CHAPTER 3. TRANSCENDENTAL FUNC-TIONS

Section 3.1 Inverse Functions (page 167)

- **1.** f(x) = x 1 $f(x_1) = f(x_2) \Rightarrow x_1 - 1 = x_2 - 1 \Rightarrow x_1 = x_2.$ Thus f is one-to-one. Let $y = f^{-1}(x)$. Then x = f(y) = y - 1 and y = x + 1. Thus $f^{-1}(x) = x + 1$. $\mathcal{D}(f) = \mathcal{D}(f^{-1}) = \mathbb{R} = \mathcal{R}(f) = \mathcal{R}(f^{-1}).$
- 2. f(x) = 2x 1. If $f(x_1) = f(x_2)$, then $2x_1 1 = 2x_2 1$. Thus $2(x_1 x_2) = 0$ and $x_1 = x_2$. Hence, f is one-to-one. Let $y = f^{-1}(x)$. Thus x = f(y) = 2y - 1, so $y = \frac{1}{2}(x+1)$. Thus $f^{-1}(x) = \frac{1}{2}(x+1)$. $\mathcal{D}(f) = \mathcal{R}(f^{-1}) = (-\infty, \infty)$. $\mathcal{R}(f) = \mathcal{D}(f^{-1}) = (-\infty, \infty)$.
- 3. $f(x) = \sqrt{x-1}$ $f(x_1) = f(x_2) \Leftrightarrow \sqrt{x_1 - 1} = \sqrt{x_2 - 1}, \quad (x_1, x_2 \ge 1)$ $\Leftrightarrow x_1 - 1 = x_2 - 1 = 0$ $\Leftrightarrow x_1 = x_2$ Thus f is one-to-one. Let $y = f^{-1}(x)$. Then $x = f(y) = \sqrt{y-1}$, and $y = 1 + x^2$. Thus $f^{-1}(x) = 1 + x^2, (x \ge 0)$. $\mathcal{D}(f) = \mathcal{R}(f^{-1}) = [1, \infty), \, \mathcal{R}(f) = \mathcal{D}(f^{-1}) = [0, \infty)$.
- **4.** $f(x) = -\sqrt{x-1}$ for $x \ge 1$. If $f(x_1) = f(x_2)$, then $-\sqrt{x_1 - 1} = -\sqrt{x_2 - 1}$ and $x_1 - 1 = x_2 - 1$. Thus $x_1 = x_2$ and f is one-to-one. Let $y = f^{-1}(x)$. Then $x = f(y) = -\sqrt{y-1}$ so $x^2 = y - 1$ and $y = x^2 + 1$. Thus, $f^{-1}(x) = x^2 + 1$. $\mathcal{D}(f) = \mathcal{R}(f^{-1}) = [1, \infty)$. $\mathcal{R}(f) = \mathcal{D}(f^{-1}) = (-\infty, 0]$.
- 5. $f(x) = x^3$ $f(x_1) = f(x_2) \Leftrightarrow x_1^3 = x_2^3$ $\Rightarrow (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2) = 0$ $\Rightarrow x_1 = x_2$ Thus f is one-to-one. Let $y = f^{-1}(x)$. Then $x = f(y) = y^3$ so $y = x^{1/3}$. Thus $f^{-1}(x) = x^{1/3}$. $\mathcal{D}(f) = \mathcal{D}(f^{-1}) = \mathbb{R} = \mathcal{R}(f) = \mathcal{R}(f^{-1})$.
- **6.** $f(x) = 1 + \sqrt[3]{x}$. If $f(x_1) = f(x_2)$, then $1 + \sqrt[3]{x_1} = 1 + \sqrt[3]{x_2}$ so $x_1 = x_2$. Thus, f is one-to-one. Let $y = f^{-1}(x)$ so that $x = f(y) = 1 + \sqrt[3]{y}$. Thus $y = (x - 1)^3$ and $f^{-1}(x) = (x - 1)^3$. $\mathcal{D}(f) = \mathcal{R}(f^{-1}) = (-\infty, \infty)$. $\mathcal{R}(f) = \mathcal{D}(f^{-1}) = (-\infty, \infty)$.

- 7. $f(x) = x^2, (x \le 0)$ $f(x_1) = f(x_2) \Leftrightarrow x_1^2 = x_2^2, (x_1 \le 0, x_2 \le 0)$ $\Leftrightarrow x_1 = x_2$ Thus f is one-to-one. Let $y = f^{-1}(x)$. Then $x = f(y) = y^2 (y \le 0)$. therefore $y = -\sqrt{x}$ and $f^{-1}(x) = -\sqrt{x}$. $\mathcal{D}(f) = (-\infty, 0] = \mathcal{R}(f^{-1})$, $\mathcal{D}(f^{-1}) = [0, \infty) = \mathcal{R}(f)$.
- **8.** $f(x) = (1-2x)^3$. If $f(x_1) = f(x_2)$, then $(1-2x_1)^3 = (1-2x_2)^3$ and $x_1 = x_2$. Thus, f is one-to-one. Let $y = f^{-1}(x)$. Then $x = f(y) = (1-2y)^3$ so $y = \frac{1}{2}(1-\sqrt[3]{x})$. Thus, $f^{-1}(x) = \frac{1}{2}(1-\sqrt[3]{x})$. $\mathcal{D}(f) = \mathcal{R}(f^{-1}) = (-\infty, \infty)$. $\mathcal{R}(f) = \mathcal{D}(f^{-1}) = (-\infty, \infty)$.
- 9. $f(x) = \frac{1}{x+1}$. $\mathcal{D}(f) = \{x : x \neq -1\} = \mathcal{R}(f^{-1})$. $f(x_1) = f(x_2) \Leftrightarrow \frac{1}{x_1+1} = \frac{1}{x_2+1}$ $\Leftrightarrow x_2 + 1 = x_1 + 1$ $\Leftrightarrow x_2 = x_1$ Thus f is one-to-one; Let $y = f^{-1}(x)$. Then $x = f(y) = \frac{1}{y+1}$ so $y + 1 = \frac{1}{x}$ and $y = f^{-1}(x) = \frac{1}{x} - 1$. $\mathcal{D}(f^{-1}) = \{x : x \neq 0\} = \mathcal{R}(f)$.
- 10. $f(x) = \frac{x}{1+x}$. If $f(x_1) = f(x_2)$, then $\frac{x_1}{1+x_1} = \frac{x_2}{1+x_2}$. Hence $x_1(1+x_2) = x_2(1+x_1)$ and, on simplification, $x_1 = x_2$. Thus, f is one-to-one. Let $y = f^{-1}(x)$. Then $x = f(y) = \frac{y}{1+y}$ and x(1+y) = y. Thus $y = \frac{x}{1-x} = f^{-1}(x)$. $\mathcal{D}(f) = \mathcal{R}(f^{-1}) = (-\infty, -1) \cup (-1, \infty)$. $\mathcal{R}(f) = \mathcal{D}(f^{-1}) = (-\infty, 1) \cup (1, \infty)$.
- 11. $f(x) = \frac{1-2x}{1+x}. \quad \mathcal{D}(f) = \{x : x \neq -1\} = \mathcal{R}(f^{-1})$ $f(x_1) = f(x_2) \Leftrightarrow \frac{1-2x_1}{1+x_1} = \frac{1-2x_2}{1+x_2}$ $\Leftrightarrow 1+x_2-2x_1-2x_1x_2 = 1+x_1-2x_2-2x_1x_2$ $\Leftrightarrow 3x_2 = 3x_1 \Leftrightarrow x_1 = x_2$ Thus f is one-to-one. Let $y = f^{-1}(x)$.

 Then $x = f(y) = \frac{1-2y}{1+y}$ so x + xy = 1-2yand $f^{-1}(x) = y = \frac{1-x}{2+x}$. $\mathcal{D}(f^{-1}) = \{x : x \neq -2\} = \mathcal{R}(f).$

- 12. $f(x) = \frac{x}{\sqrt{x^2 + \frac{1}{1}}}$. If $f(x_1) = f(x_2)$, then $\frac{x_1}{\sqrt{x_1^2 + 1}} = \frac{x_2}{\sqrt{x_2^2 + 1}}$. (*)

 Thus $x_1^2(x_2^2 + 1) = x_2^2(x_1^2 + 1)$ and $x_1^2 = x_2^2$. From (*), x_1 and x_2 must have the same sign. Hence, $x_1 = x_2$ and f is one-to-one.

 Let $y = f^{-1}(x)$. Then $x = f(y) = \frac{y}{\sqrt{y^2 + 1}}$, and $x^2(y^2 + 1) = y^2$. Hence $y^2 = \frac{x^2}{1 x^2}$. Since f(y) and $f(x) = \frac{x}{\sqrt{1 x^2}}$. Since $f(y) = \frac{x}{\sqrt{1 x^2}}$, so $f^{-1}(x) = \frac{x}{\sqrt{1 x^2}}$. $f(x) = \frac{x}{\sqrt{1 x^2}}$.
- 13. g(x) = f(x) 2Let $y = g^{-1}(x)$. Then x = g(y) = f(y) - 2, so f(y) = x + 2 and $g^{-1}(x) = y = f^{-1}(x + 2)$.
- **14.** h(x) = f(2x). Let $y = h^{-1}(x)$. Then x = h(y) = f(2y) and $2y = f^{-1}(x)$. Thus $h^{-1}(x) = y = \frac{1}{2}f^{-1}(x)$.
- **15.** k(x) = -3f(x). Let $y = k^{-1}(x)$. Then x = k(y) = -3f(y), so $f(y) = -\frac{x}{3}$ and $k^{-1}(x) = y = f^{-1}\left(-\frac{x}{3}\right)$.
- **16.** m(x) = f(x 2). Let $y = m^{-1}(x)$. Then x = m(y) = f(y 2), and $y 2 = f^{-1}(x)$. Hence $m^{-1}(x) = y = f^{-1}(x) + 2$.
- 17. $p(x) = \frac{1}{1 + f(x)}$. Let $y = p^{-1}(x)$. Then $x = p(y) = \frac{1}{1 + f(y)}$ so $f(y) = \frac{1}{x} - 1$, and $p^{-1}(x) = y = f^{-1}\left(\frac{1}{x} - 1\right)$.
- **18.** $q(x) = \frac{f(x) 3}{2}$ Let $y = q^{-1}(x)$. Then $x = q(y) = \frac{f(y) 3}{2}$ and f(y) = 2x + 3. Hence $q^{-1}(x) = y = f^{-1}(2x + 3)$.
- 19. r(x) = 1 2f(3 4x)Let $y = r^{-1}(x)$. Then x = r(y) = 1 - 2f(3 - 4y).

$$f(3-4y) = \frac{1-x}{2}$$
$$3-4y = f^{-1}\left(\frac{1-x}{2}\right)$$

and
$$r^{-1}(x) = y = \frac{1}{4} \left(3 - f^{-1} \left(\frac{1-x}{2} \right) \right)$$

- 20. $s(x) = \frac{1+f(x)}{1-f(x)}$. Let $y = s^{-1}(x)$. Then $x = s(y) = \frac{1+f(y)}{1-f(y)}$. Solving for f(y) we obtain $f(y) = \frac{x-1}{x+1}$. Hence $s^{-1}(x) = y = f^{-1}\left(\frac{x-1}{x+1}\right)$.
- 21. $f(x) = x^2 + 1$ if $x \ge 0$, and f(x) = x + 1 if x < 0.

 If $f(x_1) = f(x_2)$ then if $x_1 \ge 0$ and $x_2 \ge 0$ then $x_1^2 + 1 = x_2^2 + 1$ so $x_1 = x_2$;

 if $x_1 \ge 0$ and $x_2 < 0$ then $x_1^2 + 1 = x_2 + 1$ so $x_2 = x_1^2$ (not possible);

 if $x_1 < 0$ and $x_2 \ge 0$ then $x_1 = x_2^2$ (not possible);

 if $x_1 < 0$ and $x_2 < 0$ then $x_1 + 1 = x_2 + 1$ so $x_1 = x_2$.

 Therefore f is one-to-one. Let $y = f^{-1}(x)$. Then $x = f(y) = \begin{cases} y^2 + 1 & \text{if } y \ge 0 \\ y + 1 & \text{if } y < 0. \end{cases}$ Thus $f^{-1}(x) = y = \begin{cases} \sqrt{x 1} & \text{if } x \ge 1 \\ x 1 & \text{if } x < 1. \end{cases}$

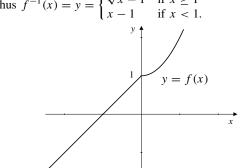


Fig. 3.1.21

- **22.** $g(x) = x^3$ if $x \ge 0$, and $g(x) = x^{1/3}$ if x < 0. Suppose $f(x_1) = f(x_2)$. If $x_1 \ge 0$ and $x_2 \ge 0$ then $x_1^3 = x_2^3$ so $x_1 = x_2$. Similarly, $x_1 = x_2$ if both are negative. If x_1 and x_2 have opposite sign, then so do $g(x_1)$ and $g(x_2)$. Therefore g is one-to-one. Let $y = g^{-1}(x)$. Then $x = g(y) = \begin{cases} y^3 & \text{if } y \ge 0 \\ y^{1/3} & \text{if } y < 0. \end{cases}$ Thus $g^{-1}(x) = y = \begin{cases} x^{1/3} & \text{if } x \ge 0 \\ x^3 & \text{if } x < 0. \end{cases}$
- 23. If x_1 and x_2 are both positive or both negative, and $h(x_1) = h(x_2)$, then $x_1^2 = x_2^2$ so $x_1 = x_2$. If x_1 and x_2 have opposite sign, then $h(x_1)$ and $h(x_2)$ are on opposite sides of 1, so cannot be equal. Hence h is one-to-one. If $y = h^{-1}(x)$, then $x = h(y) = \begin{cases} y^2 + 1 & \text{if } y \ge 0 \\ -y^2 + 1 & \text{if } y < 0 \end{cases}$. If $y \ge 0$, then $y = \sqrt{x 1}$. If y < 0, then $y = \sqrt{1 x}$. Thus $h^{-1}(x) = \begin{cases} \sqrt{x 1} & \text{if } x \ge 1 \\ \sqrt{1 x} & \text{if } x < 1 \end{cases}$
- **24.** $y = f^{-1}(x) \Leftrightarrow x = f(y) = y^3 + y$. To find $y = f^{-1}(2)$ we solve $y^3 + y = 2$ for y. Evidently y = 1 is the only solution, so $f^{-1}(2) = 1$.

- **25.** g(x) = 1 if $x^3 + x = 10$, that is, if x = 2. Thus $g^{-1}(1) = 2$.
- **26.** h(x) = -3 if x|x| = -4, that is, if x = -2. Thus $h^{-1}(-3) = -2$.
- 27. If $y = f^{-1}(x)$ then x = f(y). Thus $1 = f'(y)\frac{dy}{dx}$ so $\frac{dy}{dx} = \frac{1}{f'(y)} = \frac{1}{\frac{1}{y}} = y$

(since f'(x) = 1/x).

- 28. $f(x) = 1 + 2x^3$ Let $y = f^{-1}(x)$. Thus $x = f(y) = 1 + 2y^3$. $1 = 6y^2 \frac{dy}{dx}$ so $(f^{-1})'(x) = \frac{dy}{dx} = \frac{1}{6y^2} = \frac{1}{6[f^{-1}(x)]^2}$
- **29.** If $f(x) = \frac{4x^3}{x^2 + 1}$, then

$$f'(x) = \frac{(x^2+1)(12x^2) - 4x^3(2x)}{(x^2+1)^2} = \frac{4x^2(x^2+3)}{(x^2+1)^2}.$$

Since f'(x) > 0 for all x, except x = 0, f must be one-to-one and so it has an inverse.

If
$$y = f^{-1}(x)$$
, then $x = f(y) = \frac{4y^3}{y^2 + 1}$, and

$$1 = f'(y) = \frac{(y^2 + 1)(12y^2y') - 4y^3(2yy')}{(y^2 + 1)^2}.$$

Thus $y' = \frac{(y^2 + 1)^2}{4y^4 + 12y^2}$. Since f(1) = 2, therefore $f^{-1}(2) = 1$ and

$$(f^{-1})'(2) = \frac{(y^2 + 1)^2}{4y^4 + 12y^2}\Big|_{y=1} = \frac{1}{4}.$$

30. If $f(x) = x\sqrt{3+x^2}$ and $y = f^{-1}(x)$, then $x = f(y) = y\sqrt{3+y^2}$, so,

$$1 = y'\sqrt{3 + y^2} + y\frac{2yy'}{2\sqrt{3 + y^2}} \quad \Rightarrow \quad y' = \frac{\sqrt{3 + y^2}}{3 + 2y^2}.$$

Since f(-1) = -2 implies that $f^{-1}(-2) = -1$, we have

$$\left(f^{-1}\right)'(-2) = \frac{\sqrt{3+y^2}}{3+2y^2}\bigg|_{y=-1} = \frac{2}{5}.$$

Note: $f(x) = x\sqrt{3+x^2} = -2 \Rightarrow x^2(3+x^2) = 4$ $\Rightarrow x^4 + 3x^2 - 4 = 0 \Rightarrow (x^2 + 4)(x^2 - 1) = 0$. Since $(x^2 + 4) = 0$ has no real solution, therefore $x^2 - 1 = 0$ and x = 1 or x = -1. Since it is given that x = -1, therefore x = -1.

- **31.** $y = f^{-1}(2) \Leftrightarrow 2 = f(y) = y^2/(1 + \sqrt{y})$. We must solve $2 + 2\sqrt{y} = y^2$ for y. There is a root between 2 and 3: $f^{-1}(2) \approx 2.23362$ to 5 decimal places.
- **32.** $g(x) = 2x + \sin x \Rightarrow g'(x) = 2 + \cos x \ge 1$ for all x. Therefore g is increasing, and so one-to-one and invertible on the whole real line.

