rock t sec-
onds after it falls is y = h − 16t2 ft. The rock hits the
ground (y = 0) at time t = √

h/16 s. Its speed at that
time is v = −32t = −8

√
h = −160 ft/s. Thus

√
h = 20,

and the cliff is h = 400 ft high.

12. If the cliff is h ft high, then the height of the rock t sec-
onds after it is thrown down is y = h −32t −16t2 ft. The
rock hits the ground (y = 0) at time

t = −32 + √
322 + 64h

32
= −1 + 1

4

√
16 + h s.

Its speed at that time is

v = −32 − 32t = −8
√

16 + h = −160 ft/s.

Solving this equation for h gives the height of the cliff as
384 ft.

13. Let x(t) be the distance travelled by the train in
the t seconds after the brakes are applied. Since
d2x/dt2 = −1/6 m/s2 and since the initial speed is
v0 = 60 km/h = 100/6 m/s, we have

x(t) = − 1

12
t2 + 100

6
t.

The speed of
the train at time t is v(t) = −(t/6) + (100/6) m/s, so
it takes the train 100 s to come to a stop. In that time it
travels x(100) = −1002/12 + 1002/6 = 1002/12 ≈ 833
metres.

71



SECTION 2.11 (PAGE 157) R. A. ADAMS: CALCULUS

14. x = At 2 + Bt + C, v = 2At + B.
The average velocity over [t1, t2] is
x(t2) − x(t1)

t2 − t1

= At2
2 + Bt1 + C − At2

1 − Bt1 − C

t2 − t1

= A(t2
2 − t2

1 ) + B(t2 − t1)

(t2 − t1)

= A(t2 + t1)(t2 − t1) + B(t2 − t1)

(t2 − t1)= A(t2 + t1) + B.
The instantaneous velocity at the midpoint of [t1, t2] is

v

(
t2 + t1

2

)
= 2A

(
t2 + t1

2

)
+ B = A(t2 + t1) + B.

Hence, the average velocity over the interval is equal to
the instantaneous velocity at the midpoint.

15. s =
⎧⎨
⎩

t2 0 ≤ t ≤ 2
4t − 4 2 < t < 8
−68 + 20t − t2 8 ≤ t ≤ 10

Note: s is continuous at 2 and 8 since 22 = 4(2) − 4 and
4(8) − 4 = −68 + 160 − 64

velocity v = ds

dt
=
{ 2t if 0 < t < 2

4 if 2 < t < 8
20 − 2t if 8 < t < 10

Since 2t → 4 as t → 2−, therefore, v is continuous at 2
((v(2) = 4).
Since 20 − 2t → 4 as t → 8+, therefore v is continuous
at 8 (v(8) = 4). Hence the velocity is continuous for
0 < t < 10

acceleration a = dv

dt
=
{ 2 if 0 < t < 2

0 if 2 < t < 8
−2 if 8 < t < 10

is discontinuous at t = 2 and t = 8
Maximum velocity is 4 and is attained on the interval
2 ≤ t ≤ 8.

16. This exercise and the next three refer to the following
figure depicting the velocity of a rocket fired from a
tower as a function of time since firing.

v

t

(4, 96)

(14, −224)

Fig. 2.11.16

The rocket’s acceleration while its fuel lasted is the slope
of the first part of the graph, namely 96/4 = 24 ft/s.

17. The rocket was rising for the first 7 seconds.

18. As suggested in Example 1 on page 154 of the text, the
distance travelled by the rocket while it was falling from
its maximum height to the ground is the area between the
velocity graph and the part of the t-axis where v < 0.
The area of this triangle is (1/2)(14 − 7)(224) = 784 ft.
This is the maximum height the rocket achieved.

19. The distance travelled upward by the rocket while it was
rising is the area between the velocity graph and the part
of the t-axis where v > 0, namely (1/2)(7)(96) = 336 ft.
Thus the height of the tower from which the rocket was
fired is 784 − 336 = 448 ft.

20. Let s(t) be the distance the car travels in the t seconds
after the brakes are applied. Then s′′(t) = −t and the
velocity at time t is given by

s ′(t) =
∫

(−t) dt = − t2

2
+ C1,

where C1 = 20 m/s (that is, 72km/h) as determined in
Example 6. Thus

s(t) =
∫ (

20 − t2

2

)
dt = 20t − t3

6
+ C2,

where C2 = 0 because s(0) = 0. The time taken to come
to a stop is given by s′(t) = 0, so it is t = √

40 s. The
distance travelled is

s = 20
√

40 − 1

6
403/2 ≈ 84.3 m.

