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CHAPTER 8. CONICS, PARAMETRIC
CURVES, AND POLAR CURVES

Section 8.1 Conics (page 443)

1. The ellipse with foci (0,±2) has major axis along the
y-axis and c = 2. If a = 3, then b2 = 9 − 4 = 5. The
ellipse has equation

x2

5
+ y2

9
= 1.

2. The ellipse with foci (0, 1) and (4, 1) has c = 2, centre
(2, 1), and major axis along y = 1. If ε = 1/2, then
a = c/ε = 4 and b2 = 16 − 4 = 12. The ellipse has
equation

(x − 2)2

16
+ (y − 1)2

12
= 1.

3. A parabola with focus (2, 3) and vertex (2, 4) has
a = −1 and principal axis x = 2. Its equation is
(x − 2)2 = −4(y − 4) = 16− 4y.

4. A parabola with focus at (0,−1) and principal axis
along y = −1 will have vertex at a point of the
form (v,−1). Its equation will then be of the form
(y + 1)2 = ±4v(x − v). The origin lies on this curve
if
1 = ±4(−v2). Only the − sign is possible, and in this
case v = ±1/2. The possible equations for the parabola
are (y + 1)2 = 1± 2x .

5. The hyperbola with semi-transverse axis a = 1 and foci
(0,±2) has transverse axis along the y-axis, c = 2, and
b2 = c2 − a2 = 3. The equation is

y2 − x2

3
= 1.

6. The hyperbola with foci at (±5, 1) and asymptotes
x = ±(y − 1) is rectangular, has centre at (0, 1) and
has transverse axis along the line y = 1. Since c = 5
and a = b (because the asymptotes are perpendicular to
each other) we have a2 = b2 = 25/2. The equation of
the hyperbola is

x2 − (y − 1)2 = 25

2
.

7. If x2 + y2 + 2x = −1, then (x + 1)2 + y2 = 0. This
represents the single point (−1, 0).

8. If x2 + 4y2 − 4y = 0, then

x2 + 4

(
y2 − y + 1

4

)
= 1, or

x2

1
+ (y −

1
2 )

2

1
4

= 1.

This represents an ellipse with centre at

(
0,

1

2

)
,

semi-major axis 1, semi-minor axis
1

2
, and foci at(

±
√

3

2
,

1

2

)
.

y

x

1
2

1
x2+4y2−4y=0

1

Fig. 8.1.8

9. If 4x2 + y2 − 4y = 0, then

4x2 + y2 − 4y + 4 = 4

4x2 + (y − 2)2 = 4

x2 + (y − 2)2

4
= 1

This is an ellipse with semi-axes 1 and 2, centred at
(0, 2).

y

x

4
4x2+y2−4y=0

(1,2)2(−1,2)

Fig. 8.1.9

10. If 4x2 − y2 − 4y = 0, then

4x2 − (y2 + 4y + 4) = −4, or
x2

1
− (y + 2)2

4
= −1.

This represents a hyperbola with centre at (0,−2), semi-
transverse axis 2, semi-conjugate axis 1, and foci at
(0,−2±√5). The asymptotes are y = ±2x − 2.

312



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 8.1 (PAGE 443)

y

x

−2

4x2−y2−4y=0

Fig. 8.1.10

11. If x2 + 2x − y = 3, then (x + 1)2 − y = 4.
Thus y = (x + 1)2 − 4. This is a parabola with vertex
(−1,−4), opening upward.

y

x

(−1,−4)

x2+2x−y=3

Fig. 8.1.11

12. If x + 2y + 2y2 = 1, then

2

(
y2 + y + 1

4

)
= 3

2
− x

⇔ x = 3

2
− 2

(
y + 1

2

)2

.

This represents a parabola with vertex at (3
2 ,− 1

2 ), focus
at ( 11

8 ,− 1
2 ) and directrix x = 13

8 .
y

x(
3
2 ,−

1
2

)
x+2y+2y2=1

Fig. 8.1.12

13. If x2 − 2y2 + 3x + 4y = 2, then

(
x + 3

2

)2

− 2(y − 1)2 = 9

4(
x + 3

2

)2
9
4

− (y − 1)2

9
8

= 1

This is a hyperbola with centre
(− 3

2 , 1
)
, and asymptotes

the straight lines 2x + 3 = ±2
√

2(y − 1).
y

x

1

(− 3
2 ,1)

(−3,1)
x2−2y2+3x+4y=2

Fig. 8.1.13

14. If 9x2 + 4y2 − 18x + 8y = −13, then

9(x2 − 2x + 1)+ 4(y2 + 2y + 1) = 0

⇔9(x − 1)2 + 4(y + 1)2 = 0.

This represents the single point (1,−1).

15. If 9x2 + 4y2 − 18x + 8y = 23, then

9(x2 − 2x + 1)+ 4(y2 + 2y + 1) = 23 + 9 + 4 = 36

9(x − 1)2 + 4(y + 1)2 = 36

(x − 1)2

4
+ (y + 1)2

9
= 1.

This is an ellipse with centre (1,−1), and semi-axes 2
and 3.

y

x

(1,−4)

(1,2)

(1,−1) (3,−1)

9x2+4y2−18x+8y=23

(−1,−1)

Fig. 8.1.15

16. The equation (x − y)2 − (x + y)2 = 1 simplifies to
4xy = −1 and hence represents a rectangular hyperbola
with centre at the origin, asymptotes along the coordinate
axes, transverse axis along y = −x , conjugate axis along
y = x , vertices at

( 1
2 ,− 1

2

)
and

(− 1
2 ,

1
2

)
, semi-transverse

and semi-conjugate axes equal to 1/
√

2, semi-focal sepa-

ration equal to
√

1
2 + 1

2 = 1, and hence foci at the points(
1√
2
,− 1√

2

)
and

(
− 1√

2
, 1√

2

)
. The eccentricity is

√
2.
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y

x

(
1
2 ,

1
2

)
(x−y)2−(x+y)2=1

Fig. 8.1.16

17. The parabola has focus at (3, 4) and principal axis along
y = 4. The vertex must be at a point of the form (v, 4),
in which case a = ±(3 − v) and the equation of the
parabola must be of the form

(y − 4)2 = ±4(3 − v)(x − v).

This curve passes through the origin if 16 = ±4(v2− 3v).
We have two possible equations for v: v2 − 3v − 4 = 0
and v2 − 3v + 4 = 0. The first of these has solutions
v = −1 or v = 4. The second has no real solutions. The
two possible equations for the parabola are

(y − 4)2 = 4(4)(x + 1) or y2 − 8y = 16x

(y − 4)2 = 4(−1)(x − 4) or y2 − 8y = −4x

18. The foci of the ellipse are (0, 0) and (3, 0), so the centre
is (3/2, 0) and c = 3/2. The semi-axes a and b must
satisfy a2 − b2 = 9/4. Thus the possible equations of the
ellipse are

(x − (3/2))2
(9/4) + b2

+ y2

b2
= 1.

19. For xy + x − y = 2 we have A = C = 0, B = 1. We
therefore rotate the coordinate axes (see text pages 407–
408) through angle θ = π/4.
(Thus cot 2θ = 0 = (A − C)/B.) The transformation is

x = 1√
2
(u − v), y = 1√

2
(u + v).

The given equation becomes

1

2
(u2 − v2)+ 1√

2
(u − v)− 1√

2
(u + v) = 2

u2 − v2 − 2
√

2v = 4

u2 −
(
v +√2

)2 = 2

u2

2
− (v +

√
2)2

2
= 1.

This is a rectangular hyperbola with centre (0,−√2),
semi-axes a = b = √2, and eccentricity

√
2. The semi-

focal separation is 2; the foci are at (±2,−√2). The
asymptotes are u = ±(v +√2).
In terms of the original coordinates, the centre is (1,−1),
the foci are (±√2+ 1,±√2− 1), and the asymptotes are
x = 1 and y = −1.

y

x(1,−1)

xy+x−y=2

Fig. 8.1.19

20. We have x2 + 2xy + y2 = 4x − 4y + 4 and
A = 1, B = 2, C = 1, D = −4, E = 4 and
F = −4. We rotate the axes through angle θ satisfy-

ing tan 2θ = B/(A − C) = ∞ ⇒ θ = π

4
. Then A′ = 2,

B ′ = 0, C ′ = 0, D′ = 0, E ′ = 4
√

2 and the transformed
equation is

2u2 + 4
√

2v − 4 = 0 ⇒ u2 = −2
√

2

(
v − 1√

2

)

which represents a parabola with vertex at

(u, v) =
(

0, 1√
2

)
and principal axis along u = 0.

The distance a from the focus to the vertex is given by
4a = 2

√
2, so a = 1/

√
2 and the focus is at (0, 0). The

directrix is v = √2.

Since x = 1√
2
(u − v) and y = 1√

2
(u + v), the vertex

of the parabola in terms of xy-coordinates is (−1
2 ,

1
2 ),

and the focus is (0, 0). The directrix is x − y = 2. The
principal axis is y = −x .

y

x

(−1/2,1/2)

y=−x

x2+2xy+y2=4x−4y+4

Fig. 8.1.20
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21. For 8x2 + 12xy + 17y2 = 20, we have A = 8, B = 12,
C = 17, F = −20. Rotate the axes through angle θ
where

tan 2θ = B

A− C
= −12

9
= −4

3
.

Thus cos 2θ = 3/5, sin 2θ = −4/5, and

2 cos2 θ − 1 = cos 2θ = 3

5
⇒ cos2 θ = 4

5
.

We may therefore take cos θ = 2√
5

, and sin θ = − 1√
5

.

The transformation is therefore

x = 2√
5

u + 1√
5
v

y = − 1√
5

u + 2√
5
v

u = 2√
5

x − 1√
5

y

v = 1√
5

x + 2√
5

y

The coefficients of the transformed equation are

A′ = 8

(
4

5

)
+ 12

(
−2

5

)
+ 17

(
1

5

)
= 5

B ′ = 0

C ′ = 8

(
1

5

)
− 12

(
−2

5

)
+ 17

(
4

5

)
= 20.

The transformed equation is

5u2 + 20v2 = 20, or
u2

4
+ v2 = 1.

This is an ellipse with centre (0, 0), semi-axes a = 2 and
b = 1, and foci at u = ±√3, v = 0.
In terms of the original coordinates, the centre is (0, 0),

the foci are ±
(

2
√

3√
5
,−
√

3√
5

)
.

y

x

8x2+12xy+17y2=20

Fig. 8.1.21

22. We have x2−4xy+4y2+2x+ y = 0 and A = 1, B = −4,
C = 4, D = 2, E = 1 and F = 0. We rotate the axes
through angle θ satisfying tan 2θ = B/(A−C) = 4

3 . Then

sec 2θ =
√

1+ tan2 2θ = 5

3
⇒ cos 2θ = 3

5

⇒

⎧⎪⎪⎨
⎪⎪⎩

cos θ =
√

1+ cos 2θ

2
=
√

4

5
= 2√

5
;

sin θ =
√

1− cos 2θ

2
=
√

1

5
= 1√

5
.

Then A′ = 0, B ′ = 0, C ′ = 5, D′ = √5, E ′ = 0 and the
transformed equation is

5v2 +√5u = 0 ⇒ v2 = − 1√
5

u

which represents a parabola with vertex at (u, v) = (0, 0),

focus at

(
− 1

4
√

5
, 0

)
. The directrix is u = 1

4
√

5
and the

principal axis is v = 0. Since x = 2√
5

u − 1√
5
v and

y = 1√
5

u+ 2√
5
v, in terms of the xy-coordinates, the ver-

tex is at (0, 0), the focus at

(
− 1

10
,− 1

20

)
. The directrix

is 2x + y = 1
4 and the principal axis is 2y − x = 0.

y

x

x2−4xy+4y2+2x+y=0

x=2y

Fig. 8.1.22

23. The distance from P to F is
√

x2 + y2.
The distance from P to D is x + p. Thus

√
x2 + y2

x + p
= ε

x2 + y2 = ε2(x2 + 2px + p2)

(1 − ε2)x2 + y2 − 2pε2x = ε2 p2.

y

x

x=−p

D

P=(x,y)

F

Fig. 8.1.23
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24. Let the equation of the parabola be y2 = 4ax . The fo-
cus F is at (a, 0) and vertex at (0, 0). Then the distance
from the vertex to the focus is a. At x = a,
y = √4a(a) = ±2a. Hence, � = 2a, which is twice the
distance from the vertex to the focus.

y

x(a,0)

�

y2=4ax

Fig. 8.1.24

25. We have
c2

a2 +
�2

b2 = 1. Thus

�2 = b2
(

1− c2

a2

)
but c2 = a2 − b2

= b2
(

1− a2 − b2

a2

)
= b2 b2

a2
.

