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CHAPTER 4. SOME APPLICATIONS OF
DERIVATIVES

Section 4.1 Related Rates (page 214)

1. If the side and area of the square at time t are x and A,
respectively, then A = x2, so

d A

dt
= 2x

dx

dt
.

If x = 8 cm and dx/dt = 2 cm/min, then the area is
increasing at rate d A/dt = 32 cm2/min.

2. As in Exercise 1, d A/dt = 2x dx/dt . If d A/dt = −2
ft2/s and x = 8 ft, then dx/dt = −2/(16). The side
length is decreasing at 1/8 ft/s.

3. Let the radius and area of the ripple t seconds after im-
pact be r and A respectively. Then A = πr2. We have

d A

dt
= 2πr

dr

dt
.

If r = 20 cm and
dr

dt
= 4 cm/s, then

d A

dt
= 40π(4) = 160π .

The area is increasing at 160π cm2/s.

4. Let A and r denote the area and radius of the circle.
Then

A = πr 2 ⇒ r =
√

A

π

⇒ dr

dt
=
(

1

2
√

Aπ

)
d A

dt
.

When
d A

dt
= −2, and A = 100,

dr

dt
= − 1

10
√

π
. The

radius is decreasing at the rate
1

10
√

π
cm/min when the

area is 100 cm2.

5. For A = πr2, we have d A/dt = 2πr dr/dt . If
d A/dt = 1/3 km2/h, then (a) dr/dt = 1/(6πr) km/h, or
(b) dr/dt = 1/(6π

√
A/π) = 1/(6

√
π A) km/h

6. Let the length, width, and area be l , w, and A at time t .
Thus A = lw.

d A

dt
= l

dw

dt
+ w

dl

dt

When l = 16, w = 12,
dw

dt
= 3,

d A

dt
= 0, we have

0 = 16 × 3 + 12
dl

dt
⇒ dl

dt
= −48

12
= −4

The length is decreasing at 4 m/s.

7. V = 4

3
πr3, so

dV

dt
= 4πr2 dr

dt
.

When r = 30 cm and dV/dt = 20 cm3/s, we have

20 = 4π(30)2 dr

dt
dr

dt
= 20

3600π
= 1

180π
.

The radius is increasing at 1/(180π) cm/s.

8. The volume V of the ball is given by

V = 4

3
πr3 = 4π

3

(
D

2

)3

= π

6
D3,

where D = 2r is the diameter of the ball. We have

dV

dt
= π

2
D2 d D

dt
.

When D = 6 cm, d D/dt = −.5 cm/h. At that time

dV

dt
= π

2
(36)(−0.5) = −9π ≈ −28.3.

The volume is decreasing at about 28.3 cm3/h.

9. The volume V , surface area S, and edge length x of a
cube are related by V = x3 and S = 6x2, so that

dV

dt
= 3x2 dx

dt
,

d S

dt
= 12x

dx

dt
.

If V = 64 cm3 and dV/dt = 2 cm3/s, then x = 4
cm and dx/dt = 2/(3 × 16) = 1/24 cm/s. Therefore,
d S/dt = 12(4)(1/24) = 2. The surface area is increasing
at 2 cm2/s.

10. Let V , r and h denote the volume, radius and height of
the cylinder at time t . Thus, V = πr2h and

dV

dt
= 2πrh

dr

dt
+ πr2 dh

dt
.

If V = 60,
dV

dt
= 2, r = 5,

dr

dt
= 1, then

h = V

πr2 = 60

25π
= 12

5π
dh

dt
= 1

πr2

(
dV

dt
− 2πrh

dr

dt

)

= 1

25π

(
2 − 10π

12

5π

)
= − 22

25π
.

The height is decreasing at the rate
22

25π
cm/min.
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11. Let the length, width, depth, and volume at time t be l ,
w, h and V respectively. Thus V = lwh, and

dV

dt
= dl

dt
wh + lh

dw

dt
+ lw

dh

dt
.

If l = 6 cm, w =5cm, h= 4cm,
dl

dt
= dh

dt
= 1m/s, and

dw

dt
= −2cm/s, then

dV

dt
= 20 − 48 + 30 = 2.

The volume is increasing at a rate of 2 cm3/s.

12. Let the length, width and area at time t be x , y and A
respectively. Thus A = xy and

d A

dt
= x

dy

dt
+ y

dx

dt
.

If
d A

dt
= 5,

dx

dt
= 10, x = 20, y = 16, then

5 = 20
dy

dt
+ 16(10) ⇒ dy

dt
= −31

4
.

Thus, the width is decreasing at
31

4
m/s.

13. y = x2. Thus
dy

dt
= 2x

dx

dt
. If x = −2 and

dx

dt
= −3,

then
dy

dt
= −4(−3) = 12. y is increasing at rate 12.

14. Since x2 y3 = 72, then

2xy3 dx

dt
+ 3x2 y2 dy

dt
= 0 ⇒ dy

dt
= −2y

3x

dx

dt
.

If x = 3, y = 2,
dx

dt
= 2, then

dy

dt
= −8

9
. Hence, the

vertical velocity is −8

9
units/s.

15. We have

xy = t ⇒ x
dy

dt
+ y

dx

dt
= 1

y = t x2 ⇒ dy

dt
= x2 + 2xt

dx

dt

At t = 2 we have xy = 2, y = 2x2 ⇒ 2x3 = 2 ⇒ x = 1,
y = 2.

Thus
dy

dt
+ 2

dx

dt
= 1, and 1 + 4

dx

dt
= dy

dt
.

So 1 + 6
dx

dt
= 1 ⇒ dx

dt
= 0 ⇒ dy

dt
= 1 ⇒.

Distance D from origin satisfies D =√
x2 + y2. So

d D

dt
= 1

2
√

x2 + y2

(
2x

dx

dt
+ 2y

dy

dt

)

= 1√
5

(
1(0) + 2(1)

)
= 2√

5
.

The distance from the origin is increasing at a rate of
2/

√
5.

16. From the figure, x2 + k2 = s2. Thus

x
dx

dt
= s

ds

dt
.

When angle PC A = 45◦, x = k and s = √
2k. The radar

gun indicates that ds/dt = 100 km/h. Thus
dx/dt = 100

√
2k/k ≈ 141. The car is travelling at about

141 km/h.

k s

x

A C

P

Fig. 4.1.16

17. We continue the notation of Exercise 16. If dx/dt = 90
km/h, and angle PC A = 30◦, then s = 2k, x = √

3k, and
ds/dt = (

√
3k/2k)(90) = 45

√
3 = 77.94. The radar gun

will read about 78 km/h.

18. Let the distances x and y be as shown at time t . Thus

x2 + y2 = 25 and 2x
dx

dt
+ 2y

dy

dt
= 0.

If
dx

dt
= 1

3
and y = 3, then x = 4 and

4

3
+ 3

dy

dt
= 0 so

dy

dt
= −4

9
.

The top of the ladder is slipping down at a rate of
4

9
m/s.

5 m

x
1/3 m/s

y

Fig. 4.1.18

110



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 4.1 (PAGE 214)

19. Let x and y be the distances shown in the following fig-
ure. From similar triangles:

x

2
= x + y

5
⇒ x = 2y

3
⇒ dx

dt
= 2

3

dy

dt
.

Since
dy

dt
= −1

2
, then

dx

dt
= −1

3
and

d

dt
(x + y) = −1

2
− 1

3
= −5

6
.

Hence, the man’s shadow is decreasing at 1
3 m/s and the

shadow of his head is moving towards the lamppost at a
rate of 5

6 m/s.

5 m

2 m

y x

Fig. 4.1.19

20.

s

y 6

15

x
5

Fig. 4.1.20

Refer to the figure. s, y, and x are, respectively, the
length of the woman’s shadow, the distances from the
woman to the lamppost, and the distances from the
woman to the point on the path nearest the lamppost.
From one of triangles in the figure we have

y2 = x2 + 25.

If x = 12, then y = 13. Moreover,

2y
dy

dt
= 2x

dx

dt
.

We are given that dx/dt = 2 ft/s, so dy/dt = 24/13 ft/s
when x = 12 ft. Now the similar triangles in the figure
show that

s

6
= s + y

15
,

so that s = 2y/3. Hence ds/dt = 48/39. The woman’s
shadow is changing at rate 48/39 ft/s when she is 12 ft
from the point on the path nearest the lamppost.

21. C = 10, 000 + 3x + x2

8, 000
dC

dt
=
(

3 + x

4, 000

)
dx

dt
.

If dC/dt = 600 when x = 12, 000, then dx/dt = 100.
The production is increasing at a rate of 100 tons per
day.

22. Let x , y be distances travelled by A and B from their
positions at 1:00 pm in t hours.

Thus
dx

dt
= 16 km/h,

dy

dt
= 20 km/h.

Let s be the distance between A and B at time t .
Thus s2 = x2 + (25 + y)2

2s
ds

dt
= 2x

dx

dt
+ 2(25 + y)

dy

dt

At 1:30
(
t = 1

2

)
we have x = 8, y = 10,

s = √
82 + 352 = √

1289 so

√
1289

ds

dt
= 8 × 16 + 35 × 20 = 828

and
ds

dt
= 828√

1289
≈ 23.06. At 1:30, the ships are

separating at about 23.06 km/h.

pos. of B at 1:00 p.m.

20 km/h

B

y

s

pos. of A at 1:00 p.m.16 km/hA
x

25 km

Fig. 4.1.22

23. Let θ and ω be the angles that the minute hand and hour
hand made with the vertical t minutes after 3 o’clock.
Then

dθ

dt
= π

30
rad/min

dω

dt
= π

360
rad/min.
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Since θ = 0 and ω = π

2
at t = 0, therefore

θ = π

30
t and ω = π

360
t + π

2
.

At the first time after 3 o’clock when the hands of the
clock are together, i.e., θ = ω,

⇒ π

30
t = π

360
t + π

2
⇒ t = 180

11
.

Thus, the hands will be together at 16 4
11 minutes after 3

o’clock.

12

6

39

θ

ω

Fig. 4.1.23

24. Let y be the height of balloon t seconds after release.
Then y = 5t m.
Let θ be angle of elevation at B of balloon at time t .
Then tan θ = y/100. Thus

sec2 θ
dθ

dt
= 1

100

dy

dt
= 5

100
= 1

20(
1 + tan2 θ

) dθ

dt
= 1

20[
1 +

( y

100

)2
]

dθ

dt
= 1

20
.

When y = 200 we have 5
dθ

dt
= 1

20
so

dθ

dt
= 1

100
.

The angle of elevation of balloon at B is increasing at a

rate of
1

100
rad/s.

B 100 m A

y

θ

Fig. 4.1.24

25. Let V , r and h be the volume, radius and height of the
cone. Since h = r , therefore

V = 1
3πr2h = 1

3πh3

dV

dt
= πh2 dh

dt
⇒ dh

dt
= 1

πh2

dV

dt
.

If
dV

dt
= 1

2
and h = 3, then

dV

dt
= 1

18π
. Hence, the

height of the pile is increasing at
1

18π
m/min.

26. Let r , h, and V be the top radius, depth, and volume of

the water in the tank at time t . Then
r

h
= 10

8
and

V = 1

3
πr2h = π

3

25

16
h3. We have

1

10
= π

3

25

16
3h2 dh

dt
⇒ dh

dt
= 16

250πh2 .

When h = 4 m, we have
dh

dt
= 1

250π
.

The water level is rising at a rate of
1

250π
m/min when

depth is 4 m.

8 m

10 m

r

h

Fig. 4.1.26

27. Let r and h be the radius and height of the water in the
tank at time t . By similar triangles,

r

h
= 10

8
⇒ r = 5

4
h.

The volume of water in the tank at time t is

V = 1

3
πr2h = 25π

48
h3.

Thus,

dV

dt
= 25π

16
h2 dh

dt
⇒ dh

dt
= 16

25πh2

dV

dt
.

If
dV

dt
= 1

10
− h3

1000
and h = 4, then

dh

dt
= 16

(25π)(4)2

(
1

10
− 43

1000

)
= 9

6250π
.
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Hence, the depth of water is increasing at
9

6250π
m/min

when the water is 4 m deep. The maximum depth occurs

when
dh

dt
= 0, i.e.,

16

25πh2

(
1

10
− h3

1000

)
= 0 ⇒ 1

10
− h3

1000
= 0

⇒ h = 3
√

100.

Thus, the maximum depth the water in the tank can get
is 3

√
100 ≈ 4.64 m.

28. Let r , h, and V be the top radius, depth, and volume of
the water in the tank at time t . Then

r

h
= 3

9
= 1

3

V = 1

3
πr2h = π

27
h3

dV

dt
= π

9
h2 dh

dt
.

If
dh

dt
= 20 cm/h = 2

10
m/h when h = 6 m, then

dV

dt
= π

9
× 36 × 2

10
= 4π

5
≈ 2.51 m3/h.

Since water is coming in at a rate of 10 m3/h, it must be
leaking out at a rate of 10 − 2.51 ≈ 7.49 m3/h.

3 m

r

9 m

h

Fig. 4.1.28

29. Let x and s be the distance as shown. Then
s2 = x2 + 302 and

2s
ds

dt
= 2x

dx

dt
⇒ ds

dt
= x

s

dx

dt
.

When x = 40,
dx

dt
= 10, s = √

402 + 302 = 50, then

ds

dt
= 40

50
(10) = 8. Hence, one must let out line at 8

m/min.

x

30 m
s

10 m/min

Fig. 4.1.29

30. Let P, x , and y be your position, height above centre,
and horizontal distance from centre at time t . Let θ be
the angle shown. Then y = 10 sin θ , and x = 10 cos θ .
We have

dy

dt
= 10 cos θ

dθ

dt
,

dθ

dt
= 1 rpm = 2π rad/min.

When x = 6, then cos θ = 6

10
, so

dy

dt
= 10 × 6

10
× 12π .

You are rising or falling at a rate of 12π m/min at the
time in question.

θ

y
10 m

xC

P

Fig. 4.1.30

31. Let x and y denote the distances of the two aircraft east
and north of the airport respectively at time t as shown in
the following diagram. Also let the distance between the
two aircraft be s, then s2 = x2 + y2. Thus,

2s
ds

dt
= 2x

dx

dt
+ 2y

dy

dt
.

Since
dx

dt
= −200 and

dy

dt
= 150 when x = 144 and

y = 60, we have s = √
1442 + 602 = 156, and

ds

dt
= 1

156
[144(−200) + 60(150)] ≈ −126.9.

Thus, the distance between the aircraft is decreasing at
about 126.9 km/h.
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200 km/h

150 km/h

y
s

x

airport

Fig. 4.1.31

32. P = 1

3
x0.6 y0.4

d P

dt
= 0.6

3
x−0.4 y0.4 dx

dt
+ 0.4

3
x0.6 y−0.6 dy

dt
.

If d P/dt = 0, x = 40, dx/dt = 1, and y = 10, 000, then

dy

dt
= −6y0.4

x0.4

y0.6

4x0.6

dx

dt
= −6y

4x

dx

dt
= −375.

The daily expenses are decreasing at $375 per day.

33. Let the position of the ant be (x, y) and the position of
its shadow be (0, s). By similar triangles,

s − y

x
= y

3 − x
⇒ s = 3y

3 − x
.

Then,

ds

dt
=

3(3 − x)
dy

dt
+ 3y

dx

dt
(3 − x)2 .

If the ant is at (1, 2) and
dx

dt
= 1

3
,

dy

dt
= −1

4
, then

ds

dt
= 3(2)(− 1

4 ) + 3(2)( 1
3 )

4
= 1

8
.

Hence, the ant’s shadow is moving at 1
8 units/s upwards

along the y-axis.
y

x

ant

S

3

lamp

y

x

Fig. 4.1.33

34. Let x and y be the distances travelled from the intersec-
tion point by the boat and car respectively in t minutes.
Then

dx

dt
= 20 × 1000

60
= 1000

3
m/min

dy

dt
= 80 × 1000

60
= 4000

3
m/min

The distance s between the boat and car satisfy

s2 = x2 + y2 + 202, s
ds

dt
= x

dx

dt
+ y

dy

dt
.

After one minute, x = 1000

3
, y = 4000

3
so s ≈ 1374. m.

Thus

1374.5
ds

dt
= 1000

3

1000

3
+ 4000

3

4000

3
≈ 1, 888, 889.

Hence
ds

dt
≈ 1374.2 m/min ≈ 82.45 km/h after 1 minute.

Car

Boat

20 m

x

s

y

Fig. 4.1.34

35. Let h and b (measured in metres) be the depth and the
surface width of the water in the trough at time t . We
have

h

( 1
2 b)

= tan 60◦ = √
3 ⇒ b = 2√

3
h.

Thus, the volume of the water is

V =
(

1

2
hb

)
(10) = 10√

3
h2,

and
dV

dt
= 20√

3
h

dh

dt
⇒ dh

dt
=

√
3

20h

dV

dt
.

If
dV

dt
= 1

4
and h = 0.2 metres, then

dh

dt
=

√
3

20(0.2)

(
1

4

)
=

√
3

16
.

Hence, the water level is rising at

√
3

16
m/min.
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b/2

h

b/2

60◦

30◦
30 cm

Fig. 4.1.35

36. Let V and h be the volume and depth of water in the
pool at time t . If h ≤ 2, then

x

h
= 20

2
= 10, so V = 1

2
xh8 = 40h2.

If 2 ≤ h ≤ 3, then V = 160 + 160(h − 2).

a) If h = 2.5m, then −1 = dV

dt
= 160

dh

dt
.

So surface of water is dropping at a rate of
1

160
m/min.

b) If h = 1m, then −1 = dV

dt
= 80h

dh

dt
= 80

dh

dt
.

So surface of water is dropping at a rate of
1

80
m/min.

20

8

1
3

x

h

Fig. 4.1.36

37. Let the various distances be as shown in the figure.

√
32+x2

10 m

3 m

x

y

s

Fig. 4.1.37

a) By similar triangles,

y

10
= 3√

32 + x2
⇒ y = 30√

9 + x2
.

Thus,
dy

dt
= dy

dx

dx

dt
= −30x

(9 + x2)3/2

dx

dt
.

If x = 4 and
dx

dt
= 1

5
, then

dy

dt
= −30(4)

(9 + 16)3/2

(
1

5

)
= − 24

125
.

Hence, the free top end of the ladder is moving ver-
tically downward at 24/125 m/s.

b) By similar triangles,

x√
32 + x2

= s

10
⇒ s = 10x√

9 + x2
.

Then,

ds

dt
= ds

dx

dx

dt

=
(
√

9 + x2)(10) − (10x)

(
2x

2
√

9 + x2

)

(9 + x2)

dx

dt

= 90

(9 + x2)3/2

dx

dt
.

If x = 4 and
dx

dt
= 1

5
, then

ds

dt
= 90

(9 + 16)3/2

(
1

5

)
= 18

125
.

This is the rate of change of the length of the hori-
zontal projection of the ladder. The free top end of
the ladder is moving horizontally to the right at rate

dx

dt
− ds

dt
= 1

5
− 18

125
= 7

125
m/s.

38. Let x , y, and s be distances shown at time t . Then

s2 = x2 + 16,

s
ds

dt
= x

dx

dt
,

(15 − s)2 = y2 + 16

− (15 − s)
ds

dt
= y

dy

dt
.
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When x = 3 and
dx

dt
= 1

2
, then s = 5 and

y = √
102 − 42 = √

84.

Also
ds

dt
= 3

5

(
1

2

)
= 3

10
so

dy

dt
= − 10√

84

3

10
= − 3√

84
≈ 0.327.

Crate B is moving toward Q at a rate of 0.327 m/s.

Q

P

A

4

xy
B

s
15−s

Fig. 4.1.38

39. Let θ be the angle of elevation, and x and y the horizon-
tal and vertical distances from the launch site. We have

tan θ = y

x
⇒ sec2 θ

dθ

dt
=

x
dy

dt
− y

dx

dt
x2 .

At the instant in question

dx

dt
= 4 cos 30◦ = 2

√
3,

dy

dt
= 4 sin 30◦ = 2,

x = 50 km, y = 100 km.

Thus tan θ = 100

50
= 2, sec2 θ = 1 + tan2 θ = 5, and

dθ

dt
= 1

5

50(2) − 100(2
√

3)

(50)2 = 1 − 2
√

3

125
≈ −0.0197.

Therefore, the angle of elevation is decreasing at about
0.0197 rad/s.

y

x

θ

30◦4 km/s

Fig. 4.1.39

40. Let y be height of ball t seconds after it drops.

Thus
d2 y

dt2
= −9.8,

dy

dt
|t=0 = 0, y|t=0 = 20, and

y = −4.9t2 + 20,
dy

dt
= −9.8t.

Let s be distance of shadow of ball from base of pole.

By similar triangles,
s − 10

y
= s

20
.

20s − 200 = sy, s = 200

20 − y

20
ds

dt
= y

ds

dt
+ s

dy

dt
.

a) At t = 1, we have
dy

dt
= −9.8, y = 15.1,

4.9
ds

dt
= 200

4.9
(−9.8).

The shadow is moving at a rate of 81.63 m/s after
one second.

b) As the ball hits the ground, y = 0, s = 10,

t =
√

20

4.9
, and

dy

dt
= −9.8

√
20

4.9
, so

20
ds

dt
= 0 + 10

dy

dt
.

Now y = 0 implies that t =
√

20

4.9
. Thus

ds

dt
= −1

2
(9.8)

√
20

4.9
≈ −9.90.

The shadow is moving at about 9.90 m/s when the
ball hits the ground.

10 m

10 s−10
s

y

20 m

20−y

Fig. 4.1.40

41. Let y(t) be the height of the rocket t seconds after it
blasts off. We have

d2 y

dt2 = 10,
dy

dt
= y = 0
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at t = 0. Hence y = 5t2, (y in metres, t in seconds).
Now

tan θ = y

2000
, so sec2 θ

dθ

dt
= dy/dt

2000
, and

(
1 +

( y

2000

)2)dθ

dt
= 10t

2000
= t

200
dθ

dt
= t

200
· 1

1 + 25t4

20002

= t

200
· 1

1 + t4

4002

= 800t

4002 + t4 .

At t = 10, we have
dθ

dt
= 8000

4002 + 1002 ≈ 0.047 rad/s.

θ

2 km

y

Fig. 4.1.41

Section 4.2 Extreme Values (page 222)

1. f (x) = x + 2 on [−1, 1]
f ′(x) = 1 so f is increasing.
f has absolute minimum 1 at x = −1 and absolute maxi-
mum 3 at x = 1.

2. f (x) = x + 2 on (−∞, 0]
abs max 2 at x = 0, no min.

3. f (x) = x + 2 on [−1, 1)

f has absolute minimum 1 at x = −1 and has no abso-
lute maximum.

4. f (x) = x2 − 1
no max, abs min −1 at x = 0.

5. f (x) = x2 − 1 on [−2, 3]
f has abs min −1 at x = 0, abs max 8 at x = 3, and
local max 3 at x = −2.

6. f (x) = x2 − 1 on (2, 3)

no max or min values.

7. f (x) = x3 + x − 4 on [a, b]
f ′(x) = 3x2 + 1 > 0 for all x .
Therefore f has abs min a3 + a − 4 at x = a and abs
max b3 + b − 4 at x = b.

8. f (x) = x3 + x − 4 on (a, b)

Since f ′(x) = 3x2 + 1 > 0 for all x , therefore f is
increasing. Since (a, b) is open, f has no max or min
values.

9. f (x) = x5 + x3 + 2x on (a, b]
f ′(x) = 5x4 + 3x2 + 2 > 0 for all x .
f has no min value, but has abs max value b5 + b3 + 2b
at x = b.

10. f (x) = 1

x − 1
. Since f ′(x) = −1

(x − 1)2 < 0 for all x in

the domain of f , therefore f has no max or min values.

11. f (x) = 1

x − 1
on (0, 1)

f ′(x) = − 1

(x − 1)2 < 0 on (0, 1)

f has no max or min values.

12. f (x) = 1

x − 1
on [2, 3]

abs min 1
2 at x = 3, abs max 1 at x = 2.

13. Let f (x) = |x − 1| on [−2, 2]: f (−2) = 3, f (2) = 1.
f ′(x) = sgn (x − 1). No CP; SP x = 1, f (1) = 0.
Max value of f is 3 at x = −2; min value is 0 at
x = 1.

14. Let f (x) = |x2 − x − 2| = |(x − 2)(x + 1)| on [−3, 3]:
f (−3) = 10, f (3) = 4.
f ′(x) = (2x − 1)sgn (x2 − x − 2).
CP x = 1/2; SP x = −1, and x = 2. f (1/2) = 9/4,
f (−1) = 0, f (2) = 0.
Max value of f is 10 at x = −3; min value is 0 at
x = −1 or x = 2.

15. f (x) = 1

x2 + 1
, f ′(x) = − 2x

(x2 + 1)2

f has abs max value 1 at x = 0; f has no min values.

16. f (x) = (x + 2)(2/3)

no max, abs min 0 at x = −2.

17. f (x) = (x − 2)1/3, f ′(x) = 1

3
(x − 2)−2/3 > 0

f has no max or min values.
y

x2

y = (x − 2)1/3

Fig. 4.2.17

18. f (x) = x2 + 2x , f ′(x) = 2x + 2 = 2(x + 1)

Critical point: x = −1.
f (x) → ∞ as x → ±∞.