Review Exercises 2 (page 158)

1. y = (3x + 1)2

dy

dx
= lim

h→0

(3x + 3h + 1)2 − (3x + 1)2

h

= lim
h→0

9x2 + 18xh + 9h2 + 6x + 6h + 1 − (9x2 + 6x + 1)

h
= lim

h→0
(18x + 9h + 6) = 18x + 6

2.
d

dx

√
1 − x2 = lim

h→0

√
1 − (x + h)2 − √

1 − x2

h

= lim
h→0

1 − (x + h)2 − (1 − x2)

h(
√

1 − (x + h)2 + √
1 − x2)

= lim
h→0

−2x − h√
1 − (x + h)2 + √

1 − x2
= − x√

1 − x2
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3. f (x) = 4/x2

f ′(2) = lim
h→0

4

(2 + h)2 − 1

h

= lim
h→0

4 − (4 + 4h + h2)

h(2 + h)2 = lim
h→0

−4 − h

(2 + h)2 = −1

4. g(t) = t − 5

1 + √
t

g′(9) = lim
h→0

4 + h

1 + √
9 + h

− 1

h

= lim
h→0

(3 + h − √
9 + h)(3 + h + √

9 + h)

h(1 + √
9 + h)(3 + h + √

9 + h)

= lim
h→0

9 + 6h + h2 − (9 + h)

h(1 + √
9 + h)(3 + h + √

9 + h)

= lim
h→0

5 + h

(1 + √
9 + h)(3 + h + √

9 + h)

= 5

24

5. The tangent to y = cos(πx) at x = 1/6 has slope

dy

dx

∣∣∣∣
x=1/6

= −π sin
π

6
= −π

2
.

Its equation is

y =
√

3

2
− π

2

(
x − 1

6

)
.

6. At x = π the curve y = tan(x/4) has slope
(sec2(π/4))/4 = 1/2. The normal to the curve there
has equation y = 1 − 2(x − π).

7.
d

dx

1

x − sin x
= − 1 − cos x

(x − sin x)2

8.
d

dx

1 + x + x2 + x3

x4 = d

dx
(x−4 + x−3 + x−2 + x−1)

= −4x−5 − 3x−4 − 2x−3 − x−2

= −4 + 3x + 2x2 + x3

x5

9.
d

dx
(4 − x2/5)−5/2 = −5

2
(4 − x2/5)−7/2

(
−2

5
x−3/5

)

= x−3/5(4 − x2/5)−7/2

10.
d

dx

√
2 + cos2 x = −2 cos x sin x

2
√

2 + cos2 x
= − sin x cos x√

2 + cos2 x

11.
d

dθ
(tan θ − θ sec2 θ) = sec2 θ − sec2 θ − 2θ sec2 θ tan θ

= −2θ sec2 θ tan θ

12.
d

dt

√
1 + t2 − 1√
1 + t2 + 1

=
(
√

1 + t2 + 1)
t√

1 + t2
− (
√

1 + t2 − 1)
t√

1 + t2

(
√

1 + t2 + 1)2

= 2t√
1 + t2(

√
1 + t2 + 1)2

13. lim
h→0

(x + h)20 − x20

h
= d

dx
x20 = 20x19

14. lim
x→2

√
4x + 1 − 3

x − 2
= lim

h→0
4

√
9 + 4h − 3

4h

= d

dx
4
√

x

∣∣∣∣
x=9

= 4

2
√

9
= 2

3

15. lim
x→π/6

cos(2x) − (1/2)

x − π/6
= lim

h→0
2

cos((π/3) + 2h) − cos(π/3)

2h

= 2
d

dx
cos x

∣∣∣∣
x=π/3

= −2 sin(π/3) = −√
3

16. lim
x→−a

(1/x2) − (1/a2)

x + a
= lim

h→0

1

(−a + h)2 − 1

(−a)2

h

= d

dx

1

x2

∣∣∣∣
x=−a

= 2

a3

17.
d

dx
f (3 − x2) = −2x f ′(3 − x2)

18.
d

dx
[ f (

√
x)]2 = 2 f (

√
x) f ′(

√
x)

1

2
√

x
= f (

√
x) f ′(

√
x)√

x

19.
d

dx
f (2x)

√
g(x/2) = 2 f ′(2x)

√
g(x/2) + f (2x)g′(x/2)

4
√

g(x/2)

20.
d

dx

f (x) − g(x)

f (x) + g(x)

= 1

( f (x) + g(x))2

[
f (x) + g(x))( f ′(x) − g′(x))