 $y = g^{-1}(x) \Leftrightarrow x = g(y) = 2y + \sin y$. For $y = g^{-1}(2)$, we need to solve $2y + \sin y - 2 = 0$. The root is between 0 and 1; to five decimal places $g^{-1}(2) = y \approx 0.68404$. Also

$$1 = \frac{dx}{dx} = (2 + \cos y) \frac{dy}{dx}$$
$$(g^{-1})'(2) = \frac{dy}{dx} \Big|_{x=2} = \frac{1}{2 + \cos y} \approx 0.36036.$$

33. If $f(x) = x \sec x$, then $f'(x) = \sec x + x \sec x \tan x \ge 1$ for x in $(-\pi/2, \pi/2)$. Thus f is increasing, and so one-to-one on that interval. Moreover, $\lim_{x \to -(\pi/2)+} f(x) = -\infty$ and $\lim_{x \to (\pi/2)+} f(x) = \infty$, so, being continuous, f has range $(-\infty, \infty)$, and so f^{-1} has domain $(-\infty, \infty)$. Since f(0) = 0, we have $f^{-1}(0) = 0$, and

$$(f^{-1})'(0) = \frac{1}{f'(f^{-1}(0))} = \frac{1}{f'(0)} = 1.$$

- **34.** If $y = (f \circ g)^{-1}(x)$, then $x = f \circ g(y) = f(g(y))$. Thus $g(y) = f^{-1}(x)$ and $y = g^{-1}(f^{-1}(x)) = g^{-1} \circ f^{-1}(x)$. That is, $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.
- 35. $f(x) = \frac{x-a}{bx-c}$ Let $y = f^{-1}(x)$. Then $x = f(y) = \frac{y-a}{by-c}$ and bxy - cx = y - a so $y = \frac{cx-a}{bx-1}$. We have $f^{-1}(x) = f(x)$ if $\frac{x-a}{bx-c} = \frac{cx-a}{bx-1}$. Evidently it is necessary and sufficient that c = 1. a and b may have any values.
- 36. Let f(x) be an even function. Then f(x) = f(-x). Hence, f is not one-to-one and it is not invertible. Therefore, it cannot be self-inverse.
 An odd function g(x) may be self-inverse if its graph is symmetric about the line x = y. Examples are g(x) = x and g(x) = 1/x.
- **37.** No. A function that is one-to-one on a single interval need not be either increasing or decreasing. For example, consider the function defined on [0, 2] by

$$f(x) = \begin{cases} x & \text{if } 0 \le x \le 1\\ -x & \text{if } 1 < x \le 2. \end{cases}$$

It is one-to-one but neither increasing nor decreasing on all of [0, 2].

38. First we consider the case where the domain of f is a closed interval. Suppose that f is one-to-one and continuous on [a, b], and that f(a) < f(b). We show that f must be increasing on [a, b]. Suppose not. Then there are numbers x_1 and x_2 with $a \le x_1 < x_2 \le b$ and $f(x_1) > f(x_2)$. If $f(x_1) > f(a)$, let u be a number such that $u < f(x_1)$, $f(x_2) < u$, and f(a) < u. By the Intermediate-Value Theorem there exist numbers c_1 in (a, x_1) and c_2 in (x_1, x_2) such that $f(c_1) = u = f(c_2)$, contradicting the one-to-oneness of f. A similar contradiction arises if $f(x_1) \le f(a)$ because, in this case, $f(x_2) < f(b)$ and we can find c_1 in (x_1, x_2) and c_2 in (x_2, b) such that $f(c_1) = f(c_2)$. Thus f must be increasing on [a, b].

A similar argument shows that if f(a) > f(b), then f must be decreasing on [a, b].

Finally, if the interval I where f is defined is not necessarily closed, the same argument shows that if [a, b] is a subinterval of I on which f is increasing (or decreasing), then f must also be increasing (or decreasing) on any intervals of either of the forms $[x_1, b]$ or $[a, x_2]$, where x_1 and x_2 are in I and $x_1 \le a < b \le x_2$. So f must be increasing (or decreasing) on the whole of I.

Section 3.2 Exponential and Logarithmic Functions (page 171)

1.
$$\frac{3^3}{\sqrt{3^5}} = 3^{3-5/2} = 3^{1/2} = \sqrt{3}$$

2.
$$2^{1/2}8^{1/2} = 2^{1/2}2^{3/2} = 2^2 = 4$$

$$3. \quad (x^{-3})^{-2} = x^6$$

4.
$$(\frac{1}{2})^x 4^{x/2} = \frac{2^x}{2^x} = 1$$

$$5. \quad \log_5 125 = \log_5 5^3 = 3$$

6. If
$$\log_4(\frac{1}{8}) = y$$
 then $4^y = \frac{1}{8}$, or $2^{2y} = 2^{-3}$. Thus $2y = -3$ and $\log_4(\frac{1}{8}) = y = -\frac{3}{2}$.

7.
$$\log_{1/3} 3^{2x} = \log_{1/3} \left(\frac{1}{3}\right)^{-2x} = -2x$$

8.
$$4^{3/2} = 8$$
 $\Rightarrow \log_4 8 = \frac{3}{2}$ $\Rightarrow 2^{\log_4 8} = 2^{3/2} = 2\sqrt{2}$

9.
$$10^{-\log_{10}(1/x)} = \frac{1}{1/x} = x$$

10. Since
$$\log_a \left(x^{1/(\log_a x)} \right) = \frac{1}{\log_a x} \log_a x = 1$$
, therefore $x^{1/(\log_a x)} = a^1 = a$.

11.
$$(\log_a b)(\log_b a) = \log_a a = 1$$

12.
$$\log_x \left(x(\log_y y^2) \right) = \log_x (2x) = \log_x x + \log_x 2$$

= $1 + \log_x 2 = 1 + \frac{1}{\log_2 x}$

13.
$$(\log_4 16)(\log_4 2) = 2 \times \frac{1}{2} = 1$$

14.
$$\log_{15} 75 + \log_{15} 3 = \log_{15} 225 = 2$$
 (since $15^2 = 225$)

15.
$$\log_6 9 + \log_6 4 = \log_6 36 = 2$$

16.
$$2 \log_3 12 - 4 \log_3 6 = \log_3 \left(\frac{4^2 \cdot 3^2}{2^4 \cdot 3^4} \right)$$

= $\log_3 (3^{-2}) = -2$

17.
$$\log_a(x^4 + 3x^2 + 2) + \log_a(x^4 + 5x^2 + 6)$$

$$- 4\log_a\sqrt{x^2 + 2}$$

$$= \log_a\left((x^2 + 2)(x^2 + 1)\right) + \log_a\left((x^2 + 2)(x^2 + 3)\right)$$

$$- 2\log_1(x^2 + 2)$$

$$= \log_a(x^2 + 1) + \log_a(x^2 + 3)$$

$$= \log_a(x^4 + 4x^2 + 3)$$

18.
$$\log_{\pi} (1 - \cos x) + \log_{\pi} (1 + \cos x) - 2 \log_{\pi} \sin x$$

$$= \log_{\pi} \left[\frac{(1 - \cos x)(1 + \cos x)}{\sin^{2} x} \right] = \log_{\pi} \frac{\sin^{2} x}{\sin^{2} x}$$

$$= \log_{\pi} 1 = 0$$

19.
$$y = 3^{\sqrt{2}}$$
, $\log_{10} y = \sqrt{2} \log_{10} 3$, $y = 10^{\sqrt{2} \log_{10} 3} \approx 4.72880$

20.
$$\log_3 5 = (\log_{10} 5)/(\log_{10} 3 \approx 1.46497)$$

21.
$$2^{2x} = 5^{x+1}$$
, $2x \log_{10} 2 = (x+1) \log_{10} 5$, $x = (\log_{10} 5)/(2 \log_{10} 2 - \log_{10} 5) \approx -7.21257$

22.
$$x^{\sqrt{2}} = 3$$
, $\sqrt{2} \log_{10} x = \log_{10} 3$, $x = 10^{(\log_{10} 3)/\sqrt{2}} \approx 2.17458$

23.
$$\log_x 3 = 5$$
, $(\log_{10} 3)/(\log_{10} x) = 5$, $\log_{10} x = (\log_{10} 3)/5$, $x = 10^{(\log_{10} 3)/5} \approx 1.24573$

24.
$$\log_3 x = 5$$
, $(\log_{10} x)/(\log_{10} 3) = 5$, $\log_{10} x = 5 \log_{10} 3$, $x = 10^{5 \log_{10} 3} = 3^5 = 243$

25. Let
$$u = \log_a \left(\frac{1}{x}\right)$$
 then $a^u = \frac{1}{x} = x^{-1}$. Hence, $a^{-u} = x$ and $u = -\log_a x$.
Thus, $\log_a \left(\frac{1}{x}\right) = -\log_a x$.

26. Let
$$\log_a x = u$$
, $\log_a y = v$.
Then $x = a^u$, $y = a^v$.
Thus $\frac{x}{y} = \frac{a^u}{a^v} = a^{u-v}$
and $\log_a \left(\frac{x}{y}\right) = u - v = \log_a x - \log_a y$.

- **27.** Let $u = \log_a(x^y)$, then $a^u = x^y$ and $a^{u/y} = x$. Therefore $\frac{u}{y} = \log_a x$, or $u = y \log_a x$. Thus, $\log_a(x^y) = y \log_a x$.
- **28.** Let $\log_b x = u$, $\log_b a = v$. Thus $b^u = x$ and $b^v = a$. Therefore $x = b^u = b^{v(u/v)} = a^{u/v}$ and $\log_a x = \frac{u}{v} = \frac{\log_b x}{\log_b a}$.
- 29. $\log_4(x+4) 2\log_4(x+1) = \frac{1}{2}$ $\log_4 \frac{x+4}{(x+1)^2} = \frac{1}{2}$ $\frac{x+4}{(x+1)^2} = 4^{1/2} = 2$ $2x^2 + 3x - 2 = 0$ but we need x + 1 > 0, so x = 1/2.
- **30.** First observe that $\log_9 x = \log_3 x / \log_3 9 = \frac{1}{2} \log_3 x$. Now $2 \log_3 x + \log_9 x = 10$ $\log_3 x^2 + \log_3 x^{1/2} = 10$ $\log_3 x^{5/2} = 10$ $x^{5/2} = 3^{10}$, so $x = (3^{10})^{2/5} = 3^4 = 81$
- 31. Note that $\log_x 2 = 1/\log_2 x$. Since $\lim_{x\to\infty} \log_2 x = \infty$, therefore $\lim_{x\to\infty} \log_x 2 = 0$.
- **32.** Note that $\log_x(1/2) = -\log_x 2 = -1/\log_2 x$. Since $\lim_{x\to 0+} \log_2 x = -\infty$, therefore $\lim_{x\to 0+} \log_x(1/2) = 0$.
- 33. Note that $\log_x 2 = 1/\log_2 x$. Since $\lim_{x\to 1+} \log_2 x = 0+$, therefore $\lim_{x\to 1+} \log_x 2 = \infty$.
- 34. Note that $\log_x 2 = 1/\log_2 x$. Since $\lim_{x\to 1^-} \log_2 x = 0^-$, therefore $\lim_{x\to 1^-} \log_x 2 = -\infty$.
- **35.** $f(x) = a^x$ and $f'(0) = \lim_{h \to 0} \frac{a^h 1}{h} = k$. Thus

$$f'(x) = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$

$$= \lim_{h \to 0} \frac{a^x a^h - a^x}{h}$$

$$= a^x \lim_{h \to 0} \frac{a^h - 1}{h} = a^x f'(0) = a^x k = kf(x).$$

36. $y = f^{-1}(x) \Rightarrow x = f(y) = a^y$ $\Rightarrow 1 = \frac{dx}{dx} = ka^y \frac{dy}{dx}$ $\Rightarrow \frac{dy}{dx} = \frac{1}{ka^y} = \frac{1}{kx}.$

Thus $(f^{-1})'(x) = 1/(kx)$.

Section 3.3 The Natural Logarithm and Exponential (page 179)

1.
$$\frac{e^3}{\sqrt{e^5}} = e^{3-5/2} = e^{1/2} = \sqrt{e}$$

2.
$$\ln(e^{1/2}e^{2/3}) = \frac{1}{2} + \frac{2}{3} = \frac{7}{6}$$

3.
$$e^{5 \ln x} = x^5$$

4.
$$e^{(3\ln 9)/2} = 9^{3/2} = 27$$

5.
$$\ln \frac{1}{e^{3x}} = \ln e^{-3x} = -3x$$

6.
$$e^{2\ln\cos x} + \left(\ln e^{\sin x}\right)^2 = \cos^2 x + \sin^2 x = 1$$

7.
$$3 \ln 4 - 4 \ln 3 = \ln \frac{4^3}{3^4} = \ln \frac{64}{81}$$

8.
$$4 \ln \sqrt{x} + 6 \ln(x^{1/3}) = 2 \ln x + 2 \ln x = 4 \ln x$$

9.
$$2 \ln x + 5 \ln(x-2) = \ln(x^2(x-2)^5)$$

10.
$$\ln(x^2 + 6x + 9) = \ln[(x+3)^2] = 2\ln(x+3)$$

11.
$$2^{x+1} = 3^x$$

 $(x+1) \ln 2 = x \ln 3$
 $x = \frac{\ln 2}{\ln 3 - \ln 2} = \frac{\ln 2}{\ln(3/2)}$

12.
$$3^x = 9^{1-x} \Rightarrow 3^x = 3^{2(1-x)}$$

 $\Rightarrow x = 2(1-x) \Rightarrow x = \frac{2}{3}$

13.
$$\frac{1}{2^x} = \frac{5}{8^{x+3}}$$

$$-x \ln 2 = \ln 5 - (x+3) \ln 8$$

$$= \ln 5 - (3x+9) \ln 2$$

$$2x \ln 2 = \ln 5 - 9 \ln 2$$

$$x = \frac{\ln 5 - 9 \ln 2}{2 \ln 2}$$

14.
$$2^{x^2-3} = 4^x = 2^{2x} \Rightarrow x^2 - 3 = 2x$$

 $x^2 - 2x - 3 = 0 \Rightarrow (x - 3)(x + 1) = 0$
Hence, $x = -1$ or 3.

- **15.** $\ln(x/(2-x))$ is defined if x/(2-x) > 0, that is, if 0 < x < 2. The domain is the interval (0, 2).
- **16.** $\ln(x^2 x 2) = \ln[(x 2)(x + 1)]$ is defined if (x 2)(x + 1) > 0, that is, if x < -1 or x > 2. The domain is the union $(-\infty, -1) \cup (2, \infty)$.
- 17. $\ln(2x-5) > \ln(7-2x)$ holds if 2x-5 > 0, 7-2x > 0, and 2x-5 > 7-2x, that is, if x > 5/2, x < 7/2, and 4x > 12 (i.e., x > 3). The solution set is the interval (3, 7/2).

- **18.** $\ln(x^2 2) \le \ln x$ holds if $x^2 > 2$, x > 0, and $x^2 2 \le x$. Thus we need $x > \sqrt{2}$ and $x^2 x 2 \le 0$. This latter inequality says that $(x 2)(x + 1) \le 0$, so it holds for $-1 \le x \le 2$. The solution set of the given inequality is $(\sqrt{2}, 2]$.
- **19.** $y = e^{5x}, y' = 5e^{5x}$
- **20.** $y = xe^x x$, $y' = e^x + xe^x 1$
- 21. $y = \frac{x}{e^{2x}} = xe^{-2x}$ $y' = e^{-2x} - 2xe^{-2x}$ $= (1 - 2x)e^{-2x}$
- **22.** $y = x^2 e^{x/2}$, $y' = 2xe^{x/2} + \frac{1}{2}x^2 e^{x/2}$
- **23.** $y = \ln(3x 2)$ $y' = \frac{3}{3x 2}$
- **24.** $y = \ln|3x 2|$, $y' = \frac{3}{3x 2}$
- **25.** $y = \ln(1 + e^x)$ $y' = \frac{e^x}{1 + e^x}$
- **26.** $f(x) = e^{x^2}$, $f'(x) = (2x)e^{x^2}$
- **27.** $y = \frac{e^x + e^{-x}}{2}$, $y' = \frac{e^x e^{-x}}{2}$
- **28.** $x = e^{3t} \ln t$, $\frac{dx}{dt} = 3e^{3t} \ln t + \frac{1}{t}e^{3t}$
- **29.** $y = e^{(e^x)}$. $y' = e^x e^{(e^x)} = e^{x+e^x}$
- **30.** $y = \frac{e^x}{1 + e^x} = 1 \frac{1}{1 + e^x}, \quad y' = \frac{e^x}{(1 + e^x)^2}$
- **31.** $y = e^x \sin x$, $y' = e^x (\sin x + \cos x)$
- **32.** $y = e^{-x} \cos x$, $y' = -e^{-x} \cos x e^{-x} \sin x$
- **33.** $y = \ln \ln x$ $y' = \frac{1}{x \ln x}$
- 34. $y = x \ln x x$ $y' = \ln x + x \left(\frac{1}{x}\right) - 1 = \ln x$
- 35. $y = x^2 \ln x \frac{x^2}{2}$ $y' = 2x \ln x + \frac{x^2}{x} - \frac{2x}{2} = 2x \ln x$
- **36.** $y = \ln|\sin x|, \qquad y' = \frac{\cos x}{\sin x} = \cot x$
- 37. $y = 5^{2x+1}$ $y' = 2(5^{2x+1}) \ln 5 = (2 \ln 5)5^{2x+1}$
- **38.** $y = 2^{(x^2 3x + 8)}$, $y' = (2x 3)(\ln 2)2^{(x^2 3x + 8)}$
- **39.** $g(x) = t^x x^t$, $g'(x) = t^x x^t \ln t + t^{x+1} x^{t-1}$
- **40.** $h(t) = t^x x^t$, $h'(t) = xt^{x-1} x^t \ln x$

- 41. $f(s) = \log_a(bs + c) = \frac{\ln(bs + c)}{\ln a}$ $f'(s) = \frac{b}{(bs + c)\ln a}$
- 42. $g(x) = \log_{x}(2x+3) = \frac{\ln(2x+3)}{\ln x}$ $g'(x) = \frac{\ln x \left(\frac{2}{2x+3}\right) [\ln(2x+3)] \left(\frac{1}{x}\right)}{(\ln x)^{2}}$ $= \frac{2x \ln x (2x+3) \ln(2x+3)}{x(2x+3)(\ln x)^{2}}$
- 43. $y = x^{\sqrt{x}} = e^{\sqrt{x} \ln x}$ $y' = e^{\sqrt{x} \ln x} \left(\frac{\ln x}{2\sqrt{x}} + \frac{\sqrt{x}}{x} \right)$ $= x^{\sqrt{x}} \left(\frac{1}{\sqrt{x}} \left(\frac{1}{2} \ln x + 1 \right) \right)$
- **44.** Given that $y = \left(\frac{1}{x}\right)^{\ln x}$, let $u = \ln x$. Then $x = e^u$ and $y = \left(\frac{1}{e^u}\right)^u = (e^{-u})^u = e^{-u^2}$. Hence,

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = (-2ue^{-u^2}) \left(\frac{1}{x}\right) = -\frac{2\ln x}{x} \left(\frac{1}{x}\right)^{\ln x}.$$

- 45. $y = \ln|\sec x + \tan x|$ $y' = \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x}$ $= \sec x$
- **46.** $y = \ln|x + \sqrt{x^2 a^2}|$ $y' = \frac{1 + \frac{2x}{2\sqrt{x^2 - a^2}}}{x + \sqrt{x^2 - a^2}} = \frac{1}{\sqrt{x^2 - a^2}}$
- 47. $y = \ln(\sqrt{x^2 + a^2} x)$ $y' = \frac{\frac{x}{\sqrt{x^2 + a^2}} - 1}{\sqrt{x^2 + a^2} - x}$ $= -\frac{1}{\sqrt{x^2 + a^2}}$
- 48. $y = (\cos x)^{x} x^{\cos x} = e^{x \ln \cos x} e^{(\cos x)(\ln x)}$ $y' = e^{x \ln \cos x} \left[\ln \cos x + x \left(\frac{1}{\cos x} \right) (-\sin x) \right]$ $e^{(\cos x)(\ln x)} \left[-\sin x \ln x + \frac{1}{x} \cos x \right]$ $= (\cos x)^{x} (\ln \cos x x \tan x)$ $x^{\cos x} \left(-\sin x \ln x + \frac{1}{x} \cos x \right)$

49.
$$f(x) = xe^{ax}$$

$$f'(x) = e^{ax}(1 + ax)$$

$$f''(x) = e^{ax}(2a + a^{2}x)$$

$$f'''(x) = e^{ax}(3a^{2} + a^{3}x)$$

$$\vdots$$

$$f^{(n)}(x) = e^{ax}(na^{n-1} + a^{n}x)$$

50. Since

$$\frac{d}{dx}(ax^2 + bx + c)e^x = (2ax + b)e^x + (ax^2 + bx + c)e^x$$
$$= [ax^2 + (2a + b)x + (b + c)]e^x$$
$$= [Ax^2 + Bx + C]e^x.$$

Thus, differentiating $(ax^2 + bx + c)e^x$ produces another function of the same type with different constants. Any number of differentiations will do likewise.