CP
f ′ − −1 +
−−−−−−−−−−−−−−−−−−−−−−→x|
f ↘ abs

min ↗
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Hence, f (x) has no max value, and the abs min is −1 at
x = −1.

y

x

y = x2 + 2x

(−1,−1)

Fig. 4.2.18

19. f (x) = x3 − 3x − 2
f ′(x) = 3x2 − 3 = 3(x − 1)(x + 1)

CP CP
f ′ + −1 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f ↗ loc

max ↘ loc
min ↗

f has no absolute extrema.
y

x
−1

(1,−4)
y = x3 − 3x − 2

Fig. 4.2.19

20. f (x) = (x2 − 4)2, f ′(x) = 4x(x2 − 4) = 4x(x + 2)(x − 2)

Critical points: x = 0, ±2.
f (x) → ∞ as x → ±∞.

CP CP CP
f ′ − −2 + 0 − +2 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↘ abs

min ↗ loc
max ↘ abs

min ↗

Hence, f (x) has abs min 0 at x = ±2 and loc max 16 at
x = 0.

y

x2−2

16
y = (x2 − 4)2

Fig. 4.2.20

21. f (x) = x3(x − 1)2

f ′(x) = 3x2(x − 1)2 + 2x3(x − 1)

= x2(x − 1)(5x − 3)

CP x = 0,
3

5
, 1

CP CP CP
f ′ + 0 + 3

5 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↗ ↗ loc

max ↘ loc
min ↗

f has no absolute extrema.
y

x1

(
3
5 ,

108
55

)

y = x3(x − 1)2

Fig. 4.2.21

22. f (x) = x2(x − 1)2,
f ′(x) = 2x(x − 1)2 + 2x2(x − 1) = 2x(2x − 1)(x − 1)

Critical points: x = 0, 1
2 and 1.

f (x) → ∞ as x → ±∞.

CP CP CP
f ′ − 0 + 1

2 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↘ abs

min ↗ loc
max ↘ abs

min ↗

Hence, f (x) has loc max 1
16 at x = 1

2 and abs min 0 at
x = 0 and x = 1.
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y

x1

( 1
2 , 1

16

)

y = x2(x − 1)2

Fig. 4.2.22

23. f (x) = x(x2 − 1)2

f ′(x) = (x2 − 1)2 + 2x(x2 − 1)2x

= (x2 − 1)(x2 − 1 + 4x2)

= (x2 − 1)(5x2 − 1)

= (x − 1)(x + 1)(
√

5x − 1)(
√

5x + 1)

CP CP CP CP
f ′ + −1 − − 1√

5
+ 1√

5
− 1 +

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
f ↗ loc

max ↘ loc
min ↗ loc

max ↘ loc
min ↗

f (±1) = 0, f (±1/
√

5) = ±16/25
√

5
y

x
1/

√
5 1

−1 −1/
√

5

y = x(x2 − 1)2

Fig. 4.2.23

24. f (x) = x

x2 + 1
, f ′(x) = 1 − x2

(x2 + 1)2

Critical point: x = ±1.
f (x) → 0 as x → ±∞.

CP CP
f ′ − −1 + +1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f ↘ abs

min ↗ abs
max ↘

Hence, f has abs max 1
2 at x = 1 and abs min − 1

2 at
x = −1.

y

x

(1,0.5)

(−1,−0.5)
y = x

x2 + 1

Fig. 4.2.24

25. f (x) = x2

x2 + 1
= 1 − 1

x2 + 1
< 1

f ′(x) = 2x

(x2 + 1)2

CP
f ′ − 0 +
−−−−−−−−−−−−−−−−−→x|
f ↘ abs

min ↗
y

x

y = 1

y = x2

x2 + 1

Fig. 4.2.25

26. f (x) = x√
x4 + 1

, f ′(x) = 1 − x4

(x4 + 1)3/2

Critical points: x = ±1.
f (x) → 0 as x → ±∞.

CP CP
f ′ − −1 + +1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f ↘ abs

min ↗ abs
max ↘

Hence, f has abs max 1√
2

at x = 1 and abs min − 1√
2

at

x = −1.
y

x

(
1,

1√
2

)

(
−1,− 1√

2

) y = x√
x4 + 1

Fig. 4.2.26

27. f (x) = x
√

2 − x2 (|x | ≤ √
2)

f ′(x) = √
2 − x2 − x2

√
2 − x2

= 2(1 − x2)√
2 − x2

SP CP CP SP
f ′ −√

2 − −1 + 1 − √
2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
f loc

max ↘ abs
min ↗ abs

max ↘ loc
min
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y

x

(−1,−1)

√
2

−√
2

(1,1)

y = x
√

2 − x2

Fig. 4.2.27

28. f (x) = x + sin x , f ′(x) = 1 + cos x ≥ 0
f ′(x) = 0 at x = ±π, ±3π, ...

f (x) → ±∞ as x → ±∞.
Hence, f has no max or min values.

y

x

(π,π)

(2π,2π)

y = x + sin x

Fig. 4.2.28

29. f (x) = x − 2 sin x

f ′(x) = 1 − 2 cos x

CP: x = ±π

3
+ 2nπ

n = 0, ±1,±2, · · ·
alternating local maxima and minima

y

x

π
3

y = x − 2 sin x

y = x

Fig. 4.2.29

30. f (x) = x − 2 tan−1 x , f ′(x) = 1 − 2

1 + x2
= x2 − 1

x2 + 1
Critical points: x = ±1.
f (x) → ±∞ as x → ±∞.

CP CP
f ′ + −1 − +1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f ↗ loc

max ↘ loc
min ↗

Hence, f has loc max −1 + π

2
at x = −1 and loc min

1 − π

2
at x = 1.

y

x

(
1,1− π

2

)

(
−1,−1+ π

2

)

y = x − 2 tan−1 x

Fig. 4.2.30

31. f (x) = 2x − sin−1 x (−1 ≤ x ≤ 1)

f ′(x) = 2 − 1√
1 − x2

= 2
√

1 − x2 − 1√
1 − x2

= 3 − 4x2

√
1 − x2(2

√
1 − x2 + 1)

CP: x = ±
√

3

2
, SP: (EP:) x = ±1

f

(
±

√
3

2

)
= ±

(√
3 − π

3

)

SP CP CP SP

f ′ −1 − −
√

3
2 +

√
3

2 − 1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
f loc

max ↘ abs
min ↗ abs

max ↘ loc
min
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y

x√
3

2

1

−1
−

√
3

2

y = 2x − sin−1 x

Fig. 4.2.31

32. f (x) = e−x2/2, f ′(x) = −xe−x2/2

Critical point: x = 0.
f (x) → 0 as x → ±∞.

CP
f ′ + 0 −
−−−−−−−−−−−−−−−−−−→x|
f ↗ abs

max ↘

Hence, f has abs max 1 at x = 0 and no min value.
y

x

1
y = e−x2/2

Fig. 4.2.32

33. f (x) = x2−x

f ′(x) = 2−x + x(−2−x ln 2)

= 2−x (1 − x ln 2)

CP
f ′ + 1/ ln 2 −
−−−−−−−−−−−−−−−−−→x|
f ↗ abs

max ↘

y

x

(
1

ln 2 ,
1

e ln 2

)

y = x 2−x

Fig. 4.2.33

34. f (x) = x2e−x2
, f ′(x) = 2xe−x2

(1 − x2)

Critical points: x = 0,±1.
f (x) → 0 as x → ±∞.

CP CP CP
f ′ + −1 − 0 + 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↗ abs

max ↘ abs
min ↗ abs

max ↘

Hence, f has abs max 1/e at x = ±1 and abs min 0 at
x = 0.

y

x

(1,1/e)(−1,1/e)

y = x2 e−x2

Fig. 4.2.34

35. f (x) = ln x

x
(x > 0)

f ′(x) =
x

x
− ln x

x2 = 1 − ln x

x2

f (x) → −∞ as x → 0+ (vertical asymptote),
f (x) → 0 as x → ∞ (horizontal asymp-
tote).

ASY CP
f ′ 0 + e −
−−−−−−−−−−−−−−−−−→x| |
f ↗ abs

max ↘

y

x

(
e, 1

e

)

y = ln x

x

Fig. 4.2.35

36. Since f (x) = |x + 1|,

f ′(x) = sgn (x + 1) =
{

1, if x > −1;
−1, if x < −1.

−1 is a singular point; f has no max but has abs min 0
at x = −1.
f (x) → ∞ as x → ±∞.

121



SECTION 4.2 (PAGE 222) R. A. ADAMS: CALCULUS

y

x−1

y = |x + 1|

Fig. 4.2.36

37. f (x) = |x2 − 1|
f ′(x) = 2xsgn (x2 − 1)

CP: x = 0

SP: x = ±1

SP CP SP
f ′ − −1 + 0 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↘ abs

min ↗ loc
max ↘ abs

min ↗

y

x−1 1

1

y = |x2 − 1|

Fig. 4.2.37

38. f (x) = sin |x |
f ′(x) = sgn (x) cos |x | = 0 at x = ±π

2
, ±3π

2
, ±5π

2
, ...

0 is a singular point. Since f (x) is an even function, its
graph is symmetric about the origin.

CP CP SP CP CP

f ′ − −3π

2
+ −π

2
− 0 + π

2
− 3π

2
+

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | | |
f ↘ abs

min ↗ abs
max ↘ loc

min ↗ abs
max ↘ abs

min ↗

Hence, f has abs max 1 at x = ±(4k + 1)
π

2
and abs min

−1 at x = ±(4k + 3)
π

2
where k = 0, 1, 2, . . . and loc

min 0 at x = 0.

y

x
π

1

−π

y = sin |x |

Fig. 4.2.38

39. f (x) = | sin x |
CP: x = ± (2n + 1)π

2
, SP = ±nπ

f has abs max 1 at all CP.
f has abs min 0 at all SP.

y

x−π π 2π

y = | sin x |

Fig. 4.2.39

40. f (x) = (x − 1)2/3 − (x + 1)2/3

f ′(x) = 2
3 (x − 1)−1/3 − 2

3 (x + 1)−1/3

Singular point at x = ±1. For critical points:
(x − 1)−1/3 = (x + 1)−1/3 ⇒ x − 1 = x + 1 ⇒ 2 = 0, so
there are no critical points.

SP SP
f ′ + −1 − +1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f ↗ abs

max ↘ abs
min ↗

Hence, f has abs max 22/3 at x = −1 and abs min
−22/3 at x = 1.

y

x

(1,−22/3)

(−1,22/3)

y = (x − 1)2/3 − (x + 1)2/3

Fig. 4.2.40

41. f (x) = x/
√

x2 + 1. Since

f ′(x) =
√

x2 + 1 − x
2x

2
√

x2 + 1
x2 + 1

= 1

(x2 + 1)3/2 > 0,

for all x , f cannot have any maximum or minimum
value.

42. f (x) = x/
√

x4 + 1. f is continuous on �, and
limx→±∞ f (x) = 0. Since f (1) > 0 and f (−1) < 0,
f must have both maximum and minimum values.

f ′(x) =
√

x4 + 1 − x
4x3

2
√

x4 + 1
x4 + 1

= 1 − x4

(x4 + 1)3/2 .
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CP x = ±1. f (±1) = ±1/
√

2. f has max value 1/
√

2
and min value −1/

√
2.

y

x

(
1,

1√
2

)

(
−1,− 1√

2

) y = x√
x4 + 1

Fig. 4.2.42

43. f (x) = x
√

4 − x2 is continuous on [−2, 2], and
f (±2) = 0.

f ′(x) =
√

4 − x2 + x
−2x

2
√

4 − x2
= 2(2 − x2)√

4 − x2
.

CP x = ±√
2. f (±√

2) = ±2. f has maximum value 2
at x = √

2 and min value −2 at x = −√
2.

44. f (x) = x2/
√

4 − x2 is continuous on (−2, 2), and
limx→−2+ f (x) = limx→2− f (x) = ∞. Thus f can
have no maximum value, but will have a minimum value.

f ′(x) =
2x

√
4 − x2 − x2 −2x

2
√

4 − x2

4 − x2 = 8x − x3

(4 − x2)3/2 .

CP x = 0, x = ±√
8. f (0) = 0, and ±√

8 is not in the
domain of f . f has minimum value 0 at x = 0.

45. f (x) = 1/[x sin x] is continuous on (0, π), and
limx→0+ f (x) = ∞ = limx→π− f (x). Thus f can
have no maximum value, but will have a minimum value.
Since f is differentiable on (0, π), the minimum value
must occur at a CP in that interval.

46. f (x) = (sin x)/x is continuous and differentiable on �
except at x = 0 where it is undefined.
Since limx→0 f (x) = 1 (Theorem 8 of Section 2.5), and
| f (x)| < 1 for all x �= 0 (because | sin x | < |x |), f cannot
have a maximum value.
Since limx→±∞ f (x) = 0 and since f (x) < 0 at some
points, f must have a minimum value occurring at a crit-
ical point. In fact, since | f (x)| ≤ 1/|x | for x �= 0 and f
is even, the minimum value will occur at the two critical
points closest to x = 0. (See Figure 2.20 In Section 2.5
of the text.)

47. If it exists, an absolute max value is the maximum of
the set of all the local max values. Hence, if a function
has an absolute max value, it must have one or more
local max values. On the other hand, if a function has a
local max value, it may or may not have an absolute max
value. Since a local max value, say f (x0) at the point
x0, is defined such that it is the max within some interval
|x − x0| < h where h > 0, the function may have greater
values, and may even approach ∞ outside this interval.
There is no absolute max value in this latter case.

48. No. f (x) = −x2 has abs max value 0, but
g(x) = | f (x)| = x2 has no abs max value.

49. f (x) =
{

x sin
1

x
if x > 0

0 if x < 0| f (x)| ≤ |x | if x > 0 so limx→0+ f (x) = 0 = f (0).

Therefore f is continuous at x = 0. Clearly x sin
1

x
is continuous at x > 0. Therefore f is continuous on
[0, ∞).
Given any h > 0 there exists x1 in (0, h) and x2 in (0, h)

such that f (x1) > 0 = f (0) and f (x2) < 0 = f (0).
Therefore f cannot be a local max or min value at 0.

Specifically, let positive integer n satisfy 2nπ >
1

h

and let x1 = 1

2nπ + π

2

, x2 = 1

2nπ + 3π

2

.

Then f (x1) = x1 > 0 and f (x2) < 0.

Section 4.3 Concavity and Inflections
(page 227)

1. f (x) = √
x , f ′(x) = 1

2
√

x
, f ′′(x) = −1

4
x−3/2

f ′′(x) < 0 for all x > 0. f is concave down on (0, ∞).

2. f (x) = 2x − x2, f ′(x) = 2 − 2x , f ′′(x) = −2 < 0.
Thus, f is concave down on (−∞,∞).

3. f (x) = x2 + 2x + 3, f ′(x) = 2x + 2, f ′′(x) = 2 > 0.
f is concave up on (−∞, ∞).

4. f (x) = x − x3, f ′(x) = 1 − 3x2,
f ′′(x) = −6x .

f ′′ + 0 −
−−−−−−−−−−−−−−−−−−−−→x|
f � infl �

5. f (x) = 10x3 − 3x5,

f ′(x) = 30x2 − 15x4,

f ′′(x) = 60(x − x3) = 60x(1 − x)(1 + x).

f ′′ + −1 − 0 + 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f � infl � infl � infl �

6. f (x) = 10x3 + 3x5, f ′(x) = 30x2 + 15x4,
f ′′(x) = 60x + 60x3 = 60x(1 + x2).

f ′′ − 0 +
−−−−−−−−−−−−−−−−−−−−→x|
f � infl �
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7. f (x) = (3 − x2)2,

f ′(x) = −4x(3 − x2) = −12x + 4x3,

f ′′(x) = −12 + 12x2 = 12(x − 1)(x + 1).

f ′′ + −1 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f � infl � infl �

8. f (x) = (2 + 2x − x2)2, f ′(x) = 2(2 + 2x − x2)(2 − 2x),

f ′′(x) = 2(2 − 2x)2 + 2(2 + 2x − x2)(−2)

= 12x(x − 2).

f ′′ + 0 − 2 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f � infl � infl �

9. f (x) = (x2 − 4)3,

f ′(x) = 6x(x2 − 4)2,

f ′′(x) = 6(x2 − 4)2 + 24x2(x2 − 4)

= 6(x2 − 4)(5x2 − 4).

f ′′ + −2 − − 2√
5

+ 2√
5

− 2 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
f � infl � infl � infl � infl �

10. f (x) = x

x2 + 3
, f ′(x) = 3 − x2

(x2 + 3)2
,

f ′′(x) = 2x(x2 − 9)

(x2 + 3)3 .

f ′′ − −3 + 0 − 3 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f � infl � infl � infl �

11. f (x) = sin x, f ′(x) = cos x, f ′′(x) = − sin x .
f is concave down on intervals (2nπ, (2n + 1)π) and
concave up on intervals ((2n − 1)π, 2nπ), where n ranges
over the integers. Points x = nπ are inflection points.

12. f (x) = cos 3x , f ′(x) = −3 sin 3x , f ′′(x) = −9 cos 3x .

Inflection points: x = (
n + 1

2

) π

3
for n = 0, ±1, ±2, ....

f is concave up on

(
4n + 1

6
π,

4n + 3

6
π

)
and concave

down on

(
4n + 3

6
π,

4n + 5

6
π

)
.

13. f (x) = x + sin 2x,

f ′(x) = 1 + 2 cos 2x,

f ′′(x) = −4 sin 2x .

f is concave up on intervals

(
(2n − 1)π

2
, nπ

)
, and con-

cave down on intervals

(
nπ,

(2n + 1)π

2

)
. Points

nπ

2
are

inflection points.

14. f (x) = x − 2 sin x , f ′(x) = 1 − 2 cos x , f ′′(x) = 2 sin x .
Inflection points: x = nπ for n = 0, ±1, ±2, ....

f is concave down on
(
(2n+1)π, (2n+2)π

)
and concave

up on
(
(2n)π, (2n + 1)π

)
.

15. f (x) = tan−1 x, f ′(x) = 1

1 + x2 ,

f ′′(x) = −2x

(1 + x2)2 .

f ′′ + 0 −
−−−−−−−−−−−−−−−−−−−−→x|
f � infl �

16. f (x) = xex , f ′(x) = ex(1 + x),
f ′′(x) = ex(2 + x).

f ′′ − −2 +
−−−−−−−−−−−−−−−−−−−−→x|
f � infl �

17. f (x) = e−x2
, f ′(x) = −2xe−x2

,

f ′′(x) = e−x2
(4x2 − 2).

f ′′ + − 1√
2

− 1√
2

+
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f � infl � infl �

18. f (x) = ln(x2)

x
, f ′(x) = 2 − ln(x2)

x2 ,

f ′′(x) = −6 + 2 ln(x2)

x3 .

f has inflection point at x = ±e3/2 and f is undefined at
x = 0. f is concave up on (−e3/2, 0) and (e3/2,∞); and
concave down on (−∞,−e3/2) and (0, e3/2).

19. f (x) = ln(1 + x2), f ′(x) = 2x

1 + x2
,

f ′′(x) = (1 + x2)(2) − 2x(2x)

(1 + x2)2
= 2(1 − x2)

(1 + x2)2
.

f ′′ − −1 + 1 −
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f � infl � infl �
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20. f (x) = (ln x)2, f ′(x) = 2

x
ln x ,

f ′′(x) = 2(1 − ln x)

x2 for all x > 0.

f ′′ 0 + e −
−−−−−−−−−−−−−−−−−−−−−−−→x| |
f � infl �

21. f (x) = x3

3
− 4x2 + 12x − 25

3
,

f ′(x) = x2 − 8x + 12,

f ′′(x) = 2x − 8 = 2(x − 4).

f ′′ − 4 +
−−−−−−−−−−−−−−−−−−−−→x|
f � infl �

22. f (x) = (x − 1)1/3 + (x + 1)1/3,
f ′(x) = 1

3 [(x − 1)−2/3 + (x + 1)−2/3],
f ′′(x) = − 2

9 [(x − 1)−5/3 + (x + 1)−5/3].
f (x) = 0 ⇔ x − 1 = −(x + 1) ⇔ x = 0.
Thus, f has inflection point at x = 0. f ′′(x) is undefined
at x = ±1. f is defined at ±1 and x = ±1 are also in-
flection points. f is concave up on (−∞,−1) and (0, 1);
and down on (−1, 0) and (1, ∞).

23. According to Definition 4.3.1 and the subsequent discus-
sion, f (x) = ax + b has no concavity and therefore no
inflections.

24. f (x) = 3x3 − 36x − 3, f ′(x) = 9(x2 − 4), f ′′(x) = 18x .
The critical points are
x = 2, f ′′(2) > 0 ⇒ local min;
x = −2, f ′′(−2) < 0 ⇒ local max.

25. f (x) = x(x − 2)2 + 1 = x3 − 4x2 + 4x + 1

f ′(x) = 3x2 − 8x + 4 = (x − 2)(3x − 2)

CP: x = 2, x = 2

3

f ′′(x) = 6x − 8, f ′′(2) = 4 > 0, f ′′
(

2

3

)
= −4 < 0.

Therefore, f has a loc min at x = 2 and a loc max at

x = 2

3
.

26. f (x) = x + 4

x
, f ′(x) = 1 − 4

x2 , f ′′(x) = 8x−3.

The critical points are
x = 2, f ′′(2) > 0 ⇒ local min;
x = −2, f ′′(−2) < 0 ⇒ local max.

27. f (x) = x3 + 1

x

f ′(x) = 3x2 − 1

x2 = 3x4 − 1

x2 , CP: x = ± 1
4
√

3
.

f ′′(x) = 6x + 2

x3
.

f ′′
(

1
4
√

3

)
> 0, f ′′

(−1
4
√

3

)
< 0.

Therefore f has a loc min at
1

4
√

3
and a loc max at

−1
4
√

3
.

28. f (x) = x

2x
, f ′(x) = 1 − x ln 2

2x
,

f ′′(x) = ln 2(x ln 2 − 2)

2x
.

The critical point is

x = 1

ln 2
, f ′′

(
1

ln 2

)
< 0 ⇒ local max.

29. f (x) = x

1 + x2

f ′(x) = (1 + x2) − x2x

(1 + x2)2 = 1 − x2

(1 + x2)2

CP: x = ±1

f ′′(x) = (1 + x)2(−2x) − (1 − x2)2(1 + x2)2x

(1 + x2)4

= −2x − 2x3 − 4x + 4x3

(1 + x2)3
= −6x + 2x3

(1 + x2)3

f ′′(1) = −1

2
, f ′′(−1) = 1

2
.

f has a loc max at 1 and a loc min at −1.

30. f (x) = xex , f ′(x) = ex(1 + x), f ′′(x) = ex (2 + x).
The critical point is x = −1.
f ′′(−1) > 0,⇒ local min.

31. f (x) = x ln x,

f ′(x) = 1 + ln x, CP: x = 1

e

f ′′(x) = 1

x
, f ′′(

1

e
) = e > 0.

f has a loc min at
1

e
.

32. f (x) = (x2 −4)2, f ′(x) = 4x3 −16x , f ′′(x) = 12x2 −16.
The critical points are
x = 0, f ′′(0) < 0 ⇒ local max;
x = 2, f ′′(2) > 0 ⇒ local min;
x = −2, f ′′(−2) > 0 ⇒ local min.
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33. f (x) = (x2 − 4)3

f ′(x) = 6x(x2 − 4)2

CP: x = 0, x = ±2
f ′′(x) = 6(x2 − 4)2 + 24x2(x2 − 4)

= 6(x2 − 4)(5x2 − 4)

f ′′(0) > 0, f ′′(±2) = 0.
f has a loc min at x = 0. Second derivative test yields
no direct information about ±2. However, since f ′′ has
opposite signs on opposite sides of the points 2 and −2,
each of these points is an inflection point of f , and
therefore f cannot have a local maximum or minimum
value at either.

34. f (x) = (x2 − 3)ex ,

f ′(x) = (x2 + 2x − 3)ex = (x + 3)(x − 1)ex ,

f ′′(x) = (x2 + 4x − 1)ex .
The critical points are
x = −3, f ′′(−3) < 0 ⇒ local max;
x = 1, f ′′(1) > 0 ⇒ local min.

35. f (x) = x2e−2x2

f ′(x) = e−2x2
(2x − 4x3) = 2(x − 2x3)e−2x2

CP: x = 0, x = ± 1√
2

f ′′(x) = e−2x2
(2 − 20x2 + 16x4)

f ′′(0) > 0, f ′′
(

± 1√
2

)
= −4

e
< 0.

Therefore, f has a loc (and abs) min value at 0, and loc

(and abs) max values at ± 1√
2

.

36. Since

f (x) =
{

x2 if x ≥ 0
−x2 if x < 0,

we have

f ′(x) =
{ 2x if x ≥ 0

−2x if x < 0
= 2|x |

f ′′(x) =
{ 2 if x > 0

−2 if x < 0
= 2sgn x .

f ′(x) = 0 if x = 0. Thus, x = 0 is a critical point of
f . It is also an inflection point since the conditions of
Definition 3 are satisfied. f ′′(0) does not exist. If a the
graph of a function has a tangent line, vertical or not, at
x0, and has opposite concavity on opposite sides of x0,
the x0 is an inflection point of f , whether or not f ′′(x0)

even exists.