− ( f (x) − g(x))( f ′(x) + g′(x)

]

= 2( f ′(x)g(x) − f (x)g′(x))

( f (x) + g(x))2

21.
d

dx
f (x + (g(x))2) = (1 + 2g(x)g′(x)) f ′(x + (g(x))2)

22.
d

dx
f

(
g(x2)

x

)
= 2x2g′(x2) − g(x2)

x2 f ′
(

g(x2)

x

)

23.
d

dx
f (sin x)g(cos x)

= (cos x) f ′(sin x)g(cos x) − (sin x) f (sin x)g′(cos x)
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24.
d

dx

√
cos f (x)

sin g(x)

= 1

2

√
sin g(x)

cos f (x)

× − f ′(x) sin f (x) sin g(x) − g′(x) cos f (x) cos g(x)

(sin g(x))2

25. If x3 y +2xy3 = 12, then 3x2 y + x3 y ′ +2y3 +6xy2y ′ = 0.
At (2, 1): 12 + 8y′ + 2 + 12y′ = 0, so the slope there is
y ′ = −7/10. The tangent line has equation
y = 1 − 7

10 (x − 2) or 7x + 10y = 24.

26. 3
√

2x sin(πy) + 8y cos(πx) = 2
3
√

2 sin(πy) + 3π
√

2x cos(πy)y ′ + 8y ′ cos(πx)

−8πy sin(πx) = 0
At (1/3, 1/4): 3 + πy′ + 4y ′ − π

√
3 = 0, so the slope

there is y′ = π
√

3 − 3

π + 4
.

27.
∫

1 + x4

x2 dx =
∫ (

1

x2 + x2
)

dx = − 1

x
+ x3

3
+ C

28.
∫

1 + x√
x

dx =
∫

(x−1/2 + x1/2) dx = 2
√

x + 2

3
x3/2 + C

29.
∫

2 + 3 sin x

cos2 x
dx =

∫
(2 sec2 x + 3 sec x tan x) dx

= 2 tan x + 3 sec x + C

30.
∫

(2x + 1)4 dx =
∫

(16x4 + 32x3 + 24x2 + 8x + 1) dx

= 16x5

5
+ 8x4 + 8x3 + 4x2 + x + C

or, equivalently,∫
(2x + 1)4 dx = (2x + 1)5

10
+ C

31. If f ′(x) = 12x2 + 12x3, then f (x) = 4x3 + 3x4 + C .
If f (1) = 0, then 4 + 3 + C = 0, so C = −7 and
f (x) = 4x3 + 3x4 − 7.

32. If g′(x) = sin(x/3) + cos(x/6), then

g(x) = −3 cos(x/3) + 6 sin(x/6) + C.

If (π, 2) lies on y = g(x), then −(3/2) + 3 + C = 2, so
C = 1/2 and g(x) = −3 cos(x/3) + 6 sin(x/6) + (1/2).

33.
d

dx
(x sin x + cos x) = sin x + x cos x − sin x = x cos x

d

dx
(x cos x − sin x) = cos x − x sin x − cos x = −x sin x

∫
x cos x dx = x sin x + cos x + C

∫
x sin x dx = −x cos x + sin x + C

34. If f ′(x) = f (x) and g(x) = x f (x), then

g′(x) = f (x) + x f ′(x) = (1 + x) f (x)

g′′(x) = f (x) + (1 + x) f ′(x) = (2 + x) f (x)

g′′′(x) = f (x) + (2 + x) f ′(x) = (3 + x) f (x)

Conjecture: g(n)(x) = (n + x) f (x) for n = 1, 2, 3, . . .

Proof: The formula is true for n = 1, 2, and 3 as shown
above. Suppose it is true for n = k; that is, suppose
g(k)(x) = (k + x) f (x). Then

g(k+1)(x) = d

dx

(
(k + x) f (x)

)

= f (x) + (k + x) f ′(x) = ((k + 1) + x) f (x).

Thus the formula is also true for n = k+1. It is therefore
true for all positive integers n by induction.

35. The tangent to y = x3 + 2 at x = a has equation
y = a3 + 2 + 3a2(x − a), or y = 3a2x − 2a3 + 2. This
line passes through the origin if 0 = −2a3 + 2, that is, if
a = 1. The line then has equation y = 3x .

36. The tangent to y = √
2 + x2 at x = a has slope

a/
√

2 + a2 and equation

y =
√

2 + a2 + a√
2 + a2

(x − a).

This line passes through (0, 1) provided

1 =
√

2 + a2 − a2
√

2 + a2√
2 + a2 = 2 + a2 − a2 = 2

2 + a2 = 4

The possibilities are a = ±√
2, and the equations of the

corrresponding tangent lines are y = 1 ± (x/
√

2).

