CHAPTER P. PRELIMINARIES

Section P.1 Real Numbers and the Real Line (page 10)

- **1.** $\frac{2}{9} = 0.22222222 \cdots = 0.\overline{2}$
- **2.** $\frac{1}{11} = 0.09090909 \dots = 0.\overline{09}$
- **3.** If $x = 0.121212...$, then $100x = 12.121212... = 12 + x$. Thus $99x = 12$ and $x = 12/99 = 4/33$.
- **4.** If $x = 3.277777...$, then $10x 32 = 0.77777...$ and $100x - 320 = 7 + (10x - 32)$, or $90x = 295$. Thus $x = 295/90 = 59/18.$
- **5.** $1/7 = 0.142857142857... = 0.\overline{142857}$ $2/7 = 0.285714285714... = 0.\overline{285714}$ $3/7 = 0.428571428571 \cdots = 0.\overline{428571}$ $4/7 = 0.571428571428 \cdots = 0.571428$ note the same cyclic order of the repeating digits $5/7 = 0.714285714285 \cdots = 0.\overline{714285}$ $6/7 = 0.857142857142 \cdots = 0.857142$
- **6.** Two different decimal expansions can represent the same number. For instance, both $0.9999999... = 0.\overline{9}$ and $1.000000 \cdots = 1.\overline{0}$ represent the number 1.
- **7.** $x \ge 0$ and $x \le 5$ define the interval [0, 5].
- **8.** $x < 2$ and $x > -3$ define the interval $[-3, 2)$.
- 9. $x > -5$ or $x < -6$ defines the union $(-\infty, -6) \cup (-5, \infty).$
- **10.** $x \le -1$ defines the interval $(-\infty, -1]$.
- **11.** $x > -2$ defines the interval $(-2, \infty)$.
- **12.** $x < 4$ or $x \ge 2$ defines the interval $(-\infty, \infty)$, that is, the whole real line.
- **13.** If $-2x > 4$, then $x < -2$. Solution: $(-\infty, -2)$
- **14.** If $3x + 5 < 8$, then $3x < 8 5 3$ and $x < 1$. Solution: $(-\infty, 1]$
- **15.** If $5x 3 \le 7 3x$, then $8x \le 10$ and $x \le 5/4$. Solution: $(-\infty, 5/4]$
- **16.** If $\frac{6-x}{4} \ge \frac{3x-4}{2}$, then $6-x \ge 6x 8$. Thus $14 \ge 7x$
and $x \le 2$. Solution: $(-\infty, 2]$
- **17.** If $3(2-x) < 2(3+x)$, then $0 < 5x$ and $x > 0$. Solution: $(0, \infty)$
- **18.** If $x^2 < 9$, then $|x| < 3$ and $-3 < x < 3$. Solution: $(-3, 3)$
- **19.** Given: $1/(2-x) < 3$. CASE I. If $x < 2$, then $1 < 3(2 - x) = 6 - 3x$, so $3x < 5$ and $x < 5/3$. This case has solutions $x < 5/3$. CASE II. If $x > 2$, then $1 > 3(2-x) = 6-3x$, so $3x > 5$ and $x > 5/3$. This case has solutions $x > 2$. Solution: $(-\infty, 5/3) \cup (2, \infty)$.
- **20.** Given: $(x + 1)/x > 2$. CASE I. If $x > 0$, then $x + 1 \ge 2x$, so $x \le 1$. CASE II. If $x < 0$, then $x + 1 \le 2x$, so $x \ge 1$. (not possible) Solution: (0, 1].
- **21.** Given: $x^2 2x \le 0$. Then $x(x 2) \le 0$. This is only possible if $x \ge 0$ and $x \le 2$. Solution: [0, 2].
- **22.** Given $6x^2 5x \le -1$, then $(2x 1)(3x 1) \le 0$, so either $x \le 1/2$ and $x \ge 1/3$, or $x \le 1/3$ and $x \ge 1/2$. The latter combination is not possible. The solution set is [1/3, 1/2].
- **23.** Given $x^3 > 4x$, we have $x(x^2 4) > 0$. This is possible if $x < 0$ and $x^2 < 4$, or if $x > 0$ and $x^2 > 4$. The possibilities are, therefore, $-2 < x < 0$ or $2 < x < \infty$. Solution: $(-2, 0) \cup (2, \infty)$.
- **24.** Given $x^2 x \le 2$, then $x^2 x 2 \le 0$ so $(x-2)(x+1) \le 0$. This is possible if $x \le 2$ and $x \ge -1$ or if $x \ge 2$ and $x \le -1$. The latter situation is not possible. The solution set is [-1, 2].
- **25.** Given: $\frac{x}{2} \ge 1 + \frac{4}{x}$ $\frac{1}{x}$. CASE I. If $x > 0$, then $x^2 \ge 2x + 8$, so that $x^2 - 2x - 8 \ge 0$, or $(x - 4)(x + 2) \ge 0$. This is possible for $x > 0$ only if $x \ge 4$. CASE II. If $x < 0$, then we must have $(x-4)(x+2) \le 0$, which is possible for $x < 0$ only if $x \ge -2$. Solution: $[-2, 0) \cup [4, \infty)$.
- **26.** Given: $\frac{3}{x-1} < \frac{2}{x+1}$. CASE I. If *x* > 1 then $(x − 1)(x + 1) > 0$, so that $3(x+1) < 2(x-1)$. Thus $x < -5$. There are no solutions in this case. CASE II. If −1 < *x* < 1, then $(x - 1)(x + 1)$ < 0, so $3(x + 1) > 2(x - 1)$. Thus $x > -5$. In this case all numbers in $(-1, 1)$ are solutions. CASE III. If *x* < −1, then $(x - 1)(x + 1) > 0$, so that $3(x + 1) < 2(x - 1)$. Thus $x < -5$. All numbers $x < -5$ are solutions. Solutions: $(-\infty, -5) \cup (-1, 1)$.
- **27.** If $|x| = 3$ then $x = \pm 3$.
- **28.** If $|x-3|=7$, then $x-3=\pm7$, so $x=-4$ or $x=10$.
- **29.** If $|2t + 5| = 4$, then $2t + 5 = \pm 4$, so $t = -9/2$ or $t = -1/2$.
- **30.** If $|1 t| = 1$, then $1 t = \pm 1$, so $t = 0$ or $t = 2$.
- **31.** If $|8 3s| = 9$, then $8 3s = \pm 9$, so $3s = -1$ or 17, and $s = -1/3$ or $s = 17/3$.
- **32.** If $\left|\frac{s}{2} - 1\right| = 1$, then $\left|\frac{s}{2} - 1\right| = \pm 1$, so $s = 0$ or $s = 4$.
- **33.** If $|x| < 2$, then *x* is in (−2, 2).
- **34.** If $|x| < 2$, then *x* is in [−2, 2].
- **35.** If $|s 1| \le 2$, then $1 2 \le s \le 1 + 2$, so *s* is in [-1, 3].
- **36.** If $|t + 2| < 1$, then $-2 1 < t < -2 + 1$, so *t* is in $(-3, -1)$.
- **37.** If $|3x 7| < 2$, then $7 2 < 3x < 7 + 2$, so *x* is in $(5/3, 3)$.
- **38.** If $|2x + 5| < 1$, then $-5 1 < 2x < -5 + 1$, so *x* is in $(-3, -2)$.
- **39.** If $\left|\frac{x}{2} - 1\right| \le 1$, then $1 - 1 \le \frac{x}{2} \le 1 + 1$, so *x* is in [0, 4].
- **40.** If $\left|2-\frac{x}{2}\right|$ $\left| \frac{1}{2}$, then *x*/2 lies between 2 − (1/2) and $2 + (1/2)$. Thus *x* is in (3, 5).
- **41.** The inequality $|x + 1| > |x 3|$ says that the distance from *x* to -1 is greater than the distance from *x* to 3, so *x* must be to the right of the point half-way between -1 and 3. Thus $x > 1$.
- **42.** $|x-3| < 2|x| \Leftrightarrow x^2 6x + 9 = (x 3)^2 < 4x^2$ \Leftrightarrow 3*x*² + 6*x* − 9 > 0 \Leftrightarrow 3(*x* + 3)(*x* − 1) > 0. This inequality holds if $x < -3$ or $x > 1$.
- **43.** $|a| = a$ if and only if $a > 0$. It is false if $a < 0$.
- **44.** The equation $|x 1| = 1 x$ holds if $|x 1| = -(x 1)$, that is, if $x - 1 < 0$, or, equivalently, if $x < 1$.
- **45.** The triangle inequality $|x + y| \le |x| + |y|$ implies that

$$
|x| \ge |x + y| - |y|.
$$

Apply this inequality with $x = a - b$ and $y = b$ to get

$$
|a - b| \ge |a| - |b|.
$$

Similarly, $|a - b| = |b - a| \ge |b| - |a|$. Since $||a| - |b||$ is equal to either $|a| - |b|$ or $|b| - |a|$, depending on the sizes of *a* and *b*, we have

$$
|a-b| \geq | |a| - |b| |.
$$

Section P.2 Cartesian Coordinates in the Plane (page 16)