37. Suppose f is concave up (i.e., f ′′(x) > 0) on an open
interval containing x0.
Let h(x) = f (x) − f (x0) − f ′(x0)(x − x0).
Since h′(x) = f ′(x) − f ′(x0) = 0 at x = x0, x = x0 is a
CP of h.
Now h′′(x) = f ′′(x). Since h′′(x0) > 0, therefore h has a
min value at x0, so h(x) ≥ h(x0) = 0 for x near x0.
Since h(x) measures the distance y = f (x) lies above the
tangent line y = f (x0) + f ′(x0)(x − x0) at x , therefore
y = f (x) lies above that tangent line near x0.
Note: we must have h(x) > 0 for x near x0, x �= x0,
for otherwise there would exist x1 �= x0, x1 near x0, such
that h(x1) = 0 = h(x0). If x1 > x0, there would therefore
exist x2 such that x0 < x2 < x1 and f ′(x2) = f ′(x0).
Therefore there would exist x3 such that x0 < x3 < x2
and f ′(x3) = 0, a contradiction.
The same contradiction can be obtained if x1 < x0.

38. Suppose that f has an inflection point at x0. To be
specific, suppose that f ′′(x) < 0 on (a, x0) and
f ′′(x) > 0 on (x0, b) for some numbers a and b satis-
fying a < x0 < b.
If the graph of f has a non-vertical tangent line at x0,
then f ′(x0) exists. Let

F(x) = f (x) − f (x0) − f ′(x0)(x − x0).

F(x) represents the signed vertical distance between the
graph of f and its tangent line at x0. To show that the
graph of f crosses its tangent line at x0, it is sufficient to
show that F(x) has opposite signs on opposite sides of
x0.
Observe that F(x0) = 0, and F ′(x) = f ′(x) − f ′(x0),
so that F ′(x0) = 0 also. Since F ′′(x) = f ′′(x), the as-
sumptions above show that F ′ has a local minimum value
at x0 (by the First Derivative Test). Hence F(x) > 0 if
a < x < x0 or x0 < x < b. It follows (by Theorem
6) that F(x) < 0 if a < x < x0, and F(x) > 0 if
x0 < x < b. This completes the proof for the case of a
nonvertical tangent.
If f has a vertical tangent at x0, then its graph necessar-
ily crosses the tangent (the line x = x0) at x0, since the
graph of a function must cross any vertical line through a
point of its domain that is not an endpoint.

39. f (x) = xn

g(x) = −xn = − f (x), n = 2, 3, 4, . . .

f ′
n(x) = nxn−1 = 0 at x = 0

If n is even, fn has a loc min, gn has a loc max at
x = 0.
If n is odd, fn has an inflection at x = 0, and so does
gn .

40. Let there be a function f such that

f ′(x0) = f ′′(x0) = ... = f (k−1)(x0) = 0,

f (k)(x0) �= 0 for some k ≥ 2.
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If k is even, then f has a local min value at x = x0
when f (k)(x0) > 0, and f has a local max value at
x = x0 when f (k)(x0) < 0.
If k is odd, then f has an inflection point at x = x0.

41. f (x) =
{

e−1/x2
if x �= 0

0 if x = 0

a) lim
x→0+ x−n f (x) = lim

x→0+
e−1/x2

xn
(put y = 1/x)

= lim
y→∞ yne−y2 = 0 by Theorem 5 of Sec. 4.4

Similarly, limx→0− x−n f (x) = 0, and
limx→0 x−n f (x) = 0.

b) If P(x) =∑n
j=0 aj x j then by (a)

lim
x→0

P

(
1

x

)
f (x) =

n∑
j=0

aj lim
x→0

x− j f (x) = 0.

c) If x �= 0 and P1(t) = 2t3, then

f ′(x) = 2

x3 e−1/x2 = P1

(
1

x

)
f (x).

Assume that f (k)(x) = Pk

(
1

x

)
f (x) for some

k ≥ 1, where Pk is a polynomial. Then

f (k+1)(x) = − 1

x2 P ′
k

(
1

x

)
f (x) + Pk

(
1

x

)
P1

(
1

x

)
f (x)

= Pk+1

(
1

x

)
f (x),

where Pk+1(t) = t2 P ′
k(t) + P1(t)Pk (t) is a polyno-

mial.

By induction, f (n) = Pn

(
1

n

)
f (x) for n �= 0, where

Pn is a polynomial.

d) f ′(0) = limh→0
f (h) − f (0)

h
= lim

h→0
h−1 f (h) = 0 by

(a). Suppose that f (k)(0) = 0 for some k ≥ 1. Then

f (k+1)(0) = lim
h→0

f (k)(h) − f (k)(0)

h
= lim

h→0
h−1 f (k)(h)

= lim
h→0

h−1 Pk

(
1

h

)
f (h) = 0

by (b).
Thus f (n)(0) = 0 for n = 1, 2, . . . by induction.

e) Since f ′(x) < 0 if x < 0 and f ′(x) > 0 if x > 0,
therefore f has a local min value at 0 and − f has a
loc max value there.

f) If g(x) = x f (x) then g′(x) = f (x) + x f ′(x),
g′′(x) = 2 f ′(x) + x f ′′(x).
In general, g(n)(x) = n f (n−1)(x) + x f (n)(x) (by
induction).
Then g(n)(0) = 0 for all n (by (d)).
Since g(x) < 0 if x < 0 and g(x) > 0 if x > 0, g
cannot have a max or min value at 0. It must have
an inflection point there.

42. We are given that

f (x) =
{

x2 sin
1

x
, if x �= 0;

0, if x = 0.

If x �= 0, then

f ′(x) = 2x sin
1

x
− cos

1

x

f ′′(x) = 2 sin
1

x
− 2

x
cos

1

x
− 1

x2 sin
1

x
.

If x = 0, then

f ′(x) = lim
h→0

h2 sin
1

h
− 0

h
= 0.

Thus 0 is a critical point of f . There are points x ar-
bitrarily close to 0 where f (x) > 0, for example

x = 2

(4n + 1)π
, and other such points where f (x) < 0,

for example x = 2

(4n + 3)π
. Therefore f does not have

a local max or min at x = 0. Also, there are points
arbitrarily close to 0 where f ′′(x) > 0, for example

x = 1

(2n + 1)π
, and other such points where f ′′(x) < 0,

for instance x = 1

2nπ
. Therefore f does not have con-

stant concavity on any interval (0, a) where a > 0, so 0
is not an inflection point of f either.

Section 4.4 Sketching the Graph
of a Function (page 236)

1. Function (d) appears to be the derivative of function (c),
and function (b) appears to be the derivative of function
(d). Thus graph (c) is the graph of f , (d) is the graph of
f ′, (b) is the graph of f ′′, and (a) must be the graph of
the other function g.
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(a)

(c) (d)

(b)

Fig. 4.4.1

2.

y
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1
2
3
4

x−5 −4 −3 −2 −1 1 2 3 4

y
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−3
−2
−1
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x−5 −4 −3 −2 −1 1 2 3 4

y
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−1

1
2
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4
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y
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−3
−2
−1

1
2
3
4

x−5 −4 −3 −2 −1 1 2 3 4

(a)

(c) (d)

(b)

Fig. 4.4.2

The function graphed in Fig. 4.2(a):
is odd, is asymptotic to y = 0 at ±∞,
is increasing on (−∞,−1) and (1, ∞),
is decreasing on (−1, 1),
has CPs at x = −1 (max) and 1 (min),
is concave up on (−∞,−2) and (0, 2) (approximately),
is concave down on (−2, 0) and (2, ∞) (approximately),
has inflections at x = ±2 (approximately).

The function graphed in Fig. 4.2(b):
is even, is asymptotic to y = 0 at ±∞,
is increasing on (−1.7, 0) and (1.7, ∞) (approximately),
is decreasing on (−∞,−1.7) and (0, 1.7) (approxi-
mately),
has CPs at x = 0 (max) and ±1.7 (min) (approximately),
is concave up on (−2.5,−1) and (1, 2.5) (approxi-
mately),
is concave down on (−∞,−2.5), (−1, 1), and (2.5, ∞)

(approximately),
has inflections at ±2.5 and ±1 (approximately).

The function graphed in Fig. 4.2(c):
is even, is asymptotic to y = 2 at ±∞,
is increasing on (0, ∞),
is decreasing on (−∞, 0),
has a CP at x = 0 (min),
is concave up on (−1, 1) (approximately),
is concave down on (−∞,−1) and (1, ∞) (approxi-
mately),
has inflections at x = ±1 (approximately).

The function graphed in Fig. 4.2(d):
is odd, is asymptotic to y = 0 at ±∞,
is increasing on (−1, 1),
is decreasing on (−∞,−1) and (1,∞),
has CPs at x = −1 (min) and 1 (max),
is concave down on (−∞,−1.7) and (0, 1.7) (approxi-
mately),
is concave up on (−1.7, 0) and (1.7, ∞) (approximately),
has inflections at 0 and ±1.7 (approximately).

3. f (x) = x/(1 − x2) has slope 1 at the origin, so its graph
must be (c).
g(x) = x3/(1 − x4) has slope 0 at the origin, but has the
same sign at all points as does f (x), so its graph must
be (b).
h(x) = (x3 − x)/

√
1 + x6 has no vertical asymptotes, so

its graph must be (d).
k(x) = x3/

√|x4 − 1| is positive for all positive x �= 1, so
its graph must be (a).

4.
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y

−4

−3

−2

−1

1

2

3

x−5 −4 −3 −2 −1 1 2 3 4
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(a)

(c) (d)

(b)

Fig. 4.4.4
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The function graphed in Fig. 4.4(a):
is odd, is asymptotic to x = ±1 and y = x ,
is increasing on (−∞,−1.5), (−1, 1), and (1.5, ∞) (ap-
proximately),
is decreasing on (−1.5,−1) and (1, 1.5) (approximately),
has CPs at x = −1.5, x = 0, and x = 1.5,
is concave up on (0, 1) and (1, ∞),
is concave down on (−∞,−1) and (−1, 0),
has an inflection at x = 0.

The function graphed in Fig. 4.4(b):
is odd, is asymptotic to x = ±1 and y = 0,
is increasing on (−∞,−1), (−1, 1), and (1, ∞),
has a CP at x = 0,
is concave up on (−∞,−1) and (0, 1),
is concave down on (−1, 0) and (1, ∞),
has an inflection at x = 0.

The function graphed in Fig. 4.4(c):
is odd, is asymptotic to x = ±1 and y = 0,
is increasing on (−∞,−1), (−1, 1), and (1, ∞),
has no CP,
is concave up on (−∞,−1) and (0, 1),
is concave down on (−1, 0) and (1, ∞),
has an inflection at x = 0.

The function graphed in Fig. 4.4(d):
is odd, is asymptotic to y = ±2,
is increasing on (−∞,−0.7) and (0.7, ∞) (approxi-
mately),
is decreasing on (−0.7, 0.7) (approximately),
has CPs at x = ±0.7 (approximately),
is concave up on (−∞,−1) and (0, 1) (approximately),
is concave down on (−1, 0) and (1, ∞) (approximately),
has an inflection at x = 0 and x = ±1 (approximately).

5. f (0) = 1 f (±1) = 0 f (2) = 1
limx→∞ f (x) = 2, limx→−∞ f (x) = −1

SP CP
f ′ + 0 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f ↗ loc

max ↘ loc
min ↗

f ′′ + 0 + 2 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f � � infl �

0 must be a SP because f ′′ > 0 on both sides and it is a
loc max. 1 must be a CP because f ′′ is defined there so
f ′ must be too.

y

x−1

(2,1)
1

y=2

1

y=−1

y = f (x)

Fig. 4.4.5

6. According to the given properties:
Oblique asymptote: y = x − 1.
Critical points: x = 0, 2. Singular point: x = −1.
Local max 2 at x = 0; local min 0 at
x = 2.

SP CP CP
f ′ + −1 + 0 − 2 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↗ ↗ loc

max ↘ loc
min ↗

Inflection points: x = −1, 1, 3.

f ′ + −1 − 1 + 3 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f � infl � infl � infl �

Since lim
x→±∞

(
f (x) + 1 − x

)
= 0, the line y = x − 1 is an

oblique asymptote.
y

x

(3,1)

2

(1,1)

2

−1

y=x−1

y = f (x)

Fig. 4.4.6
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7. y = (x2 − 1)3

y ′ = 6x(x2 − 1)2

= 6x(x − 1)2(x + 1)2

y ′′ = 6[(x2 − 1)2 + 4x2(x2 − 1)]

= 6(x2 − 1)(5x2 − 1)

= 6(x − 1)(x + 1)(
√

5x − 1)(
√

5x + 1)
From y: Asymptotes: none. Symmetry: even. Intercepts:
x = ±1.
From y′: CP: x = 0, x = ±1. SP: none.

CP CP CP
y ′ − −1 − 0 + 1 +
−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↘ ↘ abs

min ↗ ↗

From y′′: y ′′ = 0 at x = ±1, x = ± 1√
5

.

y ′′ + −1 − − 1√
5

+ 1√
5

− 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
y � infl � infl � infl � infl �

y

x−1 1

1/
√

5−1/
√

5

y = (x2 − 1)3

−1

Fig. 4.4.7

8. y = x(x2 − 1)2, y ′ = (x2 − 1)(5x2 − 1), y ′′ = 4x(5x2 − 3).
From y: Intercepts: (0, 0), (1, 0). Symmetry: odd (i.e.,
about the origin).

From y′: Critical point: x = ±1, ± 1√
5

.

CP CP CP CP

y ′ + −1 − − 1√
5

+ 1√
5

− 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
y ↗ loc

max ↘ loc
min ↗ loc

max ↘ loc
min ↗

From y′′: Inflection points at

x = 0, ±
√

3
5 .

y ′′ − −
√

3
5 + 0 −

√
3
5 +

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � infl � infl � infl �

y

x1√
5

√
3
5

1

y = x(x2 − 1)2

Fig. 4.4.8

9. y = 2 − x

x
= 2

x
− 1, y ′ = − 2

x2 , y ′′ = 4

x3 .

From y: Asymptotes: x = 0, y = −1.
Symmetry: none obvious.
Intercept: (2, 0). Points: (−1,−3).
From y′: CP: none. SP: none.

ASY
y ′ − 0 −
−−−−−−−−−−−−−−−−−−−→x|
y ↘ ↘

From y′′: y ′′ = 0 nowhere.

ASY
y ′′ − 0 +
−−−−−−−−−−−−−−−−−−−→x|
y � �
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y

x
(2,0)

y = 2 − x

x

(−1,−3)

−1

Fig. 4.4.9

10. y = x − 1

x + 1
= 1 − 2

x + 1
, y ′ = 2

(x + 1)2
, y ′′ = −4

(x + 1)3
.

From y: Intercepts: (0,−1), (1, 0). Asymptotes: y = 1
(horizontal), x = −1 (vertical). No obvious symmetry.
Other points: (−2, 3).
From y′: No critical point.

ASY
y ′ + −1 +
−−−−−−−−−−−−−−−−−−−−−−−−→x|
y ↗ ↗

From y′′: No inflection point.

ASY
y ′′ + −1 −
−−−−−−−−−−−−−−−−−−−−−−−−→x|
y � �

y

x

x=−1

y=1

y = x − 1

x + 1

(−2,3)

−1

1

Fig. 4.4.10

11. y = x3

1 + x

y ′ = (1 + x)3x2 − x3

(1 + x)2
= 3x2 + 2x3

(1 + x)2

y ′′ = (1 + x)2(6x + 6x2) − (3x2 + 2x3)2(1 + x)

(1 + x)4

= 6x(1 + x)2 − 6x2 − 4x3

(1 + x)3 = 6x + 6x2 + 2x3

(1 + x)3

= 2x(3 + 3x + x2)

(1 + x)3

From y:
Asymptotes: x = −1. Symmetry: none.
Intercepts (0, 0). Points (−3/2, 27/4).

From y′ CP: x = 0, x = −3

2
.

CP ASY CP
y ′ − − 3

2 + −1 + 0 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↘ loc

min ↗ ↗ ↗

From y′′: y ′′ = 0 only at x = 0.

ASY
y ′′ + −1 − 0 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � � infl �

y

x

(
− 3

2 ,
27
4

)
x=−1

y = x3

1 + x

Fig. 4.4.11

12. y = 1

4 + x2 , y ′ = −2x

(4 + x2)2 , y ′′ = 6x2 − 8

(4 + x2)3 .

From y: Intercept: (0, 1
4 ). Asymptotes: y = 0 (horizon-

tal). Symmetry: even (about y-axis).
From y′: Critical point: x = 0.

CP
y ′ + 0 −
−−−−−−−−−−−−−−−−−−−−−−−−→x|
y ↗ abs

max ↘
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From y′′: y ′′ = 0 at x = ± 2√
3

.

y ′′ + − 2√
3

− 2√
3

+
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � infl � infl �

y

x−2√
3

2√
3

1/4

y = 1

4 + x2

Fig. 4.4.12

13. y = 1

2 − x2 , y ′ = 2x

(2 − x2)2

y ′′ = 2

(2 − x2)2 + 8x2

(2 − x2)3 = 4 + 6x2

(2 − x2)3

From y: Asymptotes: y = 0, x = ±√
2.

Symmetry: even.
Intercepts (0, 1

2 ). Points (±2, − 1
2 ).

From y′: CP x = 0.

ASY CP ASY
y ′′ − −√

2 − 0 + √
2 +

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↘ ↘ loc

min ↗ ↗
y ′′ : y ′′ = 0 nowhere.

ASY ASY
y ′′ − −√

2 + √
2 −

−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � � �

y

x

(
2,− 1

2

)
1/2

x=√
2x=−√

2

(
−2,− 1

2

)

y = 1

2 − x2

Fig. 4.4.13

14. y = x

x2 − 1
, y ′ = − x2 + 1

(x2 − 1)2
, y ′′ = 2x(x2 + 3)

(x2 − 1)3
.

From y: Intercept: (0, 0). Asymptotes: y = 0 (horizon-
tal), x = ±1 (vertical). Symmetry: odd. Other points:
(2, 2

3 ), (−2,− 2
3 ).

From y′: No critical or singular points.

ASY ASY
y ′ − −1 − 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y ↘ ↘ ↘

From y′′: y ′′ = 0 at x = 0.

ASY ASY
y ′′ − −1 + 0 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � � infl � �

y

x

x=1

x=−1

y = x

x2 − 1

(
2,

2
3

)

(
−2,− 2

3

)

Fig. 4.4.14

15. y = x2

x2 − 1
= 1 + 1

x2 − 1

y ′ = −2x

(x2 − 1)2

y ′′ = −2
(x2 − 1)2 − x2(x2 − 1)2x

(x2 − 1)4 = 2(3x2 + 1)

(x2 − 1)3

From y: Asymptotes: y = 1, x = ±1. Symmetry: even.

Intercepts (0, 0). Points

(
±2,

4

3

)
.

From y′: CP x = 0.

ASY CP ASY
y ′ + −1 + 0 − 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↗ ↗ loc

max ↘ ↘
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From y′′: y ′′ = 0 nowhere.

ASY ASY
y ′′ + −1 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � � �

y

x

(
2,

4
3

)
y = x2

x2 − 1

(
−2,

4
3

)

x=−1

y=1

x=1

Fig. 4.4.15

16. y = x3

x2 − 1
, y ′ = x2(x2 − 3)

(x2 − 1)2 , y ′′ = 2x(x2 + 3)

(x2 − 1)3 .

From y: Intercept: (0, 0). Asymptotes: x = ±1 (ver-
tical), y = x (oblique). Symmetry: odd. Other points:(

±√
3, ±3

√
3

2

)
.

From y′: Critical point: x = 0, ±√
3.

CP ASY CP ASY CP
y ′ + −√

3 − −1 − 0 − 1 − √
3 +

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | | |
y ↗ loc

max ↘ ↘ ↘ ↘ loc
min ↗

From y′′: y ′′ = 0 at x = 0.

ASY ASY
y ′′ − −1 + 0 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � � infl � �

y

x

y=x

x=1

x=−1

y = x3

x2 − 1

√
3

−√
3

Fig. 4.4.16

17. y = x3

x2 + 1
= x3 + x − x

x2 + 1
= x − x

x2 + 1

y ′ = (x2 + 1)3x2 − x32x

(x2 + 1)2 = x4 + 3x2

(x2 + 1)2 = x2(x2 + 3)

(x2 + 1)2

y ′′ = (x2 + 1)2(4x3 + 6x) − (x4 + 3x2)2(x2 + 1)2x

(x2 + 1)4

= 4x5 + 10x3 + 6x − 4x5 − 12x3

(x2 + 1)3

= 2x(3 − x2)

(x2 + 1)3

From y: Asymptotes: y = x (oblique). Symmetry: odd.
Intercepts (0, 0).
Points (±√

3,± 3
4

√
3).

From y′: CP: x = 0.

CP
y ′ + 0 +
−−−−−−−−−−−−−−−−−−−→x|
y ↗ ↗

From y′′: y ′′ = 0 at x = 0, x = ±√
3.

y ′′ + −√
3 − 0 + √

3 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � infl � infl � infl �
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y

x

(√
3,

3
√

3
4

)

(
−√

3,− 3
√

3
4

)

y = x3

x2 + 1

y=x

Fig. 4.4.17

18. y = x2

x2 + 1
, y ′ = 2x

(x2 + 1)2 , y ′′ = 2(1 − 3x2)

(x2 + 1)3 .

From y: Intercept: (0, 0). Asymptotes: y = 1 (horizon-
tal). Symmetry: even.
From y′: Critical point: x = 0.

CP
y ′ − 0 +
−−−−−−−−−−−−−−−−−−−−−−−−→x|
y ↘ abs

min ↗

From y′′: y ′′ = 0 at x = ± 1√
3

.

y ′′ − − 1√
3

+ 1√
3

−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � infl � infl �

y

x

y=1

y = x2

x2 + 1

1√
3

−1√
3

Fig. 4.4.18

19. y = x2 − 4

x + 1
= x − 1 − 3

x + 1

y ′ = 1 + 3

(x + 1)2 = (x + 1)2 + 3

(x + 1)2

y ′′ = − 6

(x + 1)3

From y: Asymptotes: y = x − 1 (oblique), x = −1.

Symmetry: none.
Intercepts (0,−4), (±2, 0).
From y′: CP: none.

ASY
y ′ + −1 +
−−−−−−−−−−−−−−−−−−−→x|
y ↗ ↗

From y′′: y ′′ = 0 nowhere.

ASY
y ′′ + −1 −
−−−−−−−−−−−−−−−−−−−→x|
y � �

y

x2−2 −1

−4y=x−1

y = x2 − 4

x + 1

Fig. 4.4.19

20. y = x2 − 2

x2 − 1
, y ′ = 2x

(x2 − 1)2 , y ′′ = −2(3x2 + 1)

(x2 − 1)3 .

From y: Intercept: (0, 2), (±√
2, 0). Asymptotes: y = 1

(horizontal), x = ±1 (vertical). Symmetry: even.
From y′: Critical point: x = 0.

ASY CP ASY
f ′ − −1 − 0 + 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↘ ↘ loc

min ↗ ↗

From y′′: y ′′ = 0 nowhere.

ASY ASY
y ′ − −1 + 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � � �
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y

x

y=1

√
2

x=1

2

x=−1

−√
2

y = x2 − 2

x2 − 1

Fig. 4.4.20

21. y = x3 − 4x

x2 − 1
= x(x − 2)(x + 2)

x2 − 1

y ′ = (x2 − 1)(3x2 − 4) − (x3 − 4x)2x

(x2 − 1)2

= 3x4 − 7x2 + 4 − 2x4 + 8x2

(x2 − 1)2

= x4 + x2 + 4

(x2 − 1)2

y ′′ = (x2 − 1)2(4x3 + 2x) − (x4 + x2 + 4)2(x2 − 1)2x

(x2 − 1)4

= 4x5 − 2x3 − 2x − 4x5 − 4x3 − 16x

(x2 − 1)3

= −6x3 − 18x

(x2 − 1)3
= −6x

x2 + 3

(x2 − 1)3

From y: Asymptotes: y = x (oblique), x = ±1.
Symmetry: odd. Intercepts (0, 0), (±2, 0).
From y′: CP: none.

ASY ASY
y ′ + −1 + 1 +
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y ↗ ↗ ↗

From y′′: y ′′ = 0 at x = 0.

ASY ASY
y ′′ + −1 − 0 + 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � � infl � �

y

x

x=−1
x=1

y=x

−2 2

y = x3 − 4x

x2 − 1

Fig. 4.4.21

22. y = x2 − 1

x2 = 1 − 1

x2 , y ′ = 2

x3 , y ′′ = − 6

x4 .

From y: Intercepts: (±1, 0). Asymptotes: y = 1 (hori-
zontal), x = 0 (vertical). Symmetry: even.
From y′: No critical points.

ASY
y ′ − 0 +
−−−−−−−−−−−−−−−−−−−−−−−−→x|
y ↘ ↗

From y′′: y ′′ is negative for all x .
y

x1−1

y=1

y = x2 − 1

x2

Fig. 4.4.22
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23. y = x5

(x2 − 1)2 = x + 2x3 − x

(x2 − 1)2

y ′ = (x2 − 1)25x4 − x52(x2 − 1)2x

(x2 − 1)4

= 5x6 − 5x4 − 4x6

(x2 − 1)3
= x4(x2 − 5)

(x2 − 1)3

y ′′ = (x2 − 1)3(6x5 − 20x3) − (x6 − 5x4)3(x2 − 1)22x

(x2 − 1)6

= 6x7 − 26x5 + 20x3 − 6x7 + 30x5

(x2 − 1)4

= 4x3(x2 + 5)

(x2 − 1)4

From y: Asymptotes: y = x , x = ±1. Symmetry: odd.