51.
$$y = e^{x^2}$$

 $y' = 2xe^{x^2}$
 $y'' = 2e^{x^2} + 4x^2e^{x^2} = 2(1 + 2x^2)e^{x^2}$
 $y''' = 2(4x)e^{x^2} + 2(1 + 2x^2)2xe^{x^2} = 4(3x + 2x^3)e^{x^2}$
 $y^{(4)} = 4(3 + 6x^2)e^{x^2} + 4(3x + 2x^3)2xe^{x^2}$
 $= 4(3 + 12x^2 + 4x^4)e^{x^2}$

52.
$$f(x) = \ln(2x+1)$$
 $f'(x) = 2(2x+1)^{-1}$
 $f''(x) = (-1)2^2(2x+1)^{-2}$ $f'''(x) = (2)2^3(2x+1)^{-3}$
 $f^{(4)}(x) = -(3!)2^4(2x+1)^{-4}$
Thus, if $n = 1, 2, 3, ...$ we have $f^{(n)}(x) = (-1)^{n-1}(n-1)!2^n(2x+1)^{-n}$.

53. a)
$$f(x) = (x^x)^x = x^{(x^2)}$$

 $\ln f(x) = x^2 \ln x$
 $\frac{1}{f} f' = 2x \ln x + x$
 $f' = x^{x^2 + 1} (2 \ln x + 1)$
b) $g(x) = x^{x^x}$
 $\ln g = x^x \ln x$
 $\frac{1}{g'} g' = x^x (1 + \ln x) \ln x + \frac{x^x}{x}$
 $g' = x^{x^x} x^x \left(\frac{1}{x} + \ln x + (\ln x)^2\right)$

Evidently g grows more rapidly than does f as x grows large.

54. Given that
$$x^{x^{x^{*}}} = a$$
 where $a > 0$, then
$$\ln a = x^{x^{x^{*}}} \ln x = a \ln x.$$

Thus
$$\ln x = \frac{1}{a} \ln a = \ln a^{1/a}$$
, so $x = a^{1/a}$.

55.
$$f(x) = (x-1)(x-2)(x-3)(x-4)$$

$$\ln f(x) = \ln(x-1) + \ln(x-2) + \ln(x-3) + \ln(x-4)$$

$$\frac{1}{f(x)}f'(x) = \frac{1}{x-1} + \frac{1}{x-2} + \frac{1}{x-3} + \frac{1}{x-4}$$

$$f'(x) = f(x)\left(\frac{1}{x-1} + \frac{1}{x-2} + \frac{1}{x-3} + \frac{1}{x-4}\right)$$

56.
$$F(x) = \frac{\sqrt{1+x}(1-x)^{1/3}}{(1+5x)^{4/5}}$$
$$\ln F(x) = \frac{1}{2}\ln(1+x) + \frac{1}{3}\ln(1-x) - \frac{4}{5}\ln(1+5x)$$
$$\frac{F'(x)}{F(x)} = \frac{1}{2(1+x)} - \frac{1}{3(1-x)} - \frac{4}{(1+5x)}$$
$$F'(0) = F(0)\left[\frac{1}{2} - \frac{1}{3} - \frac{4}{1}\right] = (1)\left[\frac{1}{2} - \frac{1}{3} - 4\right] = -\frac{23}{6}$$

57.
$$f(x) = \frac{(x^2 - 1)(x^2 - 2)(x^2 - 3)}{(x^2 + 1)(x^2 + 2)(x^2 + 3)}$$

$$f(2) = \frac{3 \times 2 \times 1}{5 \times 6 \times 7} = \frac{1}{35}, \qquad f(1) = 0$$

$$\ln f(x) = \ln(x^2 - 1) + \ln(x^2 - 2) + \ln(x^2 - 3)$$

$$- \ln(x^2 + 1) - \ln(x^2 + 2) - \ln(x^2 + 3)$$

$$\frac{1}{f(x)} f'(x) = \frac{2x}{x^2 - 1} + \frac{2x}{x^2 - 2} + \frac{2x}{x^2 - 3}$$

$$- \frac{2x}{x^2 + 1} - \frac{2x}{x^2 + 2} - \frac{2x}{x^2 + 3}$$

$$f'(x) = 2xf(x) \left(\frac{1}{x^2 - 1} + \frac{1}{x^2 - 2} + \frac{1}{x^2 - 3}\right)$$

$$- \frac{1}{x^2 + 1} - \frac{1}{x^2 + 2} - \frac{1}{x^2 + 3}$$

$$f'(2) = \frac{4}{35} \left(\frac{1}{3} + \frac{1}{2} + \frac{1}{1} - \frac{1}{5} - \frac{1}{6} - \frac{1}{7}\right)$$

$$= \frac{4}{35} \times \frac{139}{105} = \frac{556}{3675}$$
Since $f(x) = (x^2 - 1)g(x)$ where $g(1) \neq 0$, then $f'(x) = 2xg(x) + (x^2 - 1)g'(x)$ and
$$f'(1) = 2g(1) + 0 = 2 \times \frac{(-1)(-2)}{2 \times 3 \times 4} = \frac{1}{6}.$$

58. Since
$$y = x^2 e^{-x^2}$$
, then
$$y' = 2xe^{-x^2} - 2x^3 e^{-x^2} = 2x(1-x)(1+x)e^{-x^2}.$$

The tangent is horizontal at (0,0) and $\left(\pm 1,\frac{1}{e}\right)$.

59.
$$f(x) = xe^{-x}$$

 $f'(x) = e^{-x}(1-x)$, C.P. $x = 1$, $f(1) = \frac{1}{e}$
 $f'(x) > 0$ if $x < 1$ (f increasing)
 $f'(x) < 0$ if $x > 1$ (f decreasing)

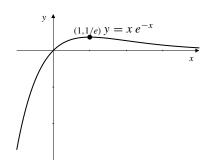


Fig. 3.3.59

- **60.** Since $y = \ln x$ and $y' = \frac{1}{x} = 4$ then $x = \frac{1}{4}$ and $y = \ln \frac{1}{4} = -\ln 4$. The tangent line of slope 4 is $y = -\ln 4 + 4(x \frac{1}{4})$, i.e., $y = 4x 1 \ln 4$.
- **61.** Let the point of tangency be (a, e^a) . Tangent line has slope

$$\frac{e^a - 0}{a - 0} = \frac{d}{dx}e^x \bigg|_{x=a} = e^a.$$

Therefore, a = 1 and line has slope e. The line has equation y = ex.

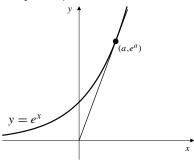


Fig. 3.3.61

62. The slope of $y = \ln x$ at x = a is $y' = \frac{1}{x}\Big|_{x=a} = \frac{1}{a}$. The line from (0,0) to $(a, \ln a)$ is tangent to $y = \ln x$ if

$$\frac{\ln a - 0}{a - 0} = \frac{1}{a}$$

i.e., if $\ln a = 1$, or a = e. Thus, the line is $y = \frac{x}{e}$.

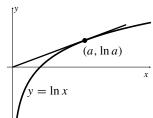


Fig. 3.3.62

63. Let the point of tangency be $(a, 2^a)$. Slope of the tangent

$$\left. \frac{2^a - 0}{a - 1} = \frac{d}{dx} 2^x \right|_{x = a} = 2^a \ln 2.$$

Thus
$$a-1=\frac{1}{\ln 2}$$
, $a=1+\frac{1}{\ln 2}$.
So the slope is $2^a \ln 2 = 2^{1+(1/\ln 2)} \ln 2 = 2e \ln 2$.
(Note: $\ln 2^{1/\ln 2} = \frac{1}{\ln 2} \ln 2 = 1 \Rightarrow 2^{1/\ln 2} = e$)
The tangent line has equation $y=2e \ln 2(x-1)$.

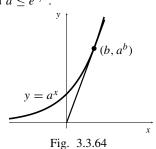
So the slope is
$$2^a \ln 2 = 2^{1 + (1/\ln 2)} \ln 2 = 2e \ln 2$$
.

(Note:
$$\ln 2^{1/\ln 2} = \frac{1}{\ln 2} \ln 2 = 1 \Rightarrow 2^{1/\ln 2} = e$$
)

The tangent line to $y = a^x$ which passes through the origin is tangent at the point (b, a^b) where

$$\left. \frac{a^b - 0}{b - 0} = \frac{d}{dx} a^x \right|_{x = b} = a^b \ln a.$$

Thus $\frac{1}{b} = \ln a$, so $a^b = a^{1/\ln a} = e$. The line y = x will intersect $y = a^x$ provided the slope of this tangent line does not exceed 1, i.e., provided $\frac{e}{b} \le 1$, or $e \ln a \le 1$. Thus we need $a \le e^{1/e}$.



- **65.** $e^{xy} \ln \frac{x}{y} = x + \frac{1}{y}$ $e^{xy} (y + xy') \ln \frac{x}{y} + e^{xy} \frac{y}{x} \left(\frac{y xy'}{y^2} \right) = 1 \frac{1}{y^2} y'$ At $\left(e, \frac{1}{e}\right)$ we have $e\left(\frac{1}{e} + ey'\right) 2 + e\frac{1}{e^2}(e - e^3y') = 1 - e^2y'$ $2 + 2e^2y' + 1 - e^2y' = 1 - e^2y'.$ Thus the slope is $y' = -\frac{1}{e^2}$.
- **66.** $xe^y + y 2x = \ln 2 \Rightarrow e^y + xe^y y' + y' 2 = 0.$ At $(1, \ln 2)$, $2 + 2y' + y' - 2 = 0 \Rightarrow y' = 0$. Therefore, the tangent line is $y = \ln 2$.

67.
$$f(x) = Ax \cos \ln x + Bx \sin \ln x$$

$$f'(x) = A \cos \ln x - A \sin \ln x + B \sin \ln x + B \cos \ln x$$

$$= (A+B) \cos \ln x + (B-A) \sin \ln x$$
If $A = B = \frac{1}{2}$ then $f'(x) = \cos \ln x$.

Therefore $\int \cos \ln x \, dx = \frac{1}{2}x \cos \ln x + \frac{1}{2}x \sin \ln x + C$.

If $B = \frac{1}{2}$, $A = -\frac{1}{2}$ then $f'(x) = \sin \ln x$.

Therefore $\int \sin \ln x \, dx = \frac{1}{2}x \sin \ln x - \frac{1}{2}x \cos \ln x + C$.

68.
$$F_{A,B}(x) = Ae^x \cos x + Be^x \sin x$$

 $\frac{d}{dx} F_{A,B}(x)$
 $= Ae^x \cos x - Ae^x \sin x + Be^x \sin x + Be^x \cos x$
 $= (A+B)e^x \cos x + (B-A)e^x \sin x = F_{A+B,B-A}(x)$

69. Since
$$\frac{d}{dx}F_{A,B}(x) = F_{A+B,B-A}(x)$$
 we have
a) $\frac{d^2}{dx^2}F_{A,B}(x) = \frac{d}{dx}F_{A+B,B-A}(x) = F_{2B,-2A}(x)$
b) $\frac{d^3}{dx^3}e^x\cos x = \frac{d^3}{dx^3}F_{1,0}(x) = \frac{d}{dx}F_{0,-2}(x)$
 $= F_{-2,-2}(x) = -2e^x\cos x - 2e^x\sin x$

70.
$$\frac{d}{dx}(Ae^{ax}\cos bx + Be^{ax}\sin bx)$$

$$= Aae^{ax}\cos bx - Abe^{ax}\sin bx + Bae^{ax}\sin bx + Bbe^{ax}\cos bx$$

$$= (Aa + Bb)e^{ax}\cos bx + (Ba - Ab)e^{ax}\sin bx.$$

(a) If
$$Aa + Bb = 1$$
 and $Ba - Ab = 0$, then $A = \frac{a}{a^2 + b^2}$ and $B = \frac{b}{a^2 + b^2}$. Thus

$$\int e^{ax} \cos bx \, dx$$

$$= \frac{1}{a^2 + b^2} \left(ae^{ax} \cos bx + be^{ax} \sin bx \right) + C.$$

(b) If
$$Aa + Bb = 0$$
 and $Ba - Ab = 1$, then $A = \frac{-b}{a^2 + b^2}$ and $B = \frac{a}{a^2 + b^2}$. Thus

$$\int e^{ax} \sin bx \, dx$$

$$= \frac{1}{a^2 + b^2} \left(ae^{ax} \sin bx - be^{ax} \cos bx \right) + C.$$

71.
$$\frac{d}{dx} \left[\ln \frac{1}{x} + \ln x \right] = \frac{1}{1/x} \left(\frac{-1}{x^2} \right) + \frac{1}{x} = -\frac{1}{x} + \frac{1}{x} = 0.$$

Therefore $\ln \frac{1}{x} + \ln x = C$ (constant). Taking x = 1, we get $C = \ln 1 + \ln 1 = 0$. Thus $\ln \frac{1}{x} = -\ln x$.

72.
$$\ln \frac{x}{y} = \ln \left(x \frac{1}{y} \right) = \ln x + \ln \frac{1}{y} = \ln x - \ln y$$
.

73.
$$\frac{d}{dx}[\ln(x^r) - r \ln x] = \frac{rx^{r-1}}{x^r} - \frac{r}{x} = \frac{r}{x} - \frac{r}{x} = 0.$$

Therefore $\ln(x^r) - r \ln x = C$ (constant). Taking x = 1, we get $C = \ln 1 - r \ln 1 = 0 - 0 = 0$. Thus $\ln(x^r) = r \ln x$.

74. Let x > 0, and F(x) be the area bounded by $y = t^2$, the t-axis, t = 0 and t = x. For h > 0, F(x + h) - F(x) is the shaded area in the following figure.

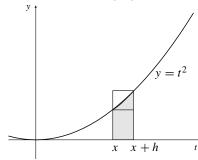


Fig. 3.3.74

Comparing this area with that of the two rectangles, we see that

$$hx^2 < F(x+h) - F(x) < h(x+h)^2$$
.

Hence, the Newton quotient for F(x) satisfies

$$x^2 < \frac{F(x+h) - F(x)}{h} < (x+h)^2.$$

Letting *h* approach 0 from the right (by the Squeeze Theorem applied to one-sided limits)

$$\lim_{h \to 0+} \frac{F(x+h) - F(x)}{h} = x^2.$$

If h < 0 and 0 < x + h < x, then

$$(x+h)^2 < \frac{F(x+h) - F(x)}{h} < x^2,$$

so similarly,

$$\lim_{h \to 0-} \frac{F(x+h) - F(x)}{h} = x^2.$$

Combining these two limits, we obtain

$$\frac{d}{dx}F(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = x^2.$$

Therefore $F(x) = \int x^2 dx = \frac{1}{3}x^3 + C$. Since F(0) = C = 0, therefore $F(x) = \frac{1}{3}x^3$. For x = 2, the area of the region is $F(2) = \frac{8}{3}$ square units.

75. a) The shaded area A in part (i) of the figure is less than the area of the rectangle (actually a square) with base from t = 1 to t = 2 and height 1/1 = 1. Since $\ln 2 = A < 1$, we have $2 < e^1 = e$; i.e., e > 2.

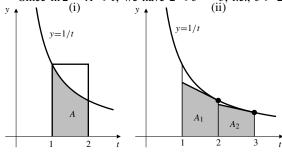


Fig. 3.3.75

- b) If f(t) = 1/t, then $f'(t) = -1/t^2$ and $f''(t) = 2/t^3 > 0$ for t > 0. Thus f'(t) is an increasing function of t for t > 0, and so the graph of f(t) bends upward away from any of its tangent lines. (This kind of argument will be explored further in Chapter 5.)
- c) The tangent to y = 1/t at t = 2 has slope -1/4. Its equation is

$$y = \frac{1}{2} - \frac{1}{4}(x - 2)$$
 or $y = 1 - \frac{x}{4}$.

The tangent to y = 1/t at t = 3 has slope -1/9. Its equation is

$$y = \frac{1}{3} - \frac{1}{9}(x - 3)$$
 or $y = \frac{2}{3} - \frac{x}{9}$.

d) The trapezoid bounded by x = 1, x = 2, y = 0, and y = 1 - (x/4) has area

$$A_1 = \frac{1}{2} \left(\frac{3}{4} + \frac{1}{2} \right) = \frac{5}{8}.$$

The trapezoid bounded by x = 2, x = 3, y = 0, and y = (2/3) - (x/9) has area

$$A_2 = \frac{1}{2} \left(\frac{4}{9} + \frac{1}{3} \right) = \frac{7}{18}.$$

e) $\ln 3 > A_1 + A_2 = \frac{5}{8} + \frac{7}{18} = \frac{73}{72} > 1$. Thus $3 > e^1 = e$. Combining this with the result of (a) we conclude that 2 < e < 3.