1. From $A(0, 3)$ to $B(4, 0)$, $\Delta x = 4 - 0 = 4$ and $\Delta y = 0 - 3 = -3.$ $|AB| = \sqrt{4^2 + (-3)^2} = 5.$

- **2.** From $A(-1, 2)$ to $B(4, -10)$, $\Delta x = 4 (-1) = 5$ and $\Delta y = -10 - 2 = -12.$ $|AB| = \sqrt{5^2 + (-12)^2} = 13.$
- **3.** From $A(3, 2)$ to $B(-1, -2)$, $\Delta x = -1 3 = -4$ and From $A(3, 2)$ to $B(-1, -2)$, $\Delta x = -1 - 3 = -4$ and
 $\Delta y = -2 - 2 = -4$. $|AB| = \sqrt{(-4)^2 + (-4)^2} = 4\sqrt{2}$.
- **4.** From $A(0.5, 3)$ to $B(2, 3)$, $\Delta x = 2 0.5 = 1.5$ and $\Delta y = 3 - 3 = 0$. $|AB| = 1.5$.
- **5.** Starting point: (−2, 3). Increments $\Delta x = 4$, $\Delta y = -7$. New position is $(-2 + 4, 3 + (-7))$, that is, $(2, -4)$.
- **6.** Arrival point: $(-2, -2)$. Increments $\Delta x = -5$, $\Delta y = 1$. Starting point was $(-2 - (-5), -2 - 1)$, that is, $(3, -3)$.
- **7.** $x^2 + y^2 = 1$ represents a circle of radius 1 centred at the origin.
- **8.** $x^2 + y^2 = 2$ represents a circle of radius $\sqrt{2}$ centred at the origin.
- **9.** $x^2 + y^2 < 1$ represents points inside and on the circle of radius 1 centred at the origin.
- **10.** $x^2 + y^2 = 0$ represents the origin.
- **11.** $y \geq x^2$ represents all points lying on or above the parabola $y = x^2$.
- **12.** $y < x^2$ represents all points lying below the parabola $y = x^2$.
- **13.** The vertical line through $(-2, 5/3)$ is $x = -2$; the horizontal line through that point is $y = 5/3$.
- **14.** The vertical line through $(\sqrt{2}, -1.3)$ is $x = \sqrt{2}$; the horizontal line through that point is $y = -1.3$.
- **15.** Line through $(-1, 1)$ with slope $m = 1$ is $y = 1 + 1(x + 1)$, or $y = x + 2$.
- **16.** Line through $(-2, 2)$ with slope $m = 1/2$ is $y = 2 + (1/2)(x + 2)$, or $x - 2y = -6$.
- **17.** Line through $(0, b)$ with slope $m = 2$ is $y = b + 2x$.
- **18.** Line through $(a, 0)$ with slope $m = -2$ is $y = 0 - 2(x - a)$, or $y = 2a - 2x$.
- **19.** At $x = 2$, the height of the line $2x + 3y = 6$ is $y = (6 - 4)/3 = 2/3$. Thus (2, 1) lies above the line.
- **20.** At $x = 3$, the height of the line $x 4y = 7$ is $y = (3 - 7)/4 = -1$. Thus $(3, -1)$ lies on the line.
- **21.** The line through $(0, 0)$ and $(2, 3)$ has slope $m = (3 - 0)/(2 - 0) = 3/2$ and equation $y = (3/2)x$ or $3x - 2y = 0.$
- **22.** The line through $(-2, 1)$ and $(2, -2)$ has slope $m = (-2 - 1)/(2 + 2) = -3/4$ and equation $y = 1 - (3/4)(x + 2)$ or $3x + 4y = -2$.
- **23.** The line through $(4, 1)$ and $(-2, 3)$ has slope $m = (3 - 1)/(-2 - 4) = -1/3$ and equation $y = 1 - \frac{1}{3}(x - 4)$ or $x + 3y = 7$.
- **25.** If $m = -2$ and $b = \sqrt{2}$, then the line has equation *y* = $-2x + \sqrt{2}$.
- **26.** If $m = -1/2$ and $b = -3$, then the line has equation *y* = −(1/2)*x* − 3, or *x* + 2*y* = −6.
- **27.** $3x + 4y = 12$ has *x*-intercept $a = 12/3 = 4$ and *y*intercept *b* = 12/4 = 3. Its slope is $-b/a = -3/4$.

28. $x + 2y = -4$ has *x*-intercept $a = -4$ and *y*-intercept $b = -4/2 = -2$. Its slope is $-b/a = 2/(-4) = -1/2$.

29. $\sqrt{2}x - \sqrt{3}y = 2$ has *x*-intercept $a = 2/\sqrt{2} = \sqrt{2}$ $\sqrt{2x} - \sqrt{3}y = 2$ has *x*-intercept $a = 2/\sqrt{3}$ and *y*-intercept $b = -2/\sqrt{3}$. Its slope is and y-intercept $b = -b/a = 2/\sqrt{6} = \sqrt{2/3}$.

30. $1.5x - 2y = -3$ has *x*-intercept $a = -3/1.5 = -2$ and *y*intercept *b* = −3/(−2) = 3/2. Its slope is $-b/a = 3/4$.

Fig. P.2.30

- **31.** line through (2, 1) parallel to $y = x + 2$ is $y = x 1$; line perpendicular to $y = x + 2$ is $y = -x + 3$.
- **32.** line through $(-2, 2)$ parallel to $2x + y = 4$ is $2x + y = -2$; line perpendicular to $2x + y = 4$ is $x - 2y = -6.$
- **33.** We have

$$
3x + 4y = -6 \implies 6x + 8y = -12
$$

$$
2x - 3y = 13 \qquad 6x - 9y = 39.
$$

Subtracting these equations gives $17y = -51$, so $y = -3$ and $x = (13-9)/2 = 2$. The intersection point is $(2, -3)$.

34. We have

$$
2x + y = 8 \implies 14x + 7y = 56
$$

$$
5x - 7y = 1 \qquad 5x - 7y = 1.
$$

Adding these equations gives $19x = 57$, so $x = 3$ and $y = 8 - 2x = 2$. The intersection point is (3, 2).

- **35.** If $a \neq 0$ and $b \neq 0$, then $(x/a) + (y/b) = 1$ represents a straight line that is neither horizontal nor vertical, and does not pass through the origin. Putting $y = 0$ we get $x/a = 1$, so the *x*-intercept of this line is $x = a$; putting $x = 0$ gives $y/b = 1$, so the *y*-intercept is $y = b$.
- **36.** The line $(x/2) (y/3) = 1$ has *x*-intercept $a = 2$, and *y*-intercept $b = -3$.

37. The line through $(2, 1)$ and $(3, -1)$ has slope $m = (-1 - 1)/(3 - 2) = -2$ and equation $y = 1 - 2(x - 2) = 5 - 2x$. Its *y*-intercept is 5.

38. The line through $(-2, 5)$ and $(k, 1)$ has *x*-intercept 3, so also passes through (3, 0). Its slope *m* satisfies

$$
\frac{1-0}{k-3} = m = \frac{0-5}{3+2} = -1.
$$

Thus $k - 3 = -1$, and so $k = 2$.

39. $C = Ax + B$. If $C = 5,000$ when $x = 10,000$ and $C = 6,000$ when $x = 15,000$, then

$$
10,000A + B = 5,000
$$

$$
15,000A + B = 6,000
$$

Subtracting these equations gives $5,000A = 1,000$, so $A = 1/5$. From the first equation, $2,000 + B = 5,000$, so $B = 3,000$. The cost of printing 100,000 pamphlets is $$100, 000/5 + 3, 000 = $23, 000.$

40. −40◦ and −40◦ is the same temperature on both the Fahrenheit and Celsius scales.

41. $A = (2, 1), B = (6, 4), C = (5, -3)$ $|AB| = \sqrt{(6-2)^2 + (4-1)^2} = \sqrt{25} = 5$ $|AC| = \sqrt{(5-2)^2 + (-3-1)^2} = \sqrt{25} = 5$ $|BC| = \sqrt{(6-5)^2 + (4+3)^2} = \sqrt{50} = 5$ √ 2. Since $|AB| = |AC|$, triangle *ABC* is isosceles.