Intercepts (0, 0). Points

(
±√

5,±25

16

√
5

)
.

From y′: CP x = 0, x = ±√
5.

CP ASY CP ASY CP
y ′ + −√

5 − −1 + 0 + 1 − √
5 +

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | | |
y ↗ loc

max ↘ ↗ ↗ ↘ loc
min ↗

From y′′: y ′′ = 0 if x = 0.

ASY ASY
y ′′ − −1 − 0 + 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � � infl � �

y

x

y=x

√
51

−√
5 −1

y = x5

(x2 − 1)2

Fig. 4.4.23

24. y = (2 − x)2

x3 , y ′ = − (x − 2)(x − 6)

x4 ,

y ′′ = 2(x2 − 12x + 24)

x5
= 2(x − 6 + 2

√
3)(x − 6 − 2

√
3)

x5
.

From y: Intercept: (2, 0). Asymptotes: y = 0 (hori-
zontal), x = 0 (vertical). Symmetry: none obvious. Other

points: (−2, −2), (−10,−0.144).
From y′: Critical points: x = 2, 6.

ASY CP CP
y ′ − 0 − 2 + 6 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↘ ↘ loc

min ↗ loc
max ↘

From y′′: y ′′ = 0 at x = 6 ± 2
√

3.

y ′′ − 0 + 6 + 2
√

3 − 6 − 2
√

3 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � � infl � infl �

y

x

(−10,−0.144)

2 6+2
√

3

6−2
√

3

y = (2 − x)2

x3

(6,2/27)

Fig. 4.4.24

25. y = 1

x3 − 4x
= 1

x(x − 2)(x + 2)

y ′ = − 3x2 − 4

(x3 − 4x)2
= − 3x2 − 4

x2(x2 − 4)2

y ′′ = − (x3 − 4x)2(6x) − (3x2 − 4)2(x3 − 4x)(3x2 − 4)

(x3 − 4x)4

= −6x4 − 24x2 − 18x4 + 48x2 − 32

(x3 − 4x)3

= 12(x2 − 1)2 + 20

x3(x2 − 4)3

From y: Asymptotes: y = 0, x = 0,−2, 2.
Symmetry: odd. No intercepts.

Points:

(
± 2√

3
,± 16

3
√

3

)
,

(
±3,± 1

15

)

From y′: CP: x = ± 2√
3

.

ASY CP ASY CP ASY
y ′ − −2 − − 2√

3
+ 0 + 2√

3
− 2 −

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | | |
y ↘ ↘ loc

min ↗ ↗ loc
max ↘ ↘
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From y′′: y ′′ = 0 nowhere.

ASY ASY ASY
y ′′ − −2 + 0 − 2 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � � � �

y

x

2√
3−3

− 2√
3

3

y = 1

x3 − 4x x=2

x=−2

Fig. 4.4.25

26. y = x

x2 + x − 2
= x

(2 + x)(x − 1)
,

y ′ = −(x2 + 2)

(x + 2)2(x − 1)2 , y ′′ = 2(x3 + 6x + 2)

(x + 2)3(x − 1)3 .

From y: Intercepts: (0, 0). Asymptotes: y = 0 (horizon-
tal), x = 1, x = −2 (vertical). Other points: (−3, −3

4 ),
(2, 1

2 ).
From y′: No critical point.

ASY ASY
y ′ − −2 − 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y ↘ ↘ ↘

From y′′: y ′′ = 0 if f (x) = x3 + 6x + 2 = 0. Since
f ′(x) = 3x2 + 6 ≥ 6, f is increasing and can only
have one root. Since f (0) = 2 and f (−1) = −5,
that root must be between −1 and 0. Let the root be
r .

ASY ASY
y ′′ − −2 + r − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � � infl � �

y

x

x=−2

x=1

y = x

x2 + x − 2

(−3,−3/4)

(2,1/2)

r

Fig. 4.4.26

27. y = x3 − 3x2 + 1

x3 = 1 − 3

x
+ 1

x3

y ′ = 3

x2
− 3

x4
= 3(x2 − 1)

x4

y ′′ = − 6

x3
+ 12

x5
= 6

2 − x2

x5

From y : Asymptotes: y = 1, x = 0. Symmetry: none.
Intercepts: since limx→0+ y = ∞, and limx→0− y = −∞,
there are intercepts between −1 and 0, between 0 and 1,
and between 2 and 3.

Points: (−1, 3), (1, −1), (2, −3
8 ), (3,

1

27
).

From y′: CP: x = ±1.

CP ASY CP
y ′ + −1 − 0 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↗ loc

max ↘ ↘ loc
min ↗

From y′′: y ′′ = 0 at x = ±√
2.

ASY
y ′′ + −√

2 − 0 + √
2 −

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � infl � � infl �
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y

x

(−1,3)

y=1

(1,−1)

y = x3 − 3x2 + 1

x3

Fig. 4.4.27

28. y = x + sin x , y ′ = 1 + cos x , y ′′ = − sin x .
From y: Intercept: (0, 0). Other points: (kπ, kπ), where
k is an integer. Symmetry: odd.
From y′: Critical point: x = (2k + 1)π , where k is an
integer.

CP CP CP
f ′ + −π + π − 3π +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↗ ↗ ↗ ↗

From y′′: y ′′ = 0 at x = kπ , where k is an inte-
ger.

y ′′ + −2π − −π + 0 − π + 2π −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | | |
y � infl � infl � infl � infl � infl �

y

xπ 2π

π

2π

y = x + sin x

Fig. 4.4.28

29. y = x + 2 sin x, y ′ = 1 + 2 cos x, y ′′ = −2 sin x .

y = 0 if x = 0

y ′ = 0 if x = −1

2
, i.e., x = ±2π

3
± 2nπ

y ′′ = 0 if x = ±nπ

From y: Asymptotes: (none). Symmetry: odd.

Points:

(
±2π

3
,±2π

3
+ √

3

)
,

(
±8π

3
,±8π

3
+ √

3

)
,(

±4π

3
,±4π

3
− √

3

)
.

From y′: CP: x = ±2π

3
± 2nπ .

CP CP CP CP CP
y ′ − − 8π

3 + − 4π
3 + − 2π

3 + 2π
3 − 4π

3 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | | |
y ↘ loc

min ↗ loc
max ↘ loc

min ↗ loc
max ↘ loc

min ↗
From y′′: y ′′ = 0 at x = ±nπ .

y ′′ + −2π − −π + 0 − π + 2π −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | | |
y � infl � infl � infl � infl � infl �

y

x
1π
3

π
4π
3

2π
y=x

y = x + 2 sin x

Fig. 4.4.29

30. y = e−x2
, y ′ = −2xe−x2

, y ′′ = (4x2 − 2)e−x2
.

From y: Intercept: (0, 1). Asymptotes: y = 0 (horizon-
tal). Symmetry: even.
From y′: Critical point: x = 0.

CP
y ′ + 0 −
−−−−−−−−−−−−−−−−−−−−−−−−→x|
y ↗ abs

max ↘
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From y′′: y ′′ = 0 at x = ± 1√
2

.

y ′′ + − 1√
2

− 1√
2

+
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � infl � infl �

y

x

1

1√
2

−1√
2

y = e−x2

Fig. 4.4.30

31. y = xex , y ′ = ex(1 + x), y ′′ = ex(2 + x).

From y: Asymptotes: y = 0 (at x = −∞).
Symmetry: none. Intercept (0, 0).

Points:

(
−1, −1

e

)
,

(
−2,− 2

e2

)
,

From y′: CP: x = −1.

CP
y ′ − −1 +
−−−−−−−−−−−−−−−−−−−→x|
y ↘ abs

min ↗
From y′′: y ′′ = 0 at x = −2.

y ′′ − −2 +
−−−−−−−−−−−−−−−−−−−→x|
y � infl �

y

x

(
−1,− 1

e

)(
−2,− 2

e2

)

y = x ex

Fig. 4.4.31

32. y = e−x sin x (x ≥ 0),
y ′ = e−x(cos x − sin x), y ′′ = −2e−x cos x .
From y: Intercept: (kπ, 0), where k is an integer.
Asymptotes: y = 0 as x → ∞.

From y′: Critical points: x = π

4
+ kπ , where k is an

integer.

CP CP CP

y ′ 0 + π

4
− 5π

4
+ 9π

4
−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
y ↗ abs

max ↘ abs
min ↗ loc

max ↘

From y′′: y ′′ = 0 at x = (k + 1
2 )π , where k is an

integer.

y ′′ 0 − π

2
+ 3π

2
− 5π

2
+

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
y � infl � infl � infl �

y

x

(
π
4 ,e−π/4/

√
2
)

y = e−x sin x

π

π
2

5π
4

3π
2

Fig. 4.4.32

33. y = x2e−x2

y ′ = e−x2
(2x − 2x3) = 2x(1 − x2)e−x2

y ′′ = e−x2
(2 − 6x2 − 2x(2x − 2x3))

= (2 − 10x2 + 4x4)e−x2

From y: Asymptotes: y = 0.
Intercept: (0, 0). Symmetry: even.

Points

(
±1,

1

e

)

From y′: CP x = 0, x = ±1.

CP CP CP
y ′ + −1 − 0 + 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↗ abs

max ↘ abs
min ↗ abs

max ↘
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From y′′: y ′′ = 0 if
2x4 − 5x2 + 1 = 0

x2 = 5 ± √
25 − 8

4

= 5 ± √
17

4
.

so x = ±a = ±
√

5 + √
17

4
, x = ±b = ±

√
5 − √

17

4
.

y ′′ + −a − −b + b − a +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
y � infl � infl � infl � infl �

y

x−a −b b a

(−1,1/e) (1,1/e)
y = x2e−x2

Fig. 4.4.33

34. y = x2ex , y ′ = (2x + x2)ex = x(2 + x)ex ,
y ′′ = (x2 + 4x + 2)ex = (x + 2 − √

2)(x + 2 + √
2)ex .

From y: Intercept: (0, 0).
Asymptotes: y = 0 as x → −∞.
From y′: Critical point: x = 0, x = −2.

CP CP
y ′ + −2 − 0 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y ↗ loc

max ↘ abs
min ↗

From y′′: y ′′ = 0 at x = −2 ± √
2.

y ′′ + −2 − √
2 − −2 + √

2 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � infl � infl �

y

x−2−√
2 −2+√

2

(−2,4e−2)

y = x2 ex

Fig. 4.4.34

35. y = ln x

x
, y ′ = 1 − ln x

x2

y ′′ =
x2
(

− 1

x

)
− (1 − ln x)2x

x4 = 2 ln x − 3

x3

From y: Asymptotes: x = 0, y = 0.
Symmetry: none. Intercept: (1, 0).

Points:

(
e,

1

e

)
,

(
e3/2,

3

2e3/2

)
.

From y′: CP: x = e.

ASY CP
y ′ 0 + e −
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y ↗ abs

max ↘
From y′′: y ′′ = 0 at x = e3/2.

ASY
y ′′ 0 − e3/2 +
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � infl �

y

xe3/21

y = ln x

x

(e,1/e)

Fig. 4.4.35

36. y = ln x

x2
(x > 0),

y ′ = 1 − 2 ln x

x3 , y ′′ = 6 ln x − 5

x4 .

From y: Intercepts: (1, 0). Asymptotes: y = 0, since

lim
x→∞

ln x

x2
= 0, and x = 0, since lim

x→0+
ln x

x2
= −∞.

From y′: Critical point: x = e1/2.

CP
y ′ 0 + √

e −
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y ↗ abs

max ↘
From y′′: y ′′ = 0 at x = e5/6.

y ′′ 0 − e5/6 +
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � infl �
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y

xe5/61

(
√

e,(2e)−1)

y = ln x

x2

Fig. 4.4.36

37. y = 1√
4 − x2

= (4 − x2)−1/2

y ′ = −1

2
(4 − x2)−3/2(−2x) = x

(4 − x2)3/2

y ′′ =
(4 − x2)3/2 − x

3

2
(4 − x2)1/2(−2x)

(4 − x2)3

= 4 + 2x2

(4 − x2)5/2

From y: Asymptotes: x = ±2. Domain −2 < x < 2.
Symmetry: even. Intercept: (0, 1

2 ).
From y′: CP: x = 0.

ASY CP ASY
y ′ −2 − 0 + 2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↘ abs

min ↗

From y′′: y ′′ = 0 nowhere, y′′ > 0 on (−2, 2).
Therefore, y is concave up.

y

x−2 2

1/2

y = 1√
4 − x2

Fig. 4.4.37

38. y = x√
x2 + 1

, y ′ = (x2 + 1)−3/2, y ′′ = −3x(x2 + 1)−5/2.

From y: Intercept: (0, 0). Asymptotes: y = 1 as
x → ∞, and y = −1 as x → −∞. Symmetry: odd.
From y′: No critical point. y′ > 0 and y is increasing
for all x .
From y′′: y ′′ = 0 at x = 0.

y ′′ + 0 −
−−−−−−−−−−−−−−−−−→x|
y � infl �

y

x

y=1

y=−1

y = x√
x2 + 1

Fig. 4.4.38

39. y = (x2 − 1)1/3

y ′ = 2

3
x(x2 − 1)−2/3

y ′′ = 2

3
[(x2 − 1)−2/3 − 2

3
x(x2 − 1)−5/32x]

= −2

3
(x2 − 1)−5/3

(
1 + x2

3

)

From y: Asymptotes: none.
Symmetry: even. Intercepts: (±1, 0), (0, −1).
From y′: CP: x = 0. SP: x = ±1.

SP CP SP
y ′ − −1 − 0 + 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↘ ↘ abs

min ↗ ↗

From y′′: y ′′ = 0 nowhere.

y ′′ − −1 + 1 −
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � infl � infl �
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y

x
1−1

y = (x2 − 1)1/3

−1

Fig. 4.4.39

40. According to Theorem 5 of Section 4.4,

lim
x→0+ x ln x = 0.

Thus,

lim
x→0

x ln |x | = lim
x→0+ x ln x = 0.

If f (x) = x ln |x | for x �= 0, we may define f (0) such
that f (0) = lim

x→0
x ln |x | = 0. Then f is continuous on

the whole real line and

f ′(x) = ln |x | + 1, f ′′(x) = 1

|x | sgn (x).

From f : Intercept: (0, 0), (±1, 0). Asymptotes: none.
Symmetry: odd.

From f ′: CP: x = ±1

e
. SP: x = 0.

CP SP CP

f ′ + −1

e
− 0 − 1

e
+

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↗ loc

max ↘ ↘ loc
min ↗

From f ′′: f ′′ is undefined at x = 0.

f ′′ − 0 +
−−−−−−−−−−−−−−−−−−−−−−−−→x|
f � infl �

y

x( 1
e , −1

e

)

(−1
e , 1

e

)

y = x ln |x |

Fig. 4.4.40

41. y = 0 is an asymptote of y = sin x

1 + x2
.

Curve crosses asymptote at infinitely many points:
x = nπ (n = 0,±1,±2, . . .).

y

x

y = sin x

1 + x2
y= 1

1+x2

y=− 1
1+x2

Fig. 4.4.41

Section 4.5 Extreme-Value Problems
(page 242)

1. Let the numbers be x and 7 − x . Then 0 ≤ x ≤ 7. The
product is P(x) = x(7 − x) = 7x − x2.
P(0) = P(7) = 0 and P(x) > 0 if 0 < x < 7. Thus
maximum P occurs at a CP:

0 = d P

dx
= 7 − 2x ⇒ x = 7

2
.

The maximum product is P(7/2) = 49/4.

2. Let the numbers be x and
8

x
where x > 0. Their sum is

S = x + 8

x
. Since S → ∞ as x → ∞ or x → 0+, the

minimum sum must occur at a critical point:

0 = d S

dx
= 1 − 8

x2 ⇒ x = 2
√

2.
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Thus, the smallest possible sum is 2
√

2 + 8

2
√

2
= 4

√
2.

3. Let the numbers be x and 60 − x . Then 0 ≤ x ≤ 60.
Let P(x) = x2(60 − x) = 60x2 − x3.
Clearly, P(0) = P(60) = 0 amd P(x) > 0 if 0 < x < 60.
Thus maximum P occurs at a CP:

0 = d P

dx
= 120x − 3x2 = 3x(40 − x).

Therefore, x = 0 or 40.
Max must correspond to x = 40. The numbers are 40
and 20.

4. Let the numbers be x and 16 − x . Let
P(x) = x3(16 − x)5. Since P(x) → −∞ as x → ±∞,
so the maximum must occur at a critical point:

0 = P ′(x) = 3x2(16 − x)5 − 5x3(16 − x)4

= x2(16 − x)4(48 − 8x).

The critical points are 0, 6 and 16. Clearly,
P(0) = P(16) = 0, and P(6) = 216 × 105. Thus, P(x) is
maximum if the numbers are 6 and 10.

5. Let the numbers be x and 10 − x . We want to minimize

S(x) = x3 + (10 − x)2, 0 ≤ x ≤ 10.

S(0) = 100 and S(10) = 1, 000. For CP:

0 = S′(x) = 3x2 − 2(10 − x) = 3x2 + 2x − 20.

The only positive CP is x = (−2 +√
4 + 240)/6 ≈ 2.270.

Since S(2.270) ≈ 71.450, the minimum value of S is
about 71.45.

6. If the numbers are x and n − x , then 0 ≤ x ≤ n and the
sum of their squares is

S(x) = x2 + (n − x)2.

Observe that S(0) = S(n) = n2. For critical points:

0 = S′(x) = 2x − 2(n − x) = 2(2x − n) ⇒ x = n/2.

Since S(n/2) = n2/2, this is the smallest value of the
sum of squares.

7. Let the dimensions of a rectangle be x and y. Then the
area is A = xy and the perimeter is P = 2x + 2y.
Given A we can express

P = P(x) = 2x + 2A

x
, (0 < x < ∞).

Evidently, minimum P occurs at a CP. For CP:

0 = d P

dx
= 2 − 2A

x2 ⇒ x2 = A = xy ⇒ x = y.

Thus min P occurs for x = y, i.e., for a square.

8. Let the width and the length of a rectangle of given
perimeter 2P be x and P − x . Then the area of the rect-
angle is

A(x) = x(P − x) = Px − x 2.

Since A(x) → −∞ as x → ±∞ the maximum must
occur at a critical point:

0 = d A

dx
= P − 2x ⇒ x = P

2

Hence, the width and the length are
P

2
and

(P − P

2
) = P

2
. Since the width equals the length, it

is a square.

9. Let the dimensions of the isosceles triangle be as shown.
Then 2x + 2y = P (given constant). The area is

A = xh = x
√

y2 − x2 = x

√(
P

2
− x

)2

− x2.

Evidently, y ≥ x so 0 ≤ x ≤ P/4. If x = 0 or x = P/4,
then A = 0. Thus the maximum of A must occur at a
CP. For max A:

0 = d A

dx
=
√

P2

4
− Px − Px

2

√
P2

4
− Px

,

i.e.,
P2

2
− 2Px − Px = 0, or x = P

6
. Thus y = P/3 and

the triangle is equilateral since all three sides are P/3.

y
h

y

x x

Fig. 4.5.9

10. Let the various dimensions be as shown in the figure.
Since h = 10 sin θ and b = 20 cos θ , the area of the
triangle is

A(θ) = 1
2 bh = 100 sin θ cos θ

= 50 sin 2θ for 0 < θ <
π

2
.
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Since A(θ) → 0 as θ → 0 and θ → π

2
, the maximum

must be at a critial point:

0 = A′(θ) = 100 cos 2θ ⇒ 2θ = π

2
⇒ θ = π

4
.

Hence, the largest possible area is

A(π/4) = 50 sin

[
2
(π

4

)]
= 50 m2.

(Remark: alternatively, we may simply observe that the
largest value of sin 2θ is 1; therefore the largest possible
area is 50(1) = 50 m2.)

θ θ

h

b/2b/2

10 10

Fig. 4.5.10

11. Let the corners of the rectangle be as shown.
The area of the rectangle is A = 2xy = 2x

√
R2 − x2 (for

0 ≤ x ≤ R).
If x = 0 or x = R then A = 0; otherwise A > 0.
Thus maximum A must occur at a critical point:

0 = d A

dx
= 2

[√
R2 − x2 − x2

√
R2 − x2

]
⇒ R2 − 2x2 = 0.

Thus x = R√
2

and the maximum area is

2
R√
2

√
R2 − R2

2
= R2 square units.

y

x

(x,y)

R

x

Fig. 4.5.11

12. Let x be as shown in the figure. The perimeter of the
rectangle is

P(x) = 4x + 2
√

R2 − x2 (0 ≤ x ≤ R).

For critical points:

0 = d P

dx
= 4 + −2x√

R2 − x2

⇒2
√

R2 − x2 = x ⇒ x = 2R√
5
.

Since

d2 P

dx2 = −2R2

(R2 − x2)3/2 < 0

therefore P(x) is concave down on [0, R], so it must

have an absolute maximum value at x = 2R√
5

. The largest

perimeter is therefore

P

(
2R√

5

)
= 4

(
2R√

5

)
+
√

R2 − 4R2

5
= 10R√

5
units.

(x,
√

R2−x2)

R

x

Fig. 4.5.12

13. Let the upper right corner be (x, y) as shown. Then

x ≥ 0 and y = b

√
1 − x2

a2
, so x ≤ a.

The area of the rectangle is

A(x) = 4xy = 4bx

√
1 − x2

a2 , (0 ≤ x ≤ a).

Clearly, A = 0 if x = 0 or x = a, so maximum A must
occur at a critical point:

0 = d A

dx
= 4b

⎛
⎜⎜⎜⎜⎝
√

1 − x2

a2 −
2x2

a2

2

√
1 − x2

a2

⎞
⎟⎟⎟⎟⎠

Thus 1 − x2

a2
− x2

a2
= 0 and x = a√

2
. Thus y = b√

2
.

The largest area is 4
a√
2

b√
2

= 2ab square units.
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y

x

(x,y)

x2

a2 + y2

b2 =1

Fig. 4.5.13

14. See the diagrams below.

a) The area of the rectangle is A = xy. Since

y

a − x
= b

a
⇒ y = b(a − x)

a
.

Thus, the area is

A = A(x) = bx

a
(a − x) (0 ≤ x ≤ a).

For critical points:

0 = A′(x) = b

a
(a − 2x) ⇒ x = a

2
.

Since A′′(x) = −2b

a
< 0, A must have a maxi-

mum value at x = a

2
. Thus, the largest area for the

rectangle is

b

a

(a

2

)(
a − a

2

)
= ab

4
square units,

that is, half the area of the triangle ABC .

b

A

C Ba
x

y

a−x
A BD

C

Fig. 4.5.14(a) Fig. 4.5.14(b)

(b) This part has the same answer as part (a). To see
this, let C D ⊥ AB, and solve separate problems for
the largest rectangles in triangles AC D and BC D
as shown. By part (a), both maximizing rectangles
have the same height, namely half the length of C D.
Thus, their union is a rectangle of area half of that
of triangle ABC .

15. NEED FIGURE If the sides of the triangle are 10 cm,
10 cm, and 2x cm, then the area of the triangle is
A(x) = x

√
100 − x2 cm2, where 0 ≤ x ≤ 10. Evi-

dently A(0) = A(10) = 0 and A(x) > 0 for 0 < x < 10.
Thus A will be maximum at a critical point. For a criti-
cal point

0 = A′(x) =
√

100 − x2 − x

(
1

2
√

100 − x2
(−2x)

)

= 100 − x2 − x2
√

100 − x2
.

Thus the critical point is given by 2x2 = 100, so
x = √

50. The maximum area of the triangle is
A(

√
50) = 50 cm2.

16. NEED FIGURE If the equal sides of the isosceles trian-
gle are 10 cm long and the angles opposite these sides
are θ , then the area of the triangle is

A(θ) = 1

2
(10)(10 sin θ) = 50 sin θ cm2,

which is evidently has maximum value 50 cm2 when
θ = π/2, that is, when the triangle is right-angled. This
solution requires no calculus, and so is easier than the
one given for the previous problem.

17. Let the width and the height of the billboard be w and
h m respectively. The area of the board is A = wh. The
printed area is (w − 8)(h − 4) = 100.

Thus h = 4 + 100

w − 8
and A = 4w + 100w

w − 8
, (w > 8).

Clearly, A → ∞ if w → ∞ or w → 8+. Thus minimum
A occurs at a critical point:

0 = d A

dw
= 4 + 100

w − 8
− 100w

(w − 8)2

100w = 4(w2 − 16w + 64) + 100w − 800

w2 − 16w − 136 = 0

w = 16 ± √
800

2
= 8 ± 10

√
2.

Since w > 0 we must have w = 8 + 10
√

2.

Thus h = 4 + 100

10
√

2
= 4 + 5

√
2.

The billboard should be 8 + 10
√

2 m wide and 4 + 5
√

2
m high.
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2

2

hh−4
4

4w−8

w

Fig. 4.5.17

18. Let x be the side of the cut-out squares. Then the vol-
ume of the box is

V (x) = x(70 − 2x)(150 − 2x) (0 ≤ x ≤ 35).

Since V (0) = V (35) = 0, the maximum value will occur
at a critical point:

0 = V ′(x) = 4(2625 − 220x + 3x2)

= 4(3x − 175)(x − 15)

⇒ x = 15 or
175

3
.

The only critical point in [0, 35] is x = 15. Thus, the
largest possible volume for the box is

V (15) = 15(70 − 30)(150 − 30) = 72, 000 cm3.