Section 3.4 Growth and Decay

- 1. $\lim_{x \to \infty} x^3 e^{-x} = \lim_{x \to \infty} \frac{x^3}{e^x} = 0$ (exponential wins)
- 2. $\lim_{x \to \infty} x^{-3} e^x = \lim_{x \to \infty} \frac{e^x}{x^3} = \infty$
- 3. $\lim_{x \to \infty} \frac{2e^x 3}{e^x + 5} = \lim_{x \to \infty} \frac{2 3e^{-x}}{1 + 5e^{-x}} = \frac{2 0}{1 + 0} = 2$
- **4.** $\lim_{x \to \infty} \frac{x 2e^{-x}}{x + 3e^{-x}} = \lim_{x \to \infty} \frac{1 2/(xe^x)}{1 + 3/(xe^x)} = \frac{1 0}{1 + 0} = 1$
- 5. $\lim_{x \to 0+} x \ln x = 0 \quad \text{(power wins)}$
- $6. \quad \lim_{x \to 0+} \frac{\ln x}{x} = -\infty$
- 7. $\lim_{x \to 0} x(\ln|x|)^2 = 0$
- 8. $\lim_{x \to \infty} \frac{(\ln x)^3}{\sqrt{x}} = 0$ (power wins)
- **9.** Let N(t) be the number of bacteria present after t hours. Then N(0) = 100, N(1) = 200.

Since $\frac{dN}{dt} = kN$ we have $N(t) = N(0)e^{kt} = 100e^{kt}$. Thus $200 = 100e^k$ and $k = \ln 2$. Finally, $N\left(\frac{5}{2}\right) = 100e^{(5/2)\ln 2} \approx 565.685$.

There will be approximately 566 bacteria present after another $1\frac{1}{2}$ hours.

Let y(t) be the number of kg undissolved after t hours. Thus, y(0) = 50 and y(5) = 20. Since y'(t) = ky(t), therefore $y(t) = y(0)e^{kt} = 50e^{kt}$. Then

$$20 = y(5) = 50e^{5k} \Rightarrow k = \frac{1}{5} \ln \frac{2}{5}$$

If 90% of the sugar is dissolved at time T then $5 = y(T) = 50e^{kT}$, so

$$T = \frac{1}{k} \ln \frac{1}{10} = \frac{5 \ln(0.1)}{\ln(0.4)} \approx 12.56.$$

Hence, 90% of the sugar will dissolved in about 12.56 hours.

11. Let P(t) be the percentage undecayed after t years. Thus P(0) = 100,

Since $\frac{dP}{dt} = kP$, we have $P(t) = P(0)e^{kt} = 100e^{kt}$.

Thus $70 = P(15) = 100e^{15k}$ so $k = \frac{1}{15}\ln(0.7)$.

The half-life T satisfies if $50 = P(T) = 100e^{kT}$, so $T = \frac{1}{k} \ln(0.5) = \frac{15 \ln(0.5)}{\ln(0.7)} \approx 29.15$.

The half-life is about 29.15 years.

12. Let P(t) be the percentage remaining after t years. Thus P'(t) = kP(t) and $P(t) = P(0)e^{kt} = 100e^{kt}$. Then,

$$50 = P(1690) = 100e^{1690k} \Rightarrow k = \frac{1}{1690} \ln \frac{1}{2} \approx 0.0004101.$$

- a) $P(100) = 100e^{100k} \approx 95.98$, i.e., about 95.98% remains after 100 years.
- b) $P(1000) = 100e^{1000k} \approx 66.36$, i.e., about 66.36% remains after 1000 years.
- 13. Let P(t) be the percentage of the initial amount remaining after t years.

Then $P(t) = 100e^{kt}$ and $99.57 = P(1) = 100e^{k}$.

Thus $k = \ln(0.9957)$.

The half-life T satisfies $50 = P(T) = 100e^{kT}$, so $T = \frac{1}{k} \ln(0.5) = \frac{\ln(0.5)}{\ln(0.995)} \approx 160.85$. The half-life is about 160.85 years.

Let N(t) be the number of bacteria in the culture t days after the culture was set up. Thus N(3) = 3N(0) and $N(7) = 10 \times 10^6$. Since $N(t) = N(0)e^{kt}$, we have

$$3N(0) = N(3) = N(0)e^{3k} \Rightarrow k = \frac{1}{3}\ln 3.$$

 $10^7 = N(7) = N(0)e^{7k} \Rightarrow N(0) = 10^7 e^{-(7/3)\ln 3} \approx 770400.$

There were approximately 770,000 bacteria in the culture initially. (Note that we are approximating a discrete quantity (number of bacteria) by a continuous quantity N(t) in this exercise.)

- Let W(t) be the weight t days after birth. Thus W(0) = 4000 and $W(t) = 4000e^{kt}$. Also $4400 = W(14) = 4000e^{14k}$, is $k = \frac{1}{14} \ln(1.1)$. Five days after birth, the baby weighs $W(5) = 4000e^{(5/14)\ln(1.1)} \approx 4138.50 \approx 4139$ grams.
- Since 16.

$$I'(t) = kI(t) \Rightarrow I(t) = I(0)e^{kt} = 40e^{kt},$$

15 = I(0.01) = $40e^{0.01k} \Rightarrow k = \frac{1}{0.01} \ln \frac{15}{40} = 100 \ln \frac{3}{8},$

thus,

$$I(t) = 40 \exp\left(100t \ln\frac{3}{8}\right) = 40\left(\frac{3}{8}\right)^{100t}.$$

- 17. \$P\$ invested at 4% compounded continuously grows to $P(e^{0.04})^7 = Pe^{0.28}$ in 7 years. This will be \$10,000 if $P = 10,000e^{-0.28} = 7,557.84.$
- **18.** Let y(t) be the value of the investment after t years. Thus y(0) = 1000 and y(5) = 1500. Since $y(t) = 1000e^{kt}$ and $1500 = y(5) = 1000e^{5k}$, therefore, $k = \frac{1}{5} \ln \frac{3}{2}$.

a) Let t be the time such that y(t) = 2000, i.e.,

$$1000e^{kt} = 2000$$

$$\Rightarrow t = \frac{1}{k} \ln 2 = \frac{5 \ln 2}{\ln(\frac{3}{2})} = 8.55.$$

Hence, the doubling time for the investment is about 8.55 years.

b) Let r% be the effective annual rate of interest; then

$$1000(1 + \frac{r}{100}) = y(1) = 1000e^{k}$$

$$\Rightarrow r = 100(e^{k} - 1) = 100[\exp(\frac{1}{5}\ln\frac{3}{2}) - 1]$$

$$= 8.447.$$

The effective annual rate of interest is about 8.45%.

19. Let the purchasing power of the dollar be P(t) cents after t years.

Then P(0) = 100 and $P(t) = 100e^{kt}$. Now $91 = P(1) = 100e^k$ so $k = \ln(0.91)$. If $25 = P(t) = 100^{kt}$ then $t = \frac{1}{k} \ln(0.25) = \frac{\ln(0.25)}{\ln(0.91)} \approx 14.7.$

The purchasing power will decrease to \$0.25 in about 14.7 years.

20. Let i% be the effective rate, then an original investment of \$A\$ will grow to \$ $A\left(1+\frac{i}{100}\right)$ in one year. Let r% be the nominal rate per annum compounded n times per year, then an original investment of A will grow to

$$A\left(1 + \frac{r}{100n}\right)^n$$

in one year, if compounding is performed n times per year. For i = 9.5 and n = 12, we have

$$$A\left(1 + \frac{9.5}{100}\right) = $A\left(1 + \frac{r}{1200}\right)^{12}$$$

 $\Rightarrow r = 1200\left(\sqrt[12]{1.095} - 1\right) = 9.1098.$

The nominal rate of interest is about 9.1098%.

21. Let x(t) be the number of rabbits on the island t years after they were introduced. Thus x(0) = 1,000, x(3) = 3,500, and x(7) = 3,000. For t < 5 we have $dx/dt = k_1 x$, so

$$x(t) = x(0)e^{k_1t} = 1,000e^{k_1t}$$

$$x(2) = 1,000e^{2k_1} = 3,500 \implies e^{2k_1} = 3.5$$

$$x(5) = 1,000e^{5k_1} = 1,000\left(e^{2k_1}\right)^{5/2} = 1,000(3.5)^{5/2}$$

$$\approx 22,918.$$

For t > 5 we have $dx/dt = k_2x$, so that

$$x(t) = x(5)e^{k_2(t-5)}$$

$$x(7) = x(5)e^{2k_2} = 3,000 \implies e^{2k_2} \approx \frac{3,000}{22,918}$$

$$x(10) = x(5)3^{5k_2} = x(5)\left(e^{2k_2}\right)^{5/2} \approx 22,918\left(\frac{3,000}{22,918}\right)^{5/2}$$

$$\approx 142.$$

so there are approximately 142 rabbits left after 10 years.

- 22. Let N(t) be the number of rats on the island t months after the initial population was released and before the first cull. Thus N(0) = R and N(3) = 2R. Since $N(t) = Re^{kt}$, we have $e^{3k} = 2$, so $e^k = 2^{1/3}$. Hence $N(5) = Re^{5k} = 2^{5/3}R$. After the first 1,000 rats are killed the number remaining is $2^{5/3}R 1,000$. If this number is less than R, the number at the end of succeeding 5-year periods will decline. The minimum value of R for which this won't happen must satisfy $2^{5/3}R 1,000 = R$, that is, $R = 1,000/(2^{5/3} 1) \approx 459.8$. Thus R = 460 rats should be brought to the island initially.
- **23.** f'(x) = a + bf(x).
 - a) If u(x) = a + bf(x), then u'(x) = bf'(x) = b[a + bf(x)] = bu(x). This equation for u is the equation of exponential growth/decay. Thus

$$u(x) = C_1 e^{bx},$$

$$f(x) = \frac{1}{b} \left(C_1 e^{bx} - a \right) = C e^{bx} - \frac{a}{b}.$$

b) If $\frac{dy}{dx} = a + by$ and $y(0) = y_0$, then, from part (a),

$$y = Ce^{bx} - \frac{a}{b}, \quad y_0 = Ce^0 - \frac{a}{b}.$$

Thus $C = y_0 + (a/b)$, and

$$y = \left(y_0 + \frac{a}{h}\right)e^{bx} - \frac{a}{h}.$$

24. a) The concentration x(t) satisfies $\frac{dx}{dt} = a - bx(t)$. This says that x(t) is increasing if it is less than a/b and decreasing if it is greater than a/b. Thus, the limiting concentration is a/b.

b) The differential equation for x(t) resembles that of Exercise 21(b), except that y(x) is replaced by x(t), and b is replaced by -b. Using the result of Exercise 21(b), we obtain, since x(0) = 0,

$$x(t) = \left(x(0) - \frac{a}{b}\right)e^{-bt} + \frac{a}{b}$$
$$= \frac{a}{b}\left(1 - e^{-bt}\right).$$

- c) We will have $x(t) = \frac{1}{2}(a/b)$ if $1 e^{-bt} = \frac{1}{2}$, that is, if $e^{-bt} = \frac{1}{2}$, or $-bt = \ln(1/2) = -\ln 2$. The time required to attain half the limiting concentration is $t = (\ln 2)/b$.
- **25.** Let T(t) be the reading t minutes after the Thermometer is moved outdoors. Thus T(0) = 72, T(1) = 48. By Newton's law of cooling, $\frac{dT}{dt} = k(T 20)$. If V(t) = T(t) 20, then $\frac{dV}{dt} = kV$, so $V(t) = V(0)e^{kt} = 52e^{kt}$. Also $28 = V(1) = 52e^k$, so $k = \ln(7/13)$. Thus $V(5) = 52e^{5\ln(7/13)} \approx 2.354$. At t = 5 the thermometer reads about $T(5) = 20 + 2.354 = 22.35^{\circ}$ C.
- **26.** Let T(t) be the temperature of the object t minutes after its temperature was 45° C. Thus T(0) = 45 and T(40) = 20. Also $\frac{dT}{dt} = k(T+5)$. Let u(t) = T(t) + 5, so u(0) = 50, u(40) = 25, and $\frac{du}{dt} = \frac{dT}{dt} = k(T+5) = ku$. Thus,

$$u(t) = 50e^{kt},$$

$$25 = u(40) = 50e^{40k},$$

$$\Rightarrow k = \frac{1}{40} \ln \frac{25}{50} = \frac{1}{40} \ln \frac{1}{2}.$$

We wish to know t such that T(t) = 0, i.e., u(t) = 5, hence

$$5 = u(t) = 50e^{kt}$$
$$t = \frac{40 \ln\left(\frac{5}{50}\right)}{\ln\left(\frac{1}{2}\right)} = 132.88 \text{ min.}$$

Hence, it will take about (132.88 - 40) = 92.88 minutes more to cool to 0° C.

27. Let T(t) be the temperature of the body t minutes after it

Thus T(0) = 5, T(4) = 10. Room temperature = 20° .

By Newton's law of cooling (warming) $\frac{dT}{dt} = k(T - 20)$.

If
$$V(t) = T(t) - 20$$
 then $\frac{dV}{dt} = kV$,

so
$$V(t) = V(0)e^{kt} = -15e^{kt}$$

Also
$$-10 = V(4) = -15e^{4k}$$
, so $k = \frac{1}{4} \ln \left(\frac{2}{3}\right)$.

If
$$T(t) = 15^{\circ}$$
, then $-5 = V(t) = -15e^{kt}$

so
$$t = \frac{1}{k} \ln \left(\frac{1}{3} \right) = 4 \frac{\ln \left(\frac{1}{3} \right)}{\ln \left(\frac{2}{3} \right)} \approx 10.838.$$

It will take a further 6.84 minutes to warm to 15°C.

28. By the solution given for the logistic equation, we have

$$y_1 = \frac{Ly_0}{y_0 + (L - y_0)e^{-k}}, \qquad y_2 = \frac{Ly_0}{y_0 + (L - y_0)e^{-2k}}$$

Thus $y_1(L - y_0)e^{-k} = (L - y_1)y_0$, and $y_2(L - y_0)e^{-2k} = (L - y_2)y_0$.

Square the first equation and thus eliminate e^{-k} :

$$\left(\frac{(L-y_1)y_0}{y_1(L-y_0)}\right)^2 = \frac{(L-y_2)y_0}{y_2(L-y_0)}$$

Now simplify: $y_0y_2(L - y_1)^2 = y_1^2(L - y_0)(L - y_2)$ $y_0y_2L^2 - 2y_1y_0y_2L + y_0y_1^2y_2 = y_1^2L^2 - y_1^2(y_0 + y_2)L + y_0y_1^2y_2$

Assuming
$$L \neq 0$$
, $L = \frac{y_1^2(y_0 + y_2) - 2y_0y_1y_2}{y_1^2 - y_0y_2}$.
If $y_0 = 3$, $y_1 = 5$, $y_2 = 6$, then
$$L = \frac{25(9) - 180}{25 - 18} = \frac{45}{7} \approx 6.429.$$

If
$$y_0 = 3$$
, $y_1 = 5$, $y_2 = 6$, then

$$L = \frac{25(9) - 180}{25 - 18} = \frac{45}{7} \approx 6.429.$$

The rate of growth of y in the logistic equation is 29.

$$\frac{dy}{dt} = ky \left(1 - \frac{y}{L} \right).$$

Since

$$\frac{dy}{dt} = -\frac{k}{L} \left(y - \frac{L}{2} \right)^2 + \frac{kL}{4},$$

thus $\frac{dy}{dt}$ is greatest when $y = \frac{L}{2}$.

30. The solution $y = \frac{Ly_0}{y_0 + (L - y_0)e^{-kt}}$ is valid on the

largest interval containing t = 0 on which the denominator does not vanish.

If
$$y_0 > L$$
 then $y_0 + (L - y_0)e^{-kt} = 0$ if $t = t^* = -\frac{1}{k} \ln \frac{y_0}{y_0 - L}$.

$$t = t^* = -\frac{1}{k} \ln \frac{y_0}{y_0 - L}$$

Then the solution is valid on (t^*, ∞) .

$$\lim_{t \to t^* +} y(t) = \infty.$$

The solution

$$y = \frac{Ly_0}{y_0 + (L - y_0)e^{-kt}}$$

of the logistic equation is valid on any interval containing t = 0 and not containing any point where the denominator is zero. The denominator is zero if $y_0 = (y_0 - L)e^{-kt}$,

$$t = t^* = -\frac{1}{k} \ln \left(\frac{y_0}{y_0 - L} \right).$$

Assuming k and L are positive, but y_0 is negative, we have $t^* > 0$. The solution is therefore valid on $(-\infty, t^*)$. The solution approaches $-\infty$ as $t \to t^*$.

 $y(t) = \frac{L}{1 + Me^{-kt}}$ 32.

$$200 = y(0) = \frac{L}{1+M}$$

 $1,000 = y(1) = \frac{L}{1 + Me^{-k}}$

$$10,000 = \lim_{t \to \infty} y(t) = L$$

Thus 200(1+M) = L = 10,000, so M = 49. Also $1,000(1+49e^{-k}) = L = 10,000$, so $e^{-k} = 9/49$ and $k = \ln(49/9) \approx 1.695$.

 $y(3) = \frac{L}{1 + Me^{-3k}} = \frac{10,000}{1 + 49(9/49)^3} \approx 7671 \text{ cases}$

$$y'(3) = \frac{LkMe^{-3k}}{(1 + Me^{-3k})^2} \approx 3,028$$
 cases/week.