Therefore � = b2/a.
y

x

x2

a2 + y2

b2 =1

�
a

c

b

Fig. 8.1.25

26. Suppose the hyperbola has equation
x2

a2 −
y2

b2 = 1. The

vertices are at (±a, 0) and the foci are at (±c, 0) where
c = √a2 + b2. At x = √a2 + b2,

a2 + b2

a2 − y2

b2 = 1

(a2 + b2)b2 − a2 y2 = a2b2

y = ±b2

a
.

Hence, � = b2

a
.

y

x
a c

�

x2

a2 − y2

b2 =1

Fig. 8.1.26

27.

F2

F1

C2

C1

A

B

V

P

S2

S1

Fig. 8.1.27

Let the spheres S1 and S2 intersect the cone in the circles
C1 and C2, and be tangent to the plane of the ellipse at
the points F1 and F2, as shown in the figure.
Let P be any point on the ellipse, and let the straight
line through P and the vertex of the cone meet C1 and
C2 at A and B respectively. Then P F1 = P A, since both
segments are tangents to the sphere S1 from P. Simi-
larly, P F2 = P B.
Thus P F1 + P F2 = P A + P B = AB = constant (dis-
tance from C1 to C2 along all generators of the cone is
the same.) Thus F1 and F2 are the foci of the ellipse.

28. Let F1 and F2 be the points where the plane is tangent to
the spheres. Let P be an arbitrary point P on the hyper-
bola in which the plane intersects the cone. The spheres
are tangent to the cone along two circles as shown in the
figure. Let P AV B be a generator of the cone (a straight
line lying on the cone) intersecting these two circles at
A and B as shown. (V is the vertex of the cone.) We
have P F1 = P A because two tangents to a sphere from
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a point outside the sphere have equal lengths. Similarly,
P F2 = P B. Therefore

P F2 − P F1 = P B − P A = AB = constant,

since the distance between the two circles in which the
spheres intersect the cone, measured along the generators
of the cone, is the same for all generators. Hence, F1
and F2 are the foci of the hyperbola.

P

F1

F2

B

V

A

Fig. 8.1.28

29. Let the plane in which the sphere is tangent to the cone
meet AV at X . Let the plane through F perpendicular to
the axis of the cone meet AV at Y . Then V F = V X ,
and, if C is the centre of the sphere, FC = XC . There-
fore V C is perpendicular to the axis of the cone. Hence
Y F is parallel to V C , and we have Y V = V X = V F .
If P is on the parabola, F P ⊥ V F , and the line from P
to the vertex A of the cone meets the circle of tangency
of the sphere and the cone at Q, then

F P = P Q = Y X = 2V X = 2V F.

Since F P = 2V F , F P is the semi-latus rectum of the
parabola. (See Exercise 18.) Therefore F is the focus of
the parabola.

Y

V

X

A

Q

P

C

F

Fig. 8.1.29

Section 8.2 Parametric Curves (page 449)

1. If x = t , y = 1− t , (0 ≤ t ≤ 1) then
x + y = 1. This is a straight line segment.

y

x1

1
x=t
y=1−t
(0≤t≤1)

Fig. 8.2.1

2. If x = 2− t and y = t + 1 for 0 ≤ t <∞, then
y = 2 − x + 1 = 3 − x for −∞ < x ≤ 2, which is a half
line.

y

x

(2,1)

x=2−t
y=t+1

Fig. 8.2.2

3. If x = 1/t , y = t − 1, (0 < t < 4), then y = 1

x
− 1. This

is part of a hyperbola.
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y

x

(
1
4 ,3
)

t=4

t=1

y=−1

y= 1
x − 1

Fig. 8.2.3

4. If x = 1

1+ t2
and y = t

1+ t2
for −∞ < t <∞, then

x2 + y2 = 1+ t2

(1+ t2)2
= 1

1+ t2 = x

⇔
(

x − 1

2

)2

+ y2 = 1

4
.

This curve consists of all points of the circle with centre
at ( 1

2 , 0) and radius 1
2 except the origin (0, 0).
y

x

x=1/(1+t2 )

y=t/(1+t2)

t=0t=∞
t=−∞

Fig. 8.2.4

5. If x = 3 sin 2t , y = 3 cos 2t , (0 ≤ t ≤ π/3), then
x2 + y2 = 9. This is part of a circle.

y

x

t=π3

t=0

x2+y2=9

Fig. 8.2.5

6. If x = a sec t and y = b tan t for −π
2
< t <

π

2
, then

x2

a2 −
y2

b2 = sec2 t − tan2 t = 1.

The curve is one arch of this hyperbola.

y

x
t=0

a

bx=ay

bx=−ay

Fig. 8.2.6

7. If x = 3 sinπ t , y = 4 cosπ t , (−1 ≤ t ≤ 1), then
x2

9
+ y2

16
= 1. This is an ellipse.

y

x

t=0

t=1t=−1

x2

9 +
y2

16=1

Fig. 8.2.7

8. If x = cos sin s and y = sin sin s for −∞ < s <∞, then
x2 + y2 = 1. The curve consists of the arc of this circle
extending from (a,−b) through (1, 0) to (a, b) where
a = cos(1) and b = sin(1), traversed infinitely often back
and forth.

y

x

x=cos sin s

y=sin sin s

1 rad

Fig. 8.2.8

9. If x = cos3 t , y = sin3 t , (0 ≤ t ≤ 2π), then
x2/3 + y2/3 = 1. This is an astroid.
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y

t=3π/2

t=2π

t=0

t=π/2

x2/3+y2/3=1

t=π

Fig. 8.2.9

10. If x = 1−√4− t2 and y = 2+ t for −2 ≤ t ≤ 2 then

(x − 1)2 = 4− t2 = 4− (y − 2)2.

The parametric curve is the left half of the circle of ra-
dius 4 centred at (1, 2), and is traced in the direction of
increasing y.

y

x

(1,2)

x=1−
√

4−t2

y=2+t
−2≤t≤2

Fig. 8.2.10

11. x = cosh t , y = sinh t represents the right half (branch) of
the rectangular hyperbola x2 − y2 = 1.

12. x = 2− 3 cosh t , y = −1+ 2 sinh t represents the left half
(branch) of the hyperbola

(x − 2)2

9
− (y + 1)2

4
= 1.

13. x = t cos t , y = t sin t , (0 ≤ t ≤ 4π) represents two
revolutions of a spiral curve winding outwards from the
origin in a counterclockwise direction. The point on the
curve corresponding to parameter value t is t units distant
from the origin in a direction making angle t with the
positive x-axis.

14. (i) If x = cos4 t and y = sin4 t , then

(x − y)2 = (cos4 t − sin4 t)2

=
[
(cos2 t + sin2 t)(cos2 t − sin2 t)

]2

= (cos2 t − sin2 t)2

= cos4 t + sin4 t − 2 cos2 t sin2 t

and

1 = (cos2 t+sin2 t)2 = cos4 t+sin4 t+2 cos2 t sin2 t.

Hence,

1 + (x − y)2 = 2(cos4 t + sin4 t) = 2(x + y).

(ii) If x = sec4 t and y = tan4 t , then

(x − y)2 = (sec4 t − tan4 t)2

= (sec2 t + tan2 t)2

= sec4 t + tan4 t + 2 sec2 t tan2 t

and

1 = (sec2 t−tan2 t)2 = sec4 t+tan4 t−2 sec2 t tan2 t.

Hence,

1 + (x − y)2 = 2(sec4 t + tan4 t) = 2(x + y).

(iii) Similarly, if x = tan4 t and y = sec4 t , then

1+ (x − y)2 = 1+ (y − x)2

= (sec2 t − tan2 t)2 + (sec4 t − tan4 t)2

= 2(tan4 t + sec4 t)

= 2(x + y).

These three parametric curves above correspond to
different parts of the parabola 1+(x− y)2 = 2(x+ y),
as shown in the following diagram.

y

x

x=tan4 t
y=sec4 t

x=cos4 t
y=sin4 t

1

1

x=sec4 t
y=tan4 t

The parabola
2(x+y)=1+(x−y)2

Fig. 8.2.14

15. The slope of y = x2 at x is m = 2x . Hence the parabola
can be parametrized x = m/2, y = m2/4,
(−∞ < m <∞).

16. If (x, y) is any point on the circle x2 + y2 = R2 other
than (R, 0), then the line from (x, y) to (R, 0) has slope

m = y

x − R
. Thus y = m(x − R), and

x2 + m2(x − R)2 = R2

(m2 + 1)x2 − 2x Rm2 + (m2 − 1)R2 = 0[
(m2 + 1)x − (m2 − 1)R

]
(x − R) = 0

⇒ x = (m2 − 1)R

m2 + 1
or x = R.
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The parametrization of the circle in terms of m is given
by

x = (m2 − 1)R

m2 + 1

y = m

[
(m2 − 1)R

m2 + 1
− R

]
= − 2Rm

m2 + 1

where −∞ < m < ∞. This parametrization gives every
point on the circle except (R, 0).

y

x

(x,y)

(R,0)

slope m

x2+y2=R2

Fig. 8.2.16

17.
y

x

T

X

P = (x, y)

a
t

Fig. 8.2.17

Using triangles in the figure, we see that the coordinates
of P satisfy

x = a sec t, y = a sin t.

The Cartesian equation of the curve is

y2

a2 +
a2

x2 = 1.

The curve has two branches extending to infinity to the
left and right of the circle as shown in the figure.

18. The coordinates of P satisfy

x = a sec t, y = b sin t.

The Cartesian equation is
y2

b2 +
a2

x2 = 1.

y

x
X

Y

T

t

P = (x, y)

a

b

Fig. 8.2.18

19. If x = 3t

1+ t3
, y = 3t2

1+ t3
, (t �= −1), then

x3 + y3 = 27t3

(1 + t3)3
(1 + t3) = 27t3

(1 + t3)2
= 3xy.

As t →−1, we see that |x | → ∞ and |y| → ∞, but

x + y = 3t (1 + t)

1+ t3 = 3t

1− t + t2 →−1.

Thus x + y = −1 is an asymptote of the curve.
y

x

t=1

t→−1−

t=0

t→∞

folium of Descartes

Fig. 8.2.19

20. Let C0 and P0 be the original positions of the centre of
the wheel and a point at the bottom of the flange whose
path is to be traced. The wheel is also shown in a subse-
quent position in which it makes contact with the rail at
R. Since the wheel has been rotated by an angle θ ,

O R = arc S R = aθ.
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Thus, the new position of the centre is C = (aθ, a). Let
P = (x, y) be the new position of the point; then

x = O R − P Q = aθ − b sin(π − θ) = aθ − b sin θ,

y = RC + C Q = a + b cos(π − θ) = a − b cos θ.

These are the parametric equations of the prolate cycloid.
y

x

C0

O

P0

P

S

Q

C
θ

R

b

a

Fig. 8.2.20

y

x
2πa

x=aθ−b sin θ

y=a−b cos θ

Fig. 8.2.20

21. Let t and θt be the angles shown in the figure below.
Then arc ATt = arc Tt Pt , that is, at = bθt . The centre Ct

of the rolling circle is Ct =
(
(a − b) cos t, (a − b) sin t

)
.