70

150

150−2x

70−2x

x
x

Fig. 4.5.18

19. Let the rebate be $x . Then number of cars sold per
month is

2000 + 200
( x

50

)
= 2000 + 4x .

The profit per car is 1000 − x , so the total monthly profit
is

P = (2000 + 4x)(1000 − x) = 4(500 + x)(1000 − x)

= 4(500, 000 + 500x − x2).

For maximum profit:

0 = d P

dx
= 4(500 − 2x) ⇒ x = 250.

(Since
d2 P

dx2 = −8 < 0 any critical point gives a local

max.) The manufacturer should offer a rebate of $250 to
maximize profit.

20. If the manager charges $(40+x) per room, then (80−2x)

rooms will be rented.
The total income will be $(80 − 2x)(40 + x) and the total
cost will be $(80 − 2x)(10) + (2x)(2). Therefore, the
profit is

P(x) = (80 − 2x)(40 + x) − [(80 − 2x)(10) + (2x)(2)]

= 2400 + 16x − 2x2 for x > 0.

If P′(x) = 16 − 4x = 0, then x = 4. Since
P ′′(x) = −4 < 0, P must have a maximum value at
x = 4. Therefore, the manager should charge $44 per
room.

21. Head for point C on road x km east of A. Travel time is

T =
√

122 + x2

15
+ 10 − x

39
.

We have T (0) = 12

15
+ 10

39
= 1.0564 hrs

T (10) =
√

244

15
= 1.0414 hrs

For critical points:

0 = dT

dx
= 1

15

x√
122 + x2

− 1

39

⇒ 13x = 5
√

122 + x2

⇒ (132 − 52)x2 = 52 × 122 ⇒ x = 5

T (5) = 13

15
+ 5

39
= 0.9949 <

{
T (0)

T (10).

(Or note that

d2T

dt2 = 1

15

√
122 + x2 − x2

√
122 + x2

122 + x2

= 122

15(122 + x2)3/2 > 0

so any critical point is a local minimum.)
To minimize travel time, head for point 5 km east of A.
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A x C 10−x B

39 km/h

15 km/h √
122+x2

12

P

Fig. 4.5.21

22. This problem is similar to the previous one except that
the 10 in the numerator of the second fraction in the ex-
pression for T is replaced with a 4. This has no effect
on the critical point of T , namely x = 5, which now lies
outside the appropriate interval 0 ≤ x ≤ 4. Minimum T
must occur at an endpoint. Note that

T (0) = 12

15
+ 4

39
= 0.9026

T (4) = 1

15

√
122 + 42 = 0.8433.

The minimum travel time corresponds to x = 4, that is,
to driving in a straight line to B.

23. Use x m for the circle and 1 − x m for square. The sum
of areas is

A = πr 2 + s2 = πx2

4π2
+
(

1 − x

4

)2

= x2

4π
+ (1 − x)2

42 (0 ≤ x ≤ 1)

Now A(0) = 1

16
, A(1) = 1

4π
> A(0). For CP:

0 = d A

dx
= x

2π
−1 − x

8
⇒ x

(
1

2π
+ 1

8

)
= 1

8
⇒ x = π

4 + π
.

Since
d2 A

dx2 = 1

2π
+ 1

8
> 0, the CP gives local minimum

for A.

a) For max total area use none of wire for the square,
i.e., x = 1.

b) For minimum total area use 1 − π

4 + π
= 4

4 + π
m

for square.

x 1−x

s

r

1 metre

s

x=C=2πr 1−x=P=4s

Fig. 4.5.23

24. Let the dimensions of the rectangle be as shown in the
figure. Clearly,

x = a sin θ + b cos θ,

y = a cos θ + b sin θ.

Therefore, the area is

A(θ) = xy

= (a sin θ + b cos θ)(a cos θ + b sin θ)

= ab + (a2 + b2) sin θ cos θ

= ab + 1

2
(a2 + b2) sin 2θ for 0 ≤ θ ≤ π

2
.

If A′(θ) = (a2 + b2) cos 2θ = 0, then θ = π

4
. Since

A′′(θ) = −2(a2 + b2) sin 2θ < 0 when 0 ≤ θ ≤ π

2
,

therefore A(θ) must have a maximum value at θ = π

4
.

Hence, the area of the largest rectangle is

A
(π

4

)
= ab + 1

2
(a2 + b2) sin

(π

2

)

= ab + 1

2
(a2 + b2) = 1

2
(a + b)2 sq. units.

(Note: x = y = a√
2

+ b√
2

indicates that the rectangle

containing the given rectangle with sides a and b, has
largest area when it is a square.)

a

b

x

y

θ

θ

Fig. 4.5.24

25. Let the line have intercepts x , y as shown. Let θ be an-
gle shown. The length of line is

L = 9

cos θ
+

√
3

sin θ
(0 < θ <

π

2
).
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Clearly, L → ∞ if θ → 0+ or θ → π

2
−.

Thus the minimum length occurs at a critical point.
For CP:

0 = d L

dθ
= 9 sin θ

cos2 θ
−

√
3 cos θ

sin2 θ
⇒ tan3 θ =

(
1√
3

)3

⇒ θ = π

6

Shortest line segment has length

L = 9√
3/2

+
√

3

1/2
= 8

√
3 units.

y

x

(9,
√

3)

X

9 √
3

Y

θ

θ

Fig. 4.5.25

26. The longest beam will have length equal to the minimum
of L = x + y, where x and y are as shown in the figure
below:

x = a

cos θ
, y = b

sin θ
.

Thus,

L = L(θ) = a

cos θ
+ b

sin θ

(
0 < θ <

π

2

)
.

a x

y

b

θ

Fig. 4.5.26

If L ′(θ) = 0, then

a sin θ

cos2 θ
− b cos θ

sin2 θ
= 0

⇔ a sin3 θ − b cos3 θ

cos2 θ sin2 θ
= 0

⇔ a sin3 θ − b cos3 θ = 0

⇔ tan3 θ = b

a

⇔ tan θ = b1/3

a1/3 .

Clearly, L(θ) → ∞ as θ → 0+ or θ → π

2
−. Thus, the

minimum must occur at θ = tan−1
(

b1/3

a1/3

)
. Using the

triangle above for tan θ = b1/3

a1/3 , it follows that

cos θ = a1/3
√

a2/3 + b2/3
, sin θ = b1/3

√
a2/3 + b2/3

.

Hence, the minimum is

L(θ) = a(
a1/3

√
a2/3 + b2/3

) + b(
b1/3

√
a2/3 + b2/3

)

=
(

a2/3 + b2/3
)3/2

units.

27. If the largest beam that can be carried horizon-
tally around the corner is l m long (by Exercise 26,
l = (a2/3 + b2/3)2/3 m), then at the point of maximum
clearance, one end of the beam will be on the floor at
the outer wall of one hall, and the other will be on the
ceiling at the outer wall of the second hall. Thus the hor-
izontal projection of the beam will be l . So the beam
will have length√

l2 + c2 = [(a2/3 + b2/3)3 + c2]1/2 units.

28. Let θ be the angle of inclination of the ladder. The
height of the fence is

h(θ) = 6 sin θ − 2 tan θ

(
0 < θ <

π

2

)
.

h

2 m

6 m

θ

Fig. 4.5.28
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For critical points:

0 = h′(θ) = 6 cos θ − 2 sec2 θ

⇒3 cos θ = sec2 θ ⇒ 3 cos3 θ = 1

⇒ cos θ = ( 1
3

)1/3
.

Since h′′(θ) = −6 sin θ − 4 sec2 θ tan θ < 0 for

0 < θ <
π

2
, therefore h(θ) must be maximum at

θ = cos−1
( 1

3

)1/3
. Then

sin θ =
√

32/3 − 1

31/3
, tan θ =

√
32/3 − 1.

Thus, the maximum height of the fence is

h(θ) = 6

(√
32/3 − 1

31/3

)
− 2

√
32/3 − 1

= 2(32/3 − 1)3/2 ≈ 2.24 m.

29. Let (x, y) be a point on x2 y4 = 1. Then x2 y4 = 1
and the square of distance from (x, y) to (0, 0) is

S = x2 + y2 = 1

y4 + y2, (y �= 0)

Clearly, S → ∞ as y → 0 or y → ±∞, so minimum S
must occur at a critical point. For CP:

0 = d S

dy
= −4

y5
+ 2y ⇒ y6 = 2 ⇒ y = ±21/6

⇒ x = ± 1

21/3

Thus the shortest distance from origin to curve is

S =
√

1

22/3 + 21/3 =
√

3

22/3 = 31/2

21/3 units.

30. The square of the distance from (8, 1) to the curve
y = 1 + x3/2 is

S = (x − 8)2 + (y − 1)2

= (x − 8)2 + (1 + x3/2 − 1)2

= x3 + x2 − 16x + 64.

Note that y, and therefore also S, is only defined for
x ≥ 0. If x = 0 then S = 64. Also, S → ∞ if x → ∞.
For critical points:

0 = d S

dx
= 3x2 + 2x − 16 = (3x + 8)(x − 2)

⇒ x = − 8
3 or 2.

Only x = 2 is feasible. At x = 2 we have S = 44 < 64.
Therefore the minimum distance is

√
44 = 2

√
11 units.

31. Let the cylinder have radius r and height h. By sym-
metry, the centre of the cylinder is at the centre of the
sphere. Thus

r2 + h2

4
= R2.

The volume of cylinder is

V = πr 2h = πh

(
R2 − h2

4

)
, (0 ≤ h ≤ 2R).

Clearly, V = 0 if h = 0 or h = 2R, so maximum V
occurs at a critical point. For CP:

0 = dV

dh
= π

[
R2 − h2

4
− 2h2

4

]

⇒ h2 = 4

3
R2 ⇒ h = 2R√

3

⇒ r =
√

2

3
R.

The largest cylinder has height
2R√

3
units and radius√

2

3
R units.

r

R

h

h/2

Fig. 4.5.31

32. Let the radius and the height of the circular cylinder be r
and h. By similar triangles,

h

R − r
= H

R
⇒ h = H(R − r)

R
.

Hence, the volume of the circular cylinder is

V (r) = πr 2h = πr2 H(R − r)

R

= π H

(
r2 − r3

R

)
for 0 ≤ r ≤ R.
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Since V (0) = V (R) = 0, the maximum value of V must

be at a critical point. If
dV

dr
= π H

(
2r − 3r2

R

)
= 0,

then r = 2R

3
. Therefore the cylinder has maximum

volume if its radius is r = 2R

3
units, and its height is

h =
H

(
R − 2R

3

)

R
= H

3
units.

H

h

r

R

Fig. 4.5.32

33. Let the box have base dimensions x m and height y m.
Then x2 y = volume = 4.
Most economical box has minimum surface area (bottom
and sides). This area is

S = x2 + 4xy = x2 + 4x

(
4

x2

)

= x2 + 16

x
, (0 < x < ∞).

Clearly, S → ∞ if x → ∞ or x → 0+. Thus minimum
S occurs at a critical point. For CP:

0 = d S

dx
= 2x − 16

x2 ⇒ x3 = 8 ⇒ x = 2 ⇒ y = 1.

Most economical box has base 2 m × 2 m and
height 1 m.

x

x

y

Fig. 4.5.33

34.

2 ft

2 ft

s

x

x

x

Fig. 4.5.34

From the figure, if the side of the square base of the
pyramid is 2x , then the slant height of triangular walls
of the pyramid is s = √

2 − x . The vertical height of the
pyramid is

h =
√

s2 − x2 =
√

2 − 2
√

2x + x2 − x2 = √
2

√
1 − √

2x .

Thus the volume of the pyramid is

V = 4
√

2

3
x2
√

1 − √
2x,

for 0 ≤ x ≤ 1/
√

2. V = 0 at both endpoints, so the
maximum will occur at an interior critical point. For CP:

0 = dV

dx
= 4

√
2

3

[
2x

√
1 − √

2x −
√

2x2

2
√

1 − √
2x

]

4x(1 − √
2x) = √

2x2

4x = 5
√

2x2 , x = 4/(5
√

2).

V (4/(5
√

2)) = 32
√

2/(75
√

5). The largest volume of
such a pyramid is 32

√
2/(75

√
5) ft3.

35. Let the dimensions be as shown. The perimeter is

π
x

2
+ x + 2y = 10. Therefore,

(
1 + π

2

)
x + 2y = 10, or (2 + π)x + 4y = 20.

The area of the window is

A = xy + 1

2
π
( x

2

)2 = π
x2

8
+ x

(
5 − (2 + π)x

4

)
.
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To maximize light admitted, maximize the area A. For
CP:

0 = d A

dx
= πx

4
+ 5 − 2 + π

4
x − 2 + π

4
x ⇒ x = 20

4 + π

⇒ y = 10

4 + π
.

To admit greatest amount of light, let width = 20

4 + π
m

and height (of the rectangular part) be
10

4 + π
m.

x

x/2

yy

Fig. 4.5.35

36. Let h and r be the length and radius of the cylindrical
part of the tank. The volume of the tank is

V = πr 2h + 4
3πr3.

h

r

Fig. 4.5.36

If the cylindrical wall costs $k per unit area and the
hemispherical wall $2k per unit area, then the total cost
of the tank wall is

C = 2πrhk + 8πr2k

= 2πrk
V − 4

3πr3

πr2 + 8πr2k

= 2V k

r
+ 16

3
πr2k (0 < r < ∞).

Since C → ∞ as r → 0+ or r → ∞, the minimum cost
must occur at a critical point. For critical points,

0 = dC

dr
= −2V kr−2+32

3
πrk ⇔ r =

(
3V

16π

)1/3

.

Since V = πr2h + 4
3πr3,

r3 = 3

16π

(
πr2h + 4

3
πr3

)
⇒ r = 1

4
h

⇒ h = 4r = 4

(
3V

16π

)1/3

.

Hence, in order to minimize the cost, the radius and
length of the cylindrical part of the tank should be(

3V

16π

)1/3

and 4

(
3V

16π

)1/3

units respectively.

37. Let D′ be chosen so that mirror AB is the right bisector
of DD′. Let C D′ meet AB at X . Therefore, the travel
time along C X D is

TX = C X + X D

speed
= C X + X D′

speed
= C D′

speed
.

If Y is any other point on AB, travel time along CY D is

TY = CY + Y D

speed
= CY + Y D′

speed
>

C D′

speed
.

(The sum of two sides of a triangle is greater than the
third side.) Therefore, X minimizes travel time. Clearly,
X N bisects � C X D.

C

A B

D

D′

X Y

N

θ θ

Fig. 4.5.37

38. If the path of the light ray is as shown in the figure then
the time of travel from A to B is

T = T (x) =
√

a2 + x2

v1
+
√

b2 + (c − x)2

v2
.
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i

r b

x c−x

c

a

A

B

Fig. 4.5.38

To minimize T , we look for a critical point:

0 = dT

dx
= 1

v1

x√
a2 + x2

− 1

v2

c − x√
b2 + (c − x)2

= 1

v1
sin i − 1

v2
sin r.

Thus,
sin i

sin r
= v1

v2
.

39. Let the width be w, and the depth be h. Therefore

(
h

2

)2

+
(w

2

)2 = R2.

The stiffness is S = wh3 = h3
√

4R2 − h2 for
(0 ≤ h ≤ 2R). We have S = 0 if h = 0 or h = 2R.
For maximum stiffness:

0 = d S

dh
= 3h2

√
4R2 − h2 − h4

√
4R2 − h2

.

Thus 3(4R2 − h2) = h2 so h = √
3R, and w = R.

The stiffest beam has width R and depth
√

3R.

R

h

w

w/2

h/2

Fig. 4.5.39

40. The curve y = 1 + 2x − x3 has slope m = y ′ = 2 − 3x2.
Evidently m is greatest for x = 0, in which case y = 1
and m = 2. Thus the tangent line with maximal slope
has equation y = 1 + 2x .

41.
d Q

dt
= kQ3(L − Q)5 (k, L > 0)

Q grows at the greatest rate when f (Q) = Q3(L − Q)5

is maximum, i.e., when

0 = f ′(Q) = 3Q2(L − Q)5 − 5Q3(L − Q)4

= Q2(L − Q)4(3L − 8Q) ⇒ Q = 0, L ,
3L

8
.

Since f (0) = f (L) = 0 and f

(
3L

8

)
> 0, Q is growing

most rapidly when Q = 3L

8
.

42. Let h and r be the height and base radius of the cone
and R be the radius of the sphere. From similar trian-
gles,

r√
h2 + r2

= R

h − R

⇒ h = 2r2 R

r2 − R2
(r > R).

R

r

h−Rh √
h2+r2

R

Fig. 4.5.42

Then the volume of the cone is

V = 1

3
πr2h = 2

3
π R

r4

r2 − R2 (R < r < ∞).

Clearly V → ∞ if r → ∞ or r → R+. Therefore to
minimize V , we look for a critical point:

0 = dV

dr
= 2

3
π R

[
(r2 − R2)(4r3) − r4(2r)

(r2 − R2)2

]

⇔ 4r5 − 4r3 R2 − 2r5 = 0

⇔ r = √
2R.

Hence, the smallest possible volume of a right circular
cone which can contain sphere of radius R is

V = 2

3
π R

(
4R4

2R2 − R2

)
= 8

3
π R3 cubic units.
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43. If x cars are loaded, the total time for the trip is

T = t + 1 + x

1,000
where x = f (t) = 1,000 t

e−t + t
.

We can minimize the average time per car (or, equiva-
lently, maximize the number of cars per hour). The aver-
age time (in hours) per car is

A = T

x
= e−t + t

1,000
+ e−t + t

1,000t
+ 1

1,000

= 1

1,000

[(
e−t + t

) (
1 + 1

t

)
+ 1

]
.

This expression approaches ∞ as t → 0+ or t → ∞.
For a minimum we should look for a positive critical
point. Thus we want

0 = 1

1,000

[(−e−t + 1
) (

1 + 1

t

)
− (

e−t + t
) 1

t2

]
,

which simplifies to

t2 + t + 1 = t2 et .

Both sides of this equation are increasing functions but
the left side has smaller slope than the right side for
t > 0. Since the left side is 1 while the right side is 0 at
t = 0, there will exist a unique solution in t > 0. Using
a graphing calculator or computer program we determine
that the critical point is approximately t = 1.05032. For
this value of t we have x ≈ 750.15, so the movement
of cars will be optimized by loading 750 cars for each
sailing.

44. Let distances and angles be as shown. Then tan α = 2

x
,

tan(θ + α) = 12

x

12

x
= tan θ + tan α

1 − tan θ tan α
=

tan θ + 2

x

1 − 2

x
tan θ

12

x
− 24

x2 tan θ = tan θ + 2

x

tan θ

(
1 + 24

x2

)
= 10

x
, so tan θ = 10x

x2 + 24
= f (x).

To maximize θ (i.e., to get the best view of the mural),
we can maximize tan θ = f (x).
Since f (0) = 0 and f (x) → 0 as x → ∞, we look for a
critical point.

0 = f ′(x) = 10

[
x2 + 24 − 2x2

(x2 + 24)2

]
⇒ x2 = 24

⇒ x = 2
√

6

Stand back 2
√

6 ft (≈ 4.9 ft) to see the mural best.

10

2

x

θ
α

Fig. 4.5.44

45. Let r be the radius of the circular arc and θ be the angle
shown in the left diagram below. Thus,

2rθ = 100 ⇒ r = 50

θ
.

θθ

wall

fence

r

y

θ

y=tan x

y=x

ππ/2

Fig. 4.5.45(a) Fig. 4.5.45(b)

The area of the enclosure is

A = 2θ

2π
πr2 − (r cos θ)(r sin θ)

= 502

θ
− 502

θ2

sin 2θ

2

= 502
(

1

θ
− sin 2θ

2θ2

)

for 0 < θ ≤ π . Note that A → ∞ as θ → 0+, and
for θ = π we are surrounding the entire enclosure with
fence (a circle) and not using the wall at all. Evidently
this would not produce the greatest enclosure area, so the
maximum area must correspond to a critical point of A:

0 = d A

dθ
= 502

(
− 1

θ2
− 2θ2(2 cos 2θ) − sin 2θ(4θ)

4θ4

)

⇔ 1

θ2 + cos 2θ

θ2 = sin 2θ

θ3

⇔ 2θ cos2 θ = 2 sin θ cos θ

⇔ cos θ = 0 or tan θ = θ.
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Observe that tan θ = θ has no solutions in (0, π ]. (The
graphs of y = tan θ and y = θ cross at θ = 0 but
nowhere else between 0 and π .) Thus, the greatest en-
closure area must correspond to cos θ = 0, that is, to

θ = π

2
. The largest enclosure is thus semicircular, and

has area
2

π
(50)2 = 5000

π
m2.

46. Let the cone have radius r and height h.
Let sector of angle θ from disk be used.

Then 2πr = Rθ so r = R

2π
θ .

Also h = √
R2 − r2 =

√
R2 − R2θ2

4π2 = R

2π

√
4π2 − θ2

The cone has volume

V = πr2h

3
= π

3

R2

4π2
θ2 R

2π

√
4π2 − θ

= R3

24π2 f (θ) where f (θ) = θ2
√

4π2 − θ2 (0 ≤ θ ≤ 2π)

V (0) = V (2π) = 0 so maximum V must occur at a
critical point. For CP:

0 = f ′(θ) = 2θ
√

4π2 − θ2 − θ3

√
4π2 − θ2

⇒ 2(4π2 − θ2) = θ2 ⇒ θ2 = 8

3
π2.

The largest cone has volume V

(
π

√
8

3

)
= 2π R3

9
√

3
cu. units.

θ

Rθ

R

R

R
h

r
2πr

Fig. 4.5.46

47. Let the various distances be as labelled in the diagram.

a

h

a−x

x

hy−h

y

L

Fig. 4.5.47

From the geometry of the various triangles in the diagram
we have

x2 = h2 + (a − x)2 ⇒ h2 = 2ax − a2

y2 = a2 + (y − h)2 ⇒ h2 = 2hy − a2

hence hy = ax . Then

L2 = x2 + y2 = x2 + a2x2

h2

= x2 + a2x2

2ax − a2 = 2ax3

2ax − a2

for
a

2
< x ≤ a. Clearly, L → ∞ as x → a

2
+, and

L(a) = √
2a. For critical points of L2:

0 = d(L2)

dx
= (2ax − a2)(6ax2) − (2ax3)(2a)

(2ax − a2)2

= 2a2x2(4x − 3a)

(2ax − a2)2 .

The only critical point in

(
a

2
, a

]
is x = 3a

4
. Since

L

(
3a

4

)
= 3

√
3a

4
< L(a), therefore the least possible

length for the fold is
3
√

3a

4
cm.

Section 4.6 Finding Roots of Equations
(page 251)

1. f (x) = x2 − 2, f ′(x) = 2x .
Newton’s formula xn+1 = g(xn), where

g(x) = x − x2 − 2

2x
= x2 + 2

2x
.

Starting with x0 = 1.5, get x3 = x4 = 1.41421356237.

2. f (x) = x2 − 3, f ′(x) = 2x .
Newton’s formula xn+1 = g(xn), where

g(x) = x − x2 − 3

2x
= x2 + 3

2x
.

Starting with x0 = 1.5, get x4 = x5 = 1.73205080757.

3. f (x) = x3 + 2x − 1, f ′(x) = 3x2 + 2.
Newton’s formula xn+1 = g(xn), where

g(x) = x − x3 + 2x − 1

3x2 + 2
= 2x3 + 1

3x2 + 2
.

Starting with x0 = 0.5, get x3 = x4 = 0.45339765152.
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4. f (x) = x3 + 2x2 − 2, f ′(x) = 3x2 + 4x .
Newton’s formula xn+1 = g(xn), where

g(x) = x − x3 + 2x2 − 2

3x2 + 4x
= 2x3 + 2x2 + 2

3x2 + 4x
.

Starting with x0 = 1.5, get x5 = x6 = 0.839286755214.

5. f (x) = x4 − 8x2 − x + 16, f ′(x) = 4x3 − 16x − 1.
Newton’s formula xn+1 = g(xn), where

g(x) = x − x4 − 8x2 − x + 16

4x3 − 16x − 1
= 3x4 − 8x2 − 16

4x3 − 16x − 1
.

Starting with x0 = 1.5, get x4 = x5 = 1.64809536561.
Starting with x0 = 2.5, get x5 = x6 = 2.35239264766.

6. f (x) = x3 + 3x2 − 1, f ′(x) = 3x2 + 6x .
Newton’s formula xn+1 = g(xn), where

g(x) = x − x3 + 3x2 − 1

3x2 + 6x
= 2x3 + 3x2 + 1

3x2 + 6x
.

Because f (−3) = −1, f (−2) = 3, f (−1) = 1,
f (0) = −1, f (1) = 3, there are roots between −3 and
−2, between −1 and 0, and between 0 and 1.
Starting with x0 = −2.5, get x5 = x6 = −2.87938524157.
Starting with x0 = −0.5, get
x4 = x5 = −0.652703644666.
Starting with x0 = 0.5, get x4 = x5 = 0.532088886328.

7. f (x) = sin x − 1 + x , f ′(x) = cos x + 1.
Newton’s formula is xn+1 = g(xn), where

g(x) = x − sin x − 1 + x

cos x + 1
.

The graphs of sin x and 1−x suggest a root near x = 0.5.
Starting with x0 = 0.5, get
x3 = x4 = 0.510973429389.

y

x0.5 1.0 1.5

y = 1 − x

y = sin x

Fig. 4.6.7

8. f (x) = x2 − cos x , f ′(x) = 2x + sin x .
Newton’s formula is xn+1 = g(xn), where

g(x) = x − x2 − cos x

2x + sin x
.