Section 3.5 The Inverse Trigonometric **Functions** (page 195)

- 1. $\sin^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{2}$
- 2. $\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$
- 3. $\tan^{-1}(-1) = -\frac{\pi}{4}$
- 4. $\sec^{-1} \sqrt{2} = \frac{\pi}{4}$
- 5. $\sin(\sin^{-1} 0.7) = 0.7$
- **6.** $\cos(\sin^{-1} 0.7) = \sqrt{1 \sin^2(\arcsin 0.7)}$ $=\sqrt{1-0.49}=\sqrt{0.51}$
- 7. $\tan^{-1}\left(\tan\frac{2\pi}{3}\right) = \tan^{-1}(-\sqrt{3}) = -\frac{\pi}{3}$
- 8. $\sin^{-1}(\cos 40^\circ) = 90^\circ \cos^{-1}(\cos 40^\circ) = 50^\circ$
- 9. $\cos^{-1}(\sin(-0.2)) = \frac{\pi}{2} \sin^{-1}(\sin(-0.2))$ $=\frac{\bar{\pi}}{2}+0.2$

10.
$$\sin\left(\cos^{-1}(-\frac{1}{3})\right) = \sqrt{1 - \cos^2(\arccos(-\frac{1}{3}))}$$

= $\sqrt{1 - \frac{1}{9}} = \frac{\sqrt{8}}{3} = \frac{2\sqrt{2}}{3}$

11.
$$\cos\left(\tan^{-1}\frac{1}{2}\right) = \frac{1}{\sec\left(\tan^{-1}\frac{1}{2}\right)}$$

= $\frac{1}{\sqrt{1 + \tan^2\left(\tan^{-1}\frac{1}{2}\right)}} = \frac{2}{\sqrt{5}}$

12.
$$\tan(\tan^{-1} 200) = 200$$

13.
$$\sin(\cos^{-1} x) = \sqrt{1 - \cos^2(\cos^{-1} x)}$$

= $\sqrt{1 - x^2}$

14.
$$\cos(\sin^{-1} x) = \sqrt{1 - \sin^2(\sin^{-1} x)} = \sqrt{1 - x^2}$$

15.
$$\cos(\tan^{-1} x) = \frac{1}{\sec(\tan^{-1} x)} = \frac{1}{\sqrt{1+x^2}}$$

16.
$$\tan(\arctan x) = x \Rightarrow \sec(\arctan x) = \sqrt{1 + x^2}$$

$$\Rightarrow \cos(\arctan x) = \frac{1}{\sqrt{1 + x^2}}$$

$$\Rightarrow \sin(\arctan x) = \frac{x}{\sqrt{1 + x^2}}$$

17.
$$\tan(\cos^{-1} x) = \frac{\sin(\cos^{-1} x)}{\cos(\cos^{-1} x)}$$

= $\frac{\sqrt{1 - x^2}}{x}$ (by # 13)

18.
$$\cos(\sec^{-1}x) = \frac{1}{x} \Rightarrow \sin(\sec^{-1}x) = \sqrt{1 - \frac{1}{x^2}} = \frac{\sqrt{x^2 - 1}}{|x|}$$

 $\Rightarrow \tan(\sec^{-1}x) = \sqrt{x^2 - 1} \operatorname{sgn} x$
 $= \begin{cases} \sqrt{x^2 - 1} & \text{if } x \ge 1 \\ -\sqrt{x^2 - 1} & \text{if } x \le -1 \end{cases}$

19.
$$y = \sin^{-1}\left(\frac{2x-1}{3}\right)$$

 $y' = \frac{1}{\sqrt{1-\left(\frac{2x-1}{3}\right)^2}} \frac{2}{3}$
 $= \frac{2}{\sqrt{9-(4x^2-4x+1)}}$
 $= \frac{1}{\sqrt{2+x-x^2}}$

20.
$$y = \tan^{-1}(ax + b), y' = \frac{a}{1 + (ax + b)^2}.$$

21.
$$y = \cos^{-1} \frac{x - b}{a}$$

 $y' = -\frac{1}{\sqrt{1 - \frac{(x - b)^2}{a^2}}} \frac{1}{a}$
 $= \frac{-1}{\sqrt{a^2 - (x - b)^2}}$ (assuming) $a > 0$).

22.
$$f(x) = x \sin^{-1} x$$

 $f'(x) = \sin^{-1} x + \frac{x}{\sqrt{1 - x^2}}$

23.
$$f(t) = t \tan^{-1} t$$

 $f'(t) = \tan^{-1} t + \frac{t}{1+t^2}$

24.
$$u = z^{2} \sec^{-1} (1 + z^{2})$$

$$\frac{du}{dz} = 2z \sec^{-1} (1 + z^{2}) + \frac{z^{2}(2z)}{(1 + z^{2})\sqrt{(1 + z^{2})^{2} - 1}}$$

$$= 2z \sec^{-1} (1 + z^{2}) + \frac{2z^{2} \operatorname{sgn}(z)}{(1 + z^{2})\sqrt{z^{2} + 2}}$$

25.
$$F(x) = (1 + x^2) \tan^{-1} x$$

 $F'(x) = 2x \tan^{-1} x + 1$

26.
$$y = \sin^{-1}\left(\frac{a}{x}\right)$$
 $(|x| > |a|)$ $y' = \frac{1}{\sqrt{1 - \left(\frac{a}{x}\right)^2}} \left[-\frac{a}{x^2} \right] = -\frac{a}{|x|\sqrt{x^2 - a^2}}$

27.
$$G(x) = \frac{\sin^{-1} x}{\sin^{-1}(2x)}$$

$$G'(x) = \frac{\sin^{-1}(2x)\frac{1}{\sqrt{1-x^2}} - \sin^{-1} x \frac{2}{\sqrt{1-4x^2}}}{\left(\sin^{-1}(2x)\right)^2}$$

$$= \frac{\sqrt{1-4x^2}\sin^{-1}(2x) - 2\sqrt{1-x^2}\sin^{-1} x}{\sqrt{1-x^2}\sqrt{1-4x^2}\left(\sin^{-1}(2x)\right)^2}$$

28.
$$H(t) = \frac{\sin^{-1} t}{\sin t}$$

$$H'(t) = \frac{\sin t \left(\frac{1}{\sqrt{1 - t^2}}\right) - \sin^{-1} t \cos t}{\sin^2 t}$$

$$= \frac{1}{(\sin t)\sqrt{1 - t^2}} - \csc t \cot t \sin^{-1} t$$

29.
$$f(x) = (\sin^{-1} x^2)^{1/2}$$
$$f'(x) = \frac{1}{2} (\sin^{-1} x^2)^{-1/2} \frac{2x}{\sqrt{1 - x^4}}$$
$$= \frac{x}{\sqrt{1 - x^4} \sqrt{\sin^{-1} x^2}}$$

30.
$$y = \cos^{-1}\left(\frac{a}{\sqrt{a^2 + x^2}}\right)$$

 $y' = -\left(1 - \frac{a^2}{a^2 + x^2}\right)^{-1/2} \left[-\frac{a}{2}(a^2 + x^2)^{-3/2}(2x)\right]$
 $= \frac{a\operatorname{sgn}(x)}{a^2 + x^2}$

31.
$$y = \sqrt{a^2 - x^2} + a \sin^{-1} \frac{x}{a}$$

 $y' = -\frac{x}{\sqrt{a^2 - x^2}} + \frac{a}{\sqrt{1 - \frac{x^2}{a^2}}} \frac{1}{a}$
 $= \frac{a - x}{\sqrt{a^2 - x^2}} = \sqrt{\frac{a - x}{a + x}} \qquad (a > 0)$

32.
$$y = a \cos^{-1} \left(1 - \frac{x}{a} \right) - \sqrt{2ax - x^2}$$
 $(a > 0)$

$$y' = -a \left[1 - \left(1 - \frac{x}{a} \right)^2 \right]^{-1/2} \left(-\frac{1}{a} \right) - \frac{2a - 2x}{2\sqrt{2ax - x^2}}$$

$$= \frac{x}{\sqrt{2ax - x^2}}$$

33.
$$\tan^{-1}\left(\frac{2x}{y}\right) = \frac{\pi x}{y^2}$$

$$\frac{1}{1 + \frac{4x^2}{y^2}} \frac{2y - 2xy'}{y^2} = \pi \frac{y^2 - 2xyy'}{y^4}$$
At $(1, 2) \frac{1}{2} \frac{4 - 2y'}{4} = \pi \frac{4 - 4y'}{16}$

$$8 - 4y' = 4\pi - 4\pi y' \Rightarrow y' = \frac{\pi - 2}{\pi - 1}$$
At $(1, 2)$ the slope is $\frac{\pi - 2}{\pi - 1}$

34. If
$$y = \sin^{-1} x$$
, then $y' = \frac{1}{\sqrt{1 - x^2}}$. If the slope is 2 then $\frac{1}{\sqrt{1 - x^2}} = 2$ so that $x = \pm \frac{\sqrt{3}}{2}$. Thus the equations of the two tangent lines are $y = \frac{\pi}{3} + 2\left(x - \frac{\sqrt{3}}{2}\right)$ and $y = -\frac{\pi}{3} + 2\left(x + \frac{\sqrt{3}}{2}\right)$.

35.
$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}} > 0 \text{ on } (-1,1).$$
Therefore, \sin^{-1} is increasing.
$$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2} > 0 \text{ on } (-\infty,\infty).$$
Therefore \tan^{-1} is increasing.
$$\frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}} < 0 \text{ on } (-1,1).$$
Therefore \cos^{-1} is decreasing.

36. Since the domain of \sec^{-1} consists of two disjoint intervals $(-\infty, -1]$ and $[1, \infty)$, the fact that the derivative of \sec^{-1} is positive wherever defined does not imply that \sec^{-1} is increasing over its whole domain, only that it is increasing on each of those intervals taken independently. In fact, $\sec^{-1}(-1) = \pi > 0 = \sec^{-1}(1)$ even though -1 < 1.

37.
$$\frac{d}{dx}\csc^{-1}x = \frac{d}{dx}\sin^{-1}\frac{1}{x}$$

$$= \frac{1}{\sqrt{1 - \frac{1}{x^2}}} \left(-\frac{1}{x^2}\right)$$

$$= -\frac{1}{|x|\sqrt{x^2 - 1}}$$

$$y = \csc^{-1}x$$
Fig. 3.5.37

38.
$$\cot^{-1} x = \arctan(1/x);$$

$$\frac{d}{dx} \cot^{-1} x = \frac{1}{1 + \frac{1}{x^2}} \frac{-1}{x^2} = -\frac{1}{1 + x^2}$$

$$y = \cot^{-1} x$$
Fig. 3.5.38

Remark: the domain of \cot^{-1} can be extended to include 0 by defining, say, $\cot^{-1} 0 = \pi/2$. This will make \cot^{-1} right-continuous (but not continuous) at x = 0. It is also possible to define \cot^{-1} in such a way that it is continuous on the whole real line, but we would then lose the identity $\cot^{-1} x = \tan^{-1}(1/x)$, which we prefer to maintain for calculation purposes.

39.
$$\frac{d}{dx}(\tan^{-1}x + \cot^{-1}x) = \frac{d}{dx}\left(\tan^{-1}x + \tan^{-1}\frac{1}{x}\right)$$
$$= \frac{1}{1+x^2} + \frac{1}{1+\frac{1}{x^2}}\left(-\frac{1}{x^2}\right) = 0 \text{ if } x \neq 0$$

Thus $\tan^{-1} x + \cot^{-1} x = C_1$ (const. for x > 0) At x = 1 we have $\frac{\pi}{4} + \frac{\pi}{4} = C_1$

At
$$x = 1$$
 we have $\frac{\pi}{4} + \frac{\pi}{4} = C_1$

Thus
$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$
 for $x > 0$.

Also
$$\tan^{-1} x + \cot^{-1} x = C_2 \text{ for } (x < 0)$$

At
$$x = -1$$
, we get $-\frac{\pi}{4} - \frac{\pi}{4} = C_2$

Also
$$\tan^{-1} x + \cot^{-1} x = C_2$$
 for $(x < 0)$.
At $x = -1$, we get $-\frac{\pi}{4} - \frac{\pi}{4} = C_2$.
Thus $\tan^{-1} x + \cot^{-1} x = -\frac{\pi}{2}$ for $x < 0$.

40. If
$$g(x) = \tan(\tan^{-1} x)$$
 then

$$g'(x) = \frac{\sec^2(\tan^{-1} x)}{1 + x^2}$$
$$= \frac{1 + [\tan(\tan^{-1} x)]^2}{1 + x^2} = \frac{1 + x^2}{1 + x^2} = 1.$$

If $h(x) = \tan^{-1}(\tan x)$ then h is periodic with period π ,

$$h'(x) = \frac{\sec^2 x}{1 + \tan^2 x} = 1$$

provided that $x \neq (k + \frac{1}{2})\pi$ where k is an integer. h(x) is not defined at odd multiples of $\frac{\pi}{2}$

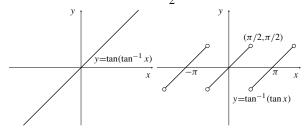


Fig. 3.5.40(a) Fig. 3.5.40(b)

41.
$$\frac{d}{dx}\cos^{-1}(\cos x) = \frac{-1}{\sqrt{1 - \cos^2 x}}(-\sin x)$$
$$= \begin{cases} 1 & \text{if } \sin x > 0 \\ -1 & \text{if } \sin x < 0 \end{cases}$$

 $\cos^{-1}(\cos x)$ is continuous everywhere and differentiable everywhere except at $x = n\pi$ for integers n.

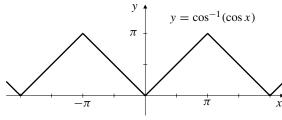
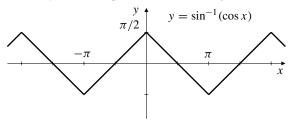


Fig. 3.5.41

42.
$$\frac{d}{dx}\sin^{-1}(\cos x) = \frac{1}{\sqrt{1 - \cos^2 x}}(-\sin x)$$

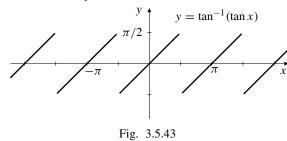
$$= \begin{cases} -1 & \text{if } \sin x > 0\\ 1 & \text{if } \sin x < 0 \end{cases}$$

 $\sin^{-1}(\cos x)$ is continuous everywhere and differentiable everywhere except at $x = n\pi$ for integers n.



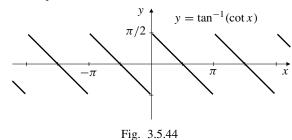
43.
$$\frac{d}{dx}\tan^{-1}(\tan x) = \frac{1}{1 + \tan^2 x}(\sec^2 x) = 1 \text{ except at odd multiples of } \pi/2.$$

 $\tan^{-1}(\tan x)$ is continuous and differentiable everywhere except at $x = (2n + 1)\pi/2$ for integers n. It is not defined at those points.



44.
$$\frac{d}{dx}\tan^{-1}(\cot x) = \frac{1}{1+\cot^2 x}(-\csc^2 x) = -1 \text{ except at integer multiples of } \pi.$$

 $\tan^{-1}(\cot x)$ is continuous and differentiable everywhere except at $x = n\pi$ for integers n. It is not defined at those points.



97

45. If
$$|x| < 1$$
 and $y = \tan^{-1} \frac{x}{\sqrt{1 - x^2}}$, then $y > 0 \Leftrightarrow x > 0$ and
$$\tan y = \frac{x}{\sqrt{1 - x^2}}$$
$$\sec^2 y = 1 + \frac{x^2}{1 - x^2} = \frac{1}{1 - x^2}$$
$$\sin^2 y = 1 - \cos^2 y = 1 - (1 - x^2) = x^2$$
$$\sin y = x.$$

Thus
$$y = \sin^{-1} x$$
 and $\sin^{-1} x = \tan^{-1} \frac{x}{\sqrt{1 - x^2}}$.

An alternative method of proof involves showing that the derivative of the left side minus the right side is 0, and both sides are 0 at x = 0.

46. If $x \ge 1$ and $y = \tan^{-1} \sqrt{x^2 - 1}$, then $\tan y = \sqrt{x^2 - 1}$ and $\sec y = x$, so that $y = \sec^{-1} x$. If $x \le -1$ and $y = \pi - \tan^{-1} \sqrt{x^2 - 1}$, then $\frac{\pi}{2} < y < \frac{3\pi}{2}$, so $\sec y < 0$. Therefore

$$\tan y = \tan(\pi - \tan^{-1} \sqrt{x^2 - 1}) = -\sqrt{x^2 - 1}$$

$$\sec^2 y = 1 + (x^2 - 1) = x^2$$

$$\sec y = x,$$

because both x and sec y are negative. Thus $y = \sec^{-1} x$ in this case also.

47. If $y = \sin^{-1} \frac{x}{\sqrt{1+x^2}}$, then $y > 0 \Leftrightarrow x > 0$ and $\sin y = \frac{x}{\sqrt{1+x^2}}$

$$\cos^2 y = 1 - \sin^2 y = 1 - \frac{x^2}{1 + x^2} = \frac{1}{1 + x^2}$$
$$\tan^2 y = \sec^2 y - 1 = 1 + x^2 - 1 = x^2$$
$$\tan y = x.$$

Thus $y = \tan^{-1} x$ and $\tan^{-1} x = \sin^{-1} \frac{x}{\sqrt{1 + x^2}}$

48. If $x \ge 1$ and $y = \sin^{-1} \frac{\sqrt{x^2 - 1}}{x}$, then $0 \le y < \frac{\pi}{2}$ and

$$\sin y = \frac{\sqrt{x^2 - 1}}{x}$$

$$\cos^2 y = 1 - \frac{x^2 - 1}{x^2} = \frac{1}{x^2}$$

$$\sec^2 y = x^2.$$

Thus
$$\sec y = x$$
 and $y = \sec^{-1} x$.
If $x \le -1$ and $y = \pi - \sin^{-1} \frac{\sqrt{x^2 - 1}}{x}$, then $\frac{\pi}{2} \le y < \frac{3\pi}{2}$ and $\sec y < 0$. Therefore

$$\sin y = \sin \left(\pi - \sin^{-1} \frac{\sqrt{x^2 - 1}}{x} \right) = \frac{\sqrt{x^2 - 1}}{x}$$

$$\cos^2 y = 1 - \frac{x^2 - 1}{x^2} = \frac{1}{x^2}$$

$$\sec^2 y = x^2$$

$$\sec y = x$$

because both x and $\sec y$ are negative. Thus $y = \sec^{-1} x$ in this case also.

49. $f'(x) \equiv 0$ on $(-\infty, -1)$ Thus $f(x) = \tan^{-1} \left(\frac{x-1}{x+1} \right) - \tan^{-1} x = C$ on $(-\infty, -1)$.

Evaluate the limit as $x \to -\infty$:

$$\lim_{x \to -\infty} f(x) = \tan^{-1} 1 - \left(-\frac{\pi}{2} \right) = \frac{3\pi}{4}$$

Thus $\tan^{-1}\left(\frac{x-1}{x+1}\right) - \tan^{-1}x = \frac{3\pi}{4}$ on $(-\infty, -1)$.

50. Since $f(x) = x - \tan^{-1}(\tan x)$ then

$$f'(x) = 1 - \frac{\sec^2 x}{1 + \tan^2 x} = 1 - 1 = 0$$

if $x \neq -(k+\frac{1}{2})\pi$ where k is an integer. Thus, f is constant on intervals not containing odd multiples of $\frac{\pi}{2}$. f(0) = 0 but $f(\pi) = \pi - 0 = \pi$. There is no contradiction here because $f'\left(\frac{\pi}{2}\right)$ is not defined, so f is not constant on the interval containing 0 and π .