37.
d

dx

(
sinn x sin(nx)

)

= n sinn−1 x cos x sin(nx) + n sinn x cos(nx)

= n sinn−1 x[cos x sin(nx) + sin x cos(nx)]

= n sinn−1 x sin((n + 1)x)

y = sinn x sin(nx) has a horizontal tangent at
x = mπ/(n + 1), for any integer m.
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38.
d

dx

(
sinn x cos(nx)

)

= n sinn−1 x cos x cos(nx) − n sinn x sin(nx)

= n sinn−1 x[cos x cos(nx) − sin x sin(nx)]

= n sinn−1 x cos((n + 1)x)

d

dx

(
cosn x sin(nx)

)

= −n cosn−1 x sin x sin(nx) + n cosn x cos(nx)

= n cosn−1 x[cos x cos(nx) − sin x sin(nx)]

= n cosn−1 x cos((n + 1)x)

d

dx

(
cosn x cos(nx)

)

= −n cosn−1 x sin x cos(nx) − n cosn x sin(nx)

= −n cosn−1 x[sin x cos(nx) + cos x sin(nx)]

= −n cosn−1 x sin((n + 1)x)

39. Q = (0, 1). If P = (a, a2) on the curve y = x2, then
the slope of y = x2 at P is 2a, and the slope of P Q is
(a2 − 1)/a. P Q is normal to y = x2 if a = 0 or
[(a2 − 1)/a](2a) = −1, that is, if a = 0 or a2 = 1/2.
The points P are (0, 0) and (±1/

√
2, 1/2). The distances

from these points to Q are 1 and
√

3/2, respectively.
The distance from Q to the curve y = x2 is the shortest
of these distances, namely

√
3/2 units.

40. The average profit per tonne if x tonnes are exported is
P(x)/x , that is the slope of the line joining (x, P(x)) to
the origin. This slope is maximum if the line is tangent
to the graph of P(x). In this case the slope of the line is
P ′(x), the marginal profit.

41. F(r) =
{

mgR2

r2 if r ≥ R

mkr if 0 ≤ r < R

a) For continuity of F(r) at r = R we require
mg = mkR, so k = g/R.

b) As r increases from R, F changes at rate

d

dr

mgR2

r2

∣∣∣∣
r=R

= −2mgR2

R3 = −2mg

R
.

As r decreases from R, F changes at rate

− d

dr
(mkr)

∣∣∣
r=R

= −mk = −mg

R
.

Observe that this rate is half the rate at which F
decreases when r increases from R.

42. PV = kT . Differentiate with respect to P holding T
constant to get

V + P
dV

d P
= 0

Thus the isothermal compressibility of the gas is

1

V

dV

d P
= 1

V

(
− V

P

)
= − 1

P
.

43. Let the building be h m high. The height of the first ball
at time t during its motion is

y1 = h + 10t − 4.9t2.

It reaches maximum height when dy1/dt = 10−9.8t = 0,
that is, at t = 10/9.8 s. The maximum height of the first
ball is

y1 = h + 100

9.8
− 4.9 × 100

(9.8)2 = h + 100

19.6
.

The height of the second ball at time t during its motion
is

y2 = 20t − 4.9t2.

It reaches maximum height
when dy2/dt = 20 − 9.8t = 0, that is, at t = 20/9.8 s.
The maximum height of the second ball is

y2 = 400

9.8
− 4.9 × 400

(9.8)2 = 400

19.6
.

These two maximum heights are equal, so

h + 100

19.6
= 400

19.6
,

which gives h = 300/19.6 ≈ 15.3 m as the height of the
building.

44. The first ball has initial height 60 m and initial velocity
0, so its height at time t is

y1 = 60 − 4.9t2 m.

The second ball has initial height 0 and initial velocity
v0, so its height at time t is

y2 = v0t − 4.9t2 m.

The two balls collide at a height of 30 m (at time T ,
say). Thus

30 = 60 − 4.9T 2

30 = v0T − 4.9T 2.

Thus v0T = 60 and T 2 = 30/4.9. The initial upward
speed of the second ball is

v0 = 60

T
= 60

√
4.9

30
≈ 24.25 m/s.
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At time T , the velocity of the first ball is

dy1

dt

∣∣∣∣
t=T

= −9.8T ≈ −24.25 m/s.

At time T , the velocity of the second ball is

dy2

dt

∣∣∣∣
t=T

= v0 − 9.8T = 0 m/s.