42.
$$
A = (0, 0),
$$
 $B = (1, \sqrt{3}),$ $C = (2, 0)$
\n
$$
|AB| = \sqrt{(1 - 0)^2 + (\sqrt{3} - 0)^2} = \sqrt{4} = 2
$$
\n
$$
|AC| = \sqrt{(2 - 0)^2 + (0 - 0)^2} = \sqrt{4} = 2
$$
\n
$$
|BC| = \sqrt{(2 - 1)^2 + (0 - \sqrt{3})^2} = \sqrt{4} = 2.
$$
\nSince $|AB| = |AC| = |BC|$, triangle *ABC* is equilateral.

43.
$$
A = (2, -1),
$$
 $B = (1, 3),$ $C = (-3, 2)$
\n
$$
|AB| = \sqrt{(1-2)^2 + (3+1)^2} = \sqrt{17}
$$
\n
$$
|AC| = \sqrt{(-3-2)^2 + (2+1)^2} = \sqrt{34} = \sqrt{2}\sqrt{17}
$$
\n
$$
|BC| = \sqrt{(-3-1)^2 + (2-3)^2} = \sqrt{17}.
$$

Since $|AB| = |BC|$ and $|AC| = \sqrt{2}|AB|$, triangle *ABC* is an isosceles right-angled triangle with right angle at *B*. Thus *ABCD* is a square if *D* is displaced from *C* by the same amount *A* is from *B*, that is, by increments $\Delta x = 2 - 1 = 1$ and $\Delta y = -1 - 3 = -4$. Thus $D = (-3 + 1, 2 + (-4)) = (-2, -2).$

44. If $M = (x_m, y_m)$ is the midpoint of $P_1 P_2$, then the displacement of *M* from P_1 equals the displacement of P_2 from *M*:

$$
x_m - x_1 = x_2 - x_m, \quad y_m - y_1 = y_2 - y_m.
$$

Thus $x_m = (x_1 + x_2)/2$ and $y_m = (y_1 + y_2)/2$.

45. If $Q = (x_q, y_q)$ is the point on P_1P_2 that is two thirds of the way from P_1 to P_2 , then the displacement of Q from P_1 equals twice the displacement of P_2 from Q :

$$
x_q - x_1 = 2(x_2 - x_q),
$$
 $y_q - y_1 = 2(y_2 - y_q).$

Thus $x_q = (x_1 + 2x_2)/3$ and $y_q = (y_1 + 2y_2)/3$.

46. Let the coordinates of *P* be $(x, 0)$ and those of *Q* be $(X, -2X)$. If the midpoint of *PQ* is $(2, 1)$, then

$$
(x + X)/2 = 2
$$
, $(0 - 2X)/2 = 1$.

The second equation implies that $X = -1$, and the second then implies that $x = 5$. Thus *P* is (5, 0).

- **47.** $\sqrt{(x-2)^2 + y^2} = 4$ says that the distance of (x, y) from (2, 0) is 4, so the equation represents a circle of radius 4 centred at (2, 0).
- **48.** - $\sqrt{(x-2)^2 + y^2} = \sqrt{x^2 + (y-2)^2}$ says that (x, y) is equidistant from $(2, 0)$ and $(0, 2)$. Thus (x, y) must lie on the line that is the right bisector of the line from $(2, 0)$ to $(0, 2)$. A simpler equation for this line is $x = y$.
- **49.** The line $2x + ky = 3$ has slope $m = -2/k$. This line is perpendicular to $4x + y = 1$, which has slope -4 , provided $m = 1/4$, that is, provided $k = -8$. The line is parallel to $4x + y = 1$ if $m = -4$, that is, if $k = 1/2$.
- **50.** For any value of *k*, the coordinates of the point of intersection of $x + 2y = 3$ and $2x - 3y = -1$ will also satisfy the equation

$$
(x + 2y - 3) + k(2x - 3y + 1) = 0
$$

because they cause both expressions in parentheses to be 0. The equation above is linear in *x* and *y*, and so represents a straight line for any choice of *k*. This line will pass through (1, 2) provided $1 + 4 - 3 + k(2 - 6 + 1) = 0$, that is, if $k = 2/3$. Therefore, the line through the point of intersection of the two given lines and through the point (1, 2) has equation

$$
x + 2y - 3 + \frac{2}{3}(2x - 3y + 1) = 0,
$$

or, on simplification, $x = 1$.

Section P.3 Graphs of Quadratic Equations (page 22)

- **1.** $x^2 + y^2 = 16$
- **2.** $x^2 + (y-2)^2 = 4$, or $x^2 + y^2 4y = 0$

3.
$$
(x+2)^2 + y^2 = 9
$$
, or $x^2 + y^2 + 4y = 5$

- **4.** $(x-3)^2 + (y+4)^2 = 25$, or $x^2 + y^2 6x + 8y = 0$.
- 5. $x^2 + y^2 2x = 3$ $x^{2} - 2x + 1 + y^{2} = 4$ $(x - 1)^2 + y^2 = 4$ centre: $(1, 0)$; radius 2.
- **6.** $x^2 + y^2 + 4y = 0$ $x^{2} + y^{2} + 4y + 4 = 4$ $x^2 + (y+2)^2 = 4$ centre: $(0, -2)$; radius 2.

7.
$$
x^2 + y^2 - 2x + 4y = 4
$$

\n $x^2 - 2x + 1 + y^2 + 4y + 4 = 9$
\n $(x - 1)^2 + (y + 2)^2 = 9$
\ncentre: (1, -2); radius 3.

- **8.** $x^2 + y^2 2x y + 1 = 0$ $x^2 - 2x + 1 + y^2 - y + \frac{1}{4} = \frac{1}{4}$ $(x - 1)^2 + (y - \frac{1}{2})^2 = \frac{1}{4}$
centre: (1, 1/2); radius 1/2.
- **9.** $x^2 + y^2 > 1$ represents all points lying outside the circle of radius 1 centred at the origin.
- **10.** $x^2 + y^2 < 4$ represents the open disk consisting of all points lying inside the circle of radius 2 centred at the origin.
- **11.** $(x + 1)^2 + y^2 \le 4$ represents the closed disk consisting of all points lying inside or on the circle of radius 2 centred at the point $(-1, 0)$.
- **12.** $x^2 + (y 2)^2 \le 4$ represents the closed disk consisting of all points lying inside or on the circle of radius 2 centred at the point $(0, 2)$.
- **13.** Together, $x^2 + y^2 > 1$ and $x^2 + y^2 < 4$ represent annulus (washer-shaped region) consisting of all points that are outside the circle of radius 1 centred at the origin and inside the circle of radius 2 centred at the origin.
- **14.** Together, $x^2 + y^2 \le 4$ and $(x+2)^2 + y^2 \le 4$ represent the region consisting of all points that are inside or on both the circle of radius 2 centred at the origin and the circle of radius 2 centred at $(-2, 0)$.
- **15.** Together, $x^2 + y^2 < 2x$ and $x^2 + y^2 < 2y$ (or, equivalently, $(x - 1)^2 + y^2 < 1$ and $x^2 + (y - 1)^2 < 1$) represent the region consisting of all points that are inside both the circle of radius 1 centred at $(1, 0)$ and the circle of radius 1 centred at (0, 1).
- **16.** $x^2 + y^2 4x + 2y > 4$ can be rewritten $(x-2)^2 + (y+1)^2 > 9$. This equation, taken together with $x + y > 1$, represents all points that lie both outside the circle of radius 3 centred at $(2, -1)$ and above the line $x + y = 1.$
- **17.** The interior of the circle with centre $(-1, 2)$ and radius The interior of the circle with centre $(-1, 2)$
 $\sqrt{6}$ is given by $(x + 1)^2 + (y - 2)^2 < 6$, or $x^2 + y^2 + 2x - 4y < 1$.
- **18.** The exterior of the circle with centre $(2, -3)$ and radius 4 is given by $(x - 2)^2 + (y + 3)^2 > 16$, or $x^2 + y^2 - 4x + 6y > 3$.
- **19.** $x^2 + y^2 < 2, x \ge 1$
- **20.** $x^2 + y^2 > 4$, $(x 1)^2 + (y 3)^2 < 10$
- **21.** The parabola with focus (0, 4) and directrix $y = -4$ has equation $x^2 = 16y$.
- **22.** The parabola with focus $(0, -1/2)$ and directrix $y = 1/2$ has equation $x^2 = -2y$.
- **23.** The parabola with focus (2, 0) and directrix $x = -2$ has equation $y^2 = 8x$.
- **24.** The parabola with focus $(-1, 0)$ and directrix $x = 1$ has equation $y^2 = -4x$.
- **25.** $y = x^2/2$ has focus (0, 1/2) and directrix $y = -1/2$.