51. $f(x) = x - \sin^{-1}(\sin x) \quad (-\pi \le x \le \pi)$ $f'(x) = 1 - \frac{1}{\sqrt{1 - \sin^2 x}} \cos x$ $= 1 - \frac{\cos x}{|\cos x|}$ $= \begin{cases} 0 & \text{if } -\frac{\pi}{2} < x < \frac{\pi}{2} \\ 2 & \text{if } -\pi < x < -\frac{\pi}{2} \text{ or } \frac{\pi}{2} < x < \pi \end{cases}$

Note: f is not differentiable at $\pm \frac{\pi}{2}$.

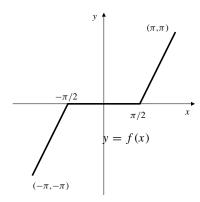


Fig. 3.5.51

52.
$$y' = \frac{1}{1+x^2} \Rightarrow y = \tan^{-1} x + C$$

 $y(0) = C = 1$
Thus, $y = \tan^{-1} x + 1$.

53.
$$\begin{cases} y' = \frac{1}{9+x^2} & \Rightarrow y = \frac{1}{3} \tan^{-1} \frac{x}{3} + C \\ y(3) = 2 & 2 = \frac{1}{3} \tan^{-1} 1 + C & C = 2 - \frac{\pi}{12} \end{cases}$$
Thus $y = \frac{1}{3} \tan^{-1} \frac{x}{3} + 2 - \frac{\pi}{12}$.

54.
$$y' = \frac{1}{\sqrt{1 - x^2}} \Rightarrow y = \sin^{-1} x + C$$

 $y(\frac{1}{2}) = \sin^{-1} (\frac{1}{2}) + C = 1$
 $\Rightarrow \frac{\pi}{6} + C = 1 \Rightarrow C = 1 - \frac{\pi}{6}.$
Thus, $y = \sin^{-1} x + 1 - \frac{\pi}{6}.$

55.
$$\begin{cases} y' = \frac{4}{\sqrt{25 - x^2}} & \Rightarrow y = 4\sin^{-1}\frac{x}{5} + C\\ y(0) = 0 & 0 = 0 + C \Rightarrow C = 0 \end{cases}$$
Thus $y = 4\sin^{-1}\frac{x}{5}$.

Section 3.6 Hyperbolic Functions (page 200)

1.
$$\frac{d}{dx}\operatorname{sech} x = \frac{d}{dx}\frac{1}{\cosh x}$$

$$= -\frac{1}{\cosh^2 x}\sinh x = -\operatorname{sech} x \tanh x$$

$$\frac{d}{dx}\operatorname{csch} x = \frac{d}{dx}\frac{1}{\sinh x}$$

$$= -\frac{1}{\sinh^2 x}\cosh x = -\operatorname{csch} x \coth x$$

$$\frac{d}{dx}\coth x = \frac{d}{dx}\frac{\cosh}{\sinh x}$$

$$= \frac{\sinh^2 x - \cosh^2 x}{\sinh^2 x} = -\frac{1}{\sinh^2 x} = -\operatorname{csch}^2 x$$

2.
$$\cosh x \cosh y + \sinh x \sinh y$$

$$= \frac{1}{4} [(e^x + e^{-x})(e^y + e^{-y}) + (e^x - e^{-x})(e^y - e^{-y})]$$

$$= \frac{1}{4} (2e^{x+y} + 2e^{-x-y}) = \frac{1}{2} (e^{x+y} + e^{-(x+y)})$$

$$= \cosh(x+y).$$

$$\sinh x \cosh y + \cosh x \sinh y$$

$$= \frac{1}{4} [(e^x - e^{-x})(e^y + e^{-y}) + (e^x + e^{-x})(e^y - e^{-y})]$$

$$= \frac{1}{2} (e^{x+y} - e^{-(x+y)}) = \sinh(x+y).$$

$$\cosh(x-y) = \cosh[x + (-y)]$$

$$= \cosh x \cosh(-y) + \sinh x \sinh(-y)$$

$$= \cosh x \cosh(-y) + \sinh x \sinh(-y)$$

$$= \sinh x \cosh(-y) + \cosh x \sinh(-y)$$

$$= \sinh x \cosh(-y) + \cosh x \sinh(-y)$$

$$= \sinh x \cosh(-y) - \cosh x \sinh(-y)$$

$$= \sinh x \cosh(-y) - \cosh x \sinh y.$$

3.
$$\tanh(x \pm y) = \frac{\sinh(x \pm y)}{\cosh(x \pm y)}$$

$$= \frac{\sinh x \cosh y \pm \cosh x \sinh y}{\cosh x \cosh y \pm \sinh x \sinh y}$$

$$= \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$$

4.
$$y = \coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$
 $y = \operatorname{sech} x = \frac{2}{e^x + e^{-x}}$

$$y = \operatorname{sech} x = \frac{2}{e^x + e^{-x}}$$

$$y = \operatorname{sech} x = \frac{2}{e^x + e^{-x}}$$

$$y = \operatorname{sech} x = \frac{2}{e^x + e^{-x}}$$

Fig. 3.6.4(a) Fig. 3.6.4(b)

$$y = \operatorname{csch} x = \frac{2}{e^x - e^{-x}}$$

$$y = \operatorname{csch} x$$

$$y = \operatorname{csch} x$$
Fig. 3.6.4

5.
$$\frac{d}{dx} \sinh^{-1} x = \frac{d}{dx} \ln(x + \sqrt{x^2 + 1}) = \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}}$$

$$= \frac{1}{\sqrt{x^2 + 1}}$$

$$\frac{d}{dx} \cosh^{-1} x = \frac{d}{dx} \ln(x + \sqrt{x^2 - 1}) = \frac{1 + \frac{x}{\sqrt{x^2 - 1}}}{x + \sqrt{x^2 - 1}}$$

$$= \frac{1}{\sqrt{x^2 - 1}}$$

$$\frac{d}{dx} \tanh^{-1} x = \frac{d}{dx} \frac{1}{2} \ln\left(\frac{1 + x}{1 - x}\right)$$

$$= \frac{1}{2} \frac{1 - x}{1 + x} \frac{1 - x - (1 + x)(-1)}{(1 - x)^2} = \frac{1}{1 - x^2}$$

$$\int \frac{dx}{\sqrt{x^2 + 1}} = \sinh^{-1} x + C$$

$$\int \frac{dx}{\sqrt{x^2 - 1}} = \cosh^{-1} x + C \quad (x > 1)$$

$$\int \frac{dx}{1 - x^2} = \tanh^{-1} x + C \quad (-1 < x < 1)$$

6. Let $y = \sinh^{-1}\left(\frac{x}{a}\right) \Leftrightarrow x = a \sinh y \Rightarrow 1 = a(\cosh y)\frac{dy}{dx}$. Thus,

$$\frac{d}{dx} \sinh^{-1} \left(\frac{x}{a}\right) = \frac{1}{a \cosh y}$$

$$= \frac{1}{a\sqrt{1 + \sinh^2 y}} = \frac{1}{\sqrt{a^2 + x^2}}$$

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \sinh^{-1} \frac{x}{a} + C. \quad (a > 0)$$

Let $y = \cosh^{-1} \frac{x}{a} \Leftrightarrow x = a \cosh y = a \cosh y$ for $y \ge 0$, $x \ge a$. We have $1 = a(\sinh y) \frac{dy}{dx}$. Thus,

$$\frac{d}{dx} \cosh^{-1} \frac{x}{a} = \frac{1}{a \sinh y}$$

$$= \frac{1}{a\sqrt{\cosh^2 y - 1}} = \frac{1}{\sqrt{x^2 - a^2}}$$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \cosh^{-1} \frac{x}{a} + C. \quad (a > 0, \ x \ge a)$$

Let $y = \tanh^{-1} \frac{x}{a} \Leftrightarrow x = a \tanh y \Rightarrow 1 = a(\operatorname{sech}^2 y) \frac{dy}{dx}$. Thus,

$$\frac{d}{dx} \tanh^{-1} \frac{x}{a} = \frac{1}{a \operatorname{sech}^{2} y}$$

$$= \frac{a}{a^{2} - a^{2} \tanh^{2} x} = \frac{a}{a^{2} - x^{2}}$$

$$\int \frac{dx}{a^{2} - x^{2}} = \frac{1}{a} \tanh^{-1} \frac{x}{a} + C.$$

7. a)
$$\sinh \ln x = \frac{1}{2} (e^{\ln x} - e^{-\ln x}) = \frac{1}{2} \left(x - \frac{1}{x} \right) = \frac{x^2 - 1}{2x}$$

b)
$$\cosh \ln x = \frac{1}{2} (e^{\ln x} + e^{-\ln x}) = \frac{1}{2} \left(x + \frac{1}{x} \right) = \frac{x^2 + 1}{2x}$$

c)
$$\tanh \ln x = \frac{\sinh \ln x}{\cosh \ln x} = \frac{x^2 - 1}{x^2 + 1}$$

d)
$$\frac{\cosh \ln x + \sinh \ln x}{\cosh \ln x - \sinh \ln x} = \frac{x^2 + 1 + (x^2 - 1)}{(x^2 + 1) - (x^2 - 1)} = x^2$$

8.
$$\operatorname{csch}^{-1} x = \sinh^{-1}(1/x) = \ln\left(\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1}\right) \text{ has}$$

domain and range consisting of all real numbers x except x = 0. We have

$$\frac{d}{dx}\operatorname{csch}^{-1} x = \frac{d}{dx}\sinh^{-1}\frac{1}{x} = \frac{1}{\sqrt{1 + \left(\frac{1}{x}\right)^2}}\left(\frac{-1}{x^2}\right) = \frac{-1}{|x|\sqrt{x^2 + 1}}.$$

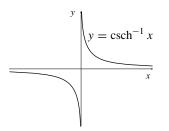


Fig. 3.6.8

9. $\coth^{-1} x = \tanh^{-1} \frac{1}{x} = \frac{1}{2} \ln \left(\frac{1 + \frac{1}{x}}{1 - \frac{1}{x}} \right) = \frac{1}{2} \ln \left(\frac{x + 1}{x - 1} \right),$ for |x| > 1. Also

$$\frac{d}{dx} \coth^{-1} x = \frac{d}{dx} \tanh^{-1} \frac{1}{x}$$
$$= \frac{1}{1 - (1/x)^2} \frac{-1}{x^2} = \frac{-1}{x^2 - 1}.$$

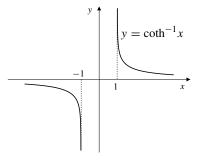


Fig. 3.6.9

10. Let $y = \operatorname{Sech}^{-1} x$ where $\operatorname{Sech} x = \operatorname{sech} x$ for $x \ge 0$. Hence, for $y \ge 0$,

$$x = \operatorname{sech} y \Leftrightarrow \frac{1}{x} = \cosh y$$
$$\Leftrightarrow \frac{1}{x} = \operatorname{Cosh} y \Leftrightarrow y = \operatorname{Cosh}^{-1} \frac{1}{x}.$$

Thus,

Sech⁻¹
$$x = \cosh^{-1} \frac{1}{x}$$

 $\mathcal{D}(\operatorname{Sech}^{-1}) = \mathcal{R}(\operatorname{sech}) = (0, 1]$
 $\mathcal{R}(\operatorname{Sech}^{-1}) = \mathcal{D}(\operatorname{sech}) = [0, \infty).$

Also,

$$\frac{d}{dx} \operatorname{Sech}^{-1} x = \frac{d}{dx} \operatorname{Cosh}^{-1} \frac{1}{x} = \frac{1}{\sqrt{\left(\frac{1}{x}\right)^2 - 1}} \left(\frac{-1}{x^2}\right) = \frac{-1}{x\sqrt{1 - x^2}}.$$

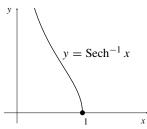


Fig. 3.6.10

11.
$$f_{A,B}(x) = Ae^{kx} + Be^{-kx}$$

 $f'_{A,B}(x) = kAe^{kx} - kBe^{-kx}$
 $f''_{A,B}(x) = k^2Ae^{kx} + k^2Be^{-kx}$
Thus $f''_{A,B} - k^2f_{A,B} = 0$

$$g_{C,D}(x) = C \cosh kx + D \sinh kx$$

$$g'_{C,D}(x) = kC \cosh kx + kD \sinh kx$$

$$g''_{C,D}(x) = k^2 C \cosh kx + k^2 D \sinh kx$$
Thus $g''_{C,D} - k^2 g_{C,D} = 0$

$$\cosh kx + \sinh kx = e^{kx}$$

$$\cosh kx - \sinh kx = e^{-kx}$$
Thus $f_{A,B}(x) = (A+B) \cosh kx + (A-B) \sinh kx$, that is,
$$f_{A,B}(x) = g_{A+B,A-B}(x), \text{ and}$$

$$g_{C,D}(x) = \frac{c}{2} (e^{kx} + e^{-kx}) + \frac{D}{2} (e^{kx} - e^{-kx}),$$

12. Since

$$h_{L,M}(x) = L \cosh k(x-a) + M \sinh k(x-a)$$

$$h_{L,M}''(x) = Lk^2 \cosh k(x-a) + Mk^2 \sinh k(x-a)$$

$$= k^2 h_{L,M}(x)$$

that is $g_{C,D}(x) = f_{(C+D)/2,(C-D)/2}(x)$.

hence, $h_{L,M}(x)$ is a solution of $y'' - k^2 y = 0$ and

$$h_{L,M}(x) = \frac{L}{2} \left(e^{kx - ka} + e^{-kx + ka} \right) + \frac{M}{2} \left(e^{kx - ka} - e^{-kx + ka} \right)$$

$$= \left(\frac{L}{2} e^{-ka} + \frac{M}{2} e^{-ka} \right) e^{kx} + \left(\frac{L}{2} e^{ka} - \frac{M}{2} e^{ka} \right) e^{-kx}$$

$$= A e^{kx} + B e^{-kx} = f_{A,B}(x)$$

where $A = \frac{1}{2}e^{-ka}(L+M)$ and $B = \frac{1}{2}e^{ka}(L-M)$.

13.
$$y'' - k^2 y = 0 \Rightarrow y = h_{L,M}(x)$$

 $= L \cosh k(x - a) + M \sinh k(x - a)$
 $y(a) = y_0 \Rightarrow y_0 = L + 0 \Rightarrow L = y_0,$
 $y'(a) = v_0 \Rightarrow v_0 = 0 + Mk \Rightarrow M = \frac{v_0}{k}$
Therefore $y = h_{y_0, v_0/k}(x)$
 $= y_0 \cosh k(x - a) + (v_0/k) \sinh k(x - a).$

Section 3.7 Second-Order Linear DEs with Constant Coefficients (page 206)

1.
$$y'' + 7y' + 10y = 0$$
auxiliary eqn
$$r^{2} + 7r + 10 = 0$$

$$(r+5)(r+2) = 0 \Rightarrow r = -5, -2$$

$$y = Ae^{-5t} + Be^{-2t}$$

2.
$$y'' - 2y' - 3y = 0$$

auxiliary eqn $r^2 - 2r - 3 = 0 \Rightarrow r = -1, r = 3$
 $y = Ae^{-t} + Be^{3t}$

3.
$$y'' + 2y' = 0$$
 auxiliary eqn
$$r^2 + 2r = 0 \Rightarrow r = 0, -2$$

$$y = A + Be^{-2t}$$

4.
$$4y'' - 4y' - 3y = 0$$

 $4r^2 - 4r - 3 = 0 \Rightarrow (2r + 1)(2r - 3) = 0$
Thus, $r_1 = -\frac{1}{2}$, $r_2 = \frac{3}{2}$, and $y = Ae^{-(1/2)t} + Be^{(3/2)t}$.

5.
$$y'' + 8y' + 16y = 0$$

auxiliary eqn $r^2 + 8r + 16 = 0 \Rightarrow r = -4, -4$
 $y = Ae^{-4t} + Bte^{-4t}$

6.
$$y'' - 2y' + y = 0$$

 $r^2 - 2r + 1 = 0 \Rightarrow (r - 1)^2 = 0$
Thus, $r = 1$, 1, and $y = Ae^t + Bte^t$.

7.
$$y'' - 6y' + 10y = 0$$

auxiliary eqn $r^2 - 6r + 10 = 0 \implies r = 3 \pm i$
 $y = Ae^{3t}\cos t + Be^{3t}\sin t$

8.
$$9y'' + 6y' + y = 0$$

 $9r^2 + 6r + 1 = 0 \Rightarrow (3r + 1)^2 = 0$
Thus, $r = -\frac{1}{3}$, $-\frac{1}{3}$, and $y = Ae^{-(1/3)t} + Bte^{-(1/3)t}$.

9.
$$y'' + 2y' + 5y = 0$$

auxiliary eqn $r^2 + 2r + 5 = 0 \Rightarrow r = -1 \pm 2i$
 $y = Ae^{-t}\cos 2t + Be^{-t}\sin 2t$

- **10.** For y'' 4y' + 5y = 0 the auxiliary equation is $r^2 4r + 5 = 0$, which has roots $r = 2 \pm i$. Thus, the general solution of the DE is $y = Ae^{2t}\cos t + Be^{2t}\sin t$.
- 11. For y'' + 2y' + 3y = 0 the auxiliary equation is $r^2 + 2r + 3 = 0$, which has solutions $r = -1 \pm \sqrt{2}i$. Thus the general solution of the given equation is $y = Ae^{-t}\cos(\sqrt{2}t) + Be^{-t}\sin(\sqrt{2}t)$.
- **12.** Given that y'' + y' + y = 0, hence $r^2 + r + 1 = 0$. Since a = 1, b = 1 and c = 1, the discriminant is $D = b^2 4ac = -3 < 0$ and $-(b/2a) = -\frac{1}{2}$ and $\omega = \sqrt{3}/2$. Thus, the general solution is $y = Ae^{-(1/2)t}\cos\left(\frac{\sqrt{3}}{2}t\right) + Be^{-(1/2)t}\sin\left(\frac{\sqrt{3}}{2}t\right)$.

13.
$$\begin{cases} 2y'' + 5y' - 3y = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$
 The DE has auxiliary

The DE has auxiliary equation $2r^2 + 5y - 3 = 0$, with roots $r = \frac{1}{2}$ and r = -3. Thus $y = Ae^{t/2} + Be^{-3t}$.

Now
$$1 = y(0) = A + B$$
, and $0 = y'(0) = \frac{A}{2} - 3B$.
Thus $B = 1/7$ and $A = 6/7$. The solution is $y = \frac{6}{7}e^{t/2} + \frac{1}{7}e^{-3t}$.