45. Let the car’s initial speed be v0. The car decelerates at
20 ft/s2 starting at t = 0, and travels distance s in time t ,
where d2s/dt2 = −20. Thus

ds

dt
= v0 − 20t

x = v0t − 10t2.

The car stops at time t = v0/20. The stopping distance is
s = 160 ft, so

160 = v2
0

20
− v2

0

40
= v2

0

40
.

The car’s initial speed cannot exceed
v0 = √

160 × 40 = 80 ft/s.

46. P = 2π
√

L/g = 2π L1/2g−1/2.

a) If L remains constant, then

�P ≈ d P

dg
�g = −π L1/2g−3/2 �g

�P

P
≈ −π L1/2g−3/2

2π L1/2g−1/2 �g = −1

2

�g

g
.

If g increases by 1%, then �g/g = 1/100, and
�P/P = −1/200. Thus P decreases by 0.5%.

b) If g remains constant, then

�P ≈ d P

d L
�L = π L−1/2g−1/2 �L

�P

P
≈ π L−1/2g−1/2

2π L1/2g−1/2 �L = 1

2

�L

L
.

If L increases by 2%, then �L/L = 2/100, and
�P/P = 1/100. Thus P increases by 1%.

Challenging Problems 2 (page 159)

1. The line through (a, a2) with slope m has equation
y = a2 + m(x − a). It intersects y = x2 at points x
that satisfy

x2 = a2 + mx − ma, or

x2 − mx + ma − a2 = 0

In order that this quadratic have only one solution x = a,
the left side must be (x − a)2, so that m = 2a. The
tangent has slope 2a.
This won’t work for more general curves whose tangents
can intersect them at more than one point.

2. f ′(x) = 1/x , f (2) = 9.

a) lim
x→2

f (x2 + 5) − f (9)

x − 2
= lim

h→0

f (9 + 4h + h2) − f (9)

h

= lim
h→0

f (9 + 4h + h2) − f (9)

4h + h2 × 4h + h2

h

= lim
k→0

f (9 + k) − f (9)

k
× lim

h→0
(4 + h)

= f ′(9) × 4 = 4

9

b) lim
x→2

√
f (x) − 3

x − 2
= lim

h→0

√
f (2 + h) − 3

h

= lim
h→0

f (2 + h) − 9

h
× 1√

f (2 + h) + 3

= f ′(2) × 1

6
= 1

12
.

3. f ′(4) = 3, g′(4) = 7, g(4) = 4, g(x) �= 4 if x �= 4.

a) lim
x→4

(
f (x) − f (4)

)
= lim

x→4

f (x) − f (4)

x − 4
(x − 4)

= f ′(4)(4 − 4) = 0

b) lim
x→4

f (x) − f (4)

x2 − 16
= lim

x→4

f (x) − f (4)

x − 4
× 1

x + 4

= f ′(4) × 1

8
= 3

8

c) lim
x→4

f (x) − f (4)√
x − 2

= lim
x→4

f (x) − f (4)

x − 4
× (

√
x + 2)

= f ′(4) × 4 = 12

d) lim
x→4

f (x) − f (4)

1

x
− 1

4

= lim
x→4

f (x) − f (4)

x − 4
× x − 4

(4 − x)/4x

= f ′(4) × (−16) = −48

e) lim
x→4

f (x) − f (4)

g(x) − 4
= lim

x→4

f (x) − f (4)

x − 4
g(x) − g(4)

x − 4

= f ′(4)

g′(4)
= 3

7

f) lim
x→4

f (g(x)) − f (4)

x − 4

= lim
x→4

f (g(x)) − f (4)

g(x) − 4
× g(x) − g(4)

x − 4

= f ′(g(4)) × g′(4) = f ′(4) × g′(4) = 3 × 7 = 21

4. f (x) =
{

x if x = 1, 1/2, 1/3, . . .

x2 otherwise
.
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a) f is continuous except at 1/2, 1/3, 1/4, . . . . It is
continuous at x = 1 and x = 0 (and everywhere
else). Note that

lim
x→1

x2 = 1 = f (1),

lim
x→0

x2 = lim
x→0

x = 0 = f (0)

b) If a = 1/2 and b = 1/3, then

f (a) + f (b)

2
= 1

2

(
1

2
+ 1

3

)
= 5

12
.

If 1/3 < x < 1/2, then f (x) = x2 < 1/4 < 5/12.
Thus the statement is FALSE.

c) By (a) f cannot be differentiable at x = 1/2, 1/2,
. . .. It is not differentiable at x = 0 either, since

lim
h→0

h − 0h = 1 �= 0 = lim
h→0

h2 − 0

h
.

f is differentiable elsewhere, including at x = 1
where its derivative is 2.