Thus

x − (a − b) cos t = b cos(θt − t)

y − (a − b) sin t = −b sin(θt − t).

Since θt − t = a

b
t − t = a − b

b
t , therefore

x = (a − b) cos t + b cos

(
(a − b)t

b

)

y = (a − b) sin t − b sin

(
(a − b)t

b

)
.

y

x

Tt

t

t A

Ct

Pt=(x,y)

θt

a

b

Fig. 8.2.21

If a = 2 and b = 1, then x = 2 cos t , y = 0. This is a
straight line segment.
If a = 4 and b = 1, then

x = 3 cos t + cos 3t

= 3 cos t + (cos 2t cos t − sin 2t sin t)

= 3 cos t +
(
(2 cos2 t − 1) cos t − 2 sin2 t cos t

)

= 2 cos t + 2 cos3 t − 2 cos t (1 − sin2 t) = 4 cos3 t

y = 3 sin t + sin 3t

= 3 sin t − sin 2t cos t − (cos 2t sin t)

= 3 sin t − 2 sin t cos2 t −
(
(1 − 2 sin2 t) sin t

)

= 2 sin t − 2 sin t + 2 sin3 t + 2 sin3 t = 4 sin3 t

This is an astroid, similar to that of Exercise 11.

22. a) From triangles in the figure,

x = |T X | = |OT | tan t = tan t

y = |OY | = sin
(
π
2 − t

) = |OY | cos t

= |OT | cos t cos t = cos2 t.

y

x

P = (x, y)

y = 1

1
2

t

T X

Y

O

Fig. 8.2.22
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b)
1

y
= sec2 t = 1+ tan2 t = 1+ x2. Thus y = 1

1+ x2 .

23. x = sin t, y = sin(2t)
y

x

Fig. 8.2.23

24. x = sin t, y = sin(3t)
y

x

Fig. 8.2.24

25. x = sin(2t), y = sin(3t)
y

x

Fig. 8.2.25

26. x = sin(2t), y = sin(5t)
y

x

Fig. 8.2.26

27. x =
(

1+ 1

n

)
cos t − 1

n
cos(nt)

y =
(

1+ 1

n

)
sin t − 1

n
sin(nt)

represents a cycloid-like curve that is wound around the
circle x2 + y2 = 1 instead of extending along the x-
axis. If n ≥ 2 is an integer, the curve closes after one
revolution and has n − 1 cusps. The left figure below
shows the curve for n = 7. If n is a rational number, the
curve will wind around the circle more than once before
it closes.

y

x

Fig. 8.2.27

28. x =
(

1+ 1

n

)
cos t + 1

n
cos((n − 1)t)

y =
(

1+ 1

n

)
sin t − 1

n
sin((n − 1)t)

represents a cycloid-like curve that is wound around the

inside circle x2 + y2 =
(

1 + (2/n)
)2

and is externally

tangent to x2 + y2 = 1. If n ≥ 2 is an integer, the curve
closes after one revolution and has n cusps. The figure
shows the curve for n = 7. If n is a rational number but
not an integer, the curve will wind around the circle more
than once before it closes.

y

x

Fig. 8.2.28

Section 8.3 Smooth Parametric Curves and
Their Slopes (page 453)

1. x = t2 + 1
dx

dt
= 2t

y = 2t − 4
dy

dt
= 2

No horizontal tangents. Vertical tangent at t = 0, i.e., at
(1,−4).
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2. x = t2 − 2t
dx

dt
= 2t − 2

y = t2 + 2t
dy

dt
= 2t + 2

Horizontal tangent at t = −1, i.e., at (3,−1).
Vertical tangent at t = 1, i.e., at (−1, 3).

3. x = t2 − 2t
dx

dt
= 2(t − 1)

y = t3 − 12t
dy

dt
= 3(t2 − 4)

Horizontal tangent at t = ±2, i.e., at (0,−16) and
(8, 16).
Vertical tangent at t = 1, i.e., at (−1,−11).

4. x = t3 − 3t
dx

dt
= 3(t2 − 1)

y = 2t3 + 3t2

dy

dt
= 6t (t + 1)

Horizontal tangent at t = 0, i.e., at (0, 0).
Vertical tangent at t = 1, i.e., at (−2, 5).
At t = −1 (i.e., at (2, 1)) both dx/dt and dy/dt change
sign, so the curve is not smooth there. (It has a cusp.)

5. x = te−t2/2

dx

dt
= (1 − t2)e−t2/2

y = e−t2

dy

dt
= −2te−t2

Horizontal tangent at t = 0, i.e., at (0, 1).
Vertical tangent at t = ±1, i.e. at (±e−1/2, e−1).

6. x = sin t
dx

dt
= cos t

y = sin t − t cos t
dy

dt
= t sin t

Horizontal tangent at t = nπ , i.e., at (0,−(−1)nnπ) (for
integers n).
Vertical tangent at t = (n + 1

2 )π , i.e. at (1, 1) and
(−1,−1).

7. x = sin(2t)
dx

dt
= 2 cos(2t)

y = sin t
dy

dt
= cos t

Horizontal tangent at t = (n + 1
2 )π , i.e., at (0,±1).

Vertical tangent at t = 1
2 (n+ 1

2 )π , i.e., at (±1, 1/
√

2) and

(±1,−1/
√

2).

8. x = 3t

1+ t3

dx

dt
= 3(1 − 2t3)

(1 + t3)2

y = 3t2

1+ t3

dy

dt
= 3t (2 − t3)

(1+ t3)2

Horizontal tangent at t = 0 and t = 21/3, i.e., at (0, 0)
and (21/3, 22/3).
Vertical tangent at t = 2−1/3, i.e., at (22/3, 21/3). The
curve also approaches (0, 0) vertically as t →±∞.

9. x = t3 + t
dx

dt
= 3t2 + 1

y = 1− t3

dy

dt
= −3t2

At t = 1;
dy

dx
= −3(1)2

3(1)2 + 1
= −3

4
.

10. x = t4 − t2

dx

dt
= 4t3 − 2t

y = t3 + 2t
dy

dt
= 3t2 + 2

At t = −1;
dy

dx
= 3(−1)2 + 2

4(−1)3 − 2(−1)
= −5

2
.

11. x = cos(2t)
dx

dt
= −2 sin(2t)

y = sin t
dy

dt
= cos t

At t = π

6
;

dy

dx
= cos(π/6)

−2 sin(π/3)
= −1

2
.

12. x = e2t

dx

dt
= 2e2t

y = te2t

dy

dt
= e2t (1 + 2t)

At t = −2;
dy

dx
= e−4(1 − 4)

2e−4
= −3

2
.

13. x = t3 − 2t = −1
dx

dt
= 3t2 − 2 = 1

y = t + t3 = 2 at t = 1
dy

dt
= 1+ 3t2 = 4 at t = 1

Tangent line: x = −1 + t , y = 2 + 4t . This line is at
(−1, 2) at t = 0. If you want to be at that point at t = 1
instead, use

x = −1+ (t − 1) = t − 2, y = 2+ 4(t − 1) = 4t − 2.

14. x = t − cos t = π

4
− 1√

2
dx

dt
= 1+ sin t = 1+ 1√

2

y = 1− sin t = 1− 1√
2

at t = π

4
dy

dt
= − cos t = − 1√

2
at t = π

4

Tangent line: x = π

4
− 1√

2
+
(

1+ 1√
2

)
t ,

y = 1− 1√
2
− t√

2
.

15. x = t3 − t , y = t2 is at (0, 1) at t = −1 and t = 1. Since

dy

dx
= 2t

3t2 − 1
= ±2

2
= ±1,

the tangents at (0, 1) at t = ±1 have slopes ±1.

16. x = sin t , y = sin(2t) is at (0, 0) at t = 0 and t = π .
Since

dy

dx
= 2 cos(2t)

cos t
=
{

2 if t = 0
−2 if t = π ,

the tangents at (0, 0) at t = 0 and t = π have slopes 2
and −2, respectively.
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17. x = t3

dx

dt
= 3t2

y = t2

dy

dt
= 2t both vanish at t = 0.

dy

dx
= 2

3t
has no limit as t → 0.

dx

dy
= 3t

2
→ 0 as

t → 0, but dy/dt changes sign at t = 0. Thus the curve
is not smooth at t = 0. (In this solution, and in the next
five, we are using the Remark following Example 2 in
the text.)

18. x = (t − 1)4

dx

dt
= 4(t − 1)3

y = (t − 1)3

dy

dt
= 3(t − 1)2 both vanish at t = 1.

Since
dx

dy
= 4(t − 1)

3
→ 0 as t → 1, and dy/dt does not

change sign at t = 1, the curve is smooth at t = 1 and
therefore everywhere.

19. x = t sin t
dx

dt
= sin t + t cos t

y = t3

dy

dt
= 3t2 both vanish at t = 0.

lim
t→0

dy

dx
= lim

t→0

3t2

sin t + t cos t
= lim

t→0

6t

2 cos t − t sin t
= 0,

but dx/dt changes sign at t = 0. dx/dy has no limit at
t = 0. Thus the curve is not smooth at t = 0.

20. x = t3

dx

dt
= 3t2

y = t − sin t
dy

dt
= 1− cos t both vanish at t = 0.

lim
t→0

dx

dy
= lim

t→0

3t2

1− cos t
= lim

t→0

6t

sin t
= 6 and dy/dt does

not change sign at t = 0. Thus the curve is smooth at
t = 0, and hence everywhere.

21. If x = t2 − 2t and y = t2 − 4t , then

dx

dt
= 2(t − 1),

dy

dt
= 2(t − 2)

d2x

dt2 =
d2 y

dt2 = 2

d2 y

dx2
= 1

dx/dt

d

dt

dy

dx

= 1

2(t − 1)

d

dt

t − 2

t − 1
= 1

2(t − 1)3
.

Directional information is as follows:

1 2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→t| |
dx/dt − + +
dy/dt − − +

x ← → →
y ↓ ↓ ↑

curve ↙ ↘ ↗

The tangent is horizontal at t = 2, (i.e., (0,−4)), and
is vertical at t = 1 (i.e., at (−1,−3). Observe that
d2 y/dx2 > 0, and the curve is concave up, if t > 1.
Similarly, d2 y/dx2 < 0 and the curve is concave down if
t < 1.

y

x

t=2

t=1

x=t2−2t
y=t2−4t

Fig. 8.3.21

22. If x = f (t) = t3 and y = g(t) = 3t2 − 1, then

f ′(t) = 3t2,

g′(t) = 6t,

f ′′(t) = 6t;
g′′(t) = 6.

Both f ′(t) and g′(t) vanish at t = 0. Observe that

dy

dx
= 6t

3t2
= 2

t
.

Thus,

lim
t→0+

dy

dx
=∞, lim

t→0−
dy

dx
= −∞

and the curve has a cusp at t = 0, i.e., at (0,−1). Since

d2 y

dx2 =
(3t2)(6) − (6t)(6t)

(3t2)3
= − 2

3t4 < 0

for all t , the curve is concave down everywhere.
y

x

−1

x=t3

y=3t2−1

Fig. 8.3.22
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23. x = t3 − 3t , y = 2/(1 + t2). Observe that y → 0,
x →±∞ as t →±∞.

dx

dt
= 3(t2 − 1),

dy

dt
= − 4t

(1 + t2)2

dy

dx
= − 4t

3(t2 − 1)(1 + t2)2

d2x

dt2 = 6t,
d2 y

dt2 =
4(3t2 − 1)

(1+ t2)3

d2 y

dx2 =
3(t2 − 1)

4(3t2 − 1)

(1+ t2)3
− 4t (6t)

(1 + t2)2

[3(t2 − 1)]3

= 60t4 + 48t2 + 12

27(t2 − 1)3(1 + t2)3

Directional information:

−1 0 1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→t| | |
dx/dt + − − +
dy/dt + + − −

x → ← ← →
y ↑ ↑ ↓ ↓

curve ↗ ↖ ↙ ↘

The tangent is horizontal at t = 0, i.e., (0, 2), and vertical
at t = ±1, i.e., (±2, 1).