26. $y = -x^2$ has focus $(0, -1/4)$ and directrix $y = 1/4$.

27. $x = -y^2/4$ has focus (−1, 0) and directrix $x = 1$.

28. $x = y^2/16$ has focus (4, 0) and directrix $x = -4$.

- a) has equation $y = x^2 3$.
- b) has equation $y = (x 4)^2$ or $y = x^2 8x + 16$.
- c) has equation $y = (x 3)^2 + 3$ or $y = x^2 6x + 12$.
- d) has equation $y = (x 4)^2 2$, or $y = x^2 8x + 14$.
- **30.** a) If $y = mx$ is shifted to the right by amount x_1 , the equation $y = m(x - x_1)$ results. If (a, b) satisfies this equation, then $b = m(a-x_1)$, and so $x_1 = a - (b/m)$. Thus the shifted equation is $y = m(x - a + (b/m)) = m(x - a) + b.$
	- b) If $y = mx$ is shifted vertically by amount y_1 , the equation $y = mx + y_1$ results. If (a, b) satisfies this equation, then $b = ma + y_1$, and so $y_1 = b - ma$. Thus the shifted equation is $y = mx + b - ma = m(x - a) + b$, the same equation obtained in part (a).
- **31.** $y = \sqrt{(x/3) + 1}$
- **32.** $4y = \sqrt{x+1}$
- **33.** $y = \sqrt{(3x/2) + 1}$
- **34.** $(y/2) = \sqrt{4x + 1}$
- **35.** $y = 1 x^2$ shifted down 1, left 1 gives $y = -(x + 1)^2$.
- **36.** $x^2 + y^2 = 5$ shifted up 2, left 4 gives $(x+4)^2 + (y-2)^2 = 5.$
- **37.** $y = (x 1)^2 1$ shifted down 1, right 1 gives $y = (x - 2)^2 - 2.$
- **38.** $y = \sqrt{x}$ shifted down 2, left 4 gives $y = \sqrt{x+4} 2$.

29.

39. $y = x^2 + 3$, $y = 3x + 1$. Subtracting these equations gives $x^{2} - 3x + 2 = 0$, or $(x - 1)(x - 2) = 0$. Thus $x = 1$ or $x = 2$. The corresponding values of *y* are 4 and 7. The

intersection points are $(1, 4)$ and $(2, 7)$.

- **40.** $y = x^2 6$, $y = 4x x^2$. Subtracting these equations gives $2x^{2} - 4x - 6 = 0$, or $2(x - 3)(x + 1) = 0$. Thus $x = 3$ or $x = -1$. The corresponding values of y are 3 and -5 . The intersection points are $(3, 3)$ and $(-1, -5)$.
- **41.** $x^2 + y^2 = 25$, $3x + 4y = 0$. The second equation says that $y = -3x/4$. Substituting this into the first equation gives $25x^2/16 = 25$, so $x = \pm 4$. If $x = 4$, then the second equation gives $y = -3$; if $x = -4$, then $y = 3$. The intersection points are $(4, -3)$ and $(-4, 3)$. Note that having found values for *x*, we substituted them into the linear equation rather than the quadratic equation to find the corresponding values of *y*. Had we substituted into the quadratic equation we would have got more solutions (four points in all), but two of them would have failed to satisfy $3x + 4y = 12$. When solving systems of nonlinear equations you should always verify that the solutions you find do satisfy the given equations.
- **42.** $2x^2 + 2y^2 = 5$, $xy = 1$. The second equation says that $y = 1/x$. Substituting this into the first equation gives $2x^{2} + (2/x^{2}) = 5$, or $2x^{4} - 5x^{2} + 2 = 0$. This equation factors to $(2x^2 - 1)(x^2 - 2) = 0$, so its solutions are factors to $(2x^2 - 1)(x^2 - 2) = 0$, so its solutions are $x = \pm 1/\sqrt{2}$ and $x = \pm \sqrt{2}$. The corresponding values of *y* are given by $y = 1/x$. Therefore, the intersection of y are given by $y = 1/x$. Thereform
points are $(1/\sqrt{2}, \sqrt{2})$, $(-1/\sqrt{2}, -\sqrt{2})$ re, the interse
2), $(\sqrt{2}, 1/\sqrt{2})$ 2), and points are $(1/\sqrt{2})$.
(- $\sqrt{2}$, -1/ $\sqrt{2}$).
- **43.** $(x^2/4) + y^2 = 1$ is an ellipse with major axis between $(-2, 0)$ and $(2, 0)$ and minor axis between $(0, -1)$ and (0, 1).

44. $9x^2 + 16y^2 = 144$ is an ellipse with major axis between $(-4, 0)$ and $(4, 0)$ and minor axis between $(0, -3)$ and (0, 3).

45. $\frac{(x-3)^2}{9} + \frac{(y+2)^2}{4} = 1$ is an ellipse with centre at (3, -2), major axis between (0, -2) and (6, -2) and minor axis between $(3, -4)$ and $(3, 0)$.

46. $(x - 1)^2 + \frac{(y + 1)^2}{4} = 4$ is an ellipse with centre at $(1, -1)$, major axis between $(1, -5)$ and $(1, 3)$ and minor axis between $(-1, -1)$ and $(3, -1)$.

47. $(x^2/4) - y^2 = 1$ is a hyperbola with centre at the origin and passing through $(\pm 2, 0)$. Its asymptotes are $y = \pm x/2$.

- Fig. P.3.47
- **48.** $x^2 y^2 = -1$ is a rectangular hyperbola with centre at the origin and passing through $(0, \pm 1)$. Its asymptotes are $y = \pm x$.

49. $xy = -4$ is a rectangular hyperbola with centre at the origin and passing through $(2, -2)$ and $(-2, 2)$. Its asymptotes are the coordinate axes.

50. $(x - 1)(y + 2) = 1$ is a rectangular hyperbola with centre at $(1, -2)$ and passing through $(2, -1)$ and $(0, -3)$. Its asymptotes are $x = 1$ and $y = -2$.

- **51.** a) Replacing *x* with −*x* replaces a graph with its reflection across the *y*-axis.
	- b) Replacing *y* with −*y* replaces a graph with its reflection across the *x*-axis.
- **52.** Replacing *x* with $-x$ and *y* with $-y$ reflects the graph in both axes. This is equivalent to rotating the graph 180° about the origin.
- 53. $|x| + |y| = 1$.

In the first quadrant the equation is $x + y = 1$. In the second quadrant the equation is $-x + y = 1$. In the third quadrant the equation is $-x - y = 1$. In the fourth quadrant the equation is $x - y = 1$.

Fig. P.3.53

Section P.4 Functions and Their Graphs (page 31)

- **1.** $f(x) = 1 + x^2$; domain R, range [1, ∞)
- **2.** $f(x) = 1 \sqrt{x}$; domain [0, ∞), range $(-\infty, 1]$
- **3.** $G(x) = \sqrt{8 2x}$; domain $(-\infty, 4]$, range $[0, \infty)$
- **4.** $F(x) = 1/(x 1)$; domain $(-∞, 1) ∪ (1, ∞)$, range $(-\infty, 0) \cup (0, \infty)$
- **5.** $h(t) = \frac{t}{\sqrt{2-t}}$; domain $(-\infty, 2)$, range R. (The equation $y = h(t)$ can be squared and rewritten as $t^2 + y^2t - 2y^2 = 0$, a quadratic equation in *t* having real solutions for every real value of *y*. Thus the range of *h* contains all real numbers.)
- **6.** $g(x) = \frac{1}{1 \sqrt{x 2}}$; domain (2, 3) ∪ (3, ∞), range $(-\infty, 0)$ ∪ $(0, \infty)$. The equation $y = g(x)$ can be solved for $x = 2 - (1 - (1/y))^2$ so has a real solution provided $y \neq 0$.

Graph (ii) is the graph of a function because vertical lines can meet the graph only once. Graphs (i), (iii), and (iv) do not have this property, so are not graphs of functions.