5. If h �= 0, then

∣∣∣∣
f (h) − f (0)

h

∣∣∣∣ = | f (h)|
|h| >

√|h|
|h| → ∞

as h → 0. Therefore f ′(0) does not exist.

6. Given that f ′(0) = k, f (0) �= 0, and
f (x + y) = f (x) f (y), we have

f (0) = f (0+0) = f (0) f (0) ⇒ f (0) = 0 or f (0) = 1.

Thus f (0) = 1.

f ′(x) = lim
h→0

f (x + h) − f (x)

h

= lim
h→0

f (x) f (h) − f (x)

h
= f (x) f ′(0) = k f (x).

7. Given that g′(0) = k and g(x + y) = g(x) + g(y), then

a) g(0) = g(0 + 0) = g(0) + g(0). Thus g(0) = 0.

b) g′(x) = lim
h→0

g(x + h) − g(x)

h

= lim
h→0

g(x) + g(h) − g(x)

h
= lim

h→0

g(h) − g(0)

h
= g′(0) = k.

c) If h(x) = g(x) − kx , then h′(x) = g′(x) − k = 0
for all x . Thus h(x) is constant for all x . Since
h(0) = g(0) − 0 = 0, we have h(x) = 0 for all x ,
and g(x) = kx .

8. a) f ′(x) = lim
k→0

f (x + k) − f (x)

k
(let k = −h)

= lim
h→0

f (x − h) − f (x)

−h
= lim

h→0

f (x) − f (x − h)

h
.

f ′(x) = 1

2

(
f ′(x) + f ′(x)

)

= 1

2

(
lim
h→0

f (x + h) − f (x)

h

+ lim
h→0

f (x) − f (x − h)

h

)

= lim
h→0

f (x + h) − f (x − h)

2h
.

b) The change of variables used in the first part of (a)
shows that

lim
h→0

f (x + h) − f (x)

h
and lim

h→0

f (x) − f (x − h)

h

are always equal if either exists.

c) If f (x) = |x |, then f ′(0) does not exist, but

lim
h→0

f (0 + h) − f (0 − h)

2h
= lim

h→0

|h| − |h|
h

= lim
h→0

0

h
= 0.

9. The tangent to y = x3 at x = 3a/2 has equation

y = 27a3

8
+ 27

4a2

(
x − 3a

2

)
.

This line passes through (a, 0) because

27a3

8
+ 27

4a2

(
a − 3a

2

)
= 0.

If a �= 0, the x-axis is another tangent to y = x3 that
passes through (a, 0).

The number of tangents to y = x3 that pass through
(x0, y0) is

three, if x0 �= 0 and y0 is between 0 and x3
0 ;

two, if x0 �= 0 and either y0 = 0 or y0 = x3
0 ;

one, otherwise.

This is the number of distinct real solutions b of the cu-
bic equation 2b3 − 3b2x0 + y0 = 0, which states that the
tangent to y = x3 at (b, b3) passes through (x0, y0).

10. By symmetry, any line tangent to both curves must pass
through the origin.
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y

x

y = x2 + 4x + 1

y = −x2 + 4x − 1

Fig. C-2.10

The tangent to y = x2 + 4x + 1 at x = a has equation

y = a2 + 4a + 1 + (2a + 4)(x − a)

= (2a + 4)x − (a2 − 1),

which passes through the origin if a = ±1. The two
common tangents are y = 6x and y = 2x .

11. The slope of y = x2 at x = a is 2a.
The slope of the line from (0, b) to (a, a2) is (a2 − b)/a.
This line is normal to y = x2 if either a = 0 or
2a((a2 − b)/a) = −1, that is, if a = 0 or 2a2 = 2b − 1.
There are three real solutions for a if b > 1/2 and only
one (a = 0) if b ≤ 1/2.

12. The point Q = (a, a2) on y = x2 that is closest to
P = (3, 0) is such that P Q is normal to y = x2 at Q.
Since P Q has slope a2/(a − 3) and y = x2 has slope 2a
at Q, we require

a2

a − 3
= − 1

2a
,

which simplifies to 2a3 + a − 3 = 0. Observe that a = 1
is a solution of this cubic equation. Since the slope of
y = 2x3 + x − 3 is 6x2 + 1, which is always positive,
the cubic equation can have only one real solution. Thus
Q = (1, 1) is the point on y = x2 that is closest to P.
The distance from P to the curve is |P Q| = √

5 units.