−1 1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→t| |
d2 y

dx2
+ − +

curve � � �

y

x

x=t3−3t

y=
2

1+ t2
t=0

t=−1t=1

Fig. 8.3.23

24. If x = f (t) = t3 − 3t − 2 and y = g(t) = t2 − t − 2, then

f ′(t) = 3t2 − 3,

g′(t) = 2t − 1,

f ′′(t) = 6t;
g′′(t) = 2.

The tangent is horizontal at t = 1

2
, i.e., at

(
−27

8
,−9

4

)
.

The tangent is vertical at t = ±1, i.e., (−4,−2) and
(0, 0). Directional information is as follows:

t −1 1
2 1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→| | |
f ′(t) + − − +
g′(t) − − + +

x → ← ← →
y ↓ ↓ ↑ ↑

curve ↘ ↙ ↖ ↗

For concavity,

d2 y

dx2 =
3(t2 − 1)(2)− (2t − 1)(6t)

[3(t2 − 1)]3 = −2(t2 − t + 1)

9(t2 − 1)3

which is undefined at t = ±1, therefore

t −1 1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→| |
d2 y

dx2 − + −
curve � � �

y

xt=−1, 2

t= 1
2

t=1

x=t3−3t−2

y=t2−2t−2

Fig. 8.3.24

25. x = cos t + t sin t, y = sin t − t cos t, (t ≥ 0).

dx

dt
= t cos t,

dy

dt
= t sin t,

dy

dt
= tan t

d2x

dt2 = cos t − t sin t

d2 y

dt2 = sin t + t cos t

d2 y

dx2 =
dx

dt

d2 y

dt2 −
dy

dt

d2x

dt2(
dx

dt

)3

= 1

t cos3 t

Tangents are vertical at t = (n + 1
2

)
π ,

and horizontal at t = nπ (n = 0, 1, 2, . . .).
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y

xt=0

t=π

t=3π/2

t=2π

Fig. 8.3.25

Section 8.4 Arc Lengths and Areas for
Parametric Curves (page 458)

1. x = 3t2

dx

dt
= 6t

y = 2t3 (0 ≤ t ≤ 1)
dy

dt
= 6t2

Length =
∫ 1

0

√
(6t)2 + (6t2)2 dt

= 6
∫ 1

0
t
√

1 + t2 dt Let u = 1+ t2

du = 2t dt

= 3
∫ 2

1

√
u du = 2u3/2

∣∣∣∣
2

1
= 4
√

2− 2 units

.

2. If x = 1+ t3 and y = 1− t2 for −1 ≤ t ≤ 2, then the arc
length is

s =
∫ 2

−1

√
(3t2)2 + (−2t)2 dt

=
∫ 2

−1
|t |
√

9t2 + 4 dt

=
(∫ 1

0
+
∫ 2

0

)
t
√

9t2 + 4 dt Let u = 9t2 + 4

du = 18t dt

= 1

18

(∫ 13

4
+
∫ 40

4

)√
u du

= 1

27

(
13
√

13+ 40
√

40− 16
)

units.

3. x = a cos3 t , y = a sin3 t , (0 ≤ t ≤ 2π). The length is

∫ 2π

0

√
9a2 cos4 t sin2 t + 9a2 sin4 t cos2 t dt

=3a
∫ 2π

0
| sin t cos t | dt

=12a
∫ π/2

0

1

2
sin 2t dt

=6a

(
− cos 2t

2

)∣∣∣∣
π/2

0
= 6a units.

4. If x = ln(1+ t2) and y = 2 tan−1 t for 0 ≤ t ≤ 1, then

dx

dt
= 2t

1+ t2 ;
dy

dt
= 2

1 + t2 .

The arc length is

s =
∫ 1

0

√
4t2 + 4

(1 + t2)2
dt

= 2
∫ 1

0

dt√
1+ t2

Let t = tan θ

dt = sec2 θ dθ

= 2
∫ π/4

0
sec θ dθ

= 2 ln | sec θ + tan θ |
∣∣∣∣
π/4

0
= 2 ln(1 +√2) units.

5. x = t2 sin t , y = t2 cos t , (0 ≤ t ≤ 2π).

dx

dt
= 2t sin t + t2 cos t

dy

dt
= 2t cos t − t2 sin t

(
ds

dt

)2

= t2
[

4 sin2 t + 4t sin t cos t + t2 cos2 t

+ 4 cos2 t − 4t sin t cos t + t2 sin2 t

]

= t2(4 + t2).

The length of the curve is

∫ 2π

0
t
√

4+ t2 dt Let u = 4+ t2

du = 2t dt

=1

2

∫ 4+4π2

4
u1/2 du = 1

3
u3/2

∣∣∣∣
4+4π2

4

=8

3

(
(1 + π2)3/2 − 1

)
units.

6. x = cos t + t sin t
dx

dt
= t cos t

y = sin t − t cos t (0 ≤ t ≤ 2π)
dy

dt
= t sin t

Length =
∫ 2π

0

√
t2 cos2 t + t2 sin2 t dt

=
∫ 2π

0
t dt = t2

2

∣∣∣∣
2π

0
= 2π2 units.

7. x = t + sin t
dx

dt
= 1+ cos t

y = cos t (0 ≤ t ≤ π)
dy

dt
= − sin t
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Length =
∫ π

0

√
1+ 2 cos t + cos2 t + sin2 t dt

=
∫ π

0

√
4 cos2(t/2) dt = 2

∫ π

0
cos

t

2
dt

= 4 sin
t

2

∣∣∣∣
π

0
= 4 units.

8. x = sin2 t
dx

dt
= 2 sin t cos t

y = 2 cos t (0 ≤ t ≤ π/2)
dy

dt
= −2 sin t

Length

=
∫ π/2

0

√
4 sin2 t cos2 t + 4 sin2 t dt

= 2
∫ π/2

0
sin t

√
1+ cos2 t dt Let cos t = tan u

− sin t dt = sec2 u du

= 2
∫ π/4

0
sec3 u du

=
(

sec u tan u + ln(sec u + tan u)

)∣∣∣∣
π/4

0

= √2 + ln(1 +√2) units.

9. x = a(t − sin t)
dx

dt
= a(1 − cos t)

y = a(1 − cos t) (0 ≤ t ≤ 2π)
dy

dt
= a sin t

Length =
∫ 2π

0

√
a2(1 − 2 cos t + cos2 t + sin2 t) dt

= a
∫ 2π

0

√
2− 2 cos t dt = a

∫ 2π

0

√
sin2 t

2
dt

= 2a
∫ π

0
sin

t

2
dt = −4a cos

t

2

∣∣∣∣
π

0
= 4a units.

10. If x = at − a sin t and y = a − a cos t for 0 ≤ t ≤ 2π ,
then

dx

dt
= a − a cos t,

dy

dt
= a sin t;

ds =
√
(a − a cos t)2 + (a sin t)2 dt

= a
√

2
√

1− cos t dt = a
√

2

√
2 sin2

(
t

2

)
dt

= 2a sin

(
t

2

)
dt.

a) The surface area generated by rotating the arch about
the x-axis is

Sx = 2π
∫ 2π

0
|y|ds

= 4π
∫ π

0
(a − a cos t)2a sin

(
t

2

)
dt

= 16πa2
∫ π

0
sin3

(
t

2

)
dt

= 16πa2
∫ π

0

[
1 − cos2

(
t

2

)]
sin

(
t

2

)
dt

Let u = cos

(
t

2

)

du = −1

2
sin

(
t

2

)
dt

= −32πa2
∫ 0

1
(1− u2) du

= 32πa2
[

u − 1

3
u3
]∣∣∣∣

1

0

= 64

3
πa3 sq. units.

b) The surface area generated by rotating the arch about
the y-axis is

Sy = 2π
∫ 2π

0
|x | ds

= 2π
∫ 2π

0
(at − a sin t)2a sin

(
t

2

)
dt

= 4πa2
∫ 2π

0

[
t − 2 sin

(
t

2

)
cos

(
t

2

)]
sin

(
t

2

)
dt

= 4πa2
∫ 2π

0
t sin

(
t

2

)
dt

− 8πa2
∫ 2π

0
sin2

(
t

2

)
cos

(
t

2

)
dt

= 4πa2
[
−2t cos

(
t

2

) ∣∣∣∣
2π

0
+ 2

∫ 2π

0
cos

(
t

2

)
dt

]
− 0

= 4πa2[4π + 0] = 16π2a2 sq. units.

11. x = et cos t
dx

dt
= et (cos t − sin t)

y = et sin t (0 ≤ t ≤ π/2)
dy

dt
= et (sin t + cos t)

Arc length element:

ds =
√

e2t (cos t − sin t)2 + e2t (sin t + cos t)2 dt

= √2et dt.
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The area of revolution about the x-axis is

∫ t=π/2

t=0
2πy ds = 2

√
2π
∫ π/2

0
e2t sin t dt

= 2
√

2π
e2t

5
(2 sin t − cos t)

∣∣∣∣
π/2

0

= 2
√

2π

5
(2eπ + 1) sq. units.

12. The area of revolution of the curve in Exercise 11 about
the y-axis is

∫ t=π/2

t=0
2πx ds = 2

√
2π
∫ π/2

0
e2t cos t dt

= 2
√

2π
e2t

5
(2 cos t + sin t)

∣∣∣∣
π/2

0

= 2
√

2π

5
(eπ − 2) sq. units.

13. x = 3t2

dx

dt
= 6t

y = 2t3 (0 ≤ t ≤ 1)
dy

dt
= 6t2

Arc length element:
ds =

√
36(t2 + t4) dt = 6t

√
1+ t2 dt .

The area of revolution about the y-axis is

∫ t=1

t=0
2πx ds = 36π

∫ 1

0
t3
√

1+ t2 dt Let u = 1+ t2

du = 2t dt

= 18π
∫ 2

1
(u − 1)

√
u du

= 18π

(
2

5
u5/2 − 2

3
u3/2

)∣∣∣∣
2

1

= 72π

15
(1 +√2) sq. units.

14. The area of revolution of the curve of Exercise 13 about
the x-axis is

∫ t=1

t=0
2πy ds = 24π

∫ 1

0
t4
√

1+ t2 dt Let t = tan u

dt = sec2 u du

= 24π
∫ π/4

0
tan4 u sec3 u du

= 24π
∫ π/4

0
(sec7 u − 2 sec5 u + sec3 u) du

= π

2

(
7
√

2+ 3 ln(1 +√2)
)

sq. units.

We have omitted the details of evaluation of the final
integral. See Exercise 24 of Section 8.3 for a similar
evaluation.

15. x = t3 − 4t , y = t2, (−2 ≤ t ≤ 2).

Area =
∫ 2

−2
t2(3t2 − 4) dt

= 2
∫ 2

0
(3t4 − 4t2) dt

= 2

(
3t5

5
− 4t3

3

)∣∣∣∣
2

0
= 256

15
sq. units.

y

x

x=t3−4t

y=t2

A

Fig. 8.4.15

16. Area of R = 4×
∫ 0

π/2
(a sin3 t)(−3a sin t cos2 t) dt

= −12a2
∫ 0

π/2
sin4 t cos2 t dt

= 12a2
[

t

16
− sin(4t)

64
− sin3 (2t)

48

] ∣∣∣∣
π/2

0

(See Exercise 34 of Section 6.4.)

= 3

8
πa2 sq. units.

y

x−a

−a

a

a
x=a cos3 t
y=a sin3 t

R

Fig. 8.4.16

17. x = sin4 t , y = cos4 t ,
(

0 ≤ t ≤ π

2

)
.