- a) is the graph of $x(1-x)^2$, which is positive for $x > 0$.
- b) is the graph of $x^2 x^3 = x^2(1-x)$, which is positive if $x < 1$.
- c) is the graph of $x x^4$, which is positive if $0 < x < 1$ and behaves like *x* near 0.
- d) is the graph of $x^3 x^4$, which is positive if $0 < x < 1$ and behaves like x^3 near 0.

 $y=(x+2)^3$

33.

38.

47. Range is approximately [−0.18, 0.68].

45.

46.

48. Range is approximately $(-\infty, 0.17]$.

Apparent symmetry about $x = 1.5$. This can be confirmed by calculating $f(3 - x)$, which turns out to be equal to $f(x)$.

50.

Apparent symmetry about $x = 1$. This can be confirmed by calculating $f(2 - x)$, which turns out to be equal to $f(x)$.

51.

Fig. P.4.51

Apparent symmetry about $(2, 1)$, and about the lines *y* = *x* − 1 and *y* = 3 − *x*.

These can be confirmed by noting that $f(x) = 1 + \frac{1}{x}$ $\frac{1}{x-2}$ so the graph is that of $1/x$ shifted right 2 units and up one.

52.

Apparent symmetry about $(-2, 2)$. This can be confirmed by calculating shifting the graph right by 2 (replace *x* with $x - 2$) and then down 2 (subtract 2). The result is $-5x/(1 + x^2)$, which is odd.

53. If *f* is both even and odd the $f(x) = f(-x) = -f(x)$, so $f(x) = 0$ identically.

Section P.5 Combining Functions to Make New Functions (page 37)

- **1.** $f(x) = x$, $g(x) = \sqrt{x-1}$. $\mathcal{D}(f) = \mathbb{R}, \ \mathcal{D}(g) = [1, \infty).$ $\mathcal{D}(f + g) = \mathcal{D}(f - g) = \mathcal{D}(fg) = \mathcal{D}(g/f) = [1, \infty),$ $\mathcal{D}(f/g) = (1, \infty).$ $(f+g)(x) = x + \sqrt{x-1}$ $(f - g)(x) = x - \sqrt{x - 1}$ $(fg)(x) = x\sqrt{x-1}$ $(f/g)(x) = x/\sqrt{x-1}$ $(g/f)(x) = \sqrt{(1-x)}/x$
- **2.** $f(x) = \sqrt{1-x}$, $g(x) = \sqrt{1+x}$. $\mathcal{D}(f) = (-\infty, 1], \mathcal{D}(g) = [-1, \infty).$ $\mathcal{D}(f + g) = \mathcal{D}(f - g) = \mathcal{D}(fg) = [-1, 1],$ $\mathcal{D}(f/g) = (-1, 1], \mathcal{D}(g/f) = [-1, 1].$
 $(f+g)(x) = \sqrt{1-x} + \sqrt{1+x}$ $(f - g)(x) = \sqrt{1 - x} - \sqrt{1 + x}$ $(fg)(x) = \sqrt{1-x^2}$ $(f/g)(x) = \sqrt{(1-x)/(1+x)}$ $(g/f)(x) = \sqrt{(1+x)/(1-x)}$

6.

- **7.** $f(x) = x + 5$, $g(x) = x^2 3$. $f \circ g(0) = f(-3) = 2, \quad g(f(0)) = g(5) = 22$ $f(g(x)) = f(x^2 - 3) = x^2 + 2$ $g \circ f(x) = g(f(x)) = g(x+5) = (x+5)^2 - 3$ $f \circ f(-5) = f(0) = 5$, $g(g(2)) = g(1) = -2$ $f(f(x)) = f(x+5) = x + 10$ $g \circ g(x) = g(g(x)) = (x^2 - 3)^2 - 3$
- **8.** $f(x) = 2/x$, $g(x) = x/(1-x)$. $f \circ f(x) = 2/(2/x) = x; \quad \mathcal{D}(f \circ f) = \{x : x \neq 0\}$ $f \circ g(x) = 2/(x/(1-x)) = 2(1-x)/x;$ $\mathcal{D}(f \circ g) = \{x : x \neq 0, 1\}$ $g \circ f(x) = \frac{2}{x} \cdot \frac{1}{(1 - (2/x))} = \frac{2}{x - 2};$ $\mathcal{D}(g \circ f) = \{x : x \neq 0, 2\}$ $g \circ g(x) = \frac{x}{(1-x)}(1-x)/(1 - \frac{x}{1-x})) = \frac{x}{1-x};$ $\mathcal{D}(g \circ g) = \{x : x \neq 1/2, 1\}$
- **9.** $f(x) = 1/(1-x), g(x) = \sqrt{x-1}.$ $f \circ f(x) = 1/(1 - (1/(1 - x))) = (x - 1)/x;$ $\mathcal{D}(f \circ f) = \{x : x \neq 0, 1\}$ $f \circ g(x) = 1/(1 - \sqrt{x - 1});$ $\mathcal{D}(f \circ g) = \{x : x \geq 1, x \neq 2\}$ $g \circ f(x) = \sqrt{\frac{1}{1 - x}} - 1 = \sqrt{\frac{x}{1 - x}};$ $\mathcal{D}(g \circ f) = [0, 1)$ $g \circ g(x) = \sqrt{\sqrt{x-1} - 1}; \quad \mathcal{D}(g \circ g) = [2, \infty)$
- **10.** $f(x) = (x + 1)/(x 1) = 1 + 2/(x 1), g(x) = \text{sgn}(x)$. $f \circ f(x) = 1 + \frac{2}{1 + \frac{2}{x - 1}} = x;$ $\mathcal{D}(f \circ f) = \{x : x \neq 1\}$ $f \circ g(x) = \frac{\text{sgn} x + 1}{\text{sgn} x - 1} = 0; \quad \mathcal{D}(f \circ g) = (-\infty, 0)$ $g \circ f(x) = \text{sgn}\left(\frac{x+1}{x-1}\right)$ $= \begin{cases} 1 & \text{if } x < -1 \text{ or } x > 1 \\ -1 & \text{if } -1 < x < 1 \end{cases}$; $\mathcal{D}(g \circ f) = \{x : x \neq -1, 1\}$ $g \circ g(x) = \text{sgn}(\text{sgn}(x)) = \text{sgn}(x); \quad \mathcal{D}(g \circ g) = \{x : x \neq 0\}$

17. $y = \sqrt{x}$. $y = 2 + \sqrt{x}$: previous graph is raised 2 units. $y = 2 + \sqrt{3 + x}$: previous graph is shiftend left 3 units. $y = 1/(2 + \sqrt{3 + x})$: previous graph turned upside down and shrunk vertically.

x

25.

26.

21.

22.

23.

x 3 6

y

y

 $\bigvee_{y=f(2x)}^{(1/2,1)}$

1

 $y = f(x/3)$

- **27.** $F(x) = Ax + B$ (a) $F \circ F(x) = F(x)$ \Rightarrow *A*(*Ax* + *B*) + *B* = *Ax* + *B* \Rightarrow *A*[$(A - 1)x + B$] = 0 Thus, either $A = 0$ or $A = 1$ and $B = 0$. (b) $F \circ F(x) = x$ \Rightarrow *A*(*Ax* + *B*) + *B* = *x* \Rightarrow $(A^2 - 1)x + (A + 1)B = 0$ Thus, either $A = -1$ or $A = 1$ and $B = 0$
- **28.** $|x| = 0$ for $0 \le x \le 1$; $|x| = 0$ for $-1 \le x \le 0$.
- **29.** $\lfloor x \rfloor = \lceil x \rceil$ for all integers *x*.
- **30.** $[-x] = -|x|$ is true for all real *x*; if $x = n + y$ where *n* is an integer and $0 \le y < 1$, then $-x = -n - y$, so that $[-x] = -n$ and $|x| = n$. **31.**

32. $f(x)$ is called the integer part of *x* because $|f(x)|$ is the largest integer that does not exceed *x*; i.e. $|x| = |f(x)| + y$, where $0 \le y < 1$.

33. If *f* is even and *g* is odd, then: f^2 , g^2 , $f \circ g$, $g \circ f$, and $f \circ f$ are all even. fg , f/g , g/f , and $g \circ g$ are odd, and $f + g$ is neither even nor odd. Here are two typical verifications:

f ◦ *g*(−*x*) = *f*(*g*(−*x*)) = *f*(−*g*(*x*)) = *f*(*g*(*x*)) = *f* ◦ *g*(*x*)) $(fg)(-x) = f(-x)g(-x) = f(x)[-g(x)]$ $= -f(x)g(x) = -(fg)(x).$

The others are similar.