The graphs of cos x and x2, suggest a root near
x = ±0.8. Starting with x0 = 0.8, get
x3 = x4 = 0.824132312303. The other root is the neg-
ative of this one, because cos x and x2 are both even
functions.

y

x-1.5 -1.0 -0.5 0.5 1.0 1.5

y = x2

y = cos x

Fig. 4.6.8

9. Since tan x takes all real values between any two consec-
utive odd multiples of π/2, its graph intersects y = x
infinitely often. Thus, tan x = x has infinitely many solu-
tions. The one between π/2 and 3π/2 is close to 3π/2,
so start with x0 = 4.5. Newton’s formula here is

xn+1 = xn − tan xn − xn

sec2 xn − 1
.

We get x3 = x4 = 4.49340945791.
y

x
π

y = tan x

y = x

Fig. 4.6.9

10. A graphing calculator shows that the equation

(1 + x2)
√

x − 1 = 0

has a root near x = 0.6. Use of a solve routine or New-
ton’s Method gives x = 0.56984029099806.
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12. Let f (x) = sin x

1 + x2 . Since | f (x)| ≤ 1/(1 + x2) → 0

as x → ±∞ and f (0) = 0, the maximum and minimum
values of f will occur at the two critical points of f that
are closest to the origin on the right and left, respectively.
For CP:

0 = f ′(x) = (1 + x2) cos x − 2x sin x

(1 + x2)2

0 = (1 + x2) cos x − 2x sin x

with 0 < x < π for the maximum and −π < x < 0 for
the minimum. Solving this equation using a solve routine
or Newton’s Method starting, say, with x0 = 1.5, we get
x = ±0.79801699184239. The corresponding max and
min values of f are ±0.437414158279.

13. Let f (x) = cos x

1 + x2
. Note that f is an even function, and

that f has maximum value 1 at x = 0. (Clearly f (0) = 1
and | f (x)| < 1 if x �= 0.) The minimum value will occur
at the critical points closest to but not equal to 0. For
CP:

0 = f ′(x) = (1 + x2)(− sin x) − 2x cos x

(1 + x2)2

0 = (1 + x2) sin x + 2x cos x .

The first CP to the right of zero is between π/2
and 3π/2, so start with x = 2.5, say, and get
x = 2.5437321475261. The minimum value is
f (x) = −0.110639672192.

14. For x2 = 0 we have xn+1 = xn − (x2
n/(2xn)) = xn/2.

If x0 = 1, then x1 = 1/2, x2 = 1/4, x3 = 1/8.

a) xn = 1/2n , by induction.

b) xn approximates the root x = 0 to within 0.0001
provided 2n > 10, 000. We need n ≥ 14 to ensure
this.

c) To ensure that x2
n is within 0.0001 of 0 we need

(1/2n)2 < 0.0001, that is, 22n > 10, 000. We need
n ≥ 7.

d) Convergence of Newton approximations to the root
x = 0 of x2 = 0 is slower than usual because the
derivative 2x of x2 is zero at the root.

15. f (x) =
{√

x if x ≥ 0√−x if x < 0
,

f ′(x) =
{

1/(2
√

x) if x > 0
−1/(2

√−x) if x < 0
.

The Newton’s Method formula says that

xn+1 = xn − f (xn)

f ′(xn)
= xn − 2xn = −xn .

If x0 = a, then x1 = −a, x2 = a, and, in general,
xn = (−1)na. The approximations oscillate back and
forth between two numbers.
If one observed that successive approximations were os-
cillating back and forth between two values a and b, one
should try their average, (a + b)/2, as a new starting
guess. It may even turn out to be the root!

16. Newton’s Method formula for f (x) = x1/3 is

xn+1 = xn − x1/3
n

(1/3)x−2/3
n

= xn − 3xn = −2xn .

If x0 = 1, then x1 = −2, x2 = 4, x3 = −8, x4 = 16, and,
in general, xn = (−2)n . The successive “approximations”
oscillate ever more widely, diverging from the root at
x = 0.

17. Newton’s Method formula for f (x) = x2/3 is

xn+1 = xn − x2/3
n

(2/3)x−1/3
n

= xn − 3
2 xn = − 1

2 xn .

If x0 = 1, then x1 = −1/2, x2 = 1/4, x3 = −1/8,
x4 = 1/16, and, in general, xn = (−1/2)n . The succes-
sive approximations oscillate around the root x = 0, but
still converge to it (though more slowly than is usual for
Newton’s Method).

18. To solve 1 + 1
4 sin x = x , start with x0 = 1 and iterate

xn+1 = 1 + 1
4 sin xn . x5 and x6 round to 1.23613.

19. To solve cos(x/3) = x , start with x0 = 0.9 and iterate
xn+1 = cos(xn/3). x4 and x5 round to 0.95025.

20. To solve (x + 9)1/3 = x , start with x0 = 2 and iterate
xn+1 = (xn + 9)1/3. x4 and x5 round to 2.24004.

21. To solve 1/(2 + x2) = x , start with x0 = 0.5 and iterate
xn+1 = 1/(2 + x2

n ). x6 and x7 round to 0.45340.

22. To solve x3 + 10x − 10 = 0, start with x0 = 1 and iterate
xn+1 = 1 − 1

10 x3
n . x7 and x8 round to 0.92170.

23. r is a fixed point of N(x)

⇐⇒ r = N(r) = r − f (r)

f ′(r)

⇐⇒ 0 = − f (r)/ f ′(r)

⇐⇒ f (r) = 0

i.e., if and only if r is a root of f (x) = 0. In this case,
xn+1 = N(xn) is the nth Newton’s Method approximation
to the root, starting from the initial guess x0.

24. Let g(x) = f (x) − x for a ≤ x ≤ b. g is continuous
(because f is), and since a ≤ f (x) ≤ b whenever
a ≤ x ≤ b (by condition (i)), we know that g(a) ≥ 0
and g(b) ≤ 0. By the Intermediate-Value Theorem there
exists r in [a, b] such that g(r) = 0, that is, such that
f (r) = r .
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25. We are given that there is a constant K satisfying
0 < K < 1, such that

| f (u) − f (v)| ≤ K |u − v|

holds whenever u and v are in [a, b]. Pick any x0 in
[a, b], and let x1 = f (x0), x2 = f (x1), and, in general,
xn+1 = f (xn). Let r be the fixed point of f in [a, b]
found in Exercise 24. Thus f (r) = r . We have

|x1 − r | = | f (x0) − f (r)| ≤ K |x0 − r |
|x2 − r | = | f (x1) − f (r)| ≤ K |x1 − r | ≤ K 2|x0 − r |,

and, in general, by induction

|xn − r | ≤ K n |x0 − r |.

Since K < 1, limn→∞ K n = 0, so limn→∞ xn = r .
The iterates converge to the fixed point as claimed in
Theorem 6.

Section 4.7 Linear Approximations
(page 256)

1. f (x) = x2, f ′(x) = 2x , f (3) = 9, f ′(3) = 6.
Linearization at x = 3: L(x) = 9 + 6(x − 3).

2. f (x) = x−3, f ′(x) = −3x−4, f (2) = 1/8,
f ′(2) = −3/16.
Linearization at x = 2: L(x) = 1

8 − 3
16 (x − 2).

3. f (x) = √
4 − x , f ′(x) = −1/(2

√
4 − x), f (0) = 2,

f ′(0) = −1/4.
Linearization at x = 0: L(x) = 2 − 1

4 x .

4. f (x) = √
3 + x2, f ′(x) = x/

√
3 + x2, f (1) = 2,

f ′(1) = 1/2.
Linearization at x = 1: L(x) = 2 + 1

2 (x − 1).

5. f (x) = (1 + x)−2, f ′(x) = −2(1 + x)−3, f (2) = 1/9,
f ′(2) = −2/27.
Linearization at x = 2: L(x) = 1

9 − 2
27 (x − 2).

6. f (x) = x−1/2, f ′(x) = (−1/2)x−3/2, f (4) = 1/2,
f ′(4) = −1/16.
Linearization at x = 4: L(x) = 1

2 − 1
16 (x − 4).

7. f (x) = sin x , f ′(x) = cos x , f (π) = 0, f ′(π) = −1.
Linearization at x = π : L(x) = −(x − π).

8. f (x) = cos(2x), f ′(x) = −2 sin(2x), f (π/3) = −1/2,
f ′(π/3) = −√

3.
Linearization at x = π/3: L(x) = −1

2 − √
3
(
x − π

3

)
.

9. f (x) = sin2 x , f ′(x) = 2 sin x cos x , f (π/6) = 1/4,
f ′(π/6) = √

3/2.
Linearization at x = π/6: L(x) = 1

4 + (
√

3/2)
(
x − π

6

)
.

10. f (x) = tan x , f ′(x) = sec2 x , f (π/4) = 1, f ′(π/4) = 2.
Linearization at x = π/4: L(x) = 1 + 2

(
x − π

4

)
.

11. If A and x are the area and side length of the square,
then A = x2. If x = 10 cm and �x = 0.4 cm, then

�A ≈ d A

dx
�x = 2x �x = 20(0.4) = 8.

The area increases by about 8 cm2.

12. If V and x are the volume and side length of the cube,
then V = x3. If x = 20 cm and �V = −12 cm3, then

−12 = �V ≈ dV

dx
�x = 3x2 �x = 1, 200 �x,

so that �x = −1/100. The edge length must decrease by
about 0.01 cm in to decrease the volume by 12 cm3.

13. The circumference C and radius r of the orbit are linked
by C = 2πr . Thus �C = 2π �r . If �r = −10 mi then
�C ≈ 2π �r = 20π . The circumference of the orbit will
decrease by about 20π ≈ 62.8 mi if the radius decreases
by 10 mi. Note that the answer does not depend on the
actual radius of the orbit.

14. a = g[R/(R + h)]2 implies that

�a ≈ da

dh
�h = gR2 −2

(R + h)3
�h.

If h = 0 and �h = 10 mi, then

�a ≈ −20g

R
= −20 × 32

3960
≈ 0.16 ft/s2.

15. f (x) = x1/2 f ′(x) = 1

2
x−1/2 f ′′(x) = −1

4
x−3/2

√
50 = f (50) ≈ f (49) + f ′(49)(50 − 49)

= 7 + 1

14
= 99

14
≈ 7.071.

f ′′(x) < 0 on [49, 50], so error is negative:
√

50 <
99

14

| f ′′(x)| <
1

4 × 493/2 = 1

4 × 73 = 1

1372
≈ 0.00073 = k

on (49, 50).

Thus |error| ≤ k

2
(50 − 49)2 = 1

2744
= 0.00036. We have

99

14
− 1

2744
≤ √

50 ≤ 99

14
,

i.e., 7.071064 ≤ √
50 ≤ 7.071429

16. Let f (x) = √
x , then f ′(x) = 1

2 x−1/2 and
f ′′(x) = − 1

4 x−3/2. Hence,

√
47 = f (47) ≈ f (49) + f ′(49)(47 − 49)

= 7 +
(

1

14

)
(−2) = 48

7
≈ 6.8571429.
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Clearly, if x ≥ 36, then

| f ′′(x)| ≤ 1

4 × 63 = 1

864
= K .

Since f ′′(x) < 0, f is concave down. Therefore, the

error E = √
47 − 48

7
< 0 and

|E | <
K

2
(47 − 49)2 = 1

432
.

Thus,
48

7
− 1

432
<

√
47 <

48

7
6.8548 <

√
47 < 6.8572.

17. f (x) = x1/4, f ′(x) = 1

4
x−3/4, f ′′(x) = − 3

16
x−7/4

4
√

85 = f (85) ≈ f (81) + f ′(81)(85 − 81)

= 3 + 4

4 × 27
= 3 + 1

27
= 82

27
≈ 3.037.

f ′′(x) < 0 on [81, 85] so error is negative: 4
√

85 <
82

27
.

| f ′′(x)| <
3

16 × 37 = 1

11, 664
= k on [81, 85].

Thus |Error| ≤ k

2
(85 − 81)2 = 0.00069.

82

27
− 1

1458
<

4
√

85 <
82

27
,

or 3.036351 ≤ 4
√

85 ≤ 3.037037

18. Let f (x) = 1

x
, then f ′(x) = − 1

x2
and f ′′(x) = 2

x3
.

Hence,

1

2.003
= f (2.003) ≈ f (2) + f ′(2)(0.003)

= 1

2
+
(

−1

4

)
(0.003) = 0.49925.

If x ≥ 2, then | f ′′(x)| ≤ 2
8 = 1

4 . Since f ′′(x) > 0 for
x > 0, f is concave up. Therefore, the error

E = 1

2.003
− 0.49925 > 0

and

|E | <
1

8
(0.003)2 = 0.000001125.

Thus,

0.49925 <
1

2.003
< 0.49925 + 0.000001125

0.49925 <
1

2.003
< 0.499251125.

19. f (x) = cos x, f ′(x) = − sin x, f ′′(x) = − cos x

cos 46◦ = cos
(π

4
+ π

180

)

≈ cos
π

4
− sin

(π

4

)( π

180

)

= 1√
2

(
1 − π

180

)
≈ 0.694765.

f ′′(0) < 0 on [45◦, 46◦] so

|Error| <
1

2
√

2

( π

180

)2 ≈ 0.0001.

We have

1√
2

(
1 − π

180
− π2

2 × 1802

)
< cos 46◦ <

1√
2

(
1 − π

180

)

i.e., 0.694658 ≤ cos 46◦ < 0.694765.

20. Let f (x) = sin x , then f ′(x) = cos x and
f ′′(x) = − sin x . Hence,

sin
(π

5

)
= f

(π

6
+ π

30

)
≈ f

(π

6

)
+ f ′ (π

6

) ( π

30

)

= 1

2
+

√
3

2

( π

30

)
≈ 0.5906900.

If x ≤ π

4
, then | f ′′(x)| ≤ 1√

2
. Since f ′′(x) < 0 on

0 < x ≤ 90◦, f is concave down. Therefore, the error E
is negative and

|E | <
1

2
√

2

( π

30

)2 = 0.0038772.

Thus,

0.5906900 − 0.0038772 < sin
(π

5

)
< 0.5906900

0.5868128 < sin
(π

5

)
< 0.5906900.

21. Let f (x) = sin x , then f ′(x) = cos x and
f ′′(x) = − sin x . The linearization at x = π gives:

sin(3.14) ≈ sin π+cos π(3.14−π) = π−3.14 ≈ 0.001592654.

Since f ′′(x) < 0 between 3.14 and π , the er-
ror E in the above approximation is negative:
sin(3.14) < 0.001592654. For 3.14 ≤ t ≤ π , we have

| f ′′(t)| = sin t ≤ sin(3.14) < 0.001592654.

Thus the error satisfies

|E | ≤ 0.001592654

2
(3.14 − π)2 < 0.000000002.
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Therefore 0.001592652 < sin(3.14) < 0.001592654.

22. Let f (x) = sin x , then f ′(x) = cos x and
f ′′(x) = − sin x . The linearization at x = 30◦ = π/6
gives

sin(33◦) = sin
(

π
6 + π

60

)
≈ sin

π

6
+ cos

π

6

( π

60

)

= 1

2
+

√
3

2

( π

60

)
≈ 0.545345.

Since f ′′(x) < 0 between 30◦ and 33◦, the error E in the
above approximation is negative: sin(33◦) < 0.545345.
For 30◦ ≤ t ≤ 33◦, we have

| f ′′(t)| = sin t ≤ sin(33◦) < 0.545345.

Thus the error satisfies

|E | ≤ 0.545345

2

( π

60

)2
< 0.000747.

Therefore

0.545345 − 0.000747 < sin(33◦) < 0.545345

0.544598 < sin(33◦) < 0.545345.

23. From the solution to Exercise 15, the linearization to
f (x) = x1/2 at x = 49 has value at x = 50 given by

L(50) = f (49) + f ′(49)(50 − 49) ≈ 7.071429.

Also, 7.071064 ≤ √
50 ≤ 7.071429, and, since

f ′′(x) = −1/(4(
√

x)3),

−1

4(7)3 ≤ f ′′(x) ≤ −1

4(
√

50)3
≤ −1

4(7.071429)3

for 49 ≤ x ≤ 50. Thus, on that interval,
M ≤ f ′′(x) ≤ N , where M = −0.000729 and
N = −0.000707. By Corollary C,

L(50) + M

2
(50 − 49)2 ≤ f (50) ≤ L(50) + N

2
(50 − 49)2

7.071064 ≤ √
50 ≤ 7.071075.

Using the midpoint of this interval as a new approxima-
tion for

√
50 ensures that the error is no greater than half

the length of the interval:

√
50 ≈ 7.071070, |error| ≤ 0.000006.

24. From the solution to Exercise 16, the linearization to
f (x) = x1/2 at x = 49 has value at x = 47 given by

L(47) = f (49) + f ′(49)(47 − 49) ≈ 6.8571429.

Also, 6.8548 ≤ √
47 ≤ 6.8572, and, since

f ′′(x) = −1/(4(
√

x)3),

−1

4(6.8548)3 ≤ −1

4(
√

47)3
≤ f ′′(x) ≤ −1

4(7)3

for 47 ≤ x ≤ 49. Thus, on that interval,
M ≤ f ′′(x) ≤ N , where M = −0.000776 and
N = −0.000729. By Corollary C,

L(47) + M

2
(47 − 49)2 ≤ f (47) ≤ L(47) + N

2
(47 − 49)2

6.855591 ≤ √
47 ≤ 6.855685.

Using the midpoint of this interval as a new approxima-
tion for

√
47 ensures that the error is no greater than half

the length of the interval:

√
47 ≈ 6.855638, |error| ≤ 0.000047.

25. From the solution to Exercise 17, the linearization to
f (x) = x1/4 at x = 81 has value at x = 85 given by

L(85) = f (81) + f ′(81)(85 − 81) ≈ 3.037037.

Also, 3.036351 ≤ 851/4 ≤ 3.037037, and, since
f ′′(x) = −3/(16(x1/4)7),

−3

16(3)7 ≤ f ′′(x) ≤ −3

16(851/4)7 ≤ −3

16(3.037037)7

for 81 ≤ x ≤ 85. Thus, on that interval,
M ≤ f ′′(x) ≤ N , where M = −0.000086 and
N = −0.000079. By Corollary C,

L(85) + M

2
(85 − 81)2 ≤ f (85) ≤ L(85) + N

2
(85 − 81)2

3.036351 ≤ 851/4 ≤ 3.036405.

Using the midpoint of this interval as a new approxima-
tion for 851/4 ensures that the error is no greater than
half the length of the interval:

851/4 ≈ 3.036378, |error| ≤ 0.000028.

26. From the solution to Exercise 22, the linearization to
f (x) = sin x at x = 30◦ = π/6 has value at
x = 33◦ = π/6 + π/60 given by

L(33◦) = f (π/6) + f ′(π/6)(π/60) ≈ 0.545345.
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Also, 0.544597 ≤ sin(33◦) ≤ 5.545345, and, since
f ′′(x) = − sin x ,

− sin(33◦) ≤ f ′′(x) ≤ − sin(30◦)

for 30◦ ≤ x ≤ 33◦. Thus, on that interval,
M ≤ f ′′(x) ≤ N , where M = −0.545345 and N = −0.5.
By Corollary C,

L(33◦) + M

2
(π/60)2 ≤ sin(33◦) ≤ L(33◦) + N

2
(π/60)2

0.544597 ≤ sin(33◦) ≤ 0.544660.

Using the midpoint of this interval as a new approxima-
tion for sin(33◦) ensures that the error is no greater than
half the length of the interval:

sin(33◦) ≈ 0.544629, |error| ≤ 0.000031.

27. f (2) = 4, f ′(2) = −1, 0 ≤ f ′′(x) ≤ 1

x
if x > 0.

f (3) ≈ f (2) + f ′(2)(3 − 2) = 4 − 1 = 3.
f ′′(x) ≥ 0 ⇒ error ≥ 0 ⇒ f (3) ≥ 3.

| f ′′(x)| ≤ 1

x
≤ 1

2
if 2 ≤ x ≤ 3, so |Error| ≤ 1

4
(3 − 2)2.

Thus 3 ≤ f (3) ≤ 3 1
4

28. The linearization of f (x) at x = 2 is

L(x) = f (2) + f ′(2)(x − 2) = 4 − (x − 2).

Thus L(3) = 3. Also, since 1/(2x) ≤ f ′′(x) ≤ 1/x for
x > 0, we have for 2 ≤ x ≤ 3, (1/6) ≤ f ′′(x) ≤ (1/2).
Thus

3 + 1

2

(
1

6

)
(3 − 2)2 ≤ f (3) ≤ 3 + 1

2

(
1

2

)
(3 − 2)2.

The best approximation for f (3) is the midpoint of this
interval: f (3) ≈ 31

6 .

29. The linearization of g(x) at x = 2 is

L(x) = g(2) + g′(2)(x − 2) = 1 + 2(x − 2).

Thus L(1.8) = 0.6.
If |g′′(x)| ≤ 1 + (x − 2)2 for x > 0, then
|g′′(x)| < 1 + (−0.2)2 = 1.04 for 1.8 ≤ x ≤ 2. Hence

g(1.8) ≈ 0.6 with |error| <
1

2
(1.04)(1.8 − 2)2 = 0.0208.

30. If f (θ) = sin θ , then f ′(θ) = cos θ and f ′′(θ) = − sin θ .
Since f (0) = 0 and f ′(0) = 1, the linearization of f at
θ = 0 is L(θ) = 0 + 1(θ − 0) = θ .
If 0 ≤ t ≤ θ , then f ′′(t) ≤ 0, so 0 ≤ sin θ ≤ θ .
If 0 ≥ t ≥ θ , then f ′′(t) ≥ 0, so 0 ≥ sin θ ≥ θ .
In either case, | sin t | ≤ | sin θ | ≤ |θ | if t is between 0 and
θ . Thus the error E(θ) in the approximation sin θ ≈ θ

satisfies

|E(θ) ≤ |θ |
2

|θ |2 = |θ |3
2

.

If |θ | ≤ 17◦ = 17π/180, then

|E(θ)|
|θ | ≤ 1

2

(
17π

180

)2

≈ 0.044.

Thus the percentage error is less than 5%.

31. V = 4
3πr3 ⇒ �V ≈ 4πr 2 �r

If r = 20.00 and �r = 0.20, then
�V ≈ 4π(20.00)2(0.20) ≈ 1005.
The volume has increased by about 1005 cm2.

Section 4.8 Taylor Polynomials (page 264)

1. If f (x) = e−x , then f (k)(x) = (−1)k e−x , so
f (k)(0) = (−1)k . Thus

P4(x) = 1 − x + x2

2!
− x3

3!
+ x4

4!
.

2. If f (x) = cos x , then f ′(x) = − sin x ,
f ′′(x) = − cos x , and f ′′′(x) = sin x . In par-
ticular, f (π/4) = f ′′′(π/4) = 1/

√
2 and

f ′(π/4) = f ′′(π/4) = −1/
√

2. Thus

P3(x) = 1√
2

[
1 −

(
x − π

4

)
− 1

2

(
x − π

4

)2 + 1

6

(
x − π

4

)3
]

.

3. f (x) = ln x

f ′(x) = 1

x

f ′′(x) = −1

x2

f ′′′(x) = 2

x3

f (4)(x) = −6

x4

f (2) = ln 2

f ′(2) = 1

2

f ′′(2) = −1

4

f ′′′(2) = 2

8

f (4)(2) = −6

16

Thus

P4(x) = ln 2+1

2
(x−2)−1

8
(x−2)2+ 1

24
(x−2)3− 1

64
(x−2)4.

4. f (x) = sec x

f ′(x) = sec x tan x

f ′′(x) = 2 sec3 x − sec x

f ′′′(x) = (6 sec2 x − 1) sec x tan x

f (0) = 1

f ′(0) = 0

f ′′(0) = 1

f ′′′(0) = 0

Thus P3(x) = 1 + (x2/2).
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5. f (x) = x1/2

f ′(x) = 1

2
x−1/2

f ′′(x) = −1

4
x−3/2

f ′′′(x) = 3

8
x−5/2

f (4) = 2

f ′(4) = 1

4

f ′′(4) = −1

32

f ′′′(4) = 3

256

Thus

P3(x) = 2 + 1

4
(x − 4) − 1

64
(x − 4)2 + 1

512
(x − 4)3.

6. f (x) = (1 − x)−1

f ′(x) = (1 − x)−2

f ′′(x) = 2(1 − x)−3

f ′′′(x) = 3!(1 − x)−4

...

f (n)(x) = n!(1 − x)−(n+1)

f (0) = 1

f ′(0) = 1

f ′′(0) = 2

f ′′′(0) = 3!

...

f (n)(0) = n!

Thus
Pn(x) = 1 + x + x2 + x3 + · · · + xn .

7. f (x) = 1

2 + x

f ′(x) = −1

(2 + x)2

f ′′(x) = 2!

(2 + x)3

f ′′′(x) = −3!

(2 + x)4

...

f (n)(x) = (−1)nn!

(2 + x)n+1

f (1) = 1

3

f ′(1) = −1

9

f ′′(1) = 2!

27

f ′′′(1) = −3!

34

...

f (n)(1) = (−1)nn!

3n+1

Thus

Pn(x) = 1

3
− 1

9
(x −1)+ 1

27
(x −1)2 −· · ·+ (−1)n

3n+1
(x −1)n .