Area =
∫ π/2

0
(cos4 t)(4 sin3 t cos t) dt

= 4
∫ π/2

0
cos5 t (1 − cos2 t) sin t dt Let u = cos t

du = − sin t dt

= 4
∫ 1

0
(u5 − u7) du = 6

(
1

6
− 1

8

)
= 1

6
sq. units.
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y

x

A

x=sin4 t

y=cos4 t

0≤t≤π/2

Fig. 8.4.17

18. If x = cos s sin s = 1
2 sin 2s and y = sin2 s = 1

2 − 1
2 cos 2s

for 0 ≤ s ≤ 1
2π , then

x2 +
(

y − 1

2

)2

= 1

4
sin2 2s + 1

4
cos2 2s = 1

4

which is the right half of the circle with radius 1
2 and

centre at (0, 1
2 ). Hence, the area of R is

1

2

[
π

(
1

2

)2]
= π

8
sq. units.

y

x

1
2

1 x=cos s sin s
y=sin2 s

Fig. 8.4.18

19. x = (2+ sin t) cos t , y = (2 + sin t) sin t , (0 ≤ t ≤ 2π).
This is just the polar curve r = 2+ sin θ .

Area = −
∫ 2π

0
(2 + sin t) sin t

d

dt

(
(2 + sin t) cos t

)
dt

= −
∫ 2π

0
(2 sin t + sin2 t)(cos2 t − 2 sin t − sin2 t) dt

=
∫ 2π

0

[
4 sin2 t + 4 sin3 t + sin4 t

− 2 sin t cos2 t − sin2 t cos2 t
]

dt

=
∫ 2π

0

[
2(1 − cos 2t)+ 1− cos 2t

2
(− cos 2t)

]
dt

+
∫ 2π

0
sin t

[
4− 6 cos2 t

]
dt

= 4π + π
2
+ 0 = 9π

2
sq. units.

y

x

A

x=(2+sin t) cos t

y=(2+sin t) sin t

0≤t≤2π

Fig. 8.4.19

20. To find the shaded area we subtract the area under the
upper half of the hyperbola from that of a right triangle:

Shaded area = Area �ABC − Area sector ABC

= 1

2
sec t0 tan t0 −

∫ t0

0
tan t (sec t tan t) dt

= 1

2
sec t0 tan t0 −

∫ t0

0
(sec3 t − sec t) dt

= 1

2
sec t0 tan t0 −

[
1

2
sec t tan t+

1

2
ln | sec t + tan t | − ln | sec t + tan t |

]∣∣∣∣
t0

0

= 1

2
ln | sec t0 + tan t0| sq. units.

y

x

R

t=t0

t=0

x=sec t
y=tan t

Fig. 8.4.20

21. See the figure below. The area is the area of a triangle
less the area under the hyperbola:

A = 1

2
cosh t0 sinh t0 −

∫ t0

0
sinh t sinh t dt

= 1

4
sinh 2t0 −

∫ t0

0

cosh 2t − 1

2
dt

= 1

4
sinh 2t0 − 1

4
sinh 2t0 + 1

2
t0

= t0
2

sq. units.
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y

x

(cosh t0,sinh t0)

A

Fig. 8.4.21

22. If x = f (t) = at − a sin t and y = g(t) = a − a cos t ,
then the volume of the solid obtained by rotating about
the x-axis is

V =
∫ t=2π

t=0
πy2 dx = π

∫ t=2π

t=0
[g(t)]2 f ′(t) dt

= π
∫ 2π

0
(a − a cos t)2(a − a cos t) dt

= πa3
∫ 2π

0
(1− cos t)3 dt

= πa3
∫ 2π

0
(1− 3 cos t + 3 cos2 t − cos3 t) dt

= πa3
[

2π − 0+ 3

2

∫ 2π

0
(1 + cos 2t) dt − 0

]

= πa3
[

2π + 3

2
(2π)

]
= 5π2a3 cu. units.

y

xdx

t=2πt=0

x=at−a sin t
y=a−a cos t

Fig. 8.4.22

23. Half of the volume corresponds to rotating x = a cos3 t ,
y = a sin3 t (0 ≤ t ≤ π/2) about the x-axis. The whole
volume is

V = 2
∫ π/2

0
πy2 (−dx)

= 2π
∫ π/2

0
a2 sin6 t (3a cos2 t sin t) dt

= 6πa3
∫ π/2

0
(1 − cos2 t)3 cos2 t sin t dt Let u = cos t

du = − sin t dt

= 6πa3
∫ 1

0
(1 − 3u2 + 3u4 − u6)u2 du

= 6πa3
(

1

3
− 3

5
+ 3

7
− 1

9

)
= 32πa3

105
cu. units.

Section 8.5 Polar Coordinates and Polar
Curves (page 464)

1. r = 3 sec θ

r cos θ = 3

x = 3 vertical straight line.

2. r = −2 csc θ ⇒ r sin θ = −2

⇔ y = −2 a horizontal line.

3. r = 5/(3 sin θ − 4 cos θ)

3r sin θ − 4r cos θ = 5

3y − 4x = 5 straight line.

4. r = sin θ + cos θ

r2 = r sin θ + r cos θ

x2 + y2 = y + x(
x − 1

2

)2

+
(

y − 1

2

)2

= 1

2

a circle with centre

(
1

2
,

1

2

)
and radius

1√
2

.

5. r 2 = csc 2θ

r2 sin 2θ = 1

2r2 sin θ cos θ = 1

2xy = 1 a rectangular hyperbola.

6. r = sec θ tan θ ⇒ r cos θ = r sin θ

r cos θ
x2 = y a parabola.

7. r = sec θ(1+ tan θ)

r cos θ = 1+ tan θ

x = 1 + y

x
x2 − x − y = 0 a parabola.

8. r = 2√
cos2 θ + 4 sin2 θ

r2 cos2 θ + 4r2 sin2 θ = 4

x2 + 4y2 = 4 an ellipse.

9. r = 1

1 − cos θ
r − x = 1

r2 = (1+ x)2

x2 + y2 = 1+ 2x + x2

y2 = 1+ 2x a parabola.
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10. r = 2

2− cos θ
2r − r cos θ = 2

4r2 = (2 + x)2

4x2 + 4y2 = 4+ 4x + x2

3x2 + 4y2 − 4x = 4 an ellipse.

11. r = 2

1− 2 sin θ
r − 2y = 2

x2 + y2 = r2 = 4(1 + y)2 = 4+ 8y + 4y2

x2 − 3y2 − 8y = 4 a hyperbola.

12. r = 2

1+ sin θ
r + r sin θ = 2

r2 = (2− y)2

x2 + y2 = 4− 4y + y2

x2 = 4− 4y a parabola.

13. r = 1+ sin θ (cardioid)
y

x

2

Fig. 8.5.13

14. If r = 1− cos

(
θ + π

4

)
, then r = 0 at θ = −π

4
and

7π

4
.

This is a cardioid.
y

x

r=1−cos(θ+π4 )

θ=−π4

Fig. 8.5.14

15. r = 1+ 2 cos θ
r = 0 if θ = ±2π/3.

y

x

2π/3

1 3

−2π/3

Fig. 8.5.15

16. If r = 1− 2 sin θ , then r = 0 at θ = π

6
and

5π

6
.

y

x

r=1−2 sin θ

θ= 5π
6

θ=π6

Fig. 8.5.16

17. r = 2+ cos θ
y

x
3−1

Fig. 8.5.17

18. If r = 2 sin 2θ , then r = 0 at θ = 0, ±π
2

and π .

y

x

(
√

2,
√

2)

r=2 sin 2θ

Fig. 8.5.18

19. r = cos 3θ (three leaf rosette)
r = 0 at θ = ±π/6, ±π/2, ±5π/6.
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y

x

π/6

Fig. 8.5.19

20. If r = 2 cos 4θ , then r = 0 at θ = ±π
8
, ±3π

8
, ±5π

8
and

±7π

8
. (an eight leaf rosette)

y

x

θ=π8

r=2 cos 4θ

θ=3π
8

Fig. 8.5.20

21. r 2 = 4 sin 2θ . Thus r = ±2
√

sin 2θ . This is a lemniscate.
r = 0 at θ = 0, θ = ±π/2, and θ = π .

y

x

Fig. 8.5.21

22. If r 2 = 4 cos 3θ , then r = 0 at θ = ±π
6
, ±π

2
and

±5π

6
. This equation defines two functions of r , namely

r = ±2
√

cos 3θ . Each contributes 3 leaves to the graph.

y

x

θ=π6

r2=4 cos 3θ

Fig. 8.5.22

23. r 2 = sin 3θ . Thus r = ±√sin 3θ . This is a lemniscate.
r = 0 at θ = 0, ±π/3, ±2π/3, π .

y

x

π/3

Fig. 8.5.23

24. If r = ln θ , then r = 0 at θ = 1. Note that

y = r sin θ = ln θ sin θ = (θ ln θ)

(
sin θ

θ

)
→ 0

as θ → 0+. Therefore, the (negative) x-axis is an asymp-
tote of the curve.

y

x

r=ln θ

Fig. 8.5.24

25. r = √3 cos θ , and r = sin θ both pass through the origin,
and so intersect there. Also
sin θ = √3 cos θ ⇒ tan θ = √3 ⇒ θ = π/3, 4π/3.
Both of these give the same point [

√
3/2, π/3].

Intersections: the origin and [
√

3/2, π/3].

26. r 2 = 2 cos(2θ), r = 1.
cos(2θ) = 1/2 ⇒ θ = ±π/6 or θ = ±5π/6.
Intersections: [1,±π/6] and [1,±5π/6].
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27. r = 1 + cos θ , r = 3 cos θ . Both curves pass through the
origin, so intersect there. Also
3 cos θ = 1+cos θ ⇒ cos θ = 1/2 ⇒ θ = ±π/3.
Intersections: the origin and [3/2,±π/3].

28. Let r1(θ) = θ and r2(θ) = θ + π . Although the equation
r1(θ) = r2(θ) has no solutions, the curves r = r1(θ)

and r = r2(θ) can still intersect if r1(θ1) = −r2(θ2) for
two angles θ1 and θ2 having the opposite directions in the
polar plane. Observe that θ1 = −nπ and θ2 = (n − 1)π
are two such angles provided n is any integer. Since

r1(θ1) = −nπ = −r2((n − 1)π),

the curves intersect at any point of the form [nπ, 0] or
[nπ,π ].

29. If r = 1/θ for θ > 0, then

lim
θ→0+ y = lim

θ→0+
sin θ

θ
= 1.

Thus y = 1 is a horizontal asymptote.
y

x

y=1

r=1/θ

Fig. 8.5.29

30. The graph of r = cos nθ has 2n leaves if n is an even
integer and n leaves if n is an odd integer. The situation
for r2 = cos nθ is reversed. The graph has 2n leaves
if n is an odd integer (provided negative values of r are
allowed), and it has n leaves if n is even.

31. If r = f (θ), then

x = r cos θ = f (θ) cos θ

y = r sin θ = f (θ) sin θ.

32. r = cos θ cos(mθ)
For odd m this flower has 2m petals, 2 large ones and 4
each of (m − 1)/2 smaller sizes.
For even m the flower has m + 1 petals, one large and 2
each of m/2 smaller sizes.

33. r = 1+ cos θ cos(mθ)
These are similar to the ones in Exercise 32, but the
curve does not approach the origin except for θ = π

in the case of even m. The petals are joined, and less
distinct. The smaller ones cannot be distinguished.

34. r = sin(2θ) sin(mθ)
For odd m there are m + 1 petals, 2 each of (m + 1)/2
different sizes.
For even m there are always 2m petals. They are of n
different sizes if m = 4n − 2 or m = 4n.

35. r = 1+ sin(2θ) sin(mθ)
These are similar to the ones in Exercise 34, but the
petals are joined, and less distinct. The smaller ones can-
not be distinguished. There appear to be m + 2 petals in
both the even and odd cases.

36. r = C + cos θ cos(2θ)
The curve always has 3 bulges, one larger than the
other two. For C = 0 these are 3 distinct petals. For
0 < C < 1 there is a fourth supplementary petal inside
the large one. For C = 1 the curve has a cusp at the ori-
gin. For C > 1 the curve does not approach the origin,
and the petals become less distinct as C increases.