34. *f* even $\Leftrightarrow f(-x) = f(x)$ *f* odd \Leftrightarrow $f(-x) = -f(x)$ *f* even and odd \Rightarrow $f(x) = -f(x) \Rightarrow 2f(x) = 0$ \Rightarrow $f(x) = 0$

35. a) Let $E(x) = \frac{1}{2} [f(x) + f(-x)].$ Then $E(-x) = \frac{1}{2}[f(-x) + f(x)] = E(x)$. Hence, $E(x)$ is even. Let $O(x) = \frac{1}{2} [f(x) - f(-x)].$ Then $O(-x) = \frac{1}{2}[f(-x) - f(x)] = -O(x)$ and $O(x)$ is odd.

$$
E(x) + O(x)
$$

= $\frac{1}{2}[f(x) + f(-x)] + \frac{1}{2}[f(x) - f(-x)]$
= $f(x)$.

Hence, $f(x)$ is the sum of an even function and an odd function.

b) If $f(x) = E_1(x) + O_1(x)$ where E_1 is even and O_1 is odd, then

$$
E_1(x) + O_1(x) = f(x) = E(x) + O(x).
$$

Thus $E_1(x) - E(x) = O(x) - O_1(x)$. The left side of this equation is an even function and the right side is an odd function. Hence both sides are both even and odd, and are therefore identically 0 by Exercise 36. Hence $E_1 = E$ and $O_1 = O$. This shows that *f* can be written in only one way as the sum of an even function and an odd function.

Section P.6 Polynomials and Rational Functions (page 43)

- **1.** $x^2 7x + 10 = (x + 5)(x + 2)$ The roots are -5 and -2 .
- **2.** $x^2 3x 10 = (x 5)(x + 2)$ The roots are 5 and -2 .
- **3.** If $x^2 + 2x + 2 = 0$, then $x = \frac{-2 \pm \sqrt{4 8}}{2} = -1 \pm i$.
The roots are $-1 + i$ and $-1 i$. $x^{2} + 2x + 2 = (x + 1 - i)(x + 1 + i).$
- **4.** Rather than use the quadratic formula this time, let us complete the square.

$$
x2 - 6x + 13 = x2 - 6x + 9 + 4
$$

= $(x - 3)2 + 22$
= $(x - 3 - 2i)(x - 3 + 2i)$.

The roots are $3 + 2i$ and $3 - 2i$.

- **5.** $16x^4 8x^2 + 1 = (4x^2 1)^2 = (2x 1)^2(2x + 1)^2$. There are two double roots: $1/2$ and $-1/2$.
- **6.** $x^4 + 6x^3 + 9x^2 = x^2(x^2 + 6x + 9) = x^2(x + 3)^2$. There are two double roots, 0 and −3.

7. $x^3 + 1 = (x + 1)(x^2 - x + 1)$. One root is -1. The other two are the solutions of $x^2 - x + 1 = 0$, namely

$$
x = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i.
$$

We have

$$
x^{3} + 1 = (x + 1)\left(x - \frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\left(x - \frac{1}{2} + \frac{\sqrt{3}}{2}i\right).
$$

- **8.** $x^4 1 = (x^2 1)(x^2 + 1) = (x 1)(x + 1)(x i)(x + i).$ The roots are $1, -1, i$, and $-i$.
- **9.** $x^6 3x^4 + 3x^2 1 = (x^2 1)^3 = (x 1)^3(x + 1)^3$. The roots are 1 and −1, each with multiplicity 3.

10.
$$
x^5 - x^4 - 16x + 16 = (x - 1)(x^4 - 16)
$$

$$
= (x - 1)(x^2 - 4)(x^4 + 4)
$$

$$
= (x - 1)(x - 2)(x + 2)(x - 2i)(x + 2i).
$$

The roots are 1, 2, −2, 2*i*, and −2*i*.

11. $x^5 + x^3 + 8x^2 + 8 = (x^2 + 1)(x^3 + 8)$

 $=(x + 2)(x - i)(x + i)(x² – 2x + 4)$ Three of the five roots are -2 , *i* and $-i$. The remaining two are solutions of $x^2 - 2x + 4 = 0$, namely $x = \frac{2 \pm \sqrt{4 - 16}}{2} = 1 \pm \sqrt{3}i$. We have

$$
x^5 + x^3 + 8x^2 + 8 = (x+2)(x-i)(x+i)(x-a+\sqrt{3}i)(x-a-\sqrt{3}i).
$$

12.
$$
x^{9} - 4x^{7} - x^{6} + 4x^{4} = x^{4}(x^{5} - x^{2} - 4x^{3} + 4)
$$

$$
= x^{4}(x^{3} - 1)(x^{2} - 4)
$$

$$
= x^{4}(x - 1)(x - 2)(x + 2)(x^{2} + x + 1).
$$

Seven of the nine roots are: 0 (with multiplicity 4), 1, 2, and −2. The other two roots are solutions of $x^{2} + x + 1 = 0$, namely

$$
x = \frac{-1 \pm \sqrt{1 - 4}}{2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i.
$$

The required factorization of $x^9 - 4x^7 - x^6 + 4x^4$ is

$$
x^{4}(x-1)(x-2)(x+2)\left(x-\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)\left(x-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right).
$$

13.
$$
\frac{x^3 - 1}{x^2 - 2} = \frac{x^3 - 2x + 2x - 1}{x^2 - 2}
$$

$$
= \frac{x(x^2 - 2) + 2x - 1}{x^2 - 2}
$$

$$
= x + \frac{2x - 1}{x^2 - 2}.
$$

14.
$$
\frac{x^2}{x^2 + 5x + 3} = \frac{x^2 + 5x + 3 - 5x - 3}{x^2 + 5x + 3}
$$

\n
$$
= 1 + \frac{-5x - 3}{x^2 + 5x + 3}
$$

\n15.
$$
\frac{x^3}{x^2 + 2x + 3} = \frac{x^3 + 2x^2 + 3x - 2x^2 - 3x}{x^2 + 2x + 3}
$$

\n
$$
= \frac{x(x^2 + 2x + 3) - 2x^2 - 3x}{x^2 + 2x + 3}
$$

\n
$$
= x - \frac{2(x^2 + 2x + 3) - 4x - 6 - 3x}{x^2 + 2x + 3}
$$

\n
$$
= x - 2 + \frac{7x + 6}{x^2 + 2x + 3}
$$

\n16.
$$
\frac{x^4 + x^2}{x^3 + x^2 + 1} = \frac{x(x^3 + x^2 + 1) - x^3 - x + x^2}{x^3 + x^2 + 1}
$$

\n
$$
= x + \frac{-(x^3 + x^2 + 1) + x^2 + 1 - x + x^2}{x^3 + x^2 + 1}
$$

$$
x^3 + x^2 + 1
$$

= $x - 1 + \frac{2x^2 - x + 1}{x^3 + x^2 + 1}$.
Let $P(x) = a_1x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$ which

- **17.** Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, where $n \geq 1$. By the Factor Theorem, $x - 1$ is a factor of $P(x)$ if and only if $P(1) = 0$, that is, if and only if $a_n + a_{n-1} + \cdots + a_1 + a_0 = 0.$
- **18.** Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, where $n \geq 1$. By the Factor Theorem, $x + 1$ is a factor of *P*(*x*) if and only if $P(-1) = 0$, that is, if and only if $a_0 - a_1 + a_2 - a_3 + \cdots + (-1)^n a_n = 0$. This condition says that the sum of the coefficients of even powers is equal to the sum of coefficients of odd powers.
- **19.** Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, where the coefficients a_k , $0 \le k \le n$ are all real numbers, so that $a_k = a_k$. Using the facts about conjugates of sums and products mentioned in the statement of the problem, we see that if $z = x + iy$, where *x* and *y* are real, then

$$
\overline{P(z)} = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0
$$

= $a_n \overline{z}^n + a_{n-1} \overline{z}^{n-1} + \dots + a_1 \overline{z} + a_0$
= $P(\overline{z}).$

If *z* is a root of *P*, then $P(\overline{z}) = \overline{P(z)} = \overline{0} = 0$, and \overline{z} is also a root of *P*.