13. The curve y = x2 has slope m = 2a at (a, a2). The
tangent there has equation

y = a2 + m(x − a) = mx − m2

4
.

The curve y = Ax2 + Bx + C has slope m = 2Aa + B
at (a, Aa2 + Ba + C). Thus a = (m − B)/(2A), and the
tangent has equation

y = Aa2 + Ba + C + m(x − a)

= mx + (m − B)2

4A
+ B(m − B)

2A
+ C − m(m − B)

2A

= mx + C + (m − B)2

4A
− (m − B)2

2A
= mx + f (m),

where f (m) = C − (m − B)2/(4A).

14. Parabola y = x2 has tangent y = 2ax − a2 at (a, a2).
Parabola y = Ax2 + Bx + C has tangent

y = (2Ab + B)x − Ab2 + C

at (b, Ab2 + Bb + C). These two tangents coincide if

2Ab + B = 2a

Ab2 − C = a2.

(∗)

The two curves have one (or more) common tangents if
(∗) has real solutions for a and b. Eliminating a between
the two equations leads to

(2Ab + B)2 = 4Ab2 − 4C,

or, on simplification,

4A(A − 1)b2 + 4ABb + (B2 + 4C) = 0.

This quadratic equation in b has discriminant

D = 16A2 B2−16A(A−1)(B2+4C) = 16A(B2−4(A−1)C).

There are five cases to consider:

CASE I. If A = 1, B �= 0, then (∗) gives

b = − B2 + 4C

4B
, a = B2 − 4C

4B
.

There is a single common tangent in this case.

CASE II. If A = 1, B = 0, then (∗) forces C = 0, which
is not allowed. There is no common tangent in this case.

CASE III. If A �= 1 but B2 = 4(A − 1)C , then

b = −B

2(A − 1)
= a.

There is a single common tangent, and since the points
of tangency on the two curves coincide, the two curves
are tangent to each other.

CASE IV. If A �= 1 and B2 −4(A−1)C < 0, there are no
real solutions for b, so there can be no common tangents.

CASE V. If A �= 1 and B2 − 4(A − 1)C > 0, there are
two distinct real solutions for b, and hence two common
tangent lines.
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Fig. C-2.14

15. a) The tangent to y = x3 at (a, a3) has equation

y = 3a2x − 2a3.

For intersections of this line with y = x3 we solve

x3 − 3a2x + 2a3 = 0

(x − a)2(x + 2a) = 0.

The tangent also intersects y = x3 at (b, b3), where
b = −2a.

b) The slope of y = x3 at x = −2a is 3(−2a)2 = 12a2,
which is four times the slope at x = a.

c) If the tangent to y = x3 at x = a were also tangent
at x = b, then the slope at b would be four times
that at a and the slope at a would be four times that
at b. This is clearly impossible.

d) No line can be tangent to the graph of a cubic poly-
nomial P(x) at two distinct points a and b, because
if there was such a double tangent y = L(x), then
(x − a)2(x − b)2 would be a factor of the cubic poly-
nomial P(x) − L(x), and cubic polynomials do not
have factors that are 4th degree polynomials.

16. a) y = x4 − 2x2 has horizontal tangents at points x
satisfying 4x3 − 4x = 0, that is, at x = 0 and
x = ±1. The horizontal tangents are y = 0 and
y = −1. Note that y = −1 is a double tangent; it is
tangent at the two points (±1,−1).

b) The tangent to y = x4 − 2x2 at x = a has equation

y = a4 − 2a2 + (4a3 − 4a)(x − a)

= 4a(a2 − 1)x − 3a4 + 2a2.

Similarly, the tangent at x = b has equation

y = 4b(b2 − 1)x − 3b4 + 2b2.

These tangents are the same line (and hence a dou-
ble tangent) if

4a(a2 − 1) = 4b(b2 − 1)

− 3a4 + 2a2 = −3b4 + 2b2.

The second equation says that either a2 = b2 or
3(a2 + b2) = 2; the first equation says that
a3 − b3 = a − b, or, equivalently, a2 + ab + b2 = 1.
If a2 = b2, then a = −b (a = b is not allowed).
Thus a2 = b2 = 1 and the two points are (±1,−1)

as discovered in part (a).
If a2 +b2 = 2/3, then ab = 1/3. This is not possible
since it implies that

0 = a2 + b2 − 2ab = (a − b)2 > 0.