8. f (x) = sin(2x)

f ′(x) = 2 cos(2x)

f ′′(x) = −22 sin(2x)

f ′′′(x) = −23 cos(2x)

f (4)(x) = 24 sin(2x) = 24 f (x)

f (5)(x) = 24 f ′(x)

...

f (π/2) = 0

f ′(π/2) = −2

f ′′(π/2) = 0

f ′′′(π/2) = 23

f (4)(π/2) = 0

f (5)(π/2) = −25

...

Evidently f (2n)(π/2) = 0 and
f (2n−1)(π/2) = (−1)n22n−1. Thus

P2n−1(x) = −2
(

x − π

2

)
+23

3!

(
x − π

2

)3−25

5!

(
x − π

2

)5+· · ·+(−1)n 22n−1

(2n − 1)!

(
x − π

2

)2n−1

9. f (x) = x1/3, f ′(x) = 1

3
x−2/3,

f ′′(x) = −2

9
x−5/3, f ′′′(x) = 10

27
x−8/3.

a = 8 : f (x) ≈ f (8) + f ′(8)(x − 8) + f ′′(8)

2
(x − 8)2

= 2 + 1

12
(x − 8) − 1

9 × 32
(x − 8)2

91/2 ≈ 2 + 1

12
− 1

288
≈ 2.07986

Error = f ′′′(c)
3!

(9 − 8)3 = 10

27 × 6

1

X8/3 for some c in

[8, 9].
For 8 ≤ c ≤ 9 we have c8/3 ≥ 88/3 = 28 = 256 so

0 < Error ≤ 5

81 × 256
< 0.000241.

Thus 2.07986 < 91/3 < 2.08010.

10. Since f (x) = √
x , then f ′(x) = 1

2 x−1/2,
f ′′(x) = − 1

4 x−3/2 and f ′′′(x) = 3
8 x−5/2. Hence,

√
61 ≈ f (64) + f ′(64)(61 − 64) + 1

2
f ′′(64)(61 − 64)2

= 8 + 1

16
(−3) − 1

2

(
1

2048

)
(−3)2 ≈ 7.8103027.

The error is R2 = R2( f ; 64, 61) = f ′′′(c)
3!

(61 − 64)3 for

some c between 61 and 64. Clearly R2 < 0. If t ≥ 49,
and in particular 61 ≤ t ≤ 64, then

| f ′′′(t)| ≤ 3
8 (49)−5/2 = 0.0000223 = K .

Hence,

|R2| ≤ K

3!
|61 − 64|3 = 0.0001004.

Since R2 < 0, therefore,

7.8103027 − 0.0001004 <
√

61 < 7.8103027

7.8102023 <
√

61 < 7.8103027.

11. f (x) = 1

x
, f ′(x) = − 1

x2 ,

f ′′(x) = 2

x3 , f ′′′(x) = −6

x4 .

a = 1 : f (x) ≈ 1 − (x − 1) + 2

2
(x − 1)2

1

1.02
≈ 1 − (0.02) + (0.02)2 = 0.9804.

Error = f ′′′(c)
3!

(0.02)3 = − 1

X4 (0.02)3 where

1 ≤ c ≤ 1.02.

Therefore, −(0.02)3 ≤ 1

1.02
− 0.9804 < 0,

i.e., 0.980392 ≤ 1

1.02
< 0.980400.
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12. Since f (x) = tan−1 x , then

f ′(x) = 1

1 + x2 , f ′′(x) = −2x

(1 + x2)2 , f ′′′(x) = −2 + 6x2

(1 + x2)3 .

Hence,

tan−1 (0.97) ≈ f (1) + f ′(1)(0.97 − 1) + 1
2 f ′′(1)(0.97 − 1)2

= π

4
+ 1

2
(−0.03) +

(
−1

4

)
(−0.03)2

= 0.7701731.

The error is R2 = f ′′′(c)
3!

(−0.03)3 for some c between

0.97 and 1. Note that R2 < 0. If 0.97 ≤ t ≤ 1, then

| f ′′′(t)| ≤ f ′′′(1) = −2 + 6

(1.97)3 < 0.5232 = K .

Hence,

|R2| ≤ K

3!
|0.97 − 1|3 < 0.0000024.

Since R2 < 0,

0.7701731 − 0.0000024 < tan−1 (0.97) < 0.7701731

0.7701707 < tan−1 (0.97) < 0.7701731.

13. f (x) = ex , f (k)(x) = ex for k = 1, 2, 3 . . .

a = 0 : f (x) ≈ 1 + x + x2

2

e−0.5 ≈ 1 − 0.5 + (0.5)2

2
= 0.625

Error = f ′′′(c)
6

(0.5)3 = ec

6
(−0.05)3 for some c between

−0.5 and 0. Thus

|Error| <
(0.5)3

6
< 0.020834,

and −0.020833 < e−0.5 − 0.625 < 0, or
0.604 < e−0.5 < 0.625.

14. Since f (x) = sin x , then f ′(x) = cos x , f ′′(x) = − sin x
and f ′′′(x) = − cos x . Hence,

sin(47◦) = f
(π

4
+ π

90

)

≈ f
(π

4

)
+ f ′ (π

4

)( π

90

)
+ 1

2
f ′′ (π

4

) ( π

90

)2

= 1√
2

+ 1√
2

( π

90

)
− 1

2
√

2

( π

90

)2

≈ 0.7313587.

The error is R2 = f ′′′(c)
3!

( π

90

)3
for some c between 45◦

and 47◦. Observe that R2 < 0. If 45◦ ≤ t ≤ 47◦, then

| f ′′′(t)| ≤ | − cos 45◦| = 1√
2

= K .

Hence,

|R2| ≤ K

3!

( π

90

)3
< 0.0000051.

Since R2 < 0, therefore

0.7313587 − 0.0000051 < sin(47◦) < 0.7313587

0.7313536 < sin(47◦) < 0.7313587.

15. f (x) = sin x

f ′(x) = cos x

f ′′(x) = − sin x

f ′′′(x) = − cos x

f (4)(x) = sin x
a = 0; n = 7:

sin x = 0 + x − 0 − x3

3!
+ 0 + x5

5!
− 0 − x7

7!
+ R7

= x − x3

3!
+ x5

5!
− x7

7!
+ R7(x)

,

where R7(x) = sin c

8!
x8 for some c between 0 and x .

16. For f (x) = cos x we have

f ′(x) = − sin x

f (4)(x) = cos x

f ′′(x) = − cos x

f (5)(x) = − sin x

f ′′′(x) = sin x

f (6)(x) = − cos x .

The Taylor’s Formula for f with a = 0 and n = 6 is

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ R6( f ; 0, x)

where the Lagrange remainder R6 is given by

R6 = R6( f ; 0, x) = f (7)(c)

7!
x7 = sin c

7!
x7,

for some c between 0 and x .

17. f (x) = sin x a = π

4
, n = 4

sin x = 1√
2

+ 1√
2

(
x − π

4

)
− 1√

2

1

2!

(
x − π

4

)2

− 1√
2

1

3!

(
x − π

4

)3 + 1√
2

1

4!

(
x − π

4

)4 + R4(x)

where R4(x) = 1

5!
(cos c)

(
x − π

4

)5

for some c between
π

4
and x .
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18. Given that f (x) = 1

1 − x
, then

f ′(x) = 1

(1 − x)2
, f ′′(x) = 2

(1 − x)3
.

In general,

f (n)(x) = n!

(1 − x)(n+1)
.

Since a = 0, f (n)(0) = n!. Hence, for n = 6, the Taylor’s
Formula is

1

1 − x
= f (0) +

6∑
n=1

f (n)(0)

n!
xn + R6( f ; 0, x)

= 1 + x + x2 + x3 + x4 + x5 + x6 + R6( f ; 0, x).

The Langrange remainder is

R6( f ; 0, x) = f (7)(c)

7!
x7 = x7

(1 − c)8

for some c between 0 and x .

19. f (x) = ln x

f ′(x) = 1

x

f ′′(x) = −−1

x2

f ′′′(x) = 2!

x3

f (4)(x) = −3!

x4

f (5)(x) = 4!

x5

f (6)(x) = −5!

x6

f (7) = 6!

x7

a = 1, n = 6

ln x = 0 + 1(x − 1) − 1

2!
(x − 1)2 + 2!

3!
(x − 1)3

− 3!

4!
(x − 1)4 + 4!

5!
(x − 1)5 − 5!

6!
(x − 1)6 + R6(x)

= (x − 1) − (x − 1)2

2
+ (x − 1)3

3
− (x − 1)4

4

+ (x − 1)5

5
− (x − 1)6

6
+ R6(x)

where R6(x) = 1

7c7 (x − 1)7 for some c between 1 and x .

20. Given that f (x) = tan x , then

f ′(x) = sec2 x

f ′′(x) = 2 sec2 x tan x

f (3)(x) = 6 sec4 x − 4 sec2 x

f (4)(x) = 8 tan x(3 sec4 x − sec2 x).

Given that a = 0 and n = 3, the Taylor’s Formula is

tan x = f (0) + f ′(0)x + f ′′(0)

2!
x2 + f ′′′(0)

3!
x3 + R3( f ; 0, x)

= x + 2

3!
x3 + R3( f ; 0, x)

= x + 1

3
x3 + 2

15
x5.

The Lagrange remainder is

R3( f ; 0, x) = f (4)(c)

4!
x4 = tan c(3 sec4 X − sec2 C)

3
x4

for some c between 0 and x .

21. e3x = e3(x+1) e−3

P3(x) = e−3
[

1 + 3(x + 1) + 9

2
(x + 1)2 + 9

2
(x + 1)3

]
.

22. For eu , P4(u) = 1 + u + u2

2!
+ u3

3!
+ u4

4!
. Let u = −x2.

Then for e−x2
:

P8(x) = 1 − x2 + x4

2!
− x6

3!
+ x8

4!
.

23. For sin2 x = 1

2

(
1 − cos(2x)

)
at x = 0, we have

P4(x) = 1

2

[
1 −

(
1 − (2x)2

2!
+ (2x)4

4!

)]
= x2 − x4

3
.

24. sin x = sin
(
π + (x − π)

)
= − sin(x − π)

P5(x) = −(x − π) + (x − π)3

3!
− (x − π)5

5!

25. For
1

1 − u
at u = 0, P3(u) = 1 + u + u2 + u3. Let

u = −2x2. Then for
1

1 + 2x2 at x = 0,

P6(x) = 1 − 2x2 + 4x4 − 8x6.

26. cos(3x − π) = − cos(3x)

P8(x) = −1 + 32x2

2!
− 34x4

4!
+ 36x6

6!
− 38x8

8!
.

27. Since x3 = 0 + 0x + 0x2 + x3 + 0x4 + · · · we have
Pn(x) = 0 if 0 ≤ n ≤ 2; Pn(x) = x3 if n ≥ 3

28. Let t = x − 1 so that

x3 = (1 + t)3 = 1 + 3t + 3t2 + t3

= 13(x − 1) + 3(x − 1)2 + (x − 1)3.
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Thus the Taylor polynomials for x3 at x = 1 are

P0(x) = 1

P1(x) = 1 + 3(x − 1)

P1(x) = 1 + 3(x − 1) + 3(x − 1)2

Pn(x) = 1 + 3(x − 1) + 3(x − 1)2 + (x − 1)3 if n ≥ 3.

29. sinh x = 1

2
(ex − e−x)

P2n+1(x) =1

2

(
1 + x + x2

2!
+ · · · + x2n+1

(2n + 1)!

)

− 1

2

(
1 − x + x2

2!
+ · · · − x2n+1

(2n + 1)!

)

=x + x3

3!
+ x5

5!
+ · · · + x2n+1

(2n + 1)!
.

30. For ln(1 + x) at x = 0 we have

P2n+1(x) = x − x2

2
+ x3

3
− · · · + x2n+1

2n + 1
.

For ln(1 − x) at x = 0 we have

P2n+1(x) = −x − x2

2
− x3

3
− · · · − x2n+1

2n + 1
.

For tanh−1 x = 1

2
ln(1 + x) − 1

2
ln(1 − x),

P2n+1(x) = x + x3

3
+ x5

5
+ · · · + x2n+1

2n + 1
.

31. f (x) = e−x

f (n)(x) =
{

e−x if n is even
−e−x if n is odd

e−x = 1 − x + x2

2!
− x3

3!
+ · · · + (−1)n x5

n!
+ Rn(x)

where Rn(x) = (−1)n+1 Xn+1

(n + 1)!
for some X between 0

and x .
For x = 1, we have
1

e
= 1 − 1 + 1

2!
− 1

3!
+ · · · + (−1)n 1

n!
+ Rn(1)

where Rn(1) = (−1)n+1 e−X xn+1

(n + 1)!
for some X between

−1 and 0.

Therefore, |Rn(1)| <
1

(n + 1)!
. We want

|Rn(1)| < 0.000005 for 5 decimal places.

Choose n so that
1

(n + 1)!
< 0.000005. n = 8 will do

since 1/9! ≈ 0.0000027.

Thus
1

e
≈ 1

2!
− 1

3!
+ 1

4!
− 1

5!
+ 1

6!
− 1

7!
+ 1

8!
≈ 0.36788 (to 5 decimal places).

32. In Taylor’s Formulas for f (x) = sin x with a = 0, only
odd powers of x have nonzero coefficients. Accordingly
we can take terms up to order x2n+1 but use the remain-
der after the next term 0x2n+2. The formula is

sin x = x − x3

3!
+ x5

5!
− · · · + (−1)n x2n+1

(2n + 1)!
+ R2n+2,

where

R2n+2( f ; 0, x) = (−1)n+1 cos c

(2n + 3)!
x2n+3

for some c between 0 and x .
In order to use the formula to approximate
sin(1) correctly to 5 decimal places, we need
|R2n+2( f ; 0, 1)| < 0.000005. Since | cos c| ≤ 1, it is
sufficient to have 1/(2n + 3)! < 0.000005. n = 3 will do
since 1/9! ≈ 0.000003. Thus

sin(1) ≈ 1 − 1

3!
+ 1

5!
− 1

7!
≈ 0.84147

correct to five decimal places.

33. f (x) = (x − 1)2, f ′(x) = 2(x − 1), f ′′(x) = 2.

f (x) ≈ 1 − 2x + 2

2
x2 = 1 − 2x + x2

Error = 0
g(x) = x3 + 2x2 + 3x + 4
Quadratic approx.: g(x) ≈ 4 + 3x + 2x2

Error = x3

Since g′′′(c) = 6 = 3!, error = g′′′(c)
3!

x3

so that constant
1

3!
in the error formula for the quadratic

approximation cannot be improved.

34. 1 − xn+1 = (1 − x)(1 + x + x2 + x3 + · · · + xn). Thus

1

1 − x
= 1 + x + x2 + x3 + · · · + xn + xn+1

1 − x
.

If |x | ≤ K < 1, then |1 − x | ≥ 1 − K > 0, so

∣∣∣∣ xn+1

1 − x

∣∣∣∣ ≤ 1

1 − K
|xn+1| = O(xn+1)

as x → 0. By Theorem 11, the nth-order
Maclaurin polynomial for 1/(1 − x) must be
Pn(x) = 1 + x + x2 + x3 + · · · + xn .

35. Differentiating

1

1 − x
= 1 + x + x2 + x3 + · · · + xn + xn+1

1 − x
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with respect to x gives

1

(1 − x)2 = 1 + 2x + 3x2 + · · · + nxn−1 + n + 1 − nx

(1 − x)2 xn .

Then replacing n with n + 1 gives

1

(1 − x)2 = 1+2x+3x2+· · ·+(n+1)xn+n + 2 − (n + 1)x

(1 − x)2 xn+1.

If |x | ≤ K < 1, then |1 − x | ≥ 1 − K > 0, and so

∣∣∣∣n + 2 − (n + 1)x

(1 − x)2
xn+1

∣∣∣∣ ≤ n + 2

(1 − K )2
|xn+1| = O(xn+1)

as x → 0. By Theorem 11, the nth-order
Maclaurin polynomial for 1/(1 − x)2 must be
Pn(x) == 1 + 2x + 3x2 + · · · + (n + 1)xn .

Section 4.9 Indeterminate Forms
(page 269)

1. lim
x→0

3x

tan 4x

[
0

0

]

= lim
x→0

3

4 sec2 4x
= 3

4

2. lim
x→2

ln(2x − 3)

x2 − 4

[
0

0

]

=

(
2

2x − 3

)

2x
= 1

2
.

3. lim
x→0

sin ax

sin bx

[
0

0

]

= lim
x→0

a cos ax

b cos bx
= a

b

4. lim
x→0

1 − cos ax

1 − cos bx

[
0

0

]

= lim
x→0

a sin ax

b sin bx

[
0

0

]

= lim
x→0

a2 cos ax

b2 cos bx
= a2

b2 .

5. lim
x→0

sin−1 x

tan−1 x

[
0

0

]

= lim
x→0

1 + x2
√

1 − x2
= 1

6. lim
x→1

x1/3 − 1

x2/3 − 1

[
0

0

]

= lim
x→1

( 1
3 )x−2/3

( 2
3 )x−1/3

= 1

2
.

7. lim
x→0

x cot x [0 × ∞]

= lim
x→0

( x

sin x

)
cos x

= 1 × lim
x→0

x

sin x

[
0

0

]

= lim
x→0

1

cos x
= 1

8. lim
x→0

1 − cos x

ln(1 + x2)

[
0

0

]

= lim
x→0

sin x(
2x

1 + x2

)

= lim
x→0

(1 + x2) lim
x→0

sin x

2x

= lim
x→0

cos x

2
= 1

2
.

9. lim
t→π

sin2 t

t − π

[
0

0

]

= lim
t→π

2 sin t cos t

1
= 0

10. lim
x→0

10x − ex

x

[
0

0

]

= lim
x→0

10x ln 10 − ex

1
= ln 10 − 1.

11. lim
x→π/2

cos 3x

π − 2x

[
0

0

]

= lim
x→π/2

−3 sin 3x

−2
= 3

2
(−1) = −3

2

12. lim
x→1

ln(ex) − 1

sin πx

[
0

0

]

= lim
x→1

1

x
π cos(πx)

= − 1

π
.

13. lim
x→∞ x sin

1

x
[∞ × 0]

= lim
x→∞

sin
1

x
1

x

[
0

0

]

= lim
x→∞

− 1

x2 cos
1

x

− 1

x2

= lim
x→∞ cos

1

x
= 1.
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14. lim
x→0

x − sin x

x3

[
0

0

]

= lim
x→0

1 − cos x

3x2

[
0

0

]

= lim
x→0

sin x

6x

[
0

0

]

= lim
x→0

cos x

6
= 1

6
.

15. lim
x→0

x − sin x

x − tan x

[
0

0

]

= lim
x→0

1 − cos x

1 − sec2 x

[
0

0

]

= lim
x→0

(cos2 x)
1 − cos x

cos2 x − 1

= −1 × lim
x→0

cos x − 1

(cos x − 1)(cos x + 1)

= −1

2

16. lim
x→0

2 − x2 − 2 cos x

x4

[
0

0

]

= lim
x→0

−2x + 2 sin x

4x3

[
0

0

]

= −1

2
lim
x→0

x − sin x

x3

= −1

2

(
1

6

)
= − 1

12
(by Exercise 14).

17. lim
x→0+

sin2 x

tan x − x

[
0

0

]

= lim
x→0+

2 sin x cos x

sec2 x − 1

[
0

0

]

= 2 × 1 × lim
x→0+

cos x

2 sec2 x tan x
= ∞

18. lim
r→π/2

ln sin r

cos r

[
0

0

]

= lim
r→π/2

(cos r

sin r

)
− sin r

= 0.

19. lim
t→π/2

sin t

t
= 2

π

20. lim
x→1−

cos−1 x

x − 1

[
0

0

]

= lim
x→1−

−
(

1√
1 − x2

)

1
= −∞.

21. lim
x→∞ x(2 tan−1 x − π) [0 × ∞]

= lim
x→∞

2 tan−1 x − π

1

x

[
0

0

]

= lim
x→∞

2

1 + x2

/
− 1

x2

= lim
x→∞ − 2x2

1 + x2 = −2

22. lim
t→(π/2)−(sec t − tan t) [∞ − ∞]

= lim
t→(π/2)−

1 − sin t

cos t

[
0

0

]

= lim
t→(π/2)−

− cos t

− sin t
= 0.

23. lim
t→0

(
1

t
− 1

teat

)
(∞ − ∞)

= lim
t→0

eat − 1

teat

[
0

0

]

= lim
t→0

aeat

eat + ateat
= a

24. Since lim
x→0+

√
x ln x = lim

x→0+
ln x

x−1/2

[
0

0

]

= lim
x→0+

(
1

x

)
(

−1

2

)
x−3/2

= 0,

hence lim
x→0+ x

√
x

= lim
x→0+ e

√
x ln x = e0 = 1.

25. Let y = (csc x)sin2 x .
Then ln y = sin2 x ln(csc x)

lim
x→0+ ln y = lim

x→0+
ln(csc x)

csc2 x

[∞
∞
]

= lim
x→0+

− csc x cot x

csc x
−2 csc2 x cot x

= lim
x→0+

1

2 csc2 x
= 0.

Thus limx→0+(csc x)sin2 x = e0 = 1.
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26. lim
x→1+

(
x

x − 1
− 1

ln x

)
[∞ − ∞]

= lim
x→1+

x ln x − x + 1

(x − 1)(ln x)

[
0

0

]

= lim
x→1+

ln x

ln x + 1 − 1

x

[
0

0

]

= lim
x→1+

1

x
1

x
+ 1

x2

= lim
x→1+ = x

x + 1
= 1

2
.

27. lim
t→0

3 sin t − sin 3t

3 tan t − tan 3t

[
0

0

]

= lim
t→0

3(cos t − cos 3t)

3(sec2 t − sec2 3t)

[
0

0

]

= lim
t→0

cos t − cos 3t

cos2 3t − cos2 t

cos2 t cos2 3t

= − lim
t→0

cos 3t − cos t

cos2 3t − cos2 t

= − lim
t→0

1

cos 3t + cos t
= −1

2

28. Let y =
( sin x

x

)1/x2

.

lim
x→0

ln y = lim
x→0

ln
( sin x

x

)
x2

[
0

0

]

= lim
x→0

( x

sin x

)( x cos x − sin x

x2

)

2x

= lim
x→0

x cos x − sin x

2x2 sin x

[
0

0

]

= lim
x→0

−x sin x

4x sin x + 2x2 cos x

= lim
x→0

− sin x

4 sin x + 2x cos x

[
0

0

]

= lim
x→0

− cos x

6 cos x − 2x sin x
= −1

6
.

Thus, lim
x→0

( sin x

x

)1/x2

= e−1/6.

29. Let y = (cos 2t)1/t2
.

Then ln y = ln(cos 2t)

t2 . We have

lim
t→0

ln y = lim
t→0

ln(cos 2t)

t2

[
0

0

]

= lim
t→0

−2 tan 2t

2t

[
0

0

]

= − lim
t→0

2 sec2 2t

1
= −2.

Therefore limt→0(cos 2t)1/t2 = e−2.

30. lim
x→0+

csc x

ln x

[
−∞

∞
]

= lim
x→0+

− csc x cot x
1

x

[
−∞

∞
]

= lim
x→0+

−x cos x

sin2 x

[
0

0

]

= −
(

lim
x→0+ cos x

)
lim

x→0+
1

2 sin x cos x

= −∞.

31. lim
x→1−

ln sin πx

csc πx

[∞
∞
]

= lim
x→1−

π cos πx

sin πx
−π csc πx cot πx

= −π

π
lim

x→1− tan πx = 0

32. Let y = (1 + tan x)1/x .

lim
x→0

ln y = lim
x→0

ln(1 + tan x)

x

[
0

0

]

= lim
x→0

sec2 x

1 + tan x
= 1.

Thus, lim
x→0

(1 + tan x)1/x = e.

33. lim
h→0

f (x + h) − 2 f (x) + f (x − h)

h2

[
0

0

]

= lim
h→0

f ′(x + h) − f ′(x − h)

2h

[
0

0

]

= lim
h→0

f ′′(x + h) + f ′′(x − h)

2

= 2 f (x)

2
= f ′′(x)

34. lim
h→0

f (x + 3h) − 3 f (x + h) + 3 f (x − h) − f (x − 3h)

h3

= lim
h→0

3 f ′(x + 3h) − 3 f ′(x + h) − 3 f ′(x − h) + 3 f ′(x − 3h)

3h2

= lim
h→0

3 f ′′(x + 3h) − f ′′(x + h) + f ′′(x − h) − 3 f ′′(x − 3h)

2h

= lim
h→0

9 f ′′′(x + 3h) − f ′′′(x + h) − f ′′′(x − h) + 9 f ′′′(x − 3h)

2
=8 f ′′′(x).
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35. Suppose that f and g are continuous on [a, b] and
differentiable on (a, b) and g(x) �= 0 there. Let
a < x < t < b, and apply the Generalized Mean-Value
Theorem; there exists c in (x, t) such that

f (x) − f (t)

g(x) − g(t)
= f ′(c)

g′(c)

⇒
[

f (x) − f (t)

g(x)

][
g(x)

g(x) − g(t)

]
= f ′(c)

g′(c)

⇒ f (x)

g(x)
− f (t)

g(x)
= f ′(c)

g′(c)

[
g(x) − g(t)

g(x)

]

⇒ f (x)

g(x)
= f ′(c)

g′(c)
− g(t)

g(x)

f ′(c)
g′(c)

+ f (t)

g(x)

⇒ f (x)

g(x)
= f ′(c)

g′(c)
+ 1

g(x)

[
f (t) − g(t)

f ′(c)
g′(c)

]

⇒ f (x)

g(x)
− L = f ′(c)

g′(c)
− L + 1

g(x)

[
f (t) − g(t)

f ′(c)
g′(c)

]
.