- **20.** By the previous exercise, $\overline{z} = u iv$ is also a root of *P*. Therefore *P*(*x*) has two linear factors $x - u - iv$ and $x - u + iv$. The product of these factors is the real quadratic factor $(x - u)^2 - i^2v^2 = x^2 - 2ux + u^2 + v^2$, which must also be a factor of $P(x)$.
- **21.** By the previous exercise

$$
\frac{P(x)}{x^2 - 2ux + u^2 + v^2} = \frac{P(x)}{(x - u - iv)(x - u + iv)} = Q_1(x),
$$

where *Q*1, being a quotient of two polynomials with real coefficients, must also have real coefficients. If $z = u + iv$ is a root of *P* having multiplicity $m > 1$, then it must also be a root of Q_1 (of multiplicity $m - 1$), and so, therefore, \bar{z} must be a root of Q_1 , as must be the real quadratic $x^2 - 2ux + u^2 + v^2$. Thus

$$
\frac{P(x)}{(x^2 - 2ux + u^2 + v^2)^2} = \frac{Q_1(x)}{x^2 - 2ux + u^2 + v^2} = Q_2(x),
$$

where Q_2 is a polynomial with real coefficients. We can continue in this way until we get

$$
\frac{P(x)}{(x^2 - 2ux + u^2 + v^2)^m} = Q_m(x),
$$

where Q_m no longer has *z* (or \bar{z}) as a root. Thus *z* and \bar{z} must have the same multiplicity as roots of *P*.

Section P.7 The Trigonometric Functions (page 55)

1.
$$
\cos\left(\frac{3\pi}{4}\right) = \cos\left(\pi - \frac{\pi}{4}\right) = -\cos\frac{\pi}{4} = -\frac{1}{\sqrt{2}}
$$

\n2. $\tan\frac{-3\pi}{4} = -\tan\frac{3\pi}{4} = -1$
\n3. $\sin\frac{2\pi}{3} = \sin\left(\pi - \frac{\pi}{3}\right) = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$
\n4. $\sin\left(\frac{7\pi}{12}\right) = \sin\left(\frac{\pi}{4} + \frac{\pi}{3}\right)$
\n $= \sin\frac{\pi}{4}\cos\frac{\pi}{3} + \cos\frac{\pi}{4}\sin\frac{\pi}{3}$
\n $= \frac{1}{\sqrt{2}}\frac{1}{2} + \frac{1}{\sqrt{2}}\frac{\sqrt{3}}{2} = \frac{1 + \sqrt{3}}{2\sqrt{2}}$
\n5. $\cos\frac{5\pi}{12} = \cos\left(\frac{2\pi}{3} - \frac{\pi}{4}\right)$
\n $= \cos\frac{2\pi}{3}\cos\frac{\pi}{4} + \sin\frac{2\pi}{3}\sin\frac{\pi}{4}$
\n $= -\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right) + \left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right)$
\n $= \frac{\sqrt{3} - 1}{2\sqrt{2}}$
\n6. $\sin\frac{11\pi}{12} = \sin\frac{\pi}{12}$
\n $= \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right)$
\n $= \sin\frac{\pi}{3}\cos\frac{\pi}{4} - \cos\frac{\pi}{3}\sin\frac{\pi}{4}$
\n $= \left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right) - \left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right)$
\n $= \frac{\sqrt{3} - 1}{2\sqrt{2}}$

7.
$$
\cos(\pi + x) = \cos(2\pi - (\pi - x))
$$

$$
= \cos(-(\pi - x))
$$

$$
= \cos(\pi - x) = -\cos x
$$

8.
$$
\sin(2\pi - x) = -\sin x
$$

$$
9. \quad \sin\left(\frac{3\pi}{2} - x\right) = \sin\left(\pi - \left(x - \frac{\pi}{2}\right)\right)
$$

$$
= \sin\left(x - \frac{\pi}{2}\right)
$$

$$
= -\sin\left(\frac{\pi}{2} - x\right)
$$

$$
= -\cos x
$$

10.
$$
\cos\left(\frac{3\pi}{2} + x\right) = \cos\frac{3\pi}{2}\cos x - \sin\frac{3\pi}{2}\sin x
$$

\n
$$
= (-1)(-\sin x) = \sin x
$$

\n11.
$$
\tan x + \cot x = \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}
$$

\n
$$
= \frac{\sin^2 x + \cos^2 x}{\cos x \sin x}
$$

\n
$$
= \frac{1}{\cos x \sin x}
$$

\n12.
$$
\frac{\tan x - \cot x}{\tan x + \cot x} = \frac{\left(\frac{\sin x}{\cos x} - \frac{\cos x}{\sin x}\right)}{\left(\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}\right)}
$$

\n
$$
= \frac{\left(\frac{\sin^2 x - \cos^2 x}{\cos x \sin x}\right)}{\left(\frac{\sin^2 x + \cos^2 x}{\cos x \sin x}\right)}
$$

\n
$$
= \sin^2 x - \cos^2 x
$$

13. $\cos^4 x - \sin^4 x = (\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x)$ $= cos^2 x - sin^2 x = cos(2x)$

14.
$$
(1 - \cos x)(1 + \cos x) = 1 - \cos^{2} x = \sin^{2} x \text{ implies}
$$

\n
$$
\frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x}. \text{ Now}
$$

\n
$$
\frac{1 - \cos x}{\sin x} = \frac{1 - \cos 2(\frac{x}{2})}{\sin 2(\frac{x}{2})}
$$

\n
$$
= \frac{1 - (1 - 2\sin^{2}(\frac{x}{2}))}{2\sin \frac{x}{2}\cos \frac{x}{2}}
$$

\n
$$
= \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} = \tan \frac{x}{2}
$$

\n15.
$$
\frac{1 - \cos x}{1 + \cos x} = \frac{2\sin^{2}(\frac{x}{2})}{2\cos^{2}(\frac{x}{2})} = \tan^{2}(\frac{x}{2})
$$

INSTRUCTOR'S SOLUTIONS MANUAL **SECTION PROPESSION** CHARGE 55)

16.
$$
\frac{\cos x - \sin x}{\cos x + \sin x} = \frac{(\cos x - \sin x)^2}{(\cos x + \sin x)(\cos x - \sin x)}
$$

$$
= \frac{\cos^2 x - 2\sin x \cos x + \sin^2 x}{\cos^2 x - \sin^2 x}
$$

$$
= \frac{1 - \sin(2x)}{\cos(2x)}
$$

$$
= \sec(2x) - \tan(2x)
$$

17.
$$
\sin 3x = \sin(2x + x)
$$

= $\sin 2x \cos x + \cos 2x \sin x$
= $2 \sin x \cos^2 x + \sin x (1 - 2 \sin^2 x)$
= $2 \sin x (1 - \sin^2 x) + \sin x - 2 \sin^3 x$
= $3 \sin x - 4 \sin^3 x$

$$
\cos 3x = \cos(2x + x)
$$

= cos 2x cos x - sin 2x sin x
= (2 cos² x - 1) cos x - 2 sin² x cos x
= 2 cos³ x - cos x - 2(1 - cos² x) cos x
= 4 cos³ x - 3 cos x

18.

24.

21. sin πx has period 2.

22. cos $\frac{\pi x}{2}$ has period 4.

Fig. P.7.22

26. $\tan x = 2$ where *x* is in $[0, \frac{\pi}{2}]$. Then $\sec^2 x = 1 + \tan^2 x = 1 + 4 = 5$. Hence, $\sec x = \sqrt{5}$ and $\cos x = \frac{1}{\sec x} = \frac{1}{\sqrt{5}}$ $\overline{5}$ $\sin x = \tan x \cos x = \frac{2}{\sqrt{3}}$ $\frac{1}{5}$.

27.
$$
\cos x = \frac{1}{3}, -\frac{\pi}{2} < x < 0
$$

\n $\sin x = -\frac{\sqrt{8}}{3} = -\frac{2}{3}\sqrt{2}$
\n $\tan x = -\frac{\sqrt{8}}{1} = -2\sqrt{2}$

28.
$$
\cos x = -\frac{5}{13}
$$
 where *x* is in $\left[\frac{\pi}{2}, \pi\right]$. Hence,
\n $\sin x = \sqrt{1 - \cos^2 x} = \sqrt{1 - \frac{25}{169}} = \frac{12}{13}$,
\n $\tan x = -\frac{12}{5}$.