Thus y = −1 is the only double tangent to
y = x4 − 2x2.

c) If y = Ax + B is a double tangent to
y = x4 − 2x2 + x , then y = (A − 1)x + B is a
double tangent to
y = x4 − 2x2. By (b) we must have A − 1 = 0
and B = −1. Thus the only double tangent to
y = x4 − 2x2 + x is y = x − 1.

17. a) The tangent to

y = f (x) = ax4 + bx3 + cx2 + dx + e

at x = p has equation

y = (4ap3 +3bp2 +2cp+d)x −3ap4−2bp3 −cp2+e.

This line meets y = f (x) at x = p (a double root),
and

x = −2ap − b ±√
b2 − 4ac − 4abp − 8a2 p2

2a
.

These two latter roots are equal (and hence corre-
spond to a double tangent) if the expression under
the square root is 0, that is, if

8a2 p2 + 4abp + 4ac − b2 = 0.

This quadratic has two real solutions for p provided
its discriminant is positive, that is, provided

16a2b2 − 4(8a2)(4ac − b2) > 0.
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This condition simplifies to

3b2 > 8ac.

For example, for y = x4−2x2+x−1, we have a = 1,
b = 0, and c = −2, so 3b2 = 0 > −16 = 8ac, and
the curve has a double tangent.

b) From the discussion above, the second point of tan-
gency is

q = −2ap − b

2a
= −p − b

2a
.

The slope of P Q is

f (q) − f (p)

q − p
= b3 − 4abc + 8a2d

8a2
.

Calculating f ′((p + q)/2) leads to the same expres-
sion, so the double tangent P Q is parallel to the
tangent at the point horizontally midway between P
and Q.

c) The inflection points are the real zeros of

f ′′(x) = 2(6ax2 + 3bx + c).

This equation has distinct real roots provided
9b2 > 24ac, that is, 3b2 > 8ac. The roots are

r = −3b − √
9b2 − 24ac

12a

s = −3b + √
9b2 − 24ac

12a
.

The slope of the line joining these inflection points
is

f (s) − f (r)

s − r
= b3 − 4abc + 8a2d

8a2 ,

so this line is also parallel to the double tangent.

18. a) Claim:
dn

dxn
cos(ax) = an cos

(
ax + nπ

2

)
.

Proof: For n = 1 we have

d

dx
cos(ax) = −a sin(ax) = a cos

(
ax + π

2

)
,

so the formula above is true for n = 1. Assume it is
true for n = k, where k is a positive integer. Then

dk+1

dxk+1 cos(ax) = d

dx

[
ak cos

(
ax + kπ

2

)]

= ak
[
−a sin

(
ax + kπ

2

)]

= ak+1 cos

(
ax + (k + 1)π

2

)
.

Thus the formula holds for n = 1, 2, 3, . . . by
induction.

b) Claim:
dn

dxn
sin(ax) = an sin

(
ax + nπ

2

)
.

Proof: For n = 1 we have

d

dx
sin(ax) = a cos(ax) = a sin

(
ax + π

2

)
,

so the formula above is true for n = 1. Assume it is
true for n = k, where k is a positive integer. Then

dk+1

dxk+1
sin(ax) = d

dx

[
ak sin

(
ax + kπ

2

)]

= ak
[

a cos

(
ax + kπ

2

)]

= ak+1 sin

(
ax + (k + 1)π

2

)
.

Thus the formula holds for n = 1, 2, 3, . . . by
induction.

c) Note that

d

dx
(cos4 x + sin4 x) = −4 cos3 x sin x + 4 sin3 x cos x

= −4 sin x cos x(cos2 − sin2 x)

= −2 sin(2x) cos(2x)

= − sin(4x) = cos
(

4x + π

2

)
.

It now follows from part (a) that

dn

dxn
(cos4 x + sin4 x) = 4n−1 cos

(
4x + nπ

2

)
.

19.
(3, 39.2)

(12, −49)

(15, −1)

v (m/s)
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Fig. C-2.19

a) The fuel lasted for 3 seconds.

b) Maximum height was reached at t = 7 s.
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c) The parachute was deployed at t = 12 s.

d) The upward acceleration in [0, 3] was
39.2/3 ≈ 13.07 m/s2.

e) The maximum height achieved by the rocket is the
distance it fell from t = 7 to t = 15. This is the
area under the t-axis and above the graph of v on
that interval, that is,

12 − 7

2
(49) + 49 + 1

2
(15 − 12) = 197.5 m.

f) During the time interval [0, 7], the rocket rose a
distance equal to the area under the velocity graph
and above the t-axis, that is,

1

2
(7 − 0)(39.2) = 137.2 m.

Therefore the height of the tower was
197.5 − 137.2 = 60.3 m.
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