14. Given that y'' + 10y' + 25y = 0, hence $r^2 + 10r + 25 = 0 \Rightarrow (r + 5)^2 = 0 \Rightarrow r = -5$. Thus,

$$y = Ae^{-5t} + Bte^{-5t}$$

$$y' = -5e^{-5t}(A + Bt) + Be^{-5t}.$$

Since

$$0 = y(1) = Ae^{-5} + Be^{-5}$$
$$2 = y'(1) = -5e^{-5}(A+B) + Be^{-5},$$

we have $A = -2e^5$ and $B = 2e^5$. Thus, $y = -2e^5e^{-5t} + 2te^5e^{-5t} = 2(t-1)e^{-5(t-1)}$.

15.
$$\begin{cases} y'' + 4y' + 5y = 0 \\ y(0) = 2 \\ y'(0) = 0 \end{cases}$$

The auxiliary equation for the DE is $r^2 + 4r + 5 = 0$, which has roots $r = -2 \pm i$. Thus

$$y = Ae^{-2t}\cos t + Be^{-2t}\sin t$$

$$y' = (-2Ae^{-2t} + Be^{-2t})\cos t - (Ae^{-2t} + 2Be^{-2t})\sin t.$$

Now
$$2 = y(0) = A \Rightarrow A = 2$$
, and $2 = y'(0) = -2A + B \Rightarrow B = 6$.
Therefore $y = e^{-2t}(2\cos t + 6\sin t)$.

16. The auxiliary equation $r^2 - (2 + \epsilon)r + (1 + \epsilon)$ factors to $(r - 1 - \epsilon)(r - 1) = 0$ and so has roots $r = 1 + \epsilon$ and r = 1. Thus the DE $y'' - (2 + \epsilon)y' + (1 + \epsilon)y = 0$ has general solution $y = Ae^{(1+\epsilon)t} + Be^t$. The function $y_{\epsilon}(t) = \frac{e^{(1+\epsilon)t} - e^t}{\epsilon}$ is of this form with $A = -B = 1/\epsilon$. We have, substituting $\epsilon = h/t$,

$$\lim_{\epsilon \to 0} y_{\epsilon}(t) = \lim_{\epsilon \to 0} \frac{e^{(1+\epsilon)t} - e^t}{\epsilon}$$

$$= t \lim_{h \to 0} \frac{e^{t+h} - e^t}{h}$$

$$= t \left(\frac{d}{dt}e^t\right) = t e^t$$

which is, along with e^t , a solution of the CASE II DE y'' - 2y' + y = 0.

17. Given that a > 0, b > 0 and c > 0: Case 1: If $D = b^2 - 4ac > 0$ then the two roots are

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Since

$$b^{2} - 4ac < b^{2}$$

$$\pm \sqrt{b^{2} - 4ac} < b$$

$$-b \pm \sqrt{b^{2} - 4ac} < 0$$

therefore r_1 and r_2 are negative. The general solution is

$$y(t) = Ae^{r_1t} + Be^{r_2t}.$$

If $t \to \infty$, then $e^{r_1 t} \to 0$ and $e^{r_2 t} \to 0$. Thus, $\lim_{t \to \infty} y(t) = 0$.

Case 2: If $D = b^2 - 4ac = 0$ then the two equal roots $r_1 = r_2 = -b/(2a)$ are negative. The general solution is

$$y(t) = Ae^{r_1t} + Bte^{r_2t}.$$

If $t \to \infty$, then $e^{r_1 t} \to 0$ and $e^{r_2 t} \to 0$ at a faster rate than $Bt \to \infty$. Thus, $\lim_{t \to \infty} y(t) = 0$.

Case 3: If $D = b^2 - 4ac < 0$ then the general solution is

$$y = Ae^{-(b/2a)t}\cos(\omega t) + Be^{-(b/2a)t}\sin(\omega t)$$

where $\omega = \frac{\sqrt{4ac-b^2}}{2a}$. If $t \to \infty$, then the amplitude of both terms $Ae^{-(b/2a)t} \to 0$ and $Be^{-(b/2a)t} \to 0$. Thus, $\lim_{t \to \infty} y(t) = 0$.

18. The auxiliary equation $ar^2 + br + c = 0$ has roots

$$r_1 = \frac{-b - \sqrt{D}}{2a}, \quad r_2 = \frac{-b + \sqrt{D}}{2a},$$

where $D=b^2-4ac$. Note that $a(r_2-r_1)=\sqrt{D}=-(2ar_1+b)$. If $y=e^{r_1t}u$, then $y'=e^{r_1t}(u'+r_1u)$, and $y''=e^{r_1t}(u''+2r_1u'+r_1^2u)$. Substituting these expressions into the DE ay''+by'+cy=0, and simplifying, we obtain

$$e^{r_1 t} (au'' + 2ar_1 u' + bu') = 0,$$

or, more simply, $u'' - (r_2 - r_1)u' = 0$. Putting v = u' reduces this equation to first order:

$$v' = (r_2 - r_1)v,$$

which has general solution $v = Ce^{(r_2-r_1)t}$. Hence

$$u = \int Ce^{(r_2 - r_1)t} dt = Be^{(r_2 - r_1)t} + A,$$

and $y = e^{r_1 t} u = A e^{r_1 t} + B e^{r_2 t}$.

19. If $y = A \cos \omega t + B \sin \omega t$ then

$$y'' + \omega^2 y = -A\omega^2 \cos \omega t - B\omega^2 \sin \omega t$$
$$+ \omega^2 (A \cos \omega t + B \sin \omega t) = 0$$

for all t. So y is a solution of (\dagger) .

20. If f(t) is any solution of (†) then $f''(t) = -\omega^2 f(t)$ for all t. Thus,

$$\begin{aligned} & \frac{d}{dt} \left[\omega^2 (f(t))^2 + (f'(t))^2 \right] \\ &= 2\omega^2 f(t) f'(t) + 2f'(t) f''(t) \\ &= 2\omega^2 f(t) f'(t) - 2\omega^2 f(t) f'(t) = 0 \end{aligned}$$

for all t. Thus, $\omega^2 (f(t))^2 + (f'(t))^2$ is constant. (This can be interpreted as a conservation of energy statement.)

21. If g(t) satisfies (†) and also g(0) = g'(0) = 0, then by Exercise 20,

$$\omega^2 \Big(g(t) \Big)^2 + \Big(g'(t) \Big)^2$$
$$= \omega^2 \Big(g(0) \Big)^2 + \Big(g'(0) \Big)^2 = 0.$$

Since a sum of squares cannot vanish unless each term vanishes, g(t) = 0 for all t.

- **22.** If f(t) is any solution of (\dagger) , let $g(t) = f(t) A\cos\omega t B\sin\omega t$ where A = f(0) and $B\omega = f'(0)$. Then g is also solution of (\dagger) . Also g(0) = f(0) A = 0 and $g'(0) = f'(0) B\omega = 0$. Thus, g(t) = 0 for all t by Exercise 24, and therefore $f(x) = A\cos\omega t + B\sin\omega t$. Thus, it is proved that every solution of (\dagger) is of this form.
- **23.** We are given that $k = -\frac{b}{2a}$ and $\omega^2 = \frac{4ac b^2}{4a^2}$ which is positive for Case III. If $y = e^{kt}u$, then

$$y' = e^{kt} (u' + ku)$$

$$y'' = e^{kt} (u'' + 2ku' + k^2u).$$

Substituting into ay'' + by' + cy = 0 leads to

$$0 = e^{kt} \left(au'' + (2ka + b)u' + (ak^2 + bk + c)u \right)$$

= $e^{kt} \left(au'' + 0 + ((b^2/(4a) - (b^2/(2a) + c)u) \right)$
= $a e^{kt} \left(u'' + \omega^2 u \right)$.

Thus u satisfies $u'' + \omega^2 u = 0$, which has general solution

$$u = A\cos(\omega t) + B\sin(\omega t)$$

by the previous problem. Therefore ay'' + by' + cy = 0 has general solution

$$y = Ae^{kt}\cos(\omega t) + Be^{kt}\sin(\omega t)$$
.

24. Because y'' + 4y = 0, therefore $y = A \cos 2t + B \sin 2t$.

$$y(0) = 2 \Rightarrow A = 2,$$

$$y'(0) = -5 \Rightarrow B = -\frac{5}{2}.$$

Thus, $y = 2\cos 2t - \frac{5}{2}\sin 2t$. circular frequency = $\omega = 2$, frequency = $\frac{\omega}{2\pi} = \frac{1}{\pi} \approx 0.318$ period = $\frac{2\pi}{\omega} = \pi \approx 3.14$ amplitude = $\sqrt{(2)^2 + (-\frac{5}{2})^2} \approx 3.20$

25.
$$\begin{cases} y'' + 100y = 0 \\ y(0) = 0 \\ y'(0) = 3 \end{cases}$$
$$y = A\cos(10t) + B\sin(10t)$$
$$A = y(0) = 0, \quad 10B = y'(0) = 3$$
$$y = \frac{3}{10}\sin(10t)$$

26.
$$y = \mathbf{A}\cos(\omega(t-c)) + \mathbf{B}\sin(\omega(t-c))$$

(easy to calculate $y'' + \omega^2 y = 0$)
 $y = \mathbf{A}\left(\cos(\omega t)\cos(\omega c) + \sin(\omega t)\sin(\omega c)\right)$
 $+ \mathbf{B}\left(\sin(\omega t)\cos(\omega c) - \cos(\omega t)\sin(\omega c)\right)$
 $= \left(\mathbf{A}\cos(\omega c) - \mathbf{B}\sin(\omega c)\right)\cos\omega t$
 $+ \left(\mathbf{A}\sin(\omega c) + \mathbf{B}\cos(\omega c)\right)\sin\omega t$
 $= A\cos\omega t + B\sin\omega t$
where $A = \mathbf{A}\cos(\omega c) - \mathbf{B}\sin(\omega c)$ and $B = \mathbf{A}\sin(\omega c) + \mathbf{B}\cos(\omega c)$

27. For y'' + y = 0, we have $y = A \sin t + B \cos t$. Since,

$$y(2) = 3 = A \sin 2 + B \cos 2$$

 $y'(2) = -4 = A \cos 2 - B \sin 2$,

therefore

$$A = 3 \sin 2 - 4 \cos 2$$

 $B = 4 \sin 2 + 3 \cos 2$.

Thus,

$$y = (3\sin 2 - 4\cos 2)\sin t + (4\sin 2 + 3\cos 2)\cos t$$

= $3\cos(t-2) - 4\sin(t-2)$.

28.
$$\begin{cases} y'' + \omega^2 y = 0 \\ y(a) = A \\ y'(a) = B \end{cases}$$
$$y = A \cos(\omega(t - a)) + \frac{B}{\omega} \sin(\omega(t - a))$$

29. From Example 9, the spring constant is $k = 9 \times 10^4 \text{ gm/sec}^2$. For a frequency of 10 Hz (i.e., a circular frequency $\omega = 20\pi \text{ rad/sec.}$), a mass m satisfying $\sqrt{k/m} = 20\pi$ should be used. So,

$$m = \frac{k}{400\pi^2} = \frac{9 \times 10^4}{400\pi^2} = 22.8 \text{ gm}.$$

The motion is determined by

$$\begin{cases} y'' + 400\pi^2 y = 0\\ y(0) = -1\\ y'(0) = 2 \end{cases}$$

therefore, $y = A \cos 20\pi t + B \sin 20\pi t$ and

$$y(0) = -1 \Rightarrow A = -1$$

 $y'(0) = 2 \Rightarrow B = \frac{2}{20\pi} = \frac{1}{10\pi}.$

Thus, $y = -\cos 20\pi t + \frac{1}{10\pi} \sin 20\pi t$, with y in cm and t in second, gives the displacement at time t. The amplitude is $\sqrt{(-1)^2 + (\frac{1}{10\pi})^2} \approx 1.0005$ cm.

30. Frequency
$$=\frac{\omega}{2\pi}$$
, $\omega^2 = \frac{k}{m}$ (k = spring const, m = mass) Since the spring does not change, $\omega^2 m = k$ (constant) For $m = 400$ gm, $\omega = 2\pi(24)$ (frequency = 24 Hz) If $m = 900$ gm, then $\omega^2 = \frac{4\pi^2(24)^2(400)}{900}$ so $\omega = \frac{2\pi \times 24 \times 2}{3} = 32\pi$.

Thus frequency $=\frac{32\pi}{2\pi} = 16$ Hz

For $m = 100$ gm, $\omega = \frac{4\pi^2(24)^2400}{100}$ so $\omega = 96\pi$ and frequency $=\frac{\omega}{2\pi} = 48$ Hz.

31. Using the addition identities for cosine and sine,

$$y = e^{kt} [A\cos\omega(t - t_0)B\sin\omega(t - t_0)]$$

$$= e^{kt} [A\cos\omega t\cos\omega t_0 + A\sin\omega t\sin\omega t_0 + B\sin\omega t\cos\omega t_0 - B\cos\omega t\sin\omega t_0]$$

$$= e^{kt} [A_1\cos\omega t + B_1\sin\omega t],$$

where $A_1 = A\cos\omega t_0 - B\sin\omega t_0$ and $B_1 = A\sin\omega t_0 + B\cos\omega t_0$. Under the conditions of this problem we know that $e^{kt}\cos\omega t$ and $e^{kt}\sin\omega t$ are independent solutions of ay'' + by' + cy = 0, so our function y must also be a solution, and, since it involves two arbitrary constants, it is a general solution.

32. Expanding the hyperbolic functions in terms of exponentials.

$$y = e^{kt} [A \cosh \omega (t - t_0) B \sinh \omega (t - t_0)]$$

$$= e^{kt} \left[\frac{A}{2} e^{\omega (t - t_0)} + \frac{A}{2} e^{-\omega (t - t_0)} + \frac{B}{2} e^{\omega (t - t_0)} - \frac{B}{2} e^{-\omega (t - t_0)} \right]$$

$$= A_1 e^{(k+\omega)t} + B_1 e^{(k-\omega)t}$$

where $A_1=(A/2)e^{-\omega t_0}+(B/2)e^{-\omega t_0}$ and $B_1=(A/2)e^{\omega t_0}-(B/2)e^{\omega t_0}$. Under the conditions of this problem we know that $Rr=k\pm\omega$ are the two real roots of the auxiliary equation $ar^2+br+c=0$, so $e^{(k\pm\omega)t}$ are independent solutions of ay''+by'+cy=0, and our function y must also be a solution. Since it involves two arbitrary constants, it is a general solution.

33.
$$\begin{cases} y'' + 2y' + 5y = 0 \\ y(3) = 2 \\ y'(3) = 0 \end{cases}$$

The DE has auxiliary equation $r^2 + 2r + 5 = 0$ with roots $r = -1 \pm 2i$. By the second previous problem, a general solution can be expressed in the form $y = e^{-t}[A\cos 2(t-3) + B\sin 2(t-3)]$ for which

$$y' = -e^{-t}[A\cos 2(t-3) + B\sin 2(t-3)] + e^{-t}[-2A\sin 2(t-3) + 2B\cos 2(t-3)].$$

The initial conditions give

$$2 = y(3) = e^{-3}A$$

$$0 = y'(3) = -e^{-3}(A + 2B)$$

Thus $A = 2e^3$ and $B = -A/2 = -e^3$. The IVP has solution

$$y = e^{3-t} [2\cos 2(t-3) - \sin 2(t-3)].$$

34.
$$\begin{cases} y'' + 4y' + 3y = 0 \\ y(3) = 1 \\ y'(3) = 0 \end{cases}$$

The DE has auxiliary equation $r^2 + 4r + 3 = 0$ with roots r = -2 + 1 = -1 and r = -2 - 1 = -3 (i.e. $k \pm \omega$, where k = -2 and $\omega = 1$). By the second previous problem, a general solution can be expressed in the form $y = e^{-2t}[A \cosh(t - 3) + B \sinh(t - 3)]$ for which

$$y' = -2e^{-2t}[A\cosh(t-3) + B\sinh(t-3)] + e^{-2t}[A\sinh(t-3) + B\cosh(t-3)].$$

The initial conditions give

$$1 = y(3) = e^{-6}A$$

$$0 = y'(3) = -e^{-6}(-2A + B)$$

Thus $A = e^6$ and $B = 2A = 2e^6$. The IVP has solution

$$y = e^{6-2t} [\cosh(t-3) + 2\sinh(t-3)].$$

35. Let $u(x) = c - k^2 y(x)$. Then $u(0) = c - k^2 a$. Also $u'(x) = -k^2 y'(x)$, so $u'(0) = -k^2 b$. We have

$$u''(x) = -k^2 y''(x) = -k^2 \left(c - k^2 y(x)\right) = -k^2 u(x)$$

This IVP for the equation of simple harmonic motion has solution

$$u(x) = (c - k^2 a)\cos(kx) - kb\sin(kx)$$

so that

$$y(x) = \frac{1}{k^2} \left(c - u(x) \right)$$

$$= \frac{c}{k^2} \left(c - (c - k^2 a) \cos(kx) + kb \sin(kx) \right)$$

$$= \frac{c}{k^2} (1 - \cos(kx) + a \cos(kx) + \frac{b}{k} \sin(kx).$$

36. Since x'(0) = 0 and x(0) = 1 > 1/5, the motion will be governed by x'' = -x + (1/5) until such time t > 0 when x'(t) = 0 again.

Let u = x - (1/5). Then u'' = x'' = -(x - 1/5) = -u, u(0) = 4/5, and u'(0) = x'(0) = 0. This simple harmonic motion initial-value problem has solution $u(t) = (4/5)\cos t$. Thus $x(t) = (4/5)\cos t + (1/4)$ and $x'(t) = u'(t) = -(4/5)\sin t$. These formulas remain valid until $t = \pi$ when x'(t) becomes 0 again. Note that $x(\pi) = -(4/5) + (1/5) = -(3/5)$.

Since $x(\pi) < -(1/5)$, the motion for $t > \pi$ will be governed by x'' = -x - (1/5) until such time $t > \pi$ when x'(t) = 0 again.

Let v = x + (1/5). Then v'' = x'' = -(x + 1/5) = -v, $v(\pi) = -(3/5) + (1/5) = -(2/5)$, and $v'(\pi) = x'(\pi) = 0$. Thius initial-value problem has solution $v(t) = -(2/5)\cos(t - \pi) = (2/5)\cos t$, so that $x(t) = (2/5)\cos t - (1/5)$ and $x'(t) = -(2/5)\sin t$. These formulas remain valid for $t \ge \pi$ until $t = 2\pi$ when x' becomes 0 again. We have $x(2\pi) = (2/5) - (1/5) = 1/5$ and $x'(2\pi) = 0$.