29.
$$
\sin x = -\frac{1}{2}, \quad \pi < x < \frac{3\pi}{2}
$$

\n $\cos x = -\frac{\sqrt{3}}{2}$
\n $\tan x = \frac{1}{\sqrt{3}}$

 $\overline{}$

30. $\tan x = \frac{1}{2}$ where *x* is in $[\pi, \frac{3\pi}{2}]$. Then, $sec² x = 1 + \frac{1}{4} = \frac{5}{4}$. Hence, sec $x = -\frac{\sqrt{5}}{2}, \quad \cos x = -\frac{2}{\sqrt{5}},$ $\sin x = \tan x \cos x = -\frac{1}{\sqrt{5}}.$

31.
$$
c = 2
$$
, $B = \frac{\pi}{3}$
\n $a = c \cos B = 2 \times \frac{1}{2} = 1$
\n $b = c \sin B = 2 \times \frac{\sqrt{3}}{2} = \sqrt{3}$

32.
$$
b = 2
$$
, $B = \frac{\pi}{3}$
\n $\frac{2}{a} = \tan B = \sqrt{3} \Rightarrow a = \frac{2}{\sqrt{3}}$
\n $\frac{2}{c} = \sin B = \frac{\sqrt{3}}{2} \Rightarrow c = \frac{4}{\sqrt{3}}$
\n33. $a = 5$, $B = \frac{\pi}{6}$
\n $b = a \tan B = 5 \times \frac{1}{\sqrt{3}} = \frac{5}{\sqrt{3}}$
\n $c = \sqrt{a^2 + b^2} = \sqrt{25 + \frac{25}{3}} = \frac{10}{\sqrt{3}}$
\n34. $\sin A = \frac{a}{c} \Rightarrow a = c \sin A$
\n35. $\frac{a}{b} = \tan A \Rightarrow a = b \tan A$
\n36. $\cos B = \frac{a}{c} \Rightarrow a = c \cos B$
\n37. $\frac{b}{a} = \tan B \Rightarrow a = b \cot B$
\n38. $\sin A = \frac{a}{c} \Rightarrow c = \frac{a}{\sin A}$
\n39. $\frac{b}{c} = \cos A \Rightarrow c = b \sec A$
\n40. $\sin A = \frac{a}{c}$
\n41. $\sin A = \frac{a}{c} = \frac{\sqrt{c^2 - b^2}}{c}$
\n42. $\sin A = \frac{a}{c} = \frac{a}{\sqrt{a^2 + b^2}}$
\n43. $a = 4, b = 3, A = \frac{\pi}{4}$
\n $\sin B = b \frac{\sin A}{a} = \frac{3}{4} \frac{1}{\sqrt{2}} = \frac{3}{4\sqrt{2}}$
\n44. Given that $a = 2, b = 2, c = 3$.
\nSince $a^2 = b^2 + c^2 - 2bc \cos A$,
\n $\cos A = \frac{a^2 - b^2}{-22bc} = \frac{4 - 4 - 9}{-22bc} = \frac{4 - 4 - 9}{-22bc} = \frac{4}{-2} \times \frac{22 \times 4}{-2} = \frac{11}{16}$
\n45. $a = 2, b = 3, c = 4$
\nThus $\cos B$

- **46.** Given that $a = 2$, $b = 3$, $C = \frac{\pi}{4}$. $c^2 = a^2 + b^2 - 2ab\cos C = 4 + 9 - 2(2)(3)\cos\frac{\pi}{4} = 13 - \frac{12}{\sqrt{2}}.$ Hence, $c =$ $\sqrt{13 - \frac{12}{\sqrt{2}}} \approx 2.12479.$ **47.** $c = 3, A = \frac{\pi}{4}, B = \frac{\pi}{3} \text{ implies } C = \frac{5\pi}{12}$
 $\frac{a}{\sin A} = \frac{c}{\sin C} \Rightarrow a = \frac{1}{\sqrt{2}} \frac{3}{\sqrt{5\pi}}$ 2 3 $\sin\left(\frac{5\pi}{12}\right)$ $a = \frac{3}{\sqrt{2}} \frac{1}{\sin \left(\frac{3}{2} \right)}$ $\sin\left(\frac{7\pi}{12}\right)$ $=\frac{3}{4}$ 2 $\frac{1}{2\sqrt{2}}$ $\frac{2\sqrt{2}}{1 + \sqrt{3}}$ (by #5) $=\frac{6}{1+\sqrt{3}}$
- **48.** Given that $a = 2$, $b = 3$, $C = 35^\circ$. Then $c^2 = 4 + 9 - 2(2)(3) \cos 35^\circ$, hence $c \approx 1.78050$.
- **49.** $a = 4$, $B = 40^\circ$, $C = 70^\circ$ Thus $A = 70^\circ$. **4** $\frac{b}{\sin 40^\circ} = \frac{4}{\sin 70^\circ}$ so $b = 4 \frac{\sin 40^\circ}{\sin 70^\circ} = 2.736$
- **50.** If $a = 1, b = \sqrt{2}, A = 30^{\circ}$, then $\frac{\sin B}{b} = \frac{\sin A}{a} = \frac{1}{2}$. Thus $\sin B = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$, $B = \frac{\pi}{4}$ or $\frac{3\pi}{4}$, and √ $C = \pi - \left(\frac{\pi}{4} + \frac{\pi}{6}\right)$ $= \frac{7\pi}{12}$ or $C = \pi - \left(\frac{3\pi}{4} + \frac{\pi}{6}\right)$ $= \frac{\pi}{12}.$ Thus, $\cos C = \cos \frac{7\pi}{12} = \cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right)$ $\binom{4}{1} = \frac{1 - \sqrt{3}}{2}$ $\frac{1}{2\sqrt{2}}$ or $\cos C = \cos \frac{\pi}{12} = \cos \left(\frac{\pi}{3} - \frac{\pi}{4} \right)$ $\left(4 \right) = \frac{1 + \sqrt{3}}{5}$ $rac{1}{2\sqrt{2}}$.

Hence,

$$
c2 = a2 + b2 - 2ab \cos C
$$

= 1 + 2 - 2 $\sqrt{2}$ cos C
= 3 - (1 - $\sqrt{3}$) or 3 - (1 + $\sqrt{3}$)
= 2 + $\sqrt{3}$ or 2 - $\sqrt{3}$.

Hence,
$$
c = \sqrt{2 + \sqrt{3}}
$$
 or $\sqrt{2 - \sqrt{3}}$.

Fig. P.7.50

51. Let *h* be the height of the pole and *x* be the distance from *C* to the base of the pole. Then $h = x \tan 50^\circ$ and $h = (x + 10) \tan 35^\circ$ Thus *x* tan $50^\circ = x \tan 35^\circ + 10 \tan 35^\circ$ so

$$
x = \frac{10 \tan 35^{\circ}}{\tan 50^{\circ} - \tan 35^{\circ}}
$$

$$
h = \frac{10 \tan 50^{\circ} \tan 35^{\circ}}{\tan 50^{\circ} - \tan 35^{\circ}} \approx 16.98
$$

The pole is about 16.98 metres high.

52. See the following diagram. Since $\tan 40° = h/a$, therefore $a = h/\tan 40^\circ$. Similarly, $b = h/\tan 70^\circ$. Since $a + b = 2$ km, therefore,

$$
\frac{h}{\tan 40^{\circ}} + \frac{h}{\tan 70^{\circ}} = 2
$$

$$
h = \frac{2(\tan 40^{\circ} \tan 70^{\circ})}{\tan 70^{\circ} + \tan 40^{\circ}} \approx 1.286 \text{ km.}
$$

Fig. P.7.52

53. Area $\triangle ABC = \frac{1}{2} |BC| h = \frac{ah}{2} = \frac{ac \sin B}{2} = \frac{ab \sin C}{2}$ By symmetry, area $\triangle ABC$ also $=$ $\frac{1}{2}$ *bc* sin *A*

Fig. P.7.53

54. From Exercise 53, area $=$ $\frac{1}{2}ac \sin B$. By Cosine Law,

Thus
$$
\sqrt{s(s-a)(s-b)(s-c)}
$$
 = Area of triangle.

$$
\cos B = \frac{a^2 + c^2 - b^2}{2ac}.
$$
 Thus,
\n
$$
\sin B = \sqrt{1 - \left(\frac{a^2 + c^2 - b^2}{2ac}\right)^2}
$$
\n
$$
= \frac{\sqrt{-a^4 - b^4 - c^4 + 2a^2b^2 + 2b^2c^2 + 2a^2c^2}}{2ac}.
$$

Hence, Area $=$ $\frac{v - a}{c}$ square units. Since,

$$
s(s-a)(s-b)(s-c)
$$

= $\frac{b+c+a}{2} \frac{b+c-a}{2} \frac{a-b+c}{2} \frac{a+b-c}{2}$
= $\frac{1}{16} \left((b+c)^2 - a^2 \right) \left(a^2 - (b-c)^2 \right)$
= $\frac{1}{16} \left(a^2 \left((b+c)^2 + (b-c)^2 \right) - a^4 - (b^2 - c^2)^2 \right)$
= $\frac{1}{16} \left(2a^2b^2 + 2a^2c^2 - a^4 - b^4 - c^4 + 2b^2c^2 \right)$

4