37. r = C + cos θ sin(3θ)
For C < 1 there appear to be 6 petals of 3 different sizes.
For C ≥ 1 there are only 4 of 2 sizes, and these coalesce
as C increases.

38.
y

x

r = ln(θ)

Fig. 8.5.38

We will have [ln θ1, θ1] = [ln θ2, θ2] if

θ2 = θ1 + π and ln θ1 = − ln θ2,

that is, if ln θ1 + ln(θ1 + π) = 0. This equa-
tion has solution θ1 ≈ 0.29129956. The correspond-
ing intersection point has Cartesian coordinates
(ln θ1 cos θ1, ln θ1 sin θ1) ≈ (−1.181442,−0.354230).
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39.
y

x

r = ln(θ)

r = 1/θ

Fig. 8.5.39

The two intersections of r = ln θ and r = 1/θ for
0 < θ ≤ 2π correspond to solutions θ1 and θ2 of

ln θ1 = 1

θ1
, ln θ2 = − 1

θ2 + π .

The first equation has solution θ1 ≈ 1.7632228, giv-
ing the point (−0.108461, 0.556676), and the second
equation has solution θ2 ≈ 0.7746477, giving the point
(−0.182488,−0.178606).

Section 8.6 Slopes, Areas, and Arc Lengths
for Polar Curves (page 468)

1. Area = 1

2

∫ 2π

0
θ dθ = (2π)2

4
= π2.

y

x

r=√θ

θ=2πθ=0

Fig. 8.6.1

2. Area = 1

2

∫ 2π

0
θ2 dθ = θ3

6

∣∣∣∣
2π

0
= 4

3
π3 sq. units.

y

x
A

r=θ

Fig. 8.6.2

3. Area = 4× 1

2

∫ π/4

0
a2 cos 2θ dθ

= 2a2 sin 2θ

2

∣∣∣∣
π/4

0
= a2 sq. units.

y

x

r2=a2 cos 2θ

Fig. 8.6.3

4. Area = 1

2

∫ π/3

0
sin2 3θ dθ = 1

4

∫ π/3

0
(1− cos 6θ) dθ

= 1

4

(
θ − 1

6
sin 6θ

)∣∣∣∣
π/3

0
= π

12
sq. units.

y

x

A

θ=π3

r=sin 3θ

Fig. 8.6.4

5. Total area = 16 × 1

2

∫ π/8

0
cos2 4θ dθ

= 4
∫ π/8

0
(1+ cos 8θ) dθ

= 4

(
θ + sin 8θ

8

)∣∣∣∣
π/8

0
= π

2
sq. units.
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y

x

π/8

r=cos 4θ

Fig. 8.6.5

6. The circles r = a and r = 2a cos θ intersect
at θ = ±π/3. By symmetry, the common area is
4×(area of sector−area of right triangle) (see the figure),
i.e.,

4 ×
[(

1

6
πa2

)
−
(

1

2

a

2

√
3a

2

)]
= 4π − 3

√
3

6
a2 sq. units.

y

x

r=a
r=2a cos θ

A

Fig. 8.6.6

7. Area = 2× 1

2

∫ π

π/2
(1 − cos θ)2 dθ − π

2

=
∫ π

π/2

(
1− 2 cos θ + 1+ cos 2θ

2

)
dθ − π

2

= 3

2

(
π − π

2

)
−
(

2 sin θ − sin 2θ

4

)∣∣∣∣
π

π/2
− π

2

= π

4
+ 2 sq. units.

y

x

r=1−cos θ

r=1

Fig. 8.6.7

8. Area = 1

2
πa2 + 2× 1

2

∫ π/2

0
a2(1 − sin θ)2 dθ

= πa2

2
+ a2

∫ π/2

0

(
1− 2 sin θ + 1− cos 2θ

2

)
dθ

= πa2

2
+ a2

(
3

2
θ + 2 cos θ − 1

4
sin 2θ

)∣∣∣∣
π/2

0

=
(

5π

4
− 2

)
a2 sq. units.

y

xA

r=a

r=a(1−sin θ)

Fig. 8.6.8

9. For intersections: 1 + cos θ = 3 cos θ . Thus 2 cos θ = 1
and θ = ±π/3. The shaded area is given by

2× 1

2

[∫ π

π/3
(1 + cos θ)2 dθ − 9

∫ π/2

π/3
cos2 θ dθ

]

=
∫ π

π/3

(
1+ 2 cos θ + 1+ cos 2θ

2

)
dθ

− 9

2

∫ π/2

π/3
(1 + cos 2θ) dθ

= 3

2

(
2π

3

)
+
(

2 sin θ + sin 2θ

4

)∣∣∣∣
π

π/3

− 9

2

(
θ + sin 2θ

2

)∣∣∣∣
π/2

π/3

= π

4
−√3−

√
3

8
+ 9

4

(√
3

2

)
= π

4
sq. units.

y

x

r=1+cos θ

r=3 cos θ

π/3

Fig. 8.6.9
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10. Since r 2 = 2 cos 2θ meets r = 1 at θ = ±π
6

and ±5π

6
,

the area inside the lemniscate and outside the circle is

4× 1

2

∫ π/6

0

[
2 cos 2θ − 12

]
dθ

= 2 sin 2θ

∣∣∣∣∣
π/6

0

− π
3
= √3 − π

3
sq. units.

y

x
AA

r=1

r2=2 cos 2θ

Fig. 8.6.10

11. r = 0 at θ = ±2π/3. The shaded area is

2 × 1

2

∫ π

2π/3
(1 + 2 cos θ)2 dθ

=
∫ π

2π/3

(
1+ 4 cos θ + 2(1 + cos 2θ)

)
dθ

= 3
(π

3

)
+ 4 sin θ

∣∣∣∣
π

2π/3
+ sin 2θ

∣∣∣∣
π

2π/3

= π − 2
√

3+
√

3

2
= π − 3

√
3

2
sq. units.

y

x

2π/3

1 3

−2π/3

r=1+2 cos θ

Fig. 8.6.11

12. s =
∫ π

0

√(
dr

dθ

)2

+ r2 dθ =
∫ π

0

√
4θ2 + θ4 dθ

=
∫ π

0
θ
√

4 + θ2 dθ Let u = 4+ θ2

du = 2θ dθ

= 1

2

∫ 4+π2

4

√
u du = 1

3
u3/2

∣∣∣∣
4+π2

4

= 1

3

[
(4 + π2)3/2 − 8

]
units.

13. r = eaθ , (−π ≤ θ ≤ π). dr

dθ
= aeaθ .

ds = √e2aθ + a2e2aθ dθ = √1+ a2eaθ dθ . The length of
the curve is

∫ π

−π

√
1+ a2eaθ dθ =

√
1+ a2

a
(eaπ − e−aπ ) units.

14. s =
∫ 2π

0

√
a2 + a2θ2 dθ

= a
∫ 2π

0

√
1+ θ2 dθ Let θ = tan u

dθ = sec2 u dθ

= a
∫ θ=2π

θ=0
sec3 u du

= a

2

(
sec u tan u + ln | sec u + tan u|

)∣∣∣∣
θ=2π

θ=0

= a

2

[
θ
√

1+ θ2 + ln |
√

1+ θ2 + θ |
]∣∣∣∣
θ=2π

θ=0

= a

2

[
2π
√

1+ 4π2 + ln(2π +
√

1+ 4π2)
]

units.

15. r 2 = cos 2θ

2r
dr

dθ
= −2 sin 2θ ⇒ dr

dθ
= − sin 2θ

r

ds =
√

cos 2θ + sin2 2θ

cos 2θ
dθ = √sec 2θ dθ

Length = 4
∫ π/4

0

√
sec 2θ dθ.

y

x

r2=cos 2θ

Fig. 8.6.15

16. If r 2 = cos 2θ , then

2r
dr

dθ
= −2 sin 2θ ⇒ dr

dθ
= − sin 2θ√

cos 2θ

and

ds =
√

cos 2θ + sin2 2θ

cos 2θ
dθ = dθ√

cos 2θ
.
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a) Area of the surface generated by rotation about the
x- axis is

Sx = 2π
∫ π/4

0
r sin θ ds

= 2π
∫ π/4

0

√
cos 2θ sin θ

dθ√
cos 2θ

= −2π cos θ

∣∣∣∣
π/4

0
= (2 −√2)π sq. units.

b) Area of the surface generated by rotation about the
y- axis is

Sy = 2π
∫ π/4

−π/4
r cos θ ds

= 4π
∫ π/4

0

√
cos 2θ cos θ

dθ√
cos 2θ

= 4π sin θ

∣∣∣∣
π/4

0
= 2
√

2π sq. units.

17. For r = 1 + sin θ ,

tanψ = r

dr/dθ
= 1+ sin θ

cos θ
.

If θ = π/4, then tanψ = √2+ 1 and ψ = 3π/8.
If θ = 5π/4, then tanψ = 1 −√2 and ψ = −π/8.
The line y = x meets the cardioid r = 1 + sin θ at
the origin at an angle of 45◦, and also at first and third
quadrant points at angles of 67.5◦ and −22.5◦ as shown
in the figure.

y

x

r=1+sin θ

θ = π/4
ψ

Fig. 8.6.17

18. The two curves r 2 = 2 sin 2θ and r = 2 cos θ intersect
where

2 sin 2θ = 4 cos2 θ

4 sin θ cos θ = 4 cos2 θ

(sin θ − cos θ) cos θ = 0

⇔ sin θ = cos θ or cos θ = 0,

i.e., at P1 =
[√

2,
π

4

]
and P2 = (0, 0).

For r2 = 2 sin 2θ we have 2r
dr

dθ
= 4 cos 2θ . At P1 we

have r = √2 and dr/dθ = 0. Thus the angle ψ between
the curve and the radial line θ = π/4 is ψ = π/2.
For r = 2 cos θ we have dr/dθ = −2 sin θ , so the angle
between this curve and the radial line θ = π/4 satisfies

tanψ = r

dr/dθ

∣∣∣∣
θ=π/4

= −1, and ψ = 3π/4. The two

curves intersect at P1 at angle
3π

4
− π

2
= π

4
.

The Figure shows that at the origin, P2, the circle meets
the lemniscate twice, at angles 0 and π/2.

y

x

r=2 cos θr2=2 sin 2θ

Fig. 8.6.18

19. The curves r = 1 − cos θ and r = 1 − sin θ intersect on
the rays θ = π/4 and θ = 5π/4, as well as at the origin.
At the origin their cusps clearly intersect at right angles.
For r = 1 − cos θ , tanψ1 = (1− cos θ)/ sin θ .
At θ = π/4, tanψ1 =

√
2 − 1, so ψ1 = π/8.

At θ = 5π/4, tanψ1 = −(
√

2+ 1), so ψ1 = −3π/8.
For r = 1 − sin θ , tanψ2 = (1 − sin θ)/(− cos θ).
At θ = π/4, tanψ2 = 1−√2, so ψ2 = −π/8.
At θ = 5π/4, tanψ2 =

√
2+ 1, so ψ2 = 3π/8.

At π/4 the curves intersect at angle π/8−(−π/8) = π/4.
At 5π/4 the curves intersect at angle 3π/8− (−3π/8)
= 3π/4 (or π/4 if you use the supplementary angle).

y

x

r=1−cos θ

r=1−sin θ

Fig. 8.6.19

20. We have r = cos θ + sin θ . For horizontal tangents:

0 = dy

dθ
= d

dθ

(
cos θ sin θ + sin2 θ

)

= cos2 θ − sin2 θ + 2 sin θ cos θ

⇔ cos 2θ = − sin 2θ ⇔ tan 2θ = −1.
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Thus θ = −π
8

or
3π

8
. The tangents are horizontal at[

cos

(
π

8

)
− sin

(
π

8

)
,−π

8

]
and

[
cos

(
3π

8

)
+ sin

(
3π

8

)
,

3π

8

]
.