The conditions for stopping the motion are met at $t = 2\pi$; the mass remains at rest thereafter. Thus

$$x(t) = \begin{cases} \frac{4}{5}\cos t + \frac{1}{5} & \text{if } 0 \le t \le \pi\\ \frac{2}{5}\cos t - \frac{1}{5} & \text{if } \pi < t \le 2\pi\\ \frac{1}{5} & \text{if } t > 2\pi \end{cases}$$

Review Exercises 3 (page 208)

1. $f(x) = 3x + x^3 \Rightarrow f'(x) = 3(1 + x^2) > 0$ for all x, so f is increasing and therefore one-to-one and invertible. Since f(0) = 0, therefore $f^{-1}(0) = 0$, and

$$\left. \frac{d}{dx} (f^{-1})(x) \right|_{x=0} = \frac{1}{f'(f^{-1}(0))} = \frac{1}{f'(0)} = \frac{1}{3}.$$

2. $f(x) = \sec^2 x \tan x \Rightarrow f'(x) = 2 \sec^2 x \tan^2 x + \sec^4 x > 0$ for x in $(-\pi/2, \pi/2)$, so f is increasing and therefore one-to-one and invertible there. The domain of f^{-1} is $(-\infty, \infty)$, the range of f. Since $f(\pi/4) = 2$, therefore $f^{-1}(2) = \pi/4$, and

$$(f^{-1})'(2) = \frac{1}{f'(f^{-1}(2))} = \frac{1}{f'(\pi/4)} = \frac{1}{8}.$$

- 3. $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x}{e^{x^2}} = 0.$
- **4.** Observe $f'(x) = e^{-x^2}(1 2x^2)$ is positive if $x^2 < 1/2$ and is negative if $x^2 > 1/2$. Thus f is increasing on $(-1/\sqrt{2}, 1/\sqrt{2})$ and is decreasing on $(-\infty, -1/\sqrt{2})$ and on $(1/\sqrt{2}, \infty)$.
- 5. The max and min values of f are $1/\sqrt{2e}$ (at $x = 1/\sqrt{2}$) and $-1/\sqrt{2e}$ (at $x = -1/\sqrt{2}$).
- **6.** $y = e^{-x} \sin x$, $(0 \le x \le 2\pi)$ has a horizontal tangent where

$$0 = \frac{dy}{dx} = e^{-x}(\cos x - \sin x).$$

This occurs if $\tan x = 1$, so $x = \pi/4$ or $x = 5\pi/4$. The points are $(\pi/4, e^{-\pi/4}/\sqrt{2})$ and $(5\pi/4, -e^{-5\pi/4}/\sqrt{2})$.

7. If f'(x) = x for all x, then

$$\frac{d}{dx}\frac{f(x)}{e^{x^2/2}} = \frac{f'(x) - xf(x)}{e^{x^2/2}} = 0.$$

Thus $f(x)/e^{x^2/2} = C$ (constant) for all x. Since f(2) = 3, we have $C = 3/e^2$ and $f(x) = (3/e^2)e^{x^2/2} = 3e^{(x^2/2)-2}$.

8. Let the length, radius, and volume of the clay cylinder at time t be ℓ , r, and V, respectively. Then $V = \pi r^2 \ell$, and

$$\frac{dV}{dt} = 2\pi r \ell \frac{dr}{dt} + \pi r^2 \frac{d\ell}{dt}.$$

Since dV/dt = 0 and $d\ell/dt = k\ell$ for some constant k > 0, we have

$$2\pi r \ell \frac{dr}{dt} = -k\pi r^2 \ell, \quad \Rightarrow \quad \frac{dr}{dt} = -\frac{kr}{2}.$$

That is, r is decreasing at a rate proportional to itself.

- 9. a) An investment of \$P\$ at r% compounded continuously grows to $Pe^{rT/100}$ in T years. This will be 2P provided $e^{rT/100} = 2$, that is, $rT = 100 \ln 2$. If T = 5, then $r = 20 \ln 2 \approx 13.86\%$.
 - b) Since the doubling time is $T = 100 \ln 2/r$, we have

$$\Delta T \approx \frac{dT}{dr} \, \Delta r = -\frac{100 \ln 2}{r^2} \, \Delta r.$$

If r = 13.863% and $\Delta r = -0.5\%$, then

$$\Delta T \approx -\frac{100 \ln 2}{13.863^2} (-0.5) \approx 0.1803$$
 years.

The doubling time will increase by about 66 days.

10. a)
$$\lim_{h \to 0} \frac{a^h - 1}{h} = \lim_{h \to 0} \frac{a^{0+h} - a^0}{h} = \frac{d}{dx} a^x \Big|_{x=0} = \ln a$$
.

Putting h = 1/n, we get $\lim_{n \to \infty} n \left(a^{1/n} - 1 \right) = \ln a$.

b) Using the technique described in the exercise, we calculate

$$2^{10} \left(2^{1/2^{10}} - 1 \right) \approx 0.69338183$$
$$2^{11} \left(2^{1/2^{11}} - 1 \right) \approx 0.69326449$$

Thus $\ln 2 \approx 0.693$.

11.
$$\frac{d}{dx}(f(x))^2 = (f'(x))^2$$
$$\Rightarrow 2f(x)f'(x) = (f'(x))^2$$

 $\Rightarrow f'(x) = 0 \text{ or } f'(x) = 2f(x).$

Since f(x) is given to be nonconstant, we have f'(x) = 2f(x). Thus $f(x) = f(0)e^{2x} = e^{2x}$.

12. If $f(x) = (\ln x)/x$, then $f'(x) = (1 - \ln x)/x^2$. Thus f'(x) > 0 if $\ln x < 1$ (i.e., x < e) and f'(x) < 0 if $\ln x > 1$ (i.e., x > e). Since f is increasing to the left of e and decreasing to the right, it has a maximum value f(e) = 1/e at x = e. Thus, if x > 0 and $x \ne e$, then

$$\frac{\ln x}{x} < \frac{1}{e}.$$

Putting $x = \pi$ we obtain $(\ln \pi)/\pi < 1/e$. Thus

$$\ln(\pi^e) = e \ln \pi < \pi = \pi \ln e = \ln e^{\pi},$$

and $\pi^e < e^{\pi}$ follows because ln is increasing.

13. $y = x^x = e^{x \ln x} \implies y' = x^x (1 + \ln x)$. The tangent to $y = x^x$ at x = a has equation

$$y = a^a + a^a (1 + \ln a)(x - a).$$

This line passes through the origin if $0 = a^a[1 - a(1 + \ln a)]$, that is, if $(1 + \ln a)a = 1$. Observe that a = 1 solves this equation. Therefore the slope of the line is $1^1(1 + \ln 1) = 1$, and the line is y = x.

- 14. a) $\frac{\ln x}{x} = \frac{\ln 2}{2}$ is satisfied if x = 2 or x = 4 (because $\ln 4 = 2 \ln 2$)
 - b) The line y = mx through the origin intersects the curve $y = \ln x$ at $(b, \ln b)$ if $m = (\ln b)/b$. The same line intersects $y = \ln x$ at a different point $(x, \ln x)$ if $(\ln x)/x = m = (\ln b)/b$. This equation will have only one solution x = b if the line y = mx intersects the curve $y = \ln x$ only once, at x = b, that is, if the line is tangent to the curve at x = b. In this case m is the slope of $y = \ln x$ at x = b, so

$$\frac{1}{b} = m = \frac{\ln b}{b}.$$

Thus $\ln b = 1$, and b = e.

15. Let the rate be r%. The interest paid by account A is 1,000(r/100) = 10r.

The interest paid by account B is $1,000(e^{r/100} - 1)$. This is \$10 more than account A pays, so

$$1,000(e^{r/100} - 1) = 10r + 10.$$

A TI-85 solve routine gives $r \approx 13.8165\%$.

16. If $y = \cos^{-1} x$, then $x = \cos y$ and $0 \le y \le \pi$. Thus

$$\tan y = \operatorname{sgn} x \sqrt{\sec^2 y - 1} = \operatorname{sgn} x \sqrt{\frac{1}{x^2} - 1} = \frac{\sqrt{1 - x^2}}{x}.$$

Thus $\cos^{-1} x = \tan^{-1}((\sqrt{1-x^2})/x)$.

Since $\cot x = 1/\tan x$, $\cot^{-1} x = \tan^{-1}(1/x)$.

$$\csc^{-1} x = \sin^{-1} \frac{1}{x} = \frac{\pi}{2} - \cos^{-1} \frac{1}{x}$$
$$= \frac{\pi}{2} - \tan^{-1} \frac{\sqrt{1 - (1/x)^2}}{1/x}$$
$$= \frac{\pi}{2} - \operatorname{sgn} x \tan^{-1} \sqrt{x^2 - 1}.$$

17. $\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x$.

If $y = \cot^{-1} x$, then $x = \cot y$ and $0 < y < \pi/2$. Thus

$$\csc y = \operatorname{sgn} x \sqrt{1 + \cot^2 y} = \operatorname{sgn} x \sqrt{1 + x^2}$$
$$\sin y = \frac{\operatorname{sgn} x}{\sqrt{1 + x^2}}.$$

Thus
$$\cot^{-1} x = \sin^{-1} \frac{\operatorname{sgn} x}{\sqrt{1 + x^2}} = \operatorname{sgn} x \sin^{-1} \frac{1}{\sqrt{1 + x^2}}$$

$$\csc^{-1} x = \sin^{-1} \frac{1}{x}.$$

18. Let T(t) be the temperature of the milk t minutes after it is removed from the refrigerator. Let U(t) = T(t) - 20. By Newton's law,

$$U'(t) = kU(t) \implies U(t) = U(0)e^{kt}$$
.

Now $T(0) = 5 \Rightarrow U(0) = -15$ and $T(12) = 12 \Rightarrow U(12) = -8$. Thus

$$-8 = U(12) = U(0)e^{12k} = -15e^{12k}$$
$$e^{12k} = 8/15, k = \frac{1}{12}\ln(8/15).$$

If T(s) = 18, then U(s) = -2, so $-2 = -15e^{sk}$. Thus $sk = \ln(2/15)$, and

$$s = \frac{\ln(2/15)}{k} = 12 \frac{\ln(2/15)}{\ln(8/15)} \approx 38.46.$$

It will take another 38.46 - 12 = 26.46 min for the milk to warm up to 18° .

19. Let R be the temperature of the room, Let T(t) be the temperature of the water t minutes after it is brought into the room. Let U(t) = T(t) - R. Then

$$U'(t) = kU(t) \Rightarrow U(t) = U(0)e^{kt}$$
.

We have

$$T(0) = 96 \Rightarrow U(0) = 96 - R$$

 $T(10) = 60 \Rightarrow U(10) = 60 - R \Rightarrow 60 - R = (96 - R)e^{10k}$
 $T(20) = 40 \Rightarrow U(20) = 40 - R \Rightarrow 40 - R = (96 - R)e^{20k}$.

Thus

$$\left(\frac{60-R}{96-R}\right)^2 = e^{20k} = \frac{40-R}{96-R}$$

$$(60-R)^2 = (96-R)(40-R)$$

$$3600-120R+R^2 = 3840-136R+R^2$$

$$16R = 240 \qquad R = 15.$$

Room temperature is 15°.

20. Let $f(x) = e^x - 1 - x$. Then f(0) = 0 and by the MVT,

$$\frac{f(x)}{x} = \frac{f(x) - f(0)}{x - 0} = f'(c) = e^{c} - 1$$

for some c between 0 and x. If x > 0, then c > 0, and f'(c) > 0. If x < 0, then c < 0, and f'(c) < 0. In either case f(x) = xf'(c) > 0, which is what we were asked to show.

21. Suppose that for some positive integer k, the inequality

$$e^x > 1 + x + \frac{x^2}{2!} + \dots + \frac{x^k}{k!}$$

holds for all x > 0. This is certainly true for k = 1, as shown in the previous exercise. Apply the MVT to

$$g(t) = e^{t} - 1 - t - \frac{t^{2}}{2!} - \dots - \frac{t^{k+1}}{(k+1)!}$$

on the interval (0, x) (where x > 0) to obtain

$$\frac{g(x)}{x} = \frac{g(x) - g(0)}{x - 0} = g'(c)$$

for some c in (0, x). Since x and g'(c) are both positive, so is g(x). This completes the induction and shows the desired inequality holds for x > 0 for all positive integers k.

Challenging Problems 3 (page 209)

1. a) $(d/dx)x^x = x^x(1 + \ln x) > 0$ if $\ln x > -1$, that is, if $x > e^{-1}$. Thus x^x is increasing on $[e^{-1}, \infty)$.

b) Being increasing on $[e^{-1}, \infty)$, $f(x) = x^x$ is invertible on that interval. Let $g = f^{-1}$. If $y = x^x$, then x = g(y). Note that $y \to \infty$ if and only if $x \to \infty$. We have

$$\ln y = x \ln x$$

$$\ln(\ln y) = \ln x + \ln(\ln x)$$

$$\lim_{y \to \infty} \frac{g(y) \ln(\ln y)}{\ln y} = \lim_{x \to \infty} \frac{x(\ln x + \ln(\ln x))}{x \ln x}$$

$$= \lim_{x \to \infty} \left(1 + \frac{\ln(\ln x)}{\ln x}\right).$$

Now $\ln x < \sqrt{x}$ for sufficiently large x, so $\ln(\ln x) < \sqrt{\ln x}$ for sufficiently large x.

Therefore, $0 < \frac{\ln(\ln x)}{\ln x} < \frac{1}{\sqrt{\ln x}} \to 0$ as $x \to \infty$, and so

$$\lim_{y \to \infty} \frac{g(y) \ln(\ln y)}{\ln y} = 1 + 0 = 1.$$

2.
$$\frac{dv}{dt} = -g - kv$$
.

a) Let
$$u(t) = -g - kv(t)$$
. Then $\frac{du}{dt} = -k\frac{dv}{dt} = -ku$, and

$$u(t) = u(0)e^{-kt} = -(g + kv_0)e^{-kt}$$

$$v(t) = -\frac{1}{k}(g + u(t)) = -\frac{1}{k}(g - (g + kv_0)e^{-kt}).$$

b)
$$\lim_{t\to\infty} v(t) = -g/k$$

c)
$$\frac{dy}{dt} = v(t) = -\frac{g}{k} + \frac{g + kv_0}{k} e^{-kt}, \quad y(0) = y_0$$
$$y(t) = -\frac{gt}{k} - \frac{g + kv_0}{k^2} e^{-kt} + C$$
$$y_0 = -0 - \frac{g + kv_0}{k^2} + C \implies C = y_0 + \frac{g + kv_0}{k^2}$$
$$y(t) = y_0 - \frac{gt}{k} + \frac{g + kv_0}{k^2} \left(1 - e^{-kt}\right)$$

3.
$$\frac{dv}{dt} = -g + kv^2 \ (k > 0)$$

a) Let
$$u = 2t\sqrt{gk}$$
. If $v(t) = \sqrt{\frac{g}{k}} \frac{1 - e^u}{1 + e^u}$, then
$$\frac{dv}{dt} = \sqrt{\frac{g}{k}} \frac{(1 + e^u)(-e^u) - (1 - e^u)e^u}{(1 + e^u)^2} 2\sqrt{gk}$$

$$= \frac{-4ge^u}{(1 + e^u)^2}$$

$$kv^2 - g = g\left(\frac{(1 - e^u)^2}{(1 + e^u)^2} - 1\right)$$

$$= \frac{-4ge^u}{(1 + e^u)^2} = \frac{dv}{dt}.$$

108 Thus
$$v(t) = \sqrt{\frac{g}{k}} \frac{1 - e^{2t}\sqrt{gk}}{1 + e^{2t}\sqrt{gk}}$$
.

b)
$$\lim_{t \to \infty} v(t) = \lim_{t \to \infty} \sqrt{\frac{g}{k}} \frac{e^{-2t\sqrt{gk}} - 1}{e^{-2t\sqrt{gk}} + 1} = -\sqrt{\frac{g}{k}}$$

c) If
$$y(t) = y_0 + \sqrt{\frac{g}{k}}t - \frac{1}{k}\ln\frac{1 + e^{2t\sqrt{gk}}}{2}$$
, then $y(0) = y_0$

$$\frac{dy}{dt} = \sqrt{\frac{g}{k}} - \frac{1}{k} \frac{2\sqrt{gk}e^{2t}\sqrt{gk}}{1 + e^{2t}\sqrt{gk}}$$

$$= \sqrt{\frac{g}{k}} \frac{1 - e^{2t}\sqrt{gk}}{1 + e^{2t}\sqrt{gk}} = v(t).$$

Thus y(t) gives the height of the object at time t during its fall.

4. If
$$p = e^{-bt}y$$
, then $\frac{dp}{dt} = e^{-bt} \left(\frac{dy}{dt} - by\right)$.
The DE $\frac{dp}{dt} = kp \left(1 - \frac{p}{e^{-bt}M}\right)$ therefore transforms to

$$\begin{split} \frac{dy}{dt} &= by + kpe^{bt} \left(1 - \frac{p}{e^{-bt}M} \right) \\ &= (b+k)y - \frac{ky^2}{M} = Ky \left(1 - \frac{y}{L} \right), \end{split}$$

where K = b + k and $L = \frac{b + k}{k} M$. This is a standard Logistic equation with solution (as obtained in Section 3.4) given by

$$y = \frac{Ly_0}{y_0 + (L - y_0)e^{-Kt}},$$

where $y_0 = y(0) = p(0) = p_0$. Converting this solution back in terms of the function p(t), we obtain

$$p(t) = \frac{Lp_0 e^{-bt}}{p_0 + (L - p_0)e^{-(b+k)t}}$$
$$= \frac{(b+k)Mp_0}{p_0 k e^{bt} + ((b+k)M - kp_0)e^{-kt}}.$$

Since p represents a percentage, we must have (b+k)M/k < 100.

If k = 10, b = 1, M = 90, and $p_0 = 1$, then $\frac{b+k}{k}M = 99 < 100$. The numerator of the final expression for p(t) given above is a constant. Therefore p(t) will be largest when the derivative of the denominator,

$$f(t) = p_0 k e^{bt} + ((b+k)M - kp_0)e^{-kt} = 10e^t + 980e^{-10t}$$

is zero. Since $f'(t) = 10e^t - 9,800e^{-10t}$, this will happen at $t = \ln(980)/11$. The value of p at this t is approximately 48.1. Thus the maximum percentage of potential clients who will adopt the technology is about 48.1%.