Since |m + n| ≤ |m| + |n|, therefore,

∣∣∣∣ f (x)

g(x)
−L

∣∣∣∣ ≤
∣∣∣∣ f ′(c)

g′(c)
−L

∣∣∣∣+ 1

|g(x)|
[
| f (t)|+|g(t)|

∣∣∣∣ f ′(c)
g′(c)

∣∣∣∣
]
.

Now suppose that ε is an arbitrary small positive number.
Since limc→a+ f ′(c)/g′(c) = L , and since a < x < c < t ,
we can choose t sufficiently close to a to ensure that

∣∣∣∣ f ′(c)
g′(c)

− L

∣∣∣∣ <
ε

2
.

In particular, ∣∣∣∣ f ′(c)
g′(c)

∣∣∣∣ < |L | + ε

2
.

Since limx→a+ |g(x)| = ∞, we can choose x between a
and t sufficiently close to a to ensure that

1

|g(x)|
[
| f (t)| + |g(t)|

(
|L | + ε

2

)]
<

ε

2
.

It follows that

∣∣∣∣ f (x)

g(x)
− L

∣∣∣∣ < ε

2
+ ε

2
= ε.

Thus limx→a+
f (x)

g(x)
= L .

Review Exercises 4 (page 270)

1. Since dr/dt = 2r/100 and V = (4/3)πr3, we have

dV

dt
= 4π

3
3r2 dr

dt
= 3V

2

100
= 6V

100
.

Hence The volume is increasing at 6%/min.

2. a) Since F must be continuous at r = R, we have

mgR2

R2 = mkR, or k = g

R
.

b) The rate of change of F as r decreases from R is

(
− d

dr
(mkr)

)∣∣∣∣
r=R

= −mk = −mg

R
.

The rate of change of F as r increases from R is

(
− d

dr

mgR2

r2

)∣∣∣∣
r=R

= −2mgR2

R3 = −2
mg

R
.

Thus F decreases as r increases from R at twice the
rate at which it decreases as r decreases from R.

3. 1/R = 1/R1 + 1/R2. If R1 = 250 ohms and R2 = 1, 000
ohms, then 1/R = (1/250) + (1/1, 000) = 1/200,
so R = 200 ohms. If d R1/dt = 100 ohms/min, then

− 1

R2

d R

dt
= − 1

R2
1

d R1

dt
− 1

R2
2

d R2

dt

1

2002

d R

dt
= 1

2502
(100) + 1

1, 0002

d R2

dt
.

a) If R remains constant, then d R/dt = 0, so

d R2

dt
= −1, 0002 × 100

2502
= −1, 600.

R2 is decreasing at 1,600 ohms/min.

b) If R is increasing at 10 ohms/min, then then
d R/dt = 10, and

d R2

dt
= 1, 0002

(
10

2002 − 100

2502

)
= −1, 350.

R2 is decreasing at 1,350 ohms/min.

4. If pV = 5.0T , then

dp

dt
V + p

dV

dt
= 5.0

dT

dt
.

a) If T = 400 K, dT/dt = 4 K/min, and V = 2.0 m3,
then dV/dt = 0, so dp/dt = 5.0(4)/2.0 = 10. The
pressure is increasing at 10 kPa/min.

b) If T = 400 K, dT/dt = 0, V = 2
m3, and dV/dt = 0.05 m3/min, then
p = 5.0(400)/2 = 1, 000 kPa, and
2 dp/dt + 1, 000(0.05) = 0, so dp/dt = −25.
The pressure is decreasing at 25 kPa/min.
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5. If x copies of the book are printed, the cost of printing
each book is

C = 10, 000

x
+ 8 + 6.25 × 10−7 x2.

Since C → ∞ as x → 0+ or x → ∞, C will be
minimum at a critical point. For CP:

0 = dC

dx
= −10, 000

x2
+ 12.5 × 10−7x,

so x3 = 8 × 109 and x = 2 × 103. 2,000 books should be
printed.

6. If she charges $x per bicycle, her total profit is $P,
where

P = (x − 75)N(x) = 4.5 × 106 x − 75

x2
.

Evidently P ≤ 0 if x ≤ 75, and P → 0 as x → ∞. P
will therefore have a maximum value at a critical point in
(75, ∞). For CP:

0 = d P

dx
= 4.5 × 106 x2 − (x − 75)2x

x4 ,

from which we obtain x = 150. She should charge $150
per bicycle and order N(150) = 200 of them from the
manufacturer.

7.

h

R

R

r

h−R

Fig. R-4.7

Let r , h and V denote the radius, height, and volume of
the cone respectively. The volume of a cone is one-third
the base area times the height, so

V = 1

3
π r2h.

From the small right-angled triangle in the figure,

(h − R)2 + r2 = R2.

Thus r 2 = R2 − (h − R)2 and

V = V (h) = π

3
h
(

R2 − (h − R)2
)

= π

3

(
2Rh2 − h3

)
.

The height of any inscribed cone cannot exceed the di-
ameter of the sphere, so 0 ≤ h ≤ 2R. Being continu-
ous, V (h) must have a maximum value on this interval.
Since V = 0 when h = 0 or h = 2R, and V > 0 if
0 < h < 2R, the maximum value of V must occur at a
critical point. (V has no singular points.) For a critical
point,

0 = V ′(h) = π

3
(4Rh − 3h2) = π

3
h(4R − 3h),

h = 0 or h = 4R

3
.

V ′(h) > 0 if 0 < h < 4R/3 and V ′(h) < 0 if
4R/3 < h < 2R. Hence h = 4R/3 does indeed give
the maximum value for V . The volume of the largest
cone can be inscribed in a sphere of radius R is

V

(
4R

3

)
= π

3

(
2R

(
4R

3

)2

−
(

4R

3

)3
)

= 32

81
π R3 cubic units.

8.
C

x

(x, C(x))

slope =
C(x)

x
= average cost

Fig. R-4.8

a) For minimum C(x)/x , we need

0 = d

dx

C(x)

x
= xC ′(x) − C(x)

x2 ,

so C ′(x) = C(x)/x ; the marginal cost equals the
average cost.

b) The line from (0, 0) to (x, C(x)) has smallest slope
at a value of x which makes it tangent to the graph
of C(x). Thus C ′(x) = C(x)/x , the slope of the
line.

c) The line from (0, 0) to (x, C(x)) can be tangent to
the graph of C(x) at more than one point. Not all
such points will provide a minimum value for the
average cost. (In the figure, one such line will make
the average cost maximum.)
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9.

side bottom side top

flapside

side flap

80 cm

50 cm

Fig. R-4.9

If the edge of the cutout squares is x cm, then the vol-
ume of the folded box is

V (x) = x(50 − 2x)(40 − x)

= 2x3 − 130x2 + 2, 000x,

and is valid for 0 ≤ x ≤ 25. Since V (0) = V (25) = 0,
and V (x) > 0 if 0 < x < 25, the maximum will occur at
a CP:

0 = V ′(x) = 6x2 − 260x + 2, 000

= 2(3x2 − 130x + 1, 000)

= 2(3x − 100)(x − 10).

Thus x = 10 or x = 100/3. The latter CP is not in the
interval [0, 25], so the maximum occurs at x = 10. The
maximum volume of the box is V (10) = 9, 000 cm3.

10. If x more trees are planted, the yield of apples will be

Y = (60 + x)(800 − 10x)

= 10(60 + x)(80 − x)

= 10(4, 800 + 20x − x2).

This is a quadratic expression with graph opening down-
ward; its maximum occurs at a CP:

0 = dY

dx
= 10(20 − 2x) = 20(10 − x).

Thus 10 more trees should be planted to maximize the
yield.

11.

2 km

θ

y

Fig. R-4.11

It was shown in the solution to Exercise 41 in Section
3.2 that at time t s after launch, the tracking antenna
rotates upward at rate

dθ

dt
= 800t

4002 + t4
= f (t), say.

Observe that f (0) = 0 and f (t) → 0 as t → ∞. For
critical points,

0 = f ′(t) = 800

[
(4002 + t4) − 4t4

(4002 + t4)2

]

⇒ 3t4 = 4002, or t ≈ 15.197.

The maximum rate at which the antenna must turn is
f (15.197) ≈ 0.057 rad/s.

12. The narrowest hallway in which the table can be turned
horizontally through 180◦ has width equal to twice the
greatest distance from the origin (the centre of the table)
to the curve x2 + y4 = 1/8 (the edge of the table). We
maximize the square of this distance, which we express
as a function of y:

S(y) = x2 + y2 = y2 + 1

8
− y4, (0 ≤ y ≤ (1/8)1/4).

Note that S(0) = 1/8 and S((1/8)1/4) = 1/
√

8 > S(0).
For CP:

0 = d S

dy
= 2y − 4y3 = 2y(1 − 2y2).
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The CPs are given by y = 0 (already considered), and
y2 = 1/2, where S(y) = 3/8. Since 3/8 > 1/

√
8, this is

the maximum value of S. The hallway must therefore be
at least 2

√
3/8 ≈ 1.225 m wide.

13. Let the ball have radius r cm. Its weight is proportional
to the volume of metal it contains, so the condition of the
problem states that

4π

3
r3 − 4π

3
(r − 2)3 = 1

2

4π

3
r3

r3 − 12r2 + 24r − 16 = 0.

Graphing the left side of this latter equation with a
graphics calculator shows a root between 9 and 10. A
“solve routine” or Newton’s Method then refines an ini-
tial guess of, say, r = 9.5 to give r = 9.69464420373 cm
for the radius of the ball.

14.
y

x

trajectory

y= 1,000
1+(x/500)2

Fig. R-4.14

If the origin is at sea level under the launch point, and
x(t) and y(t) are the horizontal and vertical coordinates
of the cannon ball’s position at time t s after it is fired,
then

d2x

dt2 = 0,
d2 y

dt2 = −32.

At t = 0, we have dx/dt = dy/dt = 200/
√

2, so

dx

dt
= 200√

2
,

dy

dt
= −32t + 200√

2
.

At t = 0, we have x = 0 and y = 1, 000. Thus the
position of the ball at time t is given by

x = 200t√
2

, y = −16t2 + 200t√
2

+ 1, 000.

We can obtain the Cartesian equation for the path of the
cannon ball by solving the first equation for t and substi-
tuting into the second equation:

y = −16
2x2

2002
+ x + 1, 000.

The cannon ball strikes the ground when

−16
2x2

2002
+ x + 1, 000 = 1, 000

1 + (x/500)2
.

Graphing both sides of this equation suggests a solution
near x = 1, 900. Newton’s Method or a solve routine
then gives x ≈ 1, 873. The horizontal range is about
1,873 ft.

15. The percentage error in the approximation
−(g/L) sin θ ≈ −(g.L)θ is

100

∣∣∣∣ sin θ − θ

sin θ

∣∣∣∣ = 100

(
θ

sin θ
− 1

)
.

Since limθ→0 θ/(sin θ) = 1, the percentage error → 0
as θ → 0. Also, θ/ sin θ grows steadily larger as |θ |
increases from 0 towards π/2. Thus the maximum per-
centage error for |θ | ≤ 20◦ = π/9 will occur at θ = π/9.
This maximum percentage error is

100

(
π/9

sin(π/9)
− 1

)
≈ 2.06%.

16. sin2 x = 1

2

(
1 − cos(2x)

)

= 1

2

[
1 −

(
1 − 22x2

2!
+ 24x4

4!
− 26x6

6!
+ O(x8)

)]

= x2 − x4

3
+ 2x6

45
+ O(x8)

lim
x→0

3 sin2 x − 3x2 + x4

x6

= lim
x→0

3x2 − x4 + 2

15
x6 + O(x8) − 3x2 − x4

x6

= lim
x→0

2

15
+ O(x2) = 2

15
.

17. f (x) = tan−1 x , f ′(x) = 1

1 + x2 , f ′′(x) = −2x

(1 + x2)2 ,

f ′′′(x) = 6x2 − 2

(1 + x2)3 .

About x = 1, P2(x) = π

4
+ x − 1

2
− (x − 1)2

4
.

Thus tan−1(1.1) ≈ π

4
+ 1

20
− 1

400
≈ 0.832898. On

[1, 1.1], we have

| f ′′′(x)| ≤ 6(1.1)2 − 2

(1 + 1)3
= 0.6575.

Thus the error does not exceed
0.6575

3!
(1.1−1)3 ≈ .00011

in absolute value.
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18. The second approximation x1 is the x-intercept of the
tangent to y = f (x) at x = x0 = 2; it is the x-intercept
of the line 2y = 10x − 19. Thus x1 = 19/10 = 1.9.

19.
y

x

y = cos x

y = (x − 1)2

1

Fig. R-4.19

y = cos x and y = (x − 1)2 intersect at x = 0 and at a
point x between x = 1 and x = π/2 ≈ 1.57. Starting
with an initial guess x0 = 1.3, and iterating the Newton’s
Method formula

xn+1 = xn − (xn − 1)2 − cos xn

2(xn − 1) + sin xn
,

we get x4 = x5 = 1.40556363276. To 10 decimal places
the two roots of the equation are x = 0 (exact), and
x = 1.4055636328.

20. The square of the distance from (2, 0) to (x, ln x) is
S(x) = (x − 2)2 + (ln x)2, for x > 0. Since S(x) → ∞
as x → ∞ or x → 0+, the minimum value of S(x) will
occur at a critical point. For CP:

0 = S′(x) = 2

(
x − 2 + ln x

x

)
.

We solve this equation using a TI-85 solve routine;
x ≈ 1.6895797. The minimum distance from the origin
to
y = ex is

√
S(x) ≈ 0.6094586.

21. If the car is at (a, ea), then its headlight beam lies along
the tangent line to y = ex there, namely

y = ea + ea(x − a) = ea(1 + x − a).

This line passes through (1, 1) if 1 = ea(2 − a). A solve
routine gives a ≈ −1.1461932. The corresponding value
of ea is about 0.3178444. The car is at (a, ea).

Challenging Problems 4 (page 272)

1.
dV

dt
= kx2(V0 − V ).

a) If V = x3, then 3x2 dx

dt
= dV

dt
= kx2(V0 − x3), so

dx

dt
= k

3
(V0 − x3).

b) The rate of growth of the edge is (k/3)(V0 − x3),
which is positive if 0 ≤ x < x0 = V 1/3

0 . The time
derivative of this rate is

−kx2 dx

dt
= − k2

3
x2 (V0 − x3) < 0

for 0 < x < x0. Thus the edge length is increasing
at a decreasing rate.

c) Initially, x grows at rate kV0/3. The rate of growth
of x will be half of this if

k

3
(V0 − x3) = kV0

6
,

that is, if x = (V0/2)1/3. Then V = V0/2.

2. Let the speed of the tank be v where v = dy

dt
= ky.

Thus, y = Cekt . Given that at t = 0, y = 4, then
4 = y(0) = C . Also given that at t = 10, y = 2, thus,

2 = y(10) = 4e10k ⇒ k = − 1
10 ln 2.

Hence, y = 4e(− 1
10 ln 2)t and v = dy

dt
= (− 1

10
ln 2)y. The

slope of the curve xy = 1 is m = dy

dx
= − 1

x2 . Thus, the

equation of the tangent line at the point

(
1

y0
, y0

)
is

y = y0 − 1(
1

y0

)2

(
x − 1

y0

)
, i.e., y = 2y0 − xy2

0 .

y

x

θ

(1/y0,y0)

y = 1

x

y

x

Fig. C-4.2
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Hence, the x-intercept is x = 2

y0
and the y-intercept is

y = 2y0. Let θ be the angle between the gun and the
y-axis. We have

tan θ = x

y
=

(
2

y0

)

2y0
= 1

y2
0

= 4

y2

⇒ sec2 θ
dθ

dt
= −8

y3

dy

dt
.

Now

sec2 θ = 1 + tan2 θ = 1 + 16

y4
= y4 + 16

y4
,

so
dθ

dt
= − 8y

y4 + 16

dy

dt
= − 8ky2

y4 + 16
.

The maximum value of
y2

y4 + 16
occurs at a critical

point:

0 = (y4 + 16)2y − y2(4y3)

(y4 + 16)2

⇔ 2y5 = 32y,

or y = 2. Therefore the maximum rate of rotation of the
gun turret must be

−8k
22

24 + 16
= −k = 1

10
ln 2 ≈ 0.0693 rad/m,

and occurs when your tank is 2 km from the origin.

3. a) If q = 0.99, the number of tests required is
T = N ((1/x) + 1 − 0.99x ). T is a decreasing
function for small values of x because the term
1/x dominates. It is increasing for large x because
−0.99x dominates. Thus T will have a minimum
value at a critical point, provided N is sufficiently
large that the CP is in (0, N). For CP:

0 = dT

dx
= N

(
− 1

x2
− 0.99x ln(0.99)

)

x2 = (0.99)−x

− ln(0.99)

x = (0.99)−x/2

√− ln(0.99)
= f (x), say.

b) Starting with x0 = 20, we iterate xn+1 = f (xn). The
first three iterations give

x1 ≈ 11.03, x2 ≈ 10.54, x3 ≈ 10.51.

This suggests the CP is near 10.5. Since x must
be an integer, we test x = 10 and x = 11:
T (10) ≈ 0.19562 and T (11) ≈ 0.19557. The
minimum cost should arise by using groups of 11
individuals.

4. P = 2π
√

L/g = 2π L1/2g−1/2.

a) If L remains constant, then

�P ≈ d P

dg
�g = −π L1/2g−3/2 �g

�P

P
≈ −π L1/2g−3/2

2π L1/2g−1/2
�g = −1

2

�g

g
.

If g increases by 1%, then �g/g = 1/100, and
�P/P = −1/200. Thus P decreases by 0.5%.

b) If g remains constant, then

�P ≈ d P

d L
�L = π L−1/2g−1/2 �L

�P

P
≈ π L−1/2g−1/2

2π L1/2g−1/2
�L = 1

2

�L

L
.

If L increases by 2%, then �L/L = 2/100, and
�P/P = 1/100. Thus P increases by 1%.

5.
dV

dt
= −k

√
y, V = Ay.

a) A
dy

dt
= dV

dt
= −k

√
y, so

dy

dt
= − k

A

√
y.

b) If y(t) =
(√

y0 − kt

2A

)2

, then y(0) = y0, and

dy

dt
= 2

(√
y0 − kt

2A

)(
− k

2A

)

= − k

A

√
y(t).

Thus the given expression does solve the initial-value
problem for y.

c) If y(T ) = 0, then
kT

2A
= √

y0, so k = 2A
√

y0/T .

Thus

y(t) =
(√

y0 − 2A
√

y0t

2AT

)2

= y0

(
1 − t

T

)2

.

d) Half the liquid drains out in time t1, where

y0

(
1 − t1

T

)2

= y0

2
.

Thus t1 = T (1 − (1/
√

2)).
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6. If the depth of liquid in the tank at time t is y(t), then
the surface of the liquid has radius r(t) = Ry(t)/H , and
the volume of liquid in the tank at that time is

V (t) = π

3

(
Ry(t)

H

)2

y(t) = π R2

3H2

(
y(t)

)3
.

By Torricelli’s law, dV/dt = −k
√

y. Thus

π R2

3H2 3y2 dy

dt
= dV

dt
= −k

√
y,

or, dy/dt = −k1 y−3/2, where k1 = kH2/(π R2).

If y(t) = y0

(
1 − t

T

)2/5

, then y(0) = y0, y(T ) = 0, and

dy

dt
= 2

5
y0

(
1 − t

T

)−3/5 (
− 1

T

)
= −k1 y−3/2,

where k1 = 2y0/(5T ). Thus this function y(t) satisfies
the conditions of the problem.

7. If the triangle has legs x and y and hypotenuse√
x2 + y2, then

P = x + y +
√

x2 + y2

(P − x − y)2 = x2 + y2

P2 + x2 + y2 + 2xy − 2Px − 2Py = x2 + y2

y(2P − 2x) = P2 − 2Px

y = P(P − 2x)

2(P − x)
.

The area of the triangle is

A = xy

2
= P

4

Px − 2x2

P − x
.

A = 0 if x = 0 or x = P/2 and A > 0 between these
values of x . The maximum area will therefore occur at a
critical point.

0 = d A

dx
= P

4

(P − x)(P − 4x) − x(P − 2x)(−1)

(P − x)2

0 = P2 − 5Px + 4x2 + Px − 2x2

2x2 − 4Px + P2 = 0.

This quadratic has two roots, but the only one in [0, P/2]
is

x = 4P − √
16P2 − 8P2

4
= P

(
1 − 1√

2

)
.

This value of x gives A(x) = 1
2 P2

(
1 − 1√

2

)2
un2 for the

maximum area of the triangle. (Note that the maximal
triangle is isosceles, as we might have guessed.)

8. The slope of y = x3 + ax2 + bx + c is

y ′ = 3x2 + 2ax + b,

which → ∞ as x → ±∞. The quadratic expression
y ′ takes each of its values at two different points except
its minimum value, which is achieved only at one point
given by y′′ = 6x + 2a = 0. Thus the tangent to the
cubic at x = −a/3 is not parallel to any other tangent.
This tangent has equation

y = − a3

27
+ a3

9
− ab

3
+ c

+
(

a2

3
− 2a2

3
+ b

)(
x + a

3

)

= − a3

27
+ c +

(
b − a2

3

)
x .

9.
B

C

h

P

θ
A

Fig. C-4.9

a) The total resistance of path APC is

R = k|AP|
r2

1

+ k|PC |
r2

2

= k

(
L − h cot θ

r2
1

+ h csc θ

r2
2

)
.

We have

d R

dθ
= kh

(
csc2 θ

r2
1

− csc θ cot θ

r2
2

)
,

so the CP of R is given by
csc θ

cot θ
= r2

1

r2
2

, that

is, cos θ = (r2/r1)
2 or θ = cos−1((r2/r1)

2).
This CP will give the minimum resistance if it
is in the interval of possible values of θ , namely
[tan−1(h/L), π/2]; otherwise the minimum will oc-
cur for P = A. Thus, for large L , P should be
chosen to make cos θ = (r2/r1)

2.

b) This is the same problem as that in (a) except that
r1 and r2 are replaced with r2

1 and r2
2 , respectively.

Thus the minimum resistance corresponds to choos-
ing P so that cos θ = (r2/r1)

4. This puts P closer
to B than it was in part (a), which is reasonable
since the resistance ratio between the thin and thick
pipes is greater than for the wires in part (a).
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10.

R

h

y

Fig. C-4.10

a) Let the origin be at the point on the table di-
rectly under the hole. If a water particle leaves
the tank with horizontal velocity v, then its position
(X (t), Y (t)), t seconds later, is given by

d2 X

dt2 = 0

d X

dt
= v

X = vt

d2Y

dt2 = −g

dY

dt
= −gt

Y = −1

2
gt2 + h.

The range R of the particle (i.e., of the spurt) is the
value of X when Y = 0, that is, at time t = √

2h/g.
Thus R = v

√
2h/g.

b) Since v = k
√

y − h, the range R is a function of y,
the depth of water in the tank.

R = k

√
2

g

√
h(y − h).

For a given depth y, R will be maximum if h(y − h)

is maximum. This occurs at the critical point
h = y/2 of the quadratic Q(h) = h(y − h).

c) By the result of part (c) of Problem 3 (with y re-
placed by y − h, the height of the surface of the
water above the drain in the current problem), we
have

y(t) − h = (y0 − h)

(
1 − t

T

)2

, for 0 ≤ t ≤ T .

As shown above, the range of the spurt at time t is

R(t) = k

√
2

g

√
h
(

y(t) − h
)
.

Since R = R0 when y = y0, we have

k = R0√
2

g

√
h(y0 − h)

.

Therefore R(t) = R0

√
h
(

y(t) − h
)

√
h(y0 − h)

= R0

(
1 − t

T

)
.

11.

25 cm

25 cm

x

25−2x

x

25−2x

x
y

25−x

Fig. C-4.11

Note that the vertical back wall of the dustpan is perpen-
dicular to the plane of the top of the pan, not the bottom.
The volume of the pan is made up of three parts:

a triangular prism (the centre part) having
height x , width 25 − 2x , and depth y (all dis-
tances in cm), where y2 + x2 = (25 − x)2, and
so y = √

625 − 50x = 5
√

25 − 2x , and

two triangular pyramids (one on each side) each
having height x and a right-triangular top with
dimensions x and y.

The volume of the pan is, therefore,

V = 1

2
xy(25 − 2x) + 2

(
1

3

)(
1

2
xy

)
x

= 1

2
xy

(
25 − 2x + 2

3
x

)

= 5

6
x
√

25 − 2x(75 − 4x) = V (x).

The appropriate values for x are 0 ≤ x ≤ 25/2. Note that
V (0) = V (25/2) = 0 and V (x) > 0 in (0, 25/2). The
maximum volume will therefore occur at a critical point:

0 = dV

dx
= −25

6

4x2 − 85x + 375√
25 − 2x

(after simplification). The quadratic in the numerator
factors to (x − 15)(4x − 25), so the CPs are x = 15 and
x = 25/4. Only x = 25/4 is in the required interval.
The maximum volume of the dustpan is V (25/4) ≈ 921
cm3.
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