For vertical tangent:

0 = dx

dθ
= d

dθ

(
cos2 θ + cos θ sin θ

)

= −2 cos θ sin θ + cos2 θ − sin2 θ

⇔ sin 2θ = cos 2θ ⇔ tan 2θ = 1.

Thus θ = π/8 of 5π/8. There are vertical tangents at[
cos

(
π

8

)
+ sin

(
π

8

)
,
π

8

]
and

[
cos

(
5π

8

)
+ sin

(
5π

8

)
,

5π

8

]
.

y

x

r=cos θ+sin θ

Fig. 8.6.20

21. r = 2 cos θ . tanψ = r

dr/dθ
= − cot θ .

For horizontal tangents we want tanψ = − tan θ . Thus
we want − tan θ = − cot θ , and so θ = ±π/4 or ±3π/4.
The tangents are horizontal at [

√
2,±π/4].

For vertical tangents we want tanψ = cot θ . Thus we
want − cot θ = cot θ , and so θ = 0, ±π/2, or π . There
are vertical tangents at the origin and at [2, 0].

y

x

r=2 cos θ

θ=π/4

2

θ=−π/4

Fig. 8.6.21

22. We have r 2 = cos 2θ , and 2r
dr

dθ
= −2 sin 2θ . For hori-

zontal tangents:

0 = d

dθ
r sin θ = r cos θ + sin θ

(
− sin 2θ

r

)

⇔ cos 2θ cos θ = sin 2θ sin θ

⇔ (cos2 θ − sin2 θ) cos θ = 2 sin2 θ cos θ

⇔ cos θ = 0 or cos2 θ = 3 sin2 θ.

There are no points on the curve where cos θ = 0. There-
fore, horizontal tangents occur only where
tan2 θ = 1/3. There are horizontal tangents at[

1√
2
,±π

6

]
and

[
1√
2
,±5π

6

]
.

For vertical tangents:

0 = d

dθ
r cos θ = −r sin θ + cos θ

(
− sin 2θ

r

)

⇔ cos 2θ sin θ = − sin 2θ cos θ

⇔ (cos2 θ − sin2 θ) sin θ = −2 sin θ cos2 θ

⇔ sin θ = 0 or 3 cos2 θ = sin2 θ.

There are no points on the curve where tan2 θ = 3, so the
only vertical tangents occur where sin θ = 0, that is, at
the points with polar coordinates [1, 0] and [1, π ].

y

x

r2=cos 2θ

Fig. 8.6.22

23. r = sin 2θ . tanψ = sin 2θ

2 cos 2θ
= 1

2 tan 2θ .

For horizontal tangents:

tan 2θ = −2 tan θ
2 tan θ

1− tan2 θ
= −2 tan θ

tan θ
(

1+ (1− tan2 θ)
)
= 0

tan θ(2− tan2 θ) = 0.

Thus θ = 0, π , ± tan−1
√

2, π ± tan−1
√

2.
There are horizontal tangents at the origin and the points[

2
√

2

3
,± tan−1

√
2

]
and

[
2
√

2

3
, π ± tan−1

√
2

]
.

Since the rosette r = sin 2θ is symmetric about x = y,
there must be vertical tangents at the origin and at the
points[

2
√

2

3
,± tan−1 1√

2

]
and

[
2
√

2

3
, π ± tan−1 1√

2

]
.
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y

x

r=sin 2θ

Fig. 8.6.23

24. We have r = eθ and
dr

dθ
= eθ . For horizontal tangents:

0 = d

dθ
r sin θ = eθ cos θ + eθ sin θ

⇔ tan θ = −1 ⇔ θ = −π
4
+ kπ,

where k = 0,±1,±2, . . .. At the points
[ekπ−π/4, kπ − π/4] the tangents are horizontal.
For vertical tangents:

0 = d

dθ
r cos θ = eθ cos θ − eθ sin θ

⇔ tan θ = 1 ↔ θ = π

4
+ kπ.

At the points [ekπ+π/4, kπ + π/4] the tangents are verti-
cal.

25. r = 2(1 − sin θ), tanψ = −1− sin θ

cos θ
.

For horizontal tangents tanψ = − cot θ , so

− 1− sin θ

cos θ
= − sin θ

cos θ
cos θ = 0, or 2 sin θ = 1.

The solutions are θ = ±π/2, ±π/6, and ±5π/6.
θ = π/2 corresponds to the origin where the cardioid
has a cusp, and therefore no tangent. There are horizon-
tal tangents at [4,−π/2], [1, π/6], and [1, 5π/6].
For vertical tangents tanψ = cot θ , so

− 1− sin θ

cos θ
= cos θ

sin θ
sin2 θ − sin θ = cos2 θ = 1− sin2 θ

2 sin2 θ − sin θ − 1 = 0

(sin θ − 1)(2 sin θ + 1) = 0

The solutions here are θ = π/2 (the origin again),
θ = −π/6 and θ = −5π/6. There are vertical tangents at
[3,−π/6] and [3,−5π/6].

y

x

r=2(1−sin θ)

Fig. 8.6.25

26. x = r cos θ = f (θ) cos θ , y = r sin θ = f (θ) sin θ .

dx

dθ
= f ′(θ) cos θ − f (θ) sin θ,

dy

dθ
= f ′(θ) sin θ + f (θ) cos θ

ds =
√(

f ′(θ) cos θ − f (θ) sin θ
)2 +

(
f ′(θ) sin θ + f (θ) cos θ

)2
dθ

=
[(

f ′(θ)
)2

cos2 θ − 2 f ′(θ) f (θ) cos θ sin θ +
(

f (θ)
)2

sin2 θ

+
(

f ′(θ)
)2

sin2 θ + 2 f ′(θ) f (θ) sin θ cos θ +
(

f (θ)
)2

cos2 θ

]1/2

dθ

=
√(

f ′(θ)
)2 +

(
f (θ)

)2
dθ.

Review Exercises 8 (page 469)

1. x2 + 2y2 = 2 ⇔ x2

2
+ y2 = 1

Ellipse, semi-major axis a = √2, along the x-axis. Semi-
minor axis b = 1.
c2 = a2 − b2 = 1. Foci: (±1, 0).

2. 9x2 − 4y2 = 36 ⇔ x2

4
− y2

9
= 1

Hyperbola, transverse axis along the x-axis.
Semi-transverse axis a = 2, semi-conjugate axis b = 3.
c2 = a2 + b2 = 13. Foci: (±√13, 0).
Asymptotes: 3x ± 2y = 0.

3. x + y2 = 2y + 3 ⇔ (y − 1)2 = 4 − x
Parabola, vertex (4, 1), opening to the left, principal axis
y = 1.
a = −1/4. Focus: (15/4, 1).

4. 2x2 + 8y2 = 4x − 48y
2(x2 − 2x + 1)+ 8(y2 + 6y + 9) = 74

(x − 1)2

37
+ (y + 3)2

37/4
= 1.

Ellipse, centre (1,−3), major axis along y = −3.
a = √37, b = √37/2, c2 = a2 − b2 = 111/4.
Foci: (1 ±√111/2,−3).

5. x = t , y = 2 − t , (0 ≤ t ≤ 2).
Straight line segment from (0, 2) to (2, 0).
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6. x = 2 sin(3t), y = 2 cos(3t), (0 ≤ t ≤ 2)
Part of a circle of radius 2 centred at the origin from the
point (0, 2) clockwise to (2 sin 6, 2 cos 6).

7. x = cosh t , y = sinh2 t .
Parabola x2 − y = 1, or y = x2 − 1, traversed left to
right.

8. x = et , y = e−2t , (−1 ≤ t ≤ 1).
Part of the curve x2 y = 1 from (1/e, e2) to (e, 1/e2).

9. x = cos(t/2), y = 4 sin(t/2), (0 ≤ t ≤ π).
The first quadrant part of the ellipse 16x2 + y2 = 16,
traversed counterclockwise.

10. x = cos t + sin t , y = cos t − sin t , (0 ≤ t ≤ 2π)
The circle x2 + y2 = 2, traversed clockwise, starting and
ending at (1, 1).

11. x = 4

1+ t2

dx

dt
= − 8t

(1 + t2)2

y = t3 − 3t

dy

dt
= 3(t2 − 1)

Horizontal tangent at t = ±1, i.e., at (2,±2).
Vertical tangent at t = 0, i.e., at (4, 0).
Self-intersection at t = ±√3, i.e., at (1, 0).

y

x
t=0

t=−1

t=±√3

t=1

Fig. R-8.11

12. x = t3 − 3t
dx

dt
= 3(t2 − 1)

y = t3 + 3t
dy

dt
= 3(t2 + 1)

Horizontal tangent: none.
Vertical tangent at t = ±1, i.e., at (2,−4) and (−2, 4).

Slope
dy

dx
= t2 + 1

t2 − 1

{
> 0 if |t | > 1
< 0 if |t | < 1

Slope → 1 as t →±∞.
y

x

(2,−4)

(−2,4) x=t3−3t
y=t3+3t

Fig. R-8.12

13. x = t3 − 3t
dx

dt
= 3(t2 − 1)

y = t3

dy

dt
= 3t2

Horizontal tangent at t = 0, i.e., at (0, 0).
Vertical tangent at t = ±1, i.e., at (2,−1) and (−2, 1).

Slope
dy

dx
= t2

t2 − 1

{
> 0 if |t | > 1
< 0 if |t | < 1

Slope → 1 as t →±∞.
y

xt=−1

t=1

Fig. R-8.13

14. x = t3 − 3t
dx

dt
= 3(t2 − 1)

y = t3 − 12t
dy

dt
= 3(t2 − 4)

Horizontal tangent at t = ±2, i.e., at (2,−16) and
(−2, 16).
Vertical tangent at t = ±1, i.e., at (2, 11) and (−2,−11).

Slope
dy

dx
= t2 − 4

t2 − 1

{
> 0 if |t | > 2 or |t | < 1
< 0 if 1 < |t | < 2

Slope → 1 as t →±∞.
y

x

(2,11)

x=t3−3t
y=t3−12t

(−2,−11)

(−2,16)

(2,−16)

Fig. R-8.14

15. The curve x = t3 − t , y = |t3| is symmetric about x = 0
since x is an odd function and y is an even function. Its
self-intersection occurs at a nonzero value of t that makes
x = 0, namely, t = ±1. The area of the loop is

A = 2
∫ t=1

t=0
(−x) dy = −2

∫ 1

0
(t3 − t)3t2 dt

=
(
−t6 + 3

2
t4
)∣∣∣∣

1

0
= 1

2
sq. units.
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y

x

t=±1

x = t3 − t
y = |t3|

t=0

Fig. R-8.15

16. The volume of revolution about the y-axis is

V = π
∫ t=1

t=0
x2 dy

= π
∫ 1

0
(t6 − 2t4 + t2)3t2 dt

= 3π
∫ 1

0
(t8 − 2t6 + t4) dt

= 3π

(
1

9
− 2

7
+ 1

5

)
= 8π

105
cu. units.

17. x = et − t , y = 4et/2, (0 ≤ t ≤ 2). Length is

L =
∫ 2

0

√
(et − 1)2 + 4et dt

=
∫ 2

0

√
(et + 1)2 dt =

∫ 2

0
(et + 1) dt

= (et + t)

∣∣∣∣
2

0
= e2 + 1 units.

18. Area of revolution about the x-axis is

S = 2π
∫

4et/2(et + 1) dt

= 8π

(
2

3
e3t/2 + 2et/2

)∣∣∣∣
2

0

= 16π

3
(e3 + 3e − 4) sq. units.

19. r = θ, (−3π
2 ≤ θ ≤ 3π

2

)

y

x

r = θ

Fig. R-8.19

20. r = |θ |, (−2π ≤ θ ≤ 2π)
y

x

r=|θ |

Fig. R-8.20

21. r = 1+ cos(2θ)
y

x

r=1+cos 2θ

Fig. R-8.21

22. r = 2+ cos(2θ)
y

x

r=2+cos(2θ)

Fig. R-8.22

23. r = 1+ 2 cos(2θ)
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y

x

r=1+2 cos 2θ

Fig. R-8.23

24. r = 1− sin(3θ)
y

x

π/6

r=1−sin(3θ)

Fig. R-8.24

25. Area of a large loop:

A = 2 × 1

2

∫ π/3

0
(1 + 2 cos(2θ))2 dθ

=
∫ π/3

0
[1 + 4 cos(2θ)+ 2(1 + cos(4θ))] dθ

=
(

3θ + 2 sin(2θ)+ 1

2
sin(4θ)

)∣∣∣∣
π/3

0

= π + 3
√

3

4
sq. units.

26. Area of a small loop:

A = 2 × 1

2

∫ π/2

π/3
(1 + 2 cos(2θ))2 dθ

=
∫ π/2

π/3
[1 + 4 cos(2θ)+ 2(1 + cos(4θ))] dθ

=
(

3θ + 2 sin(2θ)+ 1

2
sin(4θ)

)∣∣∣∣
π/2

π/3

= π

2
− 3
√

3

4
sq. units.

27. r = 1 + √2 sin θ approaches the origin in the directions
for which sin θ = −1/

√
2, that is, θ = −3π/4 and

θ = −π/4. The smaller loop corresponds to values of θ
between these two values. By symmetry, the area of the
loop is

A = 2 × 1

2

∫ −π/4
−π/2

(1 + 2
√

2 sin θ + 2 sin2 θ) dθ

=
∫ −π/4
−π/2

(2 + 2
√

2 sin θ − cos(2θ)) dθ

=
(

2θ − 2
√

2 cos θ − 1

2
sin(2θ)

)∣∣∣∣
−π/4

−π/2

= π

2
− 2+ 1

2
= π − 3

2
sq. units.

y

x−π/4−3π/4

r=1+√2 sin θ

Fig. R-8.27

28. r cos θ = x = 1/4 and r = 1+ cos θ intersect where

1+ cos θ = 1

4 cos θ
4 cos2 θ + 4 cos θ − 1 = 0

cos θ = −4±√16+ 16

8
= ±
√

2 − 1

2
.

Only (
√

2 − 1)/2 is between −1 and 1, so is a possible

value of cos θ . Let θ0 = cos−1

√
2− 1

2
. Then

sin θ0 =
√√√√1−

(√
2− 1

2

)2

=
√

1+ 2
√

2

2
.

By symmetry, the area inside r = 1 + cos θ to the left of
the line x = 1/4 is

A = 2 × 1

2

∫ π

θ0

(
1+ 2 cos θ + 1+ cos(2θ)

2

)
dθ + cos θ0 sin θ0

= 3

2
(π − θ0)+

(
2 sin θ + 1

4
sin(2θ)

)∣∣∣∣
π

θ0

+ (
√

2− 1)
√

1 + 2
√

2

4

= 3

2

(
π − cos−1

√
2− 1

2

)
+
√

1+ 2
√

2

(√
2− 9

8

)
sq. units.
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y

x

x=1/4
r=1+cos θ

θ0

Fig. R-8.28

Challenging Problems 8 (page 469)

1. The surface of the water is elliptical (see Problem 2 be-
low) whose semi-minor axis is 4 cm, the radius of the
cylinder, and whose semi-major axis is 4 sec θ cm be-
cause of the tilt of the glass. The surface area is that of
the ellipse

x = 4 sec θ cos t, y = 4 sin t, (0 ≤ t ≤ 2π).

This area is

A = 4
∫ t=π/2

t=0
x dy

= 4
∫ π/2

0
(4 sec θ cos t)(4 cos t) dt

= 32 sec θ
∫ π/2

0
(1 + cos(2t)) dt = 16π sec θ cm2.

θ

4 sec θ cm

4 cm

Fig. C-8.1

2. Let S1 and S2 be two spheres inscribed in the cylinder,
one on each side of the plane that intersects the cylinder
in the curve C that we are trying to show is an ellipse.
Let the spheres be tangent to the cylinder around the
circles C1 and C2, and suppose they are also tangent to
the plane at the points F1 and F2, respectively, as shown
in the figure.

P F1

A1

A2

F2
C2

S2

C1

S1

C

Fig. C-8.2

Let P be any point on C . Let A1 A2 be the line through
P that lies on the cylinder, with A1 on C1 and A2 on C2.
Then P F1 = P A1 because both lengths are of tangents
drawn to the sphere S1 from the same exterior point P.
Similarly, P F2 = P A2. Hence

P F1 + P F2 = P A1 + P A2 = A1 A2,

which is constant, the distance between the centres of the
two spheres. Thus C must be an ellipse, with foci at F1
and F2.

3. Given the foci F1 and F2, and the point P on the ellipse,
construct N1 P N2, the bisector of the angle F1 P F2. Then
construct T1 PT2 perpendicular to N1 N2 at P. By the
reflection property of the ellipse, N1 N2 is normal to the
ellipse at P. Therefore T1T2 is tangent there.

θ
θ

P

T1

T2

N2

N1

F1 F2

Fig. C-8.3

4. Without loss of generality, choose the axes and axis
scales so that the parabola has equation y = x2. If P is
the point (x0, x2

0 ) on it, then the tangent to the parabola
at P has equation

y = x2
0 + 2x0(x − x0),
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which intersects the principal axis x = 0 at (0,−x2
0 ).

Thus R = (0,−x2
0 ) and Q = (0, x2

0 ). Evidently the
vertex V = (0, 0) bisects RQ.

y

x

P = (x0, x2
0 )

R

V

Q

Fig. C-8.4

To construct the tangent at a given point P on a parabola
with given vertex V and principal axis L , drop a perpen-
dicular from P to L , meeting L at Q. Then find R on L
on the side of V opposite Q and such that QV = V R.
Then P R is the desired tangent.

5.
y

x

2 ft

2 ft a

b

c

Fig. C-8.5

Let the ellipse be
x2

a2 +
y2

b2 = 1, with a = 2 and foci at

(0,±2) so that c = 2 and b2 = a2 + c2 = 8. The volume
of the barrel is

V = 2
∫ 2

0
πx2 dy = 2π

∫ 2

0
4

(
1− y2

8

)
dy

= 8π

(
y − y3

24

)∣∣∣∣
2

0
= 40π

3
ft3.

6.
y

x

P = [r, θ ]

r

a

[a, θ0]

θ0

θ
L

Fig. C-8.6

a) Let L be a line not passing through the origin, and
let [a, θ0] be the polar coordinates of the point on
L that is closest to the origin. If P = [r, θ ] is any
point on the line, then, from the triangle in the fig-
ure,

a

r
= cos(θ − θ0), or r = a

cos(θ − θ0)
.

b) As shown in part (a), any line not passing through
the origin has equation of the form

r = g(θ) = a

cos(θ − θ0)
= a sec(θ − θ0),

for some constants a and θ0. We have

g′(θ) = a sec(θ − θ0) tan(θ − θ0)

g′′(θ) = a sec(θ − θ0) tan2(θ − θ0)

+ a sec3(θ − θ0)
(

g(θ)
)2 + 2

(
g′(θ)

)2 − g(θ)g′′(θ)

= a2 sec2(θ − θ0)+ 2a2 sec2(θ − θ0) tan2(θ − θ0)

− a2 sec2(θ − θ0) tan2(θ − θ0)− a2 sec4(θ − θ0)

= a2
[
sec2(θ − θ0)

(
1+ tan2(θ − θ0)

)
− sec4(θ − θ0)

]
= 0.

c) If r = g(θ) is the polar equation of the tangent to
r = f (θ) at θ = α, then g(α) = f (α) and
g′(α) = f ′(α). Suppose that

(
f (α)

)2 + 2
(

f ′(α)
)2 − f (α) f ′′(α) > 0.

By part (b) we have

(
g(α)

)2 + 2
(

g′(α)
)2 − g(α)g′′(α) = 0.
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Subtracting, and using g(α) = f (α) and
g′(α) = f ′(α), we get f ′′(α) < g′′(α). It follows
that f (θ) < g(θ) for values of θ near α; that is, the
graph of r = f (θ) is curving to the origin side of its
tangent at α. Similarly, if

(
f (α)

)2 + 2
(

f ′(α)
)2 − f (α) f ′′(α) < 0,

then the graph is curving to the opposite side of the
tangent, away from the origin.

7.

r

θ

0 x(t)

x

R

B A

Fig. C-8.7

When the vehicle is at position x , as shown in the fig-
ure, the component of the gravitational force on it in the
direction of the tunnel is

ma(r) cos θ = −mgr

R
cos θ = −mg

R
x .

By Newton’s Law of Motion, this force produces an ac-
celeration d2x/dt2 along the tunnel given by

m
d2x

dt2 = −
mg

R
x,

that is

d2x

dt2 + ω2x = 0, where ω2 = g

R
.

This is the equation of simple harmonic motion, with
period T = 2π/ω = 2π

√
R/g.

For R ≈ 3960 mi ≈ 2.09 × 107 ft, and g ≈ 32 ft/s2, we
have T ≈ 5079 s ≈ 84.6 minutes. This is a rather short
time for a round trip between Atlanta and Baghdad, or
any other two points on the surface of the earth.

8. Take the origin at station O as shown in the figure. Both
of the lines L1 and L2 pass at distance 100 cos ε from
the origin. Therefore, by Problem 6(a), their equations
are

L1 : r = 100 cos ε

cos
[
θ − (π2 − ε)] =

100 cos ε

sin(θ + ε)
L2 : r = 100 cos ε

cos
[
θ − (π2 + ε)] =

100 cos ε

sin(θ − ε) .

The search area A(ε) is, therefore,

A(ε) = 1

2

∫ π
4 +ε

π
4 −ε

(
1002 cos2 ε

sin2(θ − ε) −
1002 cos2 ε

sin2(θ + ε)
)

dθ

= 5, 000 cos2 ε

∫ π
4 +ε

π
4 −ε

(
csc2(θ − ε)− csc2(θ + ε)

)
dθ

= 5, 000 cos2 ε
[
cot

(
π
4 + 2ε

)− 2 cot π4 + cot
(
π
4 − 2ε

)]

= 5, 000 cos2 ε

[
cos

(
π
4 + 2ε

)
sin
(
π
4 + 2ε

) + sin
(
π
4 + 2ε

)
cos

(
π
4 + 2ε

) − 2

]

= 10, 000 cos2 ε
[
csc

(
π
2 + 4ε

) − 1
]

= 10, 000 cos2 ε(sec(4ε) − 1) mi2.

For ε = 3◦ = π/60, we have A(ε) ≈ 222.8 square miles.
Also

A′(ε) = −20, 000 cos ε sin ε(sec(4ε) − 1)

+ 40, 000 cos2 ε sec(4ε) tan(4ε)

A′(π/60) ≈ 8645.

When ε = 3◦, the search area increases at about
8645(π/180) ≈ 151 square miles per degree increase
in ε.

y

x

Area A(ε)

ε

ε

π/4

100 mi

L1

L2

O

Fig. C-8.8

9. The easiest way to determine which curve is which is
to calculate both their areas; the outer curve bounds the
larger area.
The curve C1 with parametric equations

x = sin t, y = 1

2
sin(2t), (0 ≤ t ≤ 2π)
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has area

A1 = 4
∫ t=π/2

t=0
y dx

= 4
∫ π/2

0

1

2
sin(2t) cos t dt

= 4
∫ π/2

0
sin t cos2 t dt

Let u = cos t

du = − sin t dt

= 4
∫ 1

0
u2 du = 4

3
sq. units.

The curve C2 with polar equation r2 = cos(2θ) has area

A2 = 4

2

∫ π/4

0
cos(2θ) dθ = sin(2θ)

∣∣∣∣
π/4

0
= 1 sq. units.

C1 is the outer curve, and the area between the curves is
1/3 sq. units.

y

x

Fig. C-8.9
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